]>
Commit | Line | Data |
---|---|---|
0ee75d02 | 1 | /* BFD backend for SunOS binaries. |
6c97aedf | 2 | Copyright (C) 1990, 91, 92, 93, 94, 1995 Free Software Foundation, Inc. |
0ee75d02 | 3 | Written by Cygnus Support. |
4a81b561 | 4 | |
0ee75d02 | 5 | This file is part of BFD, the Binary File Descriptor library. |
4a81b561 | 6 | |
0ee75d02 | 7 | This program is free software; you can redistribute it and/or modify |
4a81b561 | 8 | it under the terms of the GNU General Public License as published by |
0ee75d02 ILT |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
4a81b561 | 11 | |
0ee75d02 | 12 | This program is distributed in the hope that it will be useful, |
4a81b561 DHW |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
0ee75d02 | 18 | along with this program; if not, write to the Free Software |
943fbd5b | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
4a81b561 | 20 | |
0ee75d02 ILT |
21 | #define TARGETNAME "a.out-sunos-big" |
22 | #define MY(OP) CAT(sunos_big_,OP) | |
4a81b561 | 23 | |
4a81b561 | 24 | #include "bfd.h" |
e85e8bfe ILT |
25 | #include "bfdlink.h" |
26 | #include "libaout.h" | |
78aa64b1 | 27 | |
0ee75d02 | 28 | /* Static routines defined in this file. */ |
4a81b561 | 29 | |
0ee75d02 | 30 | static boolean sunos_read_dynamic_info PARAMS ((bfd *)); |
e85e8bfe ILT |
31 | static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *)); |
32 | static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **)); | |
33 | static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *)); | |
34 | static long sunos_canonicalize_dynamic_reloc | |
35 | PARAMS ((bfd *, arelent **, asymbol **)); | |
36 | static struct bfd_hash_entry *sunos_link_hash_newfunc | |
37 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
38 | static struct bfd_link_hash_table *sunos_link_hash_table_create | |
39 | PARAMS ((bfd *)); | |
535c89f0 ILT |
40 | static boolean sunos_create_dynamic_sections |
41 | PARAMS ((bfd *, struct bfd_link_info *, boolean)); | |
e85e8bfe ILT |
42 | static boolean sunos_add_dynamic_symbols |
43 | PARAMS ((bfd *, struct bfd_link_info *)); | |
44 | static boolean sunos_add_one_symbol | |
45 | PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *, | |
46 | bfd_vma, const char *, boolean, boolean, | |
47 | struct bfd_link_hash_entry **)); | |
48 | static boolean sunos_scan_relocs | |
49 | PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type)); | |
50 | static boolean sunos_scan_std_relocs | |
51 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
52 | const struct reloc_std_external *, bfd_size_type)); | |
53 | static boolean sunos_scan_ext_relocs | |
54 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
55 | const struct reloc_ext_external *, bfd_size_type)); | |
56 | static boolean sunos_link_dynamic_object | |
57 | PARAMS ((struct bfd_link_info *, bfd *)); | |
58 | static boolean sunos_write_dynamic_symbol | |
59 | PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *)); | |
60 | static boolean sunos_check_dynamic_reloc | |
61 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
535c89f0 ILT |
62 | struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *, |
63 | bfd_vma *)); | |
e85e8bfe ILT |
64 | static boolean sunos_finish_dynamic_link |
65 | PARAMS ((bfd *, struct bfd_link_info *)); | |
4a81b561 | 66 | |
e85e8bfe ILT |
67 | #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound |
68 | #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab | |
69 | #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound | |
70 | #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc | |
71 | #define MY_bfd_link_hash_table_create sunos_link_hash_table_create | |
72 | #define MY_add_dynamic_symbols sunos_add_dynamic_symbols | |
73 | #define MY_add_one_symbol sunos_add_one_symbol | |
74 | #define MY_link_dynamic_object sunos_link_dynamic_object | |
75 | #define MY_write_dynamic_symbol sunos_write_dynamic_symbol | |
76 | #define MY_check_dynamic_reloc sunos_check_dynamic_reloc | |
77 | #define MY_finish_dynamic_link sunos_finish_dynamic_link | |
4a81b561 | 78 | |
0ee75d02 ILT |
79 | /* Include the usual a.out support. */ |
80 | #include "aoutf1.h" | |
4a81b561 | 81 | |
0ee75d02 ILT |
82 | /* SunOS shared library support. We store a pointer to this structure |
83 | in obj_aout_dynamic_info (abfd). */ | |
4a81b561 | 84 | |
0ee75d02 | 85 | struct sunos_dynamic_info |
78aa64b1 | 86 | { |
0ee75d02 ILT |
87 | /* Whether we found any dynamic information. */ |
88 | boolean valid; | |
89 | /* Dynamic information. */ | |
90 | struct internal_sun4_dynamic_link dyninfo; | |
91 | /* Number of dynamic symbols. */ | |
ae115e51 | 92 | unsigned long dynsym_count; |
0ee75d02 ILT |
93 | /* Read in nlists for dynamic symbols. */ |
94 | struct external_nlist *dynsym; | |
e85e8bfe ILT |
95 | /* asymbol structures for dynamic symbols. */ |
96 | aout_symbol_type *canonical_dynsym; | |
0ee75d02 ILT |
97 | /* Read in dynamic string table. */ |
98 | char *dynstr; | |
99 | /* Number of dynamic relocs. */ | |
ae115e51 | 100 | unsigned long dynrel_count; |
0ee75d02 ILT |
101 | /* Read in dynamic relocs. This may be reloc_std_external or |
102 | reloc_ext_external. */ | |
103 | PTR dynrel; | |
e85e8bfe ILT |
104 | /* arelent structures for dynamic relocs. */ |
105 | arelent *canonical_dynrel; | |
0ee75d02 | 106 | }; |
4a81b561 | 107 | |
e85e8bfe ILT |
108 | /* The hash table of dynamic symbols is composed of two word entries. |
109 | See include/aout/sun4.h for details. */ | |
110 | ||
111 | #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD) | |
112 | ||
0ee75d02 ILT |
113 | /* Read in the basic dynamic information. This locates the __DYNAMIC |
114 | structure and uses it to find the dynamic_link structure. It | |
115 | creates and saves a sunos_dynamic_info structure. If it can't find | |
116 | __DYNAMIC, it sets the valid field of the sunos_dynamic_info | |
117 | structure to false to avoid doing this work again. */ | |
4a81b561 | 118 | |
0ee75d02 ILT |
119 | static boolean |
120 | sunos_read_dynamic_info (abfd) | |
4a81b561 DHW |
121 | bfd *abfd; |
122 | { | |
0ee75d02 | 123 | struct sunos_dynamic_info *info; |
0ee75d02 | 124 | asection *dynsec; |
ae115e51 | 125 | bfd_vma dynoff; |
0ee75d02 ILT |
126 | struct external_sun4_dynamic dyninfo; |
127 | unsigned long dynver; | |
128 | struct external_sun4_dynamic_link linkinfo; | |
129 | ||
130 | if (obj_aout_dynamic_info (abfd) != (PTR) NULL) | |
131 | return true; | |
132 | ||
e85e8bfe ILT |
133 | if ((abfd->flags & DYNAMIC) == 0) |
134 | { | |
135 | bfd_set_error (bfd_error_invalid_operation); | |
136 | return false; | |
137 | } | |
138 | ||
0ee75d02 ILT |
139 | info = ((struct sunos_dynamic_info *) |
140 | bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info))); | |
9783e04a DM |
141 | if (!info) |
142 | { | |
d7fb4531 | 143 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
144 | return false; |
145 | } | |
0ee75d02 ILT |
146 | info->valid = false; |
147 | info->dynsym = NULL; | |
148 | info->dynstr = NULL; | |
e85e8bfe | 149 | info->canonical_dynsym = NULL; |
0ee75d02 | 150 | info->dynrel = NULL; |
e85e8bfe | 151 | info->canonical_dynrel = NULL; |
0ee75d02 ILT |
152 | obj_aout_dynamic_info (abfd) = (PTR) info; |
153 | ||
3e0b5554 PS |
154 | /* This code used to look for the __DYNAMIC symbol to locate the dynamic |
155 | linking information. | |
156 | However this inhibits recovering the dynamic symbols from a | |
157 | stripped object file, so blindly assume that the dynamic linking | |
158 | information is located at the start of the data section. | |
159 | We could verify this assumption later by looking through the dynamic | |
160 | symbols for the __DYNAMIC symbol. */ | |
161 | if ((abfd->flags & DYNAMIC) == 0) | |
0ee75d02 | 162 | return true; |
3e0b5554 PS |
163 | if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo, |
164 | (file_ptr) 0, sizeof dyninfo)) | |
0ee75d02 ILT |
165 | return true; |
166 | ||
167 | dynver = GET_WORD (abfd, dyninfo.ld_version); | |
168 | if (dynver != 2 && dynver != 3) | |
169 | return true; | |
170 | ||
171 | dynoff = GET_WORD (abfd, dyninfo.ld); | |
172 | ||
173 | /* dynoff is a virtual address. It is probably always in the .data | |
174 | section, but this code should work even if it moves. */ | |
175 | if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd))) | |
176 | dynsec = obj_textsec (abfd); | |
177 | else | |
178 | dynsec = obj_datasec (abfd); | |
179 | dynoff -= bfd_get_section_vma (abfd, dynsec); | |
ae115e51 | 180 | if (dynoff > bfd_section_size (abfd, dynsec)) |
0ee75d02 ILT |
181 | return true; |
182 | ||
183 | /* This executable appears to be dynamically linked in a way that we | |
184 | can understand. */ | |
185 | if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff, | |
186 | (bfd_size_type) sizeof linkinfo)) | |
187 | return true; | |
188 | ||
189 | /* Swap in the dynamic link information. */ | |
190 | info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded); | |
191 | info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need); | |
192 | info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules); | |
193 | info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got); | |
194 | info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt); | |
195 | info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel); | |
196 | info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash); | |
197 | info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab); | |
198 | info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash); | |
199 | info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets); | |
200 | info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols); | |
201 | info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size); | |
202 | info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text); | |
203 | info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz); | |
204 | ||
205 | /* The only way to get the size of the symbol information appears to | |
206 | be to determine the distance between it and the string table. */ | |
207 | info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab) | |
208 | / EXTERNAL_NLIST_SIZE); | |
209 | BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE | |
ae115e51 ILT |
210 | == (unsigned long) (info->dyninfo.ld_symbols |
211 | - info->dyninfo.ld_stab)); | |
0ee75d02 ILT |
212 | |
213 | /* Similarly, the relocs end at the hash table. */ | |
214 | info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel) | |
215 | / obj_reloc_entry_size (abfd)); | |
216 | BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd) | |
ae115e51 ILT |
217 | == (unsigned long) (info->dyninfo.ld_hash |
218 | - info->dyninfo.ld_rel)); | |
0ee75d02 ILT |
219 | |
220 | info->valid = true; | |
4a81b561 DHW |
221 | |
222 | return true; | |
223 | } | |
224 | ||
e85e8bfe ILT |
225 | /* Return the amount of memory required for the dynamic symbols. */ |
226 | ||
227 | static long | |
228 | sunos_get_dynamic_symtab_upper_bound (abfd) | |
229 | bfd *abfd; | |
230 | { | |
231 | struct sunos_dynamic_info *info; | |
232 | ||
233 | if (! sunos_read_dynamic_info (abfd)) | |
234 | return -1; | |
235 | ||
236 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
237 | if (! info->valid) | |
238 | { | |
239 | bfd_set_error (bfd_error_no_symbols); | |
240 | return -1; | |
241 | } | |
242 | ||
243 | return (info->dynsym_count + 1) * sizeof (asymbol *); | |
244 | } | |
245 | ||
0ee75d02 | 246 | /* Read in the dynamic symbols. */ |
4a81b561 | 247 | |
e85e8bfe ILT |
248 | static long |
249 | sunos_canonicalize_dynamic_symtab (abfd, storage) | |
4a81b561 | 250 | bfd *abfd; |
e85e8bfe | 251 | asymbol **storage; |
4a81b561 | 252 | { |
0ee75d02 | 253 | struct sunos_dynamic_info *info; |
ae115e51 | 254 | unsigned long i; |
4a81b561 | 255 | |
e85e8bfe ILT |
256 | /* Get the general dynamic information. */ |
257 | if (obj_aout_dynamic_info (abfd) == NULL) | |
0ee75d02 ILT |
258 | { |
259 | if (! sunos_read_dynamic_info (abfd)) | |
e85e8bfe | 260 | return -1; |
4a81b561 | 261 | } |
c93595dd | 262 | |
0ee75d02 | 263 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); |
e85e8bfe ILT |
264 | if (! info->valid) |
265 | { | |
266 | bfd_set_error (bfd_error_no_symbols); | |
267 | return -1; | |
268 | } | |
10be52bf | 269 | |
e85e8bfe | 270 | /* Get the dynamic nlist structures. */ |
0ee75d02 ILT |
271 | if (info->dynsym == (struct external_nlist *) NULL) |
272 | { | |
273 | info->dynsym = ((struct external_nlist *) | |
274 | bfd_alloc (abfd, | |
275 | (info->dynsym_count | |
276 | * EXTERNAL_NLIST_SIZE))); | |
e85e8bfe | 277 | if (info->dynsym == NULL && info->dynsym_count != 0) |
9783e04a | 278 | { |
d7fb4531 | 279 | bfd_set_error (bfd_error_no_memory); |
e85e8bfe | 280 | return -1; |
9783e04a | 281 | } |
0ee75d02 ILT |
282 | if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0 |
283 | || (bfd_read ((PTR) info->dynsym, info->dynsym_count, | |
284 | EXTERNAL_NLIST_SIZE, abfd) | |
e85e8bfe ILT |
285 | != info->dynsym_count * EXTERNAL_NLIST_SIZE)) |
286 | { | |
287 | if (info->dynsym != NULL) | |
288 | { | |
289 | bfd_release (abfd, info->dynsym); | |
290 | info->dynsym = NULL; | |
291 | } | |
292 | return -1; | |
293 | } | |
294 | } | |
295 | ||
296 | /* Get the dynamic strings. */ | |
297 | if (info->dynstr == (char *) NULL) | |
298 | { | |
299 | info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size); | |
300 | if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0) | |
301 | { | |
302 | bfd_set_error (bfd_error_no_memory); | |
303 | return -1; | |
304 | } | |
305 | if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0 | |
0ee75d02 ILT |
306 | || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size, |
307 | abfd) | |
308 | != info->dyninfo.ld_symb_size)) | |
e85e8bfe ILT |
309 | { |
310 | if (info->dynstr != NULL) | |
311 | { | |
312 | bfd_release (abfd, info->dynstr); | |
313 | info->dynstr = NULL; | |
314 | } | |
315 | return -1; | |
316 | } | |
0ee75d02 | 317 | } |
1a602d6e | 318 | |
0ee75d02 ILT |
319 | #ifdef CHECK_DYNAMIC_HASH |
320 | /* Check my understanding of the dynamic hash table by making sure | |
321 | that each symbol can be located in the hash table. */ | |
322 | { | |
323 | bfd_size_type table_size; | |
324 | bfd_byte *table; | |
325 | bfd_size_type i; | |
326 | ||
327 | if (info->dyninfo.ld_buckets > info->dynsym_count) | |
328 | abort (); | |
329 | table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash; | |
d7fb4531 | 330 | table = (bfd_byte *) malloc (table_size); |
e85e8bfe | 331 | if (table == NULL && table_size != 0) |
d7fb4531 | 332 | abort (); |
0ee75d02 ILT |
333 | if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0 |
334 | || bfd_read ((PTR) table, 1, table_size, abfd) != table_size) | |
335 | abort (); | |
336 | for (i = 0; i < info->dynsym_count; i++) | |
9846338e | 337 | { |
0ee75d02 ILT |
338 | unsigned char *name; |
339 | unsigned long hash; | |
340 | ||
341 | name = ((unsigned char *) info->dynstr | |
342 | + GET_WORD (abfd, info->dynsym[i].e_strx)); | |
343 | hash = 0; | |
344 | while (*name != '\0') | |
345 | hash = (hash << 1) + *name++; | |
346 | hash &= 0x7fffffff; | |
347 | hash %= info->dyninfo.ld_buckets; | |
e85e8bfe | 348 | while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i) |
0ee75d02 | 349 | { |
e85e8bfe ILT |
350 | hash = GET_WORD (abfd, |
351 | table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
352 | if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE) | |
0ee75d02 ILT |
353 | abort (); |
354 | } | |
9846338e | 355 | } |
d7fb4531 | 356 | free (table); |
4a81b561 | 357 | } |
0ee75d02 | 358 | #endif /* CHECK_DYNAMIC_HASH */ |
4a81b561 | 359 | |
e85e8bfe ILT |
360 | /* Get the asymbol structures corresponding to the dynamic nlist |
361 | structures. */ | |
362 | if (info->canonical_dynsym == (aout_symbol_type *) NULL) | |
363 | { | |
364 | info->canonical_dynsym = ((aout_symbol_type *) | |
365 | bfd_alloc (abfd, | |
366 | (info->dynsym_count | |
367 | * sizeof (aout_symbol_type)))); | |
368 | if (info->canonical_dynsym == NULL && info->dynsym_count != 0) | |
369 | { | |
370 | bfd_set_error (bfd_error_no_memory); | |
371 | return -1; | |
372 | } | |
373 | ||
374 | if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym, | |
375 | info->dynsym, info->dynsym_count, | |
376 | info->dynstr, | |
377 | info->dyninfo.ld_symb_size, | |
378 | true)) | |
379 | { | |
380 | if (info->canonical_dynsym != NULL) | |
381 | { | |
382 | bfd_release (abfd, info->canonical_dynsym); | |
383 | info->canonical_dynsym = NULL; | |
384 | } | |
385 | return -1; | |
386 | } | |
387 | } | |
388 | ||
389 | /* Return pointers to the dynamic asymbol structures. */ | |
390 | for (i = 0; i < info->dynsym_count; i++) | |
391 | *storage++ = (asymbol *) (info->canonical_dynsym + i); | |
392 | *storage = NULL; | |
393 | ||
0ee75d02 | 394 | return info->dynsym_count; |
4a81b561 | 395 | } |
4a81b561 | 396 | |
e85e8bfe ILT |
397 | /* Return the amount of memory required for the dynamic relocs. */ |
398 | ||
399 | static long | |
400 | sunos_get_dynamic_reloc_upper_bound (abfd) | |
401 | bfd *abfd; | |
402 | { | |
403 | struct sunos_dynamic_info *info; | |
404 | ||
405 | if (! sunos_read_dynamic_info (abfd)) | |
406 | return -1; | |
407 | ||
408 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
409 | if (! info->valid) | |
410 | { | |
411 | bfd_set_error (bfd_error_no_symbols); | |
412 | return -1; | |
413 | } | |
414 | ||
415 | return (info->dynrel_count + 1) * sizeof (arelent *); | |
416 | } | |
417 | ||
418 | /* Read in the dynamic relocs. */ | |
4a81b561 | 419 | |
e85e8bfe ILT |
420 | static long |
421 | sunos_canonicalize_dynamic_reloc (abfd, storage, syms) | |
4a81b561 | 422 | bfd *abfd; |
e85e8bfe ILT |
423 | arelent **storage; |
424 | asymbol **syms; | |
4a81b561 | 425 | { |
0ee75d02 | 426 | struct sunos_dynamic_info *info; |
ae115e51 | 427 | unsigned long i; |
4a81b561 | 428 | |
e85e8bfe | 429 | /* Get the general dynamic information. */ |
0ee75d02 ILT |
430 | if (obj_aout_dynamic_info (abfd) == (PTR) NULL) |
431 | { | |
432 | if (! sunos_read_dynamic_info (abfd)) | |
e85e8bfe | 433 | return -1; |
0ee75d02 | 434 | } |
4a81b561 | 435 | |
0ee75d02 | 436 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); |
e85e8bfe ILT |
437 | if (! info->valid) |
438 | { | |
439 | bfd_set_error (bfd_error_no_symbols); | |
440 | return -1; | |
441 | } | |
4a81b561 | 442 | |
e85e8bfe | 443 | /* Get the dynamic reloc information. */ |
9783e04a | 444 | if (info->dynrel == NULL) |
0ee75d02 ILT |
445 | { |
446 | info->dynrel = (PTR) bfd_alloc (abfd, | |
447 | (info->dynrel_count | |
448 | * obj_reloc_entry_size (abfd))); | |
e85e8bfe | 449 | if (info->dynrel == NULL && info->dynrel_count != 0) |
9783e04a | 450 | { |
d7fb4531 | 451 | bfd_set_error (bfd_error_no_memory); |
e85e8bfe | 452 | return -1; |
9783e04a | 453 | } |
0ee75d02 ILT |
454 | if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0 |
455 | || (bfd_read ((PTR) info->dynrel, info->dynrel_count, | |
456 | obj_reloc_entry_size (abfd), abfd) | |
457 | != info->dynrel_count * obj_reloc_entry_size (abfd))) | |
e85e8bfe ILT |
458 | { |
459 | if (info->dynrel != NULL) | |
460 | { | |
461 | bfd_release (abfd, info->dynrel); | |
462 | info->dynrel = NULL; | |
463 | } | |
464 | return -1; | |
465 | } | |
466 | } | |
467 | ||
468 | /* Get the arelent structures corresponding to the dynamic reloc | |
469 | information. */ | |
470 | if (info->canonical_dynrel == (arelent *) NULL) | |
471 | { | |
472 | arelent *to; | |
473 | ||
474 | info->canonical_dynrel = ((arelent *) | |
475 | bfd_alloc (abfd, | |
476 | (info->dynrel_count | |
477 | * sizeof (arelent)))); | |
478 | if (info->canonical_dynrel == NULL && info->dynrel_count != 0) | |
479 | { | |
480 | bfd_set_error (bfd_error_no_memory); | |
481 | return -1; | |
482 | } | |
483 | ||
484 | to = info->canonical_dynrel; | |
485 | ||
486 | if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE) | |
487 | { | |
488 | register struct reloc_ext_external *p; | |
489 | struct reloc_ext_external *pend; | |
490 | ||
491 | p = (struct reloc_ext_external *) info->dynrel; | |
492 | pend = p + info->dynrel_count; | |
493 | for (; p < pend; p++, to++) | |
943fbd5b KR |
494 | NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms, |
495 | info->dynsym_count); | |
e85e8bfe ILT |
496 | } |
497 | else | |
498 | { | |
499 | register struct reloc_std_external *p; | |
500 | struct reloc_std_external *pend; | |
501 | ||
502 | p = (struct reloc_std_external *) info->dynrel; | |
503 | pend = p + info->dynrel_count; | |
504 | for (; p < pend; p++, to++) | |
943fbd5b KR |
505 | NAME(aout,swap_std_reloc_in) (abfd, p, to, syms, |
506 | info->dynsym_count); | |
e85e8bfe | 507 | } |
0ee75d02 | 508 | } |
4a81b561 | 509 | |
e85e8bfe ILT |
510 | /* Return pointers to the dynamic arelent structures. */ |
511 | for (i = 0; i < info->dynrel_count; i++) | |
512 | *storage++ = info->canonical_dynrel + i; | |
513 | *storage = NULL; | |
4a81b561 | 514 | |
0ee75d02 | 515 | return info->dynrel_count; |
4a81b561 | 516 | } |
e85e8bfe ILT |
517 | \f |
518 | /* Code to handle linking of SunOS shared libraries. */ | |
519 | ||
520 | /* A SPARC procedure linkage table entry is 12 bytes. The first entry | |
521 | in the table is a jump which is filled in by the runtime linker. | |
522 | The remaining entries are branches back to the first entry, | |
523 | followed by an index into the relocation table encoded to look like | |
524 | a sethi of %g0. */ | |
525 | ||
526 | #define SPARC_PLT_ENTRY_SIZE (12) | |
527 | ||
04dc16b7 | 528 | static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] = |
e85e8bfe ILT |
529 | { |
530 | /* sethi %hi(0),%g1; address filled in by runtime linker. */ | |
531 | 0x3, 0, 0, 0, | |
532 | /* jmp %g1; offset filled in by runtime linker. */ | |
533 | 0x81, 0xc0, 0x60, 0, | |
534 | /* nop */ | |
535 | 0x1, 0, 0, 0 | |
536 | }; | |
537 | ||
538 | /* save %sp, -96, %sp */ | |
539 | #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0 | |
540 | /* call; address filled in later. */ | |
541 | #define SPARC_PLT_ENTRY_WORD1 0x40000000 | |
542 | /* sethi; reloc index filled in later. */ | |
543 | #define SPARC_PLT_ENTRY_WORD2 0x01000000 | |
544 | ||
535c89f0 ILT |
545 | /* This sequence is used when for the jump table entry to a defined |
546 | symbol in a complete executable. It is used when linking PIC | |
547 | compiled code which is not being put into a shared library. */ | |
548 | /* sethi <address to be filled in later>, %g1 */ | |
549 | #define SPARC_PLT_PIC_WORD0 0x03000000 | |
550 | /* jmp %g1 + <address to be filled in later> */ | |
551 | #define SPARC_PLT_PIC_WORD1 0x81c06000 | |
552 | /* nop */ | |
553 | #define SPARC_PLT_PIC_WORD2 0x01000000 | |
554 | ||
e85e8bfe ILT |
555 | /* An m68k procedure linkage table entry is 8 bytes. The first entry |
556 | in the table is a jump which is filled in the by the runtime | |
557 | linker. The remaining entries are branches back to the first | |
558 | entry, followed by a two byte index into the relocation table. */ | |
559 | ||
560 | #define M68K_PLT_ENTRY_SIZE (8) | |
561 | ||
04dc16b7 | 562 | static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] = |
e85e8bfe ILT |
563 | { |
564 | /* jmps @# */ | |
565 | 0x4e, 0xf9, | |
566 | /* Filled in by runtime linker with a magic address. */ | |
567 | 0, 0, 0, 0, | |
568 | /* Not used? */ | |
569 | 0, 0 | |
570 | }; | |
571 | ||
572 | /* bsrl */ | |
573 | #define M68K_PLT_ENTRY_WORD0 (0x61ff) | |
574 | /* Remaining words filled in later. */ | |
575 | ||
576 | /* An entry in the SunOS linker hash table. */ | |
577 | ||
578 | struct sunos_link_hash_entry | |
579 | { | |
580 | struct aout_link_hash_entry root; | |
581 | ||
582 | /* If this is a dynamic symbol, this is its index into the dynamic | |
583 | symbol table. This is initialized to -1. As the linker looks at | |
584 | the input files, it changes this to -2 if it will be added to the | |
585 | dynamic symbol table. After all the input files have been seen, | |
586 | the linker will know whether to build a dynamic symbol table; if | |
587 | it does build one, this becomes the index into the table. */ | |
588 | long dynindx; | |
589 | ||
590 | /* If this is a dynamic symbol, this is the index of the name in the | |
591 | dynamic symbol string table. */ | |
592 | long dynstr_index; | |
593 | ||
535c89f0 ILT |
594 | /* The offset into the global offset table used for this symbol. If |
595 | the symbol does not require a GOT entry, this is 0. */ | |
596 | bfd_vma got_offset; | |
597 | ||
598 | /* The offset into the procedure linkage table used for this symbol. | |
599 | If the symbol does not require a PLT entry, this is 0. */ | |
600 | bfd_vma plt_offset; | |
601 | ||
e85e8bfe ILT |
602 | /* Some linker flags. */ |
603 | unsigned char flags; | |
604 | /* Symbol is referenced by a regular object. */ | |
605 | #define SUNOS_REF_REGULAR 01 | |
606 | /* Symbol is defined by a regular object. */ | |
607 | #define SUNOS_DEF_REGULAR 02 | |
608 | /* Symbol is referenced by a dynamic object. */ | |
609 | #define SUNOS_REF_DYNAMIC 010 | |
610 | /* Symbol is defined by a dynamic object. */ | |
611 | #define SUNOS_DEF_DYNAMIC 020 | |
612 | }; | |
613 | ||
614 | /* The SunOS linker hash table. */ | |
615 | ||
616 | struct sunos_link_hash_table | |
617 | { | |
618 | struct aout_link_hash_table root; | |
619 | ||
535c89f0 | 620 | /* The object which holds the dynamic sections. */ |
e85e8bfe ILT |
621 | bfd *dynobj; |
622 | ||
535c89f0 ILT |
623 | /* Whether we have created the dynamic sections. */ |
624 | boolean dynamic_sections_created; | |
625 | ||
626 | /* Whether we need the dynamic sections. */ | |
627 | boolean dynamic_sections_needed; | |
628 | ||
e85e8bfe ILT |
629 | /* The number of dynamic symbols. */ |
630 | size_t dynsymcount; | |
631 | ||
632 | /* The number of buckets in the hash table. */ | |
633 | size_t bucketcount; | |
634 | }; | |
635 | ||
636 | /* Routine to create an entry in an SunOS link hash table. */ | |
637 | ||
638 | static struct bfd_hash_entry * | |
639 | sunos_link_hash_newfunc (entry, table, string) | |
640 | struct bfd_hash_entry *entry; | |
641 | struct bfd_hash_table *table; | |
642 | const char *string; | |
643 | { | |
644 | struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry; | |
645 | ||
646 | /* Allocate the structure if it has not already been allocated by a | |
647 | subclass. */ | |
648 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
649 | ret = ((struct sunos_link_hash_entry *) | |
650 | bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry))); | |
651 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
652 | { | |
653 | bfd_set_error (bfd_error_no_memory); | |
654 | return (struct bfd_hash_entry *) ret; | |
655 | } | |
656 | ||
657 | /* Call the allocation method of the superclass. */ | |
658 | ret = ((struct sunos_link_hash_entry *) | |
659 | NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret, | |
660 | table, string)); | |
661 | if (ret != NULL) | |
662 | { | |
663 | /* Set local fields. */ | |
664 | ret->dynindx = -1; | |
665 | ret->dynstr_index = -1; | |
535c89f0 ILT |
666 | ret->got_offset = 0; |
667 | ret->plt_offset = 0; | |
e85e8bfe ILT |
668 | ret->flags = 0; |
669 | } | |
670 | ||
671 | return (struct bfd_hash_entry *) ret; | |
672 | } | |
673 | ||
674 | /* Create a SunOS link hash table. */ | |
675 | ||
676 | static struct bfd_link_hash_table * | |
677 | sunos_link_hash_table_create (abfd) | |
678 | bfd *abfd; | |
679 | { | |
680 | struct sunos_link_hash_table *ret; | |
681 | ||
682 | ret = ((struct sunos_link_hash_table *) | |
535c89f0 | 683 | bfd_alloc (abfd, sizeof (struct sunos_link_hash_table))); |
e85e8bfe ILT |
684 | if (ret == (struct sunos_link_hash_table *) NULL) |
685 | { | |
686 | bfd_set_error (bfd_error_no_memory); | |
687 | return (struct bfd_link_hash_table *) NULL; | |
688 | } | |
689 | if (! NAME(aout,link_hash_table_init) (&ret->root, abfd, | |
690 | sunos_link_hash_newfunc)) | |
691 | { | |
692 | free (ret); | |
693 | return (struct bfd_link_hash_table *) NULL; | |
694 | } | |
695 | ||
696 | ret->dynobj = NULL; | |
535c89f0 ILT |
697 | ret->dynamic_sections_created = false; |
698 | ret->dynamic_sections_needed = false; | |
e85e8bfe ILT |
699 | ret->dynsymcount = 0; |
700 | ret->bucketcount = 0; | |
701 | ||
702 | return &ret->root.root; | |
703 | } | |
704 | ||
705 | /* Look up an entry in an SunOS link hash table. */ | |
706 | ||
707 | #define sunos_link_hash_lookup(table, string, create, copy, follow) \ | |
708 | ((struct sunos_link_hash_entry *) \ | |
709 | aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\ | |
710 | (follow))) | |
711 | ||
712 | /* Traverse a SunOS link hash table. */ | |
713 | ||
714 | #define sunos_link_hash_traverse(table, func, info) \ | |
715 | (aout_link_hash_traverse \ | |
716 | (&(table)->root, \ | |
717 | (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \ | |
718 | (info))) | |
719 | ||
720 | /* Get the SunOS link hash table from the info structure. This is | |
721 | just a cast. */ | |
722 | ||
723 | #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash)) | |
724 | ||
725 | static boolean sunos_scan_dynamic_symbol | |
726 | PARAMS ((struct sunos_link_hash_entry *, PTR)); | |
727 | ||
535c89f0 ILT |
728 | /* Create the dynamic sections needed if we are linking against a |
729 | dynamic object, or if we are linking PIC compiled code. ABFD is a | |
730 | bfd we can attach the dynamic sections to. The linker script will | |
731 | look for these special sections names and put them in the right | |
732 | place in the output file. See include/aout/sun4.h for more details | |
733 | of the dynamic linking information. */ | |
e85e8bfe ILT |
734 | |
735 | static boolean | |
535c89f0 | 736 | sunos_create_dynamic_sections (abfd, info, needed) |
e85e8bfe ILT |
737 | bfd *abfd; |
738 | struct bfd_link_info *info; | |
535c89f0 | 739 | boolean needed; |
e85e8bfe ILT |
740 | { |
741 | asection *s; | |
742 | ||
535c89f0 | 743 | if (! sunos_hash_table (info)->dynamic_sections_created) |
e85e8bfe ILT |
744 | { |
745 | flagword flags; | |
e85e8bfe ILT |
746 | |
747 | sunos_hash_table (info)->dynobj = abfd; | |
535c89f0 | 748 | |
e85e8bfe ILT |
749 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; |
750 | ||
751 | /* The .dynamic section holds the basic dynamic information: the | |
752 | sun4_dynamic structure, the dynamic debugger information, and | |
753 | the sun4_dynamic_link structure. */ | |
754 | s = bfd_make_section (abfd, ".dynamic"); | |
755 | if (s == NULL | |
756 | || ! bfd_set_section_flags (abfd, s, flags) | |
757 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
e85e8bfe ILT |
758 | return false; |
759 | ||
535c89f0 ILT |
760 | /* The .got section holds the global offset table. The address |
761 | is put in the ld_got field. */ | |
e85e8bfe ILT |
762 | s = bfd_make_section (abfd, ".got"); |
763 | if (s == NULL | |
764 | || ! bfd_set_section_flags (abfd, s, flags) | |
765 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
766 | return false; | |
e85e8bfe ILT |
767 | |
768 | /* The .plt section holds the procedure linkage table. The | |
769 | address is put in the ld_plt field. */ | |
770 | s = bfd_make_section (abfd, ".plt"); | |
771 | if (s == NULL | |
772 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
773 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
774 | return false; | |
775 | ||
776 | /* The .dynrel section holds the dynamic relocs. The address is | |
777 | put in the ld_rel field. */ | |
778 | s = bfd_make_section (abfd, ".dynrel"); | |
779 | if (s == NULL | |
780 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
781 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
782 | return false; | |
783 | ||
784 | /* The .hash section holds the dynamic hash table. The address | |
785 | is put in the ld_hash field. */ | |
786 | s = bfd_make_section (abfd, ".hash"); | |
787 | if (s == NULL | |
788 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
789 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
790 | return false; | |
791 | ||
792 | /* The .dynsym section holds the dynamic symbols. The address | |
793 | is put in the ld_stab field. */ | |
794 | s = bfd_make_section (abfd, ".dynsym"); | |
795 | if (s == NULL | |
796 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
797 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
798 | return false; | |
799 | ||
800 | /* The .dynstr section holds the dynamic symbol string table. | |
801 | The address is put in the ld_symbols field. */ | |
802 | s = bfd_make_section (abfd, ".dynstr"); | |
803 | if (s == NULL | |
804 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
805 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
806 | return false; | |
535c89f0 ILT |
807 | |
808 | sunos_hash_table (info)->dynamic_sections_created = true; | |
809 | } | |
810 | ||
811 | if (needed && ! sunos_hash_table (info)->dynamic_sections_needed) | |
812 | { | |
813 | bfd *dynobj; | |
814 | ||
815 | dynobj = sunos_hash_table (info)->dynobj; | |
816 | ||
817 | s = bfd_get_section_by_name (dynobj, ".got"); | |
818 | s->_raw_size = BYTES_IN_WORD; | |
819 | ||
820 | sunos_hash_table (info)->dynamic_sections_needed = true; | |
821 | } | |
822 | ||
823 | return true; | |
824 | } | |
825 | ||
826 | /* Add dynamic symbols during a link. This is called by the a.out | |
827 | backend linker when it encounters an object with the DYNAMIC flag | |
828 | set. */ | |
829 | ||
830 | static boolean | |
831 | sunos_add_dynamic_symbols (abfd, info) | |
832 | bfd *abfd; | |
833 | struct bfd_link_info *info; | |
834 | { | |
835 | asection *s; | |
836 | bfd *dynobj; | |
837 | ||
838 | /* We do not want to include the sections in a dynamic object in the | |
839 | output file. We hack by simply clobbering the list of sections | |
840 | in the BFD. This could be handled more cleanly by, say, a new | |
841 | section flag; the existing SEC_NEVER_LOAD flag is not the one we | |
842 | want, because that one still implies that the section takes up | |
843 | space in the output file. */ | |
844 | abfd->sections = NULL; | |
845 | ||
846 | /* The native linker seems to just ignore dynamic objects when -r is | |
847 | used. */ | |
848 | if (info->relocateable) | |
849 | return true; | |
850 | ||
851 | /* There's no hope of using a dynamic object which does not exactly | |
852 | match the format of the output file. */ | |
853 | if (info->hash->creator != abfd->xvec) | |
854 | { | |
855 | bfd_set_error (bfd_error_invalid_operation); | |
856 | return false; | |
857 | } | |
858 | ||
859 | /* Make sure we have all the required information. */ | |
860 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
861 | return false; | |
862 | ||
863 | /* Make sure we have a .need and a .rules sections. These are only | |
864 | needed if there really is a dynamic object in the link, so they | |
865 | are not added by sunos_create_dynamic_sections. */ | |
866 | dynobj = sunos_hash_table (info)->dynobj; | |
867 | if (bfd_get_section_by_name (dynobj, ".need") == NULL) | |
868 | { | |
869 | /* The .need section holds the list of names of shared objets | |
870 | which must be included at runtime. The address of this | |
871 | section is put in the ld_need field. */ | |
872 | s = bfd_make_section (dynobj, ".need"); | |
873 | if (s == NULL | |
874 | || ! bfd_set_section_flags (dynobj, s, | |
875 | (SEC_ALLOC | |
876 | | SEC_LOAD | |
877 | | SEC_HAS_CONTENTS | |
878 | | SEC_IN_MEMORY | |
879 | | SEC_READONLY)) | |
880 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
881 | return false; | |
882 | } | |
883 | ||
884 | if (bfd_get_section_by_name (dynobj, ".rules") == NULL) | |
885 | { | |
886 | /* The .rules section holds the path to search for shared | |
887 | objects. The address of this section is put in the ld_rules | |
888 | field. */ | |
889 | s = bfd_make_section (dynobj, ".rules"); | |
890 | if (s == NULL | |
891 | || ! bfd_set_section_flags (dynobj, s, | |
892 | (SEC_ALLOC | |
893 | | SEC_LOAD | |
894 | | SEC_HAS_CONTENTS | |
895 | | SEC_IN_MEMORY | |
896 | | SEC_READONLY)) | |
897 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
898 | return false; | |
e85e8bfe ILT |
899 | } |
900 | ||
901 | return true; | |
902 | } | |
903 | ||
904 | /* Function to add a single symbol to the linker hash table. This is | |
905 | a wrapper around _bfd_generic_link_add_one_symbol which handles the | |
906 | tweaking needed for dynamic linking support. */ | |
907 | ||
908 | static boolean | |
909 | sunos_add_one_symbol (info, abfd, name, flags, section, value, string, | |
910 | copy, collect, hashp) | |
911 | struct bfd_link_info *info; | |
912 | bfd *abfd; | |
913 | const char *name; | |
914 | flagword flags; | |
915 | asection *section; | |
916 | bfd_vma value; | |
917 | const char *string; | |
918 | boolean copy; | |
919 | boolean collect; | |
920 | struct bfd_link_hash_entry **hashp; | |
921 | { | |
922 | struct sunos_link_hash_entry *h; | |
923 | int new_flag; | |
924 | ||
535c89f0 ILT |
925 | if (! sunos_hash_table (info)->dynamic_sections_created) |
926 | { | |
927 | /* We must create the dynamic sections while reading the input | |
928 | files, even though at this point we don't know if any of the | |
929 | sections will be needed. This will ensure that the dynamic | |
930 | sections are mapped to the right output section. It does no | |
931 | harm to create these sections if they are not needed. */ | |
932 | if (! sunos_create_dynamic_sections (abfd, info, info->shared)) | |
933 | return false; | |
934 | } | |
935 | ||
e85e8bfe ILT |
936 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy, |
937 | false); | |
938 | if (h == NULL) | |
939 | return false; | |
940 | ||
941 | if (hashp != NULL) | |
942 | *hashp = (struct bfd_link_hash_entry *) h; | |
943 | ||
ec88c42e ILT |
944 | /* Treat a common symbol in a dynamic object as defined in the .bss |
945 | section of the dynamic object. We don't want to allocate space | |
946 | for it in our process image. */ | |
e85e8bfe | 947 | if ((abfd->flags & DYNAMIC) != 0 |
788d9436 | 948 | && bfd_is_com_section (section)) |
ec88c42e | 949 | section = obj_bsssec (abfd); |
e85e8bfe | 950 | |
788d9436 | 951 | if (! bfd_is_und_section (section) |
e85e8bfe | 952 | && h->root.root.type != bfd_link_hash_new |
6c97aedf ILT |
953 | && h->root.root.type != bfd_link_hash_undefined |
954 | && h->root.root.type != bfd_link_hash_defweak) | |
e85e8bfe ILT |
955 | { |
956 | /* We are defining the symbol, and it is already defined. This | |
957 | is a potential multiple definition error. */ | |
958 | if ((abfd->flags & DYNAMIC) != 0) | |
959 | { | |
960 | /* The definition we are adding is from a dynamic object. | |
961 | We do not want this new definition to override the | |
962 | existing definition, so we pretend it is just a | |
963 | reference. */ | |
788d9436 | 964 | section = bfd_und_section_ptr; |
e85e8bfe ILT |
965 | } |
966 | else if ((h->root.root.type == bfd_link_hash_defined | |
788d9436 | 967 | && h->root.root.u.def.section->owner != NULL |
e85e8bfe ILT |
968 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) |
969 | || (h->root.root.type == bfd_link_hash_common | |
943fbd5b | 970 | && ((h->root.root.u.c.p->section->owner->flags & DYNAMIC) |
e85e8bfe ILT |
971 | != 0))) |
972 | { | |
973 | /* The existing definition is from a dynamic object. We | |
974 | want to override it with the definition we just found. | |
975 | Clobber the existing definition. */ | |
976 | h->root.root.type = bfd_link_hash_new; | |
977 | } | |
978 | } | |
979 | ||
980 | /* Do the usual procedure for adding a symbol. */ | |
981 | if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, | |
982 | value, string, copy, collect, | |
983 | hashp)) | |
984 | return false; | |
985 | ||
04dc16b7 | 986 | if (abfd->xvec == info->hash->creator) |
e85e8bfe | 987 | { |
04dc16b7 ILT |
988 | /* Set a flag in the hash table entry indicating the type of |
989 | reference or definition we just found. Keep a count of the | |
990 | number of dynamic symbols we find. A dynamic symbol is one | |
991 | which is referenced or defined by both a regular object and a | |
992 | shared object. */ | |
993 | if ((abfd->flags & DYNAMIC) == 0) | |
994 | { | |
995 | if (bfd_is_und_section (section)) | |
996 | new_flag = SUNOS_REF_REGULAR; | |
997 | else | |
998 | new_flag = SUNOS_DEF_REGULAR; | |
999 | } | |
e85e8bfe | 1000 | else |
04dc16b7 ILT |
1001 | { |
1002 | if (bfd_is_und_section (section)) | |
1003 | new_flag = SUNOS_REF_DYNAMIC; | |
1004 | else | |
1005 | new_flag = SUNOS_DEF_DYNAMIC; | |
1006 | } | |
1007 | h->flags |= new_flag; | |
e85e8bfe | 1008 | |
04dc16b7 ILT |
1009 | if (h->dynindx == -1 |
1010 | && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1011 | { | |
1012 | ++sunos_hash_table (info)->dynsymcount; | |
1013 | h->dynindx = -2; | |
1014 | } | |
e85e8bfe ILT |
1015 | } |
1016 | ||
1017 | return true; | |
1018 | } | |
1019 | ||
1020 | /* Record an assignment made to a symbol by a linker script. We need | |
1021 | this in case some dynamic object refers to this symbol. */ | |
1022 | ||
1023 | boolean | |
1024 | bfd_sunos_record_link_assignment (output_bfd, info, name) | |
1025 | bfd *output_bfd; | |
1026 | struct bfd_link_info *info; | |
1027 | const char *name; | |
1028 | { | |
1029 | struct sunos_link_hash_entry *h; | |
1030 | ||
1031 | /* This is called after we have examined all the input objects. If | |
1032 | the symbol does not exist, it merely means that no object refers | |
1033 | to it, and we can just ignore it at this point. */ | |
1034 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, | |
1035 | false, false, false); | |
1036 | if (h == NULL) | |
1037 | return true; | |
1038 | ||
1039 | h->flags |= SUNOS_DEF_REGULAR; | |
1040 | ||
1041 | if (h->dynindx == -1) | |
1042 | { | |
1043 | ++sunos_hash_table (info)->dynsymcount; | |
1044 | h->dynindx = -2; | |
1045 | } | |
1046 | ||
1047 | return true; | |
1048 | } | |
1049 | ||
1050 | /* Set up the sizes and contents of the dynamic sections created in | |
1051 | sunos_add_dynamic_symbols. This is called by the SunOS linker | |
1052 | emulation before_allocation routine. We must set the sizes of the | |
1053 | sections before the linker sets the addresses of the various | |
1054 | sections. This unfortunately requires reading all the relocs so | |
1055 | that we can work out which ones need to become dynamic relocs. If | |
1056 | info->keep_memory is true, we keep the relocs in memory; otherwise, | |
1057 | we discard them, and will read them again later. */ | |
1058 | ||
1059 | boolean | |
1060 | bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr, | |
1061 | srulesptr) | |
1062 | bfd *output_bfd; | |
1063 | struct bfd_link_info *info; | |
1064 | asection **sdynptr; | |
1065 | asection **sneedptr; | |
1066 | asection **srulesptr; | |
1067 | { | |
1068 | bfd *dynobj; | |
1069 | size_t dynsymcount; | |
535c89f0 | 1070 | struct sunos_link_hash_entry *h; |
e85e8bfe ILT |
1071 | asection *s; |
1072 | size_t bucketcount; | |
1073 | size_t hashalloc; | |
1074 | size_t i; | |
1075 | bfd *sub; | |
1076 | ||
1077 | *sdynptr = NULL; | |
1078 | *sneedptr = NULL; | |
1079 | *srulesptr = NULL; | |
1080 | ||
535c89f0 ILT |
1081 | /* Look through all the input BFD's and read their relocs. It would |
1082 | be better if we didn't have to do this, but there is no other way | |
1083 | to determine the number of dynamic relocs we need, and, more | |
1084 | importantly, there is no other way to know which symbols should | |
1085 | get an entry in the procedure linkage table. */ | |
1086 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
1087 | { | |
1088 | if ((sub->flags & DYNAMIC) == 0) | |
1089 | { | |
1090 | if (! sunos_scan_relocs (info, sub, obj_textsec (sub), | |
1091 | exec_hdr (sub)->a_trsize) | |
1092 | || ! sunos_scan_relocs (info, sub, obj_datasec (sub), | |
1093 | exec_hdr (sub)->a_drsize)) | |
1094 | return false; | |
1095 | } | |
1096 | } | |
1097 | ||
e85e8bfe ILT |
1098 | dynobj = sunos_hash_table (info)->dynobj; |
1099 | dynsymcount = sunos_hash_table (info)->dynsymcount; | |
1100 | ||
535c89f0 ILT |
1101 | /* If there were no dynamic objects in the link, and we don't need |
1102 | to build a global offset table, there is nothing to do here. */ | |
1103 | if (! sunos_hash_table (info)->dynamic_sections_needed) | |
e85e8bfe ILT |
1104 | return true; |
1105 | ||
535c89f0 ILT |
1106 | /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */ |
1107 | h = sunos_link_hash_lookup (sunos_hash_table (info), | |
1108 | "__GLOBAL_OFFSET_TABLE_", false, false, false); | |
1109 | if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1110 | { | |
1111 | h->flags |= SUNOS_DEF_REGULAR; | |
1112 | if (h->dynindx == -1) | |
1113 | { | |
1114 | ++sunos_hash_table (info)->dynsymcount; | |
1115 | h->dynindx = -2; | |
1116 | } | |
1117 | h->root.root.type = bfd_link_hash_defined; | |
1118 | h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got"); | |
1119 | h->root.root.u.def.value = 0; | |
1120 | } | |
1121 | ||
e85e8bfe ILT |
1122 | /* The .dynamic section is always the same size. */ |
1123 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1124 | BFD_ASSERT (s != NULL); | |
1125 | s->_raw_size = (sizeof (struct external_sun4_dynamic) | |
1126 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE | |
1127 | + sizeof (struct external_sun4_dynamic_link)); | |
1128 | ||
1129 | /* Set the size of the .dynsym and .hash sections. We counted the | |
1130 | number of dynamic symbols as we read the input files. We will | |
1131 | build the dynamic symbol table (.dynsym) and the hash table | |
1132 | (.hash) when we build the final symbol table, because until then | |
1133 | we do not know the correct value to give the symbols. We build | |
1134 | the dynamic symbol string table (.dynstr) in a traversal of the | |
1135 | symbol table using sunos_scan_dynamic_symbol. */ | |
1136 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1137 | BFD_ASSERT (s != NULL); | |
1138 | s->_raw_size = dynsymcount * sizeof (struct external_nlist); | |
1139 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1140 | if (s->contents == NULL && s->_raw_size != 0) | |
1141 | { | |
1142 | bfd_set_error (bfd_error_no_memory); | |
1143 | return false; | |
1144 | } | |
1145 | ||
1146 | /* The number of buckets is just the number of symbols divided by | |
535c89f0 | 1147 | four. To compute the final size of the hash table, we must |
e85e8bfe ILT |
1148 | actually compute the hash table. Normally we need exactly as |
1149 | many entries in the hash table as there are dynamic symbols, but | |
1150 | if some of the buckets are not used we will need additional | |
535c89f0 | 1151 | entries. In the worst case, every symbol will hash to the same |
e85e8bfe ILT |
1152 | bucket, and we will need BUCKETCOUNT - 1 extra entries. */ |
1153 | if (dynsymcount >= 4) | |
1154 | bucketcount = dynsymcount / 4; | |
1155 | else if (dynsymcount > 0) | |
1156 | bucketcount = dynsymcount; | |
1157 | else | |
1158 | bucketcount = 1; | |
1159 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1160 | BFD_ASSERT (s != NULL); | |
1161 | hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE; | |
a1ade84e | 1162 | s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc); |
e85e8bfe ILT |
1163 | if (s->contents == NULL && dynsymcount > 0) |
1164 | { | |
1165 | bfd_set_error (bfd_error_no_memory); | |
1166 | return false; | |
1167 | } | |
1168 | memset (s->contents, 0, hashalloc); | |
1169 | for (i = 0; i < bucketcount; i++) | |
1170 | PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE); | |
1171 | s->_raw_size = bucketcount * HASH_ENTRY_SIZE; | |
1172 | ||
1173 | sunos_hash_table (info)->bucketcount = bucketcount; | |
1174 | ||
e85e8bfe ILT |
1175 | /* Scan all the symbols, place them in the dynamic symbol table, and |
1176 | build the dynamic hash table. We reuse dynsymcount as a counter | |
1177 | for the number of symbols we have added so far. */ | |
1178 | sunos_hash_table (info)->dynsymcount = 0; | |
1179 | sunos_link_hash_traverse (sunos_hash_table (info), | |
1180 | sunos_scan_dynamic_symbol, | |
1181 | (PTR) info); | |
1182 | BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount); | |
1183 | ||
1184 | /* The SunOS native linker seems to align the total size of the | |
1185 | symbol strings to a multiple of 8. I don't know if this is | |
1186 | important, but it can't hurt much. */ | |
1187 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1188 | BFD_ASSERT (s != NULL); | |
1189 | if ((s->_raw_size & 7) != 0) | |
1190 | { | |
1191 | bfd_size_type add; | |
1192 | bfd_byte *contents; | |
1193 | ||
1194 | add = 8 - (s->_raw_size & 7); | |
535c89f0 ILT |
1195 | contents = (bfd_byte *) realloc (s->contents, |
1196 | (size_t) (s->_raw_size + add)); | |
e85e8bfe ILT |
1197 | if (contents == NULL) |
1198 | { | |
1199 | bfd_set_error (bfd_error_no_memory); | |
1200 | return false; | |
1201 | } | |
535c89f0 | 1202 | memset (contents + s->_raw_size, 0, (size_t) add); |
e85e8bfe ILT |
1203 | s->contents = contents; |
1204 | s->_raw_size += add; | |
1205 | } | |
1206 | ||
1207 | /* Now that we have worked out the sizes of the procedure linkage | |
1208 | table and the dynamic relocs, allocate storage for them. */ | |
1209 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
1210 | BFD_ASSERT (s != NULL); | |
1211 | if (s->_raw_size != 0) | |
1212 | { | |
a1ade84e | 1213 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1214 | if (s->contents == NULL) |
1215 | { | |
1216 | bfd_set_error (bfd_error_no_memory); | |
1217 | return false; | |
1218 | } | |
1219 | ||
1220 | /* Fill in the first entry in the table. */ | |
1221 | switch (bfd_get_arch (dynobj)) | |
1222 | { | |
1223 | case bfd_arch_sparc: | |
1224 | memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE); | |
1225 | break; | |
1226 | ||
1227 | case bfd_arch_m68k: | |
1228 | memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE); | |
1229 | break; | |
1230 | ||
1231 | default: | |
1232 | abort (); | |
1233 | } | |
1234 | } | |
1235 | ||
1236 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1237 | if (s->_raw_size != 0) | |
1238 | { | |
a1ade84e | 1239 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1240 | if (s->contents == NULL) |
1241 | { | |
1242 | bfd_set_error (bfd_error_no_memory); | |
1243 | return false; | |
1244 | } | |
1245 | } | |
1246 | /* We use the reloc_count field to keep track of how many of the | |
1247 | relocs we have output so far. */ | |
1248 | s->reloc_count = 0; | |
1249 | ||
1250 | /* Make space for the global offset table. */ | |
1251 | s = bfd_get_section_by_name (dynobj, ".got"); | |
a1ade84e | 1252 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1253 | if (s->contents == NULL) |
1254 | { | |
1255 | bfd_set_error (bfd_error_no_memory); | |
1256 | return false; | |
1257 | } | |
1258 | ||
1259 | *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1260 | *sneedptr = bfd_get_section_by_name (dynobj, ".need"); | |
1261 | *srulesptr = bfd_get_section_by_name (dynobj, ".rules"); | |
1262 | ||
1263 | return true; | |
1264 | } | |
1265 | ||
1266 | /* Scan the relocs for an input section. */ | |
1267 | ||
1268 | static boolean | |
1269 | sunos_scan_relocs (info, abfd, sec, rel_size) | |
1270 | struct bfd_link_info *info; | |
1271 | bfd *abfd; | |
1272 | asection *sec; | |
1273 | bfd_size_type rel_size; | |
1274 | { | |
1275 | PTR relocs; | |
1276 | PTR free_relocs = NULL; | |
1277 | ||
1278 | if (rel_size == 0) | |
1279 | return true; | |
1280 | ||
1281 | if (! info->keep_memory) | |
535c89f0 | 1282 | relocs = free_relocs = malloc ((size_t) rel_size); |
e85e8bfe ILT |
1283 | else |
1284 | { | |
535c89f0 ILT |
1285 | struct aout_section_data_struct *n; |
1286 | ||
1287 | n = ((struct aout_section_data_struct *) | |
1288 | bfd_alloc (abfd, sizeof (struct aout_section_data_struct))); | |
1289 | if (n == NULL) | |
e85e8bfe ILT |
1290 | relocs = NULL; |
1291 | else | |
535c89f0 ILT |
1292 | { |
1293 | set_aout_section_data (sec, n); | |
1294 | relocs = malloc ((size_t) rel_size); | |
1295 | aout_section_data (sec)->relocs = relocs; | |
1296 | } | |
e85e8bfe ILT |
1297 | } |
1298 | if (relocs == NULL) | |
1299 | { | |
1300 | bfd_set_error (bfd_error_no_memory); | |
1301 | return false; | |
1302 | } | |
1303 | ||
1304 | if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0 | |
1305 | || bfd_read (relocs, 1, rel_size, abfd) != rel_size) | |
1306 | goto error_return; | |
1307 | ||
1308 | if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE) | |
1309 | { | |
1310 | if (! sunos_scan_std_relocs (info, abfd, sec, | |
1311 | (struct reloc_std_external *) relocs, | |
1312 | rel_size)) | |
1313 | goto error_return; | |
1314 | } | |
1315 | else | |
1316 | { | |
1317 | if (! sunos_scan_ext_relocs (info, abfd, sec, | |
1318 | (struct reloc_ext_external *) relocs, | |
1319 | rel_size)) | |
1320 | goto error_return; | |
1321 | } | |
1322 | ||
1323 | if (free_relocs != NULL) | |
1324 | free (free_relocs); | |
1325 | ||
1326 | return true; | |
1327 | ||
1328 | error_return: | |
1329 | if (free_relocs != NULL) | |
1330 | free (free_relocs); | |
1331 | return false; | |
1332 | } | |
1333 | ||
1334 | /* Scan the relocs for an input section using standard relocs. We | |
1335 | need to figure out what to do for each reloc against a dynamic | |
1336 | symbol. If the symbol is in the .text section, an entry is made in | |
1337 | the procedure linkage table. Note that this will do the wrong | |
1338 | thing if the symbol is actually data; I don't think the Sun 3 | |
1339 | native linker handles this case correctly either. If the symbol is | |
1340 | not in the .text section, we must preserve the reloc as a dynamic | |
1341 | reloc. FIXME: We should also handle the PIC relocs here by | |
1342 | building global offset table entries. */ | |
1343 | ||
1344 | static boolean | |
1345 | sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size) | |
1346 | struct bfd_link_info *info; | |
1347 | bfd *abfd; | |
1348 | asection *sec; | |
1349 | const struct reloc_std_external *relocs; | |
1350 | bfd_size_type rel_size; | |
1351 | { | |
1352 | bfd *dynobj; | |
535c89f0 ILT |
1353 | asection *splt = NULL; |
1354 | asection *srel = NULL; | |
e85e8bfe ILT |
1355 | struct sunos_link_hash_entry **sym_hashes; |
1356 | const struct reloc_std_external *rel, *relend; | |
1357 | ||
1358 | /* We only know how to handle m68k plt entries. */ | |
1359 | if (bfd_get_arch (abfd) != bfd_arch_m68k) | |
1360 | { | |
1361 | bfd_set_error (bfd_error_invalid_target); | |
1362 | return false; | |
1363 | } | |
1364 | ||
535c89f0 ILT |
1365 | dynobj = NULL; |
1366 | ||
e85e8bfe ILT |
1367 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); |
1368 | ||
1369 | relend = relocs + rel_size / RELOC_STD_SIZE; | |
1370 | for (rel = relocs; rel < relend; rel++) | |
1371 | { | |
1372 | int r_index; | |
1373 | struct sunos_link_hash_entry *h; | |
1374 | ||
1375 | /* We only want relocs against external symbols. */ | |
1376 | if (abfd->xvec->header_byteorder_big_p) | |
1377 | { | |
1378 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0) | |
1379 | continue; | |
1380 | } | |
1381 | else | |
1382 | { | |
1383 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0) | |
1384 | continue; | |
1385 | } | |
1386 | ||
1387 | /* Get the symbol index. */ | |
1388 | if (abfd->xvec->header_byteorder_big_p) | |
535c89f0 ILT |
1389 | r_index = ((rel->r_index[0] << 16) |
1390 | | (rel->r_index[1] << 8) | |
1391 | | rel->r_index[2]); | |
e85e8bfe | 1392 | else |
535c89f0 ILT |
1393 | r_index = ((rel->r_index[2] << 16) |
1394 | | (rel->r_index[1] << 8) | |
1395 | | rel->r_index[0]); | |
e85e8bfe ILT |
1396 | |
1397 | /* Get the hash table entry. */ | |
1398 | h = sym_hashes[r_index]; | |
1399 | if (h == NULL) | |
1400 | { | |
1401 | /* This should not normally happen, but it will in any case | |
1402 | be caught in the relocation phase. */ | |
1403 | continue; | |
1404 | } | |
1405 | ||
1406 | /* At this point common symbols have already been allocated, so | |
1407 | we don't have to worry about them. We need to consider that | |
1408 | we may have already seen this symbol and marked it undefined; | |
6c97aedf | 1409 | if the symbol is really undefined, then SUNOS_DEF_DYNAMIC |
e85e8bfe ILT |
1410 | will be zero. */ |
1411 | if (h->root.root.type != bfd_link_hash_defined | |
6c97aedf | 1412 | && h->root.root.type != bfd_link_hash_defweak |
e85e8bfe ILT |
1413 | && h->root.root.type != bfd_link_hash_undefined) |
1414 | continue; | |
1415 | ||
1416 | if ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1417 | || (h->flags & SUNOS_DEF_REGULAR) != 0) | |
1418 | continue; | |
1419 | ||
535c89f0 ILT |
1420 | if (dynobj == NULL) |
1421 | { | |
1422 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
1423 | return false; | |
1424 | dynobj = sunos_hash_table (info)->dynobj; | |
1425 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1426 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1427 | BFD_ASSERT (splt != NULL && srel != NULL); | |
1428 | } | |
1429 | ||
e85e8bfe | 1430 | BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0); |
b088e4b2 ILT |
1431 | BFD_ASSERT (h->plt_offset != 0 |
1432 | || ((h->root.root.type == bfd_link_hash_defined | |
1433 | || h->root.root.type == bfd_link_hash_defweak) | |
1434 | ? (h->root.root.u.def.section->owner->flags | |
1435 | & DYNAMIC) != 0 | |
1436 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0)); | |
e85e8bfe ILT |
1437 | |
1438 | /* This reloc is against a symbol defined only by a dynamic | |
1439 | object. */ | |
1440 | ||
1441 | if (h->root.root.type == bfd_link_hash_undefined) | |
1442 | { | |
1443 | /* Presumably this symbol was marked as being undefined by | |
1444 | an earlier reloc. */ | |
1445 | srel->_raw_size += RELOC_STD_SIZE; | |
1446 | } | |
1447 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1448 | { | |
1449 | bfd *sub; | |
1450 | ||
1451 | /* This reloc is not in the .text section. It must be | |
1452 | copied into the dynamic relocs. We mark the symbol as | |
1453 | being undefined. */ | |
1454 | srel->_raw_size += RELOC_STD_SIZE; | |
1455 | sub = h->root.root.u.def.section->owner; | |
1456 | h->root.root.type = bfd_link_hash_undefined; | |
1457 | h->root.root.u.undef.abfd = sub; | |
1458 | } | |
1459 | else | |
1460 | { | |
1461 | /* This symbol is in the .text section. We must give it an | |
1462 | entry in the procedure linkage table, if we have not | |
1463 | already done so. We change the definition of the symbol | |
1464 | to the .plt section; this will cause relocs against it to | |
1465 | be handled correctly. */ | |
535c89f0 | 1466 | if (h->plt_offset == 0) |
e85e8bfe ILT |
1467 | { |
1468 | if (splt->_raw_size == 0) | |
1469 | splt->_raw_size = M68K_PLT_ENTRY_SIZE; | |
535c89f0 ILT |
1470 | h->plt_offset = splt->_raw_size; |
1471 | ||
1472 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1473 | { | |
1474 | h->root.root.u.def.section = splt; | |
1475 | h->root.root.u.def.value = splt->_raw_size; | |
1476 | } | |
1477 | ||
e85e8bfe ILT |
1478 | splt->_raw_size += M68K_PLT_ENTRY_SIZE; |
1479 | ||
535c89f0 ILT |
1480 | /* We may also need a dynamic reloc entry. */ |
1481 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1482 | srel->_raw_size += RELOC_STD_SIZE; | |
e85e8bfe ILT |
1483 | } |
1484 | } | |
1485 | } | |
1486 | ||
1487 | return true; | |
1488 | } | |
1489 | ||
1490 | /* Scan the relocs for an input section using extended relocs. We | |
1491 | need to figure out what to do for each reloc against a dynamic | |
1492 | symbol. If the reloc is a WDISP30, and the symbol is in the .text | |
1493 | section, an entry is made in the procedure linkage table. | |
535c89f0 | 1494 | Otherwise, we must preserve the reloc as a dynamic reloc. */ |
e85e8bfe ILT |
1495 | |
1496 | static boolean | |
1497 | sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size) | |
1498 | struct bfd_link_info *info; | |
1499 | bfd *abfd; | |
1500 | asection *sec; | |
1501 | const struct reloc_ext_external *relocs; | |
1502 | bfd_size_type rel_size; | |
1503 | { | |
1504 | bfd *dynobj; | |
e85e8bfe ILT |
1505 | struct sunos_link_hash_entry **sym_hashes; |
1506 | const struct reloc_ext_external *rel, *relend; | |
535c89f0 ILT |
1507 | asection *splt = NULL; |
1508 | asection *sgot = NULL; | |
1509 | asection *srel = NULL; | |
e85e8bfe ILT |
1510 | |
1511 | /* We only know how to handle SPARC plt entries. */ | |
1512 | if (bfd_get_arch (abfd) != bfd_arch_sparc) | |
1513 | { | |
1514 | bfd_set_error (bfd_error_invalid_target); | |
1515 | return false; | |
1516 | } | |
1517 | ||
535c89f0 ILT |
1518 | dynobj = NULL; |
1519 | ||
e85e8bfe ILT |
1520 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); |
1521 | ||
1522 | relend = relocs + rel_size / RELOC_EXT_SIZE; | |
1523 | for (rel = relocs; rel < relend; rel++) | |
1524 | { | |
ae115e51 | 1525 | unsigned int r_index; |
535c89f0 | 1526 | int r_extern; |
e85e8bfe | 1527 | int r_type; |
535c89f0 | 1528 | struct sunos_link_hash_entry *h = NULL; |
e85e8bfe | 1529 | |
535c89f0 | 1530 | /* Swap in the reloc information. */ |
e85e8bfe ILT |
1531 | if (abfd->xvec->header_byteorder_big_p) |
1532 | { | |
535c89f0 ILT |
1533 | r_index = ((rel->r_index[0] << 16) |
1534 | | (rel->r_index[1] << 8) | |
1535 | | rel->r_index[2]); | |
1536 | r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); | |
1537 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
1538 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
e85e8bfe ILT |
1539 | } |
1540 | else | |
1541 | { | |
535c89f0 ILT |
1542 | r_index = ((rel->r_index[2] << 16) |
1543 | | (rel->r_index[1] << 8) | |
1544 | | rel->r_index[0]); | |
1545 | r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); | |
1546 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
1547 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
e85e8bfe ILT |
1548 | } |
1549 | ||
535c89f0 | 1550 | if (r_extern) |
e85e8bfe | 1551 | { |
535c89f0 ILT |
1552 | h = sym_hashes[r_index]; |
1553 | if (h == NULL) | |
1554 | { | |
1555 | /* This should not normally happen, but it will in any | |
1556 | case be caught in the relocation phase. */ | |
1557 | continue; | |
1558 | } | |
e85e8bfe ILT |
1559 | } |
1560 | else | |
1561 | { | |
535c89f0 ILT |
1562 | if (r_index >= bfd_get_symcount (abfd)) |
1563 | { | |
1564 | /* This is abnormal, but should be caught in the | |
1565 | relocation phase. */ | |
1566 | continue; | |
1567 | } | |
e85e8bfe ILT |
1568 | } |
1569 | ||
535c89f0 ILT |
1570 | /* If this is a base relative reloc, we need to make an entry in |
1571 | the .got section. */ | |
1572 | if (r_type == RELOC_BASE10 | |
1573 | || r_type == RELOC_BASE13 | |
1574 | || r_type == RELOC_BASE22) | |
e85e8bfe | 1575 | { |
535c89f0 ILT |
1576 | if (dynobj == NULL) |
1577 | { | |
1578 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
1579 | return false; | |
1580 | dynobj = sunos_hash_table (info)->dynobj; | |
1581 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1582 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1583 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1584 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1585 | } | |
1586 | ||
1587 | if (r_extern) | |
1588 | { | |
1589 | if (h->got_offset != 0) | |
1590 | continue; | |
1591 | ||
1592 | h->got_offset = sgot->_raw_size; | |
1593 | } | |
1594 | else | |
1595 | { | |
1596 | if (adata (abfd).local_got_offsets == NULL) | |
1597 | { | |
1598 | adata (abfd).local_got_offsets = | |
1599 | (bfd_vma *) bfd_zalloc (abfd, | |
1600 | (bfd_get_symcount (abfd) | |
1601 | * sizeof (bfd_vma))); | |
1602 | if (adata (abfd).local_got_offsets == NULL) | |
1603 | { | |
1604 | bfd_set_error (bfd_error_no_memory); | |
1605 | return false; | |
1606 | } | |
1607 | } | |
1608 | ||
1609 | if (adata (abfd).local_got_offsets[r_index] != 0) | |
1610 | continue; | |
1611 | ||
1612 | adata (abfd).local_got_offsets[r_index] = sgot->_raw_size; | |
1613 | } | |
1614 | ||
1615 | sgot->_raw_size += BYTES_IN_WORD; | |
1616 | ||
1617 | /* If we are making a shared library, or if the symbol is | |
1618 | defined by a dynamic object, we will need a dynamic reloc | |
1619 | entry. */ | |
1620 | if (info->shared | |
1621 | || (h != NULL | |
1622 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1623 | && (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
1624 | srel->_raw_size += RELOC_EXT_SIZE; | |
1625 | ||
e85e8bfe ILT |
1626 | continue; |
1627 | } | |
1628 | ||
535c89f0 ILT |
1629 | /* Otherwise, we are only interested in relocs against symbols |
1630 | defined in dynamic objects but not in regular objects. We | |
1631 | only need to consider relocs against external symbols. */ | |
1632 | if (! r_extern) | |
1633 | continue; | |
1634 | ||
e85e8bfe ILT |
1635 | /* At this point common symbols have already been allocated, so |
1636 | we don't have to worry about them. We need to consider that | |
1637 | we may have already seen this symbol and marked it undefined; | |
535c89f0 | 1638 | if the symbol is really undefined, then SUNOS_DEF_DYNAMIC |
e85e8bfe ILT |
1639 | will be zero. */ |
1640 | if (h->root.root.type != bfd_link_hash_defined | |
6c97aedf | 1641 | && h->root.root.type != bfd_link_hash_defweak |
e85e8bfe ILT |
1642 | && h->root.root.type != bfd_link_hash_undefined) |
1643 | continue; | |
1644 | ||
535c89f0 ILT |
1645 | if (r_type != RELOC_JMP_TBL |
1646 | && ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1647 | || (h->flags & SUNOS_DEF_REGULAR) != 0)) | |
e85e8bfe ILT |
1648 | continue; |
1649 | ||
535c89f0 ILT |
1650 | if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0) |
1651 | continue; | |
1652 | ||
1653 | if (dynobj == NULL) | |
1654 | { | |
1655 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
1656 | return false; | |
1657 | dynobj = sunos_hash_table (info)->dynobj; | |
1658 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1659 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1660 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1661 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1662 | } | |
1663 | ||
1664 | BFD_ASSERT (r_type == RELOC_JMP_TBL | |
1665 | || (h->flags & SUNOS_REF_REGULAR) != 0); | |
1666 | BFD_ASSERT (r_type == RELOC_JMP_TBL | |
1667 | || h->plt_offset != 0 | |
1668 | || ((h->root.root.type == bfd_link_hash_defined | |
1669 | || h->root.root.type == bfd_link_hash_defweak) | |
1670 | ? (h->root.root.u.def.section->owner->flags | |
1671 | & DYNAMIC) != 0 | |
1672 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0)); | |
e85e8bfe ILT |
1673 | |
1674 | /* This reloc is against a symbol defined only by a dynamic | |
535c89f0 | 1675 | object, or it is a jump table reloc from PIC compiled code. */ |
e85e8bfe ILT |
1676 | |
1677 | if (h->root.root.type == bfd_link_hash_undefined) | |
1678 | { | |
1679 | /* Presumably this symbol was marked as being undefined by | |
1680 | an earlier reloc. */ | |
1681 | srel->_raw_size += RELOC_EXT_SIZE; | |
1682 | } | |
1683 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1684 | { | |
1685 | bfd *sub; | |
1686 | ||
1687 | /* This reloc is not in the .text section. It must be | |
1688 | copied into the dynamic relocs. We mark the symbol as | |
1689 | being undefined. */ | |
535c89f0 | 1690 | BFD_ASSERT (r_type != RELOC_JMP_TBL); |
e85e8bfe ILT |
1691 | srel->_raw_size += RELOC_EXT_SIZE; |
1692 | sub = h->root.root.u.def.section->owner; | |
1693 | h->root.root.type = bfd_link_hash_undefined; | |
1694 | h->root.root.u.undef.abfd = sub; | |
1695 | } | |
1696 | else | |
1697 | { | |
1698 | /* This symbol is in the .text section. We must give it an | |
1699 | entry in the procedure linkage table, if we have not | |
1700 | already done so. We change the definition of the symbol | |
1701 | to the .plt section; this will cause relocs against it to | |
1702 | be handled correctly. */ | |
535c89f0 | 1703 | if (h->plt_offset == 0) |
e85e8bfe ILT |
1704 | { |
1705 | if (splt->_raw_size == 0) | |
1706 | splt->_raw_size = SPARC_PLT_ENTRY_SIZE; | |
535c89f0 ILT |
1707 | h->plt_offset = splt->_raw_size; |
1708 | ||
1709 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1710 | { | |
1711 | h->root.root.u.def.section = splt; | |
1712 | h->root.root.u.def.value = splt->_raw_size; | |
1713 | } | |
1714 | ||
e85e8bfe ILT |
1715 | splt->_raw_size += SPARC_PLT_ENTRY_SIZE; |
1716 | ||
535c89f0 ILT |
1717 | /* We will also need a dynamic reloc entry, unless this |
1718 | is a JMP_TBL reloc produced by linking PIC compiled | |
1719 | code, and we are not making a shared library. */ | |
1720 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) | |
1721 | srel->_raw_size += RELOC_EXT_SIZE; | |
e85e8bfe ILT |
1722 | } |
1723 | } | |
1724 | } | |
1725 | ||
1726 | return true; | |
1727 | } | |
1728 | ||
1729 | /* Build the hash table of dynamic symbols, and to mark as written all | |
1730 | symbols from dynamic objects which we do not plan to write out. */ | |
1731 | ||
1732 | static boolean | |
1733 | sunos_scan_dynamic_symbol (h, data) | |
1734 | struct sunos_link_hash_entry *h; | |
1735 | PTR data; | |
1736 | { | |
1737 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
1738 | ||
1739 | /* Set the written flag for symbols we do not want to write out as | |
1740 | part of the regular symbol table. This is all symbols which are | |
1741 | not defined in a regular object file. For some reason symbols | |
1742 | which are referenced by a regular object and defined by a dynamic | |
1743 | object do not seem to show up in the regular symbol table. */ | |
1744 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
4298e311 | 1745 | h->root.written = true; |
e85e8bfe ILT |
1746 | |
1747 | /* If this symbol is defined by a dynamic object and referenced by a | |
1748 | regular object, see whether we gave it a reasonable value while | |
1749 | scanning the relocs. */ | |
1750 | ||
1751 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 | |
1752 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1753 | && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1754 | { | |
6c97aedf ILT |
1755 | if ((h->root.root.type == bfd_link_hash_defined |
1756 | || h->root.root.type == bfd_link_hash_defweak) | |
e85e8bfe ILT |
1757 | && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) |
1758 | && h->root.root.u.def.section->output_section == NULL) | |
1759 | { | |
1760 | bfd *sub; | |
1761 | ||
1762 | /* This symbol is currently defined in a dynamic section | |
1763 | which is not being put into the output file. This | |
1764 | implies that there is no reloc against the symbol. I'm | |
1765 | not sure why this case would ever occur. In any case, we | |
1766 | change the symbol to be undefined. */ | |
1767 | sub = h->root.root.u.def.section->owner; | |
1768 | h->root.root.type = bfd_link_hash_undefined; | |
1769 | h->root.root.u.undef.abfd = sub; | |
1770 | } | |
1771 | } | |
1772 | ||
1773 | /* If this symbol is defined or referenced by a regular file, add it | |
1774 | to the dynamic symbols. */ | |
1775 | if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1776 | { | |
1777 | asection *s; | |
1778 | size_t len; | |
1779 | bfd_byte *contents; | |
1780 | unsigned char *name; | |
1781 | unsigned long hash; | |
1782 | bfd *dynobj; | |
1783 | ||
1784 | BFD_ASSERT (h->dynindx == -2); | |
1785 | ||
535c89f0 ILT |
1786 | dynobj = sunos_hash_table (info)->dynobj; |
1787 | ||
e85e8bfe ILT |
1788 | h->dynindx = sunos_hash_table (info)->dynsymcount; |
1789 | ++sunos_hash_table (info)->dynsymcount; | |
1790 | ||
1791 | len = strlen (h->root.root.root.string); | |
1792 | ||
1793 | /* We don't bother to construct a BFD hash table for the strings | |
1794 | which are the names of the dynamic symbols. Using a hash | |
1795 | table for the regular symbols is beneficial, because the | |
1796 | regular symbols includes the debugging symbols, which have | |
1797 | long names and are often duplicated in several object files. | |
1798 | There are no debugging symbols in the dynamic symbols. */ | |
535c89f0 | 1799 | s = bfd_get_section_by_name (dynobj, ".dynstr"); |
e85e8bfe ILT |
1800 | BFD_ASSERT (s != NULL); |
1801 | if (s->contents == NULL) | |
a1ade84e | 1802 | contents = (bfd_byte *) malloc (len + 1); |
e85e8bfe | 1803 | else |
535c89f0 ILT |
1804 | contents = (bfd_byte *) realloc (s->contents, |
1805 | (size_t) (s->_raw_size + len + 1)); | |
e85e8bfe ILT |
1806 | if (contents == NULL) |
1807 | { | |
1808 | bfd_set_error (bfd_error_no_memory); | |
1809 | return false; | |
1810 | } | |
1811 | s->contents = contents; | |
1812 | ||
1813 | h->dynstr_index = s->_raw_size; | |
1814 | strcpy (contents + s->_raw_size, h->root.root.root.string); | |
1815 | s->_raw_size += len + 1; | |
1816 | ||
1817 | /* Add it to the dynamic hash table. */ | |
1818 | name = (unsigned char *) h->root.root.root.string; | |
1819 | hash = 0; | |
1820 | while (*name != '\0') | |
1821 | hash = (hash << 1) + *name++; | |
1822 | hash &= 0x7fffffff; | |
1823 | hash %= sunos_hash_table (info)->bucketcount; | |
1824 | ||
e85e8bfe ILT |
1825 | s = bfd_get_section_by_name (dynobj, ".hash"); |
1826 | BFD_ASSERT (s != NULL); | |
1827 | ||
1828 | if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1) | |
1829 | PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE); | |
1830 | else | |
1831 | { | |
1832 | bfd_vma next; | |
1833 | ||
1834 | next = GET_WORD (dynobj, | |
1835 | (s->contents | |
1836 | + hash * HASH_ENTRY_SIZE | |
1837 | + BYTES_IN_WORD)); | |
1838 | PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE, | |
1839 | s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
1840 | PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size); | |
1841 | PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD); | |
1842 | s->_raw_size += HASH_ENTRY_SIZE; | |
1843 | } | |
1844 | } | |
1845 | ||
1846 | return true; | |
1847 | } | |
1848 | ||
1849 | /* Link a dynamic object. We actually don't have anything to do at | |
1850 | this point. This entry point exists to prevent the regular linker | |
1851 | code from doing anything with the object. */ | |
1852 | ||
1853 | /*ARGSUSED*/ | |
1854 | static boolean | |
1855 | sunos_link_dynamic_object (info, abfd) | |
1856 | struct bfd_link_info *info; | |
1857 | bfd *abfd; | |
1858 | { | |
1859 | return true; | |
1860 | } | |
1861 | ||
e85e8bfe ILT |
1862 | /* Write out a dynamic symbol. This is called by the final traversal |
1863 | over the symbol table. */ | |
1864 | ||
1865 | static boolean | |
1866 | sunos_write_dynamic_symbol (output_bfd, info, harg) | |
1867 | bfd *output_bfd; | |
1868 | struct bfd_link_info *info; | |
1869 | struct aout_link_hash_entry *harg; | |
1870 | { | |
1871 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
e85e8bfe ILT |
1872 | int type; |
1873 | bfd_vma val; | |
1874 | asection *s; | |
1875 | struct external_nlist *outsym; | |
1876 | ||
1877 | if (h->dynindx < 0) | |
1878 | return true; | |
1879 | ||
e85e8bfe ILT |
1880 | switch (h->root.root.type) |
1881 | { | |
1882 | default: | |
1883 | case bfd_link_hash_new: | |
1884 | abort (); | |
1885 | /* Avoid variable not initialized warnings. */ | |
1886 | return true; | |
1887 | case bfd_link_hash_undefined: | |
1888 | type = N_UNDF | N_EXT; | |
1889 | val = 0; | |
1890 | break; | |
1891 | case bfd_link_hash_defined: | |
6c97aedf | 1892 | case bfd_link_hash_defweak: |
e85e8bfe ILT |
1893 | { |
1894 | asection *sec; | |
1895 | asection *output_section; | |
1896 | ||
1897 | sec = h->root.root.u.def.section; | |
1898 | output_section = sec->output_section; | |
788d9436 | 1899 | BFD_ASSERT (bfd_is_abs_section (output_section) |
e85e8bfe | 1900 | || output_section->owner == output_bfd); |
535c89f0 ILT |
1901 | if (h->plt_offset != 0 |
1902 | && (h->flags & SUNOS_DEF_REGULAR) == 0) | |
e85e8bfe | 1903 | { |
e85e8bfe ILT |
1904 | type = N_UNDF | N_EXT; |
1905 | val = 0; | |
1906 | } | |
1907 | else | |
1908 | { | |
1909 | if (output_section == obj_textsec (output_bfd)) | |
6c97aedf ILT |
1910 | type = (h->root.root.type == bfd_link_hash_defined |
1911 | ? N_TEXT | |
1912 | : N_WEAKT); | |
e85e8bfe | 1913 | else if (output_section == obj_datasec (output_bfd)) |
6c97aedf ILT |
1914 | type = (h->root.root.type == bfd_link_hash_defined |
1915 | ? N_DATA | |
1916 | : N_WEAKD); | |
e85e8bfe | 1917 | else if (output_section == obj_bsssec (output_bfd)) |
6c97aedf ILT |
1918 | type = (h->root.root.type == bfd_link_hash_defined |
1919 | ? N_BSS | |
1920 | : N_WEAKB); | |
e85e8bfe | 1921 | else |
6c97aedf ILT |
1922 | type = (h->root.root.type == bfd_link_hash_defined |
1923 | ? N_ABS | |
1924 | : N_WEAKA); | |
1925 | type |= N_EXT; | |
e85e8bfe ILT |
1926 | val = (h->root.root.u.def.value |
1927 | + output_section->vma | |
1928 | + sec->output_offset); | |
1929 | } | |
1930 | } | |
1931 | break; | |
1932 | case bfd_link_hash_common: | |
1933 | type = N_UNDF | N_EXT; | |
1934 | val = h->root.root.u.c.size; | |
1935 | break; | |
6c97aedf | 1936 | case bfd_link_hash_undefweak: |
4298e311 ILT |
1937 | type = N_WEAKU; |
1938 | val = 0; | |
1939 | break; | |
e85e8bfe ILT |
1940 | case bfd_link_hash_indirect: |
1941 | case bfd_link_hash_warning: | |
1942 | /* FIXME: Ignore these for now. The circumstances under which | |
1943 | they should be written out are not clear to me. */ | |
1944 | return true; | |
1945 | } | |
1946 | ||
1947 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym"); | |
1948 | BFD_ASSERT (s != NULL); | |
1949 | outsym = ((struct external_nlist *) | |
1950 | (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE)); | |
1951 | ||
1952 | bfd_h_put_8 (output_bfd, type, outsym->e_type); | |
1953 | bfd_h_put_8 (output_bfd, 0, outsym->e_other); | |
1954 | ||
1955 | /* FIXME: The native linker doesn't use 0 for desc. It seems to use | |
1956 | one less than the desc value in the shared library, although that | |
1957 | seems unlikely. */ | |
1958 | bfd_h_put_16 (output_bfd, 0, outsym->e_desc); | |
1959 | ||
1960 | PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx); | |
1961 | PUT_WORD (output_bfd, val, outsym->e_value); | |
1962 | ||
1963 | /* If this symbol is in the procedure linkage table, fill in the | |
1964 | table entry. */ | |
535c89f0 | 1965 | if (h->plt_offset != 0) |
e85e8bfe | 1966 | { |
535c89f0 ILT |
1967 | bfd *dynobj; |
1968 | asection *splt; | |
e85e8bfe ILT |
1969 | bfd_byte *p; |
1970 | asection *s; | |
1971 | bfd_vma r_address; | |
1972 | ||
535c89f0 ILT |
1973 | dynobj = sunos_hash_table (info)->dynobj; |
1974 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1975 | p = splt->contents + h->plt_offset; | |
e85e8bfe | 1976 | |
535c89f0 | 1977 | s = bfd_get_section_by_name (dynobj, ".dynrel"); |
e85e8bfe | 1978 | |
cd779d01 ILT |
1979 | r_address = (h->root.root.u.def.section->output_section->vma |
1980 | + h->root.root.u.def.section->output_offset | |
1981 | + h->root.root.u.def.value); | |
1982 | ||
e85e8bfe ILT |
1983 | switch (bfd_get_arch (output_bfd)) |
1984 | { | |
1985 | case bfd_arch_sparc: | |
535c89f0 ILT |
1986 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) |
1987 | { | |
1988 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p); | |
1989 | bfd_put_32 (output_bfd, | |
1990 | (SPARC_PLT_ENTRY_WORD1 | |
1991 | + (((- (h->plt_offset + 4) >> 2) | |
1992 | & 0x3fffffff))), | |
1993 | p + 4); | |
1994 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count, | |
1995 | p + 8); | |
1996 | } | |
1997 | else | |
1998 | { | |
1999 | bfd_vma val; | |
2000 | ||
2001 | val = (h->root.root.u.def.section->output_section->vma | |
2002 | + h->root.root.u.def.section->output_offset | |
2003 | + h->root.root.u.def.value); | |
2004 | bfd_put_32 (output_bfd, | |
2005 | SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff), | |
2006 | p); | |
2007 | bfd_put_32 (output_bfd, | |
2008 | SPARC_PLT_PIC_WORD1 + (val & 0x3ff), | |
2009 | p + 4); | |
2010 | bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8); | |
2011 | } | |
e85e8bfe ILT |
2012 | break; |
2013 | ||
2014 | case bfd_arch_m68k: | |
535c89f0 ILT |
2015 | if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0) |
2016 | abort (); | |
e85e8bfe | 2017 | bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p); |
535c89f0 | 2018 | bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2); |
e85e8bfe | 2019 | bfd_put_16 (output_bfd, s->reloc_count, p + 6); |
cd779d01 | 2020 | r_address += 2; |
e85e8bfe ILT |
2021 | break; |
2022 | ||
2023 | default: | |
2024 | abort (); | |
2025 | } | |
2026 | ||
535c89f0 ILT |
2027 | /* We also need to add a jump table reloc, unless this is the |
2028 | result of a JMP_TBL reloc from PIC compiled code. */ | |
2029 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) | |
e85e8bfe | 2030 | { |
535c89f0 ILT |
2031 | p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd); |
2032 | if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE) | |
e85e8bfe | 2033 | { |
535c89f0 ILT |
2034 | struct reloc_std_external *srel; |
2035 | ||
2036 | srel = (struct reloc_std_external *) p; | |
2037 | PUT_WORD (output_bfd, r_address, srel->r_address); | |
2038 | if (output_bfd->xvec->header_byteorder_big_p) | |
2039 | { | |
2040 | srel->r_index[0] = h->dynindx >> 16; | |
2041 | srel->r_index[1] = h->dynindx >> 8; | |
2042 | srel->r_index[2] = h->dynindx; | |
2043 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG | |
2044 | | RELOC_STD_BITS_JMPTABLE_BIG); | |
2045 | } | |
2046 | else | |
2047 | { | |
2048 | srel->r_index[2] = h->dynindx >> 16; | |
2049 | srel->r_index[1] = h->dynindx >> 8; | |
2050 | srel->r_index[0] = h->dynindx; | |
2051 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE | |
2052 | | RELOC_STD_BITS_JMPTABLE_LITTLE); | |
2053 | } | |
e85e8bfe ILT |
2054 | } |
2055 | else | |
2056 | { | |
535c89f0 ILT |
2057 | struct reloc_ext_external *erel; |
2058 | ||
2059 | erel = (struct reloc_ext_external *) p; | |
2060 | PUT_WORD (output_bfd, r_address, erel->r_address); | |
2061 | if (output_bfd->xvec->header_byteorder_big_p) | |
2062 | { | |
2063 | erel->r_index[0] = h->dynindx >> 16; | |
2064 | erel->r_index[1] = h->dynindx >> 8; | |
2065 | erel->r_index[2] = h->dynindx; | |
2066 | erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_BIG | |
2067 | | (22 << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
2068 | } | |
2069 | else | |
2070 | { | |
2071 | erel->r_index[2] = h->dynindx >> 16; | |
2072 | erel->r_index[1] = h->dynindx >> 8; | |
2073 | erel->r_index[0] = h->dynindx; | |
2074 | erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_LITTLE | |
2075 | | (22 << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
2076 | } | |
2077 | PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend); | |
e85e8bfe | 2078 | } |
e85e8bfe | 2079 | |
535c89f0 | 2080 | ++s->reloc_count; |
e85e8bfe | 2081 | } |
e85e8bfe ILT |
2082 | } |
2083 | ||
2084 | return true; | |
2085 | } | |
2086 | ||
2087 | /* This is called for each reloc against an external symbol. If this | |
2088 | is a reloc which are are going to copy as a dynamic reloc, then | |
2089 | copy it over, and tell the caller to not bother processing this | |
2090 | reloc. */ | |
2091 | ||
2092 | /*ARGSUSED*/ | |
2093 | static boolean | |
535c89f0 ILT |
2094 | sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc, |
2095 | contents, skip, relocationp) | |
e85e8bfe ILT |
2096 | struct bfd_link_info *info; |
2097 | bfd *input_bfd; | |
2098 | asection *input_section; | |
2099 | struct aout_link_hash_entry *harg; | |
2100 | PTR reloc; | |
535c89f0 | 2101 | bfd_byte *contents; |
e85e8bfe | 2102 | boolean *skip; |
535c89f0 | 2103 | bfd_vma *relocationp; |
e85e8bfe ILT |
2104 | { |
2105 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
2106 | bfd *dynobj; | |
535c89f0 ILT |
2107 | boolean baserel; |
2108 | asection *s; | |
e85e8bfe ILT |
2109 | bfd_byte *p; |
2110 | ||
2111 | *skip = false; | |
2112 | ||
2113 | dynobj = sunos_hash_table (info)->dynobj; | |
2114 | ||
535c89f0 ILT |
2115 | if (h != NULL && h->plt_offset != 0) |
2116 | { | |
2117 | asection *splt; | |
2118 | ||
2119 | /* Redirect the relocation to the PLT entry. */ | |
2120 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
2121 | *relocationp = (splt->output_section->vma | |
2122 | + splt->output_offset | |
2123 | + h->plt_offset); | |
2124 | } | |
2125 | ||
2126 | if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) | |
2127 | { | |
2128 | struct reloc_std_external *srel; | |
2129 | ||
2130 | srel = (struct reloc_std_external *) reloc; | |
2131 | if (input_bfd->xvec->header_byteorder_big_p) | |
2132 | baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); | |
2133 | else | |
2134 | baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); | |
2135 | } | |
2136 | else | |
2137 | { | |
2138 | struct reloc_ext_external *erel; | |
2139 | int r_type; | |
2140 | ||
2141 | erel = (struct reloc_ext_external *) reloc; | |
2142 | if (input_bfd->xvec->header_byteorder_big_p) | |
2143 | r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
2144 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
2145 | else | |
2146 | r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
2147 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
2148 | baserel = (r_type == RELOC_BASE10 | |
2149 | || r_type == RELOC_BASE13 | |
2150 | || r_type == RELOC_BASE22); | |
2151 | } | |
2152 | ||
2153 | if (baserel) | |
2154 | { | |
2155 | bfd_vma *got_offsetp; | |
2156 | asection *sgot; | |
2157 | ||
2158 | if (h != NULL) | |
2159 | got_offsetp = &h->got_offset; | |
2160 | else if (adata (input_bfd).local_got_offsets == NULL) | |
2161 | got_offsetp = NULL; | |
2162 | else | |
2163 | { | |
2164 | struct reloc_std_external *srel; | |
2165 | int r_index; | |
2166 | ||
2167 | srel = (struct reloc_std_external *) reloc; | |
2168 | if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) | |
2169 | { | |
2170 | if (input_bfd->xvec->header_byteorder_big_p) | |
2171 | r_index = ((srel->r_index[0] << 16) | |
2172 | | (srel->r_index[1] << 8) | |
2173 | | srel->r_index[2]); | |
2174 | else | |
2175 | r_index = ((srel->r_index[2] << 16) | |
2176 | | (srel->r_index[1] << 8) | |
2177 | | srel->r_index[0]); | |
2178 | } | |
2179 | else | |
2180 | { | |
2181 | struct reloc_ext_external *erel; | |
2182 | ||
2183 | erel = (struct reloc_ext_external *) reloc; | |
2184 | if (input_bfd->xvec->header_byteorder_big_p) | |
2185 | r_index = ((erel->r_index[0] << 16) | |
2186 | | (erel->r_index[1] << 8) | |
2187 | | erel->r_index[2]); | |
2188 | else | |
2189 | r_index = ((erel->r_index[2] << 16) | |
2190 | | (erel->r_index[1] << 8) | |
2191 | | erel->r_index[0]); | |
2192 | } | |
2193 | ||
2194 | got_offsetp = adata (input_bfd).local_got_offsets + r_index; | |
2195 | } | |
2196 | ||
2197 | BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0); | |
2198 | ||
2199 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
2200 | ||
2201 | /* We set the least significant bit to indicate whether we have | |
2202 | already initialized the GOT entry. */ | |
2203 | if ((*got_offsetp & 1) == 0) | |
2204 | { | |
2205 | PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp); | |
2206 | ||
2207 | if (h != NULL | |
2208 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
2209 | && (h->flags & SUNOS_DEF_REGULAR) == 0) | |
2210 | { | |
2211 | /* We need to create a GLOB_DAT reloc to tell the | |
2212 | dynamic linker to fill in this entry in the table. */ | |
2213 | ||
2214 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2215 | BFD_ASSERT (s != NULL); | |
2216 | ||
2217 | p = (s->contents | |
2218 | + s->reloc_count * obj_reloc_entry_size (dynobj)); | |
2219 | ||
2220 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
2221 | { | |
2222 | struct reloc_std_external *srel; | |
2223 | ||
2224 | srel = (struct reloc_std_external *) p; | |
2225 | PUT_WORD (dynobj, | |
2226 | (*got_offsetp | |
2227 | + sgot->output_section->vma | |
2228 | + sgot->output_offset), | |
2229 | srel->r_address); | |
2230 | if (dynobj->xvec->header_byteorder_big_p) | |
2231 | { | |
2232 | srel->r_index[0] = h->dynindx >> 16; | |
2233 | srel->r_index[1] = h->dynindx >> 8; | |
2234 | srel->r_index[2] = h->dynindx; | |
2235 | srel->r_type[0] = | |
2236 | (RELOC_STD_BITS_EXTERN_BIG | |
2237 | | RELOC_STD_BITS_BASEREL_BIG | |
2238 | | RELOC_STD_BITS_RELATIVE_BIG | |
2239 | | (2 << RELOC_STD_BITS_LENGTH_SH_BIG)); | |
2240 | } | |
2241 | else | |
2242 | { | |
2243 | srel->r_index[2] = h->dynindx >> 16; | |
2244 | srel->r_index[1] = h->dynindx >> 8; | |
2245 | srel->r_index[0] = h->dynindx; | |
2246 | srel->r_type[0] = | |
2247 | (RELOC_STD_BITS_EXTERN_LITTLE | |
2248 | | RELOC_STD_BITS_BASEREL_LITTLE | |
2249 | | RELOC_STD_BITS_RELATIVE_LITTLE | |
2250 | | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE)); | |
2251 | } | |
2252 | } | |
2253 | else | |
2254 | { | |
2255 | struct reloc_ext_external *erel; | |
2256 | ||
2257 | erel = (struct reloc_ext_external *) p; | |
2258 | PUT_WORD (dynobj, | |
2259 | (*got_offsetp | |
2260 | + sgot->output_section->vma | |
2261 | + sgot->output_offset), | |
2262 | erel->r_address); | |
2263 | if (dynobj->xvec->header_byteorder_big_p) | |
2264 | { | |
2265 | erel->r_index[0] = h->dynindx >> 16; | |
2266 | erel->r_index[1] = h->dynindx >> 8; | |
2267 | erel->r_index[2] = h->dynindx; | |
2268 | erel->r_type[0] = | |
2269 | (RELOC_EXT_BITS_EXTERN_BIG | |
2270 | | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
2271 | } | |
2272 | else | |
2273 | { | |
2274 | erel->r_index[2] = h->dynindx >> 16; | |
2275 | erel->r_index[1] = h->dynindx >> 8; | |
2276 | erel->r_index[0] = h->dynindx; | |
2277 | erel->r_type[0] = | |
2278 | (RELOC_EXT_BITS_EXTERN_LITTLE | |
2279 | | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
2280 | } | |
2281 | PUT_WORD (dynobj, 0, erel->r_addend); | |
2282 | } | |
2283 | ||
2284 | ++s->reloc_count; | |
2285 | } | |
2286 | ||
2287 | *got_offsetp |= 1; | |
2288 | } | |
2289 | ||
2290 | *relocationp = sgot->vma + (*got_offsetp &~ 1); | |
2291 | ||
2292 | /* There is nothing else to do for a base relative reloc. */ | |
2293 | return true; | |
2294 | } | |
2295 | ||
2296 | if (! sunos_hash_table (info)->dynamic_sections_needed | |
2297 | || h == NULL | |
e85e8bfe ILT |
2298 | || h->dynindx == -1 |
2299 | || h->root.root.type != bfd_link_hash_undefined | |
2300 | || (h->flags & SUNOS_DEF_REGULAR) != 0 | |
2301 | || (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
2302 | || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0) | |
2303 | return true; | |
2304 | ||
535c89f0 | 2305 | /* It looks like this is a reloc we are supposed to copy. */ |
e85e8bfe | 2306 | |
535c89f0 ILT |
2307 | s = bfd_get_section_by_name (dynobj, ".dynrel"); |
2308 | BFD_ASSERT (s != NULL); | |
e85e8bfe | 2309 | |
535c89f0 | 2310 | p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj); |
e85e8bfe ILT |
2311 | |
2312 | /* Copy the reloc over. */ | |
2313 | memcpy (p, reloc, obj_reloc_entry_size (dynobj)); | |
2314 | ||
2315 | /* Adjust the address and symbol index. */ | |
2316 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
2317 | { | |
2318 | struct reloc_std_external *srel; | |
2319 | ||
2320 | srel = (struct reloc_std_external *) p; | |
2321 | PUT_WORD (dynobj, | |
2322 | (GET_WORD (dynobj, srel->r_address) | |
2323 | + input_section->output_section->vma | |
2324 | + input_section->output_offset), | |
2325 | srel->r_address); | |
2326 | if (dynobj->xvec->header_byteorder_big_p) | |
2327 | { | |
2328 | srel->r_index[0] = h->dynindx >> 16; | |
2329 | srel->r_index[1] = h->dynindx >> 8; | |
2330 | srel->r_index[2] = h->dynindx; | |
2331 | } | |
2332 | else | |
2333 | { | |
2334 | srel->r_index[2] = h->dynindx >> 16; | |
2335 | srel->r_index[1] = h->dynindx >> 8; | |
2336 | srel->r_index[0] = h->dynindx; | |
2337 | } | |
2338 | } | |
2339 | else | |
2340 | { | |
2341 | struct reloc_ext_external *erel; | |
2342 | ||
2343 | erel = (struct reloc_ext_external *) p; | |
2344 | PUT_WORD (dynobj, | |
2345 | (GET_WORD (dynobj, erel->r_address) | |
2346 | + input_section->output_section->vma | |
2347 | + input_section->output_offset), | |
2348 | erel->r_address); | |
2349 | if (dynobj->xvec->header_byteorder_big_p) | |
2350 | { | |
2351 | erel->r_index[0] = h->dynindx >> 16; | |
2352 | erel->r_index[1] = h->dynindx >> 8; | |
2353 | erel->r_index[2] = h->dynindx; | |
2354 | } | |
2355 | else | |
2356 | { | |
2357 | erel->r_index[2] = h->dynindx >> 16; | |
2358 | erel->r_index[1] = h->dynindx >> 8; | |
2359 | erel->r_index[0] = h->dynindx; | |
2360 | } | |
2361 | } | |
2362 | ||
535c89f0 | 2363 | ++s->reloc_count; |
e85e8bfe ILT |
2364 | |
2365 | *skip = true; | |
2366 | ||
2367 | return true; | |
2368 | } | |
2369 | ||
2370 | /* Finish up the dynamic linking information. */ | |
2371 | ||
2372 | static boolean | |
2373 | sunos_finish_dynamic_link (abfd, info) | |
2374 | bfd *abfd; | |
2375 | struct bfd_link_info *info; | |
2376 | { | |
2377 | bfd *dynobj; | |
2378 | asection *o; | |
2379 | asection *s; | |
2380 | asection *sdyn; | |
2381 | struct external_sun4_dynamic esd; | |
2382 | struct external_sun4_dynamic_link esdl; | |
2383 | ||
535c89f0 | 2384 | if (! sunos_hash_table (info)->dynamic_sections_needed) |
e85e8bfe ILT |
2385 | return true; |
2386 | ||
535c89f0 ILT |
2387 | dynobj = sunos_hash_table (info)->dynobj; |
2388 | ||
e85e8bfe ILT |
2389 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
2390 | BFD_ASSERT (sdyn != NULL); | |
2391 | ||
2392 | /* Finish up the .need section. The linker emulation code filled it | |
2393 | in, but with offsets from the start of the section instead of | |
2394 | real addresses. Now that we know the section location, we can | |
2395 | fill in the final values. */ | |
2396 | s = bfd_get_section_by_name (dynobj, ".need"); | |
535c89f0 | 2397 | if (s != NULL && s->_raw_size != 0) |
e85e8bfe ILT |
2398 | { |
2399 | file_ptr filepos; | |
2400 | bfd_byte *p; | |
2401 | ||
2402 | filepos = s->output_section->filepos + s->output_offset; | |
2403 | p = s->contents; | |
2404 | while (1) | |
2405 | { | |
2406 | bfd_vma val; | |
2407 | ||
2408 | PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p); | |
2409 | val = GET_WORD (dynobj, p + 12); | |
2410 | if (val == 0) | |
2411 | break; | |
2412 | PUT_WORD (dynobj, val + filepos, p + 12); | |
2413 | p += 16; | |
2414 | } | |
2415 | } | |
2416 | ||
2417 | /* The first entry in the .got section is the address of the dynamic | |
2418 | information. */ | |
2419 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2420 | BFD_ASSERT (s != NULL); | |
2421 | PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset, | |
2422 | s->contents); | |
2423 | ||
2424 | for (o = dynobj->sections; o != NULL; o = o->next) | |
2425 | { | |
2426 | if ((o->flags & SEC_HAS_CONTENTS) != 0 | |
2427 | && o->contents != NULL) | |
2428 | { | |
2429 | BFD_ASSERT (o->output_section != NULL | |
2430 | && o->output_section->owner == abfd); | |
2431 | if (! bfd_set_section_contents (abfd, o->output_section, | |
2432 | o->contents, o->output_offset, | |
2433 | o->_raw_size)) | |
2434 | return false; | |
2435 | } | |
2436 | } | |
2437 | ||
2438 | /* Finish up the dynamic link information. */ | |
2439 | PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version); | |
2440 | PUT_WORD (dynobj, | |
2441 | sdyn->output_section->vma + sdyn->output_offset + sizeof esd, | |
2442 | esd.ldd); | |
2443 | PUT_WORD (dynobj, | |
2444 | (sdyn->output_section->vma | |
2445 | + sdyn->output_offset | |
2446 | + sizeof esd | |
2447 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2448 | esd.ld); | |
2449 | ||
2450 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd, | |
2451 | sdyn->output_offset, sizeof esd)) | |
2452 | return false; | |
2453 | ||
2454 | ||
2455 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded); | |
2456 | ||
2457 | s = bfd_get_section_by_name (dynobj, ".need"); | |
535c89f0 | 2458 | if (s == NULL || s->_raw_size == 0) |
e85e8bfe ILT |
2459 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need); |
2460 | else | |
2461 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2462 | esdl.ld_need); | |
2463 | ||
2464 | s = bfd_get_section_by_name (dynobj, ".rules"); | |
535c89f0 | 2465 | if (s == NULL || s->_raw_size == 0) |
e85e8bfe ILT |
2466 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules); |
2467 | else | |
2468 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2469 | esdl.ld_rules); | |
2470 | ||
2471 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2472 | BFD_ASSERT (s != NULL); | |
2473 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got); | |
2474 | ||
2475 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
2476 | BFD_ASSERT (s != NULL); | |
2477 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt); | |
2478 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz); | |
2479 | ||
2480 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2481 | BFD_ASSERT (s != NULL); | |
2482 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size); | |
2483 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2484 | esdl.ld_rel); | |
2485 | ||
2486 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
2487 | BFD_ASSERT (s != NULL); | |
2488 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2489 | esdl.ld_hash); | |
2490 | ||
2491 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
2492 | BFD_ASSERT (s != NULL); | |
2493 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2494 | esdl.ld_stab); | |
2495 | ||
2496 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash); | |
2497 | ||
2498 | PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount, | |
2499 | esdl.ld_buckets); | |
2500 | ||
2501 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
2502 | BFD_ASSERT (s != NULL); | |
2503 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2504 | esdl.ld_symbols); | |
2505 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size); | |
2506 | ||
2507 | /* The size of the text area is the size of the .text section | |
2508 | rounded up to a page boundary. FIXME: Should the page size be | |
2509 | conditional on something? */ | |
2510 | PUT_WORD (dynobj, | |
2511 | BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000), | |
2512 | esdl.ld_text); | |
2513 | ||
2514 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl, | |
2515 | (sdyn->output_offset | |
2516 | + sizeof esd | |
2517 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2518 | sizeof esdl)) | |
2519 | return false; | |
2520 | ||
2521 | abfd->flags |= DYNAMIC; | |
2522 | ||
2523 | return true; | |
2524 | } |