]>
Commit | Line | Data |
---|---|---|
a85d7ed0 NC |
1 | /* IBM S/390-specific support for 64-bit ELF |
2 | Copyright (C) 2000, 2001 Free Software Foundation, Inc. | |
3 | Contributed Martin Schwidefsky ([email protected]). | |
4 | ||
5 | This file is part of BFD, the Binary File Descriptor library. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | |
20 | 02111-1307, USA. */ | |
21 | ||
22 | #include "bfd.h" | |
23 | #include "sysdep.h" | |
24 | #include "bfdlink.h" | |
25 | #include "libbfd.h" | |
26 | #include "elf-bfd.h" | |
27 | ||
28 | static reloc_howto_type *elf_s390_reloc_type_lookup | |
29 | PARAMS ((bfd *, bfd_reloc_code_real_type)); | |
30 | static void elf_s390_info_to_howto | |
31 | PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); | |
32 | static boolean elf_s390_is_local_label_name PARAMS ((bfd *, const char *)); | |
33 | static struct bfd_hash_entry *elf_s390_link_hash_newfunc | |
34 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
35 | static struct bfd_link_hash_table *elf_s390_link_hash_table_create | |
36 | PARAMS ((bfd *)); | |
37 | static boolean elf_s390_check_relocs | |
38 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
39 | const Elf_Internal_Rela *)); | |
40 | static boolean elf_s390_adjust_dynamic_symbol | |
41 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); | |
42 | static boolean elf_s390_size_dynamic_sections | |
43 | PARAMS ((bfd *, struct bfd_link_info *)); | |
44 | static boolean elf_s390_relocate_section | |
45 | PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, | |
46 | Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); | |
47 | static boolean elf_s390_finish_dynamic_symbol | |
48 | PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, | |
49 | Elf_Internal_Sym *)); | |
50 | static boolean elf_s390_finish_dynamic_sections | |
51 | PARAMS ((bfd *, struct bfd_link_info *)); | |
52 | ||
53 | #define USE_RELA 1 /* We want RELA relocations, not REL. */ | |
54 | ||
55 | #include "elf/s390.h" | |
56 | ||
57 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value | |
58 | from smaller values. Start with zero, widen, *then* decrement. */ | |
59 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
60 | ||
61 | /* The relocation "howto" table. */ | |
62 | static reloc_howto_type elf_howto_table[] = | |
63 | { | |
64 | HOWTO (R_390_NONE, /* type */ | |
65 | 0, /* rightshift */ | |
66 | 0, /* size (0 = byte, 1 = short, 2 = long) */ | |
67 | 0, /* bitsize */ | |
68 | false, /* pc_relative */ | |
69 | 0, /* bitpos */ | |
70 | complain_overflow_dont, /* complain_on_overflow */ | |
71 | bfd_elf_generic_reloc, /* special_function */ | |
72 | "R_390_NONE", /* name */ | |
73 | false, /* partial_inplace */ | |
74 | 0, /* src_mask */ | |
75 | 0, /* dst_mask */ | |
76 | false), /* pcrel_offset */ | |
77 | ||
78 | HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false), | |
79 | HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false), | |
80 | HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false), | |
81 | HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false), | |
82 | HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true), | |
83 | HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false), | |
84 | HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false), | |
85 | HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true), | |
86 | HOWTO(R_390_COPY, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,MINUS_ONE, false), | |
87 | HOWTO(R_390_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,MINUS_ONE, false), | |
88 | HOWTO(R_390_JMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,MINUS_ONE, false), | |
89 | HOWTO(R_390_RELATIVE, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,MINUS_ONE, false), | |
90 | HOWTO(R_390_GOTOFF, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,MINUS_ONE, false), | |
91 | HOWTO(R_390_GOTPC, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,MINUS_ONE, true), | |
92 | HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false), | |
93 | HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true), | |
94 | HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true), | |
95 | HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true), | |
96 | HOWTO(R_390_PC32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32DBL", false, 0,0xffffffff, true), | |
97 | HOWTO(R_390_PLT32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32DBL", false, 0,0xffffffff, true), | |
98 | HOWTO(R_390_GOTPCDBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPCDBL", false, 0,MINUS_ONE, true), | |
99 | HOWTO(R_390_64, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_64", false, 0,MINUS_ONE, false), | |
100 | HOWTO(R_390_PC64, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC64", false, 0,MINUS_ONE, true), | |
101 | HOWTO(R_390_GOT64, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT64", false, 0,MINUS_ONE, false), | |
102 | HOWTO(R_390_PLT64, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT64", false, 0,MINUS_ONE, true), | |
103 | HOWTO(R_390_GOTENT, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTENT", false, 0,MINUS_ONE, true), | |
104 | }; | |
105 | ||
106 | /* GNU extension to record C++ vtable hierarchy. */ | |
107 | static reloc_howto_type elf64_s390_vtinherit_howto = | |
108 | HOWTO (R_390_GNU_VTINHERIT, 0,4,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false); | |
109 | static reloc_howto_type elf64_s390_vtentry_howto = | |
110 | HOWTO (R_390_GNU_VTENTRY, 0,4,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false); | |
111 | ||
112 | static reloc_howto_type * | |
113 | elf_s390_reloc_type_lookup (abfd, code) | |
114 | bfd *abfd ATTRIBUTE_UNUSED; | |
115 | bfd_reloc_code_real_type code; | |
116 | { | |
117 | switch (code) { | |
118 | case BFD_RELOC_NONE: | |
119 | return &elf_howto_table[(int) R_390_NONE]; | |
120 | case BFD_RELOC_8: | |
121 | return &elf_howto_table[(int) R_390_8]; | |
122 | case BFD_RELOC_390_12: | |
123 | return &elf_howto_table[(int) R_390_12]; | |
124 | case BFD_RELOC_16: | |
125 | return &elf_howto_table[(int) R_390_16]; | |
126 | case BFD_RELOC_32: | |
127 | return &elf_howto_table[(int) R_390_32]; | |
128 | case BFD_RELOC_CTOR: | |
129 | return &elf_howto_table[(int) R_390_32]; | |
130 | case BFD_RELOC_32_PCREL: | |
131 | return &elf_howto_table[(int) R_390_PC32]; | |
132 | case BFD_RELOC_390_GOT12: | |
133 | return &elf_howto_table[(int) R_390_GOT12]; | |
134 | case BFD_RELOC_32_GOT_PCREL: | |
135 | return &elf_howto_table[(int) R_390_GOT32]; | |
136 | case BFD_RELOC_390_PLT32: | |
137 | return &elf_howto_table[(int) R_390_PLT32]; | |
138 | case BFD_RELOC_390_COPY: | |
139 | return &elf_howto_table[(int) R_390_COPY]; | |
140 | case BFD_RELOC_390_GLOB_DAT: | |
141 | return &elf_howto_table[(int) R_390_GLOB_DAT]; | |
142 | case BFD_RELOC_390_JMP_SLOT: | |
143 | return &elf_howto_table[(int) R_390_JMP_SLOT]; | |
144 | case BFD_RELOC_390_RELATIVE: | |
145 | return &elf_howto_table[(int) R_390_RELATIVE]; | |
146 | case BFD_RELOC_32_GOTOFF: | |
147 | return &elf_howto_table[(int) R_390_GOTOFF]; | |
148 | case BFD_RELOC_390_GOTPC: | |
149 | return &elf_howto_table[(int) R_390_GOTPC]; | |
150 | case BFD_RELOC_390_GOT16: | |
151 | return &elf_howto_table[(int) R_390_GOT16]; | |
152 | case BFD_RELOC_16_PCREL: | |
153 | return &elf_howto_table[(int) R_390_PC16]; | |
154 | case BFD_RELOC_390_PC16DBL: | |
155 | return &elf_howto_table[(int) R_390_PC16DBL]; | |
156 | case BFD_RELOC_390_PLT16DBL: | |
157 | return &elf_howto_table[(int) R_390_PLT16DBL]; | |
158 | case BFD_RELOC_VTABLE_INHERIT: | |
159 | return &elf64_s390_vtinherit_howto; | |
160 | case BFD_RELOC_VTABLE_ENTRY: | |
161 | return &elf64_s390_vtentry_howto; | |
162 | case BFD_RELOC_390_PC32DBL: | |
163 | return &elf_howto_table[(int) R_390_PC32DBL]; | |
164 | case BFD_RELOC_390_PLT32DBL: | |
165 | return &elf_howto_table[(int) R_390_PLT32DBL]; | |
166 | case BFD_RELOC_390_GOTPCDBL: | |
167 | return &elf_howto_table[(int) R_390_GOTPCDBL]; | |
168 | case BFD_RELOC_64: | |
169 | return &elf_howto_table[(int) R_390_64]; | |
170 | case BFD_RELOC_64_PCREL: | |
171 | return &elf_howto_table[(int) R_390_PC64]; | |
172 | case BFD_RELOC_390_GOT64: | |
173 | return &elf_howto_table[(int) R_390_GOT64]; | |
174 | case BFD_RELOC_390_PLT64: | |
175 | return &elf_howto_table[(int) R_390_PLT64]; | |
176 | case BFD_RELOC_390_GOTENT: | |
177 | return &elf_howto_table[(int) R_390_GOTENT]; | |
178 | default: | |
179 | break; | |
180 | } | |
181 | return 0; | |
182 | } | |
183 | ||
184 | /* We need to use ELF64_R_TYPE so we have our own copy of this function, | |
185 | and elf64-s390.c has its own copy. */ | |
186 | ||
187 | static void | |
188 | elf_s390_info_to_howto (abfd, cache_ptr, dst) | |
189 | bfd *abfd ATTRIBUTE_UNUSED; | |
190 | arelent *cache_ptr; | |
191 | Elf_Internal_Rela *dst; | |
192 | { | |
193 | switch (ELF64_R_TYPE(dst->r_info)) | |
194 | { | |
195 | case R_390_GNU_VTINHERIT: | |
196 | cache_ptr->howto = &elf64_s390_vtinherit_howto; | |
197 | break; | |
198 | ||
199 | case R_390_GNU_VTENTRY: | |
200 | cache_ptr->howto = &elf64_s390_vtentry_howto; | |
201 | break; | |
202 | ||
203 | default: | |
204 | BFD_ASSERT (ELF64_R_TYPE(dst->r_info) < (unsigned int) R_390_max); | |
205 | cache_ptr->howto = &elf_howto_table[ELF64_R_TYPE(dst->r_info)]; | |
206 | } | |
207 | } | |
208 | ||
209 | static boolean | |
210 | elf_s390_is_local_label_name (abfd, name) | |
211 | bfd *abfd; | |
212 | const char *name; | |
213 | { | |
214 | if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L')) | |
215 | return true; | |
216 | ||
217 | return _bfd_elf_is_local_label_name (abfd, name); | |
218 | } | |
219 | ||
220 | /* Functions for the 390 ELF linker. */ | |
221 | ||
222 | /* The name of the dynamic interpreter. This is put in the .interp | |
223 | section. */ | |
224 | ||
225 | #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" | |
226 | ||
227 | /* The nop opcode we use. */ | |
228 | ||
229 | #define s390_NOP 0x07070707 | |
230 | ||
231 | ||
232 | /* The size in bytes of the first entry in the procedure linkage table. */ | |
233 | #define PLT_FIRST_ENTRY_SIZE 32 | |
234 | /* The size in bytes of an entry in the procedure linkage table. */ | |
235 | #define PLT_ENTRY_SIZE 32 | |
236 | ||
237 | #define GOT_ENTRY_SIZE 8 | |
238 | ||
239 | /* The first three entries in a procedure linkage table are reserved, | |
240 | and the initial contents are unimportant (we zero them out). | |
241 | Subsequent entries look like this. See the SVR4 ABI 386 | |
242 | supplement to see how this works. */ | |
243 | ||
244 | /* For the s390, simple addr offset can only be 0 - 4096. | |
245 | To use the full 16777216 TB address space, several instructions | |
246 | are needed to load an address in a register and execute | |
247 | a branch( or just saving the address) | |
248 | ||
249 | Furthermore, only r 0 and 1 are free to use!!! */ | |
250 | ||
251 | /* The first 3 words in the GOT are then reserved. | |
252 | Word 0 is the address of the dynamic table. | |
253 | Word 1 is a pointer to a structure describing the object | |
254 | Word 2 is used to point to the loader entry address. | |
255 | ||
256 | The code for PLT entries looks like this: | |
257 | ||
258 | The GOT holds the address in the PLT to be executed. | |
259 | The loader then gets: | |
260 | 24(15) = Pointer to the structure describing the object. | |
261 | 28(15) = Offset in symbol table | |
262 | The loader must then find the module where the function is | |
263 | and insert the address in the GOT. | |
264 | ||
265 | PLT1: LARL 1,<fn>@GOTENT # 6 bytes Load address of GOT entry in r1 | |
266 | LG 1,0(1) # 6 bytes Load address from GOT in r1 | |
267 | BCR 15,1 # 2 bytes Jump to address | |
268 | RET1: BASR 1,0 # 2 bytes Return from GOT 1st time | |
269 | LGF 1,12(1) # 6 bytes Load offset in symbl table in r1 | |
270 | BRCL 15,-x # 6 bytes Jump to start of PLT | |
271 | .long ? # 4 bytes offset into symbol table | |
272 | ||
273 | Total = 32 bytes per PLT entry | |
274 | Fixup at offset 2: relative address to GOT entry | |
275 | Fixup at offset 22: relative branch to PLT0 | |
276 | Fixup at offset 28: 32 bit offset into symbol table | |
277 | ||
278 | A 32 bit offset into the symbol table is enough. It allows for symbol | |
279 | tables up to a size of 2 gigabyte. A single dynamic object (the main | |
280 | program, any shared library) is limited to 4GB in size and I want to see | |
281 | the program that manages to have a symbol table of more than 2 GB with a | |
282 | total size of at max 4 GB. */ | |
283 | ||
284 | #define PLT_ENTRY_WORD0 0xc0100000 | |
285 | #define PLT_ENTRY_WORD1 0x0000e310 | |
286 | #define PLT_ENTRY_WORD2 0x10000004 | |
287 | #define PLT_ENTRY_WORD3 0x07f10d10 | |
288 | #define PLT_ENTRY_WORD4 0xe310100c | |
289 | #define PLT_ENTRY_WORD5 0x0014c0f4 | |
290 | #define PLT_ENTRY_WORD6 0x00000000 | |
291 | #define PLT_ENTRY_WORD7 0x00000000 | |
292 | ||
293 | /* The first PLT entry pushes the offset into the symbol table | |
294 | from R1 onto the stack at 8(15) and the loader object info | |
295 | at 12(15), loads the loader address in R1 and jumps to it. */ | |
296 | ||
297 | /* The first entry in the PLT: | |
298 | ||
299 | PLT0: | |
300 | STG 1,56(15) # r1 contains the offset into the symbol table | |
301 | LARL 1,_GLOBAL_OFFSET_TABLE # load address of global offset table | |
302 | MVC 48(8,15),8(1) # move loader ino (object struct address) to stack | |
303 | LG 1,16(1) # get entry address of loader | |
304 | BCR 15,1 # jump to loader | |
305 | ||
306 | Fixup at offset 8: relative address to start of GOT. */ | |
307 | ||
308 | #define PLT_FIRST_ENTRY_WORD0 0xe310f038 | |
309 | #define PLT_FIRST_ENTRY_WORD1 0x0024c010 | |
310 | #define PLT_FIRST_ENTRY_WORD2 0x00000000 | |
311 | #define PLT_FIRST_ENTRY_WORD3 0xd207f030 | |
312 | #define PLT_FIRST_ENTRY_WORD4 0x1008e310 | |
313 | #define PLT_FIRST_ENTRY_WORD5 0x10100004 | |
314 | #define PLT_FIRST_ENTRY_WORD6 0x07f10700 | |
315 | #define PLT_FIRST_ENTRY_WORD7 0x07000700 | |
316 | ||
317 | /* The s390 linker needs to keep track of the number of relocs that it | |
318 | decides to copy in check_relocs for each symbol. This is so that | |
319 | it can discard PC relative relocs if it doesn't need them when | |
320 | linking with -Bsymbolic. We store the information in a field | |
321 | extending the regular ELF linker hash table. */ | |
322 | ||
323 | /* This structure keeps track of the number of PC relative relocs we | |
324 | have copied for a given symbol. */ | |
325 | ||
326 | struct elf_s390_pcrel_relocs_copied | |
327 | { | |
328 | /* Next section. */ | |
329 | struct elf_s390_pcrel_relocs_copied *next; | |
330 | /* A section in dynobj. */ | |
331 | asection *section; | |
332 | /* Number of relocs copied in this section. */ | |
333 | bfd_size_type count; | |
334 | }; | |
335 | ||
336 | /* s390 ELF linker hash entry. */ | |
337 | ||
338 | struct elf_s390_link_hash_entry | |
339 | { | |
340 | struct elf_link_hash_entry root; | |
341 | ||
342 | /* Number of PC relative relocs copied for this symbol. */ | |
343 | struct elf_s390_pcrel_relocs_copied *pcrel_relocs_copied; | |
344 | }; | |
345 | ||
346 | /* s390 ELF linker hash table. */ | |
347 | ||
348 | struct elf_s390_link_hash_table | |
349 | { | |
350 | struct elf_link_hash_table root; | |
351 | }; | |
352 | ||
353 | /* Declare this now that the above structures are defined. */ | |
354 | ||
355 | static boolean elf_s390_discard_copies | |
356 | PARAMS ((struct elf_s390_link_hash_entry *, PTR)); | |
357 | ||
358 | /* Traverse an s390 ELF linker hash table. */ | |
359 | ||
360 | #define elf_s390_link_hash_traverse(table, func, info) \ | |
361 | (elf_link_hash_traverse \ | |
362 | (&(table)->root, \ | |
363 | (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ | |
364 | (info))) | |
365 | ||
366 | /* Get the s390 ELF linker hash table from a link_info structure. */ | |
367 | ||
368 | #define elf_s390_hash_table(p) \ | |
369 | ((struct elf_s390_link_hash_table *) ((p)->hash)) | |
370 | ||
371 | /* Create an entry in an s390 ELF linker hash table. */ | |
372 | ||
373 | static struct bfd_hash_entry * | |
374 | elf_s390_link_hash_newfunc (entry, table, string) | |
375 | struct bfd_hash_entry *entry; | |
376 | struct bfd_hash_table *table; | |
377 | const char *string; | |
378 | { | |
379 | struct elf_s390_link_hash_entry *ret = | |
380 | (struct elf_s390_link_hash_entry *) entry; | |
381 | ||
382 | /* Allocate the structure if it has not already been allocated by a | |
383 | subclass. */ | |
384 | if (ret == (struct elf_s390_link_hash_entry *) NULL) | |
385 | ret = ((struct elf_s390_link_hash_entry *) | |
386 | bfd_hash_allocate (table, | |
387 | sizeof (struct elf_s390_link_hash_entry))); | |
388 | if (ret == (struct elf_s390_link_hash_entry *) NULL) | |
389 | return (struct bfd_hash_entry *) ret; | |
390 | ||
391 | /* Call the allocation method of the superclass. */ | |
392 | ret = ((struct elf_s390_link_hash_entry *) | |
393 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
394 | table, string)); | |
395 | if (ret != (struct elf_s390_link_hash_entry *) NULL) | |
396 | { | |
397 | ret->pcrel_relocs_copied = NULL; | |
398 | } | |
399 | ||
400 | return (struct bfd_hash_entry *) ret; | |
401 | } | |
402 | ||
403 | /* Create an s390 ELF linker hash table. */ | |
404 | ||
405 | static struct bfd_link_hash_table * | |
406 | elf_s390_link_hash_table_create (abfd) | |
407 | bfd *abfd; | |
408 | { | |
409 | struct elf_s390_link_hash_table *ret; | |
410 | ||
411 | ret = ((struct elf_s390_link_hash_table *) | |
412 | bfd_alloc (abfd, sizeof (struct elf_s390_link_hash_table))); | |
413 | if (ret == (struct elf_s390_link_hash_table *) NULL) | |
414 | return NULL; | |
415 | ||
416 | if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, | |
417 | elf_s390_link_hash_newfunc)) | |
418 | { | |
419 | bfd_release (abfd, ret); | |
420 | return NULL; | |
421 | } | |
422 | ||
423 | return &ret->root.root; | |
424 | } | |
425 | ||
426 | ||
427 | /* Look through the relocs for a section during the first phase, and | |
428 | allocate space in the global offset table or procedure linkage | |
429 | table. */ | |
430 | ||
431 | static boolean | |
432 | elf_s390_check_relocs (abfd, info, sec, relocs) | |
433 | bfd *abfd; | |
434 | struct bfd_link_info *info; | |
435 | asection *sec; | |
436 | const Elf_Internal_Rela *relocs; | |
437 | { | |
438 | bfd *dynobj; | |
439 | Elf_Internal_Shdr *symtab_hdr; | |
440 | struct elf_link_hash_entry **sym_hashes; | |
441 | bfd_signed_vma *local_got_refcounts; | |
442 | const Elf_Internal_Rela *rel; | |
443 | const Elf_Internal_Rela *rel_end; | |
444 | asection *sgot; | |
445 | asection *srelgot; | |
446 | asection *sreloc; | |
447 | ||
448 | if (info->relocateable) | |
449 | return true; | |
450 | ||
451 | dynobj = elf_hash_table (info)->dynobj; | |
452 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
453 | sym_hashes = elf_sym_hashes (abfd); | |
454 | local_got_refcounts = elf_local_got_offsets (abfd); | |
455 | ||
456 | sgot = NULL; | |
457 | srelgot = NULL; | |
458 | sreloc = NULL; | |
459 | ||
460 | rel_end = relocs + sec->reloc_count; | |
461 | for (rel = relocs; rel < rel_end; rel++) | |
462 | { | |
463 | unsigned long r_symndx; | |
464 | struct elf_link_hash_entry *h; | |
465 | ||
466 | r_symndx = ELF64_R_SYM (rel->r_info); | |
467 | ||
468 | if (r_symndx < symtab_hdr->sh_info) | |
469 | h = NULL; | |
470 | else | |
471 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
472 | ||
473 | /* Some relocs require a global offset table. */ | |
474 | if (dynobj == NULL) | |
475 | { | |
476 | switch (ELF64_R_TYPE (rel->r_info)) | |
477 | { | |
478 | case R_390_GOT12: | |
479 | case R_390_GOT16: | |
480 | case R_390_GOT32: | |
481 | case R_390_GOT64: | |
482 | case R_390_GOTOFF: | |
483 | case R_390_GOTPC: | |
484 | case R_390_GOTPCDBL: | |
485 | case R_390_GOTENT: | |
486 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
487 | if (! _bfd_elf_create_got_section (dynobj, info)) | |
488 | return false; | |
489 | break; | |
490 | ||
491 | default: | |
492 | break; | |
493 | } | |
494 | } | |
495 | ||
496 | ||
497 | switch (ELF64_R_TYPE (rel->r_info)) | |
498 | { | |
499 | case R_390_GOT12: | |
500 | case R_390_GOT16: | |
501 | case R_390_GOT32: | |
502 | case R_390_GOT64: | |
503 | case R_390_GOTENT: | |
504 | /* This symbol requires a global offset table entry. */ | |
505 | ||
506 | if (sgot == NULL) | |
507 | { | |
508 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
509 | BFD_ASSERT (sgot != NULL); | |
510 | } | |
511 | ||
512 | ||
513 | if (srelgot == NULL | |
514 | && (h != NULL || info->shared)) | |
515 | { | |
516 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
517 | if (srelgot == NULL) | |
518 | { | |
519 | srelgot = bfd_make_section (dynobj, ".rela.got"); | |
520 | if (srelgot == NULL | |
521 | || ! bfd_set_section_flags (dynobj, srelgot, | |
522 | (SEC_ALLOC | |
523 | | SEC_LOAD | |
524 | | SEC_HAS_CONTENTS | |
525 | | SEC_IN_MEMORY | |
526 | | SEC_LINKER_CREATED | |
527 | | SEC_READONLY)) | |
528 | || ! bfd_set_section_alignment (dynobj, srelgot, 2)) | |
529 | return false; | |
530 | } | |
531 | } | |
532 | ||
533 | if (h != NULL) | |
534 | { | |
535 | if (h->got.refcount == -1) | |
536 | { | |
537 | h->got.refcount = 1; | |
538 | ||
539 | /* Make sure this symbol is output as a dynamic symbol. */ | |
540 | if (h->dynindx == -1) | |
541 | { | |
542 | if (! bfd_elf64_link_record_dynamic_symbol (info, h)) | |
543 | return false; | |
544 | } | |
545 | ||
546 | sgot->_raw_size += 8; | |
547 | srelgot->_raw_size += sizeof (Elf64_External_Rela); | |
548 | } | |
549 | else | |
550 | h->got.refcount += 1; | |
551 | } | |
552 | else | |
553 | { | |
554 | /* This is a global offset table entry for a local symbol. */ | |
555 | if (local_got_refcounts == NULL) | |
556 | { | |
557 | size_t size; | |
558 | ||
559 | size = symtab_hdr->sh_info * sizeof (bfd_vma); | |
560 | local_got_refcounts = (bfd_signed_vma *) | |
561 | bfd_alloc (abfd, size); | |
562 | if (local_got_refcounts == NULL) | |
563 | return false; | |
564 | elf_local_got_refcounts (abfd) = local_got_refcounts; | |
565 | memset (local_got_refcounts, -1, size); | |
566 | } | |
567 | if (local_got_refcounts[r_symndx] == -1) | |
568 | { | |
569 | local_got_refcounts[r_symndx] = 1; | |
570 | ||
571 | sgot->_raw_size += 8; | |
572 | if (info->shared) | |
573 | { | |
574 | /* If we are generating a shared object, we need to | |
575 | output a R_390_RELATIVE reloc so that the dynamic | |
576 | linker can adjust this GOT entry. */ | |
577 | srelgot->_raw_size += sizeof (Elf64_External_Rela); | |
578 | } | |
579 | } | |
580 | else | |
581 | local_got_refcounts[r_symndx] += 1; | |
582 | ||
583 | } | |
584 | break; | |
585 | ||
586 | case R_390_PLT16DBL: | |
587 | case R_390_PLT32: | |
588 | case R_390_PLT32DBL: | |
589 | case R_390_PLT64: | |
590 | /* This symbol requires a procedure linkage table entry. We | |
591 | actually build the entry in adjust_dynamic_symbol, | |
592 | because this might be a case of linking PIC code which is | |
593 | never referenced by a dynamic object, in which case we | |
594 | don't need to generate a procedure linkage table entry | |
595 | after all. */ | |
596 | ||
597 | /* If this is a local symbol, we resolve it directly without | |
598 | creating a procedure linkage table entry. */ | |
599 | if (h == NULL) | |
600 | continue; | |
601 | ||
602 | if (h->plt.refcount == -1) | |
603 | { | |
604 | h->plt.refcount = 1; | |
605 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
606 | } | |
607 | else | |
608 | h->plt.refcount += 1; | |
609 | break; | |
610 | ||
611 | case R_390_8: | |
612 | case R_390_16: | |
613 | case R_390_32: | |
614 | case R_390_64: | |
615 | case R_390_PC16: | |
616 | case R_390_PC16DBL: | |
617 | case R_390_PC32: | |
618 | case R_390_PC32DBL: | |
619 | case R_390_PC64: | |
620 | if (h != NULL) | |
621 | h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF; | |
622 | ||
623 | /* If we are creating a shared library, and this is a reloc | |
624 | against a global symbol, or a non PC relative reloc | |
625 | against a local symbol, then we need to copy the reloc | |
626 | into the shared library. However, if we are linking with | |
627 | -Bsymbolic, we do not need to copy a reloc against a | |
628 | global symbol which is defined in an object we are | |
629 | including in the link (i.e., DEF_REGULAR is set). At | |
630 | this point we have not seen all the input files, so it is | |
631 | possible that DEF_REGULAR is not set now but will be set | |
632 | later (it is never cleared). We account for that | |
633 | possibility below by storing information in the | |
634 | pcrel_relocs_copied field of the hash table entry. */ | |
635 | if (info->shared | |
636 | && (sec->flags & SEC_ALLOC) != 0 | |
637 | && (ELF64_R_TYPE (rel->r_info) == R_390_8 | |
638 | || ELF64_R_TYPE (rel->r_info) == R_390_16 | |
639 | || ELF64_R_TYPE (rel->r_info) == R_390_32 | |
640 | || ELF64_R_TYPE (rel->r_info) == R_390_64 | |
641 | || (h != NULL | |
642 | && h->dynindx != -1 | |
643 | && (! info->symbolic | |
644 | || (h->elf_link_hash_flags | |
645 | & ELF_LINK_HASH_DEF_REGULAR) == 0)))) | |
646 | { | |
647 | /* When creating a shared object, we must copy these | |
648 | reloc types into the output file. We create a reloc | |
649 | section in dynobj and make room for this reloc. */ | |
650 | if (sreloc == NULL) | |
651 | { | |
652 | const char *name; | |
653 | ||
654 | name = (bfd_elf_string_from_elf_section | |
655 | (abfd, | |
656 | elf_elfheader (abfd)->e_shstrndx, | |
657 | elf_section_data (sec)->rel_hdr.sh_name)); | |
658 | if (name == NULL) | |
659 | return false; | |
660 | ||
661 | BFD_ASSERT (strncmp (name, ".rela", 5) == 0 | |
662 | && strcmp (bfd_get_section_name (abfd, sec), | |
663 | name + 5) == 0); | |
664 | ||
665 | sreloc = bfd_get_section_by_name (dynobj, name); | |
666 | if (sreloc == NULL) | |
667 | { | |
668 | flagword flags; | |
669 | ||
670 | sreloc = bfd_make_section (dynobj, name); | |
671 | flags = (SEC_HAS_CONTENTS | SEC_READONLY | |
672 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
673 | if ((sec->flags & SEC_ALLOC) != 0) | |
674 | flags |= SEC_ALLOC | SEC_LOAD; | |
675 | if (sreloc == NULL | |
676 | || ! bfd_set_section_flags (dynobj, sreloc, flags) | |
677 | || ! bfd_set_section_alignment (dynobj, sreloc, 2)) | |
678 | return false; | |
679 | } | |
680 | } | |
681 | ||
682 | sreloc->_raw_size += sizeof (Elf64_External_Rela); | |
683 | ||
684 | /* If we are linking with -Bsymbolic, and this is a | |
685 | global symbol, we count the number of PC relative | |
686 | relocations we have entered for this symbol, so that | |
687 | we can discard them again if the symbol is later | |
688 | defined by a regular object. Note that this function | |
689 | is only called if we are using an elf64_s390 linker | |
690 | hash table, which means that h is really a pointer to | |
691 | an elf64_s390_link_hash_entry. */ | |
692 | if (h != NULL | |
693 | && (ELF64_R_TYPE (rel->r_info) == R_390_PC16 || | |
694 | ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL || | |
695 | ELF64_R_TYPE (rel->r_info) == R_390_PC32 || | |
696 | ELF64_R_TYPE (rel->r_info) == R_390_PC32DBL || | |
697 | ELF64_R_TYPE (rel->r_info) == R_390_PC64)) | |
698 | { | |
699 | struct elf_s390_link_hash_entry *eh; | |
700 | struct elf_s390_pcrel_relocs_copied *p; | |
701 | ||
702 | eh = (struct elf_s390_link_hash_entry *) h; | |
703 | ||
704 | for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next) | |
705 | if (p->section == sreloc) | |
706 | break; | |
707 | ||
708 | if (p == NULL) | |
709 | { | |
710 | p = ((struct elf_s390_pcrel_relocs_copied *) | |
711 | bfd_alloc (dynobj, sizeof *p)); | |
712 | if (p == NULL) | |
713 | return false; | |
714 | p->next = eh->pcrel_relocs_copied; | |
715 | eh->pcrel_relocs_copied = p; | |
716 | p->section = sreloc; | |
717 | p->count = 0; | |
718 | } | |
719 | ||
720 | ++p->count; | |
721 | } | |
722 | } | |
723 | ||
724 | break; | |
725 | ||
726 | /* This relocation describes the C++ object vtable hierarchy. | |
727 | Reconstruct it for later use during GC. */ | |
728 | case R_390_GNU_VTINHERIT: | |
729 | if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
730 | return false; | |
731 | break; | |
732 | ||
733 | /* This relocation describes which C++ vtable entries are actually | |
734 | used. Record for later use during GC. */ | |
735 | case R_390_GNU_VTENTRY: | |
736 | if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
737 | return false; | |
738 | break; | |
739 | ||
740 | default: | |
741 | break; | |
742 | } | |
743 | } | |
744 | ||
745 | return true; | |
746 | } | |
747 | ||
748 | /* Return the section that should be marked against GC for a given | |
749 | relocation. */ | |
750 | ||
751 | static asection * | |
752 | elf_s390_gc_mark_hook (abfd, info, rel, h, sym) | |
753 | bfd *abfd; | |
754 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
755 | Elf_Internal_Rela *rel; | |
756 | struct elf_link_hash_entry *h; | |
757 | Elf_Internal_Sym *sym; | |
758 | { | |
759 | if (h != NULL) | |
760 | { | |
761 | switch (ELF64_R_TYPE (rel->r_info)) | |
762 | { | |
763 | case R_390_GNU_VTINHERIT: | |
764 | case R_390_GNU_VTENTRY: | |
765 | break; | |
766 | ||
767 | default: | |
768 | switch (h->root.type) | |
769 | { | |
770 | case bfd_link_hash_defined: | |
771 | case bfd_link_hash_defweak: | |
772 | return h->root.u.def.section; | |
773 | ||
774 | case bfd_link_hash_common: | |
775 | return h->root.u.c.p->section; | |
776 | ||
777 | default: | |
778 | break; | |
779 | } | |
780 | } | |
781 | } | |
782 | else | |
783 | { | |
784 | if (!(elf_bad_symtab (abfd) | |
785 | && ELF_ST_BIND (sym->st_info) != STB_LOCAL) | |
786 | && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE) | |
787 | && sym->st_shndx != SHN_COMMON)) | |
788 | { | |
789 | return bfd_section_from_elf_index (abfd, sym->st_shndx); | |
790 | } | |
791 | } | |
792 | ||
793 | return NULL; | |
794 | } | |
795 | ||
796 | /* Update the got entry reference counts for the section being removed. */ | |
797 | ||
798 | static boolean | |
799 | elf_s390_gc_sweep_hook (abfd, info, sec, relocs) | |
800 | bfd *abfd ATTRIBUTE_UNUSED; | |
801 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
802 | asection *sec ATTRIBUTE_UNUSED; | |
803 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; | |
804 | { | |
805 | Elf_Internal_Shdr *symtab_hdr; | |
806 | struct elf_link_hash_entry **sym_hashes; | |
807 | bfd_signed_vma *local_got_refcounts; | |
808 | const Elf_Internal_Rela *rel, *relend; | |
809 | unsigned long r_symndx; | |
810 | struct elf_link_hash_entry *h; | |
811 | bfd *dynobj; | |
812 | asection *sgot; | |
813 | asection *srelgot; | |
814 | ||
815 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
816 | sym_hashes = elf_sym_hashes (abfd); | |
817 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
818 | ||
819 | dynobj = elf_hash_table (info)->dynobj; | |
820 | if (dynobj == NULL) | |
821 | return true; | |
822 | ||
823 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
824 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
825 | ||
826 | relend = relocs + sec->reloc_count; | |
827 | for (rel = relocs; rel < relend; rel++) | |
828 | switch (ELF64_R_TYPE (rel->r_info)) | |
829 | { | |
830 | case R_390_GOT12: | |
831 | case R_390_GOT16: | |
832 | case R_390_GOT32: | |
833 | case R_390_GOT64: | |
834 | case R_390_GOTOFF: | |
835 | case R_390_GOTPC: | |
836 | case R_390_GOTPCDBL: | |
837 | case R_390_GOTENT: | |
838 | r_symndx = ELF64_R_SYM (rel->r_info); | |
839 | if (r_symndx >= symtab_hdr->sh_info) | |
840 | { | |
841 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
842 | if (h->got.refcount > 0) | |
843 | { | |
844 | h->got.refcount -= 1; | |
845 | if (h->got.refcount == 0) | |
846 | { | |
847 | sgot->_raw_size -= 8; | |
848 | srelgot->_raw_size -= sizeof (Elf64_External_Rela); | |
849 | } | |
850 | } | |
851 | } | |
852 | else if (local_got_refcounts != NULL) | |
853 | { | |
854 | if (local_got_refcounts[r_symndx] > 0) | |
855 | { | |
856 | local_got_refcounts[r_symndx] -= 1; | |
857 | if (local_got_refcounts[r_symndx] == 0) | |
858 | { | |
859 | sgot->_raw_size -= 8; | |
860 | if (info->shared) | |
861 | srelgot->_raw_size -= sizeof (Elf64_External_Rela); | |
862 | } | |
863 | } | |
864 | } | |
865 | break; | |
866 | ||
867 | case R_390_PLT16DBL: | |
868 | case R_390_PLT32: | |
869 | case R_390_PLT32DBL: | |
870 | case R_390_PLT64: | |
871 | r_symndx = ELF64_R_SYM (rel->r_info); | |
872 | if (r_symndx >= symtab_hdr->sh_info) | |
873 | { | |
874 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
875 | if (h->plt.refcount > 0) | |
876 | h->plt.refcount -= 1; | |
877 | } | |
878 | break; | |
879 | ||
880 | default: | |
881 | break; | |
882 | } | |
883 | ||
884 | return true; | |
885 | } | |
886 | ||
887 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
888 | regular object. The current definition is in some section of the | |
889 | dynamic object, but we're not including those sections. We have to | |
890 | change the definition to something the rest of the link can | |
891 | understand. */ | |
892 | ||
893 | static boolean | |
894 | elf_s390_adjust_dynamic_symbol (info, h) | |
895 | struct bfd_link_info *info; | |
896 | struct elf_link_hash_entry *h; | |
897 | { | |
898 | bfd *dynobj; | |
899 | asection *s; | |
900 | unsigned int power_of_two; | |
901 | ||
902 | dynobj = elf_hash_table (info)->dynobj; | |
903 | ||
904 | /* Make sure we know what is going on here. */ | |
905 | BFD_ASSERT (dynobj != NULL | |
906 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) | |
907 | || h->weakdef != NULL | |
908 | || ((h->elf_link_hash_flags | |
909 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
910 | && (h->elf_link_hash_flags | |
911 | & ELF_LINK_HASH_REF_REGULAR) != 0 | |
912 | && (h->elf_link_hash_flags | |
913 | & ELF_LINK_HASH_DEF_REGULAR) == 0))); | |
914 | ||
915 | /* If this is a function, put it in the procedure linkage table. We | |
916 | will fill in the contents of the procedure linkage table later | |
917 | (although we could actually do it here). */ | |
918 | if (h->type == STT_FUNC | |
919 | || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) | |
920 | { | |
921 | if ((! info->shared | |
922 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
923 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0) | |
924 | || (info->shared && h->plt.refcount <= 0)) | |
925 | { | |
926 | /* This case can occur if we saw a PLT32 reloc in an input | |
927 | file, but the symbol was never referred to by a dynamic | |
928 | object. In such a case, we don't actually need to build | |
929 | a procedure linkage table, and we can just do a PC32 | |
930 | reloc instead. */ | |
931 | h->plt.offset = (bfd_vma) -1; | |
932 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; | |
933 | return true; | |
934 | } | |
935 | ||
936 | /* Make sure this symbol is output as a dynamic symbol. */ | |
937 | if (h->dynindx == -1) | |
938 | { | |
939 | if (! bfd_elf64_link_record_dynamic_symbol (info, h)) | |
940 | return false; | |
941 | } | |
942 | ||
943 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
944 | BFD_ASSERT (s != NULL); | |
945 | ||
946 | ||
947 | /* The first entry in .plt is reserved. */ | |
948 | if (s->_raw_size == 0) | |
949 | s->_raw_size = PLT_FIRST_ENTRY_SIZE; | |
950 | ||
951 | /* If this symbol is not defined in a regular file, and we are | |
952 | not generating a shared library, then set the symbol to this | |
953 | location in the .plt. This is required to make function | |
954 | pointers compare as equal between the normal executable and | |
955 | the shared library. */ | |
956 | if (! info->shared | |
957 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
958 | { | |
959 | h->root.u.def.section = s; | |
960 | h->root.u.def.value = s->_raw_size; | |
961 | } | |
962 | ||
963 | h->plt.offset = s->_raw_size; | |
964 | ||
965 | /* Make room for this entry. */ | |
966 | s->_raw_size += PLT_ENTRY_SIZE; | |
967 | ||
968 | /* We also need to make an entry in the .got.plt section, which | |
969 | will be placed in the .got section by the linker script. */ | |
970 | s = bfd_get_section_by_name (dynobj, ".got.plt"); | |
971 | BFD_ASSERT (s != NULL); | |
972 | s->_raw_size += GOT_ENTRY_SIZE; | |
973 | ||
974 | /* We also need to make an entry in the .rela.plt section. */ | |
975 | s = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
976 | BFD_ASSERT (s != NULL); | |
977 | s->_raw_size += sizeof (Elf64_External_Rela); | |
978 | ||
979 | return true; | |
980 | } | |
981 | ||
982 | /* If this is a weak symbol, and there is a real definition, the | |
983 | processor independent code will have arranged for us to see the | |
984 | real definition first, and we can just use the same value. */ | |
985 | if (h->weakdef != NULL) | |
986 | { | |
987 | BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined | |
988 | || h->weakdef->root.type == bfd_link_hash_defweak); | |
989 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
990 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
991 | return true; | |
992 | } | |
993 | ||
994 | /* This is a reference to a symbol defined by a dynamic object which | |
995 | is not a function. */ | |
996 | ||
997 | /* If we are creating a shared library, we must presume that the | |
998 | only references to the symbol are via the global offset table. | |
999 | For such cases we need not do anything here; the relocations will | |
1000 | be handled correctly by relocate_section. */ | |
1001 | if (info->shared) | |
1002 | return true; | |
1003 | ||
1004 | /* If there are no references to this symbol that do not use the | |
1005 | GOT, we don't need to generate a copy reloc. */ | |
1006 | if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0) | |
1007 | return true; | |
1008 | ||
1009 | /* We must allocate the symbol in our .dynbss section, which will | |
1010 | become part of the .bss section of the executable. There will be | |
1011 | an entry for this symbol in the .dynsym section. The dynamic | |
1012 | object will contain position independent code, so all references | |
1013 | from the dynamic object to this symbol will go through the global | |
1014 | offset table. The dynamic linker will use the .dynsym entry to | |
1015 | determine the address it must put in the global offset table, so | |
1016 | both the dynamic object and the regular object will refer to the | |
1017 | same memory location for the variable. */ | |
1018 | ||
1019 | s = bfd_get_section_by_name (dynobj, ".dynbss"); | |
1020 | BFD_ASSERT (s != NULL); | |
1021 | ||
1022 | /* We must generate a R_390_COPY reloc to tell the dynamic linker | |
1023 | to copy the initial value out of the dynamic object and into the | |
1024 | runtime process image. We need to remember the offset into the | |
1025 | .rel.bss section we are going to use. */ | |
1026 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | |
1027 | { | |
1028 | asection *srel; | |
1029 | ||
1030 | srel = bfd_get_section_by_name (dynobj, ".rela.bss"); | |
1031 | BFD_ASSERT (srel != NULL); | |
1032 | srel->_raw_size += sizeof (Elf64_External_Rela); | |
1033 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; | |
1034 | } | |
1035 | ||
1036 | /* We need to figure out the alignment required for this symbol. I | |
1037 | have no idea how ELF linkers handle this. */ | |
1038 | power_of_two = bfd_log2 (h->size); | |
1039 | if (power_of_two > 3) | |
1040 | power_of_two = 3; | |
1041 | ||
1042 | /* Apply the required alignment. */ | |
1043 | s->_raw_size = BFD_ALIGN (s->_raw_size, | |
1044 | (bfd_size_type) (1 << power_of_two)); | |
1045 | if (power_of_two > bfd_get_section_alignment (dynobj, s)) | |
1046 | { | |
1047 | if (! bfd_set_section_alignment (dynobj, s, power_of_two)) | |
1048 | return false; | |
1049 | } | |
1050 | ||
1051 | /* Define the symbol as being at this point in the section. */ | |
1052 | h->root.u.def.section = s; | |
1053 | h->root.u.def.value = s->_raw_size; | |
1054 | ||
1055 | /* Increment the section size to make room for the symbol. */ | |
1056 | s->_raw_size += h->size; | |
1057 | ||
1058 | return true; | |
1059 | } | |
1060 | ||
1061 | /* Set the sizes of the dynamic sections. */ | |
1062 | ||
1063 | static boolean | |
1064 | elf_s390_size_dynamic_sections (output_bfd, info) | |
1065 | bfd *output_bfd; | |
1066 | struct bfd_link_info *info; | |
1067 | { | |
1068 | bfd *dynobj; | |
1069 | asection *s; | |
1070 | boolean reltext; | |
1071 | boolean relocs; | |
1072 | boolean plt; | |
1073 | ||
1074 | dynobj = elf_hash_table (info)->dynobj; | |
1075 | BFD_ASSERT (dynobj != NULL); | |
1076 | ||
1077 | if (elf_hash_table (info)->dynamic_sections_created) | |
1078 | { | |
1079 | /* Set the contents of the .interp section to the interpreter. */ | |
1080 | if (! info->shared) | |
1081 | { | |
1082 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1083 | BFD_ASSERT (s != NULL); | |
1084 | s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; | |
1085 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | |
1086 | } | |
1087 | } | |
1088 | else | |
1089 | { | |
1090 | /* We may have created entries in the .rela.got section. | |
1091 | However, if we are not creating the dynamic sections, we will | |
1092 | not actually use these entries. Reset the size of .rela.got, | |
1093 | which will cause it to get stripped from the output file | |
1094 | below. */ | |
1095 | s = bfd_get_section_by_name (dynobj, ".rela.got"); | |
1096 | if (s != NULL) | |
1097 | s->_raw_size = 0; | |
1098 | } | |
1099 | ||
1100 | /* If this is a -Bsymbolic shared link, then we need to discard all | |
1101 | PC relative relocs against symbols defined in a regular object. | |
1102 | We allocated space for them in the check_relocs routine, but we | |
1103 | will not fill them in in the relocate_section routine. */ | |
1104 | if (info->shared) | |
1105 | elf_s390_link_hash_traverse (elf_s390_hash_table (info), | |
1106 | elf_s390_discard_copies, | |
1107 | (PTR) info); | |
1108 | ||
1109 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
1110 | determined the sizes of the various dynamic sections. Allocate | |
1111 | memory for them. */ | |
1112 | plt = false; | |
1113 | reltext = false; | |
1114 | relocs = false; | |
1115 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1116 | { | |
1117 | const char *name; | |
1118 | boolean strip; | |
1119 | ||
1120 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1121 | continue; | |
1122 | ||
1123 | /* It's OK to base decisions on the section name, because none | |
1124 | of the dynobj section names depend upon the input files. */ | |
1125 | name = bfd_get_section_name (dynobj, s); | |
1126 | ||
1127 | strip = false; | |
1128 | ||
1129 | if (strcmp (name, ".plt") == 0) | |
1130 | { | |
1131 | if (s->_raw_size == 0) | |
1132 | { | |
1133 | /* Strip this section if we don't need it; see the | |
1134 | comment below. */ | |
1135 | strip = true; | |
1136 | } | |
1137 | else | |
1138 | { | |
1139 | /* Remember whether there is a PLT. */ | |
1140 | plt = true; | |
1141 | } | |
1142 | } | |
1143 | else if (strncmp (name, ".rela", 5) == 0) | |
1144 | { | |
1145 | if (s->_raw_size == 0) | |
1146 | { | |
1147 | /* If we don't need this section, strip it from the | |
1148 | output file. This is to handle .rela.bss and | |
1149 | .rel.plt. We must create it in | |
1150 | create_dynamic_sections, because it must be created | |
1151 | before the linker maps input sections to output | |
1152 | sections. The linker does that before | |
1153 | adjust_dynamic_symbol is called, and it is that | |
1154 | function which decides whether anything needs to go | |
1155 | into these sections. */ | |
1156 | strip = true; | |
1157 | } | |
1158 | else | |
1159 | { | |
1160 | asection *target; | |
1161 | ||
1162 | /* Remember whether there are any reloc sections other | |
1163 | than .rela.plt. */ | |
1164 | if (strcmp (name, ".rela.plt") != 0) | |
1165 | { | |
1166 | const char *outname; | |
1167 | ||
1168 | relocs = true; | |
1169 | ||
1170 | /* If this relocation section applies to a read only | |
1171 | section, then we probably need a DT_TEXTREL | |
1172 | entry. The entries in the .rela.plt section | |
1173 | really apply to the .got section, which we | |
1174 | created ourselves and so know is not readonly. */ | |
1175 | outname = bfd_get_section_name (output_bfd, | |
1176 | s->output_section); | |
1177 | target = bfd_get_section_by_name (output_bfd, outname + 5); | |
1178 | if (target != NULL | |
1179 | && (target->flags & SEC_READONLY) != 0 | |
1180 | && (target->flags & SEC_ALLOC) != 0) | |
1181 | reltext = true; | |
1182 | } | |
1183 | ||
1184 | /* We use the reloc_count field as a counter if we need | |
1185 | to copy relocs into the output file. */ | |
1186 | s->reloc_count = 0; | |
1187 | } | |
1188 | } | |
1189 | else if (strncmp (name, ".got", 4) != 0) | |
1190 | { | |
1191 | /* It's not one of our sections, so don't allocate space. */ | |
1192 | continue; | |
1193 | } | |
1194 | ||
1195 | if (strip) | |
1196 | { | |
1197 | _bfd_strip_section_from_output (info, s); | |
1198 | continue; | |
1199 | } | |
1200 | ||
1201 | /* Allocate memory for the section contents. */ | |
1202 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); | |
1203 | if (s->contents == NULL && s->_raw_size != 0) | |
1204 | return false; | |
1205 | } | |
1206 | ||
1207 | if (elf_hash_table (info)->dynamic_sections_created) | |
1208 | { | |
1209 | /* Add some entries to the .dynamic section. We fill in the | |
1210 | values later, in elf_s390_finish_dynamic_sections, but we | |
1211 | must add the entries now so that we get the correct size for | |
1212 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1213 | dynamic linker and used by the debugger. */ | |
1214 | if (! info->shared) | |
1215 | { | |
1216 | if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)) | |
1217 | return false; | |
1218 | } | |
1219 | ||
1220 | if (plt) | |
1221 | { | |
1222 | if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0) | |
1223 | || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0) | |
1224 | || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA) | |
1225 | || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0)) | |
1226 | return false; | |
1227 | } | |
1228 | ||
1229 | if (relocs) | |
1230 | { | |
1231 | if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0) | |
1232 | || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0) | |
1233 | || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT, | |
1234 | sizeof (Elf64_External_Rela))) | |
1235 | return false; | |
1236 | } | |
1237 | ||
1238 | if (reltext) | |
1239 | { | |
1240 | if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0)) | |
1241 | return false; | |
1242 | info->flags |= DF_TEXTREL; | |
1243 | } | |
1244 | } | |
1245 | ||
1246 | return true; | |
1247 | } | |
1248 | ||
1249 | /* This function is called via elf64_s390_link_hash_traverse if we are | |
1250 | creating a shared object with -Bsymbolic. It discards the space | |
1251 | allocated to copy PC relative relocs against symbols which are | |
1252 | defined in regular objects. We allocated space for them in the | |
1253 | check_relocs routine, but we won't fill them in in the | |
1254 | relocate_section routine. */ | |
1255 | ||
1256 | /*ARGSUSED*/ | |
1257 | static boolean | |
1258 | elf_s390_discard_copies (h, inf) | |
1259 | struct elf_s390_link_hash_entry *h; | |
1260 | PTR inf; | |
1261 | { | |
1262 | struct elf_s390_pcrel_relocs_copied *s; | |
1263 | struct bfd_link_info *info = (struct bfd_link_info *) inf; | |
1264 | ||
1265 | /* If a symbol has been forced local or we have found a regular | |
1266 | definition for the symbolic link case, then we won't be needing | |
1267 | any relocs. */ | |
1268 | if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1269 | && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0 | |
1270 | || info->symbolic)) | |
1271 | { | |
1272 | for (s = h->pcrel_relocs_copied; s != NULL; s = s->next) | |
1273 | s->section->_raw_size -= s->count * sizeof (Elf64_External_Rela); | |
1274 | } | |
1275 | ||
1276 | return true; | |
1277 | } | |
1278 | /* Relocate a 390 ELF section. */ | |
1279 | ||
1280 | static boolean | |
1281 | elf_s390_relocate_section (output_bfd, info, input_bfd, input_section, | |
1282 | contents, relocs, local_syms, local_sections) | |
1283 | bfd *output_bfd; | |
1284 | struct bfd_link_info *info; | |
1285 | bfd *input_bfd; | |
1286 | asection *input_section; | |
1287 | bfd_byte *contents; | |
1288 | Elf_Internal_Rela *relocs; | |
1289 | Elf_Internal_Sym *local_syms; | |
1290 | asection **local_sections; | |
1291 | { | |
1292 | bfd *dynobj; | |
1293 | Elf_Internal_Shdr *symtab_hdr; | |
1294 | struct elf_link_hash_entry **sym_hashes; | |
1295 | bfd_vma *local_got_offsets; | |
1296 | asection *sgot; | |
1297 | asection *splt; | |
1298 | asection *sreloc; | |
1299 | Elf_Internal_Rela *rel; | |
1300 | Elf_Internal_Rela *relend; | |
1301 | ||
1302 | dynobj = elf_hash_table (info)->dynobj; | |
1303 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
1304 | sym_hashes = elf_sym_hashes (input_bfd); | |
1305 | local_got_offsets = elf_local_got_offsets (input_bfd); | |
1306 | ||
1307 | sgot = NULL; | |
1308 | splt = NULL; | |
1309 | sreloc = NULL; | |
1310 | if (dynobj != NULL) | |
1311 | { | |
1312 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1313 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1314 | } | |
1315 | ||
1316 | rel = relocs; | |
1317 | relend = relocs + input_section->reloc_count; | |
1318 | for (; rel < relend; rel++) | |
1319 | { | |
1320 | int r_type; | |
1321 | reloc_howto_type *howto; | |
1322 | unsigned long r_symndx; | |
1323 | struct elf_link_hash_entry *h; | |
1324 | Elf_Internal_Sym *sym; | |
1325 | asection *sec; | |
1326 | bfd_vma relocation; | |
1327 | bfd_reloc_status_type r; | |
1328 | ||
1329 | r_type = ELF64_R_TYPE (rel->r_info); | |
1330 | if (r_type == R_390_GNU_VTINHERIT | |
1331 | || r_type == R_390_GNU_VTENTRY) | |
1332 | continue; | |
1333 | if (r_type < 0 || r_type >= (int) R_390_max) | |
1334 | { | |
1335 | bfd_set_error (bfd_error_bad_value); | |
1336 | return false; | |
1337 | } | |
1338 | howto = elf_howto_table + r_type; | |
1339 | ||
1340 | r_symndx = ELF64_R_SYM (rel->r_info); | |
1341 | ||
1342 | if (info->relocateable) | |
1343 | { | |
1344 | /* This is a relocateable link. We don't have to change | |
1345 | anything, unless the reloc is against a section symbol, | |
1346 | in which case we have to adjust according to where the | |
1347 | section symbol winds up in the output section. */ | |
1348 | if (r_symndx < symtab_hdr->sh_info) | |
1349 | { | |
1350 | sym = local_syms + r_symndx; | |
1351 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
1352 | { | |
1353 | sec = local_sections[r_symndx]; | |
1354 | rel->r_addend += sec->output_offset + sym->st_value; | |
1355 | } | |
1356 | } | |
1357 | ||
1358 | continue; | |
1359 | } | |
1360 | ||
1361 | /* This is a final link. */ | |
1362 | h = NULL; | |
1363 | sym = NULL; | |
1364 | sec = NULL; | |
1365 | if (r_symndx < symtab_hdr->sh_info) | |
1366 | { | |
1367 | sym = local_syms + r_symndx; | |
1368 | sec = local_sections[r_symndx]; | |
1369 | relocation = (sec->output_section->vma | |
1370 | + sec->output_offset | |
1371 | + sym->st_value); | |
1372 | } | |
1373 | else | |
1374 | { | |
1375 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1376 | while (h->root.type == bfd_link_hash_indirect | |
1377 | || h->root.type == bfd_link_hash_warning) | |
1378 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1379 | if (h->root.type == bfd_link_hash_defined | |
1380 | || h->root.type == bfd_link_hash_defweak) | |
1381 | { | |
1382 | sec = h->root.u.def.section; | |
1383 | if ((r_type == R_390_GOTPC | |
1384 | || r_type == R_390_GOTPCDBL) | |
1385 | || ((r_type == R_390_PLT16DBL || | |
1386 | r_type == R_390_PLT32 || | |
1387 | r_type == R_390_PLT32DBL || | |
1388 | r_type == R_390_PLT64) | |
1389 | && splt != NULL | |
1390 | && h->plt.offset != (bfd_vma) -1) | |
1391 | || ((r_type == R_390_GOT12 || | |
1392 | r_type == R_390_GOT16 || | |
1393 | r_type == R_390_GOT32 || | |
1394 | r_type == R_390_GOT64 || | |
1395 | r_type == R_390_GOTENT) | |
1396 | && elf_hash_table (info)->dynamic_sections_created | |
1397 | && (! info->shared | |
1398 | || (! info->symbolic && h->dynindx != -1) | |
1399 | || (h->elf_link_hash_flags | |
1400 | & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
1401 | || (info->shared | |
1402 | && ((! info->symbolic && h->dynindx != -1) | |
1403 | || (h->elf_link_hash_flags | |
1404 | & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
1405 | && ( r_type == R_390_8 || | |
1406 | r_type == R_390_16 || | |
1407 | r_type == R_390_32 || | |
1408 | r_type == R_390_64 || | |
1409 | r_type == R_390_PC16 || | |
1410 | r_type == R_390_PC16DBL || | |
1411 | r_type == R_390_PC32 || | |
1412 | r_type == R_390_PC32DBL || | |
1413 | r_type == R_390_PC64) | |
1414 | && ((input_section->flags & SEC_ALLOC) != 0 | |
1415 | /* DWARF will emit R_386_32 relocations in its | |
1416 | sections against symbols defined externally | |
1417 | in shared libraries. We can't do anything | |
1418 | with them here. */ | |
1419 | || ((input_section->flags & SEC_DEBUGGING) != 0 | |
1420 | && (h->elf_link_hash_flags | |
1421 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0)))) | |
1422 | { | |
1423 | /* In these cases, we don't need the relocation | |
1424 | value. We check specially because in some | |
1425 | obscure cases sec->output_section will be NULL. */ | |
1426 | relocation = 0; | |
1427 | } | |
1428 | else if (sec->output_section == NULL) | |
1429 | { | |
1430 | (*_bfd_error_handler) | |
1431 | (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"), | |
1432 | bfd_get_filename (input_bfd), h->root.root.string, | |
1433 | bfd_get_section_name (input_bfd, input_section)); | |
1434 | relocation = 0; | |
1435 | } | |
1436 | else | |
1437 | relocation = (h->root.u.def.value | |
1438 | + sec->output_section->vma | |
1439 | + sec->output_offset); | |
1440 | } | |
1441 | else if (h->root.type == bfd_link_hash_undefweak) | |
1442 | relocation = 0; | |
1443 | else if (info->shared && !info->symbolic | |
1444 | && !info->no_undefined | |
1445 | && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | |
1446 | relocation = 0; | |
1447 | else | |
1448 | { | |
1449 | if (! ((*info->callbacks->undefined_symbol) | |
1450 | (info, h->root.root.string, input_bfd, | |
1451 | input_section, rel->r_offset, | |
1452 | (!info->shared || info->no_undefined | |
1453 | || ELF_ST_VISIBILITY (h->other))))) | |
1454 | return false; | |
1455 | relocation = 0; | |
1456 | } | |
1457 | } | |
1458 | ||
1459 | switch (r_type) | |
1460 | { | |
1461 | case R_390_GOT12: | |
1462 | case R_390_GOT16: | |
1463 | case R_390_GOT32: | |
1464 | case R_390_GOT64: | |
1465 | case R_390_GOTENT: | |
1466 | /* Relocation is to the entry for this symbol in the global | |
1467 | offset table. */ | |
1468 | BFD_ASSERT (sgot != NULL); | |
1469 | ||
1470 | if (h != NULL) | |
1471 | { | |
1472 | bfd_vma off; | |
1473 | ||
1474 | off = h->got.offset; | |
1475 | BFD_ASSERT (off != (bfd_vma) -1); | |
1476 | ||
1477 | if (! elf_hash_table (info)->dynamic_sections_created | |
1478 | || (info->shared | |
1479 | && (info->symbolic || h->dynindx == -1) | |
1480 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
1481 | { | |
1482 | /* This is actually a static link, or it is a | |
1483 | -Bsymbolic link and the symbol is defined | |
1484 | locally, or the symbol was forced to be local | |
1485 | because of a version file. We must initialize | |
1486 | this entry in the global offset table. Since the | |
1487 | offset must always be a multiple of 2, we use the | |
1488 | least significant bit to record whether we have | |
1489 | initialized it already. | |
1490 | ||
1491 | When doing a dynamic link, we create a .rel.got | |
1492 | relocation entry to initialize the value. This | |
1493 | is done in the finish_dynamic_symbol routine. */ | |
1494 | if ((off & 1) != 0) | |
1495 | off &= ~1; | |
1496 | else | |
1497 | { | |
1498 | bfd_put_64 (output_bfd, relocation, | |
1499 | sgot->contents + off); | |
1500 | h->got.offset |= 1; | |
1501 | } | |
1502 | } | |
1503 | relocation = sgot->output_offset + off; | |
1504 | } | |
1505 | else | |
1506 | { | |
1507 | bfd_vma off; | |
1508 | ||
1509 | BFD_ASSERT (local_got_offsets != NULL | |
1510 | && local_got_offsets[r_symndx] != (bfd_vma) -1); | |
1511 | ||
1512 | off = local_got_offsets[r_symndx]; | |
1513 | ||
1514 | /* The offset must always be a multiple of 8. We use | |
1515 | the least significant bit to record whether we have | |
1516 | already generated the necessary reloc. */ | |
1517 | if ((off & 1) != 0) | |
1518 | off &= ~1; | |
1519 | else | |
1520 | { | |
1521 | bfd_put_64 (output_bfd, relocation, sgot->contents + off); | |
1522 | ||
1523 | if (info->shared) | |
1524 | { | |
1525 | asection *srelgot; | |
1526 | Elf_Internal_Rela outrel; | |
1527 | ||
1528 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
1529 | BFD_ASSERT (srelgot != NULL); | |
1530 | ||
1531 | outrel.r_offset = (sgot->output_section->vma | |
1532 | + sgot->output_offset | |
1533 | + off); | |
1534 | outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE); | |
1535 | outrel.r_addend = relocation; | |
1536 | bfd_elf64_swap_reloca_out (output_bfd, &outrel, | |
1537 | (((Elf64_External_Rela *) | |
1538 | srelgot->contents) | |
1539 | + srelgot->reloc_count)); | |
1540 | ++srelgot->reloc_count; | |
1541 | } | |
1542 | ||
1543 | local_got_offsets[r_symndx] |= 1; | |
1544 | } | |
1545 | ||
1546 | relocation = sgot->output_offset + off; | |
1547 | } | |
1548 | ||
1549 | /* | |
1550 | * For @GOTENT the relocation is against the offset between | |
1551 | * the instruction and the symbols entry in the GOT and not | |
1552 | * between the start of the GOT and the symbols entry. We | |
1553 | * add the vma of the GOT to get the correct value. | |
1554 | */ | |
1555 | if (r_type == R_390_GOTENT) | |
1556 | relocation += sgot->output_section->vma; | |
1557 | ||
1558 | break; | |
1559 | ||
1560 | case R_390_GOTOFF: | |
1561 | /* Relocation is relative to the start of the global offset | |
1562 | table. */ | |
1563 | ||
1564 | if (sgot == NULL) | |
1565 | { | |
1566 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1567 | BFD_ASSERT (sgot != NULL); | |
1568 | } | |
1569 | ||
1570 | /* Note that sgot->output_offset is not involved in this | |
1571 | calculation. We always want the start of .got. If we | |
1572 | defined _GLOBAL_OFFSET_TABLE in a different way, as is | |
1573 | permitted by the ABI, we might have to change this | |
1574 | calculation. */ | |
1575 | relocation -= sgot->output_section->vma; | |
1576 | ||
1577 | break; | |
1578 | ||
1579 | case R_390_GOTPC: | |
1580 | case R_390_GOTPCDBL: | |
1581 | /* Use global offset table as symbol value. */ | |
1582 | ||
1583 | if (sgot == NULL) | |
1584 | { | |
1585 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1586 | BFD_ASSERT (sgot != NULL); | |
1587 | } | |
1588 | ||
1589 | relocation = sgot->output_section->vma; | |
1590 | ||
1591 | break; | |
1592 | ||
1593 | case R_390_PLT16DBL: | |
1594 | case R_390_PLT32: | |
1595 | case R_390_PLT32DBL: | |
1596 | case R_390_PLT64: | |
1597 | /* Relocation is to the entry for this symbol in the | |
1598 | procedure linkage table. */ | |
1599 | ||
1600 | /* Resolve a PLT32 reloc against a local symbol directly, | |
1601 | without using the procedure linkage table. */ | |
1602 | if (h == NULL) | |
1603 | break; | |
1604 | ||
1605 | if (h->plt.offset == (bfd_vma) -1 || splt == NULL) | |
1606 | { | |
1607 | /* We didn't make a PLT entry for this symbol. This | |
1608 | happens when statically linking PIC code, or when | |
1609 | using -Bsymbolic. */ | |
1610 | break; | |
1611 | } | |
1612 | ||
1613 | relocation = (splt->output_section->vma | |
1614 | + splt->output_offset | |
1615 | + h->plt.offset); | |
1616 | ||
1617 | break; | |
1618 | ||
1619 | case R_390_8: | |
1620 | case R_390_16: | |
1621 | case R_390_32: | |
1622 | case R_390_64: | |
1623 | case R_390_PC16: | |
1624 | case R_390_PC16DBL: | |
1625 | case R_390_PC32: | |
1626 | case R_390_PC32DBL: | |
1627 | case R_390_PC64: | |
1628 | if (info->shared | |
1629 | && (input_section->flags & SEC_ALLOC) != 0 | |
1630 | && (r_type == R_390_8 | |
1631 | || r_type == R_390_16 | |
1632 | || r_type == R_390_32 | |
1633 | || r_type == R_390_64 | |
1634 | || (h != NULL | |
1635 | && h->dynindx != -1 | |
1636 | && (! info->symbolic | |
1637 | || (h->elf_link_hash_flags | |
1638 | & ELF_LINK_HASH_DEF_REGULAR) == 0)))) | |
1639 | { | |
1640 | Elf_Internal_Rela outrel; | |
1641 | boolean skip, relocate; | |
1642 | ||
1643 | /* When generating a shared object, these relocations | |
1644 | are copied into the output file to be resolved at run | |
1645 | time. */ | |
1646 | ||
1647 | if (sreloc == NULL) | |
1648 | { | |
1649 | const char *name; | |
1650 | ||
1651 | name = (bfd_elf_string_from_elf_section | |
1652 | (input_bfd, | |
1653 | elf_elfheader (input_bfd)->e_shstrndx, | |
1654 | elf_section_data (input_section)->rel_hdr.sh_name)); | |
1655 | if (name == NULL) | |
1656 | return false; | |
1657 | ||
1658 | BFD_ASSERT (strncmp (name, ".rela", 5) == 0 | |
1659 | && strcmp (bfd_get_section_name (input_bfd, | |
1660 | input_section), | |
1661 | name + 5) == 0); | |
1662 | ||
1663 | sreloc = bfd_get_section_by_name (dynobj, name); | |
1664 | BFD_ASSERT (sreloc != NULL); | |
1665 | } | |
1666 | ||
1667 | skip = false; | |
1668 | ||
1669 | if (elf_section_data (input_section)->stab_info == NULL) | |
1670 | outrel.r_offset = rel->r_offset; | |
1671 | else | |
1672 | { | |
1673 | bfd_vma off; | |
1674 | ||
1675 | off = (_bfd_stab_section_offset | |
1676 | (output_bfd, &elf_hash_table (info)->stab_info, | |
1677 | input_section, | |
1678 | &elf_section_data (input_section)->stab_info, | |
1679 | rel->r_offset)); | |
1680 | if (off == (bfd_vma) -1) | |
1681 | skip = true; | |
1682 | outrel.r_offset = off; | |
1683 | } | |
1684 | ||
1685 | outrel.r_offset += (input_section->output_section->vma | |
1686 | + input_section->output_offset); | |
1687 | ||
1688 | if (skip) | |
1689 | { | |
1690 | memset (&outrel, 0, sizeof outrel); | |
1691 | relocate = false; | |
1692 | } | |
1693 | else if (r_type == R_390_PC16 || | |
1694 | r_type == R_390_PC16DBL || | |
1695 | r_type == R_390_PC32 || | |
1696 | r_type == R_390_PC32DBL || | |
1697 | r_type == R_390_PC64) | |
1698 | { | |
1699 | BFD_ASSERT (h != NULL && h->dynindx != -1); | |
1700 | relocate = false; | |
1701 | outrel.r_info = ELF64_R_INFO (h->dynindx, r_type); | |
1702 | outrel.r_addend = relocation + rel->r_addend; | |
1703 | } | |
1704 | else | |
1705 | { | |
1706 | /* h->dynindx may be -1 if this symbol was marked to | |
1707 | become local. */ | |
1708 | if (h == NULL | |
1709 | || ((info->symbolic || h->dynindx == -1) | |
1710 | && (h->elf_link_hash_flags | |
1711 | & ELF_LINK_HASH_DEF_REGULAR) != 0)) | |
1712 | { | |
1713 | relocate = true; | |
1714 | outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE); | |
1715 | outrel.r_addend = relocation + rel->r_addend; | |
1716 | } | |
1717 | else | |
1718 | { | |
1719 | BFD_ASSERT (h->dynindx != -1); | |
1720 | relocate = false; | |
1721 | outrel.r_info = ELF64_R_INFO (h->dynindx, R_390_64); | |
1722 | outrel.r_addend = relocation + rel->r_addend; | |
1723 | } | |
1724 | } | |
1725 | ||
1726 | bfd_elf64_swap_reloca_out (output_bfd, &outrel, | |
1727 | (((Elf64_External_Rela *) | |
1728 | sreloc->contents) | |
1729 | + sreloc->reloc_count)); | |
1730 | ++sreloc->reloc_count; | |
1731 | ||
1732 | /* If this reloc is against an external symbol, we do | |
1733 | not want to fiddle with the addend. Otherwise, we | |
1734 | need to include the symbol value so that it becomes | |
1735 | an addend for the dynamic reloc. */ | |
1736 | if (! relocate) | |
1737 | continue; | |
1738 | } | |
1739 | ||
1740 | break; | |
1741 | ||
1742 | default: | |
1743 | break; | |
1744 | } | |
1745 | ||
1746 | r = _bfd_final_link_relocate (howto, input_bfd, input_section, | |
1747 | contents, rel->r_offset, | |
1748 | relocation, rel->r_addend); | |
1749 | ||
1750 | if (r != bfd_reloc_ok) | |
1751 | { | |
1752 | switch (r) | |
1753 | { | |
1754 | default: | |
1755 | case bfd_reloc_outofrange: | |
1756 | abort (); | |
1757 | case bfd_reloc_overflow: | |
1758 | { | |
1759 | const char *name; | |
1760 | ||
1761 | if (h != NULL) | |
1762 | name = h->root.root.string; | |
1763 | else | |
1764 | { | |
1765 | name = bfd_elf_string_from_elf_section (input_bfd, | |
1766 | symtab_hdr->sh_link, | |
1767 | sym->st_name); | |
1768 | if (name == NULL) | |
1769 | return false; | |
1770 | if (*name == '\0') | |
1771 | name = bfd_section_name (input_bfd, sec); | |
1772 | } | |
1773 | if (! ((*info->callbacks->reloc_overflow) | |
1774 | (info, name, howto->name, (bfd_vma) 0, | |
1775 | input_bfd, input_section, rel->r_offset))) | |
1776 | return false; | |
1777 | } | |
1778 | break; | |
1779 | } | |
1780 | } | |
1781 | } | |
1782 | ||
1783 | return true; | |
1784 | } | |
1785 | ||
1786 | /* Finish up dynamic symbol handling. We set the contents of various | |
1787 | dynamic sections here. */ | |
1788 | ||
1789 | static boolean | |
1790 | elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym) | |
1791 | bfd *output_bfd; | |
1792 | struct bfd_link_info *info; | |
1793 | struct elf_link_hash_entry *h; | |
1794 | Elf_Internal_Sym *sym; | |
1795 | { | |
1796 | bfd *dynobj; | |
1797 | ||
1798 | dynobj = elf_hash_table (info)->dynobj; | |
1799 | ||
1800 | if (h->plt.offset != (bfd_vma) -1) | |
1801 | { | |
1802 | asection *splt; | |
1803 | asection *srela; | |
1804 | Elf_Internal_Rela rela; | |
1805 | bfd_vma got_offset; | |
1806 | bfd_vma plt_index; | |
1807 | asection *sgot; | |
1808 | ||
1809 | /* This symbol has an entry in the procedure linkage table. Set | |
1810 | it up. */ | |
1811 | ||
1812 | BFD_ASSERT (h->dynindx != -1); | |
1813 | ||
1814 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1815 | sgot = bfd_get_section_by_name (dynobj, ".got.plt"); | |
1816 | srela = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1817 | BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); | |
1818 | ||
1819 | /* Calc. index no. | |
1820 | Current offset - size first entry / entry size. */ | |
1821 | plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE; | |
1822 | ||
1823 | /* Offset in GOT is PLT index plus GOT headers(3) times 8, | |
1824 | addr & GOT addr. */ | |
1825 | got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; | |
1826 | ||
1827 | /* Fill in the blueprint of a PLT. */ | |
1828 | bfd_put_32 (output_bfd, PLT_ENTRY_WORD0, | |
1829 | splt->contents + h->plt.offset); | |
1830 | bfd_put_32 (output_bfd, PLT_ENTRY_WORD1, | |
1831 | splt->contents + h->plt.offset + 4); | |
1832 | bfd_put_32 (output_bfd, PLT_ENTRY_WORD2, | |
1833 | splt->contents + h->plt.offset + 8); | |
1834 | bfd_put_32 (output_bfd, PLT_ENTRY_WORD3, | |
1835 | splt->contents + h->plt.offset + 12); | |
1836 | bfd_put_32 (output_bfd, PLT_ENTRY_WORD4, | |
1837 | splt->contents + h->plt.offset + 16); | |
1838 | bfd_put_32 (output_bfd, PLT_ENTRY_WORD5, | |
1839 | splt->contents + h->plt.offset + 20); | |
1840 | bfd_put_32 (output_bfd, PLT_ENTRY_WORD6, | |
1841 | splt->contents + h->plt.offset + 24); | |
1842 | bfd_put_32 (output_bfd, PLT_ENTRY_WORD7, | |
1843 | splt->contents + h->plt.offset + 28); | |
1844 | /* Fixup the relative address to the GOT entry */ | |
1845 | bfd_put_32 (output_bfd, | |
1846 | (sgot->output_section->vma + sgot->output_offset + got_offset | |
1847 | - (splt->output_section->vma + h->plt.offset))/2, | |
1848 | splt->contents + h->plt.offset + 2); | |
1849 | /* Fixup the relative branch to PLT 0 */ | |
1850 | bfd_put_32 (output_bfd, - (PLT_FIRST_ENTRY_SIZE + | |
1851 | (PLT_ENTRY_SIZE * plt_index) + 22)/2, | |
1852 | splt->contents + h->plt.offset + 24); | |
1853 | /* Fixup offset into symbol table */ | |
1854 | bfd_put_32 (output_bfd, plt_index * sizeof (Elf64_External_Rela), | |
1855 | splt->contents + h->plt.offset + 28); | |
1856 | ||
1857 | /* Fill in the entry in the .rela.plt section. */ | |
1858 | rela.r_offset = (sgot->output_section->vma | |
1859 | + sgot->output_offset | |
1860 | + got_offset); | |
1861 | rela.r_info = ELF64_R_INFO (h->dynindx, R_390_JMP_SLOT); | |
1862 | rela.r_addend = 0; | |
1863 | bfd_elf64_swap_reloca_out (output_bfd, &rela, | |
1864 | ((Elf64_External_Rela *) srela->contents | |
1865 | + plt_index )); | |
1866 | ||
1867 | /* Fill in the entry in the global offset table. | |
1868 | Points to instruction after GOT offset. */ | |
1869 | bfd_put_64 (output_bfd, | |
1870 | (splt->output_section->vma | |
1871 | + splt->output_offset | |
1872 | + h->plt.offset | |
1873 | + 14), | |
1874 | sgot->contents + got_offset); | |
1875 | ||
1876 | ||
1877 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
1878 | { | |
1879 | /* Mark the symbol as undefined, rather than as defined in | |
1880 | the .plt section. Leave the value alone. */ | |
1881 | sym->st_shndx = SHN_UNDEF; | |
1882 | } | |
1883 | } | |
1884 | ||
1885 | if (h->got.offset != (bfd_vma) -1) | |
1886 | { | |
1887 | asection *sgot; | |
1888 | asection *srela; | |
1889 | Elf_Internal_Rela rela; | |
1890 | ||
1891 | /* This symbol has an entry in the global offset table. Set it | |
1892 | up. */ | |
1893 | ||
1894 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1895 | srela = bfd_get_section_by_name (dynobj, ".rela.got"); | |
1896 | BFD_ASSERT (sgot != NULL && srela != NULL); | |
1897 | ||
1898 | rela.r_offset = (sgot->output_section->vma | |
1899 | + sgot->output_offset | |
1900 | + (h->got.offset &~ 1)); | |
1901 | ||
1902 | /* If this is a static link, or it is a -Bsymbolic link and the | |
1903 | symbol is defined locally or was forced to be local because | |
1904 | of a version file, we just want to emit a RELATIVE reloc. | |
1905 | The entry in the global offset table will already have been | |
1906 | initialized in the relocate_section function. */ | |
1907 | if (! elf_hash_table (info)->dynamic_sections_created | |
1908 | || (info->shared | |
1909 | && (info->symbolic || h->dynindx == -1) | |
1910 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
1911 | { | |
1912 | rela.r_info = ELF64_R_INFO (0, R_390_RELATIVE); | |
1913 | rela.r_addend = (h->root.u.def.value | |
1914 | + h->root.u.def.section->output_section->vma | |
1915 | + h->root.u.def.section->output_offset); | |
1916 | } | |
1917 | else | |
1918 | { | |
1919 | BFD_ASSERT((h->got.offset & 1) == 0); | |
1920 | bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); | |
1921 | rela.r_info = ELF64_R_INFO (h->dynindx, R_390_GLOB_DAT); | |
1922 | rela.r_addend = 0; | |
1923 | } | |
1924 | ||
1925 | bfd_elf64_swap_reloca_out (output_bfd, &rela, | |
1926 | ((Elf64_External_Rela *) srela->contents | |
1927 | + srela->reloc_count)); | |
1928 | ++srela->reloc_count; | |
1929 | } | |
1930 | ||
1931 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0) | |
1932 | { | |
1933 | asection *s; | |
1934 | Elf_Internal_Rela rela; | |
1935 | ||
1936 | /* This symbols needs a copy reloc. Set it up. */ | |
1937 | ||
1938 | BFD_ASSERT (h->dynindx != -1 | |
1939 | && (h->root.type == bfd_link_hash_defined | |
1940 | || h->root.type == bfd_link_hash_defweak)); | |
1941 | ||
1942 | ||
1943 | s = bfd_get_section_by_name (h->root.u.def.section->owner, | |
1944 | ".rela.bss"); | |
1945 | BFD_ASSERT (s != NULL); | |
1946 | ||
1947 | rela.r_offset = (h->root.u.def.value | |
1948 | + h->root.u.def.section->output_section->vma | |
1949 | + h->root.u.def.section->output_offset); | |
1950 | rela.r_info = ELF64_R_INFO (h->dynindx, R_390_COPY); | |
1951 | rela.r_addend = 0; | |
1952 | bfd_elf64_swap_reloca_out (output_bfd, &rela, | |
1953 | ((Elf64_External_Rela *) s->contents | |
1954 | + s->reloc_count)); | |
1955 | ++s->reloc_count; | |
1956 | } | |
1957 | ||
1958 | /* Mark some specially defined symbols as absolute. */ | |
1959 | if (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
1960 | || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0 | |
1961 | || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0) | |
1962 | sym->st_shndx = SHN_ABS; | |
1963 | ||
1964 | return true; | |
1965 | } | |
1966 | ||
1967 | /* Finish up the dynamic sections. */ | |
1968 | ||
1969 | static boolean | |
1970 | elf_s390_finish_dynamic_sections (output_bfd, info) | |
1971 | bfd *output_bfd; | |
1972 | struct bfd_link_info *info; | |
1973 | { | |
1974 | bfd *dynobj; | |
1975 | asection *sdyn; | |
1976 | asection *sgot; | |
1977 | ||
1978 | dynobj = elf_hash_table (info)->dynobj; | |
1979 | ||
1980 | sgot = bfd_get_section_by_name (dynobj, ".got.plt"); | |
1981 | BFD_ASSERT (sgot != NULL); | |
1982 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1983 | ||
1984 | if (elf_hash_table (info)->dynamic_sections_created) | |
1985 | { | |
1986 | asection *splt; | |
1987 | Elf64_External_Dyn *dyncon, *dynconend; | |
1988 | ||
1989 | BFD_ASSERT (sdyn != NULL); | |
1990 | ||
1991 | dyncon = (Elf64_External_Dyn *) sdyn->contents; | |
1992 | dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size); | |
1993 | for (; dyncon < dynconend; dyncon++) | |
1994 | { | |
1995 | Elf_Internal_Dyn dyn; | |
1996 | const char *name; | |
1997 | asection *s; | |
1998 | ||
1999 | bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); | |
2000 | ||
2001 | switch (dyn.d_tag) | |
2002 | { | |
2003 | default: | |
2004 | break; | |
2005 | ||
2006 | case DT_PLTGOT: | |
2007 | name = ".got"; | |
2008 | goto get_vma; | |
2009 | case DT_JMPREL: | |
2010 | name = ".rela.plt"; | |
2011 | get_vma: | |
2012 | s = bfd_get_section_by_name(output_bfd, name); | |
2013 | BFD_ASSERT (s != NULL); | |
2014 | dyn.d_un.d_ptr = s->vma; | |
2015 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2016 | break; | |
2017 | ||
2018 | case DT_PLTRELSZ: | |
2019 | s = bfd_get_section_by_name (output_bfd, ".rela.plt"); | |
2020 | BFD_ASSERT (s != NULL); | |
2021 | if (s->_cooked_size != 0) | |
2022 | dyn.d_un.d_val = s->_cooked_size; | |
2023 | else | |
2024 | dyn.d_un.d_val = s->_raw_size; | |
2025 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2026 | break; | |
2027 | ||
2028 | case DT_RELASZ: | |
2029 | /* The procedure linkage table relocs (DT_JMPREL) should | |
2030 | not be included in the overall relocs (DT_RELA). | |
2031 | Therefore, we override the DT_RELASZ entry here to | |
2032 | make it not include the JMPREL relocs. Since the | |
2033 | linker script arranges for .rela.plt to follow all | |
2034 | other relocation sections, we don't have to worry | |
2035 | about changing the DT_RELA entry. */ | |
2036 | s = bfd_get_section_by_name (output_bfd, ".rela.plt"); | |
2037 | if (s != NULL) | |
2038 | { | |
2039 | if (s->_cooked_size != 0) | |
2040 | dyn.d_un.d_val -= s->_cooked_size; | |
2041 | else | |
2042 | dyn.d_un.d_val -= s->_raw_size; | |
2043 | } | |
2044 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2045 | break; | |
2046 | } | |
2047 | } | |
2048 | ||
2049 | /* Fill in the special first entry in the procedure linkage table. */ | |
2050 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
2051 | if (splt && splt->_raw_size > 0) | |
2052 | { | |
2053 | /* fill in blueprint for plt 0 entry */ | |
2054 | bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD0, | |
2055 | splt->contents ); | |
2056 | bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD1, | |
2057 | splt->contents +4 ); | |
2058 | bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD3, | |
2059 | splt->contents +12 ); | |
2060 | bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD4, | |
2061 | splt->contents +16 ); | |
2062 | bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD5, | |
2063 | splt->contents +20 ); | |
2064 | bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD6, | |
2065 | splt->contents + 24); | |
2066 | bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD7, | |
2067 | splt->contents + 28 ); | |
2068 | /* Fixup relative address to start of GOT */ | |
2069 | bfd_put_32 (output_bfd, | |
2070 | (sgot->output_section->vma + sgot->output_offset | |
2071 | - splt->output_section->vma - 6)/2, | |
2072 | splt->contents + 8); | |
2073 | } | |
2074 | ||
2075 | elf_section_data (splt->output_section)->this_hdr.sh_entsize = | |
2076 | PLT_ENTRY_SIZE; | |
2077 | } | |
2078 | ||
2079 | /* Set the first entry in the global offset table to the address of | |
2080 | the dynamic section. */ | |
2081 | if (sgot->_raw_size > 0) | |
2082 | { | |
2083 | if (sdyn == NULL) | |
2084 | bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents); | |
2085 | else | |
2086 | bfd_put_64 (output_bfd, | |
2087 | sdyn->output_section->vma + sdyn->output_offset, | |
2088 | sgot->contents); | |
2089 | ||
2090 | /* One entry for shared object struct ptr. */ | |
2091 | bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + 8); | |
2092 | /* One entry for _dl_runtime_resolve. */ | |
2093 | bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + 12); | |
2094 | } | |
2095 | ||
2096 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8; | |
2097 | ||
2098 | return true; | |
2099 | } | |
2100 | ||
2101 | static boolean | |
2102 | elf_s390_object_p (abfd) | |
2103 | bfd *abfd; | |
2104 | { | |
2105 | return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_esame); | |
2106 | } | |
2107 | ||
2108 | /* | |
2109 | * Why was the hash table entry size definition changed from | |
2110 | * ARCH_SIZE/8 to 4? This breaks the 64 bit dynamic linker and | |
2111 | * this is the only reason for the s390_elf64_size_info structure. | |
2112 | */ | |
2113 | ||
2114 | const struct elf_size_info s390_elf64_size_info = | |
2115 | { | |
2116 | sizeof (Elf64_External_Ehdr), | |
2117 | sizeof (Elf64_External_Phdr), | |
2118 | sizeof (Elf64_External_Shdr), | |
2119 | sizeof (Elf64_External_Rel), | |
2120 | sizeof (Elf64_External_Rela), | |
2121 | sizeof (Elf64_External_Sym), | |
2122 | sizeof (Elf64_External_Dyn), | |
2123 | sizeof (Elf_External_Note), | |
2124 | 8, /* hash-table entry size */ | |
2125 | 1, /* internal relocations per external relocations */ | |
2126 | 64, /* arch_size */ | |
2127 | 8, /* file_align */ | |
2128 | ELFCLASS64, EV_CURRENT, | |
2129 | bfd_elf64_write_out_phdrs, | |
2130 | bfd_elf64_write_shdrs_and_ehdr, | |
2131 | bfd_elf64_write_relocs, | |
2132 | bfd_elf64_swap_symbol_out, | |
2133 | bfd_elf64_slurp_reloc_table, | |
2134 | bfd_elf64_slurp_symbol_table, | |
2135 | bfd_elf64_swap_dyn_in, | |
2136 | bfd_elf64_swap_dyn_out, | |
2137 | NULL, | |
2138 | NULL, | |
2139 | NULL, | |
2140 | NULL | |
2141 | }; | |
2142 | ||
2143 | #define TARGET_BIG_SYM bfd_elf64_s390_vec | |
2144 | #define TARGET_BIG_NAME "elf64-s390" | |
2145 | #define ELF_ARCH bfd_arch_s390 | |
2146 | #define ELF_MACHINE_CODE EM_S390 | |
2147 | #define ELF_MACHINE_ALT1 EM_S390_OLD | |
2148 | #define ELF_MAXPAGESIZE 0x1000 | |
2149 | ||
2150 | #define elf_backend_size_info s390_elf64_size_info | |
2151 | ||
2152 | #define elf_backend_can_gc_sections 1 | |
2153 | #define elf_backend_want_got_plt 1 | |
2154 | #define elf_backend_plt_readonly 1 | |
2155 | #define elf_backend_want_plt_sym 0 | |
2156 | #define elf_backend_got_header_size 24 | |
2157 | #define elf_backend_plt_header_size PLT_ENTRY_SIZE | |
2158 | ||
2159 | #define elf_info_to_howto elf_s390_info_to_howto | |
2160 | ||
2161 | #define bfd_elf64_bfd_final_link _bfd_elf64_gc_common_final_link | |
2162 | #define bfd_elf64_bfd_is_local_label_name elf_s390_is_local_label_name | |
2163 | #define bfd_elf64_bfd_link_hash_table_create elf_s390_link_hash_table_create | |
2164 | #define bfd_elf64_bfd_reloc_type_lookup elf_s390_reloc_type_lookup | |
2165 | ||
2166 | #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol | |
2167 | #define elf_backend_check_relocs elf_s390_check_relocs | |
2168 | #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections | |
2169 | #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections | |
2170 | #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol | |
2171 | #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook | |
2172 | #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook | |
2173 | #define elf_backend_relocate_section elf_s390_relocate_section | |
2174 | #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections | |
2175 | ||
2176 | #define elf_backend_object_p elf_s390_object_p | |
2177 | ||
2178 | #include "elf64-target.h" |