]>
Commit | Line | Data |
---|---|---|
d031aafb | 1 | /* Target-dependent code for Morpho mt processor, for GDB. |
61def6bd | 2 | |
9b254dd1 | 3 | Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc. |
61def6bd KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
61def6bd KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
61def6bd KB |
19 | |
20 | /* Contributed by Michael Snyder, [email protected]. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "frame-unwind.h" | |
25 | #include "frame-base.h" | |
26 | #include "symtab.h" | |
27 | #include "dis-asm.h" | |
28 | #include "arch-utils.h" | |
29 | #include "gdbtypes.h" | |
30 | #include "gdb_string.h" | |
31 | #include "regcache.h" | |
32 | #include "reggroups.h" | |
33 | #include "gdbcore.h" | |
34 | #include "trad-frame.h" | |
35 | #include "inferior.h" | |
36 | #include "dwarf2-frame.h" | |
37 | #include "infcall.h" | |
38 | #include "gdb_assert.h" | |
d8ca156b | 39 | #include "language.h" |
61def6bd | 40 | |
d031aafb | 41 | enum mt_arch_constants |
61def6bd | 42 | { |
d031aafb | 43 | MT_MAX_STRUCT_SIZE = 16 |
61def6bd KB |
44 | }; |
45 | ||
d031aafb | 46 | enum mt_gdb_regnums |
61def6bd | 47 | { |
d031aafb NS |
48 | MT_R0_REGNUM, /* 32 bit regs. */ |
49 | MT_R1_REGNUM, | |
50 | MT_1ST_ARGREG = MT_R1_REGNUM, | |
51 | MT_R2_REGNUM, | |
52 | MT_R3_REGNUM, | |
53 | MT_R4_REGNUM, | |
54 | MT_LAST_ARGREG = MT_R4_REGNUM, | |
55 | MT_R5_REGNUM, | |
56 | MT_R6_REGNUM, | |
57 | MT_R7_REGNUM, | |
58 | MT_R8_REGNUM, | |
59 | MT_R9_REGNUM, | |
60 | MT_R10_REGNUM, | |
61 | MT_R11_REGNUM, | |
62 | MT_R12_REGNUM, | |
63 | MT_FP_REGNUM = MT_R12_REGNUM, | |
64 | MT_R13_REGNUM, | |
65 | MT_SP_REGNUM = MT_R13_REGNUM, | |
66 | MT_R14_REGNUM, | |
67 | MT_RA_REGNUM = MT_R14_REGNUM, | |
68 | MT_R15_REGNUM, | |
69 | MT_IRA_REGNUM = MT_R15_REGNUM, | |
70 | MT_PC_REGNUM, | |
61def6bd KB |
71 | |
72 | /* Interrupt Enable pseudo-register, exported by SID. */ | |
d031aafb | 73 | MT_INT_ENABLE_REGNUM, |
61def6bd KB |
74 | /* End of CPU regs. */ |
75 | ||
d031aafb | 76 | MT_NUM_CPU_REGS, |
61def6bd KB |
77 | |
78 | /* Co-processor registers. */ | |
d031aafb NS |
79 | MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */ |
80 | MT_CPR0_REGNUM, | |
81 | MT_CPR1_REGNUM, | |
82 | MT_CPR2_REGNUM, | |
83 | MT_CPR3_REGNUM, | |
84 | MT_CPR4_REGNUM, | |
85 | MT_CPR5_REGNUM, | |
86 | MT_CPR6_REGNUM, | |
87 | MT_CPR7_REGNUM, | |
88 | MT_CPR8_REGNUM, | |
89 | MT_CPR9_REGNUM, | |
90 | MT_CPR10_REGNUM, | |
91 | MT_CPR11_REGNUM, | |
92 | MT_CPR12_REGNUM, | |
93 | MT_CPR13_REGNUM, | |
94 | MT_CPR14_REGNUM, | |
95 | MT_CPR15_REGNUM, | |
96 | MT_BYPA_REGNUM, /* 32 bit regs. */ | |
97 | MT_BYPB_REGNUM, | |
98 | MT_BYPC_REGNUM, | |
99 | MT_FLAG_REGNUM, | |
100 | MT_CONTEXT_REGNUM, /* 38 bits (treat as array of | |
61def6bd | 101 | six bytes). */ |
d031aafb NS |
102 | MT_MAC_REGNUM, /* 32 bits. */ |
103 | MT_Z1_REGNUM, /* 16 bits. */ | |
104 | MT_Z2_REGNUM, /* 16 bits. */ | |
105 | MT_ICHANNEL_REGNUM, /* 32 bits. */ | |
106 | MT_ISCRAMB_REGNUM, /* 32 bits. */ | |
107 | MT_QSCRAMB_REGNUM, /* 32 bits. */ | |
108 | MT_OUT_REGNUM, /* 16 bits. */ | |
109 | MT_EXMAC_REGNUM, /* 32 bits (8 used). */ | |
110 | MT_QCHANNEL_REGNUM, /* 32 bits. */ | |
03a73f77 MM |
111 | MT_ZI2_REGNUM, /* 16 bits. */ |
112 | MT_ZQ2_REGNUM, /* 16 bits. */ | |
113 | MT_CHANNEL2_REGNUM, /* 32 bits. */ | |
114 | MT_ISCRAMB2_REGNUM, /* 32 bits. */ | |
115 | MT_QSCRAMB2_REGNUM, /* 32 bits. */ | |
116 | MT_QCHANNEL2_REGNUM, /* 32 bits. */ | |
61def6bd KB |
117 | |
118 | /* Number of real registers. */ | |
d031aafb | 119 | MT_NUM_REGS, |
61def6bd KB |
120 | |
121 | /* Pseudo-registers. */ | |
d031aafb NS |
122 | MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS, |
123 | MT_MAC_PSEUDOREG_REGNUM, | |
60e81fcc NS |
124 | MT_COPRO_PSEUDOREG_ARRAY, |
125 | ||
126 | MT_COPRO_PSEUDOREG_DIM_1 = 2, | |
127 | MT_COPRO_PSEUDOREG_DIM_2 = 8, | |
03a73f77 MM |
128 | /* The number of pseudo-registers for each coprocessor. These |
129 | include the real coprocessor registers, the pseudo-registe for | |
130 | the coprocessor number, and the pseudo-register for the MAC. */ | |
131 | MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2, | |
132 | /* The register number of the MAC, relative to a given coprocessor. */ | |
133 | MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1, | |
61def6bd KB |
134 | |
135 | /* Two pseudo-regs ('coprocessor' and 'mac'). */ | |
60e81fcc NS |
136 | MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS |
137 | * MT_COPRO_PSEUDOREG_DIM_1 | |
138 | * MT_COPRO_PSEUDOREG_DIM_2) | |
61def6bd KB |
139 | }; |
140 | ||
141 | /* Return name of register number specified by REGNUM. */ | |
142 | ||
143 | static const char * | |
d93859e2 | 144 | mt_register_name (struct gdbarch *gdbarch, int regnum) |
61def6bd | 145 | { |
58b78171 | 146 | static const char *const register_names[] = { |
61def6bd KB |
147 | /* CPU regs. */ |
148 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
149 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
150 | "pc", "IE", | |
151 | /* Co-processor regs. */ | |
152 | "", /* copro register. */ | |
153 | "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", | |
154 | "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15", | |
155 | "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2", | |
156 | "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel", | |
03a73f77 | 157 | "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2", |
61def6bd KB |
158 | /* Pseudo-registers. */ |
159 | "coprocessor", "MAC" | |
160 | }; | |
60e81fcc NS |
161 | static const char *array_names[MT_COPRO_PSEUDOREG_REGS |
162 | * MT_COPRO_PSEUDOREG_DIM_1 | |
163 | * MT_COPRO_PSEUDOREG_DIM_2]; | |
164 | ||
165 | if (regnum < 0) | |
166 | return ""; | |
167 | if (regnum < ARRAY_SIZE (register_names)) | |
168 | return register_names[regnum]; | |
169 | if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY]) | |
170 | return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY]; | |
171 | ||
172 | { | |
173 | char *name; | |
174 | const char *stub; | |
175 | unsigned dim_1; | |
176 | unsigned dim_2; | |
177 | unsigned index; | |
178 | ||
179 | regnum -= MT_COPRO_PSEUDOREG_ARRAY; | |
180 | index = regnum % MT_COPRO_PSEUDOREG_REGS; | |
181 | dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2; | |
182 | dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2) | |
183 | % MT_COPRO_PSEUDOREG_DIM_1); | |
184 | ||
03a73f77 | 185 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc | 186 | stub = register_names[MT_MAC_PSEUDOREG_REGNUM]; |
03a73f77 | 187 | else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM) |
60e81fcc NS |
188 | stub = ""; |
189 | else | |
190 | stub = register_names[index + MT_CPR0_REGNUM]; | |
191 | if (!*stub) | |
192 | { | |
193 | array_names[regnum] = stub; | |
194 | return stub; | |
195 | } | |
196 | name = xmalloc (30); | |
197 | sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub); | |
198 | array_names[regnum] = name; | |
199 | return name; | |
200 | } | |
201 | } | |
61def6bd | 202 | |
60e81fcc NS |
203 | /* Return the type of a coprocessor register. */ |
204 | ||
205 | static struct type * | |
206 | mt_copro_register_type (struct gdbarch *arch, int regnum) | |
207 | { | |
208 | switch (regnum) | |
209 | { | |
210 | case MT_INT_ENABLE_REGNUM: | |
211 | case MT_ICHANNEL_REGNUM: | |
212 | case MT_QCHANNEL_REGNUM: | |
213 | case MT_ISCRAMB_REGNUM: | |
214 | case MT_QSCRAMB_REGNUM: | |
215 | return builtin_type_int32; | |
216 | case MT_BYPA_REGNUM: | |
217 | case MT_BYPB_REGNUM: | |
218 | case MT_BYPC_REGNUM: | |
219 | case MT_Z1_REGNUM: | |
220 | case MT_Z2_REGNUM: | |
221 | case MT_OUT_REGNUM: | |
03a73f77 MM |
222 | case MT_ZI2_REGNUM: |
223 | case MT_ZQ2_REGNUM: | |
60e81fcc NS |
224 | return builtin_type_int16; |
225 | case MT_EXMAC_REGNUM: | |
226 | case MT_MAC_REGNUM: | |
227 | return builtin_type_uint32; | |
228 | case MT_CONTEXT_REGNUM: | |
229 | return builtin_type_long_long; | |
230 | case MT_FLAG_REGNUM: | |
231 | return builtin_type_unsigned_char; | |
232 | default: | |
233 | if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM) | |
234 | return builtin_type_int16; | |
03a73f77 | 235 | else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc NS |
236 | { |
237 | if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2 | |
238 | || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2) | |
239 | return builtin_type_uint64; | |
240 | else | |
241 | return builtin_type_uint32; | |
242 | } | |
243 | else | |
244 | return builtin_type_uint32; | |
245 | } | |
61def6bd KB |
246 | } |
247 | ||
248 | /* Given ARCH and a register number specified by REGNUM, return the | |
249 | type of that register. */ | |
250 | ||
251 | static struct type * | |
d031aafb | 252 | mt_register_type (struct gdbarch *arch, int regnum) |
61def6bd KB |
253 | { |
254 | static struct type *void_func_ptr = NULL; | |
255 | static struct type *void_ptr = NULL; | |
256 | static struct type *copro_type; | |
257 | ||
d031aafb | 258 | if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS) |
61def6bd KB |
259 | { |
260 | if (void_func_ptr == NULL) | |
261 | { | |
262 | struct type *temp; | |
263 | ||
264 | void_ptr = lookup_pointer_type (builtin_type_void); | |
265 | void_func_ptr = | |
266 | lookup_pointer_type (lookup_function_type (builtin_type_void)); | |
267 | temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1); | |
268 | copro_type = create_array_type (NULL, builtin_type_int16, temp); | |
269 | } | |
270 | switch (regnum) | |
271 | { | |
d031aafb NS |
272 | case MT_PC_REGNUM: |
273 | case MT_RA_REGNUM: | |
274 | case MT_IRA_REGNUM: | |
61def6bd | 275 | return void_func_ptr; |
d031aafb NS |
276 | case MT_SP_REGNUM: |
277 | case MT_FP_REGNUM: | |
61def6bd | 278 | return void_ptr; |
d031aafb NS |
279 | case MT_COPRO_REGNUM: |
280 | case MT_COPRO_PSEUDOREG_REGNUM: | |
61def6bd | 281 | return copro_type; |
d031aafb | 282 | case MT_MAC_PSEUDOREG_REGNUM: |
60e81fcc NS |
283 | return mt_copro_register_type (arch, |
284 | MT_CPR0_REGNUM | |
03a73f77 | 285 | + MT_COPRO_PSEUDOREG_MAC_REGNUM); |
61def6bd | 286 | default: |
d031aafb | 287 | if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM) |
61def6bd | 288 | return builtin_type_int32; |
60e81fcc NS |
289 | else if (regnum < MT_COPRO_PSEUDOREG_ARRAY) |
290 | return mt_copro_register_type (arch, regnum); | |
291 | else | |
292 | { | |
293 | regnum -= MT_COPRO_PSEUDOREG_ARRAY; | |
294 | regnum %= MT_COPRO_PSEUDOREG_REGS; | |
295 | regnum += MT_CPR0_REGNUM; | |
296 | return mt_copro_register_type (arch, regnum); | |
297 | } | |
61def6bd KB |
298 | } |
299 | } | |
300 | internal_error (__FILE__, __LINE__, | |
d031aafb | 301 | _("mt_register_type: illegal register number %d"), regnum); |
61def6bd KB |
302 | } |
303 | ||
304 | /* Return true if register REGNUM is a member of the register group | |
305 | specified by GROUP. */ | |
306 | ||
307 | static int | |
d031aafb | 308 | mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
61def6bd KB |
309 | struct reggroup *group) |
310 | { | |
311 | /* Groups of registers that can be displayed via "info reg". */ | |
312 | if (group == all_reggroup) | |
313 | return (regnum >= 0 | |
d031aafb | 314 | && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS |
d93859e2 | 315 | && mt_register_name (gdbarch, regnum)[0] != '\0'); |
61def6bd KB |
316 | |
317 | if (group == general_reggroup) | |
d031aafb | 318 | return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM); |
61def6bd KB |
319 | |
320 | if (group == float_reggroup) | |
321 | return 0; /* No float regs. */ | |
322 | ||
323 | if (group == vector_reggroup) | |
324 | return 0; /* No vector regs. */ | |
325 | ||
326 | /* For any that are not handled above. */ | |
327 | return default_register_reggroup_p (gdbarch, regnum, group); | |
328 | } | |
329 | ||
330 | /* Return the return value convention used for a given type TYPE. | |
331 | Optionally, fetch or set the return value via READBUF or | |
332 | WRITEBUF respectively using REGCACHE for the register | |
333 | values. */ | |
334 | ||
335 | static enum return_value_convention | |
c055b101 CV |
336 | mt_return_value (struct gdbarch *gdbarch, struct type *func_type, |
337 | struct type *type, struct regcache *regcache, | |
338 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
61def6bd KB |
339 | { |
340 | if (TYPE_LENGTH (type) > 4) | |
341 | { | |
342 | /* Return values > 4 bytes are returned in memory, | |
343 | pointed to by R11. */ | |
344 | if (readbuf) | |
345 | { | |
346 | ULONGEST addr; | |
347 | ||
d031aafb | 348 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr); |
61def6bd KB |
349 | read_memory (addr, readbuf, TYPE_LENGTH (type)); |
350 | } | |
351 | ||
352 | if (writebuf) | |
353 | { | |
354 | ULONGEST addr; | |
355 | ||
d031aafb | 356 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr); |
61def6bd KB |
357 | write_memory (addr, writebuf, TYPE_LENGTH (type)); |
358 | } | |
359 | ||
360 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
361 | } | |
362 | else | |
363 | { | |
364 | if (readbuf) | |
365 | { | |
366 | ULONGEST temp; | |
367 | ||
368 | /* Return values of <= 4 bytes are returned in R11. */ | |
d031aafb | 369 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp); |
61def6bd KB |
370 | store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp); |
371 | } | |
372 | ||
373 | if (writebuf) | |
374 | { | |
375 | if (TYPE_LENGTH (type) < 4) | |
376 | { | |
377 | gdb_byte buf[4]; | |
378 | /* Add leading zeros to the value. */ | |
379 | memset (buf, 0, sizeof (buf)); | |
380 | memcpy (buf + sizeof (buf) - TYPE_LENGTH (type), | |
381 | writebuf, TYPE_LENGTH (type)); | |
d031aafb | 382 | regcache_cooked_write (regcache, MT_R11_REGNUM, buf); |
61def6bd KB |
383 | } |
384 | else /* (TYPE_LENGTH (type) == 4 */ | |
d031aafb | 385 | regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf); |
61def6bd KB |
386 | } |
387 | ||
388 | return RETURN_VALUE_REGISTER_CONVENTION; | |
389 | } | |
390 | } | |
391 | ||
392 | /* If the input address, PC, is in a function prologue, return the | |
393 | address of the end of the prologue, otherwise return the input | |
394 | address. | |
395 | ||
396 | Note: PC is likely to be the function start, since this function | |
397 | is mainly used for advancing a breakpoint to the first line, or | |
398 | stepping to the first line when we have stepped into a function | |
399 | call. */ | |
400 | ||
401 | static CORE_ADDR | |
6093d2eb | 402 | mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
61def6bd KB |
403 | { |
404 | CORE_ADDR func_addr = 0, func_end = 0; | |
405 | char *func_name; | |
406 | unsigned long instr; | |
407 | ||
408 | if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) | |
409 | { | |
410 | struct symtab_and_line sal; | |
411 | struct symbol *sym; | |
412 | ||
413 | /* Found a function. */ | |
2570f2b7 | 414 | sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL); |
61def6bd KB |
415 | if (sym && SYMBOL_LANGUAGE (sym) != language_asm) |
416 | { | |
417 | /* Don't use this trick for assembly source files. */ | |
418 | sal = find_pc_line (func_addr, 0); | |
419 | ||
420 | if (sal.end && sal.end < func_end) | |
421 | { | |
422 | /* Found a line number, use it as end of prologue. */ | |
423 | return sal.end; | |
424 | } | |
425 | } | |
426 | } | |
427 | ||
428 | /* No function symbol, or no line symbol. Use prologue scanning method. */ | |
429 | for (;; pc += 4) | |
430 | { | |
431 | instr = read_memory_unsigned_integer (pc, 4); | |
432 | if (instr == 0x12000000) /* nop */ | |
433 | continue; | |
434 | if (instr == 0x12ddc000) /* copy sp into fp */ | |
435 | continue; | |
436 | instr >>= 16; | |
437 | if (instr == 0x05dd) /* subi sp, sp, imm */ | |
438 | continue; | |
439 | if (instr >= 0x43c0 && instr <= 0x43df) /* push */ | |
440 | continue; | |
441 | /* Not an obvious prologue instruction. */ | |
442 | break; | |
443 | } | |
444 | ||
445 | return pc; | |
446 | } | |
447 | ||
448 | /* The breakpoint instruction must be the same size as the smallest | |
449 | instruction in the instruction set. | |
450 | ||
3950dc3f NS |
451 | The BP for ms1 is defined as 0x68000000 (BREAK). |
452 | The BP for ms2 is defined as 0x69000000 (illegal) */ | |
61def6bd KB |
453 | |
454 | static const gdb_byte * | |
67d57894 MD |
455 | mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, |
456 | int *bp_size) | |
61def6bd | 457 | { |
3950dc3f NS |
458 | static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 }; |
459 | static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 }; | |
61def6bd KB |
460 | |
461 | *bp_size = 4; | |
67d57894 | 462 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) |
3950dc3f NS |
463 | return ms2_breakpoint; |
464 | ||
465 | return ms1_breakpoint; | |
61def6bd KB |
466 | } |
467 | ||
60e81fcc NS |
468 | /* Select the correct coprocessor register bank. Return the pseudo |
469 | regnum we really want to read. */ | |
470 | ||
471 | static int | |
472 | mt_select_coprocessor (struct gdbarch *gdbarch, | |
473 | struct regcache *regcache, int regno) | |
474 | { | |
475 | unsigned index, base; | |
476 | gdb_byte copro[4]; | |
477 | ||
478 | /* Get the copro pseudo regnum. */ | |
479 | regcache_raw_read (regcache, MT_COPRO_REGNUM, copro); | |
480 | base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2 | |
481 | + extract_signed_integer (&copro[2], 2)); | |
482 | ||
483 | regno -= MT_COPRO_PSEUDOREG_ARRAY; | |
484 | index = regno % MT_COPRO_PSEUDOREG_REGS; | |
485 | regno /= MT_COPRO_PSEUDOREG_REGS; | |
486 | if (base != regno) | |
487 | { | |
488 | /* Select the correct coprocessor register bank. Invalidate the | |
489 | coprocessor register cache. */ | |
490 | unsigned ix; | |
491 | ||
492 | store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2); | |
493 | store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2); | |
494 | regcache_raw_write (regcache, MT_COPRO_REGNUM, copro); | |
495 | ||
496 | /* We must flush the cache, as it is now invalid. */ | |
497 | for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++) | |
9c5ea4d9 | 498 | regcache_invalidate (regcache, ix); |
60e81fcc NS |
499 | } |
500 | ||
501 | return index; | |
502 | } | |
503 | ||
61def6bd KB |
504 | /* Fetch the pseudo registers: |
505 | ||
60e81fcc | 506 | There are two regular pseudo-registers: |
61def6bd KB |
507 | 1) The 'coprocessor' pseudo-register (which mirrors the |
508 | "real" coprocessor register sent by the target), and | |
509 | 2) The 'MAC' pseudo-register (which represents the union | |
510 | of the original 32 bit target MAC register and the new | |
60e81fcc NS |
511 | 8-bit extended-MAC register). |
512 | ||
513 | Additionally there is an array of coprocessor registers which track | |
514 | the coprocessor registers for each coprocessor. */ | |
61def6bd KB |
515 | |
516 | static void | |
d031aafb | 517 | mt_pseudo_register_read (struct gdbarch *gdbarch, |
61def6bd KB |
518 | struct regcache *regcache, int regno, gdb_byte *buf) |
519 | { | |
520 | switch (regno) | |
521 | { | |
d031aafb NS |
522 | case MT_COPRO_REGNUM: |
523 | case MT_COPRO_PSEUDOREG_REGNUM: | |
524 | regcache_raw_read (regcache, MT_COPRO_REGNUM, buf); | |
61def6bd | 525 | break; |
d031aafb NS |
526 | case MT_MAC_REGNUM: |
527 | case MT_MAC_PSEUDOREG_REGNUM: | |
3950dc3f NS |
528 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
529 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd KB |
530 | { |
531 | ULONGEST oldmac = 0, ext_mac = 0; | |
532 | ULONGEST newmac; | |
533 | ||
d031aafb NS |
534 | regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac); |
535 | regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac); | |
61def6bd KB |
536 | newmac = |
537 | (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32); | |
538 | store_signed_integer (buf, 8, newmac); | |
539 | } | |
540 | else | |
d031aafb | 541 | regcache_raw_read (regcache, MT_MAC_REGNUM, buf); |
61def6bd KB |
542 | break; |
543 | default: | |
60e81fcc NS |
544 | { |
545 | unsigned index = mt_select_coprocessor (gdbarch, regcache, regno); | |
546 | ||
03a73f77 | 547 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc | 548 | mt_pseudo_register_read (gdbarch, regcache, |
03a73f77 | 549 | MT_MAC_PSEUDOREG_REGNUM, buf); |
60e81fcc NS |
550 | else if (index < MT_NUM_REGS - MT_CPR0_REGNUM) |
551 | regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf); | |
552 | } | |
61def6bd KB |
553 | break; |
554 | } | |
555 | } | |
556 | ||
557 | /* Write the pseudo registers: | |
558 | ||
d031aafb | 559 | Mt pseudo-registers are stored directly to the target. The |
61def6bd KB |
560 | 'coprocessor' register is special, because when it is modified, all |
561 | the other coprocessor regs must be flushed from the reg cache. */ | |
562 | ||
563 | static void | |
d031aafb | 564 | mt_pseudo_register_write (struct gdbarch *gdbarch, |
61def6bd KB |
565 | struct regcache *regcache, |
566 | int regno, const gdb_byte *buf) | |
567 | { | |
568 | int i; | |
569 | ||
570 | switch (regno) | |
571 | { | |
d031aafb NS |
572 | case MT_COPRO_REGNUM: |
573 | case MT_COPRO_PSEUDOREG_REGNUM: | |
574 | regcache_raw_write (regcache, MT_COPRO_REGNUM, buf); | |
575 | for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++) | |
9c5ea4d9 | 576 | regcache_invalidate (regcache, i); |
61def6bd | 577 | break; |
d031aafb NS |
578 | case MT_MAC_REGNUM: |
579 | case MT_MAC_PSEUDOREG_REGNUM: | |
3950dc3f NS |
580 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
581 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd KB |
582 | { |
583 | /* The 8-byte MAC pseudo-register must be broken down into two | |
584 | 32-byte registers. */ | |
585 | unsigned int oldmac, ext_mac; | |
586 | ULONGEST newmac; | |
587 | ||
588 | newmac = extract_unsigned_integer (buf, 8); | |
589 | oldmac = newmac & 0xffffffff; | |
590 | ext_mac = (newmac >> 32) & 0xff; | |
d031aafb NS |
591 | regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac); |
592 | regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac); | |
61def6bd KB |
593 | } |
594 | else | |
d031aafb | 595 | regcache_raw_write (regcache, MT_MAC_REGNUM, buf); |
61def6bd KB |
596 | break; |
597 | default: | |
60e81fcc NS |
598 | { |
599 | unsigned index = mt_select_coprocessor (gdbarch, regcache, regno); | |
600 | ||
03a73f77 | 601 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc | 602 | mt_pseudo_register_write (gdbarch, regcache, |
03a73f77 | 603 | MT_MAC_PSEUDOREG_REGNUM, buf); |
60e81fcc NS |
604 | else if (index < MT_NUM_REGS - MT_CPR0_REGNUM) |
605 | regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf); | |
606 | } | |
61def6bd KB |
607 | break; |
608 | } | |
609 | } | |
610 | ||
611 | static CORE_ADDR | |
d031aafb | 612 | mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
61def6bd KB |
613 | { |
614 | /* Register size is 4 bytes. */ | |
615 | return align_down (sp, 4); | |
616 | } | |
617 | ||
618 | /* Implements the "info registers" command. When ``all'' is non-zero, | |
619 | the coprocessor registers will be printed in addition to the rest | |
620 | of the registers. */ | |
621 | ||
622 | static void | |
d031aafb | 623 | mt_registers_info (struct gdbarch *gdbarch, |
d93859e2 UW |
624 | struct ui_file *file, |
625 | struct frame_info *frame, int regnum, int all) | |
61def6bd KB |
626 | { |
627 | if (regnum == -1) | |
628 | { | |
629 | int lim; | |
630 | ||
d031aafb | 631 | lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS; |
61def6bd KB |
632 | |
633 | for (regnum = 0; regnum < lim; regnum++) | |
634 | { | |
635 | /* Don't display the Qchannel register since it will be displayed | |
636 | along with Ichannel. (See below.) */ | |
d031aafb | 637 | if (regnum == MT_QCHANNEL_REGNUM) |
61def6bd KB |
638 | continue; |
639 | ||
d031aafb | 640 | mt_registers_info (gdbarch, file, frame, regnum, all); |
61def6bd KB |
641 | |
642 | /* Display the Qchannel register immediately after Ichannel. */ | |
d031aafb NS |
643 | if (regnum == MT_ICHANNEL_REGNUM) |
644 | mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all); | |
61def6bd KB |
645 | } |
646 | } | |
647 | else | |
648 | { | |
d031aafb | 649 | if (regnum == MT_EXMAC_REGNUM) |
61def6bd | 650 | return; |
d031aafb | 651 | else if (regnum == MT_CONTEXT_REGNUM) |
61def6bd KB |
652 | { |
653 | /* Special output handling for 38-bit context register. */ | |
654 | unsigned char *buff; | |
655 | unsigned int *bytes, i, regsize; | |
656 | ||
657 | regsize = register_size (gdbarch, regnum); | |
658 | ||
659 | buff = alloca (regsize); | |
660 | bytes = alloca (regsize * sizeof (*bytes)); | |
661 | ||
662 | frame_register_read (frame, regnum, buff); | |
663 | ||
c9f4d572 | 664 | fputs_filtered (gdbarch_register_name |
d93859e2 | 665 | (gdbarch, regnum), file); |
c9f4d572 | 666 | print_spaces_filtered (15 - strlen (gdbarch_register_name |
d93859e2 | 667 | (gdbarch, regnum)), |
c9f4d572 | 668 | file); |
61def6bd KB |
669 | fputs_filtered ("0x", file); |
670 | ||
671 | for (i = 0; i < regsize; i++) | |
672 | fprintf_filtered (file, "%02x", (unsigned int) | |
673 | extract_unsigned_integer (buff + i, 1)); | |
674 | fputs_filtered ("\t", file); | |
675 | print_longest (file, 'd', 0, | |
676 | extract_unsigned_integer (buff, regsize)); | |
677 | fputs_filtered ("\n", file); | |
678 | } | |
d031aafb NS |
679 | else if (regnum == MT_COPRO_REGNUM |
680 | || regnum == MT_COPRO_PSEUDOREG_REGNUM) | |
61def6bd KB |
681 | { |
682 | /* Special output handling for the 'coprocessor' register. */ | |
58b78171 | 683 | gdb_byte *buf; |
61def6bd | 684 | |
d031aafb NS |
685 | buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM)); |
686 | frame_register_read (frame, MT_COPRO_REGNUM, buf); | |
61def6bd | 687 | /* And print. */ |
d031aafb | 688 | regnum = MT_COPRO_PSEUDOREG_REGNUM; |
d93859e2 | 689 | fputs_filtered (gdbarch_register_name (gdbarch, regnum), |
c9f4d572 UW |
690 | file); |
691 | print_spaces_filtered (15 - strlen (gdbarch_register_name | |
d93859e2 | 692 | (gdbarch, regnum)), |
c9f4d572 | 693 | file); |
61def6bd | 694 | val_print (register_type (gdbarch, regnum), buf, |
d8ca156b JB |
695 | 0, 0, file, 0, 1, 0, Val_no_prettyprint, |
696 | current_language); | |
61def6bd KB |
697 | fputs_filtered ("\n", file); |
698 | } | |
d031aafb | 699 | else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM) |
61def6bd KB |
700 | { |
701 | ULONGEST oldmac, ext_mac, newmac; | |
58b78171 | 702 | gdb_byte buf[3 * sizeof (LONGEST)]; |
61def6bd KB |
703 | |
704 | /* Get the two "real" mac registers. */ | |
d031aafb | 705 | frame_register_read (frame, MT_MAC_REGNUM, buf); |
3950dc3f | 706 | oldmac = extract_unsigned_integer |
d031aafb | 707 | (buf, register_size (gdbarch, MT_MAC_REGNUM)); |
58b78171 NS |
708 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
709 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd | 710 | { |
d031aafb | 711 | frame_register_read (frame, MT_EXMAC_REGNUM, buf); |
3950dc3f | 712 | ext_mac = extract_unsigned_integer |
d031aafb | 713 | (buf, register_size (gdbarch, MT_EXMAC_REGNUM)); |
61def6bd KB |
714 | } |
715 | else | |
716 | ext_mac = 0; | |
717 | ||
718 | /* Add them together. */ | |
719 | newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32); | |
720 | ||
721 | /* And print. */ | |
d031aafb | 722 | regnum = MT_MAC_PSEUDOREG_REGNUM; |
d93859e2 | 723 | fputs_filtered (gdbarch_register_name (gdbarch, regnum), |
c9f4d572 UW |
724 | file); |
725 | print_spaces_filtered (15 - strlen (gdbarch_register_name | |
d93859e2 | 726 | (gdbarch, regnum)), |
c9f4d572 | 727 | file); |
61def6bd KB |
728 | fputs_filtered ("0x", file); |
729 | print_longest (file, 'x', 0, newmac); | |
730 | fputs_filtered ("\t", file); | |
731 | print_longest (file, 'u', 0, newmac); | |
732 | fputs_filtered ("\n", file); | |
733 | } | |
734 | else | |
735 | default_print_registers_info (gdbarch, file, frame, regnum, all); | |
736 | } | |
737 | } | |
738 | ||
739 | /* Set up the callee's arguments for an inferior function call. The | |
740 | arguments are pushed on the stack or are placed in registers as | |
741 | appropriate. It also sets up the return address (which points to | |
742 | the call dummy breakpoint). | |
743 | ||
744 | Returns the updated (and aligned) stack pointer. */ | |
745 | ||
746 | static CORE_ADDR | |
d031aafb | 747 | mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
61def6bd KB |
748 | struct regcache *regcache, CORE_ADDR bp_addr, |
749 | int nargs, struct value **args, CORE_ADDR sp, | |
750 | int struct_return, CORE_ADDR struct_addr) | |
751 | { | |
752 | #define wordsize 4 | |
d031aafb NS |
753 | gdb_byte buf[MT_MAX_STRUCT_SIZE]; |
754 | int argreg = MT_1ST_ARGREG; | |
61def6bd KB |
755 | int split_param_len = 0; |
756 | int stack_dest = sp; | |
757 | int slacklen; | |
758 | int typelen; | |
759 | int i, j; | |
760 | ||
d031aafb NS |
761 | /* First handle however many args we can fit into MT_1ST_ARGREG thru |
762 | MT_LAST_ARGREG. */ | |
763 | for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++) | |
61def6bd | 764 | { |
58b78171 | 765 | const gdb_byte *val; |
61def6bd KB |
766 | typelen = TYPE_LENGTH (value_type (args[i])); |
767 | switch (typelen) | |
768 | { | |
769 | case 1: | |
770 | case 2: | |
771 | case 3: | |
772 | case 4: | |
773 | regcache_cooked_write_unsigned (regcache, argreg++, | |
774 | extract_unsigned_integer | |
775 | (value_contents (args[i]), | |
776 | wordsize)); | |
777 | break; | |
778 | case 8: | |
779 | case 12: | |
780 | case 16: | |
781 | val = value_contents (args[i]); | |
782 | while (typelen > 0) | |
783 | { | |
d031aafb | 784 | if (argreg <= MT_LAST_ARGREG) |
61def6bd KB |
785 | { |
786 | /* This word of the argument is passed in a register. */ | |
787 | regcache_cooked_write_unsigned (regcache, argreg++, | |
788 | extract_unsigned_integer | |
789 | (val, wordsize)); | |
790 | typelen -= wordsize; | |
791 | val += wordsize; | |
792 | } | |
793 | else | |
794 | { | |
795 | /* Remainder of this arg must be passed on the stack | |
796 | (deferred to do later). */ | |
797 | split_param_len = typelen; | |
798 | memcpy (buf, val, typelen); | |
799 | break; /* No more args can be handled in regs. */ | |
800 | } | |
801 | } | |
802 | break; | |
803 | default: | |
804 | /* By reverse engineering of gcc output, args bigger than | |
805 | 16 bytes go on the stack, and their address is passed | |
806 | in the argreg. */ | |
807 | stack_dest -= typelen; | |
808 | write_memory (stack_dest, value_contents (args[i]), typelen); | |
809 | regcache_cooked_write_unsigned (regcache, argreg++, stack_dest); | |
810 | break; | |
811 | } | |
812 | } | |
813 | ||
814 | /* Next, the rest of the arguments go onto the stack, in reverse order. */ | |
815 | for (j = nargs - 1; j >= i; j--) | |
816 | { | |
58b78171 NS |
817 | gdb_byte *val; |
818 | ||
61def6bd KB |
819 | /* Right-justify the value in an aligned-length buffer. */ |
820 | typelen = TYPE_LENGTH (value_type (args[j])); | |
821 | slacklen = (wordsize - (typelen % wordsize)) % wordsize; | |
822 | val = alloca (typelen + slacklen); | |
823 | memcpy (val, value_contents (args[j]), typelen); | |
824 | memset (val + typelen, 0, slacklen); | |
825 | /* Now write this data to the stack. */ | |
826 | stack_dest -= typelen + slacklen; | |
827 | write_memory (stack_dest, val, typelen + slacklen); | |
828 | } | |
829 | ||
830 | /* Finally, if a param needs to be split between registers and stack, | |
831 | write the second half to the stack now. */ | |
832 | if (split_param_len != 0) | |
833 | { | |
834 | stack_dest -= split_param_len; | |
835 | write_memory (stack_dest, buf, split_param_len); | |
836 | } | |
837 | ||
838 | /* Set up return address (provided to us as bp_addr). */ | |
d031aafb | 839 | regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr); |
61def6bd KB |
840 | |
841 | /* Store struct return address, if given. */ | |
842 | if (struct_return && struct_addr != 0) | |
d031aafb | 843 | regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr); |
61def6bd KB |
844 | |
845 | /* Set aside 16 bytes for the callee to save regs 1-4. */ | |
846 | stack_dest -= 16; | |
847 | ||
848 | /* Update the stack pointer. */ | |
d031aafb | 849 | regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest); |
61def6bd KB |
850 | |
851 | /* And that should do it. Return the new stack pointer. */ | |
852 | return stack_dest; | |
853 | } | |
854 | ||
855 | ||
856 | /* The 'unwind_cache' data structure. */ | |
857 | ||
d031aafb | 858 | struct mt_unwind_cache |
61def6bd KB |
859 | { |
860 | /* The previous frame's inner most stack address. | |
861 | Used as this frame ID's stack_addr. */ | |
862 | CORE_ADDR prev_sp; | |
863 | CORE_ADDR frame_base; | |
864 | int framesize; | |
865 | int frameless_p; | |
866 | ||
867 | /* Table indicating the location of each and every register. */ | |
868 | struct trad_frame_saved_reg *saved_regs; | |
869 | }; | |
870 | ||
871 | /* Initialize an unwind_cache. Build up the saved_regs table etc. for | |
872 | the frame. */ | |
873 | ||
d031aafb NS |
874 | static struct mt_unwind_cache * |
875 | mt_frame_unwind_cache (struct frame_info *next_frame, | |
61def6bd KB |
876 | void **this_prologue_cache) |
877 | { | |
878 | struct gdbarch *gdbarch; | |
d031aafb | 879 | struct mt_unwind_cache *info; |
61def6bd KB |
880 | CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr; |
881 | unsigned long instr, upper_half, delayed_store = 0; | |
882 | int regnum, offset; | |
883 | ULONGEST sp, fp; | |
884 | ||
885 | if ((*this_prologue_cache)) | |
886 | return (*this_prologue_cache); | |
887 | ||
888 | gdbarch = get_frame_arch (next_frame); | |
d031aafb | 889 | info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache); |
61def6bd KB |
890 | (*this_prologue_cache) = info; |
891 | ||
892 | info->prev_sp = 0; | |
893 | info->framesize = 0; | |
894 | info->frame_base = 0; | |
895 | info->frameless_p = 1; | |
896 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
897 | ||
898 | /* Grab the frame-relative values of SP and FP, needed below. | |
899 | The frame_saved_register function will find them on the | |
900 | stack or in the registers as appropriate. */ | |
11411de3 DJ |
901 | sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM); |
902 | fp = frame_unwind_register_unsigned (next_frame, MT_FP_REGNUM); | |
61def6bd | 903 | |
93d42b30 | 904 | start_addr = frame_func_unwind (next_frame, NORMAL_FRAME); |
61def6bd KB |
905 | |
906 | /* Return early if GDB couldn't find the function. */ | |
907 | if (start_addr == 0) | |
908 | return info; | |
909 | ||
910 | end_addr = frame_pc_unwind (next_frame); | |
911 | prologue_end_addr = skip_prologue_using_sal (start_addr); | |
912 | if (end_addr == 0) | |
913 | for (next_addr = start_addr; next_addr < end_addr; next_addr += 4) | |
914 | { | |
915 | instr = get_frame_memory_unsigned (next_frame, next_addr, 4); | |
916 | if (delayed_store) /* previous instr was a push */ | |
917 | { | |
918 | upper_half = delayed_store >> 16; | |
919 | regnum = upper_half & 0xf; | |
920 | offset = delayed_store & 0xffff; | |
921 | switch (upper_half & 0xfff0) | |
922 | { | |
923 | case 0x43c0: /* push using frame pointer */ | |
924 | info->saved_regs[regnum].addr = offset; | |
925 | break; | |
926 | case 0x43d0: /* push using stack pointer */ | |
927 | info->saved_regs[regnum].addr = offset; | |
928 | break; | |
929 | default: /* lint */ | |
930 | break; | |
931 | } | |
932 | delayed_store = 0; | |
933 | } | |
934 | ||
935 | switch (instr) | |
936 | { | |
937 | case 0x12000000: /* NO-OP */ | |
938 | continue; | |
939 | case 0x12ddc000: /* copy sp into fp */ | |
940 | info->frameless_p = 0; /* Record that the frame pointer is in use. */ | |
941 | continue; | |
942 | default: | |
943 | upper_half = instr >> 16; | |
944 | if (upper_half == 0x05dd || /* subi sp, sp, imm */ | |
945 | upper_half == 0x07dd) /* subui sp, sp, imm */ | |
946 | { | |
947 | /* Record the frame size. */ | |
948 | info->framesize = instr & 0xffff; | |
949 | continue; | |
950 | } | |
951 | if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */ | |
952 | (upper_half & 0xfff0) == 0x43d0) /* stack push */ | |
953 | { | |
954 | /* Save this instruction, but don't record the | |
955 | pushed register as 'saved' until we see the | |
956 | next instruction. That's because of deferred stores | |
957 | on this target -- GDB won't be able to read the register | |
958 | from the stack until one instruction later. */ | |
959 | delayed_store = instr; | |
960 | continue; | |
961 | } | |
962 | /* Not a prologue instruction. Is this the end of the prologue? | |
963 | This is the most difficult decision; when to stop scanning. | |
964 | ||
965 | If we have no line symbol, then the best thing we can do | |
966 | is to stop scanning when we encounter an instruction that | |
967 | is not likely to be a part of the prologue. | |
968 | ||
969 | But if we do have a line symbol, then we should | |
970 | keep scanning until we reach it (or we reach end_addr). */ | |
971 | ||
972 | if (prologue_end_addr && (prologue_end_addr > (next_addr + 4))) | |
973 | continue; /* Keep scanning, recording saved_regs etc. */ | |
974 | else | |
975 | break; /* Quit scanning: breakpoint can be set here. */ | |
976 | } | |
977 | } | |
978 | ||
979 | /* Special handling for the "saved" address of the SP: | |
980 | The SP is of course never saved on the stack at all, so | |
981 | by convention what we put here is simply the previous | |
982 | _value_ of the SP (as opposed to an address where the | |
983 | previous value would have been pushed). This will also | |
984 | give us the frame base address. */ | |
985 | ||
986 | if (info->frameless_p) | |
987 | { | |
988 | info->frame_base = sp + info->framesize; | |
989 | info->prev_sp = sp + info->framesize; | |
990 | } | |
991 | else | |
992 | { | |
993 | info->frame_base = fp + info->framesize; | |
994 | info->prev_sp = fp + info->framesize; | |
995 | } | |
996 | /* Save prev_sp in saved_regs as a value, not as an address. */ | |
d031aafb | 997 | trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp); |
61def6bd KB |
998 | |
999 | /* Now convert frame offsets to actual addresses (not offsets). */ | |
d031aafb | 1000 | for (regnum = 0; regnum < MT_NUM_REGS; regnum++) |
61def6bd KB |
1001 | if (trad_frame_addr_p (info->saved_regs, regnum)) |
1002 | info->saved_regs[regnum].addr += info->frame_base - info->framesize; | |
1003 | ||
1004 | /* The call instruction moves the caller's PC in the callee's RA reg. | |
1005 | Since this is an unwind, do the reverse. Copy the location of RA | |
1006 | into PC (the address / regnum) so that a request for PC will be | |
1007 | converted into a request for the RA. */ | |
d031aafb | 1008 | info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM]; |
61def6bd KB |
1009 | |
1010 | return info; | |
1011 | } | |
1012 | ||
1013 | static CORE_ADDR | |
d031aafb | 1014 | mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
61def6bd KB |
1015 | { |
1016 | ULONGEST pc; | |
1017 | ||
11411de3 | 1018 | pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM); |
61def6bd KB |
1019 | return pc; |
1020 | } | |
1021 | ||
1022 | static CORE_ADDR | |
d031aafb | 1023 | mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) |
61def6bd KB |
1024 | { |
1025 | ULONGEST sp; | |
1026 | ||
11411de3 | 1027 | sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM); |
61def6bd KB |
1028 | return sp; |
1029 | } | |
1030 | ||
1031 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that | |
1032 | dummy frame. The frame ID's base needs to match the TOS value | |
1033 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1034 | breakpoint. */ | |
1035 | ||
1036 | static struct frame_id | |
d031aafb | 1037 | mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
61def6bd | 1038 | { |
d031aafb | 1039 | return frame_id_build (mt_unwind_sp (gdbarch, next_frame), |
61def6bd KB |
1040 | frame_pc_unwind (next_frame)); |
1041 | } | |
1042 | ||
1043 | /* Given a GDB frame, determine the address of the calling function's | |
1044 | frame. This will be used to create a new GDB frame struct. */ | |
1045 | ||
1046 | static void | |
d031aafb | 1047 | mt_frame_this_id (struct frame_info *next_frame, |
61def6bd KB |
1048 | void **this_prologue_cache, struct frame_id *this_id) |
1049 | { | |
d031aafb NS |
1050 | struct mt_unwind_cache *info = |
1051 | mt_frame_unwind_cache (next_frame, this_prologue_cache); | |
61def6bd KB |
1052 | |
1053 | if (!(info == NULL || info->prev_sp == 0)) | |
93d42b30 DJ |
1054 | (*this_id) = frame_id_build (info->prev_sp, |
1055 | frame_func_unwind (next_frame, NORMAL_FRAME)); | |
1056 | ||
61def6bd KB |
1057 | return; |
1058 | } | |
1059 | ||
1060 | static void | |
d031aafb | 1061 | mt_frame_prev_register (struct frame_info *next_frame, |
61def6bd KB |
1062 | void **this_prologue_cache, |
1063 | int regnum, int *optimizedp, | |
1064 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1065 | int *realnump, gdb_byte *bufferp) | |
1066 | { | |
d031aafb NS |
1067 | struct mt_unwind_cache *info = |
1068 | mt_frame_unwind_cache (next_frame, this_prologue_cache); | |
61def6bd KB |
1069 | |
1070 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, | |
1071 | optimizedp, lvalp, addrp, realnump, bufferp); | |
1072 | } | |
1073 | ||
1074 | static CORE_ADDR | |
d031aafb | 1075 | mt_frame_base_address (struct frame_info *next_frame, |
61def6bd KB |
1076 | void **this_prologue_cache) |
1077 | { | |
d031aafb NS |
1078 | struct mt_unwind_cache *info = |
1079 | mt_frame_unwind_cache (next_frame, this_prologue_cache); | |
61def6bd KB |
1080 | |
1081 | return info->frame_base; | |
1082 | } | |
1083 | ||
1084 | /* This is a shared interface: the 'frame_unwind' object is what's | |
1085 | returned by the 'sniffer' function, and in turn specifies how to | |
1086 | get a frame's ID and prev_regs. | |
1087 | ||
1088 | This exports the 'prev_register' and 'this_id' methods. */ | |
1089 | ||
d031aafb | 1090 | static const struct frame_unwind mt_frame_unwind = { |
61def6bd | 1091 | NORMAL_FRAME, |
d031aafb NS |
1092 | mt_frame_this_id, |
1093 | mt_frame_prev_register | |
61def6bd KB |
1094 | }; |
1095 | ||
1096 | /* The sniffer is a registered function that identifies our family of | |
1097 | frame unwind functions (this_id and prev_register). */ | |
1098 | ||
1099 | static const struct frame_unwind * | |
d031aafb | 1100 | mt_frame_sniffer (struct frame_info *next_frame) |
61def6bd | 1101 | { |
d031aafb | 1102 | return &mt_frame_unwind; |
61def6bd KB |
1103 | } |
1104 | ||
1105 | /* Another shared interface: the 'frame_base' object specifies how to | |
1106 | unwind a frame and secure the base addresses for frame objects | |
1107 | (locals, args). */ | |
1108 | ||
d031aafb NS |
1109 | static struct frame_base mt_frame_base = { |
1110 | &mt_frame_unwind, | |
1111 | mt_frame_base_address, | |
1112 | mt_frame_base_address, | |
1113 | mt_frame_base_address | |
61def6bd KB |
1114 | }; |
1115 | ||
1116 | static struct gdbarch * | |
d031aafb | 1117 | mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
61def6bd KB |
1118 | { |
1119 | struct gdbarch *gdbarch; | |
61def6bd KB |
1120 | |
1121 | /* Find a candidate among the list of pre-declared architectures. */ | |
1122 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1123 | if (arches != NULL) | |
1124 | return arches->gdbarch; | |
1125 | ||
1126 | /* None found, create a new architecture from the information | |
1127 | provided. */ | |
1128 | gdbarch = gdbarch_alloc (&info, NULL); | |
1129 | ||
cb5c8c39 DJ |
1130 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
1131 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
1132 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
61def6bd | 1133 | |
d031aafb NS |
1134 | set_gdbarch_register_name (gdbarch, mt_register_name); |
1135 | set_gdbarch_num_regs (gdbarch, MT_NUM_REGS); | |
1136 | set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS); | |
1137 | set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM); | |
1138 | set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM); | |
1139 | set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read); | |
1140 | set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write); | |
1141 | set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue); | |
61def6bd | 1142 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
d031aafb | 1143 | set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc); |
61def6bd KB |
1144 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
1145 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
d031aafb NS |
1146 | set_gdbarch_print_insn (gdbarch, print_insn_mt); |
1147 | set_gdbarch_register_type (gdbarch, mt_register_type); | |
1148 | set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p); | |
61def6bd | 1149 | |
d031aafb NS |
1150 | set_gdbarch_return_value (gdbarch, mt_return_value); |
1151 | set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM); | |
61def6bd | 1152 | |
d031aafb | 1153 | set_gdbarch_frame_align (gdbarch, mt_frame_align); |
61def6bd | 1154 | |
d031aafb | 1155 | set_gdbarch_print_registers_info (gdbarch, mt_registers_info); |
61def6bd | 1156 | |
d031aafb | 1157 | set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call); |
61def6bd KB |
1158 | |
1159 | /* Target builtin data types. */ | |
1160 | set_gdbarch_short_bit (gdbarch, 16); | |
1161 | set_gdbarch_int_bit (gdbarch, 32); | |
1162 | set_gdbarch_long_bit (gdbarch, 32); | |
1163 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1164 | set_gdbarch_float_bit (gdbarch, 32); | |
1165 | set_gdbarch_double_bit (gdbarch, 64); | |
1166 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1167 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1168 | ||
1169 | /* Register the DWARF 2 sniffer first, and then the traditional prologue | |
1170 | based sniffer. */ | |
1171 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); | |
d031aafb NS |
1172 | frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer); |
1173 | frame_base_set_default (gdbarch, &mt_frame_base); | |
61def6bd KB |
1174 | |
1175 | /* Register the 'unwind_pc' method. */ | |
d031aafb NS |
1176 | set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc); |
1177 | set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp); | |
61def6bd KB |
1178 | |
1179 | /* Methods for saving / extracting a dummy frame's ID. | |
1180 | The ID's stack address must match the SP value returned by | |
1181 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
d031aafb | 1182 | set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id); |
61def6bd KB |
1183 | |
1184 | return gdbarch; | |
1185 | } | |
1186 | ||
1187 | void | |
d031aafb | 1188 | _initialize_mt_tdep (void) |
61def6bd | 1189 | { |
d031aafb | 1190 | register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init); |
61def6bd | 1191 | } |