]>
Commit | Line | Data |
---|---|---|
d031aafb | 1 | /* Target-dependent code for Morpho mt processor, for GDB. |
61def6bd | 2 | |
6aba47ca | 3 | Copyright (C) 2005, 2007 Free Software Foundation, Inc. |
61def6bd KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
61def6bd KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
61def6bd KB |
19 | |
20 | /* Contributed by Michael Snyder, [email protected]. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "frame-unwind.h" | |
25 | #include "frame-base.h" | |
26 | #include "symtab.h" | |
27 | #include "dis-asm.h" | |
28 | #include "arch-utils.h" | |
29 | #include "gdbtypes.h" | |
30 | #include "gdb_string.h" | |
31 | #include "regcache.h" | |
32 | #include "reggroups.h" | |
33 | #include "gdbcore.h" | |
34 | #include "trad-frame.h" | |
35 | #include "inferior.h" | |
36 | #include "dwarf2-frame.h" | |
37 | #include "infcall.h" | |
38 | #include "gdb_assert.h" | |
39 | ||
d031aafb | 40 | enum mt_arch_constants |
61def6bd | 41 | { |
d031aafb | 42 | MT_MAX_STRUCT_SIZE = 16 |
61def6bd KB |
43 | }; |
44 | ||
d031aafb | 45 | enum mt_gdb_regnums |
61def6bd | 46 | { |
d031aafb NS |
47 | MT_R0_REGNUM, /* 32 bit regs. */ |
48 | MT_R1_REGNUM, | |
49 | MT_1ST_ARGREG = MT_R1_REGNUM, | |
50 | MT_R2_REGNUM, | |
51 | MT_R3_REGNUM, | |
52 | MT_R4_REGNUM, | |
53 | MT_LAST_ARGREG = MT_R4_REGNUM, | |
54 | MT_R5_REGNUM, | |
55 | MT_R6_REGNUM, | |
56 | MT_R7_REGNUM, | |
57 | MT_R8_REGNUM, | |
58 | MT_R9_REGNUM, | |
59 | MT_R10_REGNUM, | |
60 | MT_R11_REGNUM, | |
61 | MT_R12_REGNUM, | |
62 | MT_FP_REGNUM = MT_R12_REGNUM, | |
63 | MT_R13_REGNUM, | |
64 | MT_SP_REGNUM = MT_R13_REGNUM, | |
65 | MT_R14_REGNUM, | |
66 | MT_RA_REGNUM = MT_R14_REGNUM, | |
67 | MT_R15_REGNUM, | |
68 | MT_IRA_REGNUM = MT_R15_REGNUM, | |
69 | MT_PC_REGNUM, | |
61def6bd KB |
70 | |
71 | /* Interrupt Enable pseudo-register, exported by SID. */ | |
d031aafb | 72 | MT_INT_ENABLE_REGNUM, |
61def6bd KB |
73 | /* End of CPU regs. */ |
74 | ||
d031aafb | 75 | MT_NUM_CPU_REGS, |
61def6bd KB |
76 | |
77 | /* Co-processor registers. */ | |
d031aafb NS |
78 | MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */ |
79 | MT_CPR0_REGNUM, | |
80 | MT_CPR1_REGNUM, | |
81 | MT_CPR2_REGNUM, | |
82 | MT_CPR3_REGNUM, | |
83 | MT_CPR4_REGNUM, | |
84 | MT_CPR5_REGNUM, | |
85 | MT_CPR6_REGNUM, | |
86 | MT_CPR7_REGNUM, | |
87 | MT_CPR8_REGNUM, | |
88 | MT_CPR9_REGNUM, | |
89 | MT_CPR10_REGNUM, | |
90 | MT_CPR11_REGNUM, | |
91 | MT_CPR12_REGNUM, | |
92 | MT_CPR13_REGNUM, | |
93 | MT_CPR14_REGNUM, | |
94 | MT_CPR15_REGNUM, | |
95 | MT_BYPA_REGNUM, /* 32 bit regs. */ | |
96 | MT_BYPB_REGNUM, | |
97 | MT_BYPC_REGNUM, | |
98 | MT_FLAG_REGNUM, | |
99 | MT_CONTEXT_REGNUM, /* 38 bits (treat as array of | |
61def6bd | 100 | six bytes). */ |
d031aafb NS |
101 | MT_MAC_REGNUM, /* 32 bits. */ |
102 | MT_Z1_REGNUM, /* 16 bits. */ | |
103 | MT_Z2_REGNUM, /* 16 bits. */ | |
104 | MT_ICHANNEL_REGNUM, /* 32 bits. */ | |
105 | MT_ISCRAMB_REGNUM, /* 32 bits. */ | |
106 | MT_QSCRAMB_REGNUM, /* 32 bits. */ | |
107 | MT_OUT_REGNUM, /* 16 bits. */ | |
108 | MT_EXMAC_REGNUM, /* 32 bits (8 used). */ | |
109 | MT_QCHANNEL_REGNUM, /* 32 bits. */ | |
03a73f77 MM |
110 | MT_ZI2_REGNUM, /* 16 bits. */ |
111 | MT_ZQ2_REGNUM, /* 16 bits. */ | |
112 | MT_CHANNEL2_REGNUM, /* 32 bits. */ | |
113 | MT_ISCRAMB2_REGNUM, /* 32 bits. */ | |
114 | MT_QSCRAMB2_REGNUM, /* 32 bits. */ | |
115 | MT_QCHANNEL2_REGNUM, /* 32 bits. */ | |
61def6bd KB |
116 | |
117 | /* Number of real registers. */ | |
d031aafb | 118 | MT_NUM_REGS, |
61def6bd KB |
119 | |
120 | /* Pseudo-registers. */ | |
d031aafb NS |
121 | MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS, |
122 | MT_MAC_PSEUDOREG_REGNUM, | |
60e81fcc NS |
123 | MT_COPRO_PSEUDOREG_ARRAY, |
124 | ||
125 | MT_COPRO_PSEUDOREG_DIM_1 = 2, | |
126 | MT_COPRO_PSEUDOREG_DIM_2 = 8, | |
03a73f77 MM |
127 | /* The number of pseudo-registers for each coprocessor. These |
128 | include the real coprocessor registers, the pseudo-registe for | |
129 | the coprocessor number, and the pseudo-register for the MAC. */ | |
130 | MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2, | |
131 | /* The register number of the MAC, relative to a given coprocessor. */ | |
132 | MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1, | |
61def6bd KB |
133 | |
134 | /* Two pseudo-regs ('coprocessor' and 'mac'). */ | |
60e81fcc NS |
135 | MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS |
136 | * MT_COPRO_PSEUDOREG_DIM_1 | |
137 | * MT_COPRO_PSEUDOREG_DIM_2) | |
61def6bd KB |
138 | }; |
139 | ||
140 | /* Return name of register number specified by REGNUM. */ | |
141 | ||
142 | static const char * | |
d93859e2 | 143 | mt_register_name (struct gdbarch *gdbarch, int regnum) |
61def6bd | 144 | { |
58b78171 | 145 | static const char *const register_names[] = { |
61def6bd KB |
146 | /* CPU regs. */ |
147 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
148 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
149 | "pc", "IE", | |
150 | /* Co-processor regs. */ | |
151 | "", /* copro register. */ | |
152 | "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", | |
153 | "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15", | |
154 | "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2", | |
155 | "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel", | |
03a73f77 | 156 | "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2", |
61def6bd KB |
157 | /* Pseudo-registers. */ |
158 | "coprocessor", "MAC" | |
159 | }; | |
60e81fcc NS |
160 | static const char *array_names[MT_COPRO_PSEUDOREG_REGS |
161 | * MT_COPRO_PSEUDOREG_DIM_1 | |
162 | * MT_COPRO_PSEUDOREG_DIM_2]; | |
163 | ||
164 | if (regnum < 0) | |
165 | return ""; | |
166 | if (regnum < ARRAY_SIZE (register_names)) | |
167 | return register_names[regnum]; | |
168 | if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY]) | |
169 | return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY]; | |
170 | ||
171 | { | |
172 | char *name; | |
173 | const char *stub; | |
174 | unsigned dim_1; | |
175 | unsigned dim_2; | |
176 | unsigned index; | |
177 | ||
178 | regnum -= MT_COPRO_PSEUDOREG_ARRAY; | |
179 | index = regnum % MT_COPRO_PSEUDOREG_REGS; | |
180 | dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2; | |
181 | dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2) | |
182 | % MT_COPRO_PSEUDOREG_DIM_1); | |
183 | ||
03a73f77 | 184 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc | 185 | stub = register_names[MT_MAC_PSEUDOREG_REGNUM]; |
03a73f77 | 186 | else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM) |
60e81fcc NS |
187 | stub = ""; |
188 | else | |
189 | stub = register_names[index + MT_CPR0_REGNUM]; | |
190 | if (!*stub) | |
191 | { | |
192 | array_names[regnum] = stub; | |
193 | return stub; | |
194 | } | |
195 | name = xmalloc (30); | |
196 | sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub); | |
197 | array_names[regnum] = name; | |
198 | return name; | |
199 | } | |
200 | } | |
61def6bd | 201 | |
60e81fcc NS |
202 | /* Return the type of a coprocessor register. */ |
203 | ||
204 | static struct type * | |
205 | mt_copro_register_type (struct gdbarch *arch, int regnum) | |
206 | { | |
207 | switch (regnum) | |
208 | { | |
209 | case MT_INT_ENABLE_REGNUM: | |
210 | case MT_ICHANNEL_REGNUM: | |
211 | case MT_QCHANNEL_REGNUM: | |
212 | case MT_ISCRAMB_REGNUM: | |
213 | case MT_QSCRAMB_REGNUM: | |
214 | return builtin_type_int32; | |
215 | case MT_BYPA_REGNUM: | |
216 | case MT_BYPB_REGNUM: | |
217 | case MT_BYPC_REGNUM: | |
218 | case MT_Z1_REGNUM: | |
219 | case MT_Z2_REGNUM: | |
220 | case MT_OUT_REGNUM: | |
03a73f77 MM |
221 | case MT_ZI2_REGNUM: |
222 | case MT_ZQ2_REGNUM: | |
60e81fcc NS |
223 | return builtin_type_int16; |
224 | case MT_EXMAC_REGNUM: | |
225 | case MT_MAC_REGNUM: | |
226 | return builtin_type_uint32; | |
227 | case MT_CONTEXT_REGNUM: | |
228 | return builtin_type_long_long; | |
229 | case MT_FLAG_REGNUM: | |
230 | return builtin_type_unsigned_char; | |
231 | default: | |
232 | if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM) | |
233 | return builtin_type_int16; | |
03a73f77 | 234 | else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc NS |
235 | { |
236 | if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2 | |
237 | || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2) | |
238 | return builtin_type_uint64; | |
239 | else | |
240 | return builtin_type_uint32; | |
241 | } | |
242 | else | |
243 | return builtin_type_uint32; | |
244 | } | |
61def6bd KB |
245 | } |
246 | ||
247 | /* Given ARCH and a register number specified by REGNUM, return the | |
248 | type of that register. */ | |
249 | ||
250 | static struct type * | |
d031aafb | 251 | mt_register_type (struct gdbarch *arch, int regnum) |
61def6bd KB |
252 | { |
253 | static struct type *void_func_ptr = NULL; | |
254 | static struct type *void_ptr = NULL; | |
255 | static struct type *copro_type; | |
256 | ||
d031aafb | 257 | if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS) |
61def6bd KB |
258 | { |
259 | if (void_func_ptr == NULL) | |
260 | { | |
261 | struct type *temp; | |
262 | ||
263 | void_ptr = lookup_pointer_type (builtin_type_void); | |
264 | void_func_ptr = | |
265 | lookup_pointer_type (lookup_function_type (builtin_type_void)); | |
266 | temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1); | |
267 | copro_type = create_array_type (NULL, builtin_type_int16, temp); | |
268 | } | |
269 | switch (regnum) | |
270 | { | |
d031aafb NS |
271 | case MT_PC_REGNUM: |
272 | case MT_RA_REGNUM: | |
273 | case MT_IRA_REGNUM: | |
61def6bd | 274 | return void_func_ptr; |
d031aafb NS |
275 | case MT_SP_REGNUM: |
276 | case MT_FP_REGNUM: | |
61def6bd | 277 | return void_ptr; |
d031aafb NS |
278 | case MT_COPRO_REGNUM: |
279 | case MT_COPRO_PSEUDOREG_REGNUM: | |
61def6bd | 280 | return copro_type; |
d031aafb | 281 | case MT_MAC_PSEUDOREG_REGNUM: |
60e81fcc NS |
282 | return mt_copro_register_type (arch, |
283 | MT_CPR0_REGNUM | |
03a73f77 | 284 | + MT_COPRO_PSEUDOREG_MAC_REGNUM); |
61def6bd | 285 | default: |
d031aafb | 286 | if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM) |
61def6bd | 287 | return builtin_type_int32; |
60e81fcc NS |
288 | else if (regnum < MT_COPRO_PSEUDOREG_ARRAY) |
289 | return mt_copro_register_type (arch, regnum); | |
290 | else | |
291 | { | |
292 | regnum -= MT_COPRO_PSEUDOREG_ARRAY; | |
293 | regnum %= MT_COPRO_PSEUDOREG_REGS; | |
294 | regnum += MT_CPR0_REGNUM; | |
295 | return mt_copro_register_type (arch, regnum); | |
296 | } | |
61def6bd KB |
297 | } |
298 | } | |
299 | internal_error (__FILE__, __LINE__, | |
d031aafb | 300 | _("mt_register_type: illegal register number %d"), regnum); |
61def6bd KB |
301 | } |
302 | ||
303 | /* Return true if register REGNUM is a member of the register group | |
304 | specified by GROUP. */ | |
305 | ||
306 | static int | |
d031aafb | 307 | mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
61def6bd KB |
308 | struct reggroup *group) |
309 | { | |
310 | /* Groups of registers that can be displayed via "info reg". */ | |
311 | if (group == all_reggroup) | |
312 | return (regnum >= 0 | |
d031aafb | 313 | && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS |
d93859e2 | 314 | && mt_register_name (gdbarch, regnum)[0] != '\0'); |
61def6bd KB |
315 | |
316 | if (group == general_reggroup) | |
d031aafb | 317 | return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM); |
61def6bd KB |
318 | |
319 | if (group == float_reggroup) | |
320 | return 0; /* No float regs. */ | |
321 | ||
322 | if (group == vector_reggroup) | |
323 | return 0; /* No vector regs. */ | |
324 | ||
325 | /* For any that are not handled above. */ | |
326 | return default_register_reggroup_p (gdbarch, regnum, group); | |
327 | } | |
328 | ||
329 | /* Return the return value convention used for a given type TYPE. | |
330 | Optionally, fetch or set the return value via READBUF or | |
331 | WRITEBUF respectively using REGCACHE for the register | |
332 | values. */ | |
333 | ||
334 | static enum return_value_convention | |
d031aafb | 335 | mt_return_value (struct gdbarch *gdbarch, struct type *type, |
61def6bd KB |
336 | struct regcache *regcache, gdb_byte *readbuf, |
337 | const gdb_byte *writebuf) | |
338 | { | |
339 | if (TYPE_LENGTH (type) > 4) | |
340 | { | |
341 | /* Return values > 4 bytes are returned in memory, | |
342 | pointed to by R11. */ | |
343 | if (readbuf) | |
344 | { | |
345 | ULONGEST addr; | |
346 | ||
d031aafb | 347 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr); |
61def6bd KB |
348 | read_memory (addr, readbuf, TYPE_LENGTH (type)); |
349 | } | |
350 | ||
351 | if (writebuf) | |
352 | { | |
353 | ULONGEST addr; | |
354 | ||
d031aafb | 355 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr); |
61def6bd KB |
356 | write_memory (addr, writebuf, TYPE_LENGTH (type)); |
357 | } | |
358 | ||
359 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
360 | } | |
361 | else | |
362 | { | |
363 | if (readbuf) | |
364 | { | |
365 | ULONGEST temp; | |
366 | ||
367 | /* Return values of <= 4 bytes are returned in R11. */ | |
d031aafb | 368 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp); |
61def6bd KB |
369 | store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp); |
370 | } | |
371 | ||
372 | if (writebuf) | |
373 | { | |
374 | if (TYPE_LENGTH (type) < 4) | |
375 | { | |
376 | gdb_byte buf[4]; | |
377 | /* Add leading zeros to the value. */ | |
378 | memset (buf, 0, sizeof (buf)); | |
379 | memcpy (buf + sizeof (buf) - TYPE_LENGTH (type), | |
380 | writebuf, TYPE_LENGTH (type)); | |
d031aafb | 381 | regcache_cooked_write (regcache, MT_R11_REGNUM, buf); |
61def6bd KB |
382 | } |
383 | else /* (TYPE_LENGTH (type) == 4 */ | |
d031aafb | 384 | regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf); |
61def6bd KB |
385 | } |
386 | ||
387 | return RETURN_VALUE_REGISTER_CONVENTION; | |
388 | } | |
389 | } | |
390 | ||
391 | /* If the input address, PC, is in a function prologue, return the | |
392 | address of the end of the prologue, otherwise return the input | |
393 | address. | |
394 | ||
395 | Note: PC is likely to be the function start, since this function | |
396 | is mainly used for advancing a breakpoint to the first line, or | |
397 | stepping to the first line when we have stepped into a function | |
398 | call. */ | |
399 | ||
400 | static CORE_ADDR | |
d031aafb | 401 | mt_skip_prologue (CORE_ADDR pc) |
61def6bd KB |
402 | { |
403 | CORE_ADDR func_addr = 0, func_end = 0; | |
404 | char *func_name; | |
405 | unsigned long instr; | |
406 | ||
407 | if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) | |
408 | { | |
409 | struct symtab_and_line sal; | |
410 | struct symbol *sym; | |
411 | ||
412 | /* Found a function. */ | |
413 | sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL); | |
414 | if (sym && SYMBOL_LANGUAGE (sym) != language_asm) | |
415 | { | |
416 | /* Don't use this trick for assembly source files. */ | |
417 | sal = find_pc_line (func_addr, 0); | |
418 | ||
419 | if (sal.end && sal.end < func_end) | |
420 | { | |
421 | /* Found a line number, use it as end of prologue. */ | |
422 | return sal.end; | |
423 | } | |
424 | } | |
425 | } | |
426 | ||
427 | /* No function symbol, or no line symbol. Use prologue scanning method. */ | |
428 | for (;; pc += 4) | |
429 | { | |
430 | instr = read_memory_unsigned_integer (pc, 4); | |
431 | if (instr == 0x12000000) /* nop */ | |
432 | continue; | |
433 | if (instr == 0x12ddc000) /* copy sp into fp */ | |
434 | continue; | |
435 | instr >>= 16; | |
436 | if (instr == 0x05dd) /* subi sp, sp, imm */ | |
437 | continue; | |
438 | if (instr >= 0x43c0 && instr <= 0x43df) /* push */ | |
439 | continue; | |
440 | /* Not an obvious prologue instruction. */ | |
441 | break; | |
442 | } | |
443 | ||
444 | return pc; | |
445 | } | |
446 | ||
447 | /* The breakpoint instruction must be the same size as the smallest | |
448 | instruction in the instruction set. | |
449 | ||
3950dc3f NS |
450 | The BP for ms1 is defined as 0x68000000 (BREAK). |
451 | The BP for ms2 is defined as 0x69000000 (illegal) */ | |
61def6bd KB |
452 | |
453 | static const gdb_byte * | |
67d57894 MD |
454 | mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, |
455 | int *bp_size) | |
61def6bd | 456 | { |
3950dc3f NS |
457 | static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 }; |
458 | static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 }; | |
61def6bd KB |
459 | |
460 | *bp_size = 4; | |
67d57894 | 461 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) |
3950dc3f NS |
462 | return ms2_breakpoint; |
463 | ||
464 | return ms1_breakpoint; | |
61def6bd KB |
465 | } |
466 | ||
60e81fcc NS |
467 | /* Select the correct coprocessor register bank. Return the pseudo |
468 | regnum we really want to read. */ | |
469 | ||
470 | static int | |
471 | mt_select_coprocessor (struct gdbarch *gdbarch, | |
472 | struct regcache *regcache, int regno) | |
473 | { | |
474 | unsigned index, base; | |
475 | gdb_byte copro[4]; | |
476 | ||
477 | /* Get the copro pseudo regnum. */ | |
478 | regcache_raw_read (regcache, MT_COPRO_REGNUM, copro); | |
479 | base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2 | |
480 | + extract_signed_integer (&copro[2], 2)); | |
481 | ||
482 | regno -= MT_COPRO_PSEUDOREG_ARRAY; | |
483 | index = regno % MT_COPRO_PSEUDOREG_REGS; | |
484 | regno /= MT_COPRO_PSEUDOREG_REGS; | |
485 | if (base != regno) | |
486 | { | |
487 | /* Select the correct coprocessor register bank. Invalidate the | |
488 | coprocessor register cache. */ | |
489 | unsigned ix; | |
490 | ||
491 | store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2); | |
492 | store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2); | |
493 | regcache_raw_write (regcache, MT_COPRO_REGNUM, copro); | |
494 | ||
495 | /* We must flush the cache, as it is now invalid. */ | |
496 | for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++) | |
9c5ea4d9 | 497 | regcache_invalidate (regcache, ix); |
60e81fcc NS |
498 | } |
499 | ||
500 | return index; | |
501 | } | |
502 | ||
61def6bd KB |
503 | /* Fetch the pseudo registers: |
504 | ||
60e81fcc | 505 | There are two regular pseudo-registers: |
61def6bd KB |
506 | 1) The 'coprocessor' pseudo-register (which mirrors the |
507 | "real" coprocessor register sent by the target), and | |
508 | 2) The 'MAC' pseudo-register (which represents the union | |
509 | of the original 32 bit target MAC register and the new | |
60e81fcc NS |
510 | 8-bit extended-MAC register). |
511 | ||
512 | Additionally there is an array of coprocessor registers which track | |
513 | the coprocessor registers for each coprocessor. */ | |
61def6bd KB |
514 | |
515 | static void | |
d031aafb | 516 | mt_pseudo_register_read (struct gdbarch *gdbarch, |
61def6bd KB |
517 | struct regcache *regcache, int regno, gdb_byte *buf) |
518 | { | |
519 | switch (regno) | |
520 | { | |
d031aafb NS |
521 | case MT_COPRO_REGNUM: |
522 | case MT_COPRO_PSEUDOREG_REGNUM: | |
523 | regcache_raw_read (regcache, MT_COPRO_REGNUM, buf); | |
61def6bd | 524 | break; |
d031aafb NS |
525 | case MT_MAC_REGNUM: |
526 | case MT_MAC_PSEUDOREG_REGNUM: | |
3950dc3f NS |
527 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
528 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd KB |
529 | { |
530 | ULONGEST oldmac = 0, ext_mac = 0; | |
531 | ULONGEST newmac; | |
532 | ||
d031aafb NS |
533 | regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac); |
534 | regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac); | |
61def6bd KB |
535 | newmac = |
536 | (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32); | |
537 | store_signed_integer (buf, 8, newmac); | |
538 | } | |
539 | else | |
d031aafb | 540 | regcache_raw_read (regcache, MT_MAC_REGNUM, buf); |
61def6bd KB |
541 | break; |
542 | default: | |
60e81fcc NS |
543 | { |
544 | unsigned index = mt_select_coprocessor (gdbarch, regcache, regno); | |
545 | ||
03a73f77 | 546 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc | 547 | mt_pseudo_register_read (gdbarch, regcache, |
03a73f77 | 548 | MT_MAC_PSEUDOREG_REGNUM, buf); |
60e81fcc NS |
549 | else if (index < MT_NUM_REGS - MT_CPR0_REGNUM) |
550 | regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf); | |
551 | } | |
61def6bd KB |
552 | break; |
553 | } | |
554 | } | |
555 | ||
556 | /* Write the pseudo registers: | |
557 | ||
d031aafb | 558 | Mt pseudo-registers are stored directly to the target. The |
61def6bd KB |
559 | 'coprocessor' register is special, because when it is modified, all |
560 | the other coprocessor regs must be flushed from the reg cache. */ | |
561 | ||
562 | static void | |
d031aafb | 563 | mt_pseudo_register_write (struct gdbarch *gdbarch, |
61def6bd KB |
564 | struct regcache *regcache, |
565 | int regno, const gdb_byte *buf) | |
566 | { | |
567 | int i; | |
568 | ||
569 | switch (regno) | |
570 | { | |
d031aafb NS |
571 | case MT_COPRO_REGNUM: |
572 | case MT_COPRO_PSEUDOREG_REGNUM: | |
573 | regcache_raw_write (regcache, MT_COPRO_REGNUM, buf); | |
574 | for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++) | |
9c5ea4d9 | 575 | regcache_invalidate (regcache, i); |
61def6bd | 576 | break; |
d031aafb NS |
577 | case MT_MAC_REGNUM: |
578 | case MT_MAC_PSEUDOREG_REGNUM: | |
3950dc3f NS |
579 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
580 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd KB |
581 | { |
582 | /* The 8-byte MAC pseudo-register must be broken down into two | |
583 | 32-byte registers. */ | |
584 | unsigned int oldmac, ext_mac; | |
585 | ULONGEST newmac; | |
586 | ||
587 | newmac = extract_unsigned_integer (buf, 8); | |
588 | oldmac = newmac & 0xffffffff; | |
589 | ext_mac = (newmac >> 32) & 0xff; | |
d031aafb NS |
590 | regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac); |
591 | regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac); | |
61def6bd KB |
592 | } |
593 | else | |
d031aafb | 594 | regcache_raw_write (regcache, MT_MAC_REGNUM, buf); |
61def6bd KB |
595 | break; |
596 | default: | |
60e81fcc NS |
597 | { |
598 | unsigned index = mt_select_coprocessor (gdbarch, regcache, regno); | |
599 | ||
03a73f77 | 600 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc | 601 | mt_pseudo_register_write (gdbarch, regcache, |
03a73f77 | 602 | MT_MAC_PSEUDOREG_REGNUM, buf); |
60e81fcc NS |
603 | else if (index < MT_NUM_REGS - MT_CPR0_REGNUM) |
604 | regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf); | |
605 | } | |
61def6bd KB |
606 | break; |
607 | } | |
608 | } | |
609 | ||
610 | static CORE_ADDR | |
d031aafb | 611 | mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
61def6bd KB |
612 | { |
613 | /* Register size is 4 bytes. */ | |
614 | return align_down (sp, 4); | |
615 | } | |
616 | ||
617 | /* Implements the "info registers" command. When ``all'' is non-zero, | |
618 | the coprocessor registers will be printed in addition to the rest | |
619 | of the registers. */ | |
620 | ||
621 | static void | |
d031aafb | 622 | mt_registers_info (struct gdbarch *gdbarch, |
d93859e2 UW |
623 | struct ui_file *file, |
624 | struct frame_info *frame, int regnum, int all) | |
61def6bd KB |
625 | { |
626 | if (regnum == -1) | |
627 | { | |
628 | int lim; | |
629 | ||
d031aafb | 630 | lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS; |
61def6bd KB |
631 | |
632 | for (regnum = 0; regnum < lim; regnum++) | |
633 | { | |
634 | /* Don't display the Qchannel register since it will be displayed | |
635 | along with Ichannel. (See below.) */ | |
d031aafb | 636 | if (regnum == MT_QCHANNEL_REGNUM) |
61def6bd KB |
637 | continue; |
638 | ||
d031aafb | 639 | mt_registers_info (gdbarch, file, frame, regnum, all); |
61def6bd KB |
640 | |
641 | /* Display the Qchannel register immediately after Ichannel. */ | |
d031aafb NS |
642 | if (regnum == MT_ICHANNEL_REGNUM) |
643 | mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all); | |
61def6bd KB |
644 | } |
645 | } | |
646 | else | |
647 | { | |
d031aafb | 648 | if (regnum == MT_EXMAC_REGNUM) |
61def6bd | 649 | return; |
d031aafb | 650 | else if (regnum == MT_CONTEXT_REGNUM) |
61def6bd KB |
651 | { |
652 | /* Special output handling for 38-bit context register. */ | |
653 | unsigned char *buff; | |
654 | unsigned int *bytes, i, regsize; | |
655 | ||
656 | regsize = register_size (gdbarch, regnum); | |
657 | ||
658 | buff = alloca (regsize); | |
659 | bytes = alloca (regsize * sizeof (*bytes)); | |
660 | ||
661 | frame_register_read (frame, regnum, buff); | |
662 | ||
c9f4d572 | 663 | fputs_filtered (gdbarch_register_name |
d93859e2 | 664 | (gdbarch, regnum), file); |
c9f4d572 | 665 | print_spaces_filtered (15 - strlen (gdbarch_register_name |
d93859e2 | 666 | (gdbarch, regnum)), |
c9f4d572 | 667 | file); |
61def6bd KB |
668 | fputs_filtered ("0x", file); |
669 | ||
670 | for (i = 0; i < regsize; i++) | |
671 | fprintf_filtered (file, "%02x", (unsigned int) | |
672 | extract_unsigned_integer (buff + i, 1)); | |
673 | fputs_filtered ("\t", file); | |
674 | print_longest (file, 'd', 0, | |
675 | extract_unsigned_integer (buff, regsize)); | |
676 | fputs_filtered ("\n", file); | |
677 | } | |
d031aafb NS |
678 | else if (regnum == MT_COPRO_REGNUM |
679 | || regnum == MT_COPRO_PSEUDOREG_REGNUM) | |
61def6bd KB |
680 | { |
681 | /* Special output handling for the 'coprocessor' register. */ | |
58b78171 | 682 | gdb_byte *buf; |
61def6bd | 683 | |
d031aafb NS |
684 | buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM)); |
685 | frame_register_read (frame, MT_COPRO_REGNUM, buf); | |
61def6bd | 686 | /* And print. */ |
d031aafb | 687 | regnum = MT_COPRO_PSEUDOREG_REGNUM; |
d93859e2 | 688 | fputs_filtered (gdbarch_register_name (gdbarch, regnum), |
c9f4d572 UW |
689 | file); |
690 | print_spaces_filtered (15 - strlen (gdbarch_register_name | |
d93859e2 | 691 | (gdbarch, regnum)), |
c9f4d572 | 692 | file); |
61def6bd KB |
693 | val_print (register_type (gdbarch, regnum), buf, |
694 | 0, 0, file, 0, 1, 0, Val_no_prettyprint); | |
695 | fputs_filtered ("\n", file); | |
696 | } | |
d031aafb | 697 | else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM) |
61def6bd KB |
698 | { |
699 | ULONGEST oldmac, ext_mac, newmac; | |
58b78171 | 700 | gdb_byte buf[3 * sizeof (LONGEST)]; |
61def6bd KB |
701 | |
702 | /* Get the two "real" mac registers. */ | |
d031aafb | 703 | frame_register_read (frame, MT_MAC_REGNUM, buf); |
3950dc3f | 704 | oldmac = extract_unsigned_integer |
d031aafb | 705 | (buf, register_size (gdbarch, MT_MAC_REGNUM)); |
58b78171 NS |
706 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
707 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd | 708 | { |
d031aafb | 709 | frame_register_read (frame, MT_EXMAC_REGNUM, buf); |
3950dc3f | 710 | ext_mac = extract_unsigned_integer |
d031aafb | 711 | (buf, register_size (gdbarch, MT_EXMAC_REGNUM)); |
61def6bd KB |
712 | } |
713 | else | |
714 | ext_mac = 0; | |
715 | ||
716 | /* Add them together. */ | |
717 | newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32); | |
718 | ||
719 | /* And print. */ | |
d031aafb | 720 | regnum = MT_MAC_PSEUDOREG_REGNUM; |
d93859e2 | 721 | fputs_filtered (gdbarch_register_name (gdbarch, regnum), |
c9f4d572 UW |
722 | file); |
723 | print_spaces_filtered (15 - strlen (gdbarch_register_name | |
d93859e2 | 724 | (gdbarch, regnum)), |
c9f4d572 | 725 | file); |
61def6bd KB |
726 | fputs_filtered ("0x", file); |
727 | print_longest (file, 'x', 0, newmac); | |
728 | fputs_filtered ("\t", file); | |
729 | print_longest (file, 'u', 0, newmac); | |
730 | fputs_filtered ("\n", file); | |
731 | } | |
732 | else | |
733 | default_print_registers_info (gdbarch, file, frame, regnum, all); | |
734 | } | |
735 | } | |
736 | ||
737 | /* Set up the callee's arguments for an inferior function call. The | |
738 | arguments are pushed on the stack or are placed in registers as | |
739 | appropriate. It also sets up the return address (which points to | |
740 | the call dummy breakpoint). | |
741 | ||
742 | Returns the updated (and aligned) stack pointer. */ | |
743 | ||
744 | static CORE_ADDR | |
d031aafb | 745 | mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
61def6bd KB |
746 | struct regcache *regcache, CORE_ADDR bp_addr, |
747 | int nargs, struct value **args, CORE_ADDR sp, | |
748 | int struct_return, CORE_ADDR struct_addr) | |
749 | { | |
750 | #define wordsize 4 | |
d031aafb NS |
751 | gdb_byte buf[MT_MAX_STRUCT_SIZE]; |
752 | int argreg = MT_1ST_ARGREG; | |
61def6bd KB |
753 | int split_param_len = 0; |
754 | int stack_dest = sp; | |
755 | int slacklen; | |
756 | int typelen; | |
757 | int i, j; | |
758 | ||
d031aafb NS |
759 | /* First handle however many args we can fit into MT_1ST_ARGREG thru |
760 | MT_LAST_ARGREG. */ | |
761 | for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++) | |
61def6bd | 762 | { |
58b78171 | 763 | const gdb_byte *val; |
61def6bd KB |
764 | typelen = TYPE_LENGTH (value_type (args[i])); |
765 | switch (typelen) | |
766 | { | |
767 | case 1: | |
768 | case 2: | |
769 | case 3: | |
770 | case 4: | |
771 | regcache_cooked_write_unsigned (regcache, argreg++, | |
772 | extract_unsigned_integer | |
773 | (value_contents (args[i]), | |
774 | wordsize)); | |
775 | break; | |
776 | case 8: | |
777 | case 12: | |
778 | case 16: | |
779 | val = value_contents (args[i]); | |
780 | while (typelen > 0) | |
781 | { | |
d031aafb | 782 | if (argreg <= MT_LAST_ARGREG) |
61def6bd KB |
783 | { |
784 | /* This word of the argument is passed in a register. */ | |
785 | regcache_cooked_write_unsigned (regcache, argreg++, | |
786 | extract_unsigned_integer | |
787 | (val, wordsize)); | |
788 | typelen -= wordsize; | |
789 | val += wordsize; | |
790 | } | |
791 | else | |
792 | { | |
793 | /* Remainder of this arg must be passed on the stack | |
794 | (deferred to do later). */ | |
795 | split_param_len = typelen; | |
796 | memcpy (buf, val, typelen); | |
797 | break; /* No more args can be handled in regs. */ | |
798 | } | |
799 | } | |
800 | break; | |
801 | default: | |
802 | /* By reverse engineering of gcc output, args bigger than | |
803 | 16 bytes go on the stack, and their address is passed | |
804 | in the argreg. */ | |
805 | stack_dest -= typelen; | |
806 | write_memory (stack_dest, value_contents (args[i]), typelen); | |
807 | regcache_cooked_write_unsigned (regcache, argreg++, stack_dest); | |
808 | break; | |
809 | } | |
810 | } | |
811 | ||
812 | /* Next, the rest of the arguments go onto the stack, in reverse order. */ | |
813 | for (j = nargs - 1; j >= i; j--) | |
814 | { | |
58b78171 NS |
815 | gdb_byte *val; |
816 | ||
61def6bd KB |
817 | /* Right-justify the value in an aligned-length buffer. */ |
818 | typelen = TYPE_LENGTH (value_type (args[j])); | |
819 | slacklen = (wordsize - (typelen % wordsize)) % wordsize; | |
820 | val = alloca (typelen + slacklen); | |
821 | memcpy (val, value_contents (args[j]), typelen); | |
822 | memset (val + typelen, 0, slacklen); | |
823 | /* Now write this data to the stack. */ | |
824 | stack_dest -= typelen + slacklen; | |
825 | write_memory (stack_dest, val, typelen + slacklen); | |
826 | } | |
827 | ||
828 | /* Finally, if a param needs to be split between registers and stack, | |
829 | write the second half to the stack now. */ | |
830 | if (split_param_len != 0) | |
831 | { | |
832 | stack_dest -= split_param_len; | |
833 | write_memory (stack_dest, buf, split_param_len); | |
834 | } | |
835 | ||
836 | /* Set up return address (provided to us as bp_addr). */ | |
d031aafb | 837 | regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr); |
61def6bd KB |
838 | |
839 | /* Store struct return address, if given. */ | |
840 | if (struct_return && struct_addr != 0) | |
d031aafb | 841 | regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr); |
61def6bd KB |
842 | |
843 | /* Set aside 16 bytes for the callee to save regs 1-4. */ | |
844 | stack_dest -= 16; | |
845 | ||
846 | /* Update the stack pointer. */ | |
d031aafb | 847 | regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest); |
61def6bd KB |
848 | |
849 | /* And that should do it. Return the new stack pointer. */ | |
850 | return stack_dest; | |
851 | } | |
852 | ||
853 | ||
854 | /* The 'unwind_cache' data structure. */ | |
855 | ||
d031aafb | 856 | struct mt_unwind_cache |
61def6bd KB |
857 | { |
858 | /* The previous frame's inner most stack address. | |
859 | Used as this frame ID's stack_addr. */ | |
860 | CORE_ADDR prev_sp; | |
861 | CORE_ADDR frame_base; | |
862 | int framesize; | |
863 | int frameless_p; | |
864 | ||
865 | /* Table indicating the location of each and every register. */ | |
866 | struct trad_frame_saved_reg *saved_regs; | |
867 | }; | |
868 | ||
869 | /* Initialize an unwind_cache. Build up the saved_regs table etc. for | |
870 | the frame. */ | |
871 | ||
d031aafb NS |
872 | static struct mt_unwind_cache * |
873 | mt_frame_unwind_cache (struct frame_info *next_frame, | |
61def6bd KB |
874 | void **this_prologue_cache) |
875 | { | |
876 | struct gdbarch *gdbarch; | |
d031aafb | 877 | struct mt_unwind_cache *info; |
61def6bd KB |
878 | CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr; |
879 | unsigned long instr, upper_half, delayed_store = 0; | |
880 | int regnum, offset; | |
881 | ULONGEST sp, fp; | |
882 | ||
883 | if ((*this_prologue_cache)) | |
884 | return (*this_prologue_cache); | |
885 | ||
886 | gdbarch = get_frame_arch (next_frame); | |
d031aafb | 887 | info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache); |
61def6bd KB |
888 | (*this_prologue_cache) = info; |
889 | ||
890 | info->prev_sp = 0; | |
891 | info->framesize = 0; | |
892 | info->frame_base = 0; | |
893 | info->frameless_p = 1; | |
894 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
895 | ||
896 | /* Grab the frame-relative values of SP and FP, needed below. | |
897 | The frame_saved_register function will find them on the | |
898 | stack or in the registers as appropriate. */ | |
11411de3 DJ |
899 | sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM); |
900 | fp = frame_unwind_register_unsigned (next_frame, MT_FP_REGNUM); | |
61def6bd | 901 | |
93d42b30 | 902 | start_addr = frame_func_unwind (next_frame, NORMAL_FRAME); |
61def6bd KB |
903 | |
904 | /* Return early if GDB couldn't find the function. */ | |
905 | if (start_addr == 0) | |
906 | return info; | |
907 | ||
908 | end_addr = frame_pc_unwind (next_frame); | |
909 | prologue_end_addr = skip_prologue_using_sal (start_addr); | |
910 | if (end_addr == 0) | |
911 | for (next_addr = start_addr; next_addr < end_addr; next_addr += 4) | |
912 | { | |
913 | instr = get_frame_memory_unsigned (next_frame, next_addr, 4); | |
914 | if (delayed_store) /* previous instr was a push */ | |
915 | { | |
916 | upper_half = delayed_store >> 16; | |
917 | regnum = upper_half & 0xf; | |
918 | offset = delayed_store & 0xffff; | |
919 | switch (upper_half & 0xfff0) | |
920 | { | |
921 | case 0x43c0: /* push using frame pointer */ | |
922 | info->saved_regs[regnum].addr = offset; | |
923 | break; | |
924 | case 0x43d0: /* push using stack pointer */ | |
925 | info->saved_regs[regnum].addr = offset; | |
926 | break; | |
927 | default: /* lint */ | |
928 | break; | |
929 | } | |
930 | delayed_store = 0; | |
931 | } | |
932 | ||
933 | switch (instr) | |
934 | { | |
935 | case 0x12000000: /* NO-OP */ | |
936 | continue; | |
937 | case 0x12ddc000: /* copy sp into fp */ | |
938 | info->frameless_p = 0; /* Record that the frame pointer is in use. */ | |
939 | continue; | |
940 | default: | |
941 | upper_half = instr >> 16; | |
942 | if (upper_half == 0x05dd || /* subi sp, sp, imm */ | |
943 | upper_half == 0x07dd) /* subui sp, sp, imm */ | |
944 | { | |
945 | /* Record the frame size. */ | |
946 | info->framesize = instr & 0xffff; | |
947 | continue; | |
948 | } | |
949 | if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */ | |
950 | (upper_half & 0xfff0) == 0x43d0) /* stack push */ | |
951 | { | |
952 | /* Save this instruction, but don't record the | |
953 | pushed register as 'saved' until we see the | |
954 | next instruction. That's because of deferred stores | |
955 | on this target -- GDB won't be able to read the register | |
956 | from the stack until one instruction later. */ | |
957 | delayed_store = instr; | |
958 | continue; | |
959 | } | |
960 | /* Not a prologue instruction. Is this the end of the prologue? | |
961 | This is the most difficult decision; when to stop scanning. | |
962 | ||
963 | If we have no line symbol, then the best thing we can do | |
964 | is to stop scanning when we encounter an instruction that | |
965 | is not likely to be a part of the prologue. | |
966 | ||
967 | But if we do have a line symbol, then we should | |
968 | keep scanning until we reach it (or we reach end_addr). */ | |
969 | ||
970 | if (prologue_end_addr && (prologue_end_addr > (next_addr + 4))) | |
971 | continue; /* Keep scanning, recording saved_regs etc. */ | |
972 | else | |
973 | break; /* Quit scanning: breakpoint can be set here. */ | |
974 | } | |
975 | } | |
976 | ||
977 | /* Special handling for the "saved" address of the SP: | |
978 | The SP is of course never saved on the stack at all, so | |
979 | by convention what we put here is simply the previous | |
980 | _value_ of the SP (as opposed to an address where the | |
981 | previous value would have been pushed). This will also | |
982 | give us the frame base address. */ | |
983 | ||
984 | if (info->frameless_p) | |
985 | { | |
986 | info->frame_base = sp + info->framesize; | |
987 | info->prev_sp = sp + info->framesize; | |
988 | } | |
989 | else | |
990 | { | |
991 | info->frame_base = fp + info->framesize; | |
992 | info->prev_sp = fp + info->framesize; | |
993 | } | |
994 | /* Save prev_sp in saved_regs as a value, not as an address. */ | |
d031aafb | 995 | trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp); |
61def6bd KB |
996 | |
997 | /* Now convert frame offsets to actual addresses (not offsets). */ | |
d031aafb | 998 | for (regnum = 0; regnum < MT_NUM_REGS; regnum++) |
61def6bd KB |
999 | if (trad_frame_addr_p (info->saved_regs, regnum)) |
1000 | info->saved_regs[regnum].addr += info->frame_base - info->framesize; | |
1001 | ||
1002 | /* The call instruction moves the caller's PC in the callee's RA reg. | |
1003 | Since this is an unwind, do the reverse. Copy the location of RA | |
1004 | into PC (the address / regnum) so that a request for PC will be | |
1005 | converted into a request for the RA. */ | |
d031aafb | 1006 | info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM]; |
61def6bd KB |
1007 | |
1008 | return info; | |
1009 | } | |
1010 | ||
1011 | static CORE_ADDR | |
d031aafb | 1012 | mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
61def6bd KB |
1013 | { |
1014 | ULONGEST pc; | |
1015 | ||
11411de3 | 1016 | pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM); |
61def6bd KB |
1017 | return pc; |
1018 | } | |
1019 | ||
1020 | static CORE_ADDR | |
d031aafb | 1021 | mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) |
61def6bd KB |
1022 | { |
1023 | ULONGEST sp; | |
1024 | ||
11411de3 | 1025 | sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM); |
61def6bd KB |
1026 | return sp; |
1027 | } | |
1028 | ||
1029 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that | |
1030 | dummy frame. The frame ID's base needs to match the TOS value | |
1031 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1032 | breakpoint. */ | |
1033 | ||
1034 | static struct frame_id | |
d031aafb | 1035 | mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
61def6bd | 1036 | { |
d031aafb | 1037 | return frame_id_build (mt_unwind_sp (gdbarch, next_frame), |
61def6bd KB |
1038 | frame_pc_unwind (next_frame)); |
1039 | } | |
1040 | ||
1041 | /* Given a GDB frame, determine the address of the calling function's | |
1042 | frame. This will be used to create a new GDB frame struct. */ | |
1043 | ||
1044 | static void | |
d031aafb | 1045 | mt_frame_this_id (struct frame_info *next_frame, |
61def6bd KB |
1046 | void **this_prologue_cache, struct frame_id *this_id) |
1047 | { | |
d031aafb NS |
1048 | struct mt_unwind_cache *info = |
1049 | mt_frame_unwind_cache (next_frame, this_prologue_cache); | |
61def6bd KB |
1050 | |
1051 | if (!(info == NULL || info->prev_sp == 0)) | |
93d42b30 DJ |
1052 | (*this_id) = frame_id_build (info->prev_sp, |
1053 | frame_func_unwind (next_frame, NORMAL_FRAME)); | |
1054 | ||
61def6bd KB |
1055 | return; |
1056 | } | |
1057 | ||
1058 | static void | |
d031aafb | 1059 | mt_frame_prev_register (struct frame_info *next_frame, |
61def6bd KB |
1060 | void **this_prologue_cache, |
1061 | int regnum, int *optimizedp, | |
1062 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1063 | int *realnump, gdb_byte *bufferp) | |
1064 | { | |
d031aafb NS |
1065 | struct mt_unwind_cache *info = |
1066 | mt_frame_unwind_cache (next_frame, this_prologue_cache); | |
61def6bd KB |
1067 | |
1068 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, | |
1069 | optimizedp, lvalp, addrp, realnump, bufferp); | |
1070 | } | |
1071 | ||
1072 | static CORE_ADDR | |
d031aafb | 1073 | mt_frame_base_address (struct frame_info *next_frame, |
61def6bd KB |
1074 | void **this_prologue_cache) |
1075 | { | |
d031aafb NS |
1076 | struct mt_unwind_cache *info = |
1077 | mt_frame_unwind_cache (next_frame, this_prologue_cache); | |
61def6bd KB |
1078 | |
1079 | return info->frame_base; | |
1080 | } | |
1081 | ||
1082 | /* This is a shared interface: the 'frame_unwind' object is what's | |
1083 | returned by the 'sniffer' function, and in turn specifies how to | |
1084 | get a frame's ID and prev_regs. | |
1085 | ||
1086 | This exports the 'prev_register' and 'this_id' methods. */ | |
1087 | ||
d031aafb | 1088 | static const struct frame_unwind mt_frame_unwind = { |
61def6bd | 1089 | NORMAL_FRAME, |
d031aafb NS |
1090 | mt_frame_this_id, |
1091 | mt_frame_prev_register | |
61def6bd KB |
1092 | }; |
1093 | ||
1094 | /* The sniffer is a registered function that identifies our family of | |
1095 | frame unwind functions (this_id and prev_register). */ | |
1096 | ||
1097 | static const struct frame_unwind * | |
d031aafb | 1098 | mt_frame_sniffer (struct frame_info *next_frame) |
61def6bd | 1099 | { |
d031aafb | 1100 | return &mt_frame_unwind; |
61def6bd KB |
1101 | } |
1102 | ||
1103 | /* Another shared interface: the 'frame_base' object specifies how to | |
1104 | unwind a frame and secure the base addresses for frame objects | |
1105 | (locals, args). */ | |
1106 | ||
d031aafb NS |
1107 | static struct frame_base mt_frame_base = { |
1108 | &mt_frame_unwind, | |
1109 | mt_frame_base_address, | |
1110 | mt_frame_base_address, | |
1111 | mt_frame_base_address | |
61def6bd KB |
1112 | }; |
1113 | ||
1114 | static struct gdbarch * | |
d031aafb | 1115 | mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
61def6bd KB |
1116 | { |
1117 | struct gdbarch *gdbarch; | |
61def6bd KB |
1118 | |
1119 | /* Find a candidate among the list of pre-declared architectures. */ | |
1120 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1121 | if (arches != NULL) | |
1122 | return arches->gdbarch; | |
1123 | ||
1124 | /* None found, create a new architecture from the information | |
1125 | provided. */ | |
1126 | gdbarch = gdbarch_alloc (&info, NULL); | |
1127 | ||
cb5c8c39 DJ |
1128 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
1129 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
1130 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
61def6bd | 1131 | |
d031aafb NS |
1132 | set_gdbarch_register_name (gdbarch, mt_register_name); |
1133 | set_gdbarch_num_regs (gdbarch, MT_NUM_REGS); | |
1134 | set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS); | |
1135 | set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM); | |
1136 | set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM); | |
1137 | set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read); | |
1138 | set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write); | |
1139 | set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue); | |
61def6bd | 1140 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
d031aafb | 1141 | set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc); |
61def6bd KB |
1142 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
1143 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
d031aafb NS |
1144 | set_gdbarch_print_insn (gdbarch, print_insn_mt); |
1145 | set_gdbarch_register_type (gdbarch, mt_register_type); | |
1146 | set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p); | |
61def6bd | 1147 | |
d031aafb NS |
1148 | set_gdbarch_return_value (gdbarch, mt_return_value); |
1149 | set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM); | |
61def6bd | 1150 | |
d031aafb | 1151 | set_gdbarch_frame_align (gdbarch, mt_frame_align); |
61def6bd | 1152 | |
d031aafb | 1153 | set_gdbarch_print_registers_info (gdbarch, mt_registers_info); |
61def6bd | 1154 | |
d031aafb | 1155 | set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call); |
61def6bd KB |
1156 | |
1157 | /* Target builtin data types. */ | |
1158 | set_gdbarch_short_bit (gdbarch, 16); | |
1159 | set_gdbarch_int_bit (gdbarch, 32); | |
1160 | set_gdbarch_long_bit (gdbarch, 32); | |
1161 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1162 | set_gdbarch_float_bit (gdbarch, 32); | |
1163 | set_gdbarch_double_bit (gdbarch, 64); | |
1164 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1165 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1166 | ||
1167 | /* Register the DWARF 2 sniffer first, and then the traditional prologue | |
1168 | based sniffer. */ | |
1169 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); | |
d031aafb NS |
1170 | frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer); |
1171 | frame_base_set_default (gdbarch, &mt_frame_base); | |
61def6bd KB |
1172 | |
1173 | /* Register the 'unwind_pc' method. */ | |
d031aafb NS |
1174 | set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc); |
1175 | set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp); | |
61def6bd KB |
1176 | |
1177 | /* Methods for saving / extracting a dummy frame's ID. | |
1178 | The ID's stack address must match the SP value returned by | |
1179 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
d031aafb | 1180 | set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id); |
61def6bd KB |
1181 | |
1182 | return gdbarch; | |
1183 | } | |
1184 | ||
1185 | void | |
d031aafb | 1186 | _initialize_mt_tdep (void) |
61def6bd | 1187 | { |
d031aafb | 1188 | register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init); |
61def6bd | 1189 | } |