]>
Commit | Line | Data |
---|---|---|
a91a6192 SS |
1 | /* Support for printing Fortran values for GDB, the GNU debugger. |
2 | Copyright 1993, 1994 Free Software Foundation, Inc. | |
3 | Contributed by Motorola. Adapted from the C definitions by Farooq Butt | |
4 | ([email protected]), additionally worked over by Stan Shebs. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "expression.h" | |
26 | #include "value.h" | |
27 | #include "demangle.h" | |
28 | #include "valprint.h" | |
29 | #include "language.h" | |
30 | #include "f-lang.h" | |
31 | #include "frame.h" | |
32 | ||
33 | extern struct obstack dont_print_obstack; | |
34 | ||
35 | extern unsigned int print_max; /* No of array elements to print */ | |
36 | ||
37 | int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2]; | |
38 | ||
39 | /* Array which holds offsets to be applied to get a row's elements | |
40 | for a given array. Array also holds the size of each subarray. */ | |
41 | ||
42 | /* The following macro gives us the size of the nth dimension, Where | |
43 | n is 1 based. */ | |
44 | ||
45 | #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1]) | |
46 | ||
47 | /* The following gives us the offset for row n where n is 1-based. */ | |
48 | ||
49 | #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0]) | |
50 | ||
51 | int | |
52 | f77_get_dynamic_lowerbound (type, lower_bound) | |
53 | struct type *type; | |
54 | int *lower_bound; | |
55 | { | |
56 | CORE_ADDR current_frame_addr; | |
57 | CORE_ADDR ptr_to_lower_bound; | |
58 | ||
59 | switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type)) | |
60 | { | |
61 | case BOUND_BY_VALUE_ON_STACK: | |
62 | current_frame_addr = selected_frame->frame; | |
63 | if (current_frame_addr > 0) | |
64 | { | |
65 | *lower_bound = | |
66 | read_memory_integer (current_frame_addr + | |
67 | TYPE_ARRAY_LOWER_BOUND_VALUE (type),4); | |
68 | } | |
69 | else | |
70 | { | |
71 | *lower_bound = DEFAULT_LOWER_BOUND; | |
72 | return BOUND_FETCH_ERROR; | |
73 | } | |
74 | break; | |
75 | ||
76 | case BOUND_SIMPLE: | |
77 | *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type); | |
78 | break; | |
79 | ||
80 | case BOUND_CANNOT_BE_DETERMINED: | |
81 | error("Lower bound may not be '*' in F77"); | |
82 | break; | |
83 | ||
84 | case BOUND_BY_REF_ON_STACK: | |
85 | current_frame_addr = selected_frame->frame; | |
86 | if (current_frame_addr > 0) | |
87 | { | |
88 | ptr_to_lower_bound = | |
89 | read_memory_integer (current_frame_addr + | |
90 | TYPE_ARRAY_LOWER_BOUND_VALUE (type), | |
91 | 4); | |
92 | *lower_bound = read_memory_integer(ptr_to_lower_bound); | |
93 | } | |
94 | else | |
95 | { | |
96 | *lower_bound = DEFAULT_LOWER_BOUND; | |
97 | return BOUND_FETCH_ERROR; | |
98 | } | |
99 | break; | |
100 | ||
101 | case BOUND_BY_REF_IN_REG: | |
102 | case BOUND_BY_VALUE_IN_REG: | |
103 | default: | |
104 | error ("??? unhandled dynamic array bound type ???"); | |
105 | break; | |
106 | } | |
107 | return BOUND_FETCH_OK; | |
108 | } | |
109 | ||
110 | int | |
111 | f77_get_dynamic_upperbound (type, upper_bound) | |
112 | struct type *type; | |
113 | int *upper_bound; | |
114 | { | |
115 | CORE_ADDR current_frame_addr = 0; | |
116 | CORE_ADDR ptr_to_upper_bound; | |
117 | ||
118 | switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type)) | |
119 | { | |
120 | case BOUND_BY_VALUE_ON_STACK: | |
121 | current_frame_addr = selected_frame->frame; | |
122 | if (current_frame_addr > 0) | |
123 | { | |
124 | *upper_bound = | |
125 | read_memory_integer (current_frame_addr + | |
126 | TYPE_ARRAY_UPPER_BOUND_VALUE (type),4); | |
127 | } | |
128 | else | |
129 | { | |
130 | *upper_bound = DEFAULT_UPPER_BOUND; | |
131 | return BOUND_FETCH_ERROR; | |
132 | } | |
133 | break; | |
134 | ||
135 | case BOUND_SIMPLE: | |
136 | *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type); | |
137 | break; | |
138 | ||
139 | case BOUND_CANNOT_BE_DETERMINED: | |
140 | /* we have an assumed size array on our hands. Assume that | |
141 | upper_bound == lower_bound so that we show at least | |
142 | 1 element.If the user wants to see more elements, let | |
143 | him manually ask for 'em and we'll subscript the | |
144 | array and show him */ | |
145 | f77_get_dynamic_lowerbound (type, &upper_bound); | |
146 | break; | |
147 | ||
148 | case BOUND_BY_REF_ON_STACK: | |
149 | current_frame_addr = selected_frame->frame; | |
150 | if (current_frame_addr > 0) | |
151 | { | |
152 | ptr_to_upper_bound = | |
153 | read_memory_integer (current_frame_addr + | |
154 | TYPE_ARRAY_UPPER_BOUND_VALUE (type), | |
155 | 4); | |
156 | *upper_bound = read_memory_integer(ptr_to_upper_bound); | |
157 | } | |
158 | else | |
159 | { | |
160 | *upper_bound = DEFAULT_UPPER_BOUND; | |
161 | return BOUND_FETCH_ERROR; | |
162 | } | |
163 | break; | |
164 | ||
165 | case BOUND_BY_REF_IN_REG: | |
166 | case BOUND_BY_VALUE_IN_REG: | |
167 | default: | |
168 | error ("??? unhandled dynamic array bound type ???"); | |
169 | break; | |
170 | } | |
171 | return BOUND_FETCH_OK; | |
172 | } | |
173 | ||
174 | /* Obtain F77 adjustable array dimensions */ | |
175 | ||
176 | void | |
177 | f77_get_dynamic_length_of_aggregate (type) | |
178 | struct type *type; | |
179 | { | |
180 | int upper_bound = -1; | |
181 | int lower_bound = 1; | |
182 | unsigned int current_total = 1; | |
183 | int retcode; | |
184 | ||
185 | /* Recursively go all the way down into a possibly | |
186 | multi-dimensional F77 array | |
187 | and get the bounds. For simple arrays, this is pretty easy | |
188 | but when the bounds are dynamic, we must be very careful | |
189 | to add up all the lengths correctly. Not doing this right | |
190 | will lead to horrendous-looking arrays in parameter lists. | |
191 | ||
192 | This function also works for strings which behave very | |
193 | similarly to arrays. */ | |
194 | ||
195 | if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY | |
196 | || TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING) | |
197 | f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type)); | |
198 | ||
199 | /* Recursion ends here, start setting up lengths. */ | |
200 | retcode = f77_get_dynamic_lowerbound (type, &lower_bound); | |
201 | if (retcode == BOUND_FETCH_ERROR) | |
202 | error ("Cannot obtain valid array lower bound"); | |
203 | ||
204 | retcode = f77_get_dynamic_upperbound (type, &upper_bound); | |
205 | if (retcode == BOUND_FETCH_ERROR) | |
206 | error ("Cannot obtain valid array upper bound"); | |
207 | ||
208 | /* Patch in a valid length value. */ | |
209 | ||
210 | TYPE_LENGTH (type) = | |
211 | (upper_bound - lower_bound + 1) * TYPE_LENGTH (TYPE_TARGET_TYPE (type)); | |
212 | } | |
213 | ||
214 | /* Print a FORTRAN COMPLEX value of type TYPE, pointed to in GDB by VALADDR, | |
215 | on STREAM. which_complex indicates precision, which may be regular, | |
216 | *16, or *32 */ | |
217 | ||
218 | void | |
219 | f77_print_cmplx (valaddr, type, stream, which_complex) | |
220 | char *valaddr; | |
221 | struct type *type; | |
222 | FILE *stream; | |
223 | int which_complex; | |
224 | { | |
225 | float *f1,*f2; | |
226 | double *d1, *d2; | |
227 | int i; | |
228 | ||
229 | switch (which_complex) | |
230 | { | |
231 | case TARGET_COMPLEX_BIT: | |
232 | f1 = (float *) valaddr; | |
233 | f2 = (float *) (valaddr + sizeof(float)); | |
234 | fprintf_filtered (stream, "(%.7e,%.7e)", *f1, *f2); | |
235 | break; | |
236 | ||
237 | case TARGET_DOUBLE_COMPLEX_BIT: | |
238 | d1 = (double *) valaddr; | |
239 | d2 = (double *) (valaddr + sizeof(double)); | |
240 | fprintf_filtered (stream, "(%.16e,%.16e)", *d1, *d2); | |
241 | break; | |
242 | #if 0 | |
243 | case TARGET_EXT_COMPLEX_BIT: | |
244 | fprintf_filtered (stream, "<complex*32 format unavailable, " | |
245 | "printing raw data>\n"); | |
246 | ||
247 | fprintf_filtered (stream, "( [ "); | |
248 | ||
249 | for (i = 0;i<4;i++) | |
250 | fprintf_filtered (stream, "0x%x ", | |
251 | * ( (unsigned int *) valaddr+i)); | |
252 | ||
253 | fprintf_filtered (stream, "],\n [ "); | |
254 | ||
255 | for (i=4;i<8;i++) | |
256 | fprintf_filtered (stream, "0x%x ", | |
257 | * ((unsigned int *) valaddr+i)); | |
258 | ||
259 | fprintf_filtered (stream, "] )"); | |
260 | ||
261 | break; | |
262 | #endif | |
263 | default: | |
264 | fprintf_filtered (stream, "<cannot handle complex of this type>"); | |
265 | break; | |
266 | } | |
267 | } | |
268 | ||
269 | /* Function that sets up the array offset,size table for the array | |
270 | type "type". */ | |
271 | ||
272 | void | |
273 | f77_create_arrayprint_offset_tbl (type, stream) | |
274 | struct type *type; | |
275 | FILE *stream; | |
276 | { | |
277 | struct type *tmp_type; | |
278 | int eltlen; | |
279 | int ndimen = 1; | |
280 | int upper, lower, retcode; | |
281 | ||
282 | tmp_type = type; | |
283 | ||
284 | while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)) | |
285 | { | |
286 | if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED) | |
287 | fprintf_filtered (stream, "<assumed size array> "); | |
288 | ||
289 | retcode = f77_get_dynamic_upperbound (tmp_type, &upper); | |
290 | if (retcode == BOUND_FETCH_ERROR) | |
291 | error ("Cannot obtain dynamic upper bound"); | |
292 | ||
293 | retcode = f77_get_dynamic_lowerbound(tmp_type,&lower); | |
294 | if (retcode == BOUND_FETCH_ERROR) | |
295 | error("Cannot obtain dynamic lower bound"); | |
296 | ||
297 | F77_DIM_SIZE (ndimen) = upper - lower + 1; | |
298 | ||
299 | if (ndimen == 1) | |
300 | F77_DIM_OFFSET (ndimen) = 1; | |
301 | else | |
302 | F77_DIM_OFFSET (ndimen) = | |
303 | F77_DIM_OFFSET (ndimen - 1) * F77_DIM_SIZE(ndimen - 1); | |
304 | ||
305 | tmp_type = TYPE_TARGET_TYPE (tmp_type); | |
306 | ndimen++; | |
307 | } | |
308 | ||
309 | eltlen = TYPE_LENGTH (tmp_type); | |
310 | ||
311 | /* Now we multiply eltlen by all the offsets, so that later we | |
312 | can print out array elements correctly. Up till now we | |
313 | know an offset to apply to get the item but we also | |
314 | have to know how much to add to get to the next item */ | |
315 | ||
316 | tmp_type = type; | |
317 | ndimen = 1; | |
318 | ||
319 | while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)) | |
320 | { | |
321 | F77_DIM_OFFSET (ndimen) *= eltlen; | |
322 | ndimen++; | |
323 | tmp_type = TYPE_TARGET_TYPE (tmp_type); | |
324 | } | |
325 | } | |
326 | ||
327 | /* Actual function which prints out F77 arrays, Valaddr == address in | |
328 | the superior. Address == the address in the inferior. */ | |
329 | ||
330 | void | |
331 | f77_print_array_1 (nss, ndimensions, type, valaddr, address, | |
332 | stream, format, deref_ref, recurse, pretty) | |
333 | int nss; | |
334 | int ndimensions; | |
335 | char *valaddr; | |
336 | struct type *type; | |
337 | CORE_ADDR address; | |
338 | FILE *stream; | |
339 | int format; | |
340 | int deref_ref; | |
341 | int recurse; | |
342 | enum val_prettyprint pretty; | |
343 | { | |
344 | int i; | |
345 | ||
346 | if (nss != ndimensions) | |
347 | { | |
348 | for (i = 0; i< F77_DIM_SIZE(nss); i++) | |
349 | { | |
350 | fprintf_filtered (stream, "( "); | |
351 | f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type), | |
352 | valaddr + i * F77_DIM_OFFSET (nss), | |
353 | address + i * F77_DIM_OFFSET (nss), | |
354 | stream, format, deref_ref, recurse, pretty, i); | |
355 | fprintf_filtered (stream, ") "); | |
356 | } | |
357 | } | |
358 | else | |
359 | { | |
360 | for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++) | |
361 | { | |
362 | val_print (TYPE_TARGET_TYPE (type), | |
363 | valaddr + i * F77_DIM_OFFSET (ndimensions), | |
364 | address + i * F77_DIM_OFFSET (ndimensions), | |
365 | stream, format, deref_ref, recurse, pretty); | |
366 | ||
367 | if (i != (F77_DIM_SIZE (nss) - 1)) | |
368 | fprintf_filtered (stream, ", "); | |
369 | ||
370 | if (i == print_max - 1) | |
371 | fprintf_filtered (stream, "..."); | |
372 | } | |
373 | } | |
374 | } | |
375 | ||
376 | /* This function gets called to print an F77 array, we set up some | |
377 | stuff and then immediately call f77_print_array_1() */ | |
378 | ||
379 | void | |
380 | f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse, | |
381 | pretty) | |
382 | struct type *type; | |
383 | char *valaddr; | |
384 | CORE_ADDR address; | |
385 | FILE *stream; | |
386 | int format; | |
387 | int deref_ref; | |
388 | int recurse; | |
389 | enum val_prettyprint pretty; | |
390 | { | |
391 | int array_size_array[MAX_FORTRAN_DIMS+1]; | |
392 | int ndimensions; | |
393 | ||
394 | ndimensions = calc_f77_array_dims (type); | |
395 | ||
396 | if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0) | |
397 | error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)", | |
398 | ndimensions, MAX_FORTRAN_DIMS); | |
399 | ||
400 | /* Since F77 arrays are stored column-major, we set up an | |
401 | offset table to get at the various row's elements. The | |
402 | offset table contains entries for both offset and subarray size. */ | |
403 | ||
404 | f77_create_arrayprint_offset_tbl (type, stream); | |
405 | ||
406 | f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format, | |
407 | deref_ref, recurse, pretty); | |
408 | } | |
409 | ||
410 | \f | |
411 | /* Print data of type TYPE located at VALADDR (within GDB), which came from | |
412 | the inferior at address ADDRESS, onto stdio stream STREAM according to | |
413 | FORMAT (a letter or 0 for natural format). The data at VALADDR is in | |
414 | target byte order. | |
415 | ||
416 | If the data are a string pointer, returns the number of string characters | |
417 | printed. | |
418 | ||
419 | If DEREF_REF is nonzero, then dereference references, otherwise just print | |
420 | them like pointers. | |
421 | ||
422 | The PRETTY parameter controls prettyprinting. */ | |
423 | ||
424 | int | |
425 | f_val_print (type, valaddr, address, stream, format, deref_ref, recurse, | |
426 | pretty) | |
427 | struct type *type; | |
428 | char *valaddr; | |
429 | CORE_ADDR address; | |
430 | FILE *stream; | |
431 | int format; | |
432 | int deref_ref; | |
433 | int recurse; | |
434 | enum val_prettyprint pretty; | |
435 | { | |
436 | register unsigned int i = 0; /* Number of characters printed */ | |
437 | unsigned len; | |
438 | struct type *elttype; | |
439 | unsigned eltlen; | |
440 | LONGEST val; | |
441 | struct internalvar *ivar; | |
442 | char *localstr; | |
443 | unsigned char c; | |
444 | CORE_ADDR addr; | |
445 | ||
446 | switch (TYPE_CODE (type)) | |
447 | { | |
448 | case TYPE_CODE_LITERAL_STRING: | |
449 | /* It is trivial to print out F77 strings allocated in the | |
450 | superior process. The address field is actually a | |
451 | pointer to the bytes of the literal. For an internalvar, | |
452 | valaddr points to a ptr. which points to | |
453 | VALUE_LITERAL_DATA(value->internalvar->value) | |
454 | and for straight literals (i.e. of the form 'hello world'), | |
455 | valaddr points a ptr to VALUE_LITERAL_DATA(value). */ | |
456 | ||
457 | /* First deref. valaddr */ | |
458 | ||
459 | addr = * (CORE_ADDR *) valaddr; | |
460 | ||
461 | if (addr) | |
462 | { | |
463 | len = TYPE_LENGTH (type); | |
464 | localstr = alloca (len + 1); | |
465 | strncpy (localstr, addr, len); | |
466 | localstr[len] = '\0'; | |
467 | fprintf_filtered (stream, "'%s'", localstr); | |
468 | } | |
469 | else | |
470 | fprintf_filtered (stream, "Unable to print literal F77 string"); | |
471 | break; | |
472 | ||
473 | /* Strings are a little bit funny. They can be viewed as | |
474 | monolithic arrays that are dealt with as atomic data | |
475 | items. As such they are the only atomic data items whose | |
476 | contents are not located in the superior process. Instead | |
477 | instead of having the actual data, they contain pointers | |
478 | to addresses in the inferior where data is located. Thus | |
479 | instead of using valaddr, we use address. */ | |
480 | ||
481 | case TYPE_CODE_STRING: | |
482 | f77_get_dynamic_length_of_aggregate (type); | |
483 | val_print_string (address, TYPE_LENGTH (type), stream); | |
484 | break; | |
485 | ||
486 | case TYPE_CODE_ARRAY: | |
487 | fprintf_filtered (stream, "("); | |
488 | f77_print_array (type, valaddr, address, stream, format, | |
489 | deref_ref, recurse, pretty); | |
490 | fprintf_filtered (stream, ")"); | |
491 | break; | |
492 | #if 0 | |
493 | /* Array of unspecified length: treat like pointer to first elt. */ | |
494 | valaddr = (char *) &address; | |
495 | /* FALL THROUGH */ | |
496 | #endif | |
497 | case TYPE_CODE_PTR: | |
498 | if (format && format != 's') | |
499 | { | |
500 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
501 | break; | |
502 | } | |
503 | else | |
504 | { | |
505 | addr = unpack_pointer (type, valaddr); | |
506 | elttype = TYPE_TARGET_TYPE (type); | |
507 | ||
508 | if (TYPE_CODE (elttype) == TYPE_CODE_FUNC) | |
509 | { | |
510 | /* Try to print what function it points to. */ | |
511 | print_address_demangle (addr, stream, demangle); | |
512 | /* Return value is irrelevant except for string pointers. */ | |
513 | return 0; | |
514 | } | |
515 | ||
516 | if (addressprint && format != 's') | |
517 | fprintf_filtered (stream, "0x%x", addr); | |
518 | ||
519 | /* For a pointer to char or unsigned char, also print the string | |
520 | pointed to, unless pointer is null. */ | |
521 | if (TYPE_LENGTH (elttype) == 1 | |
522 | && TYPE_CODE (elttype) == TYPE_CODE_INT | |
523 | && (format == 0 || format == 's') | |
524 | && addr != 0) | |
525 | i = val_print_string (addr, 0, stream); | |
526 | ||
527 | /* Return number of characters printed, plus one for the | |
528 | terminating null if we have "reached the end". */ | |
529 | return (i + (print_max && i != print_max)); | |
530 | } | |
531 | break; | |
532 | ||
533 | case TYPE_CODE_FUNC: | |
534 | if (format) | |
535 | { | |
536 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
537 | break; | |
538 | } | |
539 | /* FIXME, we should consider, at least for ANSI C language, eliminating | |
540 | the distinction made between FUNCs and POINTERs to FUNCs. */ | |
541 | fprintf_filtered (stream, "{"); | |
542 | type_print (type, "", stream, -1); | |
543 | fprintf_filtered (stream, "} "); | |
544 | /* Try to print what function it points to, and its address. */ | |
545 | print_address_demangle (address, stream, demangle); | |
546 | break; | |
547 | ||
548 | case TYPE_CODE_INT: | |
549 | format = format ? format : output_format; | |
550 | if (format) | |
551 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
552 | else | |
553 | { | |
554 | val_print_type_code_int (type, valaddr, stream); | |
555 | /* C and C++ has no single byte int type, char is used instead. | |
556 | Since we don't know whether the value is really intended to | |
557 | be used as an integer or a character, print the character | |
558 | equivalent as well. */ | |
559 | if (TYPE_LENGTH (type) == 1) | |
560 | { | |
561 | fputs_filtered (" ", stream); | |
562 | LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr), | |
563 | stream); | |
564 | } | |
565 | } | |
566 | break; | |
567 | ||
568 | case TYPE_CODE_FLT: | |
569 | if (format) | |
570 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
571 | else | |
572 | print_floating (valaddr, type, stream); | |
573 | break; | |
574 | ||
575 | case TYPE_CODE_VOID: | |
576 | fprintf_filtered (stream, "VOID"); | |
577 | break; | |
578 | ||
579 | case TYPE_CODE_ERROR: | |
580 | fprintf_filtered (stream, "<error type>"); | |
581 | break; | |
582 | ||
583 | case TYPE_CODE_RANGE: | |
584 | /* FIXME, we should not ever have to print one of these yet. */ | |
585 | fprintf_filtered (stream, "<range type>"); | |
586 | break; | |
587 | ||
588 | case TYPE_CODE_BOOL: | |
589 | format = format ? format : output_format; | |
590 | if (format) | |
591 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
592 | else | |
593 | { | |
594 | val = 0; | |
595 | switch (TYPE_LENGTH(type)) | |
596 | { | |
597 | case 1: | |
598 | val = unpack_long (builtin_type_f_logical_s1, valaddr); | |
599 | break ; | |
600 | ||
601 | case 2: | |
602 | val = unpack_long (builtin_type_f_logical_s2, valaddr); | |
603 | break ; | |
604 | ||
605 | case 4: | |
606 | val = unpack_long (builtin_type_f_logical, valaddr); | |
607 | break ; | |
608 | ||
609 | default: | |
610 | error ("Logicals of length %d bytes not supported", | |
611 | TYPE_LENGTH (type)); | |
612 | ||
613 | } | |
614 | ||
615 | if (val == 0) | |
616 | fprintf_filtered (stream, ".FALSE."); | |
617 | else | |
618 | if (val == 1) | |
619 | fprintf_filtered (stream, ".TRUE."); | |
620 | else | |
621 | /* Not a legitimate logical type, print as an integer. */ | |
622 | { | |
623 | /* Bash the type code temporarily. */ | |
624 | TYPE_CODE (type) = TYPE_CODE_INT; | |
625 | f_val_print (type, valaddr, address, stream, format, | |
626 | deref_ref, recurse, pretty); | |
627 | /* Restore the type code so later uses work as intended. */ | |
628 | TYPE_CODE (type) = TYPE_CODE_BOOL; | |
629 | } | |
630 | } | |
631 | break; | |
632 | ||
633 | case TYPE_CODE_LITERAL_COMPLEX: | |
634 | /* We know that the literal complex is stored in the superior | |
635 | process not the inferior and that it is 16 bytes long. | |
636 | Just like the case above with a literal array, the | |
637 | bytes for the the literal complex number are stored | |
638 | at the address pointed to by valaddr */ | |
639 | ||
640 | if (TYPE_LENGTH(type) == 32) | |
641 | error("Cannot currently print out complex*32 literals"); | |
642 | ||
643 | /* First deref. valaddr */ | |
644 | ||
645 | addr = * (CORE_ADDR *) valaddr; | |
646 | ||
647 | if (addr) | |
648 | { | |
649 | fprintf_filtered (stream, "("); | |
650 | ||
651 | if (TYPE_LENGTH(type) == 16) | |
652 | { | |
653 | fprintf_filtered (stream, "%.16f", * (double *) addr); | |
654 | fprintf_filtered (stream, ", %.16f", * (double *) | |
655 | (addr + sizeof(double))); | |
656 | } | |
657 | else | |
658 | { | |
659 | fprintf_filtered (stream, "%.8f", * (float *) addr); | |
660 | fprintf_filtered (stream, ", %.8f", * (float *) | |
661 | (addr + sizeof(float))); | |
662 | } | |
663 | fprintf_filtered (stream, ") "); | |
664 | } | |
665 | else | |
666 | fprintf_filtered (stream, "Unable to print literal F77 array"); | |
667 | break; | |
668 | ||
669 | case TYPE_CODE_COMPLEX: | |
670 | switch (TYPE_LENGTH (type)) | |
671 | { | |
672 | case 8: | |
673 | f77_print_cmplx (valaddr, type, stream, TARGET_COMPLEX_BIT); | |
674 | break; | |
675 | ||
676 | case 16: | |
677 | f77_print_cmplx(valaddr, type, stream, TARGET_DOUBLE_COMPLEX_BIT); | |
678 | break; | |
679 | #if 0 | |
680 | case 32: | |
681 | f77_print_cmplx(valaddr, type, stream, TARGET_EXT_COMPLEX_BIT); | |
682 | break; | |
683 | #endif | |
684 | default: | |
685 | error ("Cannot print out complex*%d variables", TYPE_LENGTH(type)); | |
686 | } | |
687 | break; | |
688 | ||
689 | case TYPE_CODE_UNDEF: | |
690 | /* This happens (without TYPE_FLAG_STUB set) on systems which don't use | |
691 | dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar" | |
692 | and no complete type for struct foo in that file. */ | |
693 | fprintf_filtered (stream, "<incomplete type>"); | |
694 | break; | |
695 | ||
696 | default: | |
697 | error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type)); | |
698 | } | |
699 | fflush (stream); | |
700 | return 0; | |
701 | } | |
702 | ||
703 | void | |
704 | list_all_visible_commons (funname) | |
705 | char *funname; | |
706 | { | |
707 | SAVED_F77_COMMON_PTR tmp; | |
708 | ||
709 | tmp = head_common_list; | |
710 | ||
711 | printf_filtered ("All COMMON blocks visible at this level:\n\n"); | |
712 | ||
713 | while (tmp != NULL) | |
714 | { | |
715 | if (STREQ(tmp->owning_function,funname)) | |
716 | printf_filtered ("%s\n", tmp->name); | |
717 | ||
718 | tmp = tmp->next; | |
719 | } | |
720 | } | |
721 | ||
722 | /* This function is used to print out the values in a given COMMON | |
723 | block. It will always use the most local common block of the | |
724 | given name */ | |
725 | ||
726 | static void | |
727 | info_common_command (comname, from_tty) | |
728 | char *comname; | |
729 | int from_tty; | |
730 | { | |
731 | SAVED_F77_COMMON_PTR the_common; | |
732 | COMMON_ENTRY_PTR entry; | |
733 | struct frame_info *fi; | |
734 | register char *funname = 0; | |
735 | struct symbol *func; | |
736 | char *cmd; | |
737 | ||
738 | /* We have been told to display the contents of F77 COMMON | |
739 | block supposedly visible in this function. Let us | |
740 | first make sure that it is visible and if so, let | |
741 | us display its contents */ | |
742 | ||
743 | fi = selected_frame; | |
744 | ||
745 | if (fi == NULL) | |
746 | error ("No frame selected"); | |
747 | ||
748 | /* The following is generally ripped off from stack.c's routine | |
749 | print_frame_info() */ | |
750 | ||
751 | func = find_pc_function (fi->pc); | |
752 | if (func) | |
753 | { | |
754 | /* In certain pathological cases, the symtabs give the wrong | |
755 | function (when we are in the first function in a file which | |
756 | is compiled without debugging symbols, the previous function | |
757 | is compiled with debugging symbols, and the "foo.o" symbol | |
758 | that is supposed to tell us where the file with debugging symbols | |
759 | ends has been truncated by ar because it is longer than 15 | |
760 | characters). | |
761 | ||
762 | So look in the minimal symbol tables as well, and if it comes | |
763 | up with a larger address for the function use that instead. | |
764 | I don't think this can ever cause any problems; there shouldn't | |
765 | be any minimal symbols in the middle of a function. | |
766 | FIXME: (Not necessarily true. What about text labels) */ | |
767 | ||
768 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc); | |
769 | ||
770 | if (msymbol != NULL | |
771 | && (SYMBOL_VALUE_ADDRESS (msymbol) | |
772 | > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) | |
773 | funname = SYMBOL_NAME (msymbol); | |
774 | else | |
775 | funname = SYMBOL_NAME (func); | |
776 | } | |
777 | else | |
778 | { | |
779 | register struct minimal_symbol *msymbol = | |
780 | lookup_minimal_symbol_by_pc (fi->pc); | |
781 | ||
782 | if (msymbol != NULL) | |
783 | funname = SYMBOL_NAME (msymbol); | |
784 | } | |
785 | ||
786 | /* If comnname is NULL, we assume the user wishes to see the | |
787 | which COMMON blocks are visible here and then return */ | |
788 | ||
789 | if (strlen (comname) == 0) | |
790 | { | |
791 | list_all_visible_commons (funname); | |
792 | return; | |
793 | } | |
794 | ||
795 | the_common = find_common_for_function (comname,funname); | |
796 | ||
797 | if (the_common) | |
798 | { | |
799 | if (STREQ(comname,BLANK_COMMON_NAME_LOCAL)) | |
800 | printf_filtered ("Contents of blank COMMON block:\n"); | |
801 | else | |
802 | printf_filtered ("Contents of F77 COMMON block '%s':\n",comname); | |
803 | ||
804 | printf_filtered ("\n"); | |
805 | entry = the_common->entries; | |
806 | ||
807 | while (entry != NULL) | |
808 | { | |
809 | printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol)); | |
810 | print_variable_value (entry->symbol,fi,stdout); | |
811 | printf_filtered ("\n"); | |
812 | entry = entry->next; | |
813 | } | |
814 | } | |
815 | else | |
816 | printf_filtered ("Cannot locate the common block %s in function '%s'\n", | |
817 | comname, funname); | |
818 | } | |
819 | ||
820 | /* This function is used to determine whether there is a | |
821 | F77 common block visible at the current scope called 'comname'. */ | |
822 | ||
823 | int | |
824 | there_is_a_visible_common_named (comname) | |
825 | char *comname; | |
826 | { | |
827 | SAVED_F77_COMMON_PTR the_common; | |
828 | COMMON_ENTRY_PTR entry; | |
829 | struct frame_info *fi; | |
830 | register char *funname = 0; | |
831 | struct symbol *func; | |
832 | ||
833 | if (comname == NULL) | |
834 | error ("Cannot deal with NULL common name!"); | |
835 | ||
836 | fi = selected_frame; | |
837 | ||
838 | if (fi == NULL) | |
839 | error ("No frame selected"); | |
840 | ||
841 | /* The following is generally ripped off from stack.c's routine | |
842 | print_frame_info() */ | |
843 | ||
844 | func = find_pc_function (fi->pc); | |
845 | if (func) | |
846 | { | |
847 | /* In certain pathological cases, the symtabs give the wrong | |
848 | function (when we are in the first function in a file which | |
849 | is compiled without debugging symbols, the previous function | |
850 | is compiled with debugging symbols, and the "foo.o" symbol | |
851 | that is supposed to tell us where the file with debugging symbols | |
852 | ends has been truncated by ar because it is longer than 15 | |
853 | characters). | |
854 | ||
855 | So look in the minimal symbol tables as well, and if it comes | |
856 | up with a larger address for the function use that instead. | |
857 | I don't think this can ever cause any problems; there shouldn't | |
858 | be any minimal symbols in the middle of a function. | |
859 | FIXME: (Not necessarily true. What about text labels) */ | |
860 | ||
861 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc); | |
862 | ||
863 | if (msymbol != NULL | |
864 | && (SYMBOL_VALUE_ADDRESS (msymbol) | |
865 | > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) | |
866 | funname = SYMBOL_NAME (msymbol); | |
867 | else | |
868 | funname = SYMBOL_NAME (func); | |
869 | } | |
870 | else | |
871 | { | |
872 | register struct minimal_symbol *msymbol = | |
873 | lookup_minimal_symbol_by_pc (fi->pc); | |
874 | ||
875 | if (msymbol != NULL) | |
876 | funname = SYMBOL_NAME (msymbol); | |
877 | } | |
878 | ||
879 | the_common = find_common_for_function (comname, funname); | |
880 | ||
881 | return (the_common ? 1 : 0); | |
882 | } | |
883 | ||
884 | void | |
885 | _initialize_f_valprint () | |
886 | { | |
887 | add_info ("common", info_common_command, | |
888 | "Print out the values contained in a Fortran COMMON block."); | |
889 | } |