]>
Commit | Line | Data |
---|---|---|
faf5f7ad | 1 | /* GNU/Linux on ARM target support. |
4be87837 | 2 | Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
faf5f7ad SB |
3 | |
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "defs.h" | |
c20f6dea SB |
22 | #include "target.h" |
23 | #include "value.h" | |
faf5f7ad | 24 | #include "gdbtypes.h" |
134e61c4 | 25 | #include "floatformat.h" |
2a451106 KB |
26 | #include "gdbcore.h" |
27 | #include "frame.h" | |
4e052eda | 28 | #include "regcache.h" |
d16aafd8 | 29 | #include "doublest.h" |
7aa1783e | 30 | #include "solib-svr4.h" |
4be87837 | 31 | #include "osabi.h" |
faf5f7ad | 32 | |
34e8f22d RE |
33 | #include "arm-tdep.h" |
34 | ||
0e18d038 | 35 | /* For shared library handling. */ |
a52e6aac SB |
36 | #include "symtab.h" |
37 | #include "symfile.h" | |
38 | #include "objfiles.h" | |
39 | ||
fdf39c9a RE |
40 | /* Under ARM GNU/Linux the traditional way of performing a breakpoint |
41 | is to execute a particular software interrupt, rather than use a | |
42 | particular undefined instruction to provoke a trap. Upon exection | |
43 | of the software interrupt the kernel stops the inferior with a | |
2ef47cd0 DJ |
44 | SIGTRAP, and wakes the debugger. Since ARM GNU/Linux doesn't support |
45 | Thumb at the moment we only override the ARM breakpoints. */ | |
66e810cd | 46 | |
2ef47cd0 DJ |
47 | static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef }; |
48 | ||
49 | static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 }; | |
66e810cd | 50 | |
b1e29e33 | 51 | /* DEPRECATED_CALL_DUMMY_WORDS: |
6eb69eab RE |
52 | This sequence of words is the instructions |
53 | ||
54 | mov lr, pc | |
55 | mov pc, r4 | |
56 | swi bkpt_swi | |
57 | ||
58 | Note this is 12 bytes. */ | |
59 | ||
60 | LONGEST arm_linux_call_dummy_words[] = | |
61 | { | |
62 | 0xe1a0e00f, 0xe1a0f004, 0xef9f001 | |
63 | }; | |
64 | ||
9df628e0 | 65 | /* Description of the longjmp buffer. */ |
a6cdd8c5 RE |
66 | #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_RAW_SIZE |
67 | #define ARM_LINUX_JB_PC 21 | |
faf5f7ad | 68 | |
faf5f7ad SB |
69 | /* Extract from an array REGBUF containing the (raw) register state |
70 | a function return value of type TYPE, and copy that, in virtual format, | |
71 | into VALBUF. */ | |
19d3fc80 RE |
72 | /* FIXME rearnsha/2002-02-23: This function shouldn't be necessary. |
73 | The ARM generic one should be able to handle the model used by | |
74 | linux and the low-level formatting of the registers should be | |
75 | hidden behind the regcache abstraction. */ | |
76 | static void | |
faf5f7ad | 77 | arm_linux_extract_return_value (struct type *type, |
b8b527c5 | 78 | char regbuf[], |
faf5f7ad SB |
79 | char *valbuf) |
80 | { | |
81 | /* ScottB: This needs to be looked at to handle the different | |
fdf39c9a | 82 | floating point emulators on ARM GNU/Linux. Right now the code |
faf5f7ad SB |
83 | assumes that fetch inferior registers does the right thing for |
84 | GDB. I suspect this won't handle NWFPE registers correctly, nor | |
85 | will the default ARM version (arm_extract_return_value()). */ | |
86 | ||
34e8f22d RE |
87 | int regnum = ((TYPE_CODE_FLT == TYPE_CODE (type)) |
88 | ? ARM_F0_REGNUM : ARM_A1_REGNUM); | |
faf5f7ad SB |
89 | memcpy (valbuf, ®buf[REGISTER_BYTE (regnum)], TYPE_LENGTH (type)); |
90 | } | |
91 | ||
134e61c4 SB |
92 | /* Note: ScottB |
93 | ||
94 | This function does not support passing parameters using the FPA | |
95 | variant of the APCS. It passes any floating point arguments in the | |
96 | general registers and/or on the stack. | |
97 | ||
98 | FIXME: This and arm_push_arguments should be merged. However this | |
99 | function breaks on a little endian host, big endian target | |
100 | using the COFF file format. ELF is ok. | |
101 | ||
102 | ScottB. */ | |
103 | ||
104 | /* Addresses for calling Thumb functions have the bit 0 set. | |
105 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
106 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
107 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
108 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
109 | ||
19d3fc80 | 110 | static CORE_ADDR |
ea7c478f | 111 | arm_linux_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
134e61c4 SB |
112 | int struct_return, CORE_ADDR struct_addr) |
113 | { | |
114 | char *fp; | |
115 | int argnum, argreg, nstack_size; | |
116 | ||
117 | /* Walk through the list of args and determine how large a temporary | |
118 | stack is required. Need to take care here as structs may be | |
119 | passed on the stack, and we have to to push them. */ | |
b1e29e33 | 120 | nstack_size = -4 * DEPRECATED_REGISTER_SIZE; /* Some arguments go into A1-A4. */ |
134e61c4 SB |
121 | |
122 | if (struct_return) /* The struct address goes in A1. */ | |
b1e29e33 | 123 | nstack_size += DEPRECATED_REGISTER_SIZE; |
134e61c4 SB |
124 | |
125 | /* Walk through the arguments and add their size to nstack_size. */ | |
126 | for (argnum = 0; argnum < nargs; argnum++) | |
127 | { | |
128 | int len; | |
129 | struct type *arg_type; | |
130 | ||
131 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
132 | len = TYPE_LENGTH (arg_type); | |
133 | ||
134 | /* ANSI C code passes float arguments as integers, K&R code | |
135 | passes float arguments as doubles. Correct for this here. */ | |
b1e29e33 | 136 | if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && DEPRECATED_REGISTER_SIZE == len) |
134e61c4 SB |
137 | nstack_size += FP_REGISTER_VIRTUAL_SIZE; |
138 | else | |
139 | nstack_size += len; | |
140 | } | |
141 | ||
142 | /* Allocate room on the stack, and initialize our stack frame | |
143 | pointer. */ | |
144 | fp = NULL; | |
145 | if (nstack_size > 0) | |
146 | { | |
147 | sp -= nstack_size; | |
148 | fp = (char *) sp; | |
149 | } | |
150 | ||
151 | /* Initialize the integer argument register pointer. */ | |
34e8f22d | 152 | argreg = ARM_A1_REGNUM; |
134e61c4 SB |
153 | |
154 | /* The struct_return pointer occupies the first parameter passing | |
155 | register. */ | |
156 | if (struct_return) | |
157 | write_register (argreg++, struct_addr); | |
158 | ||
159 | /* Process arguments from left to right. Store as many as allowed | |
160 | in the parameter passing registers (A1-A4), and save the rest on | |
161 | the temporary stack. */ | |
162 | for (argnum = 0; argnum < nargs; argnum++) | |
163 | { | |
164 | int len; | |
165 | char *val; | |
134e61c4 SB |
166 | CORE_ADDR regval; |
167 | enum type_code typecode; | |
168 | struct type *arg_type, *target_type; | |
169 | ||
170 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
171 | target_type = TYPE_TARGET_TYPE (arg_type); | |
172 | len = TYPE_LENGTH (arg_type); | |
173 | typecode = TYPE_CODE (arg_type); | |
174 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
175 | ||
176 | /* ANSI C code passes float arguments as integers, K&R code | |
177 | passes float arguments as doubles. The .stabs record for | |
178 | for ANSI prototype floating point arguments records the | |
179 | type as FP_INTEGER, while a K&R style (no prototype) | |
180 | .stabs records the type as FP_FLOAT. In this latter case | |
181 | the compiler converts the float arguments to double before | |
182 | calling the function. */ | |
b1e29e33 | 183 | if (TYPE_CODE_FLT == typecode && DEPRECATED_REGISTER_SIZE == len) |
134e61c4 | 184 | { |
134e61c4 | 185 | DOUBLEST dblval; |
f1908289 | 186 | dblval = deprecated_extract_floating (val, len); |
134e61c4 | 187 | len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT; |
a37b3cc0 | 188 | val = alloca (len); |
f1908289 | 189 | deprecated_store_floating (val, len, dblval); |
134e61c4 SB |
190 | } |
191 | ||
192 | /* If the argument is a pointer to a function, and it is a Thumb | |
193 | function, set the low bit of the pointer. */ | |
194 | if (TYPE_CODE_PTR == typecode | |
195 | && NULL != target_type | |
196 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
197 | { | |
7c0b4a20 | 198 | CORE_ADDR regval = extract_unsigned_integer (val, len); |
134e61c4 | 199 | if (arm_pc_is_thumb (regval)) |
fbd9dcd3 | 200 | store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval)); |
134e61c4 SB |
201 | } |
202 | ||
203 | /* Copy the argument to general registers or the stack in | |
204 | register-sized pieces. Large arguments are split between | |
205 | registers and stack. */ | |
206 | while (len > 0) | |
207 | { | |
b1e29e33 | 208 | int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE; |
134e61c4 SB |
209 | |
210 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
211 | { | |
212 | /* It's an argument being passed in a general register. */ | |
7c0b4a20 | 213 | regval = extract_unsigned_integer (val, partial_len); |
134e61c4 SB |
214 | write_register (argreg++, regval); |
215 | } | |
216 | else | |
217 | { | |
218 | /* Push the arguments onto the stack. */ | |
b1e29e33 AC |
219 | write_memory ((CORE_ADDR) fp, val, DEPRECATED_REGISTER_SIZE); |
220 | fp += DEPRECATED_REGISTER_SIZE; | |
134e61c4 SB |
221 | } |
222 | ||
223 | len -= partial_len; | |
224 | val += partial_len; | |
225 | } | |
226 | } | |
227 | ||
228 | /* Return adjusted stack pointer. */ | |
229 | return sp; | |
230 | } | |
231 | ||
f38e884d | 232 | /* |
fdf39c9a RE |
233 | Dynamic Linking on ARM GNU/Linux |
234 | -------------------------------- | |
f38e884d SB |
235 | |
236 | Note: PLT = procedure linkage table | |
237 | GOT = global offset table | |
238 | ||
239 | As much as possible, ELF dynamic linking defers the resolution of | |
240 | jump/call addresses until the last minute. The technique used is | |
241 | inspired by the i386 ELF design, and is based on the following | |
242 | constraints. | |
243 | ||
244 | 1) The calling technique should not force a change in the assembly | |
245 | code produced for apps; it MAY cause changes in the way assembly | |
246 | code is produced for position independent code (i.e. shared | |
247 | libraries). | |
248 | ||
249 | 2) The technique must be such that all executable areas must not be | |
250 | modified; and any modified areas must not be executed. | |
251 | ||
252 | To do this, there are three steps involved in a typical jump: | |
253 | ||
254 | 1) in the code | |
255 | 2) through the PLT | |
256 | 3) using a pointer from the GOT | |
257 | ||
258 | When the executable or library is first loaded, each GOT entry is | |
259 | initialized to point to the code which implements dynamic name | |
260 | resolution and code finding. This is normally a function in the | |
fdf39c9a RE |
261 | program interpreter (on ARM GNU/Linux this is usually |
262 | ld-linux.so.2, but it does not have to be). On the first | |
263 | invocation, the function is located and the GOT entry is replaced | |
264 | with the real function address. Subsequent calls go through steps | |
265 | 1, 2 and 3 and end up calling the real code. | |
f38e884d SB |
266 | |
267 | 1) In the code: | |
268 | ||
269 | b function_call | |
270 | bl function_call | |
271 | ||
272 | This is typical ARM code using the 26 bit relative branch or branch | |
273 | and link instructions. The target of the instruction | |
274 | (function_call is usually the address of the function to be called. | |
275 | In position independent code, the target of the instruction is | |
276 | actually an entry in the PLT when calling functions in a shared | |
277 | library. Note that this call is identical to a normal function | |
278 | call, only the target differs. | |
279 | ||
280 | 2) In the PLT: | |
281 | ||
282 | The PLT is a synthetic area, created by the linker. It exists in | |
283 | both executables and libraries. It is an array of stubs, one per | |
284 | imported function call. It looks like this: | |
285 | ||
286 | PLT[0]: | |
287 | str lr, [sp, #-4]! @push the return address (lr) | |
288 | ldr lr, [pc, #16] @load from 6 words ahead | |
289 | add lr, pc, lr @form an address for GOT[0] | |
290 | ldr pc, [lr, #8]! @jump to the contents of that addr | |
291 | ||
292 | The return address (lr) is pushed on the stack and used for | |
293 | calculations. The load on the second line loads the lr with | |
294 | &GOT[3] - . - 20. The addition on the third leaves: | |
295 | ||
296 | lr = (&GOT[3] - . - 20) + (. + 8) | |
297 | lr = (&GOT[3] - 12) | |
298 | lr = &GOT[0] | |
299 | ||
300 | On the fourth line, the pc and lr are both updated, so that: | |
301 | ||
302 | pc = GOT[2] | |
303 | lr = &GOT[0] + 8 | |
304 | = &GOT[2] | |
305 | ||
306 | NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little | |
307 | "tight", but allows us to keep all the PLT entries the same size. | |
308 | ||
309 | PLT[n+1]: | |
310 | ldr ip, [pc, #4] @load offset from gotoff | |
311 | add ip, pc, ip @add the offset to the pc | |
312 | ldr pc, [ip] @jump to that address | |
313 | gotoff: .word GOT[n+3] - . | |
314 | ||
315 | The load on the first line, gets an offset from the fourth word of | |
316 | the PLT entry. The add on the second line makes ip = &GOT[n+3], | |
317 | which contains either a pointer to PLT[0] (the fixup trampoline) or | |
318 | a pointer to the actual code. | |
319 | ||
320 | 3) In the GOT: | |
321 | ||
322 | The GOT contains helper pointers for both code (PLT) fixups and | |
323 | data fixups. The first 3 entries of the GOT are special. The next | |
324 | M entries (where M is the number of entries in the PLT) belong to | |
325 | the PLT fixups. The next D (all remaining) entries belong to | |
326 | various data fixups. The actual size of the GOT is 3 + M + D. | |
327 | ||
328 | The GOT is also a synthetic area, created by the linker. It exists | |
329 | in both executables and libraries. When the GOT is first | |
330 | initialized , all the GOT entries relating to PLT fixups are | |
331 | pointing to code back at PLT[0]. | |
332 | ||
333 | The special entries in the GOT are: | |
334 | ||
335 | GOT[0] = linked list pointer used by the dynamic loader | |
336 | GOT[1] = pointer to the reloc table for this module | |
337 | GOT[2] = pointer to the fixup/resolver code | |
338 | ||
339 | The first invocation of function call comes through and uses the | |
340 | fixup/resolver code. On the entry to the fixup/resolver code: | |
341 | ||
342 | ip = &GOT[n+3] | |
343 | lr = &GOT[2] | |
344 | stack[0] = return address (lr) of the function call | |
345 | [r0, r1, r2, r3] are still the arguments to the function call | |
346 | ||
347 | This is enough information for the fixup/resolver code to work | |
348 | with. Before the fixup/resolver code returns, it actually calls | |
349 | the requested function and repairs &GOT[n+3]. */ | |
350 | ||
a52e6aac SB |
351 | /* Find the minimal symbol named NAME, and return both the minsym |
352 | struct and its objfile. This probably ought to be in minsym.c, but | |
353 | everything there is trying to deal with things like C++ and | |
354 | SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may | |
355 | be considered too special-purpose for general consumption. */ | |
356 | ||
357 | static struct minimal_symbol * | |
358 | find_minsym_and_objfile (char *name, struct objfile **objfile_p) | |
359 | { | |
360 | struct objfile *objfile; | |
361 | ||
362 | ALL_OBJFILES (objfile) | |
363 | { | |
364 | struct minimal_symbol *msym; | |
365 | ||
366 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
367 | { | |
22abf04a DC |
368 | if (DEPRECATED_SYMBOL_NAME (msym) |
369 | && strcmp (DEPRECATED_SYMBOL_NAME (msym), name) == 0) | |
a52e6aac SB |
370 | { |
371 | *objfile_p = objfile; | |
372 | return msym; | |
373 | } | |
374 | } | |
375 | } | |
376 | ||
377 | return 0; | |
378 | } | |
379 | ||
380 | ||
7aa1783e RE |
381 | /* Fetch, and possibly build, an appropriate link_map_offsets structure |
382 | for ARM linux targets using the struct offsets defined in <link.h>. | |
383 | Note, however, that link.h is not actually referred to in this file. | |
384 | Instead, the relevant structs offsets were obtained from examining | |
385 | link.h. (We can't refer to link.h from this file because the host | |
386 | system won't necessarily have it, or if it does, the structs which | |
387 | it defines will refer to the host system, not the target). */ | |
388 | ||
389 | static struct link_map_offsets * | |
390 | arm_linux_svr4_fetch_link_map_offsets (void) | |
391 | { | |
392 | static struct link_map_offsets lmo; | |
393 | static struct link_map_offsets *lmp = 0; | |
394 | ||
395 | if (lmp == 0) | |
396 | { | |
397 | lmp = &lmo; | |
398 | ||
399 | lmo.r_debug_size = 8; /* Actual size is 20, but this is all we | |
400 | need. */ | |
401 | ||
402 | lmo.r_map_offset = 4; | |
403 | lmo.r_map_size = 4; | |
404 | ||
405 | lmo.link_map_size = 20; /* Actual size is 552, but this is all we | |
406 | need. */ | |
407 | ||
408 | lmo.l_addr_offset = 0; | |
409 | lmo.l_addr_size = 4; | |
410 | ||
411 | lmo.l_name_offset = 4; | |
412 | lmo.l_name_size = 4; | |
413 | ||
414 | lmo.l_next_offset = 12; | |
415 | lmo.l_next_size = 4; | |
416 | ||
417 | lmo.l_prev_offset = 16; | |
418 | lmo.l_prev_size = 4; | |
419 | } | |
420 | ||
421 | return lmp; | |
422 | } | |
423 | ||
a52e6aac SB |
424 | static CORE_ADDR |
425 | skip_hurd_resolver (CORE_ADDR pc) | |
426 | { | |
427 | /* The HURD dynamic linker is part of the GNU C library, so many | |
428 | GNU/Linux distributions use it. (All ELF versions, as far as I | |
429 | know.) An unresolved PLT entry points to "_dl_runtime_resolve", | |
430 | which calls "fixup" to patch the PLT, and then passes control to | |
431 | the function. | |
432 | ||
433 | We look for the symbol `_dl_runtime_resolve', and find `fixup' in | |
434 | the same objfile. If we are at the entry point of `fixup', then | |
435 | we set a breakpoint at the return address (at the top of the | |
436 | stack), and continue. | |
437 | ||
438 | It's kind of gross to do all these checks every time we're | |
439 | called, since they don't change once the executable has gotten | |
440 | started. But this is only a temporary hack --- upcoming versions | |
fdf39c9a | 441 | of GNU/Linux will provide a portable, efficient interface for |
a52e6aac SB |
442 | debugging programs that use shared libraries. */ |
443 | ||
444 | struct objfile *objfile; | |
445 | struct minimal_symbol *resolver | |
446 | = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile); | |
447 | ||
448 | if (resolver) | |
449 | { | |
450 | struct minimal_symbol *fixup | |
9b27852e | 451 | = lookup_minimal_symbol ("fixup", NULL, objfile); |
a52e6aac SB |
452 | |
453 | if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc) | |
6913c89a | 454 | return (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ())); |
a52e6aac SB |
455 | } |
456 | ||
457 | return 0; | |
458 | } | |
459 | ||
460 | /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c. | |
461 | This function: | |
462 | 1) decides whether a PLT has sent us into the linker to resolve | |
463 | a function reference, and | |
464 | 2) if so, tells us where to set a temporary breakpoint that will | |
465 | trigger when the dynamic linker is done. */ | |
466 | ||
f38e884d | 467 | CORE_ADDR |
a52e6aac | 468 | arm_linux_skip_solib_resolver (CORE_ADDR pc) |
f38e884d | 469 | { |
a52e6aac SB |
470 | CORE_ADDR result; |
471 | ||
472 | /* Plug in functions for other kinds of resolvers here. */ | |
473 | result = skip_hurd_resolver (pc); | |
e1d6e81f | 474 | |
a52e6aac SB |
475 | if (result) |
476 | return result; | |
a52e6aac | 477 | |
f38e884d SB |
478 | return 0; |
479 | } | |
480 | ||
2a451106 KB |
481 | /* The constants below were determined by examining the following files |
482 | in the linux kernel sources: | |
483 | ||
484 | arch/arm/kernel/signal.c | |
485 | - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN | |
486 | include/asm-arm/unistd.h | |
487 | - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */ | |
488 | ||
489 | #define ARM_LINUX_SIGRETURN_INSTR 0xef900077 | |
490 | #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad | |
491 | ||
492 | /* arm_linux_in_sigtramp determines if PC points at one of the | |
493 | instructions which cause control to return to the Linux kernel upon | |
494 | return from a signal handler. FUNC_NAME is unused. */ | |
495 | ||
496 | int | |
497 | arm_linux_in_sigtramp (CORE_ADDR pc, char *func_name) | |
498 | { | |
499 | unsigned long inst; | |
500 | ||
501 | inst = read_memory_integer (pc, 4); | |
502 | ||
503 | return (inst == ARM_LINUX_SIGRETURN_INSTR | |
504 | || inst == ARM_LINUX_RT_SIGRETURN_INSTR); | |
505 | ||
506 | } | |
507 | ||
508 | /* arm_linux_sigcontext_register_address returns the address in the | |
509 | sigcontext of register REGNO given a stack pointer value SP and | |
510 | program counter value PC. The value 0 is returned if PC is not | |
511 | pointing at one of the signal return instructions or if REGNO is | |
512 | not saved in the sigcontext struct. */ | |
513 | ||
514 | CORE_ADDR | |
515 | arm_linux_sigcontext_register_address (CORE_ADDR sp, CORE_ADDR pc, int regno) | |
516 | { | |
517 | unsigned long inst; | |
518 | CORE_ADDR reg_addr = 0; | |
519 | ||
520 | inst = read_memory_integer (pc, 4); | |
521 | ||
fdf39c9a RE |
522 | if (inst == ARM_LINUX_SIGRETURN_INSTR |
523 | || inst == ARM_LINUX_RT_SIGRETURN_INSTR) | |
2a451106 KB |
524 | { |
525 | CORE_ADDR sigcontext_addr; | |
526 | ||
527 | /* The sigcontext structure is at different places for the two | |
528 | signal return instructions. For ARM_LINUX_SIGRETURN_INSTR, | |
529 | it starts at the SP value. For ARM_LINUX_RT_SIGRETURN_INSTR, | |
530 | it is at SP+8. For the latter instruction, it may also be | |
531 | the case that the address of this structure may be determined | |
532 | by reading the 4 bytes at SP, but I'm not convinced this is | |
533 | reliable. | |
534 | ||
535 | In any event, these magic constants (0 and 8) may be | |
536 | determined by examining struct sigframe and struct | |
537 | rt_sigframe in arch/arm/kernel/signal.c in the Linux kernel | |
538 | sources. */ | |
539 | ||
540 | if (inst == ARM_LINUX_RT_SIGRETURN_INSTR) | |
541 | sigcontext_addr = sp + 8; | |
542 | else /* inst == ARM_LINUX_SIGRETURN_INSTR */ | |
543 | sigcontext_addr = sp + 0; | |
544 | ||
545 | /* The layout of the sigcontext structure for ARM GNU/Linux is | |
546 | in include/asm-arm/sigcontext.h in the Linux kernel sources. | |
547 | ||
548 | There are three 4-byte fields which precede the saved r0 | |
549 | field. (This accounts for the 12 in the code below.) The | |
550 | sixteen registers (4 bytes per field) follow in order. The | |
551 | PSR value follows the sixteen registers which accounts for | |
552 | the constant 19 below. */ | |
553 | ||
34e8f22d | 554 | if (0 <= regno && regno <= ARM_PC_REGNUM) |
2a451106 | 555 | reg_addr = sigcontext_addr + 12 + (4 * regno); |
34e8f22d | 556 | else if (regno == ARM_PS_REGNUM) |
2a451106 KB |
557 | reg_addr = sigcontext_addr + 19 * 4; |
558 | } | |
559 | ||
560 | return reg_addr; | |
561 | } | |
562 | ||
97e03143 RE |
563 | static void |
564 | arm_linux_init_abi (struct gdbarch_info info, | |
565 | struct gdbarch *gdbarch) | |
566 | { | |
567 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
568 | ||
569 | tdep->lowest_pc = 0x8000; | |
2ef47cd0 DJ |
570 | if (info.byte_order == BFD_ENDIAN_BIG) |
571 | tdep->arm_breakpoint = arm_linux_arm_be_breakpoint; | |
572 | else | |
573 | tdep->arm_breakpoint = arm_linux_arm_le_breakpoint; | |
66e810cd | 574 | tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint); |
9df628e0 | 575 | |
fd50bc42 RE |
576 | tdep->fp_model = ARM_FLOAT_FPA; |
577 | ||
a6cdd8c5 RE |
578 | tdep->jb_pc = ARM_LINUX_JB_PC; |
579 | tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE; | |
19d3fc80 | 580 | |
7aa1783e RE |
581 | set_solib_svr4_fetch_link_map_offsets |
582 | (gdbarch, arm_linux_svr4_fetch_link_map_offsets); | |
583 | ||
b1e29e33 AC |
584 | set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_linux_call_dummy_words); |
585 | set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (arm_linux_call_dummy_words)); | |
19d3fc80 RE |
586 | |
587 | /* The following two overrides shouldn't be needed. */ | |
26e9b323 | 588 | set_gdbarch_deprecated_extract_return_value (gdbarch, arm_linux_extract_return_value); |
b81774d8 | 589 | set_gdbarch_deprecated_push_arguments (gdbarch, arm_linux_push_arguments); |
0e18d038 RE |
590 | |
591 | /* Shared library handling. */ | |
592 | set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); | |
593 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); | |
97e03143 RE |
594 | } |
595 | ||
faf5f7ad SB |
596 | void |
597 | _initialize_arm_linux_tdep (void) | |
598 | { | |
05816f70 MK |
599 | gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX, |
600 | arm_linux_init_abi); | |
faf5f7ad | 601 | } |