]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* DWARF debugging format support for GDB. |
2 | Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, | |
5 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | /* | |
24 | ||
c5aa993b JM |
25 | FIXME: Do we need to generate dependencies in partial symtabs? |
26 | (Perhaps we don't need to). | |
c906108c | 27 | |
c5aa993b JM |
28 | FIXME: Resolve minor differences between what information we put in the |
29 | partial symbol table and what dbxread puts in. For example, we don't yet | |
30 | put enum constants there. And dbxread seems to invent a lot of typedefs | |
31 | we never see. Use the new printpsym command to see the partial symbol table | |
32 | contents. | |
c906108c | 33 | |
c5aa993b JM |
34 | FIXME: Figure out a better way to tell gdb about the name of the function |
35 | contain the user's entry point (I.E. main()) | |
c906108c | 36 | |
c5aa993b JM |
37 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for |
38 | other things to work on, if you get bored. :-) | |
c906108c | 39 | |
c5aa993b | 40 | */ |
c906108c SS |
41 | |
42 | #include "defs.h" | |
43 | #include "symtab.h" | |
44 | #include "gdbtypes.h" | |
45 | #include "symfile.h" | |
46 | #include "objfiles.h" | |
47 | #include "elf/dwarf.h" | |
48 | #include "buildsym.h" | |
49 | #include "demangle.h" | |
c5aa993b | 50 | #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ |
c906108c SS |
51 | #include "language.h" |
52 | #include "complaints.h" | |
53 | ||
54 | #include <fcntl.h> | |
55 | #include "gdb_string.h" | |
56 | ||
57 | /* Some macros to provide DIE info for complaints. */ | |
58 | ||
59 | #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) | |
60 | #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" | |
61 | ||
62 | /* Complaints that can be issued during DWARF debug info reading. */ | |
63 | ||
64 | struct complaint no_bfd_get_N = | |
65 | { | |
66 | "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0 | |
67 | }; | |
68 | ||
69 | struct complaint malformed_die = | |
70 | { | |
71 | "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0 | |
72 | }; | |
73 | ||
74 | struct complaint bad_die_ref = | |
75 | { | |
76 | "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0 | |
77 | }; | |
78 | ||
79 | struct complaint unknown_attribute_form = | |
80 | { | |
81 | "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0 | |
82 | }; | |
83 | ||
84 | struct complaint unknown_attribute_length = | |
85 | { | |
86 | "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0 | |
87 | }; | |
88 | ||
89 | struct complaint unexpected_fund_type = | |
90 | { | |
91 | "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0 | |
92 | }; | |
93 | ||
94 | struct complaint unknown_type_modifier = | |
95 | { | |
96 | "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0 | |
97 | }; | |
98 | ||
99 | struct complaint volatile_ignored = | |
100 | { | |
101 | "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0 | |
102 | }; | |
103 | ||
104 | struct complaint const_ignored = | |
105 | { | |
106 | "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0 | |
107 | }; | |
108 | ||
109 | struct complaint botched_modified_type = | |
110 | { | |
111 | "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0 | |
112 | }; | |
113 | ||
114 | struct complaint op_deref2 = | |
115 | { | |
116 | "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0 | |
117 | }; | |
118 | ||
119 | struct complaint op_deref4 = | |
120 | { | |
121 | "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0 | |
122 | }; | |
123 | ||
124 | struct complaint basereg_not_handled = | |
125 | { | |
126 | "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0 | |
127 | }; | |
128 | ||
129 | struct complaint dup_user_type_allocation = | |
130 | { | |
131 | "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0 | |
132 | }; | |
133 | ||
134 | struct complaint dup_user_type_definition = | |
135 | { | |
136 | "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0 | |
137 | }; | |
138 | ||
139 | struct complaint missing_tag = | |
140 | { | |
141 | "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0 | |
142 | }; | |
143 | ||
144 | struct complaint bad_array_element_type = | |
145 | { | |
146 | "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0 | |
147 | }; | |
148 | ||
149 | struct complaint subscript_data_items = | |
150 | { | |
151 | "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0 | |
152 | }; | |
153 | ||
154 | struct complaint unhandled_array_subscript_format = | |
155 | { | |
156 | "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0 | |
157 | }; | |
158 | ||
159 | struct complaint unknown_array_subscript_format = | |
160 | { | |
161 | "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0 | |
162 | }; | |
163 | ||
164 | struct complaint not_row_major = | |
165 | { | |
166 | "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0 | |
167 | }; | |
168 | ||
169 | struct complaint missing_at_name = | |
170 | { | |
171 | "DIE @ 0x%x, AT_name tag missing", 0, 0 | |
172 | }; | |
173 | ||
174 | typedef unsigned int DIE_REF; /* Reference to a DIE */ | |
175 | ||
176 | #ifndef GCC_PRODUCER | |
177 | #define GCC_PRODUCER "GNU C " | |
178 | #endif | |
179 | ||
180 | #ifndef GPLUS_PRODUCER | |
181 | #define GPLUS_PRODUCER "GNU C++ " | |
182 | #endif | |
183 | ||
184 | #ifndef LCC_PRODUCER | |
185 | #define LCC_PRODUCER "NCR C/C++" | |
186 | #endif | |
187 | ||
188 | #ifndef CHILL_PRODUCER | |
189 | #define CHILL_PRODUCER "GNU Chill " | |
190 | #endif | |
191 | ||
192 | /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */ | |
193 | #ifndef DWARF_REG_TO_REGNUM | |
194 | #define DWARF_REG_TO_REGNUM(num) (num) | |
195 | #endif | |
196 | ||
197 | /* Flags to target_to_host() that tell whether or not the data object is | |
198 | expected to be signed. Used, for example, when fetching a signed | |
199 | integer in the target environment which is used as a signed integer | |
200 | in the host environment, and the two environments have different sized | |
201 | ints. In this case, *somebody* has to sign extend the smaller sized | |
202 | int. */ | |
203 | ||
204 | #define GET_UNSIGNED 0 /* No sign extension required */ | |
205 | #define GET_SIGNED 1 /* Sign extension required */ | |
206 | ||
207 | /* Defines for things which are specified in the document "DWARF Debugging | |
208 | Information Format" published by UNIX International, Programming Languages | |
209 | SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ | |
210 | ||
211 | #define SIZEOF_DIE_LENGTH 4 | |
212 | #define SIZEOF_DIE_TAG 2 | |
213 | #define SIZEOF_ATTRIBUTE 2 | |
214 | #define SIZEOF_FORMAT_SPECIFIER 1 | |
215 | #define SIZEOF_FMT_FT 2 | |
216 | #define SIZEOF_LINETBL_LENGTH 4 | |
217 | #define SIZEOF_LINETBL_LINENO 4 | |
218 | #define SIZEOF_LINETBL_STMT 2 | |
219 | #define SIZEOF_LINETBL_DELTA 4 | |
220 | #define SIZEOF_LOC_ATOM_CODE 1 | |
221 | ||
222 | #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ | |
223 | ||
224 | /* Macros that return the sizes of various types of data in the target | |
225 | environment. | |
226 | ||
227 | FIXME: Currently these are just compile time constants (as they are in | |
228 | other parts of gdb as well). They need to be able to get the right size | |
229 | either from the bfd or possibly from the DWARF info. It would be nice if | |
230 | the DWARF producer inserted DIES that describe the fundamental types in | |
231 | the target environment into the DWARF info, similar to the way dbx stabs | |
232 | producers produce information about their fundamental types. */ | |
233 | ||
234 | #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) | |
235 | #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) | |
236 | ||
237 | /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a | |
238 | FORM_BLOCK2, and this is the value emitted by the AT&T compiler. | |
239 | However, the Issue 2 DWARF specification from AT&T defines it as | |
240 | a FORM_BLOCK4, as does the latest specification from UI/PLSIG. | |
241 | For backwards compatibility with the AT&T compiler produced executables | |
242 | we define AT_short_element_list for this variant. */ | |
243 | ||
244 | #define AT_short_element_list (0x00f0|FORM_BLOCK2) | |
245 | ||
246 | /* External variables referenced. */ | |
247 | ||
c5aa993b JM |
248 | extern int info_verbose; /* From main.c; nonzero => verbose */ |
249 | extern char *warning_pre_print; /* From utils.c */ | |
c906108c SS |
250 | |
251 | /* The DWARF debugging information consists of two major pieces, | |
252 | one is a block of DWARF Information Entries (DIE's) and the other | |
253 | is a line number table. The "struct dieinfo" structure contains | |
254 | the information for a single DIE, the one currently being processed. | |
255 | ||
256 | In order to make it easier to randomly access the attribute fields | |
257 | of the current DIE, which are specifically unordered within the DIE, | |
258 | each DIE is scanned and an instance of the "struct dieinfo" | |
259 | structure is initialized. | |
260 | ||
261 | Initialization is done in two levels. The first, done by basicdieinfo(), | |
262 | just initializes those fields that are vital to deciding whether or not | |
263 | to use this DIE, how to skip past it, etc. The second, done by the | |
264 | function completedieinfo(), fills in the rest of the information. | |
265 | ||
266 | Attributes which have block forms are not interpreted at the time | |
267 | the DIE is scanned, instead we just save pointers to the start | |
268 | of their value fields. | |
269 | ||
270 | Some fields have a flag <name>_p that is set when the value of the | |
271 | field is valid (I.E. we found a matching attribute in the DIE). Since | |
272 | we may want to test for the presence of some attributes in the DIE, | |
273 | such as AT_low_pc, without restricting the values of the field, | |
274 | we need someway to note that we found such an attribute. | |
c5aa993b | 275 | |
c906108c | 276 | */ |
c5aa993b | 277 | |
c906108c SS |
278 | typedef char BLOCK; |
279 | ||
c5aa993b JM |
280 | struct dieinfo |
281 | { | |
282 | char *die; /* Pointer to the raw DIE data */ | |
283 | unsigned long die_length; /* Length of the raw DIE data */ | |
284 | DIE_REF die_ref; /* Offset of this DIE */ | |
285 | unsigned short die_tag; /* Tag for this DIE */ | |
286 | unsigned long at_padding; | |
287 | unsigned long at_sibling; | |
288 | BLOCK *at_location; | |
289 | char *at_name; | |
290 | unsigned short at_fund_type; | |
291 | BLOCK *at_mod_fund_type; | |
292 | unsigned long at_user_def_type; | |
293 | BLOCK *at_mod_u_d_type; | |
294 | unsigned short at_ordering; | |
295 | BLOCK *at_subscr_data; | |
296 | unsigned long at_byte_size; | |
297 | unsigned short at_bit_offset; | |
298 | unsigned long at_bit_size; | |
299 | BLOCK *at_element_list; | |
300 | unsigned long at_stmt_list; | |
301 | CORE_ADDR at_low_pc; | |
302 | CORE_ADDR at_high_pc; | |
303 | unsigned long at_language; | |
304 | unsigned long at_member; | |
305 | unsigned long at_discr; | |
306 | BLOCK *at_discr_value; | |
307 | BLOCK *at_string_length; | |
308 | char *at_comp_dir; | |
309 | char *at_producer; | |
310 | unsigned long at_start_scope; | |
311 | unsigned long at_stride_size; | |
312 | unsigned long at_src_info; | |
313 | char *at_prototyped; | |
314 | unsigned int has_at_low_pc:1; | |
315 | unsigned int has_at_stmt_list:1; | |
316 | unsigned int has_at_byte_size:1; | |
317 | unsigned int short_element_list:1; | |
318 | ||
319 | /* Kludge to identify register variables */ | |
320 | ||
321 | unsigned int isreg; | |
322 | ||
323 | /* Kludge to identify optimized out variables */ | |
324 | ||
325 | unsigned int optimized_out; | |
326 | ||
327 | /* Kludge to identify basereg references. | |
328 | Nonzero if we have an offset relative to a basereg. */ | |
329 | ||
330 | unsigned int offreg; | |
331 | ||
332 | /* Kludge to identify which base register is it relative to. */ | |
333 | ||
334 | unsigned int basereg; | |
335 | }; | |
c906108c | 336 | |
c5aa993b | 337 | static int diecount; /* Approximate count of dies for compilation unit */ |
c906108c SS |
338 | static struct dieinfo *curdie; /* For warnings and such */ |
339 | ||
c5aa993b JM |
340 | static char *dbbase; /* Base pointer to dwarf info */ |
341 | static int dbsize; /* Size of dwarf info in bytes */ | |
342 | static int dbroff; /* Relative offset from start of .debug section */ | |
343 | static char *lnbase; /* Base pointer to line section */ | |
c906108c SS |
344 | |
345 | /* This value is added to each symbol value. FIXME: Generalize to | |
346 | the section_offsets structure used by dbxread (once this is done, | |
347 | pass the appropriate section number to end_symtab). */ | |
348 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |
349 | ||
350 | /* The section offsets used in the current psymtab or symtab. FIXME, | |
351 | only used to pass one value (baseaddr) at the moment. */ | |
352 | static struct section_offsets *base_section_offsets; | |
353 | ||
354 | /* We put a pointer to this structure in the read_symtab_private field | |
355 | of the psymtab. */ | |
356 | ||
c5aa993b JM |
357 | struct dwfinfo |
358 | { | |
359 | /* Always the absolute file offset to the start of the ".debug" | |
360 | section for the file containing the DIE's being accessed. */ | |
361 | file_ptr dbfoff; | |
362 | /* Relative offset from the start of the ".debug" section to the | |
363 | first DIE to be accessed. When building the partial symbol | |
364 | table, this value will be zero since we are accessing the | |
365 | entire ".debug" section. When expanding a partial symbol | |
366 | table entry, this value will be the offset to the first | |
367 | DIE for the compilation unit containing the symbol that | |
368 | triggers the expansion. */ | |
369 | int dbroff; | |
370 | /* The size of the chunk of DIE's being examined, in bytes. */ | |
371 | int dblength; | |
372 | /* The absolute file offset to the line table fragment. Ignored | |
373 | when building partial symbol tables, but used when expanding | |
374 | them, and contains the absolute file offset to the fragment | |
375 | of the ".line" section containing the line numbers for the | |
376 | current compilation unit. */ | |
377 | file_ptr lnfoff; | |
378 | }; | |
c906108c SS |
379 | |
380 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |
381 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |
382 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |
383 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |
384 | ||
385 | /* The generic symbol table building routines have separate lists for | |
386 | file scope symbols and all all other scopes (local scopes). So | |
387 | we need to select the right one to pass to add_symbol_to_list(). | |
388 | We do it by keeping a pointer to the correct list in list_in_scope. | |
389 | ||
390 | FIXME: The original dwarf code just treated the file scope as the first | |
391 | local scope, and all other local scopes as nested local scopes, and worked | |
392 | fine. Check to see if we really need to distinguish these in buildsym.c */ | |
393 | ||
394 | struct pending **list_in_scope = &file_symbols; | |
395 | ||
396 | /* DIES which have user defined types or modified user defined types refer to | |
397 | other DIES for the type information. Thus we need to associate the offset | |
398 | of a DIE for a user defined type with a pointer to the type information. | |
399 | ||
400 | Originally this was done using a simple but expensive algorithm, with an | |
401 | array of unsorted structures, each containing an offset/type-pointer pair. | |
402 | This array was scanned linearly each time a lookup was done. The result | |
403 | was that gdb was spending over half it's startup time munging through this | |
404 | array of pointers looking for a structure that had the right offset member. | |
405 | ||
406 | The second attempt used the same array of structures, but the array was | |
407 | sorted using qsort each time a new offset/type was recorded, and a binary | |
408 | search was used to find the type pointer for a given DIE offset. This was | |
409 | even slower, due to the overhead of sorting the array each time a new | |
410 | offset/type pair was entered. | |
411 | ||
412 | The third attempt uses a fixed size array of type pointers, indexed by a | |
413 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |
414 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |
415 | size array. Since each element is a 4 byte pointer, it takes exactly as | |
416 | much memory to hold this array as to hold the DWARF info for a given | |
417 | compilation unit. But it gets freed as soon as we are done with it. | |
418 | This has worked well in practice, as a reasonable tradeoff between memory | |
419 | consumption and speed, without having to resort to much more complicated | |
420 | algorithms. */ | |
421 | ||
422 | static struct type **utypes; /* Pointer to array of user type pointers */ | |
423 | static int numutypes; /* Max number of user type pointers */ | |
424 | ||
425 | /* Maintain an array of referenced fundamental types for the current | |
426 | compilation unit being read. For DWARF version 1, we have to construct | |
427 | the fundamental types on the fly, since no information about the | |
428 | fundamental types is supplied. Each such fundamental type is created by | |
429 | calling a language dependent routine to create the type, and then a | |
430 | pointer to that type is then placed in the array at the index specified | |
431 | by it's FT_<TYPENAME> value. The array has a fixed size set by the | |
432 | FT_NUM_MEMBERS compile time constant, which is the number of predefined | |
433 | fundamental types gdb knows how to construct. */ | |
434 | ||
c5aa993b | 435 | static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ |
c906108c SS |
436 | |
437 | /* Record the language for the compilation unit which is currently being | |
438 | processed. We know it once we have seen the TAG_compile_unit DIE, | |
439 | and we need it while processing the DIE's for that compilation unit. | |
440 | It is eventually saved in the symtab structure, but we don't finalize | |
441 | the symtab struct until we have processed all the DIE's for the | |
442 | compilation unit. We also need to get and save a pointer to the | |
443 | language struct for this language, so we can call the language | |
444 | dependent routines for doing things such as creating fundamental | |
445 | types. */ | |
446 | ||
447 | static enum language cu_language; | |
448 | static const struct language_defn *cu_language_defn; | |
449 | ||
450 | /* Forward declarations of static functions so we don't have to worry | |
451 | about ordering within this file. */ | |
452 | ||
a14ed312 | 453 | static void free_utypes (PTR); |
c906108c | 454 | |
a14ed312 | 455 | static int attribute_size (unsigned int); |
c906108c | 456 | |
a14ed312 | 457 | static CORE_ADDR target_to_host (char *, int, int, struct objfile *); |
c906108c | 458 | |
a14ed312 | 459 | static void add_enum_psymbol (struct dieinfo *, struct objfile *); |
c906108c | 460 | |
a14ed312 | 461 | static void handle_producer (char *); |
c906108c SS |
462 | |
463 | static void | |
a14ed312 | 464 | read_file_scope (struct dieinfo *, char *, char *, struct objfile *); |
c906108c SS |
465 | |
466 | static void | |
a14ed312 | 467 | read_func_scope (struct dieinfo *, char *, char *, struct objfile *); |
c906108c SS |
468 | |
469 | static void | |
a14ed312 | 470 | read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *); |
c906108c | 471 | |
a14ed312 | 472 | static void scan_partial_symbols (char *, char *, struct objfile *); |
c906108c SS |
473 | |
474 | static void | |
a14ed312 | 475 | scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *); |
c906108c | 476 | |
a14ed312 | 477 | static void add_partial_symbol (struct dieinfo *, struct objfile *); |
c906108c | 478 | |
a14ed312 | 479 | static void basicdieinfo (struct dieinfo *, char *, struct objfile *); |
c906108c | 480 | |
a14ed312 | 481 | static void completedieinfo (struct dieinfo *, struct objfile *); |
c906108c | 482 | |
a14ed312 | 483 | static void dwarf_psymtab_to_symtab (struct partial_symtab *); |
c906108c | 484 | |
a14ed312 | 485 | static void psymtab_to_symtab_1 (struct partial_symtab *); |
c906108c | 486 | |
a14ed312 | 487 | static void read_ofile_symtab (struct partial_symtab *); |
c906108c | 488 | |
a14ed312 | 489 | static void process_dies (char *, char *, struct objfile *); |
c906108c SS |
490 | |
491 | static void | |
a14ed312 | 492 | read_structure_scope (struct dieinfo *, char *, char *, struct objfile *); |
c906108c | 493 | |
a14ed312 | 494 | static struct type *decode_array_element_type (char *); |
c906108c | 495 | |
a14ed312 | 496 | static struct type *decode_subscript_data_item (char *, char *); |
c906108c | 497 | |
a14ed312 | 498 | static void dwarf_read_array_type (struct dieinfo *); |
c906108c | 499 | |
a14ed312 | 500 | static void read_tag_pointer_type (struct dieinfo *dip); |
c906108c | 501 | |
a14ed312 | 502 | static void read_tag_string_type (struct dieinfo *dip); |
c906108c | 503 | |
a14ed312 | 504 | static void read_subroutine_type (struct dieinfo *, char *, char *); |
c906108c SS |
505 | |
506 | static void | |
a14ed312 | 507 | read_enumeration (struct dieinfo *, char *, char *, struct objfile *); |
c906108c | 508 | |
a14ed312 KB |
509 | static struct type *struct_type (struct dieinfo *, char *, char *, |
510 | struct objfile *); | |
c906108c | 511 | |
a14ed312 | 512 | static struct type *enum_type (struct dieinfo *, struct objfile *); |
c906108c | 513 | |
a14ed312 | 514 | static void decode_line_numbers (char *); |
c906108c | 515 | |
a14ed312 | 516 | static struct type *decode_die_type (struct dieinfo *); |
c906108c | 517 | |
a14ed312 | 518 | static struct type *decode_mod_fund_type (char *); |
c906108c | 519 | |
a14ed312 | 520 | static struct type *decode_mod_u_d_type (char *); |
c906108c | 521 | |
a14ed312 | 522 | static struct type *decode_modified_type (char *, unsigned int, int); |
c906108c | 523 | |
a14ed312 | 524 | static struct type *decode_fund_type (unsigned int); |
c906108c | 525 | |
a14ed312 | 526 | static char *create_name (char *, struct obstack *); |
c906108c | 527 | |
a14ed312 | 528 | static struct type *lookup_utype (DIE_REF); |
c906108c | 529 | |
a14ed312 | 530 | static struct type *alloc_utype (DIE_REF, struct type *); |
c906108c | 531 | |
a14ed312 | 532 | static struct symbol *new_symbol (struct dieinfo *, struct objfile *); |
c906108c SS |
533 | |
534 | static void | |
a14ed312 | 535 | synthesize_typedef (struct dieinfo *, struct objfile *, struct type *); |
c906108c | 536 | |
a14ed312 | 537 | static int locval (struct dieinfo *); |
c906108c | 538 | |
a14ed312 | 539 | static void set_cu_language (struct dieinfo *); |
c906108c | 540 | |
a14ed312 | 541 | static struct type *dwarf_fundamental_type (struct objfile *, int); |
c906108c SS |
542 | |
543 | ||
544 | /* | |
545 | ||
c5aa993b | 546 | LOCAL FUNCTION |
c906108c | 547 | |
c5aa993b | 548 | dwarf_fundamental_type -- lookup or create a fundamental type |
c906108c | 549 | |
c5aa993b | 550 | SYNOPSIS |
c906108c | 551 | |
c5aa993b JM |
552 | struct type * |
553 | dwarf_fundamental_type (struct objfile *objfile, int typeid) | |
c906108c | 554 | |
c5aa993b | 555 | DESCRIPTION |
c906108c | 556 | |
c5aa993b JM |
557 | DWARF version 1 doesn't supply any fundamental type information, |
558 | so gdb has to construct such types. It has a fixed number of | |
559 | fundamental types that it knows how to construct, which is the | |
560 | union of all types that it knows how to construct for all languages | |
561 | that it knows about. These are enumerated in gdbtypes.h. | |
c906108c | 562 | |
c5aa993b JM |
563 | As an example, assume we find a DIE that references a DWARF |
564 | fundamental type of FT_integer. We first look in the ftypes | |
565 | array to see if we already have such a type, indexed by the | |
566 | gdb internal value of FT_INTEGER. If so, we simply return a | |
567 | pointer to that type. If not, then we ask an appropriate | |
568 | language dependent routine to create a type FT_INTEGER, using | |
569 | defaults reasonable for the current target machine, and install | |
570 | that type in ftypes for future reference. | |
c906108c | 571 | |
c5aa993b | 572 | RETURNS |
c906108c | 573 | |
c5aa993b | 574 | Pointer to a fundamental type. |
c906108c | 575 | |
c5aa993b | 576 | */ |
c906108c SS |
577 | |
578 | static struct type * | |
fba45db2 | 579 | dwarf_fundamental_type (struct objfile *objfile, int typeid) |
c906108c SS |
580 | { |
581 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS) | |
582 | { | |
583 | error ("internal error - invalid fundamental type id %d", typeid); | |
584 | } | |
585 | ||
586 | /* Look for this particular type in the fundamental type vector. If one is | |
587 | not found, create and install one appropriate for the current language | |
588 | and the current target machine. */ | |
589 | ||
590 | if (ftypes[typeid] == NULL) | |
591 | { | |
c5aa993b | 592 | ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid); |
c906108c SS |
593 | } |
594 | ||
595 | return (ftypes[typeid]); | |
596 | } | |
597 | ||
598 | /* | |
599 | ||
c5aa993b | 600 | LOCAL FUNCTION |
c906108c | 601 | |
c5aa993b | 602 | set_cu_language -- set local copy of language for compilation unit |
c906108c | 603 | |
c5aa993b | 604 | SYNOPSIS |
c906108c | 605 | |
c5aa993b JM |
606 | void |
607 | set_cu_language (struct dieinfo *dip) | |
c906108c | 608 | |
c5aa993b | 609 | DESCRIPTION |
c906108c | 610 | |
c5aa993b JM |
611 | Decode the language attribute for a compilation unit DIE and |
612 | remember what the language was. We use this at various times | |
613 | when processing DIE's for a given compilation unit. | |
c906108c | 614 | |
c5aa993b | 615 | RETURNS |
c906108c | 616 | |
c5aa993b | 617 | No return value. |
c906108c SS |
618 | |
619 | */ | |
620 | ||
621 | static void | |
fba45db2 | 622 | set_cu_language (struct dieinfo *dip) |
c906108c | 623 | { |
c5aa993b | 624 | switch (dip->at_language) |
c906108c | 625 | { |
c5aa993b JM |
626 | case LANG_C89: |
627 | case LANG_C: | |
628 | cu_language = language_c; | |
629 | break; | |
630 | case LANG_C_PLUS_PLUS: | |
631 | cu_language = language_cplus; | |
632 | break; | |
633 | case LANG_CHILL: | |
634 | cu_language = language_chill; | |
635 | break; | |
636 | case LANG_MODULA2: | |
637 | cu_language = language_m2; | |
638 | break; | |
639 | case LANG_FORTRAN77: | |
640 | case LANG_FORTRAN90: | |
641 | cu_language = language_fortran; | |
642 | break; | |
643 | case LANG_ADA83: | |
644 | case LANG_COBOL74: | |
645 | case LANG_COBOL85: | |
646 | case LANG_PASCAL83: | |
647 | /* We don't know anything special about these yet. */ | |
648 | cu_language = language_unknown; | |
649 | break; | |
650 | default: | |
651 | /* If no at_language, try to deduce one from the filename */ | |
652 | cu_language = deduce_language_from_filename (dip->at_name); | |
653 | break; | |
c906108c SS |
654 | } |
655 | cu_language_defn = language_def (cu_language); | |
656 | } | |
657 | ||
658 | /* | |
659 | ||
c5aa993b | 660 | GLOBAL FUNCTION |
c906108c | 661 | |
c5aa993b | 662 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info |
c906108c | 663 | |
c5aa993b | 664 | SYNOPSIS |
c906108c | 665 | |
c5aa993b | 666 | void dwarf_build_psymtabs (struct objfile *objfile, |
c5aa993b JM |
667 | int mainline, file_ptr dbfoff, unsigned int dbfsize, |
668 | file_ptr lnoffset, unsigned int lnsize) | |
c906108c | 669 | |
c5aa993b | 670 | DESCRIPTION |
c906108c | 671 | |
c5aa993b JM |
672 | This function is called upon to build partial symtabs from files |
673 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |
c906108c | 674 | |
c5aa993b JM |
675 | It is passed a bfd* containing the DIES |
676 | and line number information, the corresponding filename for that | |
677 | file, a base address for relocating the symbols, a flag indicating | |
678 | whether or not this debugging information is from a "main symbol | |
679 | table" rather than a shared library or dynamically linked file, | |
680 | and file offset/size pairs for the DIE information and line number | |
681 | information. | |
c906108c | 682 | |
c5aa993b | 683 | RETURNS |
c906108c | 684 | |
c5aa993b | 685 | No return value. |
c906108c SS |
686 | |
687 | */ | |
688 | ||
689 | void | |
fba45db2 KB |
690 | dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff, |
691 | unsigned int dbfsize, file_ptr lnoffset, | |
692 | unsigned int lnsize) | |
c906108c SS |
693 | { |
694 | bfd *abfd = objfile->obfd; | |
695 | struct cleanup *back_to; | |
c5aa993b | 696 | |
c906108c SS |
697 | current_objfile = objfile; |
698 | dbsize = dbfsize; | |
699 | dbbase = xmalloc (dbsize); | |
700 | dbroff = 0; | |
701 | if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || | |
702 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) | |
703 | { | |
704 | free (dbbase); | |
705 | error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)); | |
706 | } | |
707 | back_to = make_cleanup (free, dbbase); | |
c5aa993b | 708 | |
c906108c SS |
709 | /* If we are reinitializing, or if we have never loaded syms yet, init. |
710 | Since we have no idea how many DIES we are looking at, we just guess | |
711 | some arbitrary value. */ | |
c5aa993b JM |
712 | |
713 | if (mainline || objfile->global_psymbols.size == 0 || | |
714 | objfile->static_psymbols.size == 0) | |
c906108c SS |
715 | { |
716 | init_psymbol_list (objfile, 1024); | |
717 | } | |
c5aa993b | 718 | |
c906108c SS |
719 | /* Save the relocation factor where everybody can see it. */ |
720 | ||
d4f3574e SS |
721 | base_section_offsets = objfile->section_offsets; |
722 | baseaddr = ANOFFSET (objfile->section_offsets, 0); | |
c906108c SS |
723 | |
724 | /* Follow the compilation unit sibling chain, building a partial symbol | |
725 | table entry for each one. Save enough information about each compilation | |
726 | unit to locate the full DWARF information later. */ | |
c5aa993b | 727 | |
c906108c | 728 | scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); |
c5aa993b | 729 | |
c906108c SS |
730 | do_cleanups (back_to); |
731 | current_objfile = NULL; | |
732 | } | |
733 | ||
734 | /* | |
735 | ||
c5aa993b | 736 | LOCAL FUNCTION |
c906108c | 737 | |
c5aa993b | 738 | read_lexical_block_scope -- process all dies in a lexical block |
c906108c | 739 | |
c5aa993b | 740 | SYNOPSIS |
c906108c | 741 | |
c5aa993b JM |
742 | static void read_lexical_block_scope (struct dieinfo *dip, |
743 | char *thisdie, char *enddie) | |
c906108c | 744 | |
c5aa993b | 745 | DESCRIPTION |
c906108c | 746 | |
c5aa993b JM |
747 | Process all the DIES contained within a lexical block scope. |
748 | Start a new scope, process the dies, and then close the scope. | |
c906108c SS |
749 | |
750 | */ | |
751 | ||
752 | static void | |
fba45db2 KB |
753 | read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
754 | struct objfile *objfile) | |
c906108c SS |
755 | { |
756 | register struct context_stack *new; | |
757 | ||
c5aa993b JM |
758 | push_context (0, dip->at_low_pc); |
759 | process_dies (thisdie + dip->die_length, enddie, objfile); | |
c906108c SS |
760 | new = pop_context (); |
761 | if (local_symbols != NULL) | |
762 | { | |
c5aa993b JM |
763 | finish_block (0, &local_symbols, new->old_blocks, new->start_addr, |
764 | dip->at_high_pc, objfile); | |
c906108c | 765 | } |
c5aa993b | 766 | local_symbols = new->locals; |
c906108c SS |
767 | } |
768 | ||
769 | /* | |
770 | ||
c5aa993b | 771 | LOCAL FUNCTION |
c906108c | 772 | |
c5aa993b | 773 | lookup_utype -- look up a user defined type from die reference |
c906108c | 774 | |
c5aa993b | 775 | SYNOPSIS |
c906108c | 776 | |
c5aa993b | 777 | static type *lookup_utype (DIE_REF die_ref) |
c906108c | 778 | |
c5aa993b | 779 | DESCRIPTION |
c906108c | 780 | |
c5aa993b JM |
781 | Given a DIE reference, lookup the user defined type associated with |
782 | that DIE, if it has been registered already. If not registered, then | |
783 | return NULL. Alloc_utype() can be called to register an empty | |
784 | type for this reference, which will be filled in later when the | |
785 | actual referenced DIE is processed. | |
c906108c SS |
786 | */ |
787 | ||
788 | static struct type * | |
fba45db2 | 789 | lookup_utype (DIE_REF die_ref) |
c906108c SS |
790 | { |
791 | struct type *type = NULL; | |
792 | int utypeidx; | |
c5aa993b | 793 | |
c906108c SS |
794 | utypeidx = (die_ref - dbroff) / 4; |
795 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
796 | { | |
797 | complain (&bad_die_ref, DIE_ID, DIE_NAME); | |
798 | } | |
799 | else | |
800 | { | |
801 | type = *(utypes + utypeidx); | |
802 | } | |
803 | return (type); | |
804 | } | |
805 | ||
806 | ||
807 | /* | |
808 | ||
c5aa993b | 809 | LOCAL FUNCTION |
c906108c | 810 | |
c5aa993b | 811 | alloc_utype -- add a user defined type for die reference |
c906108c | 812 | |
c5aa993b | 813 | SYNOPSIS |
c906108c | 814 | |
c5aa993b | 815 | static type *alloc_utype (DIE_REF die_ref, struct type *utypep) |
c906108c | 816 | |
c5aa993b | 817 | DESCRIPTION |
c906108c | 818 | |
c5aa993b JM |
819 | Given a die reference DIE_REF, and a possible pointer to a user |
820 | defined type UTYPEP, register that this reference has a user | |
821 | defined type and either use the specified type in UTYPEP or | |
822 | make a new empty type that will be filled in later. | |
c906108c | 823 | |
c5aa993b JM |
824 | We should only be called after calling lookup_utype() to verify that |
825 | there is not currently a type registered for DIE_REF. | |
c906108c SS |
826 | */ |
827 | ||
828 | static struct type * | |
fba45db2 | 829 | alloc_utype (DIE_REF die_ref, struct type *utypep) |
c906108c SS |
830 | { |
831 | struct type **typep; | |
832 | int utypeidx; | |
c5aa993b | 833 | |
c906108c SS |
834 | utypeidx = (die_ref - dbroff) / 4; |
835 | typep = utypes + utypeidx; | |
836 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
837 | { | |
838 | utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
839 | complain (&bad_die_ref, DIE_ID, DIE_NAME); | |
840 | } | |
841 | else if (*typep != NULL) | |
842 | { | |
843 | utypep = *typep; | |
844 | complain (&dup_user_type_allocation, DIE_ID, DIE_NAME); | |
845 | } | |
846 | else | |
847 | { | |
848 | if (utypep == NULL) | |
849 | { | |
850 | utypep = alloc_type (current_objfile); | |
851 | } | |
852 | *typep = utypep; | |
853 | } | |
854 | return (utypep); | |
855 | } | |
856 | ||
857 | /* | |
858 | ||
c5aa993b | 859 | LOCAL FUNCTION |
c906108c | 860 | |
c5aa993b | 861 | free_utypes -- free the utypes array and reset pointer & count |
c906108c | 862 | |
c5aa993b | 863 | SYNOPSIS |
c906108c | 864 | |
c5aa993b | 865 | static void free_utypes (PTR dummy) |
c906108c | 866 | |
c5aa993b | 867 | DESCRIPTION |
c906108c | 868 | |
c5aa993b JM |
869 | Called via do_cleanups to free the utypes array, reset the pointer to NULL, |
870 | and set numutypes back to zero. This ensures that the utypes does not get | |
871 | referenced after being freed. | |
c906108c SS |
872 | */ |
873 | ||
874 | static void | |
fba45db2 | 875 | free_utypes (PTR dummy) |
c906108c SS |
876 | { |
877 | free (utypes); | |
878 | utypes = NULL; | |
879 | numutypes = 0; | |
880 | } | |
881 | ||
882 | ||
883 | /* | |
884 | ||
c5aa993b | 885 | LOCAL FUNCTION |
c906108c | 886 | |
c5aa993b | 887 | decode_die_type -- return a type for a specified die |
c906108c | 888 | |
c5aa993b | 889 | SYNOPSIS |
c906108c | 890 | |
c5aa993b | 891 | static struct type *decode_die_type (struct dieinfo *dip) |
c906108c | 892 | |
c5aa993b | 893 | DESCRIPTION |
c906108c | 894 | |
c5aa993b JM |
895 | Given a pointer to a die information structure DIP, decode the |
896 | type of the die and return a pointer to the decoded type. All | |
897 | dies without specific types default to type int. | |
c906108c SS |
898 | */ |
899 | ||
900 | static struct type * | |
fba45db2 | 901 | decode_die_type (struct dieinfo *dip) |
c906108c SS |
902 | { |
903 | struct type *type = NULL; | |
c5aa993b JM |
904 | |
905 | if (dip->at_fund_type != 0) | |
c906108c | 906 | { |
c5aa993b | 907 | type = decode_fund_type (dip->at_fund_type); |
c906108c | 908 | } |
c5aa993b | 909 | else if (dip->at_mod_fund_type != NULL) |
c906108c | 910 | { |
c5aa993b | 911 | type = decode_mod_fund_type (dip->at_mod_fund_type); |
c906108c | 912 | } |
c5aa993b | 913 | else if (dip->at_user_def_type) |
c906108c | 914 | { |
c5aa993b | 915 | if ((type = lookup_utype (dip->at_user_def_type)) == NULL) |
c906108c | 916 | { |
c5aa993b | 917 | type = alloc_utype (dip->at_user_def_type, NULL); |
c906108c SS |
918 | } |
919 | } | |
c5aa993b | 920 | else if (dip->at_mod_u_d_type) |
c906108c | 921 | { |
c5aa993b | 922 | type = decode_mod_u_d_type (dip->at_mod_u_d_type); |
c906108c SS |
923 | } |
924 | else | |
925 | { | |
926 | type = dwarf_fundamental_type (current_objfile, FT_VOID); | |
927 | } | |
928 | return (type); | |
929 | } | |
930 | ||
931 | /* | |
932 | ||
c5aa993b | 933 | LOCAL FUNCTION |
c906108c | 934 | |
c5aa993b | 935 | struct_type -- compute and return the type for a struct or union |
c906108c | 936 | |
c5aa993b | 937 | SYNOPSIS |
c906108c | 938 | |
c5aa993b JM |
939 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, |
940 | char *enddie, struct objfile *objfile) | |
c906108c | 941 | |
c5aa993b | 942 | DESCRIPTION |
c906108c | 943 | |
c5aa993b JM |
944 | Given pointer to a die information structure for a die which |
945 | defines a union or structure (and MUST define one or the other), | |
946 | and pointers to the raw die data that define the range of dies which | |
947 | define the members, compute and return the user defined type for the | |
948 | structure or union. | |
c906108c SS |
949 | */ |
950 | ||
951 | static struct type * | |
fba45db2 KB |
952 | struct_type (struct dieinfo *dip, char *thisdie, char *enddie, |
953 | struct objfile *objfile) | |
c906108c SS |
954 | { |
955 | struct type *type; | |
c5aa993b JM |
956 | struct nextfield |
957 | { | |
958 | struct nextfield *next; | |
959 | struct field field; | |
960 | }; | |
c906108c SS |
961 | struct nextfield *list = NULL; |
962 | struct nextfield *new; | |
963 | int nfields = 0; | |
964 | int n; | |
965 | struct dieinfo mbr; | |
966 | char *nextdie; | |
967 | int anonymous_size; | |
c5aa993b JM |
968 | |
969 | if ((type = lookup_utype (dip->die_ref)) == NULL) | |
c906108c SS |
970 | { |
971 | /* No forward references created an empty type, so install one now */ | |
c5aa993b | 972 | type = alloc_utype (dip->die_ref, NULL); |
c906108c | 973 | } |
c5aa993b JM |
974 | INIT_CPLUS_SPECIFIC (type); |
975 | switch (dip->die_tag) | |
c906108c | 976 | { |
c5aa993b JM |
977 | case TAG_class_type: |
978 | TYPE_CODE (type) = TYPE_CODE_CLASS; | |
979 | break; | |
980 | case TAG_structure_type: | |
981 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
982 | break; | |
983 | case TAG_union_type: | |
984 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
985 | break; | |
986 | default: | |
987 | /* Should never happen */ | |
988 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
989 | complain (&missing_tag, DIE_ID, DIE_NAME); | |
990 | break; | |
c906108c SS |
991 | } |
992 | /* Some compilers try to be helpful by inventing "fake" names for | |
993 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
994 | Thanks, but no thanks... */ | |
c5aa993b JM |
995 | if (dip->at_name != NULL |
996 | && *dip->at_name != '~' | |
997 | && *dip->at_name != '.') | |
c906108c | 998 | { |
c5aa993b JM |
999 | TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack, |
1000 | "", "", dip->at_name); | |
c906108c SS |
1001 | } |
1002 | /* Use whatever size is known. Zero is a valid size. We might however | |
1003 | wish to check has_at_byte_size to make sure that some byte size was | |
1004 | given explicitly, but DWARF doesn't specify that explicit sizes of | |
1005 | zero have to present, so complaining about missing sizes should | |
1006 | probably not be the default. */ | |
c5aa993b JM |
1007 | TYPE_LENGTH (type) = dip->at_byte_size; |
1008 | thisdie += dip->die_length; | |
c906108c SS |
1009 | while (thisdie < enddie) |
1010 | { | |
1011 | basicdieinfo (&mbr, thisdie, objfile); | |
1012 | completedieinfo (&mbr, objfile); | |
1013 | if (mbr.die_length <= SIZEOF_DIE_LENGTH) | |
1014 | { | |
1015 | break; | |
1016 | } | |
1017 | else if (mbr.at_sibling != 0) | |
1018 | { | |
1019 | nextdie = dbbase + mbr.at_sibling - dbroff; | |
1020 | } | |
1021 | else | |
1022 | { | |
1023 | nextdie = thisdie + mbr.die_length; | |
1024 | } | |
1025 | switch (mbr.die_tag) | |
1026 | { | |
1027 | case TAG_member: | |
1028 | /* Get space to record the next field's data. */ | |
1029 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
c5aa993b | 1030 | new->next = list; |
c906108c SS |
1031 | list = new; |
1032 | /* Save the data. */ | |
c5aa993b JM |
1033 | list->field.name = |
1034 | obsavestring (mbr.at_name, strlen (mbr.at_name), | |
1035 | &objfile->type_obstack); | |
c906108c SS |
1036 | FIELD_TYPE (list->field) = decode_die_type (&mbr); |
1037 | FIELD_BITPOS (list->field) = 8 * locval (&mbr); | |
1038 | /* Handle bit fields. */ | |
1039 | FIELD_BITSIZE (list->field) = mbr.at_bit_size; | |
1040 | if (BITS_BIG_ENDIAN) | |
1041 | { | |
1042 | /* For big endian bits, the at_bit_offset gives the | |
c5aa993b JM |
1043 | additional bit offset from the MSB of the containing |
1044 | anonymous object to the MSB of the field. We don't | |
1045 | have to do anything special since we don't need to | |
1046 | know the size of the anonymous object. */ | |
c906108c SS |
1047 | FIELD_BITPOS (list->field) += mbr.at_bit_offset; |
1048 | } | |
1049 | else | |
1050 | { | |
1051 | /* For little endian bits, we need to have a non-zero | |
c5aa993b JM |
1052 | at_bit_size, so that we know we are in fact dealing |
1053 | with a bitfield. Compute the bit offset to the MSB | |
1054 | of the anonymous object, subtract off the number of | |
1055 | bits from the MSB of the field to the MSB of the | |
1056 | object, and then subtract off the number of bits of | |
1057 | the field itself. The result is the bit offset of | |
1058 | the LSB of the field. */ | |
c906108c SS |
1059 | if (mbr.at_bit_size > 0) |
1060 | { | |
1061 | if (mbr.has_at_byte_size) | |
1062 | { | |
1063 | /* The size of the anonymous object containing | |
c5aa993b JM |
1064 | the bit field is explicit, so use the |
1065 | indicated size (in bytes). */ | |
c906108c SS |
1066 | anonymous_size = mbr.at_byte_size; |
1067 | } | |
1068 | else | |
1069 | { | |
1070 | /* The size of the anonymous object containing | |
c5aa993b JM |
1071 | the bit field matches the size of an object |
1072 | of the bit field's type. DWARF allows | |
1073 | at_byte_size to be left out in such cases, as | |
1074 | a debug information size optimization. */ | |
1075 | anonymous_size = TYPE_LENGTH (list->field.type); | |
c906108c SS |
1076 | } |
1077 | FIELD_BITPOS (list->field) += | |
1078 | anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; | |
1079 | } | |
1080 | } | |
1081 | nfields++; | |
1082 | break; | |
1083 | default: | |
1084 | process_dies (thisdie, nextdie, objfile); | |
1085 | break; | |
1086 | } | |
1087 | thisdie = nextdie; | |
1088 | } | |
1089 | /* Now create the vector of fields, and record how big it is. We may | |
1090 | not even have any fields, if this DIE was generated due to a reference | |
1091 | to an anonymous structure or union. In this case, TYPE_FLAG_STUB is | |
1092 | set, which clues gdb in to the fact that it needs to search elsewhere | |
1093 | for the full structure definition. */ | |
1094 | if (nfields == 0) | |
1095 | { | |
1096 | TYPE_FLAGS (type) |= TYPE_FLAG_STUB; | |
1097 | } | |
1098 | else | |
1099 | { | |
1100 | TYPE_NFIELDS (type) = nfields; | |
1101 | TYPE_FIELDS (type) = (struct field *) | |
1102 | TYPE_ALLOC (type, sizeof (struct field) * nfields); | |
1103 | /* Copy the saved-up fields into the field vector. */ | |
c5aa993b | 1104 | for (n = nfields; list; list = list->next) |
c906108c | 1105 | { |
c5aa993b JM |
1106 | TYPE_FIELD (type, --n) = list->field; |
1107 | } | |
c906108c SS |
1108 | } |
1109 | return (type); | |
1110 | } | |
1111 | ||
1112 | /* | |
1113 | ||
c5aa993b | 1114 | LOCAL FUNCTION |
c906108c | 1115 | |
c5aa993b | 1116 | read_structure_scope -- process all dies within struct or union |
c906108c | 1117 | |
c5aa993b | 1118 | SYNOPSIS |
c906108c | 1119 | |
c5aa993b JM |
1120 | static void read_structure_scope (struct dieinfo *dip, |
1121 | char *thisdie, char *enddie, struct objfile *objfile) | |
c906108c | 1122 | |
c5aa993b | 1123 | DESCRIPTION |
c906108c | 1124 | |
c5aa993b JM |
1125 | Called when we find the DIE that starts a structure or union |
1126 | scope (definition) to process all dies that define the members | |
1127 | of the structure or union. DIP is a pointer to the die info | |
1128 | struct for the DIE that names the structure or union. | |
c906108c | 1129 | |
c5aa993b JM |
1130 | NOTES |
1131 | ||
1132 | Note that we need to call struct_type regardless of whether or not | |
1133 | the DIE has an at_name attribute, since it might be an anonymous | |
1134 | structure or union. This gets the type entered into our set of | |
1135 | user defined types. | |
1136 | ||
1137 | However, if the structure is incomplete (an opaque struct/union) | |
1138 | then suppress creating a symbol table entry for it since gdb only | |
1139 | wants to find the one with the complete definition. Note that if | |
1140 | it is complete, we just call new_symbol, which does it's own | |
1141 | checking about whether the struct/union is anonymous or not (and | |
1142 | suppresses creating a symbol table entry itself). | |
c906108c | 1143 | |
c906108c SS |
1144 | */ |
1145 | ||
1146 | static void | |
fba45db2 KB |
1147 | read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1148 | struct objfile *objfile) | |
c906108c SS |
1149 | { |
1150 | struct type *type; | |
1151 | struct symbol *sym; | |
c5aa993b | 1152 | |
c906108c SS |
1153 | type = struct_type (dip, thisdie, enddie, objfile); |
1154 | if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB)) | |
1155 | { | |
1156 | sym = new_symbol (dip, objfile); | |
1157 | if (sym != NULL) | |
1158 | { | |
1159 | SYMBOL_TYPE (sym) = type; | |
1160 | if (cu_language == language_cplus) | |
1161 | { | |
1162 | synthesize_typedef (dip, objfile, type); | |
1163 | } | |
1164 | } | |
1165 | } | |
1166 | } | |
1167 | ||
1168 | /* | |
1169 | ||
c5aa993b | 1170 | LOCAL FUNCTION |
c906108c | 1171 | |
c5aa993b | 1172 | decode_array_element_type -- decode type of the array elements |
c906108c | 1173 | |
c5aa993b | 1174 | SYNOPSIS |
c906108c | 1175 | |
c5aa993b | 1176 | static struct type *decode_array_element_type (char *scan, char *end) |
c906108c | 1177 | |
c5aa993b | 1178 | DESCRIPTION |
c906108c | 1179 | |
c5aa993b JM |
1180 | As the last step in decoding the array subscript information for an |
1181 | array DIE, we need to decode the type of the array elements. We are | |
1182 | passed a pointer to this last part of the subscript information and | |
1183 | must return the appropriate type. If the type attribute is not | |
1184 | recognized, just warn about the problem and return type int. | |
c906108c SS |
1185 | */ |
1186 | ||
1187 | static struct type * | |
fba45db2 | 1188 | decode_array_element_type (char *scan) |
c906108c SS |
1189 | { |
1190 | struct type *typep; | |
1191 | DIE_REF die_ref; | |
1192 | unsigned short attribute; | |
1193 | unsigned short fundtype; | |
1194 | int nbytes; | |
c5aa993b | 1195 | |
c906108c SS |
1196 | attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, |
1197 | current_objfile); | |
1198 | scan += SIZEOF_ATTRIBUTE; | |
1199 | if ((nbytes = attribute_size (attribute)) == -1) | |
1200 | { | |
1201 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); | |
1202 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1203 | } | |
1204 | else | |
1205 | { | |
1206 | switch (attribute) | |
1207 | { | |
c5aa993b JM |
1208 | case AT_fund_type: |
1209 | fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1210 | current_objfile); | |
1211 | typep = decode_fund_type (fundtype); | |
1212 | break; | |
1213 | case AT_mod_fund_type: | |
1214 | typep = decode_mod_fund_type (scan); | |
1215 | break; | |
1216 | case AT_user_def_type: | |
1217 | die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, | |
1218 | current_objfile); | |
1219 | if ((typep = lookup_utype (die_ref)) == NULL) | |
1220 | { | |
1221 | typep = alloc_utype (die_ref, NULL); | |
1222 | } | |
1223 | break; | |
1224 | case AT_mod_u_d_type: | |
1225 | typep = decode_mod_u_d_type (scan); | |
1226 | break; | |
1227 | default: | |
1228 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); | |
1229 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1230 | break; | |
1231 | } | |
c906108c SS |
1232 | } |
1233 | return (typep); | |
1234 | } | |
1235 | ||
1236 | /* | |
1237 | ||
c5aa993b | 1238 | LOCAL FUNCTION |
c906108c | 1239 | |
c5aa993b | 1240 | decode_subscript_data_item -- decode array subscript item |
c906108c | 1241 | |
c5aa993b | 1242 | SYNOPSIS |
c906108c | 1243 | |
c5aa993b JM |
1244 | static struct type * |
1245 | decode_subscript_data_item (char *scan, char *end) | |
c906108c | 1246 | |
c5aa993b | 1247 | DESCRIPTION |
c906108c | 1248 | |
c5aa993b JM |
1249 | The array subscripts and the data type of the elements of an |
1250 | array are described by a list of data items, stored as a block | |
1251 | of contiguous bytes. There is a data item describing each array | |
1252 | dimension, and a final data item describing the element type. | |
1253 | The data items are ordered the same as their appearance in the | |
1254 | source (I.E. leftmost dimension first, next to leftmost second, | |
1255 | etc). | |
c906108c | 1256 | |
c5aa993b JM |
1257 | The data items describing each array dimension consist of four |
1258 | parts: (1) a format specifier, (2) type type of the subscript | |
1259 | index, (3) a description of the low bound of the array dimension, | |
1260 | and (4) a description of the high bound of the array dimension. | |
c906108c | 1261 | |
c5aa993b JM |
1262 | The last data item is the description of the type of each of |
1263 | the array elements. | |
c906108c | 1264 | |
c5aa993b JM |
1265 | We are passed a pointer to the start of the block of bytes |
1266 | containing the remaining data items, and a pointer to the first | |
1267 | byte past the data. This function recursively decodes the | |
1268 | remaining data items and returns a type. | |
c906108c | 1269 | |
c5aa993b JM |
1270 | If we somehow fail to decode some data, we complain about it |
1271 | and return a type "array of int". | |
c906108c | 1272 | |
c5aa993b JM |
1273 | BUGS |
1274 | FIXME: This code only implements the forms currently used | |
1275 | by the AT&T and GNU C compilers. | |
c906108c | 1276 | |
c5aa993b JM |
1277 | The end pointer is supplied for error checking, maybe we should |
1278 | use it for that... | |
c906108c SS |
1279 | */ |
1280 | ||
1281 | static struct type * | |
fba45db2 | 1282 | decode_subscript_data_item (char *scan, char *end) |
c906108c SS |
1283 | { |
1284 | struct type *typep = NULL; /* Array type we are building */ | |
1285 | struct type *nexttype; /* Type of each element (may be array) */ | |
1286 | struct type *indextype; /* Type of this index */ | |
1287 | struct type *rangetype; | |
1288 | unsigned int format; | |
1289 | unsigned short fundtype; | |
1290 | unsigned long lowbound; | |
1291 | unsigned long highbound; | |
1292 | int nbytes; | |
c5aa993b | 1293 | |
c906108c SS |
1294 | format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, |
1295 | current_objfile); | |
1296 | scan += SIZEOF_FORMAT_SPECIFIER; | |
1297 | switch (format) | |
1298 | { | |
1299 | case FMT_ET: | |
1300 | typep = decode_array_element_type (scan); | |
1301 | break; | |
1302 | case FMT_FT_C_C: | |
1303 | fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, | |
1304 | current_objfile); | |
1305 | indextype = decode_fund_type (fundtype); | |
1306 | scan += SIZEOF_FMT_FT; | |
1307 | nbytes = TARGET_FT_LONG_SIZE (current_objfile); | |
1308 | lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1309 | scan += nbytes; | |
1310 | highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); | |
1311 | scan += nbytes; | |
1312 | nexttype = decode_subscript_data_item (scan, end); | |
1313 | if (nexttype == NULL) | |
1314 | { | |
1315 | /* Munged subscript data or other problem, fake it. */ | |
1316 | complain (&subscript_data_items, DIE_ID, DIE_NAME); | |
1317 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1318 | } | |
1319 | rangetype = create_range_type ((struct type *) NULL, indextype, | |
c5aa993b | 1320 | lowbound, highbound); |
c906108c SS |
1321 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); |
1322 | break; | |
1323 | case FMT_FT_C_X: | |
1324 | case FMT_FT_X_C: | |
1325 | case FMT_FT_X_X: | |
1326 | case FMT_UT_C_C: | |
1327 | case FMT_UT_C_X: | |
1328 | case FMT_UT_X_C: | |
1329 | case FMT_UT_X_X: | |
1330 | complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format); | |
1331 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1332 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1333 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1334 | break; | |
1335 | default: | |
1336 | complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format); | |
1337 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1338 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); | |
1339 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); | |
1340 | break; | |
1341 | } | |
1342 | return (typep); | |
1343 | } | |
1344 | ||
1345 | /* | |
1346 | ||
c5aa993b | 1347 | LOCAL FUNCTION |
c906108c | 1348 | |
c5aa993b | 1349 | dwarf_read_array_type -- read TAG_array_type DIE |
c906108c | 1350 | |
c5aa993b | 1351 | SYNOPSIS |
c906108c | 1352 | |
c5aa993b | 1353 | static void dwarf_read_array_type (struct dieinfo *dip) |
c906108c | 1354 | |
c5aa993b | 1355 | DESCRIPTION |
c906108c | 1356 | |
c5aa993b JM |
1357 | Extract all information from a TAG_array_type DIE and add to |
1358 | the user defined type vector. | |
c906108c SS |
1359 | */ |
1360 | ||
1361 | static void | |
fba45db2 | 1362 | dwarf_read_array_type (struct dieinfo *dip) |
c906108c SS |
1363 | { |
1364 | struct type *type; | |
1365 | struct type *utype; | |
1366 | char *sub; | |
1367 | char *subend; | |
1368 | unsigned short blocksz; | |
1369 | int nbytes; | |
c5aa993b JM |
1370 | |
1371 | if (dip->at_ordering != ORD_row_major) | |
c906108c SS |
1372 | { |
1373 | /* FIXME: Can gdb even handle column major arrays? */ | |
1374 | complain (¬_row_major, DIE_ID, DIE_NAME); | |
1375 | } | |
c5aa993b | 1376 | if ((sub = dip->at_subscr_data) != NULL) |
c906108c SS |
1377 | { |
1378 | nbytes = attribute_size (AT_subscr_data); | |
1379 | blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); | |
1380 | subend = sub + nbytes + blocksz; | |
1381 | sub += nbytes; | |
1382 | type = decode_subscript_data_item (sub, subend); | |
c5aa993b | 1383 | if ((utype = lookup_utype (dip->die_ref)) == NULL) |
c906108c SS |
1384 | { |
1385 | /* Install user defined type that has not been referenced yet. */ | |
c5aa993b | 1386 | alloc_utype (dip->die_ref, type); |
c906108c SS |
1387 | } |
1388 | else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) | |
1389 | { | |
1390 | /* Ick! A forward ref has already generated a blank type in our | |
1391 | slot, and this type probably already has things pointing to it | |
1392 | (which is what caused it to be created in the first place). | |
1393 | If it's just a place holder we can plop our fully defined type | |
1394 | on top of it. We can't recover the space allocated for our | |
1395 | new type since it might be on an obstack, but we could reuse | |
1396 | it if we kept a list of them, but it might not be worth it | |
1397 | (FIXME). */ | |
1398 | *utype = *type; | |
1399 | } | |
1400 | else | |
1401 | { | |
1402 | /* Double ick! Not only is a type already in our slot, but | |
1403 | someone has decorated it. Complain and leave it alone. */ | |
1404 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1405 | } | |
1406 | } | |
1407 | } | |
1408 | ||
1409 | /* | |
1410 | ||
c5aa993b | 1411 | LOCAL FUNCTION |
c906108c | 1412 | |
c5aa993b | 1413 | read_tag_pointer_type -- read TAG_pointer_type DIE |
c906108c | 1414 | |
c5aa993b | 1415 | SYNOPSIS |
c906108c | 1416 | |
c5aa993b | 1417 | static void read_tag_pointer_type (struct dieinfo *dip) |
c906108c | 1418 | |
c5aa993b | 1419 | DESCRIPTION |
c906108c | 1420 | |
c5aa993b JM |
1421 | Extract all information from a TAG_pointer_type DIE and add to |
1422 | the user defined type vector. | |
c906108c SS |
1423 | */ |
1424 | ||
1425 | static void | |
fba45db2 | 1426 | read_tag_pointer_type (struct dieinfo *dip) |
c906108c SS |
1427 | { |
1428 | struct type *type; | |
1429 | struct type *utype; | |
c5aa993b | 1430 | |
c906108c | 1431 | type = decode_die_type (dip); |
c5aa993b | 1432 | if ((utype = lookup_utype (dip->die_ref)) == NULL) |
c906108c SS |
1433 | { |
1434 | utype = lookup_pointer_type (type); | |
c5aa993b | 1435 | alloc_utype (dip->die_ref, utype); |
c906108c SS |
1436 | } |
1437 | else | |
1438 | { | |
1439 | TYPE_TARGET_TYPE (utype) = type; | |
1440 | TYPE_POINTER_TYPE (type) = utype; | |
1441 | ||
1442 | /* We assume the machine has only one representation for pointers! */ | |
1443 | /* FIXME: Possably a poor assumption */ | |
c5aa993b | 1444 | TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; |
c906108c SS |
1445 | TYPE_CODE (utype) = TYPE_CODE_PTR; |
1446 | } | |
1447 | } | |
1448 | ||
1449 | /* | |
1450 | ||
c5aa993b | 1451 | LOCAL FUNCTION |
c906108c | 1452 | |
c5aa993b | 1453 | read_tag_string_type -- read TAG_string_type DIE |
c906108c | 1454 | |
c5aa993b | 1455 | SYNOPSIS |
c906108c | 1456 | |
c5aa993b | 1457 | static void read_tag_string_type (struct dieinfo *dip) |
c906108c | 1458 | |
c5aa993b | 1459 | DESCRIPTION |
c906108c | 1460 | |
c5aa993b JM |
1461 | Extract all information from a TAG_string_type DIE and add to |
1462 | the user defined type vector. It isn't really a user defined | |
1463 | type, but it behaves like one, with other DIE's using an | |
1464 | AT_user_def_type attribute to reference it. | |
c906108c SS |
1465 | */ |
1466 | ||
1467 | static void | |
fba45db2 | 1468 | read_tag_string_type (struct dieinfo *dip) |
c906108c SS |
1469 | { |
1470 | struct type *utype; | |
1471 | struct type *indextype; | |
1472 | struct type *rangetype; | |
1473 | unsigned long lowbound = 0; | |
1474 | unsigned long highbound; | |
1475 | ||
c5aa993b | 1476 | if (dip->has_at_byte_size) |
c906108c SS |
1477 | { |
1478 | /* A fixed bounds string */ | |
c5aa993b | 1479 | highbound = dip->at_byte_size - 1; |
c906108c SS |
1480 | } |
1481 | else | |
1482 | { | |
1483 | /* A varying length string. Stub for now. (FIXME) */ | |
1484 | highbound = 1; | |
1485 | } | |
1486 | indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
1487 | rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, | |
1488 | highbound); | |
c5aa993b JM |
1489 | |
1490 | utype = lookup_utype (dip->die_ref); | |
c906108c SS |
1491 | if (utype == NULL) |
1492 | { | |
1493 | /* No type defined, go ahead and create a blank one to use. */ | |
c5aa993b | 1494 | utype = alloc_utype (dip->die_ref, (struct type *) NULL); |
c906108c SS |
1495 | } |
1496 | else | |
1497 | { | |
1498 | /* Already a type in our slot due to a forward reference. Make sure it | |
c5aa993b | 1499 | is a blank one. If not, complain and leave it alone. */ |
c906108c SS |
1500 | if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) |
1501 | { | |
1502 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1503 | return; | |
1504 | } | |
1505 | } | |
1506 | ||
1507 | /* Create the string type using the blank type we either found or created. */ | |
1508 | utype = create_string_type (utype, rangetype); | |
1509 | } | |
1510 | ||
1511 | /* | |
1512 | ||
c5aa993b | 1513 | LOCAL FUNCTION |
c906108c | 1514 | |
c5aa993b | 1515 | read_subroutine_type -- process TAG_subroutine_type dies |
c906108c | 1516 | |
c5aa993b | 1517 | SYNOPSIS |
c906108c | 1518 | |
c5aa993b JM |
1519 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, |
1520 | char *enddie) | |
c906108c | 1521 | |
c5aa993b | 1522 | DESCRIPTION |
c906108c | 1523 | |
c5aa993b | 1524 | Handle DIES due to C code like: |
c906108c | 1525 | |
c5aa993b JM |
1526 | struct foo { |
1527 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |
1528 | int b; | |
1529 | }; | |
c906108c | 1530 | |
c5aa993b | 1531 | NOTES |
c906108c | 1532 | |
c5aa993b JM |
1533 | The parameter DIES are currently ignored. See if gdb has a way to |
1534 | include this info in it's type system, and decode them if so. Is | |
1535 | this what the type structure's "arg_types" field is for? (FIXME) | |
c906108c SS |
1536 | */ |
1537 | ||
1538 | static void | |
fba45db2 | 1539 | read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie) |
c906108c SS |
1540 | { |
1541 | struct type *type; /* Type that this function returns */ | |
1542 | struct type *ftype; /* Function that returns above type */ | |
c5aa993b | 1543 | |
c906108c SS |
1544 | /* Decode the type that this subroutine returns */ |
1545 | ||
1546 | type = decode_die_type (dip); | |
1547 | ||
1548 | /* Check to see if we already have a partially constructed user | |
1549 | defined type for this DIE, from a forward reference. */ | |
1550 | ||
c5aa993b | 1551 | if ((ftype = lookup_utype (dip->die_ref)) == NULL) |
c906108c SS |
1552 | { |
1553 | /* This is the first reference to one of these types. Make | |
c5aa993b | 1554 | a new one and place it in the user defined types. */ |
c906108c | 1555 | ftype = lookup_function_type (type); |
c5aa993b | 1556 | alloc_utype (dip->die_ref, ftype); |
c906108c SS |
1557 | } |
1558 | else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) | |
1559 | { | |
1560 | /* We have an existing partially constructed type, so bash it | |
c5aa993b | 1561 | into the correct type. */ |
c906108c SS |
1562 | TYPE_TARGET_TYPE (ftype) = type; |
1563 | TYPE_LENGTH (ftype) = 1; | |
1564 | TYPE_CODE (ftype) = TYPE_CODE_FUNC; | |
1565 | } | |
1566 | else | |
1567 | { | |
1568 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); | |
1569 | } | |
1570 | } | |
1571 | ||
1572 | /* | |
1573 | ||
c5aa993b | 1574 | LOCAL FUNCTION |
c906108c | 1575 | |
c5aa993b | 1576 | read_enumeration -- process dies which define an enumeration |
c906108c | 1577 | |
c5aa993b | 1578 | SYNOPSIS |
c906108c | 1579 | |
c5aa993b JM |
1580 | static void read_enumeration (struct dieinfo *dip, char *thisdie, |
1581 | char *enddie, struct objfile *objfile) | |
c906108c | 1582 | |
c5aa993b | 1583 | DESCRIPTION |
c906108c | 1584 | |
c5aa993b JM |
1585 | Given a pointer to a die which begins an enumeration, process all |
1586 | the dies that define the members of the enumeration. | |
c906108c | 1587 | |
c5aa993b | 1588 | NOTES |
c906108c | 1589 | |
c5aa993b JM |
1590 | Note that we need to call enum_type regardless of whether or not we |
1591 | have a symbol, since we might have an enum without a tag name (thus | |
1592 | no symbol for the tagname). | |
c906108c SS |
1593 | */ |
1594 | ||
1595 | static void | |
fba45db2 KB |
1596 | read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie, |
1597 | struct objfile *objfile) | |
c906108c SS |
1598 | { |
1599 | struct type *type; | |
1600 | struct symbol *sym; | |
c5aa993b | 1601 | |
c906108c SS |
1602 | type = enum_type (dip, objfile); |
1603 | sym = new_symbol (dip, objfile); | |
1604 | if (sym != NULL) | |
1605 | { | |
1606 | SYMBOL_TYPE (sym) = type; | |
1607 | if (cu_language == language_cplus) | |
1608 | { | |
1609 | synthesize_typedef (dip, objfile, type); | |
1610 | } | |
1611 | } | |
1612 | } | |
1613 | ||
1614 | /* | |
1615 | ||
c5aa993b | 1616 | LOCAL FUNCTION |
c906108c | 1617 | |
c5aa993b | 1618 | enum_type -- decode and return a type for an enumeration |
c906108c | 1619 | |
c5aa993b | 1620 | SYNOPSIS |
c906108c | 1621 | |
c5aa993b | 1622 | static type *enum_type (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 1623 | |
c5aa993b | 1624 | DESCRIPTION |
c906108c | 1625 | |
c5aa993b JM |
1626 | Given a pointer to a die information structure for the die which |
1627 | starts an enumeration, process all the dies that define the members | |
1628 | of the enumeration and return a type pointer for the enumeration. | |
c906108c | 1629 | |
c5aa993b JM |
1630 | At the same time, for each member of the enumeration, create a |
1631 | symbol for it with namespace VAR_NAMESPACE and class LOC_CONST, | |
1632 | and give it the type of the enumeration itself. | |
c906108c | 1633 | |
c5aa993b | 1634 | NOTES |
c906108c | 1635 | |
c5aa993b JM |
1636 | Note that the DWARF specification explicitly mandates that enum |
1637 | constants occur in reverse order from the source program order, | |
1638 | for "consistency" and because this ordering is easier for many | |
1639 | compilers to generate. (Draft 6, sec 3.8.5, Enumeration type | |
1640 | Entries). Because gdb wants to see the enum members in program | |
1641 | source order, we have to ensure that the order gets reversed while | |
1642 | we are processing them. | |
c906108c SS |
1643 | */ |
1644 | ||
1645 | static struct type * | |
fba45db2 | 1646 | enum_type (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
1647 | { |
1648 | struct type *type; | |
c5aa993b JM |
1649 | struct nextfield |
1650 | { | |
1651 | struct nextfield *next; | |
1652 | struct field field; | |
1653 | }; | |
c906108c SS |
1654 | struct nextfield *list = NULL; |
1655 | struct nextfield *new; | |
1656 | int nfields = 0; | |
1657 | int n; | |
1658 | char *scan; | |
1659 | char *listend; | |
1660 | unsigned short blocksz; | |
1661 | struct symbol *sym; | |
1662 | int nbytes; | |
1663 | int unsigned_enum = 1; | |
c5aa993b JM |
1664 | |
1665 | if ((type = lookup_utype (dip->die_ref)) == NULL) | |
c906108c SS |
1666 | { |
1667 | /* No forward references created an empty type, so install one now */ | |
c5aa993b | 1668 | type = alloc_utype (dip->die_ref, NULL); |
c906108c SS |
1669 | } |
1670 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
1671 | /* Some compilers try to be helpful by inventing "fake" names for | |
1672 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |
1673 | Thanks, but no thanks... */ | |
c5aa993b JM |
1674 | if (dip->at_name != NULL |
1675 | && *dip->at_name != '~' | |
1676 | && *dip->at_name != '.') | |
c906108c | 1677 | { |
c5aa993b JM |
1678 | TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack, |
1679 | "", "", dip->at_name); | |
c906108c | 1680 | } |
c5aa993b | 1681 | if (dip->at_byte_size != 0) |
c906108c | 1682 | { |
c5aa993b | 1683 | TYPE_LENGTH (type) = dip->at_byte_size; |
c906108c | 1684 | } |
c5aa993b | 1685 | if ((scan = dip->at_element_list) != NULL) |
c906108c | 1686 | { |
c5aa993b | 1687 | if (dip->short_element_list) |
c906108c SS |
1688 | { |
1689 | nbytes = attribute_size (AT_short_element_list); | |
1690 | } | |
1691 | else | |
1692 | { | |
1693 | nbytes = attribute_size (AT_element_list); | |
1694 | } | |
1695 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
1696 | listend = scan + nbytes + blocksz; | |
1697 | scan += nbytes; | |
1698 | while (scan < listend) | |
1699 | { | |
1700 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
c5aa993b | 1701 | new->next = list; |
c906108c SS |
1702 | list = new; |
1703 | FIELD_TYPE (list->field) = NULL; | |
1704 | FIELD_BITSIZE (list->field) = 0; | |
1705 | FIELD_BITPOS (list->field) = | |
1706 | target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, | |
1707 | objfile); | |
1708 | scan += TARGET_FT_LONG_SIZE (objfile); | |
c5aa993b JM |
1709 | list->field.name = obsavestring (scan, strlen (scan), |
1710 | &objfile->type_obstack); | |
c906108c SS |
1711 | scan += strlen (scan) + 1; |
1712 | nfields++; | |
1713 | /* Handcraft a new symbol for this enum member. */ | |
1714 | sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, | |
1715 | sizeof (struct symbol)); | |
1716 | memset (sym, 0, sizeof (struct symbol)); | |
c5aa993b | 1717 | SYMBOL_NAME (sym) = create_name (list->field.name, |
c906108c SS |
1718 | &objfile->symbol_obstack); |
1719 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); | |
1720 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1721 | SYMBOL_CLASS (sym) = LOC_CONST; | |
1722 | SYMBOL_TYPE (sym) = type; | |
1723 | SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); | |
1724 | if (SYMBOL_VALUE (sym) < 0) | |
1725 | unsigned_enum = 0; | |
1726 | add_symbol_to_list (sym, list_in_scope); | |
1727 | } | |
1728 | /* Now create the vector of fields, and record how big it is. This is | |
c5aa993b JM |
1729 | where we reverse the order, by pulling the members off the list in |
1730 | reverse order from how they were inserted. If we have no fields | |
1731 | (this is apparently possible in C++) then skip building a field | |
1732 | vector. */ | |
c906108c SS |
1733 | if (nfields > 0) |
1734 | { | |
1735 | if (unsigned_enum) | |
1736 | TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; | |
1737 | TYPE_NFIELDS (type) = nfields; | |
1738 | TYPE_FIELDS (type) = (struct field *) | |
1739 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields); | |
1740 | /* Copy the saved-up fields into the field vector. */ | |
c5aa993b | 1741 | for (n = 0; (n < nfields) && (list != NULL); list = list->next) |
c906108c | 1742 | { |
c5aa993b JM |
1743 | TYPE_FIELD (type, n++) = list->field; |
1744 | } | |
c906108c SS |
1745 | } |
1746 | } | |
1747 | return (type); | |
1748 | } | |
1749 | ||
1750 | /* | |
1751 | ||
c5aa993b | 1752 | LOCAL FUNCTION |
c906108c | 1753 | |
c5aa993b | 1754 | read_func_scope -- process all dies within a function scope |
c906108c | 1755 | |
c5aa993b | 1756 | DESCRIPTION |
c906108c | 1757 | |
c5aa993b JM |
1758 | Process all dies within a given function scope. We are passed |
1759 | a die information structure pointer DIP for the die which | |
1760 | starts the function scope, and pointers into the raw die data | |
1761 | that define the dies within the function scope. | |
1762 | ||
1763 | For now, we ignore lexical block scopes within the function. | |
1764 | The problem is that AT&T cc does not define a DWARF lexical | |
1765 | block scope for the function itself, while gcc defines a | |
1766 | lexical block scope for the function. We need to think about | |
1767 | how to handle this difference, or if it is even a problem. | |
1768 | (FIXME) | |
c906108c SS |
1769 | */ |
1770 | ||
1771 | static void | |
fba45db2 KB |
1772 | read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1773 | struct objfile *objfile) | |
c906108c SS |
1774 | { |
1775 | register struct context_stack *new; | |
c5aa993b | 1776 | |
c906108c SS |
1777 | /* AT_name is absent if the function is described with an |
1778 | AT_abstract_origin tag. | |
1779 | Ignore the function description for now to avoid GDB core dumps. | |
1780 | FIXME: Add code to handle AT_abstract_origin tags properly. */ | |
c5aa993b | 1781 | if (dip->at_name == NULL) |
c906108c SS |
1782 | { |
1783 | complain (&missing_at_name, DIE_ID); | |
1784 | return; | |
1785 | } | |
1786 | ||
c5aa993b JM |
1787 | if (objfile->ei.entry_point >= dip->at_low_pc && |
1788 | objfile->ei.entry_point < dip->at_high_pc) | |
c906108c | 1789 | { |
c5aa993b JM |
1790 | objfile->ei.entry_func_lowpc = dip->at_low_pc; |
1791 | objfile->ei.entry_func_highpc = dip->at_high_pc; | |
c906108c | 1792 | } |
c5aa993b JM |
1793 | new = push_context (0, dip->at_low_pc); |
1794 | new->name = new_symbol (dip, objfile); | |
c906108c | 1795 | list_in_scope = &local_symbols; |
c5aa993b | 1796 | process_dies (thisdie + dip->die_length, enddie, objfile); |
c906108c SS |
1797 | new = pop_context (); |
1798 | /* Make a block for the local symbols within. */ | |
c5aa993b JM |
1799 | finish_block (new->name, &local_symbols, new->old_blocks, |
1800 | new->start_addr, dip->at_high_pc, objfile); | |
c906108c SS |
1801 | list_in_scope = &file_symbols; |
1802 | } | |
1803 | ||
1804 | ||
1805 | /* | |
1806 | ||
c5aa993b | 1807 | LOCAL FUNCTION |
c906108c | 1808 | |
c5aa993b | 1809 | handle_producer -- process the AT_producer attribute |
c906108c | 1810 | |
c5aa993b | 1811 | DESCRIPTION |
c906108c | 1812 | |
c5aa993b JM |
1813 | Perform any operations that depend on finding a particular |
1814 | AT_producer attribute. | |
c906108c SS |
1815 | |
1816 | */ | |
1817 | ||
1818 | static void | |
fba45db2 | 1819 | handle_producer (char *producer) |
c906108c SS |
1820 | { |
1821 | ||
1822 | /* If this compilation unit was compiled with g++ or gcc, then set the | |
1823 | processing_gcc_compilation flag. */ | |
1824 | ||
1825 | if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) | |
1826 | { | |
1827 | char version = producer[strlen (GCC_PRODUCER)]; | |
1828 | processing_gcc_compilation = (version == '2' ? 2 : 1); | |
1829 | } | |
1830 | else | |
1831 | { | |
1832 | processing_gcc_compilation = | |
1833 | STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) | |
1834 | || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)); | |
1835 | } | |
1836 | ||
1837 | /* Select a demangling style if we can identify the producer and if | |
1838 | the current style is auto. We leave the current style alone if it | |
1839 | is not auto. We also leave the demangling style alone if we find a | |
1840 | gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ | |
1841 | ||
1842 | if (AUTO_DEMANGLING) | |
1843 | { | |
1844 | if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) | |
1845 | { | |
1846 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); | |
1847 | } | |
1848 | else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) | |
1849 | { | |
1850 | set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); | |
1851 | } | |
1852 | } | |
1853 | } | |
1854 | ||
1855 | ||
1856 | /* | |
1857 | ||
c5aa993b | 1858 | LOCAL FUNCTION |
c906108c | 1859 | |
c5aa993b | 1860 | read_file_scope -- process all dies within a file scope |
c906108c | 1861 | |
c5aa993b JM |
1862 | DESCRIPTION |
1863 | ||
1864 | Process all dies within a given file scope. We are passed a | |
1865 | pointer to the die information structure for the die which | |
1866 | starts the file scope, and pointers into the raw die data which | |
1867 | mark the range of dies within the file scope. | |
c906108c | 1868 | |
c5aa993b JM |
1869 | When the partial symbol table is built, the file offset for the line |
1870 | number table for each compilation unit is saved in the partial symbol | |
1871 | table entry for that compilation unit. As the symbols for each | |
1872 | compilation unit are read, the line number table is read into memory | |
1873 | and the variable lnbase is set to point to it. Thus all we have to | |
1874 | do is use lnbase to access the line number table for the current | |
1875 | compilation unit. | |
c906108c SS |
1876 | */ |
1877 | ||
1878 | static void | |
fba45db2 KB |
1879 | read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie, |
1880 | struct objfile *objfile) | |
c906108c SS |
1881 | { |
1882 | struct cleanup *back_to; | |
1883 | struct symtab *symtab; | |
c5aa993b JM |
1884 | |
1885 | if (objfile->ei.entry_point >= dip->at_low_pc && | |
1886 | objfile->ei.entry_point < dip->at_high_pc) | |
c906108c | 1887 | { |
c5aa993b JM |
1888 | objfile->ei.entry_file_lowpc = dip->at_low_pc; |
1889 | objfile->ei.entry_file_highpc = dip->at_high_pc; | |
c906108c SS |
1890 | } |
1891 | set_cu_language (dip); | |
c5aa993b | 1892 | if (dip->at_producer != NULL) |
c906108c | 1893 | { |
c5aa993b | 1894 | handle_producer (dip->at_producer); |
c906108c SS |
1895 | } |
1896 | numutypes = (enddie - thisdie) / 4; | |
1897 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |
1898 | back_to = make_cleanup (free_utypes, NULL); | |
1899 | memset (utypes, 0, numutypes * sizeof (struct type *)); | |
1900 | memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); | |
c5aa993b | 1901 | start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc); |
c906108c SS |
1902 | record_debugformat ("DWARF 1"); |
1903 | decode_line_numbers (lnbase); | |
c5aa993b | 1904 | process_dies (thisdie + dip->die_length, enddie, objfile); |
c906108c | 1905 | |
c5aa993b | 1906 | symtab = end_symtab (dip->at_high_pc, objfile, 0); |
c906108c SS |
1907 | if (symtab != NULL) |
1908 | { | |
c5aa993b JM |
1909 | symtab->language = cu_language; |
1910 | } | |
c906108c SS |
1911 | do_cleanups (back_to); |
1912 | } | |
1913 | ||
1914 | /* | |
1915 | ||
c5aa993b | 1916 | LOCAL FUNCTION |
c906108c | 1917 | |
c5aa993b | 1918 | process_dies -- process a range of DWARF Information Entries |
c906108c | 1919 | |
c5aa993b | 1920 | SYNOPSIS |
c906108c | 1921 | |
c5aa993b JM |
1922 | static void process_dies (char *thisdie, char *enddie, |
1923 | struct objfile *objfile) | |
c906108c | 1924 | |
c5aa993b | 1925 | DESCRIPTION |
c906108c | 1926 | |
c5aa993b JM |
1927 | Process all DIE's in a specified range. May be (and almost |
1928 | certainly will be) called recursively. | |
c906108c SS |
1929 | */ |
1930 | ||
1931 | static void | |
fba45db2 | 1932 | process_dies (char *thisdie, char *enddie, struct objfile *objfile) |
c906108c SS |
1933 | { |
1934 | char *nextdie; | |
1935 | struct dieinfo di; | |
c5aa993b | 1936 | |
c906108c SS |
1937 | while (thisdie < enddie) |
1938 | { | |
1939 | basicdieinfo (&di, thisdie, objfile); | |
1940 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
1941 | { | |
1942 | break; | |
1943 | } | |
1944 | else if (di.die_tag == TAG_padding) | |
1945 | { | |
1946 | nextdie = thisdie + di.die_length; | |
1947 | } | |
1948 | else | |
1949 | { | |
1950 | completedieinfo (&di, objfile); | |
1951 | if (di.at_sibling != 0) | |
1952 | { | |
1953 | nextdie = dbbase + di.at_sibling - dbroff; | |
1954 | } | |
1955 | else | |
1956 | { | |
1957 | nextdie = thisdie + di.die_length; | |
1958 | } | |
1959 | #ifdef SMASH_TEXT_ADDRESS | |
1960 | /* I think that these are always text, not data, addresses. */ | |
1961 | SMASH_TEXT_ADDRESS (di.at_low_pc); | |
1962 | SMASH_TEXT_ADDRESS (di.at_high_pc); | |
1963 | #endif | |
1964 | switch (di.die_tag) | |
1965 | { | |
1966 | case TAG_compile_unit: | |
1967 | /* Skip Tag_compile_unit if we are already inside a compilation | |
c5aa993b JM |
1968 | unit, we are unable to handle nested compilation units |
1969 | properly (FIXME). */ | |
c906108c SS |
1970 | if (current_subfile == NULL) |
1971 | read_file_scope (&di, thisdie, nextdie, objfile); | |
1972 | else | |
1973 | nextdie = thisdie + di.die_length; | |
1974 | break; | |
1975 | case TAG_global_subroutine: | |
1976 | case TAG_subroutine: | |
1977 | if (di.has_at_low_pc) | |
1978 | { | |
1979 | read_func_scope (&di, thisdie, nextdie, objfile); | |
1980 | } | |
1981 | break; | |
1982 | case TAG_lexical_block: | |
1983 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); | |
1984 | break; | |
1985 | case TAG_class_type: | |
1986 | case TAG_structure_type: | |
1987 | case TAG_union_type: | |
1988 | read_structure_scope (&di, thisdie, nextdie, objfile); | |
1989 | break; | |
1990 | case TAG_enumeration_type: | |
1991 | read_enumeration (&di, thisdie, nextdie, objfile); | |
1992 | break; | |
1993 | case TAG_subroutine_type: | |
1994 | read_subroutine_type (&di, thisdie, nextdie); | |
1995 | break; | |
1996 | case TAG_array_type: | |
1997 | dwarf_read_array_type (&di); | |
1998 | break; | |
1999 | case TAG_pointer_type: | |
2000 | read_tag_pointer_type (&di); | |
2001 | break; | |
2002 | case TAG_string_type: | |
2003 | read_tag_string_type (&di); | |
2004 | break; | |
2005 | default: | |
2006 | new_symbol (&di, objfile); | |
2007 | break; | |
2008 | } | |
2009 | } | |
2010 | thisdie = nextdie; | |
2011 | } | |
2012 | } | |
2013 | ||
2014 | /* | |
2015 | ||
c5aa993b | 2016 | LOCAL FUNCTION |
c906108c | 2017 | |
c5aa993b | 2018 | decode_line_numbers -- decode a line number table fragment |
c906108c | 2019 | |
c5aa993b | 2020 | SYNOPSIS |
c906108c | 2021 | |
c5aa993b JM |
2022 | static void decode_line_numbers (char *tblscan, char *tblend, |
2023 | long length, long base, long line, long pc) | |
c906108c | 2024 | |
c5aa993b | 2025 | DESCRIPTION |
c906108c | 2026 | |
c5aa993b | 2027 | Translate the DWARF line number information to gdb form. |
c906108c | 2028 | |
c5aa993b JM |
2029 | The ".line" section contains one or more line number tables, one for |
2030 | each ".line" section from the objects that were linked. | |
c906108c | 2031 | |
c5aa993b JM |
2032 | The AT_stmt_list attribute for each TAG_source_file entry in the |
2033 | ".debug" section contains the offset into the ".line" section for the | |
2034 | start of the table for that file. | |
c906108c | 2035 | |
c5aa993b | 2036 | The table itself has the following structure: |
c906108c | 2037 | |
c5aa993b JM |
2038 | <table length><base address><source statement entry> |
2039 | 4 bytes 4 bytes 10 bytes | |
c906108c | 2040 | |
c5aa993b JM |
2041 | The table length is the total size of the table, including the 4 bytes |
2042 | for the length information. | |
c906108c | 2043 | |
c5aa993b JM |
2044 | The base address is the address of the first instruction generated |
2045 | for the source file. | |
c906108c | 2046 | |
c5aa993b | 2047 | Each source statement entry has the following structure: |
c906108c | 2048 | |
c5aa993b JM |
2049 | <line number><statement position><address delta> |
2050 | 4 bytes 2 bytes 4 bytes | |
c906108c | 2051 | |
c5aa993b JM |
2052 | The line number is relative to the start of the file, starting with |
2053 | line 1. | |
c906108c | 2054 | |
c5aa993b JM |
2055 | The statement position either -1 (0xFFFF) or the number of characters |
2056 | from the beginning of the line to the beginning of the statement. | |
c906108c | 2057 | |
c5aa993b JM |
2058 | The address delta is the difference between the base address and |
2059 | the address of the first instruction for the statement. | |
c906108c | 2060 | |
c5aa993b JM |
2061 | Note that we must copy the bytes from the packed table to our local |
2062 | variables before attempting to use them, to avoid alignment problems | |
2063 | on some machines, particularly RISC processors. | |
c906108c | 2064 | |
c5aa993b | 2065 | BUGS |
c906108c | 2066 | |
c5aa993b JM |
2067 | Does gdb expect the line numbers to be sorted? They are now by |
2068 | chance/luck, but are not required to be. (FIXME) | |
c906108c | 2069 | |
c5aa993b JM |
2070 | The line with number 0 is unused, gdb apparently can discover the |
2071 | span of the last line some other way. How? (FIXME) | |
c906108c SS |
2072 | */ |
2073 | ||
2074 | static void | |
fba45db2 | 2075 | decode_line_numbers (char *linetable) |
c906108c SS |
2076 | { |
2077 | char *tblscan; | |
2078 | char *tblend; | |
2079 | unsigned long length; | |
2080 | unsigned long base; | |
2081 | unsigned long line; | |
2082 | unsigned long pc; | |
c5aa993b | 2083 | |
c906108c SS |
2084 | if (linetable != NULL) |
2085 | { | |
2086 | tblscan = tblend = linetable; | |
2087 | length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, | |
2088 | current_objfile); | |
2089 | tblscan += SIZEOF_LINETBL_LENGTH; | |
2090 | tblend += length; | |
2091 | base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), | |
2092 | GET_UNSIGNED, current_objfile); | |
2093 | tblscan += TARGET_FT_POINTER_SIZE (objfile); | |
2094 | base += baseaddr; | |
2095 | while (tblscan < tblend) | |
2096 | { | |
2097 | line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, | |
2098 | current_objfile); | |
2099 | tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; | |
2100 | pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, | |
2101 | current_objfile); | |
2102 | tblscan += SIZEOF_LINETBL_DELTA; | |
2103 | pc += base; | |
2104 | if (line != 0) | |
2105 | { | |
2106 | record_line (current_subfile, line, pc); | |
2107 | } | |
2108 | } | |
2109 | } | |
2110 | } | |
2111 | ||
2112 | /* | |
2113 | ||
c5aa993b | 2114 | LOCAL FUNCTION |
c906108c | 2115 | |
c5aa993b | 2116 | locval -- compute the value of a location attribute |
c906108c | 2117 | |
c5aa993b | 2118 | SYNOPSIS |
c906108c | 2119 | |
c5aa993b | 2120 | static int locval (struct dieinfo *dip) |
c906108c | 2121 | |
c5aa993b | 2122 | DESCRIPTION |
c906108c | 2123 | |
c5aa993b JM |
2124 | Given pointer to a string of bytes that define a location, compute |
2125 | the location and return the value. | |
2126 | A location description containing no atoms indicates that the | |
2127 | object is optimized out. The optimized_out flag is set for those, | |
2128 | the return value is meaningless. | |
c906108c | 2129 | |
c5aa993b JM |
2130 | When computing values involving the current value of the frame pointer, |
2131 | the value zero is used, which results in a value relative to the frame | |
2132 | pointer, rather than the absolute value. This is what GDB wants | |
2133 | anyway. | |
c906108c | 2134 | |
c5aa993b JM |
2135 | When the result is a register number, the isreg flag is set, otherwise |
2136 | it is cleared. This is a kludge until we figure out a better | |
2137 | way to handle the problem. Gdb's design does not mesh well with the | |
2138 | DWARF notion of a location computing interpreter, which is a shame | |
2139 | because the flexibility goes unused. | |
2140 | ||
2141 | NOTES | |
2142 | ||
2143 | Note that stack[0] is unused except as a default error return. | |
2144 | Note that stack overflow is not yet handled. | |
c906108c SS |
2145 | */ |
2146 | ||
2147 | static int | |
fba45db2 | 2148 | locval (struct dieinfo *dip) |
c906108c SS |
2149 | { |
2150 | unsigned short nbytes; | |
2151 | unsigned short locsize; | |
2152 | auto long stack[64]; | |
2153 | int stacki; | |
2154 | char *loc; | |
2155 | char *end; | |
2156 | int loc_atom_code; | |
2157 | int loc_value_size; | |
c5aa993b JM |
2158 | |
2159 | loc = dip->at_location; | |
c906108c SS |
2160 | nbytes = attribute_size (AT_location); |
2161 | locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); | |
2162 | loc += nbytes; | |
2163 | end = loc + locsize; | |
2164 | stacki = 0; | |
2165 | stack[stacki] = 0; | |
c5aa993b JM |
2166 | dip->isreg = 0; |
2167 | dip->offreg = 0; | |
2168 | dip->optimized_out = 1; | |
c906108c SS |
2169 | loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); |
2170 | while (loc < end) | |
2171 | { | |
c5aa993b | 2172 | dip->optimized_out = 0; |
c906108c SS |
2173 | loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, |
2174 | current_objfile); | |
2175 | loc += SIZEOF_LOC_ATOM_CODE; | |
2176 | switch (loc_atom_code) | |
2177 | { | |
c5aa993b JM |
2178 | case 0: |
2179 | /* error */ | |
2180 | loc = end; | |
2181 | break; | |
2182 | case OP_REG: | |
2183 | /* push register (number) */ | |
2184 | stack[++stacki] | |
2185 | = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, | |
2186 | GET_UNSIGNED, | |
2187 | current_objfile)); | |
2188 | loc += loc_value_size; | |
2189 | dip->isreg = 1; | |
2190 | break; | |
2191 | case OP_BASEREG: | |
2192 | /* push value of register (number) */ | |
2193 | /* Actually, we compute the value as if register has 0, so the | |
2194 | value ends up being the offset from that register. */ | |
2195 | dip->offreg = 1; | |
2196 | dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, | |
2197 | current_objfile); | |
2198 | loc += loc_value_size; | |
2199 | stack[++stacki] = 0; | |
2200 | break; | |
2201 | case OP_ADDR: | |
2202 | /* push address (relocated address) */ | |
2203 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2204 | GET_UNSIGNED, current_objfile); | |
2205 | loc += loc_value_size; | |
2206 | break; | |
2207 | case OP_CONST: | |
2208 | /* push constant (number) FIXME: signed or unsigned! */ | |
2209 | stack[++stacki] = target_to_host (loc, loc_value_size, | |
2210 | GET_SIGNED, current_objfile); | |
2211 | loc += loc_value_size; | |
2212 | break; | |
2213 | case OP_DEREF2: | |
2214 | /* pop, deref and push 2 bytes (as a long) */ | |
2215 | complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]); | |
2216 | break; | |
2217 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |
2218 | complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]); | |
2219 | break; | |
2220 | case OP_ADD: /* pop top 2 items, add, push result */ | |
2221 | stack[stacki - 1] += stack[stacki]; | |
2222 | stacki--; | |
2223 | break; | |
c906108c SS |
2224 | } |
2225 | } | |
2226 | return (stack[stacki]); | |
2227 | } | |
2228 | ||
2229 | /* | |
2230 | ||
c5aa993b | 2231 | LOCAL FUNCTION |
c906108c | 2232 | |
c5aa993b | 2233 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's |
c906108c | 2234 | |
c5aa993b | 2235 | SYNOPSIS |
c906108c | 2236 | |
c5aa993b | 2237 | static void read_ofile_symtab (struct partial_symtab *pst) |
c906108c | 2238 | |
c5aa993b | 2239 | DESCRIPTION |
c906108c | 2240 | |
c5aa993b JM |
2241 | When expanding a partial symbol table entry to a full symbol table |
2242 | entry, this is the function that gets called to read in the symbols | |
2243 | for the compilation unit. A pointer to the newly constructed symtab, | |
2244 | which is now the new first one on the objfile's symtab list, is | |
2245 | stashed in the partial symbol table entry. | |
c906108c SS |
2246 | */ |
2247 | ||
2248 | static void | |
fba45db2 | 2249 | read_ofile_symtab (struct partial_symtab *pst) |
c906108c SS |
2250 | { |
2251 | struct cleanup *back_to; | |
2252 | unsigned long lnsize; | |
2253 | file_ptr foffset; | |
2254 | bfd *abfd; | |
2255 | char lnsizedata[SIZEOF_LINETBL_LENGTH]; | |
2256 | ||
c5aa993b JM |
2257 | abfd = pst->objfile->obfd; |
2258 | current_objfile = pst->objfile; | |
c906108c SS |
2259 | |
2260 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |
2261 | unit, seek to the location in the file, and read in all the DIE's. */ | |
2262 | ||
2263 | diecount = 0; | |
2264 | dbsize = DBLENGTH (pst); | |
2265 | dbbase = xmalloc (dbsize); | |
c5aa993b JM |
2266 | dbroff = DBROFF (pst); |
2267 | foffset = DBFOFF (pst) + dbroff; | |
c906108c SS |
2268 | base_section_offsets = pst->section_offsets; |
2269 | baseaddr = ANOFFSET (pst->section_offsets, 0); | |
2270 | if (bfd_seek (abfd, foffset, SEEK_SET) || | |
2271 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) | |
2272 | { | |
2273 | free (dbbase); | |
2274 | error ("can't read DWARF data"); | |
2275 | } | |
2276 | back_to = make_cleanup (free, dbbase); | |
2277 | ||
2278 | /* If there is a line number table associated with this compilation unit | |
2279 | then read the size of this fragment in bytes, from the fragment itself. | |
2280 | Allocate a buffer for the fragment and read it in for future | |
2281 | processing. */ | |
2282 | ||
2283 | lnbase = NULL; | |
2284 | if (LNFOFF (pst)) | |
2285 | { | |
2286 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
2287 | (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) != | |
2288 | sizeof (lnsizedata))) | |
2289 | { | |
2290 | error ("can't read DWARF line number table size"); | |
2291 | } | |
2292 | lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, | |
c5aa993b | 2293 | GET_UNSIGNED, pst->objfile); |
c906108c SS |
2294 | lnbase = xmalloc (lnsize); |
2295 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || | |
2296 | (bfd_read (lnbase, lnsize, 1, abfd) != lnsize)) | |
2297 | { | |
2298 | free (lnbase); | |
2299 | error ("can't read DWARF line numbers"); | |
2300 | } | |
2301 | make_cleanup (free, lnbase); | |
2302 | } | |
2303 | ||
c5aa993b | 2304 | process_dies (dbbase, dbbase + dbsize, pst->objfile); |
c906108c SS |
2305 | do_cleanups (back_to); |
2306 | current_objfile = NULL; | |
c5aa993b | 2307 | pst->symtab = pst->objfile->symtabs; |
c906108c SS |
2308 | } |
2309 | ||
2310 | /* | |
2311 | ||
c5aa993b | 2312 | LOCAL FUNCTION |
c906108c | 2313 | |
c5aa993b | 2314 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry |
c906108c | 2315 | |
c5aa993b | 2316 | SYNOPSIS |
c906108c | 2317 | |
c5aa993b | 2318 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) |
c906108c | 2319 | |
c5aa993b | 2320 | DESCRIPTION |
c906108c | 2321 | |
c5aa993b JM |
2322 | Called once for each partial symbol table entry that needs to be |
2323 | expanded into a full symbol table entry. | |
c906108c | 2324 | |
c5aa993b | 2325 | */ |
c906108c SS |
2326 | |
2327 | static void | |
fba45db2 | 2328 | psymtab_to_symtab_1 (struct partial_symtab *pst) |
c906108c SS |
2329 | { |
2330 | int i; | |
2331 | struct cleanup *old_chain; | |
c5aa993b | 2332 | |
c906108c SS |
2333 | if (pst != NULL) |
2334 | { | |
2335 | if (pst->readin) | |
2336 | { | |
2337 | warning ("psymtab for %s already read in. Shouldn't happen.", | |
c5aa993b | 2338 | pst->filename); |
c906108c SS |
2339 | } |
2340 | else | |
2341 | { | |
2342 | /* Read in all partial symtabs on which this one is dependent */ | |
c5aa993b | 2343 | for (i = 0; i < pst->number_of_dependencies; i++) |
c906108c | 2344 | { |
c5aa993b | 2345 | if (!pst->dependencies[i]->readin) |
c906108c SS |
2346 | { |
2347 | /* Inform about additional files that need to be read in. */ | |
2348 | if (info_verbose) | |
2349 | { | |
2350 | fputs_filtered (" ", gdb_stdout); | |
2351 | wrap_here (""); | |
2352 | fputs_filtered ("and ", gdb_stdout); | |
2353 | wrap_here (""); | |
2354 | printf_filtered ("%s...", | |
c5aa993b | 2355 | pst->dependencies[i]->filename); |
c906108c | 2356 | wrap_here (""); |
c5aa993b | 2357 | gdb_flush (gdb_stdout); /* Flush output */ |
c906108c | 2358 | } |
c5aa993b | 2359 | psymtab_to_symtab_1 (pst->dependencies[i]); |
c906108c | 2360 | } |
c5aa993b JM |
2361 | } |
2362 | if (DBLENGTH (pst)) /* Otherwise it's a dummy */ | |
c906108c SS |
2363 | { |
2364 | buildsym_init (); | |
a0b3c4fd | 2365 | old_chain = make_cleanup (really_free_pendings, 0); |
c906108c SS |
2366 | read_ofile_symtab (pst); |
2367 | if (info_verbose) | |
2368 | { | |
2369 | printf_filtered ("%d DIE's, sorting...", diecount); | |
2370 | wrap_here (""); | |
2371 | gdb_flush (gdb_stdout); | |
2372 | } | |
c5aa993b | 2373 | sort_symtab_syms (pst->symtab); |
c906108c SS |
2374 | do_cleanups (old_chain); |
2375 | } | |
c5aa993b | 2376 | pst->readin = 1; |
c906108c SS |
2377 | } |
2378 | } | |
2379 | } | |
2380 | ||
2381 | /* | |
2382 | ||
c5aa993b | 2383 | LOCAL FUNCTION |
c906108c | 2384 | |
c5aa993b | 2385 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one |
c906108c | 2386 | |
c5aa993b | 2387 | SYNOPSIS |
c906108c | 2388 | |
c5aa993b | 2389 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
c906108c | 2390 | |
c5aa993b | 2391 | DESCRIPTION |
c906108c | 2392 | |
c5aa993b JM |
2393 | This is the DWARF support entry point for building a full symbol |
2394 | table entry from a partial symbol table entry. We are passed a | |
2395 | pointer to the partial symbol table entry that needs to be expanded. | |
c906108c | 2396 | |
c5aa993b | 2397 | */ |
c906108c SS |
2398 | |
2399 | static void | |
fba45db2 | 2400 | dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
c906108c SS |
2401 | { |
2402 | ||
2403 | if (pst != NULL) | |
2404 | { | |
c5aa993b | 2405 | if (pst->readin) |
c906108c SS |
2406 | { |
2407 | warning ("psymtab for %s already read in. Shouldn't happen.", | |
c5aa993b | 2408 | pst->filename); |
c906108c SS |
2409 | } |
2410 | else | |
2411 | { | |
c5aa993b | 2412 | if (DBLENGTH (pst) || pst->number_of_dependencies) |
c906108c SS |
2413 | { |
2414 | /* Print the message now, before starting serious work, to avoid | |
c5aa993b | 2415 | disconcerting pauses. */ |
c906108c SS |
2416 | if (info_verbose) |
2417 | { | |
2418 | printf_filtered ("Reading in symbols for %s...", | |
c5aa993b | 2419 | pst->filename); |
c906108c SS |
2420 | gdb_flush (gdb_stdout); |
2421 | } | |
c5aa993b | 2422 | |
c906108c | 2423 | psymtab_to_symtab_1 (pst); |
c5aa993b JM |
2424 | |
2425 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |
2426 | we need to do an equivalent or is this something peculiar to | |
2427 | stabs/a.out format. | |
2428 | Match with global symbols. This only needs to be done once, | |
2429 | after all of the symtabs and dependencies have been read in. | |
2430 | */ | |
2431 | scan_file_globals (pst->objfile); | |
c906108c | 2432 | #endif |
c5aa993b | 2433 | |
c906108c SS |
2434 | /* Finish up the verbose info message. */ |
2435 | if (info_verbose) | |
2436 | { | |
2437 | printf_filtered ("done.\n"); | |
2438 | gdb_flush (gdb_stdout); | |
2439 | } | |
2440 | } | |
2441 | } | |
2442 | } | |
2443 | } | |
2444 | ||
2445 | /* | |
2446 | ||
c5aa993b | 2447 | LOCAL FUNCTION |
c906108c | 2448 | |
c5aa993b | 2449 | add_enum_psymbol -- add enumeration members to partial symbol table |
c906108c | 2450 | |
c5aa993b | 2451 | DESCRIPTION |
c906108c | 2452 | |
c5aa993b JM |
2453 | Given pointer to a DIE that is known to be for an enumeration, |
2454 | extract the symbolic names of the enumeration members and add | |
2455 | partial symbols for them. | |
2456 | */ | |
c906108c SS |
2457 | |
2458 | static void | |
fba45db2 | 2459 | add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
2460 | { |
2461 | char *scan; | |
2462 | char *listend; | |
2463 | unsigned short blocksz; | |
2464 | int nbytes; | |
c5aa993b JM |
2465 | |
2466 | if ((scan = dip->at_element_list) != NULL) | |
c906108c | 2467 | { |
c5aa993b | 2468 | if (dip->short_element_list) |
c906108c SS |
2469 | { |
2470 | nbytes = attribute_size (AT_short_element_list); | |
2471 | } | |
2472 | else | |
2473 | { | |
2474 | nbytes = attribute_size (AT_element_list); | |
2475 | } | |
2476 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); | |
2477 | scan += nbytes; | |
2478 | listend = scan + blocksz; | |
2479 | while (scan < listend) | |
2480 | { | |
2481 | scan += TARGET_FT_LONG_SIZE (objfile); | |
2482 | add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST, | |
c5aa993b | 2483 | &objfile->static_psymbols, 0, 0, cu_language, |
c906108c SS |
2484 | objfile); |
2485 | scan += strlen (scan) + 1; | |
2486 | } | |
2487 | } | |
2488 | } | |
2489 | ||
2490 | /* | |
2491 | ||
c5aa993b | 2492 | LOCAL FUNCTION |
c906108c | 2493 | |
c5aa993b | 2494 | add_partial_symbol -- add symbol to partial symbol table |
c906108c | 2495 | |
c5aa993b | 2496 | DESCRIPTION |
c906108c | 2497 | |
c5aa993b JM |
2498 | Given a DIE, if it is one of the types that we want to |
2499 | add to a partial symbol table, finish filling in the die info | |
2500 | and then add a partial symbol table entry for it. | |
c906108c | 2501 | |
c5aa993b | 2502 | NOTES |
c906108c | 2503 | |
c5aa993b JM |
2504 | The caller must ensure that the DIE has a valid name attribute. |
2505 | */ | |
c906108c SS |
2506 | |
2507 | static void | |
fba45db2 | 2508 | add_partial_symbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 2509 | { |
c5aa993b | 2510 | switch (dip->die_tag) |
c906108c SS |
2511 | { |
2512 | case TAG_global_subroutine: | |
c5aa993b JM |
2513 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
2514 | VAR_NAMESPACE, LOC_BLOCK, | |
2515 | &objfile->global_psymbols, | |
2516 | 0, dip->at_low_pc, cu_language, objfile); | |
c906108c SS |
2517 | break; |
2518 | case TAG_global_variable: | |
c5aa993b | 2519 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2520 | VAR_NAMESPACE, LOC_STATIC, |
c5aa993b | 2521 | &objfile->global_psymbols, |
c906108c SS |
2522 | 0, 0, cu_language, objfile); |
2523 | break; | |
2524 | case TAG_subroutine: | |
c5aa993b JM |
2525 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
2526 | VAR_NAMESPACE, LOC_BLOCK, | |
2527 | &objfile->static_psymbols, | |
2528 | 0, dip->at_low_pc, cu_language, objfile); | |
c906108c SS |
2529 | break; |
2530 | case TAG_local_variable: | |
c5aa993b | 2531 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2532 | VAR_NAMESPACE, LOC_STATIC, |
c5aa993b | 2533 | &objfile->static_psymbols, |
c906108c SS |
2534 | 0, 0, cu_language, objfile); |
2535 | break; | |
2536 | case TAG_typedef: | |
c5aa993b | 2537 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2538 | VAR_NAMESPACE, LOC_TYPEDEF, |
c5aa993b | 2539 | &objfile->static_psymbols, |
c906108c SS |
2540 | 0, 0, cu_language, objfile); |
2541 | break; | |
2542 | case TAG_class_type: | |
2543 | case TAG_structure_type: | |
2544 | case TAG_union_type: | |
2545 | case TAG_enumeration_type: | |
2546 | /* Do not add opaque aggregate definitions to the psymtab. */ | |
c5aa993b | 2547 | if (!dip->has_at_byte_size) |
c906108c | 2548 | break; |
c5aa993b | 2549 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2550 | STRUCT_NAMESPACE, LOC_TYPEDEF, |
c5aa993b | 2551 | &objfile->static_psymbols, |
c906108c SS |
2552 | 0, 0, cu_language, objfile); |
2553 | if (cu_language == language_cplus) | |
2554 | { | |
2555 | /* For C++, these implicitly act as typedefs as well. */ | |
c5aa993b | 2556 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
c906108c | 2557 | VAR_NAMESPACE, LOC_TYPEDEF, |
c5aa993b | 2558 | &objfile->static_psymbols, |
c906108c SS |
2559 | 0, 0, cu_language, objfile); |
2560 | } | |
2561 | break; | |
2562 | } | |
2563 | } | |
9846de1b | 2564 | /* *INDENT-OFF* */ |
c906108c SS |
2565 | /* |
2566 | ||
2567 | LOCAL FUNCTION | |
2568 | ||
2569 | scan_partial_symbols -- scan DIE's within a single compilation unit | |
2570 | ||
2571 | DESCRIPTION | |
2572 | ||
2573 | Process the DIE's within a single compilation unit, looking for | |
2574 | interesting DIE's that contribute to the partial symbol table entry | |
2575 | for this compilation unit. | |
2576 | ||
2577 | NOTES | |
2578 | ||
2579 | There are some DIE's that may appear both at file scope and within | |
2580 | the scope of a function. We are only interested in the ones at file | |
2581 | scope, and the only way to tell them apart is to keep track of the | |
2582 | scope. For example, consider the test case: | |
2583 | ||
2584 | static int i; | |
2585 | main () { int j; } | |
2586 | ||
2587 | for which the relevant DWARF segment has the structure: | |
2588 | ||
2589 | 0x51: | |
2590 | 0x23 global subrtn sibling 0x9b | |
2591 | name main | |
2592 | fund_type FT_integer | |
2593 | low_pc 0x800004cc | |
2594 | high_pc 0x800004d4 | |
2595 | ||
2596 | 0x74: | |
2597 | 0x23 local var sibling 0x97 | |
2598 | name j | |
2599 | fund_type FT_integer | |
2600 | location OP_BASEREG 0xe | |
2601 | OP_CONST 0xfffffffc | |
2602 | OP_ADD | |
2603 | 0x97: | |
2604 | 0x4 | |
2605 | ||
2606 | 0x9b: | |
2607 | 0x1d local var sibling 0xb8 | |
2608 | name i | |
2609 | fund_type FT_integer | |
2610 | location OP_ADDR 0x800025dc | |
2611 | ||
2612 | 0xb8: | |
2613 | 0x4 | |
2614 | ||
2615 | We want to include the symbol 'i' in the partial symbol table, but | |
2616 | not the symbol 'j'. In essence, we want to skip all the dies within | |
2617 | the scope of a TAG_global_subroutine DIE. | |
2618 | ||
2619 | Don't attempt to add anonymous structures or unions since they have | |
2620 | no name. Anonymous enumerations however are processed, because we | |
2621 | want to extract their member names (the check for a tag name is | |
2622 | done later). | |
2623 | ||
2624 | Also, for variables and subroutines, check that this is the place | |
2625 | where the actual definition occurs, rather than just a reference | |
2626 | to an external. | |
2627 | */ | |
9846de1b | 2628 | /* *INDENT-ON* */ |
c906108c | 2629 | |
c5aa993b JM |
2630 | |
2631 | ||
c906108c | 2632 | static void |
fba45db2 | 2633 | scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile) |
c906108c SS |
2634 | { |
2635 | char *nextdie; | |
2636 | char *temp; | |
2637 | struct dieinfo di; | |
c5aa993b | 2638 | |
c906108c SS |
2639 | while (thisdie < enddie) |
2640 | { | |
2641 | basicdieinfo (&di, thisdie, objfile); | |
2642 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2643 | { | |
2644 | break; | |
2645 | } | |
2646 | else | |
2647 | { | |
2648 | nextdie = thisdie + di.die_length; | |
2649 | /* To avoid getting complete die information for every die, we | |
2650 | only do it (below) for the cases we are interested in. */ | |
2651 | switch (di.die_tag) | |
2652 | { | |
2653 | case TAG_global_subroutine: | |
2654 | case TAG_subroutine: | |
2655 | completedieinfo (&di, objfile); | |
2656 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2657 | { | |
2658 | add_partial_symbol (&di, objfile); | |
2659 | /* If there is a sibling attribute, adjust the nextdie | |
2660 | pointer to skip the entire scope of the subroutine. | |
2661 | Apply some sanity checking to make sure we don't | |
2662 | overrun or underrun the range of remaining DIE's */ | |
2663 | if (di.at_sibling != 0) | |
2664 | { | |
2665 | temp = dbbase + di.at_sibling - dbroff; | |
2666 | if ((temp < thisdie) || (temp >= enddie)) | |
2667 | { | |
2668 | complain (&bad_die_ref, DIE_ID, DIE_NAME, | |
2669 | di.at_sibling); | |
2670 | } | |
2671 | else | |
2672 | { | |
2673 | nextdie = temp; | |
2674 | } | |
2675 | } | |
2676 | } | |
2677 | break; | |
2678 | case TAG_global_variable: | |
2679 | case TAG_local_variable: | |
2680 | completedieinfo (&di, objfile); | |
2681 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |
2682 | { | |
2683 | add_partial_symbol (&di, objfile); | |
2684 | } | |
2685 | break; | |
2686 | case TAG_typedef: | |
2687 | case TAG_class_type: | |
2688 | case TAG_structure_type: | |
2689 | case TAG_union_type: | |
2690 | completedieinfo (&di, objfile); | |
2691 | if (di.at_name) | |
2692 | { | |
2693 | add_partial_symbol (&di, objfile); | |
2694 | } | |
2695 | break; | |
2696 | case TAG_enumeration_type: | |
2697 | completedieinfo (&di, objfile); | |
2698 | if (di.at_name) | |
2699 | { | |
2700 | add_partial_symbol (&di, objfile); | |
2701 | } | |
2702 | add_enum_psymbol (&di, objfile); | |
2703 | break; | |
2704 | } | |
2705 | } | |
2706 | thisdie = nextdie; | |
2707 | } | |
2708 | } | |
2709 | ||
2710 | /* | |
2711 | ||
c5aa993b | 2712 | LOCAL FUNCTION |
c906108c | 2713 | |
c5aa993b | 2714 | scan_compilation_units -- build a psymtab entry for each compilation |
c906108c | 2715 | |
c5aa993b | 2716 | DESCRIPTION |
c906108c | 2717 | |
c5aa993b JM |
2718 | This is the top level dwarf parsing routine for building partial |
2719 | symbol tables. | |
c906108c | 2720 | |
c5aa993b JM |
2721 | It scans from the beginning of the DWARF table looking for the first |
2722 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |
2723 | each additional TAG_compile_unit DIE. | |
2724 | ||
2725 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |
2726 | calls a subordinate routine to collect all the compilation unit's | |
2727 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |
2728 | new partial symtab structure into the partial symbol table. It also | |
2729 | records the appropriate information in the partial symbol table entry | |
2730 | to allow the chunk of DIE's and line number table for this compilation | |
2731 | unit to be located and re-read later, to generate a complete symbol | |
2732 | table entry for the compilation unit. | |
2733 | ||
2734 | Thus it effectively partitions up a chunk of DIE's for multiple | |
2735 | compilation units into smaller DIE chunks and line number tables, | |
2736 | and associates them with a partial symbol table entry. | |
2737 | ||
2738 | NOTES | |
c906108c | 2739 | |
c5aa993b JM |
2740 | If any compilation unit has no line number table associated with |
2741 | it for some reason (a missing at_stmt_list attribute, rather than | |
2742 | just one with a value of zero, which is valid) then we ensure that | |
2743 | the recorded file offset is zero so that the routine which later | |
2744 | reads line number table fragments knows that there is no fragment | |
2745 | to read. | |
c906108c | 2746 | |
c5aa993b | 2747 | RETURNS |
c906108c | 2748 | |
c5aa993b | 2749 | Returns no value. |
c906108c SS |
2750 | |
2751 | */ | |
2752 | ||
2753 | static void | |
fba45db2 KB |
2754 | scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff, |
2755 | file_ptr lnoffset, struct objfile *objfile) | |
c906108c SS |
2756 | { |
2757 | char *nextdie; | |
2758 | struct dieinfo di; | |
2759 | struct partial_symtab *pst; | |
2760 | int culength; | |
2761 | int curoff; | |
2762 | file_ptr curlnoffset; | |
2763 | ||
2764 | while (thisdie < enddie) | |
2765 | { | |
2766 | basicdieinfo (&di, thisdie, objfile); | |
2767 | if (di.die_length < SIZEOF_DIE_LENGTH) | |
2768 | { | |
2769 | break; | |
2770 | } | |
2771 | else if (di.die_tag != TAG_compile_unit) | |
2772 | { | |
2773 | nextdie = thisdie + di.die_length; | |
2774 | } | |
2775 | else | |
2776 | { | |
2777 | completedieinfo (&di, objfile); | |
2778 | set_cu_language (&di); | |
2779 | if (di.at_sibling != 0) | |
2780 | { | |
2781 | nextdie = dbbase + di.at_sibling - dbroff; | |
2782 | } | |
2783 | else | |
2784 | { | |
2785 | nextdie = thisdie + di.die_length; | |
2786 | } | |
2787 | curoff = thisdie - dbbase; | |
2788 | culength = nextdie - thisdie; | |
2789 | curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; | |
2790 | ||
2791 | /* First allocate a new partial symbol table structure */ | |
2792 | ||
2793 | pst = start_psymtab_common (objfile, base_section_offsets, | |
2794 | di.at_name, di.at_low_pc, | |
c5aa993b JM |
2795 | objfile->global_psymbols.next, |
2796 | objfile->static_psymbols.next); | |
c906108c | 2797 | |
c5aa993b JM |
2798 | pst->texthigh = di.at_high_pc; |
2799 | pst->read_symtab_private = (char *) | |
2800 | obstack_alloc (&objfile->psymbol_obstack, | |
2801 | sizeof (struct dwfinfo)); | |
c906108c SS |
2802 | DBFOFF (pst) = dbfoff; |
2803 | DBROFF (pst) = curoff; | |
2804 | DBLENGTH (pst) = culength; | |
c5aa993b JM |
2805 | LNFOFF (pst) = curlnoffset; |
2806 | pst->read_symtab = dwarf_psymtab_to_symtab; | |
c906108c SS |
2807 | |
2808 | /* Now look for partial symbols */ | |
2809 | ||
2810 | scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); | |
2811 | ||
c5aa993b JM |
2812 | pst->n_global_syms = objfile->global_psymbols.next - |
2813 | (objfile->global_psymbols.list + pst->globals_offset); | |
2814 | pst->n_static_syms = objfile->static_psymbols.next - | |
2815 | (objfile->static_psymbols.list + pst->statics_offset); | |
c906108c SS |
2816 | sort_pst_symbols (pst); |
2817 | /* If there is already a psymtab or symtab for a file of this name, | |
2818 | remove it. (If there is a symtab, more drastic things also | |
2819 | happen.) This happens in VxWorks. */ | |
c5aa993b | 2820 | free_named_symtabs (pst->filename); |
c906108c | 2821 | } |
c5aa993b | 2822 | thisdie = nextdie; |
c906108c SS |
2823 | } |
2824 | } | |
2825 | ||
2826 | /* | |
2827 | ||
c5aa993b | 2828 | LOCAL FUNCTION |
c906108c | 2829 | |
c5aa993b | 2830 | new_symbol -- make a symbol table entry for a new symbol |
c906108c | 2831 | |
c5aa993b | 2832 | SYNOPSIS |
c906108c | 2833 | |
c5aa993b JM |
2834 | static struct symbol *new_symbol (struct dieinfo *dip, |
2835 | struct objfile *objfile) | |
c906108c | 2836 | |
c5aa993b | 2837 | DESCRIPTION |
c906108c | 2838 | |
c5aa993b JM |
2839 | Given a pointer to a DWARF information entry, figure out if we need |
2840 | to make a symbol table entry for it, and if so, create a new entry | |
2841 | and return a pointer to it. | |
c906108c SS |
2842 | */ |
2843 | ||
2844 | static struct symbol * | |
fba45db2 | 2845 | new_symbol (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
2846 | { |
2847 | struct symbol *sym = NULL; | |
c5aa993b JM |
2848 | |
2849 | if (dip->at_name != NULL) | |
c906108c | 2850 | { |
c5aa993b | 2851 | sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, |
c906108c SS |
2852 | sizeof (struct symbol)); |
2853 | OBJSTAT (objfile, n_syms++); | |
2854 | memset (sym, 0, sizeof (struct symbol)); | |
c5aa993b | 2855 | SYMBOL_NAME (sym) = create_name (dip->at_name, |
c906108c SS |
2856 | &objfile->symbol_obstack); |
2857 | /* default assumptions */ | |
2858 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2859 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2860 | SYMBOL_TYPE (sym) = decode_die_type (dip); | |
2861 | ||
2862 | /* If this symbol is from a C++ compilation, then attempt to cache the | |
c5aa993b JM |
2863 | demangled form for future reference. This is a typical time versus |
2864 | space tradeoff, that was decided in favor of time because it sped up | |
2865 | C++ symbol lookups by a factor of about 20. */ | |
c906108c SS |
2866 | |
2867 | SYMBOL_LANGUAGE (sym) = cu_language; | |
c5aa993b JM |
2868 | SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack); |
2869 | switch (dip->die_tag) | |
c906108c SS |
2870 | { |
2871 | case TAG_label: | |
c5aa993b | 2872 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
c906108c SS |
2873 | SYMBOL_CLASS (sym) = LOC_LABEL; |
2874 | break; | |
2875 | case TAG_global_subroutine: | |
2876 | case TAG_subroutine: | |
c5aa993b | 2877 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
c906108c | 2878 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); |
c5aa993b | 2879 | if (dip->at_prototyped) |
c906108c SS |
2880 | TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; |
2881 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
c5aa993b | 2882 | if (dip->die_tag == TAG_global_subroutine) |
c906108c SS |
2883 | { |
2884 | add_symbol_to_list (sym, &global_symbols); | |
2885 | } | |
2886 | else | |
2887 | { | |
2888 | add_symbol_to_list (sym, list_in_scope); | |
2889 | } | |
2890 | break; | |
2891 | case TAG_global_variable: | |
c5aa993b | 2892 | if (dip->at_location != NULL) |
c906108c SS |
2893 | { |
2894 | SYMBOL_VALUE_ADDRESS (sym) = locval (dip); | |
2895 | add_symbol_to_list (sym, &global_symbols); | |
2896 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2897 | SYMBOL_VALUE (sym) += baseaddr; | |
2898 | } | |
2899 | break; | |
2900 | case TAG_local_variable: | |
c5aa993b | 2901 | if (dip->at_location != NULL) |
c906108c SS |
2902 | { |
2903 | int loc = locval (dip); | |
c5aa993b | 2904 | if (dip->optimized_out) |
c906108c SS |
2905 | { |
2906 | SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; | |
2907 | } | |
c5aa993b | 2908 | else if (dip->isreg) |
c906108c SS |
2909 | { |
2910 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
2911 | } | |
c5aa993b | 2912 | else if (dip->offreg) |
c906108c SS |
2913 | { |
2914 | SYMBOL_CLASS (sym) = LOC_BASEREG; | |
c5aa993b | 2915 | SYMBOL_BASEREG (sym) = dip->basereg; |
c906108c SS |
2916 | } |
2917 | else | |
2918 | { | |
2919 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2920 | SYMBOL_VALUE (sym) += baseaddr; | |
2921 | } | |
2922 | if (SYMBOL_CLASS (sym) == LOC_STATIC) | |
2923 | { | |
2924 | /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, | |
2925 | which may store to a bigger location than SYMBOL_VALUE. */ | |
2926 | SYMBOL_VALUE_ADDRESS (sym) = loc; | |
2927 | } | |
2928 | else | |
2929 | { | |
2930 | SYMBOL_VALUE (sym) = loc; | |
2931 | } | |
2932 | add_symbol_to_list (sym, list_in_scope); | |
2933 | } | |
2934 | break; | |
2935 | case TAG_formal_parameter: | |
c5aa993b | 2936 | if (dip->at_location != NULL) |
c906108c SS |
2937 | { |
2938 | SYMBOL_VALUE (sym) = locval (dip); | |
2939 | } | |
2940 | add_symbol_to_list (sym, list_in_scope); | |
c5aa993b | 2941 | if (dip->isreg) |
c906108c SS |
2942 | { |
2943 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
2944 | } | |
c5aa993b | 2945 | else if (dip->offreg) |
c906108c SS |
2946 | { |
2947 | SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; | |
c5aa993b | 2948 | SYMBOL_BASEREG (sym) = dip->basereg; |
c906108c SS |
2949 | } |
2950 | else | |
2951 | { | |
2952 | SYMBOL_CLASS (sym) = LOC_ARG; | |
2953 | } | |
2954 | break; | |
2955 | case TAG_unspecified_parameters: | |
2956 | /* From varargs functions; gdb doesn't seem to have any interest in | |
2957 | this information, so just ignore it for now. (FIXME?) */ | |
2958 | break; | |
2959 | case TAG_class_type: | |
2960 | case TAG_structure_type: | |
2961 | case TAG_union_type: | |
2962 | case TAG_enumeration_type: | |
2963 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2964 | SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; | |
2965 | add_symbol_to_list (sym, list_in_scope); | |
2966 | break; | |
2967 | case TAG_typedef: | |
2968 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2969 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2970 | add_symbol_to_list (sym, list_in_scope); | |
2971 | break; | |
2972 | default: | |
2973 | /* Not a tag we recognize. Hopefully we aren't processing trash | |
2974 | data, but since we must specifically ignore things we don't | |
2975 | recognize, there is nothing else we should do at this point. */ | |
2976 | break; | |
2977 | } | |
2978 | } | |
2979 | return (sym); | |
2980 | } | |
2981 | ||
2982 | /* | |
2983 | ||
c5aa993b | 2984 | LOCAL FUNCTION |
c906108c | 2985 | |
c5aa993b | 2986 | synthesize_typedef -- make a symbol table entry for a "fake" typedef |
c906108c | 2987 | |
c5aa993b | 2988 | SYNOPSIS |
c906108c | 2989 | |
c5aa993b JM |
2990 | static void synthesize_typedef (struct dieinfo *dip, |
2991 | struct objfile *objfile, | |
2992 | struct type *type); | |
c906108c | 2993 | |
c5aa993b | 2994 | DESCRIPTION |
c906108c | 2995 | |
c5aa993b JM |
2996 | Given a pointer to a DWARF information entry, synthesize a typedef |
2997 | for the name in the DIE, using the specified type. | |
c906108c | 2998 | |
c5aa993b JM |
2999 | This is used for C++ class, structs, unions, and enumerations to |
3000 | set up the tag name as a type. | |
c906108c SS |
3001 | |
3002 | */ | |
3003 | ||
3004 | static void | |
fba45db2 KB |
3005 | synthesize_typedef (struct dieinfo *dip, struct objfile *objfile, |
3006 | struct type *type) | |
c906108c SS |
3007 | { |
3008 | struct symbol *sym = NULL; | |
c5aa993b JM |
3009 | |
3010 | if (dip->at_name != NULL) | |
c906108c SS |
3011 | { |
3012 | sym = (struct symbol *) | |
c5aa993b | 3013 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol)); |
c906108c SS |
3014 | OBJSTAT (objfile, n_syms++); |
3015 | memset (sym, 0, sizeof (struct symbol)); | |
c5aa993b | 3016 | SYMBOL_NAME (sym) = create_name (dip->at_name, |
c906108c SS |
3017 | &objfile->symbol_obstack); |
3018 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); | |
3019 | SYMBOL_TYPE (sym) = type; | |
3020 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
3021 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
3022 | add_symbol_to_list (sym, list_in_scope); | |
3023 | } | |
3024 | } | |
3025 | ||
3026 | /* | |
3027 | ||
c5aa993b | 3028 | LOCAL FUNCTION |
c906108c | 3029 | |
c5aa993b | 3030 | decode_mod_fund_type -- decode a modified fundamental type |
c906108c | 3031 | |
c5aa993b | 3032 | SYNOPSIS |
c906108c | 3033 | |
c5aa993b | 3034 | static struct type *decode_mod_fund_type (char *typedata) |
c906108c | 3035 | |
c5aa993b | 3036 | DESCRIPTION |
c906108c | 3037 | |
c5aa993b JM |
3038 | Decode a block of data containing a modified fundamental |
3039 | type specification. TYPEDATA is a pointer to the block, | |
3040 | which starts with a length containing the size of the rest | |
3041 | of the block. At the end of the block is a fundmental type | |
3042 | code value that gives the fundamental type. Everything | |
3043 | in between are type modifiers. | |
c906108c | 3044 | |
c5aa993b JM |
3045 | We simply compute the number of modifiers and call the general |
3046 | function decode_modified_type to do the actual work. | |
3047 | */ | |
c906108c SS |
3048 | |
3049 | static struct type * | |
fba45db2 | 3050 | decode_mod_fund_type (char *typedata) |
c906108c SS |
3051 | { |
3052 | struct type *typep = NULL; | |
3053 | unsigned short modcount; | |
3054 | int nbytes; | |
c5aa993b | 3055 | |
c906108c SS |
3056 | /* Get the total size of the block, exclusive of the size itself */ |
3057 | ||
3058 | nbytes = attribute_size (AT_mod_fund_type); | |
3059 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3060 | typedata += nbytes; | |
3061 | ||
3062 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |
3063 | ||
3064 | modcount -= attribute_size (AT_fund_type); | |
3065 | ||
3066 | /* Now do the actual decoding */ | |
3067 | ||
3068 | typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); | |
3069 | return (typep); | |
3070 | } | |
3071 | ||
3072 | /* | |
3073 | ||
c5aa993b | 3074 | LOCAL FUNCTION |
c906108c | 3075 | |
c5aa993b | 3076 | decode_mod_u_d_type -- decode a modified user defined type |
c906108c | 3077 | |
c5aa993b | 3078 | SYNOPSIS |
c906108c | 3079 | |
c5aa993b | 3080 | static struct type *decode_mod_u_d_type (char *typedata) |
c906108c | 3081 | |
c5aa993b | 3082 | DESCRIPTION |
c906108c | 3083 | |
c5aa993b JM |
3084 | Decode a block of data containing a modified user defined |
3085 | type specification. TYPEDATA is a pointer to the block, | |
3086 | which consists of a two byte length, containing the size | |
3087 | of the rest of the block. At the end of the block is a | |
3088 | four byte value that gives a reference to a user defined type. | |
3089 | Everything in between are type modifiers. | |
c906108c | 3090 | |
c5aa993b JM |
3091 | We simply compute the number of modifiers and call the general |
3092 | function decode_modified_type to do the actual work. | |
3093 | */ | |
c906108c SS |
3094 | |
3095 | static struct type * | |
fba45db2 | 3096 | decode_mod_u_d_type (char *typedata) |
c906108c SS |
3097 | { |
3098 | struct type *typep = NULL; | |
3099 | unsigned short modcount; | |
3100 | int nbytes; | |
c5aa993b | 3101 | |
c906108c SS |
3102 | /* Get the total size of the block, exclusive of the size itself */ |
3103 | ||
3104 | nbytes = attribute_size (AT_mod_u_d_type); | |
3105 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); | |
3106 | typedata += nbytes; | |
3107 | ||
3108 | /* Deduct the size of the reference type bytes at the end of the block. */ | |
3109 | ||
3110 | modcount -= attribute_size (AT_user_def_type); | |
3111 | ||
3112 | /* Now do the actual decoding */ | |
3113 | ||
3114 | typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); | |
3115 | return (typep); | |
3116 | } | |
3117 | ||
3118 | /* | |
3119 | ||
c5aa993b | 3120 | LOCAL FUNCTION |
c906108c | 3121 | |
c5aa993b | 3122 | decode_modified_type -- decode modified user or fundamental type |
c906108c | 3123 | |
c5aa993b | 3124 | SYNOPSIS |
c906108c | 3125 | |
c5aa993b JM |
3126 | static struct type *decode_modified_type (char *modifiers, |
3127 | unsigned short modcount, int mtype) | |
c906108c | 3128 | |
c5aa993b | 3129 | DESCRIPTION |
c906108c | 3130 | |
c5aa993b JM |
3131 | Decode a modified type, either a modified fundamental type or |
3132 | a modified user defined type. MODIFIERS is a pointer to the | |
3133 | block of bytes that define MODCOUNT modifiers. Immediately | |
3134 | following the last modifier is a short containing the fundamental | |
3135 | type or a long containing the reference to the user defined | |
3136 | type. Which one is determined by MTYPE, which is either | |
3137 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |
3138 | type we are generating. | |
c906108c | 3139 | |
c5aa993b JM |
3140 | We call ourself recursively to generate each modified type,` |
3141 | until MODCOUNT reaches zero, at which point we have consumed | |
3142 | all the modifiers and generate either the fundamental type or | |
3143 | user defined type. When the recursion unwinds, each modifier | |
3144 | is applied in turn to generate the full modified type. | |
3145 | ||
3146 | NOTES | |
c906108c | 3147 | |
c5aa993b JM |
3148 | If we find a modifier that we don't recognize, and it is not one |
3149 | of those reserved for application specific use, then we issue a | |
3150 | warning and simply ignore the modifier. | |
c906108c | 3151 | |
c5aa993b | 3152 | BUGS |
c906108c | 3153 | |
c5aa993b | 3154 | We currently ignore MOD_const and MOD_volatile. (FIXME) |
c906108c SS |
3155 | |
3156 | */ | |
3157 | ||
3158 | static struct type * | |
fba45db2 | 3159 | decode_modified_type (char *modifiers, unsigned int modcount, int mtype) |
c906108c SS |
3160 | { |
3161 | struct type *typep = NULL; | |
3162 | unsigned short fundtype; | |
3163 | DIE_REF die_ref; | |
3164 | char modifier; | |
3165 | int nbytes; | |
c5aa993b | 3166 | |
c906108c SS |
3167 | if (modcount == 0) |
3168 | { | |
3169 | switch (mtype) | |
3170 | { | |
3171 | case AT_mod_fund_type: | |
3172 | nbytes = attribute_size (AT_fund_type); | |
3173 | fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3174 | current_objfile); | |
3175 | typep = decode_fund_type (fundtype); | |
3176 | break; | |
3177 | case AT_mod_u_d_type: | |
3178 | nbytes = attribute_size (AT_user_def_type); | |
3179 | die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, | |
3180 | current_objfile); | |
3181 | if ((typep = lookup_utype (die_ref)) == NULL) | |
3182 | { | |
3183 | typep = alloc_utype (die_ref, NULL); | |
3184 | } | |
3185 | break; | |
3186 | default: | |
3187 | complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype); | |
3188 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3189 | break; | |
3190 | } | |
3191 | } | |
3192 | else | |
3193 | { | |
3194 | modifier = *modifiers++; | |
3195 | typep = decode_modified_type (modifiers, --modcount, mtype); | |
3196 | switch (modifier) | |
3197 | { | |
c5aa993b JM |
3198 | case MOD_pointer_to: |
3199 | typep = lookup_pointer_type (typep); | |
3200 | break; | |
3201 | case MOD_reference_to: | |
3202 | typep = lookup_reference_type (typep); | |
3203 | break; | |
3204 | case MOD_const: | |
3205 | complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */ | |
3206 | break; | |
3207 | case MOD_volatile: | |
3208 | complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */ | |
3209 | break; | |
3210 | default: | |
3211 | if (!(MOD_lo_user <= (unsigned char) modifier | |
3212 | && (unsigned char) modifier <= MOD_hi_user)) | |
3213 | { | |
3214 | complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier); | |
3215 | } | |
3216 | break; | |
c906108c SS |
3217 | } |
3218 | } | |
3219 | return (typep); | |
3220 | } | |
3221 | ||
3222 | /* | |
3223 | ||
c5aa993b | 3224 | LOCAL FUNCTION |
c906108c | 3225 | |
c5aa993b | 3226 | decode_fund_type -- translate basic DWARF type to gdb base type |
c906108c | 3227 | |
c5aa993b | 3228 | DESCRIPTION |
c906108c | 3229 | |
c5aa993b JM |
3230 | Given an integer that is one of the fundamental DWARF types, |
3231 | translate it to one of the basic internal gdb types and return | |
3232 | a pointer to the appropriate gdb type (a "struct type *"). | |
c906108c | 3233 | |
c5aa993b | 3234 | NOTES |
c906108c | 3235 | |
c5aa993b JM |
3236 | For robustness, if we are asked to translate a fundamental |
3237 | type that we are unprepared to deal with, we return int so | |
3238 | callers can always depend upon a valid type being returned, | |
3239 | and so gdb may at least do something reasonable by default. | |
3240 | If the type is not in the range of those types defined as | |
3241 | application specific types, we also issue a warning. | |
3242 | */ | |
c906108c SS |
3243 | |
3244 | static struct type * | |
fba45db2 | 3245 | decode_fund_type (unsigned int fundtype) |
c906108c SS |
3246 | { |
3247 | struct type *typep = NULL; | |
c5aa993b | 3248 | |
c906108c SS |
3249 | switch (fundtype) |
3250 | { | |
3251 | ||
3252 | case FT_void: | |
3253 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3254 | break; | |
c5aa993b | 3255 | |
c906108c SS |
3256 | case FT_boolean: /* Was FT_set in AT&T version */ |
3257 | typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); | |
3258 | break; | |
3259 | ||
3260 | case FT_pointer: /* (void *) */ | |
3261 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); | |
3262 | typep = lookup_pointer_type (typep); | |
3263 | break; | |
c5aa993b | 3264 | |
c906108c SS |
3265 | case FT_char: |
3266 | typep = dwarf_fundamental_type (current_objfile, FT_CHAR); | |
3267 | break; | |
c5aa993b | 3268 | |
c906108c SS |
3269 | case FT_signed_char: |
3270 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); | |
3271 | break; | |
3272 | ||
3273 | case FT_unsigned_char: | |
3274 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); | |
3275 | break; | |
c5aa993b | 3276 | |
c906108c SS |
3277 | case FT_short: |
3278 | typep = dwarf_fundamental_type (current_objfile, FT_SHORT); | |
3279 | break; | |
3280 | ||
3281 | case FT_signed_short: | |
3282 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); | |
3283 | break; | |
c5aa993b | 3284 | |
c906108c SS |
3285 | case FT_unsigned_short: |
3286 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); | |
3287 | break; | |
c5aa993b | 3288 | |
c906108c SS |
3289 | case FT_integer: |
3290 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3291 | break; | |
3292 | ||
3293 | case FT_signed_integer: | |
3294 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); | |
3295 | break; | |
c5aa993b | 3296 | |
c906108c SS |
3297 | case FT_unsigned_integer: |
3298 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); | |
3299 | break; | |
c5aa993b | 3300 | |
c906108c SS |
3301 | case FT_long: |
3302 | typep = dwarf_fundamental_type (current_objfile, FT_LONG); | |
3303 | break; | |
3304 | ||
3305 | case FT_signed_long: | |
3306 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); | |
3307 | break; | |
c5aa993b | 3308 | |
c906108c SS |
3309 | case FT_unsigned_long: |
3310 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); | |
3311 | break; | |
c5aa993b | 3312 | |
c906108c SS |
3313 | case FT_long_long: |
3314 | typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); | |
3315 | break; | |
3316 | ||
3317 | case FT_signed_long_long: | |
3318 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); | |
3319 | break; | |
3320 | ||
3321 | case FT_unsigned_long_long: | |
3322 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); | |
3323 | break; | |
3324 | ||
3325 | case FT_float: | |
3326 | typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); | |
3327 | break; | |
c5aa993b | 3328 | |
c906108c SS |
3329 | case FT_dbl_prec_float: |
3330 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); | |
3331 | break; | |
c5aa993b | 3332 | |
c906108c SS |
3333 | case FT_ext_prec_float: |
3334 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); | |
3335 | break; | |
c5aa993b | 3336 | |
c906108c SS |
3337 | case FT_complex: |
3338 | typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); | |
3339 | break; | |
c5aa993b | 3340 | |
c906108c SS |
3341 | case FT_dbl_prec_complex: |
3342 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); | |
3343 | break; | |
c5aa993b | 3344 | |
c906108c SS |
3345 | case FT_ext_prec_complex: |
3346 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); | |
3347 | break; | |
c5aa993b | 3348 | |
c906108c SS |
3349 | } |
3350 | ||
3351 | if (typep == NULL) | |
3352 | { | |
3353 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); | |
3354 | if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) | |
3355 | { | |
3356 | complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype); | |
3357 | } | |
3358 | } | |
c5aa993b | 3359 | |
c906108c SS |
3360 | return (typep); |
3361 | } | |
3362 | ||
3363 | /* | |
3364 | ||
c5aa993b | 3365 | LOCAL FUNCTION |
c906108c | 3366 | |
c5aa993b | 3367 | create_name -- allocate a fresh copy of a string on an obstack |
c906108c | 3368 | |
c5aa993b | 3369 | DESCRIPTION |
c906108c | 3370 | |
c5aa993b JM |
3371 | Given a pointer to a string and a pointer to an obstack, allocates |
3372 | a fresh copy of the string on the specified obstack. | |
c906108c | 3373 | |
c5aa993b | 3374 | */ |
c906108c SS |
3375 | |
3376 | static char * | |
fba45db2 | 3377 | create_name (char *name, struct obstack *obstackp) |
c906108c SS |
3378 | { |
3379 | int length; | |
3380 | char *newname; | |
3381 | ||
3382 | length = strlen (name) + 1; | |
3383 | newname = (char *) obstack_alloc (obstackp, length); | |
3384 | strcpy (newname, name); | |
3385 | return (newname); | |
3386 | } | |
3387 | ||
3388 | /* | |
3389 | ||
c5aa993b | 3390 | LOCAL FUNCTION |
c906108c | 3391 | |
c5aa993b | 3392 | basicdieinfo -- extract the minimal die info from raw die data |
c906108c | 3393 | |
c5aa993b | 3394 | SYNOPSIS |
c906108c | 3395 | |
c5aa993b JM |
3396 | void basicdieinfo (char *diep, struct dieinfo *dip, |
3397 | struct objfile *objfile) | |
c906108c | 3398 | |
c5aa993b | 3399 | DESCRIPTION |
c906108c | 3400 | |
c5aa993b JM |
3401 | Given a pointer to raw DIE data, and a pointer to an instance of a |
3402 | die info structure, this function extracts the basic information | |
3403 | from the DIE data required to continue processing this DIE, along | |
3404 | with some bookkeeping information about the DIE. | |
c906108c | 3405 | |
c5aa993b JM |
3406 | The information we absolutely must have includes the DIE tag, |
3407 | and the DIE length. If we need the sibling reference, then we | |
3408 | will have to call completedieinfo() to process all the remaining | |
3409 | DIE information. | |
c906108c | 3410 | |
c5aa993b JM |
3411 | Note that since there is no guarantee that the data is properly |
3412 | aligned in memory for the type of access required (indirection | |
3413 | through anything other than a char pointer), and there is no | |
3414 | guarantee that it is in the same byte order as the gdb host, | |
3415 | we call a function which deals with both alignment and byte | |
3416 | swapping issues. Possibly inefficient, but quite portable. | |
c906108c | 3417 | |
c5aa993b JM |
3418 | We also take care of some other basic things at this point, such |
3419 | as ensuring that the instance of the die info structure starts | |
3420 | out completely zero'd and that curdie is initialized for use | |
3421 | in error reporting if we have a problem with the current die. | |
c906108c | 3422 | |
c5aa993b JM |
3423 | NOTES |
3424 | ||
3425 | All DIE's must have at least a valid length, thus the minimum | |
3426 | DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the | |
3427 | DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they | |
3428 | are forced to be TAG_padding DIES. | |
c906108c | 3429 | |
c5aa993b JM |
3430 | Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying |
3431 | that if a padding DIE is used for alignment and the amount needed is | |
3432 | less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big | |
3433 | enough to align to the next alignment boundry. | |
3434 | ||
3435 | We do some basic sanity checking here, such as verifying that the | |
3436 | length of the die would not cause it to overrun the recorded end of | |
3437 | the buffer holding the DIE info. If we find a DIE that is either | |
3438 | too small or too large, we force it's length to zero which should | |
3439 | cause the caller to take appropriate action. | |
c906108c SS |
3440 | */ |
3441 | ||
3442 | static void | |
fba45db2 | 3443 | basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile) |
c906108c SS |
3444 | { |
3445 | curdie = dip; | |
3446 | memset (dip, 0, sizeof (struct dieinfo)); | |
c5aa993b JM |
3447 | dip->die = diep; |
3448 | dip->die_ref = dbroff + (diep - dbbase); | |
3449 | dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, | |
3450 | objfile); | |
3451 | if ((dip->die_length < SIZEOF_DIE_LENGTH) || | |
3452 | ((diep + dip->die_length) > (dbbase + dbsize))) | |
c906108c | 3453 | { |
c5aa993b JM |
3454 | complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length); |
3455 | dip->die_length = 0; | |
c906108c | 3456 | } |
c5aa993b | 3457 | else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) |
c906108c | 3458 | { |
c5aa993b | 3459 | dip->die_tag = TAG_padding; |
c906108c SS |
3460 | } |
3461 | else | |
3462 | { | |
3463 | diep += SIZEOF_DIE_LENGTH; | |
c5aa993b JM |
3464 | dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, |
3465 | objfile); | |
c906108c SS |
3466 | } |
3467 | } | |
3468 | ||
3469 | /* | |
3470 | ||
c5aa993b | 3471 | LOCAL FUNCTION |
c906108c | 3472 | |
c5aa993b | 3473 | completedieinfo -- finish reading the information for a given DIE |
c906108c | 3474 | |
c5aa993b | 3475 | SYNOPSIS |
c906108c | 3476 | |
c5aa993b | 3477 | void completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
c906108c | 3478 | |
c5aa993b | 3479 | DESCRIPTION |
c906108c | 3480 | |
c5aa993b JM |
3481 | Given a pointer to an already partially initialized die info structure, |
3482 | scan the raw DIE data and finish filling in the die info structure | |
3483 | from the various attributes found. | |
c906108c | 3484 | |
c5aa993b JM |
3485 | Note that since there is no guarantee that the data is properly |
3486 | aligned in memory for the type of access required (indirection | |
3487 | through anything other than a char pointer), and there is no | |
3488 | guarantee that it is in the same byte order as the gdb host, | |
3489 | we call a function which deals with both alignment and byte | |
3490 | swapping issues. Possibly inefficient, but quite portable. | |
c906108c | 3491 | |
c5aa993b JM |
3492 | NOTES |
3493 | ||
3494 | Each time we are called, we increment the diecount variable, which | |
3495 | keeps an approximate count of the number of dies processed for | |
3496 | each compilation unit. This information is presented to the user | |
3497 | if the info_verbose flag is set. | |
c906108c SS |
3498 | |
3499 | */ | |
3500 | ||
3501 | static void | |
fba45db2 | 3502 | completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
c906108c SS |
3503 | { |
3504 | char *diep; /* Current pointer into raw DIE data */ | |
3505 | char *end; /* Terminate DIE scan here */ | |
3506 | unsigned short attr; /* Current attribute being scanned */ | |
3507 | unsigned short form; /* Form of the attribute */ | |
3508 | int nbytes; /* Size of next field to read */ | |
c5aa993b | 3509 | |
c906108c | 3510 | diecount++; |
c5aa993b JM |
3511 | diep = dip->die; |
3512 | end = diep + dip->die_length; | |
c906108c SS |
3513 | diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; |
3514 | while (diep < end) | |
3515 | { | |
3516 | attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); | |
3517 | diep += SIZEOF_ATTRIBUTE; | |
3518 | if ((nbytes = attribute_size (attr)) == -1) | |
3519 | { | |
3520 | complain (&unknown_attribute_length, DIE_ID, DIE_NAME); | |
3521 | diep = end; | |
3522 | continue; | |
3523 | } | |
3524 | switch (attr) | |
3525 | { | |
3526 | case AT_fund_type: | |
c5aa993b JM |
3527 | dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, |
3528 | objfile); | |
c906108c SS |
3529 | break; |
3530 | case AT_ordering: | |
c5aa993b JM |
3531 | dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, |
3532 | objfile); | |
c906108c SS |
3533 | break; |
3534 | case AT_bit_offset: | |
c5aa993b JM |
3535 | dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, |
3536 | objfile); | |
c906108c SS |
3537 | break; |
3538 | case AT_sibling: | |
c5aa993b JM |
3539 | dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, |
3540 | objfile); | |
c906108c SS |
3541 | break; |
3542 | case AT_stmt_list: | |
c5aa993b JM |
3543 | dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, |
3544 | objfile); | |
3545 | dip->has_at_stmt_list = 1; | |
c906108c SS |
3546 | break; |
3547 | case AT_low_pc: | |
c5aa993b JM |
3548 | dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
3549 | objfile); | |
3550 | dip->at_low_pc += baseaddr; | |
3551 | dip->has_at_low_pc = 1; | |
c906108c SS |
3552 | break; |
3553 | case AT_high_pc: | |
c5aa993b JM |
3554 | dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
3555 | objfile); | |
3556 | dip->at_high_pc += baseaddr; | |
c906108c SS |
3557 | break; |
3558 | case AT_language: | |
c5aa993b JM |
3559 | dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED, |
3560 | objfile); | |
c906108c SS |
3561 | break; |
3562 | case AT_user_def_type: | |
c5aa993b JM |
3563 | dip->at_user_def_type = target_to_host (diep, nbytes, |
3564 | GET_UNSIGNED, objfile); | |
c906108c SS |
3565 | break; |
3566 | case AT_byte_size: | |
c5aa993b JM |
3567 | dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3568 | objfile); | |
3569 | dip->has_at_byte_size = 1; | |
c906108c SS |
3570 | break; |
3571 | case AT_bit_size: | |
c5aa993b JM |
3572 | dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3573 | objfile); | |
c906108c SS |
3574 | break; |
3575 | case AT_member: | |
c5aa993b JM |
3576 | dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED, |
3577 | objfile); | |
c906108c SS |
3578 | break; |
3579 | case AT_discr: | |
c5aa993b JM |
3580 | dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, |
3581 | objfile); | |
c906108c SS |
3582 | break; |
3583 | case AT_location: | |
c5aa993b | 3584 | dip->at_location = diep; |
c906108c SS |
3585 | break; |
3586 | case AT_mod_fund_type: | |
c5aa993b | 3587 | dip->at_mod_fund_type = diep; |
c906108c SS |
3588 | break; |
3589 | case AT_subscr_data: | |
c5aa993b | 3590 | dip->at_subscr_data = diep; |
c906108c SS |
3591 | break; |
3592 | case AT_mod_u_d_type: | |
c5aa993b | 3593 | dip->at_mod_u_d_type = diep; |
c906108c SS |
3594 | break; |
3595 | case AT_element_list: | |
c5aa993b JM |
3596 | dip->at_element_list = diep; |
3597 | dip->short_element_list = 0; | |
c906108c SS |
3598 | break; |
3599 | case AT_short_element_list: | |
c5aa993b JM |
3600 | dip->at_element_list = diep; |
3601 | dip->short_element_list = 1; | |
c906108c SS |
3602 | break; |
3603 | case AT_discr_value: | |
c5aa993b | 3604 | dip->at_discr_value = diep; |
c906108c SS |
3605 | break; |
3606 | case AT_string_length: | |
c5aa993b | 3607 | dip->at_string_length = diep; |
c906108c SS |
3608 | break; |
3609 | case AT_name: | |
c5aa993b | 3610 | dip->at_name = diep; |
c906108c SS |
3611 | break; |
3612 | case AT_comp_dir: | |
3613 | /* For now, ignore any "hostname:" portion, since gdb doesn't | |
3614 | know how to deal with it. (FIXME). */ | |
c5aa993b JM |
3615 | dip->at_comp_dir = strrchr (diep, ':'); |
3616 | if (dip->at_comp_dir != NULL) | |
c906108c | 3617 | { |
c5aa993b | 3618 | dip->at_comp_dir++; |
c906108c SS |
3619 | } |
3620 | else | |
3621 | { | |
c5aa993b | 3622 | dip->at_comp_dir = diep; |
c906108c SS |
3623 | } |
3624 | break; | |
3625 | case AT_producer: | |
c5aa993b | 3626 | dip->at_producer = diep; |
c906108c SS |
3627 | break; |
3628 | case AT_start_scope: | |
c5aa993b JM |
3629 | dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, |
3630 | objfile); | |
c906108c SS |
3631 | break; |
3632 | case AT_stride_size: | |
c5aa993b JM |
3633 | dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
3634 | objfile); | |
c906108c SS |
3635 | break; |
3636 | case AT_src_info: | |
c5aa993b JM |
3637 | dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, |
3638 | objfile); | |
c906108c SS |
3639 | break; |
3640 | case AT_prototyped: | |
c5aa993b | 3641 | dip->at_prototyped = diep; |
c906108c SS |
3642 | break; |
3643 | default: | |
3644 | /* Found an attribute that we are unprepared to handle. However | |
3645 | it is specifically one of the design goals of DWARF that | |
3646 | consumers should ignore unknown attributes. As long as the | |
3647 | form is one that we recognize (so we know how to skip it), | |
3648 | we can just ignore the unknown attribute. */ | |
3649 | break; | |
3650 | } | |
3651 | form = FORM_FROM_ATTR (attr); | |
3652 | switch (form) | |
3653 | { | |
3654 | case FORM_DATA2: | |
3655 | diep += 2; | |
3656 | break; | |
3657 | case FORM_DATA4: | |
3658 | case FORM_REF: | |
3659 | diep += 4; | |
3660 | break; | |
3661 | case FORM_DATA8: | |
3662 | diep += 8; | |
3663 | break; | |
3664 | case FORM_ADDR: | |
3665 | diep += TARGET_FT_POINTER_SIZE (objfile); | |
3666 | break; | |
3667 | case FORM_BLOCK2: | |
3668 | diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3669 | break; | |
3670 | case FORM_BLOCK4: | |
3671 | diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); | |
3672 | break; | |
3673 | case FORM_STRING: | |
3674 | diep += strlen (diep) + 1; | |
3675 | break; | |
3676 | default: | |
3677 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); | |
3678 | diep = end; | |
3679 | break; | |
3680 | } | |
3681 | } | |
3682 | } | |
3683 | ||
3684 | /* | |
3685 | ||
c5aa993b | 3686 | LOCAL FUNCTION |
c906108c | 3687 | |
c5aa993b | 3688 | target_to_host -- swap in target data to host |
c906108c | 3689 | |
c5aa993b | 3690 | SYNOPSIS |
c906108c | 3691 | |
c5aa993b JM |
3692 | target_to_host (char *from, int nbytes, int signextend, |
3693 | struct objfile *objfile) | |
c906108c | 3694 | |
c5aa993b | 3695 | DESCRIPTION |
c906108c | 3696 | |
c5aa993b JM |
3697 | Given pointer to data in target format in FROM, a byte count for |
3698 | the size of the data in NBYTES, a flag indicating whether or not | |
3699 | the data is signed in SIGNEXTEND, and a pointer to the current | |
3700 | objfile in OBJFILE, convert the data to host format and return | |
3701 | the converted value. | |
c906108c | 3702 | |
c5aa993b | 3703 | NOTES |
c906108c | 3704 | |
c5aa993b JM |
3705 | FIXME: If we read data that is known to be signed, and expect to |
3706 | use it as signed data, then we need to explicitly sign extend the | |
3707 | result until the bfd library is able to do this for us. | |
c906108c | 3708 | |
c5aa993b | 3709 | FIXME: Would a 32 bit target ever need an 8 byte result? |
c906108c SS |
3710 | |
3711 | */ | |
3712 | ||
3713 | static CORE_ADDR | |
fba45db2 KB |
3714 | target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */ |
3715 | struct objfile *objfile) | |
c906108c SS |
3716 | { |
3717 | CORE_ADDR rtnval; | |
3718 | ||
3719 | switch (nbytes) | |
3720 | { | |
c5aa993b JM |
3721 | case 8: |
3722 | rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from); | |
3723 | break; | |
3724 | case 4: | |
3725 | rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from); | |
3726 | break; | |
3727 | case 2: | |
3728 | rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from); | |
3729 | break; | |
3730 | case 1: | |
3731 | rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from); | |
3732 | break; | |
3733 | default: | |
3734 | complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes); | |
3735 | rtnval = 0; | |
3736 | break; | |
c906108c SS |
3737 | } |
3738 | return (rtnval); | |
3739 | } | |
3740 | ||
3741 | /* | |
3742 | ||
c5aa993b | 3743 | LOCAL FUNCTION |
c906108c | 3744 | |
c5aa993b | 3745 | attribute_size -- compute size of data for a DWARF attribute |
c906108c | 3746 | |
c5aa993b | 3747 | SYNOPSIS |
c906108c | 3748 | |
c5aa993b | 3749 | static int attribute_size (unsigned int attr) |
c906108c | 3750 | |
c5aa993b | 3751 | DESCRIPTION |
c906108c | 3752 | |
c5aa993b JM |
3753 | Given a DWARF attribute in ATTR, compute the size of the first |
3754 | piece of data associated with this attribute and return that | |
3755 | size. | |
c906108c | 3756 | |
c5aa993b | 3757 | Returns -1 for unrecognized attributes. |
c906108c SS |
3758 | |
3759 | */ | |
3760 | ||
3761 | static int | |
fba45db2 | 3762 | attribute_size (unsigned int attr) |
c906108c SS |
3763 | { |
3764 | int nbytes; /* Size of next data for this attribute */ | |
3765 | unsigned short form; /* Form of the attribute */ | |
3766 | ||
3767 | form = FORM_FROM_ATTR (attr); | |
3768 | switch (form) | |
3769 | { | |
c5aa993b JM |
3770 | case FORM_STRING: /* A variable length field is next */ |
3771 | nbytes = 0; | |
3772 | break; | |
3773 | case FORM_DATA2: /* Next 2 byte field is the data itself */ | |
3774 | case FORM_BLOCK2: /* Next 2 byte field is a block length */ | |
3775 | nbytes = 2; | |
3776 | break; | |
3777 | case FORM_DATA4: /* Next 4 byte field is the data itself */ | |
3778 | case FORM_BLOCK4: /* Next 4 byte field is a block length */ | |
3779 | case FORM_REF: /* Next 4 byte field is a DIE offset */ | |
3780 | nbytes = 4; | |
3781 | break; | |
3782 | case FORM_DATA8: /* Next 8 byte field is the data itself */ | |
3783 | nbytes = 8; | |
3784 | break; | |
3785 | case FORM_ADDR: /* Next field size is target sizeof(void *) */ | |
3786 | nbytes = TARGET_FT_POINTER_SIZE (objfile); | |
3787 | break; | |
3788 | default: | |
3789 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); | |
3790 | nbytes = -1; | |
3791 | break; | |
3792 | } | |
c906108c SS |
3793 | return (nbytes); |
3794 | } |