]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Find a variable's value in memory, for GDB, the GNU debugger. |
7d9884b9 | 2 | Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc. |
bd5635a1 RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
36b9d39c | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
36b9d39c JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
36b9d39c | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
36b9d39c JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 19 | |
bd5635a1 | 20 | #include "defs.h" |
bd5635a1 | 21 | #include "symtab.h" |
51b57ded | 22 | #include "gdbtypes.h" |
bd5635a1 RP |
23 | #include "frame.h" |
24 | #include "value.h" | |
25 | #include "gdbcore.h" | |
26 | #include "inferior.h" | |
27 | #include "target.h" | |
28 | ||
29 | #if !defined (GET_SAVED_REGISTER) | |
30 | ||
31 | /* Return the address in which frame FRAME's value of register REGNUM | |
32 | has been saved in memory. Or return zero if it has not been saved. | |
33 | If REGNUM specifies the SP, the value we return is actually | |
34 | the SP value, not an address where it was saved. */ | |
35 | ||
36 | CORE_ADDR | |
37 | find_saved_register (frame, regnum) | |
38 | FRAME frame; | |
39 | int regnum; | |
40 | { | |
41 | struct frame_info *fi; | |
42 | struct frame_saved_regs saved_regs; | |
43 | ||
44 | register FRAME frame1 = 0; | |
45 | register CORE_ADDR addr = 0; | |
46 | ||
47 | if (frame == 0) /* No regs saved if want current frame */ | |
48 | return 0; | |
49 | ||
50 | #ifdef HAVE_REGISTER_WINDOWS | |
51 | /* We assume that a register in a register window will only be saved | |
52 | in one place (since the name changes and/or disappears as you go | |
53 | towards inner frames), so we only call get_frame_saved_regs on | |
54 | the current frame. This is directly in contradiction to the | |
55 | usage below, which assumes that registers used in a frame must be | |
56 | saved in a lower (more interior) frame. This change is a result | |
57 | of working on a register window machine; get_frame_saved_regs | |
58 | always returns the registers saved within a frame, within the | |
59 | context (register namespace) of that frame. */ | |
60 | ||
61 | /* However, note that we don't want this to return anything if | |
62 | nothing is saved (if there's a frame inside of this one). Also, | |
63 | callers to this routine asking for the stack pointer want the | |
64 | stack pointer saved for *this* frame; this is returned from the | |
65 | next frame. */ | |
66 | ||
67 | ||
68 | if (REGISTER_IN_WINDOW_P(regnum)) | |
69 | { | |
70 | frame1 = get_next_frame (frame); | |
71 | if (!frame1) return 0; /* Registers of this frame are | |
72 | active. */ | |
73 | ||
74 | /* Get the SP from the next frame in; it will be this | |
75 | current frame. */ | |
76 | if (regnum != SP_REGNUM) | |
77 | frame1 = frame; | |
78 | ||
79 | fi = get_frame_info (frame1); | |
80 | get_frame_saved_regs (fi, &saved_regs); | |
81 | return saved_regs.regs[regnum]; /* ... which might be zero */ | |
82 | } | |
83 | #endif /* HAVE_REGISTER_WINDOWS */ | |
84 | ||
85 | /* Note that this next routine assumes that registers used in | |
86 | frame x will be saved only in the frame that x calls and | |
87 | frames interior to it. This is not true on the sparc, but the | |
88 | above macro takes care of it, so we should be all right. */ | |
89 | while (1) | |
90 | { | |
91 | QUIT; | |
92 | frame1 = get_prev_frame (frame1); | |
93 | if (frame1 == 0 || frame1 == frame) | |
94 | break; | |
95 | fi = get_frame_info (frame1); | |
96 | get_frame_saved_regs (fi, &saved_regs); | |
97 | if (saved_regs.regs[regnum]) | |
98 | addr = saved_regs.regs[regnum]; | |
99 | } | |
100 | ||
101 | return addr; | |
102 | } | |
103 | ||
104 | /* Find register number REGNUM relative to FRAME and put its | |
105 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
106 | was optimized out (and thus can't be fetched). Set *LVAL to | |
107 | lval_memory, lval_register, or not_lval, depending on whether the | |
108 | value was fetched from memory, from a register, or in a strange | |
109 | and non-modifiable way (e.g. a frame pointer which was calculated | |
110 | rather than fetched). Set *ADDRP to the address, either in memory | |
111 | on as a REGISTER_BYTE offset into the registers array. | |
112 | ||
113 | Note that this implementation never sets *LVAL to not_lval. But | |
114 | it can be replaced by defining GET_SAVED_REGISTER and supplying | |
115 | your own. | |
116 | ||
117 | The argument RAW_BUFFER must point to aligned memory. */ | |
118 | void | |
119 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
120 | char *raw_buffer; | |
121 | int *optimized; | |
122 | CORE_ADDR *addrp; | |
123 | FRAME frame; | |
124 | int regnum; | |
125 | enum lval_type *lval; | |
126 | { | |
127 | CORE_ADDR addr; | |
128 | /* Normal systems don't optimize out things with register numbers. */ | |
129 | if (optimized != NULL) | |
130 | *optimized = 0; | |
131 | addr = find_saved_register (frame, regnum); | |
51b57ded | 132 | if (addr != 0) |
bd5635a1 RP |
133 | { |
134 | if (lval != NULL) | |
135 | *lval = lval_memory; | |
136 | if (regnum == SP_REGNUM) | |
137 | { | |
138 | if (raw_buffer != NULL) | |
139 | *(CORE_ADDR *)raw_buffer = addr; | |
140 | if (addrp != NULL) | |
141 | *addrp = 0; | |
142 | return; | |
143 | } | |
144 | if (raw_buffer != NULL) | |
145 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
146 | } | |
147 | else | |
148 | { | |
149 | if (lval != NULL) | |
150 | *lval = lval_register; | |
151 | addr = REGISTER_BYTE (regnum); | |
152 | if (raw_buffer != NULL) | |
153 | read_register_gen (regnum, raw_buffer); | |
154 | } | |
155 | if (addrp != NULL) | |
156 | *addrp = addr; | |
157 | } | |
158 | #endif /* GET_SAVED_REGISTER. */ | |
159 | ||
160 | /* Copy the bytes of register REGNUM, relative to the current stack frame, | |
161 | into our memory at MYADDR, in target byte order. | |
162 | The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). | |
163 | ||
164 | Returns 1 if could not be read, 0 if could. */ | |
165 | ||
166 | int | |
167 | read_relative_register_raw_bytes (regnum, myaddr) | |
168 | int regnum; | |
169 | char *myaddr; | |
170 | { | |
171 | int optim; | |
172 | if (regnum == FP_REGNUM && selected_frame) | |
173 | { | |
0791c5ea | 174 | memcpy (myaddr, &FRAME_FP(selected_frame), REGISTER_RAW_SIZE(FP_REGNUM)); |
51b57ded | 175 | SWAP_TARGET_AND_HOST (myaddr, REGISTER_RAW_SIZE(FP_REGNUM)); /* in target order */ |
bd5635a1 RP |
176 | return 0; |
177 | } | |
178 | ||
e1ce8aa5 | 179 | get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame, |
bd5635a1 RP |
180 | regnum, (enum lval_type *)NULL); |
181 | return optim; | |
182 | } | |
183 | ||
184 | /* Return a `value' with the contents of register REGNUM | |
185 | in its virtual format, with the type specified by | |
186 | REGISTER_VIRTUAL_TYPE. */ | |
187 | ||
188 | value | |
189 | value_of_register (regnum) | |
190 | int regnum; | |
191 | { | |
192 | CORE_ADDR addr; | |
193 | int optim; | |
194 | register value val; | |
195 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
196 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
197 | enum lval_type lval; | |
198 | ||
199 | get_saved_register (raw_buffer, &optim, &addr, | |
200 | selected_frame, regnum, &lval); | |
201 | ||
0791c5ea | 202 | REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer); |
bd5635a1 | 203 | val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); |
0791c5ea JK |
204 | memcpy (VALUE_CONTENTS_RAW (val), virtual_buffer, |
205 | REGISTER_VIRTUAL_SIZE (regnum)); | |
bd5635a1 RP |
206 | VALUE_LVAL (val) = lval; |
207 | VALUE_ADDRESS (val) = addr; | |
208 | VALUE_REGNO (val) = regnum; | |
209 | VALUE_OPTIMIZED_OUT (val) = optim; | |
210 | return val; | |
211 | } | |
212 | \f | |
213 | /* Low level examining and depositing of registers. | |
214 | ||
215 | The caller is responsible for making | |
216 | sure that the inferior is stopped before calling the fetching routines, | |
217 | or it will get garbage. (a change from GDB version 3, in which | |
218 | the caller got the value from the last stop). */ | |
219 | ||
220 | /* Contents of the registers in target byte order. | |
221 | We allocate some extra slop since we do a lot of bcopy's around `registers', | |
222 | and failing-soft is better than failing hard. */ | |
223 | char registers[REGISTER_BYTES + /* SLOP */ 256]; | |
224 | ||
225 | /* Nonzero if that register has been fetched. */ | |
226 | char register_valid[NUM_REGS]; | |
227 | ||
228 | /* Indicate that registers may have changed, so invalidate the cache. */ | |
229 | void | |
230 | registers_changed () | |
231 | { | |
232 | int i; | |
233 | for (i = 0; i < NUM_REGS; i++) | |
234 | register_valid[i] = 0; | |
235 | } | |
236 | ||
237 | /* Indicate that all registers have been fetched, so mark them all valid. */ | |
238 | void | |
239 | registers_fetched () | |
240 | { | |
241 | int i; | |
242 | for (i = 0; i < NUM_REGS; i++) | |
243 | register_valid[i] = 1; | |
244 | } | |
245 | ||
246 | /* Copy LEN bytes of consecutive data from registers | |
247 | starting with the REGBYTE'th byte of register data | |
248 | into memory at MYADDR. */ | |
249 | ||
250 | void | |
251 | read_register_bytes (regbyte, myaddr, len) | |
252 | int regbyte; | |
253 | char *myaddr; | |
254 | int len; | |
255 | { | |
256 | /* Fetch all registers. */ | |
257 | int i; | |
258 | for (i = 0; i < NUM_REGS; i++) | |
259 | if (!register_valid[i]) | |
260 | { | |
261 | target_fetch_registers (-1); | |
262 | break; | |
263 | } | |
264 | if (myaddr != NULL) | |
0791c5ea | 265 | memcpy (myaddr, ®isters[regbyte], len); |
bd5635a1 RP |
266 | } |
267 | ||
268 | /* Read register REGNO into memory at MYADDR, which must be large enough | |
f2ebc25f JK |
269 | for REGISTER_RAW_BYTES (REGNO). Target byte-order. |
270 | If the register is known to be the size of a CORE_ADDR or smaller, | |
271 | read_register can be used instead. */ | |
bd5635a1 RP |
272 | void |
273 | read_register_gen (regno, myaddr) | |
274 | int regno; | |
275 | char *myaddr; | |
276 | { | |
277 | if (!register_valid[regno]) | |
278 | target_fetch_registers (regno); | |
0791c5ea JK |
279 | memcpy (myaddr, ®isters[REGISTER_BYTE (regno)], |
280 | REGISTER_RAW_SIZE (regno)); | |
bd5635a1 RP |
281 | } |
282 | ||
283 | /* Copy LEN bytes of consecutive data from memory at MYADDR | |
284 | into registers starting with the REGBYTE'th byte of register data. */ | |
285 | ||
286 | void | |
287 | write_register_bytes (regbyte, myaddr, len) | |
288 | int regbyte; | |
289 | char *myaddr; | |
290 | int len; | |
291 | { | |
292 | /* Make sure the entire registers array is valid. */ | |
293 | read_register_bytes (0, (char *)NULL, REGISTER_BYTES); | |
0791c5ea | 294 | memcpy (®isters[regbyte], myaddr, len); |
bd5635a1 RP |
295 | target_store_registers (-1); |
296 | } | |
297 | ||
298 | /* Return the contents of register REGNO, regarding it as an integer. */ | |
51b57ded FF |
299 | /* FIXME, this loses when the REGISTER_VIRTUAL (REGNO) is true. Also, |
300 | why is the return type CORE_ADDR rather than some integer type? */ | |
bd5635a1 RP |
301 | |
302 | CORE_ADDR | |
303 | read_register (regno) | |
304 | int regno; | |
305 | { | |
0791c5ea | 306 | unsigned short sval; |
df14b38b | 307 | unsigned int ival; |
0791c5ea | 308 | unsigned long lval; |
51b57ded | 309 | |
df14b38b SC |
310 | int size; |
311 | ||
bd5635a1 RP |
312 | if (!register_valid[regno]) |
313 | target_fetch_registers (regno); | |
0791c5ea | 314 | |
df14b38b SC |
315 | size = REGISTER_RAW_SIZE(regno); |
316 | ||
317 | if (size == sizeof (unsigned char)) | |
318 | return registers[REGISTER_BYTE (regno)]; | |
319 | else if (size == sizeof (sval)) | |
0791c5ea | 320 | { |
0791c5ea JK |
321 | memcpy (&sval, ®isters[REGISTER_BYTE (regno)], sizeof (sval)); |
322 | SWAP_TARGET_AND_HOST (&sval, sizeof (sval)); | |
323 | return sval; | |
df14b38b SC |
324 | } |
325 | else if (size == sizeof (ival)) | |
326 | { | |
327 | memcpy (&ival, ®isters[REGISTER_BYTE (regno)], sizeof (ival)); | |
328 | SWAP_TARGET_AND_HOST (&ival, sizeof (ival)); | |
329 | return ival; | |
330 | } | |
331 | else if (size == sizeof (lval)) | |
332 | { | |
0791c5ea JK |
333 | memcpy (&lval, ®isters[REGISTER_BYTE (regno)], sizeof (lval)); |
334 | SWAP_TARGET_AND_HOST (&lval, sizeof (lval)); | |
335 | return lval; | |
df14b38b SC |
336 | } |
337 | else | |
338 | { | |
35247ccd | 339 | error ("GDB Internal Error in read_register() for register %d, size %d", |
df14b38b | 340 | regno, REGISTER_RAW_SIZE(regno)); |
0791c5ea | 341 | } |
bd5635a1 RP |
342 | } |
343 | ||
344 | /* Registers we shouldn't try to store. */ | |
345 | #if !defined (CANNOT_STORE_REGISTER) | |
346 | #define CANNOT_STORE_REGISTER(regno) 0 | |
347 | #endif | |
348 | ||
349 | /* Store VALUE in the register number REGNO, regarded as an integer. */ | |
51b57ded FF |
350 | /* FIXME, this loses when REGISTER_VIRTUAL (REGNO) is true. Also, |
351 | shouldn't the val arg be a LONGEST or something? */ | |
bd5635a1 RP |
352 | |
353 | void | |
354 | write_register (regno, val) | |
355 | int regno, val; | |
356 | { | |
df14b38b | 357 | unsigned char cval; |
0791c5ea | 358 | unsigned short sval; |
df14b38b | 359 | unsigned int ival; |
0791c5ea | 360 | unsigned long lval; |
df14b38b SC |
361 | int size; |
362 | PTR ptr; | |
363 | ||
bd5635a1 RP |
364 | /* On the sparc, writing %g0 is a no-op, so we don't even want to change |
365 | the registers array if something writes to this register. */ | |
366 | if (CANNOT_STORE_REGISTER (regno)) | |
367 | return; | |
368 | ||
df14b38b SC |
369 | /* If we have a valid copy of the register, and new value == old value, |
370 | then don't bother doing the actual store. */ | |
bd5635a1 | 371 | |
df14b38b | 372 | size = REGISTER_RAW_SIZE(regno); |
0791c5ea | 373 | |
df14b38b | 374 | if (size == sizeof(cval)) |
0791c5ea | 375 | { |
df14b38b SC |
376 | ptr = (PTR) &cval; |
377 | cval = val; | |
378 | } | |
379 | else if (size == sizeof(sval)) | |
380 | { | |
381 | ptr = (PTR) &sval; | |
0791c5ea | 382 | sval = val; |
df14b38b SC |
383 | } |
384 | else if (size == sizeof(ival)) | |
385 | { | |
386 | ptr = (PTR) &ival; | |
387 | ival = val; | |
388 | } | |
389 | else if (size == sizeof(lval)) | |
390 | { | |
391 | ptr = (PTR) &lval; | |
0791c5ea | 392 | lval = val; |
df14b38b SC |
393 | } |
394 | else | |
395 | { | |
35247ccd | 396 | error ("GDB Internal Error in write_register() for register %d, size %d", |
df14b38b | 397 | regno, size); |
0791c5ea | 398 | } |
df14b38b SC |
399 | |
400 | if (register_valid [regno]) | |
401 | { | |
402 | SWAP_TARGET_AND_HOST (ptr, size); | |
403 | if (memcmp (®isters[REGISTER_BYTE (regno)], | |
404 | ptr, size) == 0) | |
405 | return; | |
406 | } | |
407 | ||
408 | target_prepare_to_store (); | |
409 | ||
410 | memcpy (®isters[REGISTER_BYTE (regno)], ptr, size); | |
411 | ||
412 | register_valid [regno] = 1; | |
bd5635a1 RP |
413 | |
414 | target_store_registers (regno); | |
415 | } | |
416 | ||
417 | /* Record that register REGNO contains VAL. | |
418 | This is used when the value is obtained from the inferior or core dump, | |
419 | so there is no need to store the value there. */ | |
420 | ||
421 | void | |
422 | supply_register (regno, val) | |
423 | int regno; | |
424 | char *val; | |
425 | { | |
426 | register_valid[regno] = 1; | |
0791c5ea JK |
427 | memcpy (®isters[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno)); |
428 | ||
429 | /* On some architectures, e.g. HPPA, there are a few stray bits in some | |
430 | registers, that the rest of the code would like to ignore. */ | |
431 | #ifdef CLEAN_UP_REGISTER_VALUE | |
432 | CLEAN_UP_REGISTER_VALUE(regno, ®isters[REGISTER_BYTE(regno)]); | |
433 | #endif | |
bd5635a1 RP |
434 | } |
435 | \f | |
436 | /* Given a struct symbol for a variable, | |
437 | and a stack frame id, read the value of the variable | |
438 | and return a (pointer to a) struct value containing the value. | |
777bef06 JK |
439 | If the variable cannot be found, return a zero pointer. |
440 | If FRAME is NULL, use the selected_frame. */ | |
bd5635a1 RP |
441 | |
442 | value | |
443 | read_var_value (var, frame) | |
444 | register struct symbol *var; | |
445 | FRAME frame; | |
446 | { | |
447 | register value v; | |
448 | struct frame_info *fi; | |
449 | struct type *type = SYMBOL_TYPE (var); | |
450 | CORE_ADDR addr; | |
bd5635a1 RP |
451 | register int len; |
452 | ||
453 | v = allocate_value (type); | |
454 | VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */ | |
455 | len = TYPE_LENGTH (type); | |
456 | ||
457 | if (frame == 0) frame = selected_frame; | |
458 | ||
459 | switch (SYMBOL_CLASS (var)) | |
460 | { | |
461 | case LOC_CONST: | |
0791c5ea | 462 | memcpy (VALUE_CONTENTS_RAW (v), &SYMBOL_VALUE (var), len); |
bd5635a1 RP |
463 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len); |
464 | VALUE_LVAL (v) = not_lval; | |
465 | return v; | |
466 | ||
467 | case LOC_LABEL: | |
468 | addr = SYMBOL_VALUE_ADDRESS (var); | |
0791c5ea | 469 | memcpy (VALUE_CONTENTS_RAW (v), &addr, len); |
bd5635a1 RP |
470 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len); |
471 | VALUE_LVAL (v) = not_lval; | |
472 | return v; | |
473 | ||
474 | case LOC_CONST_BYTES: | |
36b9d39c JG |
475 | { |
476 | char *bytes_addr; | |
477 | bytes_addr = SYMBOL_VALUE_BYTES (var); | |
0791c5ea | 478 | memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len); |
36b9d39c JG |
479 | VALUE_LVAL (v) = not_lval; |
480 | return v; | |
481 | } | |
bd5635a1 RP |
482 | |
483 | case LOC_STATIC: | |
bd5635a1 RP |
484 | addr = SYMBOL_VALUE_ADDRESS (var); |
485 | break; | |
486 | ||
bd5635a1 | 487 | case LOC_ARG: |
51b57ded FF |
488 | if (SYMBOL_BASEREG_VALID (var)) |
489 | { | |
490 | addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var)); | |
491 | } | |
492 | else | |
493 | { | |
494 | fi = get_frame_info (frame); | |
495 | if (fi == NULL) | |
496 | return 0; | |
497 | addr = FRAME_ARGS_ADDRESS (fi); | |
498 | } | |
499 | if (!addr) | |
500 | { | |
501 | return 0; | |
502 | } | |
bd5635a1 RP |
503 | addr += SYMBOL_VALUE (var); |
504 | break; | |
505 | ||
506 | case LOC_REF_ARG: | |
51b57ded FF |
507 | if (SYMBOL_BASEREG_VALID (var)) |
508 | { | |
509 | addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var)); | |
510 | } | |
511 | else | |
512 | { | |
513 | fi = get_frame_info (frame); | |
514 | if (fi == NULL) | |
515 | return 0; | |
516 | addr = FRAME_ARGS_ADDRESS (fi); | |
517 | } | |
518 | if (!addr) | |
519 | { | |
520 | return 0; | |
521 | } | |
bd5635a1 | 522 | addr += SYMBOL_VALUE (var); |
51b57ded | 523 | read_memory (addr, (char *) &addr, sizeof (CORE_ADDR)); |
bd5635a1 RP |
524 | break; |
525 | ||
526 | case LOC_LOCAL: | |
527 | case LOC_LOCAL_ARG: | |
51b57ded FF |
528 | if (SYMBOL_BASEREG_VALID (var)) |
529 | { | |
530 | addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var)); | |
531 | } | |
532 | else | |
533 | { | |
534 | fi = get_frame_info (frame); | |
535 | if (fi == NULL) | |
536 | return 0; | |
537 | addr = FRAME_LOCALS_ADDRESS (fi); | |
538 | } | |
539 | addr += SYMBOL_VALUE (var); | |
bd5635a1 RP |
540 | break; |
541 | ||
542 | case LOC_TYPEDEF: | |
543 | error ("Cannot look up value of a typedef"); | |
544 | break; | |
545 | ||
546 | case LOC_BLOCK: | |
547 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var)); | |
548 | return v; | |
549 | ||
550 | case LOC_REGISTER: | |
551 | case LOC_REGPARM: | |
35247ccd | 552 | case LOC_REGPARM_ADDR: |
bd5635a1 | 553 | { |
777bef06 | 554 | struct block *b; |
bd5635a1 | 555 | |
777bef06 JK |
556 | if (frame == NULL) |
557 | return 0; | |
558 | b = get_frame_block (frame); | |
559 | ||
bd5635a1 RP |
560 | v = value_from_register (type, SYMBOL_VALUE (var), frame); |
561 | ||
35247ccd | 562 | if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR) |
0791c5ea JK |
563 | { |
564 | addr = *(CORE_ADDR *)VALUE_CONTENTS (v); | |
565 | VALUE_LVAL (v) = lval_memory; | |
566 | } | |
bd5635a1 RP |
567 | else |
568 | return v; | |
569 | } | |
570 | break; | |
571 | ||
35247ccd SG |
572 | case LOC_OPTIMIZED_OUT: |
573 | VALUE_LVAL (v) = not_lval; | |
574 | VALUE_OPTIMIZED_OUT (v) = 1; | |
575 | return v; | |
576 | ||
bd5635a1 RP |
577 | default: |
578 | error ("Cannot look up value of a botched symbol."); | |
579 | break; | |
580 | } | |
581 | ||
582 | VALUE_ADDRESS (v) = addr; | |
583 | VALUE_LAZY (v) = 1; | |
584 | return v; | |
585 | } | |
586 | ||
587 | /* Return a value of type TYPE, stored in register REGNUM, in frame | |
588 | FRAME. */ | |
589 | ||
590 | value | |
591 | value_from_register (type, regnum, frame) | |
592 | struct type *type; | |
593 | int regnum; | |
594 | FRAME frame; | |
595 | { | |
596 | char raw_buffer [MAX_REGISTER_RAW_SIZE]; | |
597 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
598 | CORE_ADDR addr; | |
599 | int optim; | |
600 | value v = allocate_value (type); | |
601 | int len = TYPE_LENGTH (type); | |
602 | char *value_bytes = 0; | |
603 | int value_bytes_copied = 0; | |
604 | int num_storage_locs; | |
605 | enum lval_type lval; | |
606 | ||
607 | VALUE_REGNO (v) = regnum; | |
608 | ||
609 | num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ? | |
610 | ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 : | |
611 | 1); | |
612 | ||
0791c5ea JK |
613 | if (num_storage_locs > 1 |
614 | #ifdef GDB_TARGET_IS_H8500 | |
615 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
616 | #endif | |
617 | ) | |
bd5635a1 RP |
618 | { |
619 | /* Value spread across multiple storage locations. */ | |
620 | ||
621 | int local_regnum; | |
622 | int mem_stor = 0, reg_stor = 0; | |
623 | int mem_tracking = 1; | |
624 | CORE_ADDR last_addr = 0; | |
625 | CORE_ADDR first_addr; | |
626 | ||
627 | value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE); | |
628 | ||
629 | /* Copy all of the data out, whereever it may be. */ | |
630 | ||
0791c5ea JK |
631 | #ifdef GDB_TARGET_IS_H8500 |
632 | /* This piece of hideosity is required because the H8500 treats registers | |
633 | differently depending upon whether they are used as pointers or not. As a | |
634 | pointer, a register needs to have a page register tacked onto the front. | |
635 | An alternate way to do this would be to have gcc output different register | |
636 | numbers for the pointer & non-pointer form of the register. But, it | |
637 | doesn't, so we're stuck with this. */ | |
638 | ||
35247ccd SG |
639 | if (TYPE_CODE (type) == TYPE_CODE_PTR |
640 | && len > 2) | |
bd5635a1 | 641 | { |
0791c5ea JK |
642 | int page_regnum; |
643 | ||
644 | switch (regnum) | |
645 | { | |
646 | case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM: | |
647 | page_regnum = SEG_D_REGNUM; | |
648 | break; | |
649 | case R4_REGNUM: case R5_REGNUM: | |
650 | page_regnum = SEG_E_REGNUM; | |
651 | break; | |
652 | case R6_REGNUM: case R7_REGNUM: | |
653 | page_regnum = SEG_T_REGNUM; | |
654 | break; | |
655 | } | |
656 | ||
657 | value_bytes[0] = 0; | |
658 | get_saved_register (value_bytes + 1, | |
bd5635a1 RP |
659 | &optim, |
660 | &addr, | |
661 | frame, | |
0791c5ea | 662 | page_regnum, |
bd5635a1 | 663 | &lval); |
0791c5ea | 664 | |
bd5635a1 RP |
665 | if (lval == lval_register) |
666 | reg_stor++; | |
667 | else | |
df14b38b SC |
668 | mem_stor++; |
669 | first_addr = addr; | |
0791c5ea | 670 | last_addr = addr; |
bd5635a1 | 671 | |
0791c5ea JK |
672 | get_saved_register (value_bytes + 2, |
673 | &optim, | |
674 | &addr, | |
675 | frame, | |
676 | regnum, | |
677 | &lval); | |
678 | ||
679 | if (lval == lval_register) | |
680 | reg_stor++; | |
681 | else | |
682 | { | |
683 | mem_stor++; | |
684 | mem_tracking = mem_tracking && (addr == last_addr); | |
bd5635a1 RP |
685 | } |
686 | last_addr = addr; | |
687 | } | |
0791c5ea JK |
688 | else |
689 | #endif /* GDB_TARGET_IS_H8500 */ | |
690 | for (local_regnum = regnum; | |
691 | value_bytes_copied < len; | |
692 | (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum), | |
693 | ++local_regnum)) | |
694 | { | |
695 | get_saved_register (value_bytes + value_bytes_copied, | |
696 | &optim, | |
697 | &addr, | |
698 | frame, | |
699 | local_regnum, | |
700 | &lval); | |
df14b38b SC |
701 | |
702 | if (regnum == local_regnum) | |
703 | first_addr = addr; | |
0791c5ea JK |
704 | if (lval == lval_register) |
705 | reg_stor++; | |
706 | else | |
707 | { | |
708 | mem_stor++; | |
0791c5ea JK |
709 | |
710 | mem_tracking = | |
711 | (mem_tracking | |
712 | && (regnum == local_regnum | |
713 | || addr == last_addr)); | |
714 | } | |
715 | last_addr = addr; | |
716 | } | |
bd5635a1 RP |
717 | |
718 | if ((reg_stor && mem_stor) | |
719 | || (mem_stor && !mem_tracking)) | |
720 | /* Mixed storage; all of the hassle we just went through was | |
721 | for some good purpose. */ | |
722 | { | |
723 | VALUE_LVAL (v) = lval_reg_frame_relative; | |
724 | VALUE_FRAME (v) = FRAME_FP (frame); | |
725 | VALUE_FRAME_REGNUM (v) = regnum; | |
726 | } | |
727 | else if (mem_stor) | |
728 | { | |
729 | VALUE_LVAL (v) = lval_memory; | |
730 | VALUE_ADDRESS (v) = first_addr; | |
731 | } | |
732 | else if (reg_stor) | |
733 | { | |
734 | VALUE_LVAL (v) = lval_register; | |
735 | VALUE_ADDRESS (v) = first_addr; | |
736 | } | |
737 | else | |
738 | fatal ("value_from_register: Value not stored anywhere!"); | |
739 | ||
740 | VALUE_OPTIMIZED_OUT (v) = optim; | |
741 | ||
742 | /* Any structure stored in more than one register will always be | |
743 | an integral number of registers. Otherwise, you'd need to do | |
744 | some fiddling with the last register copied here for little | |
745 | endian machines. */ | |
746 | ||
747 | /* Copy into the contents section of the value. */ | |
0791c5ea | 748 | memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len); |
bd5635a1 | 749 | |
df14b38b SC |
750 | /* Finally do any conversion necessary when extracting this |
751 | type from more than one register. */ | |
752 | #ifdef REGISTER_CONVERT_TO_TYPE | |
753 | REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v)); | |
754 | #endif | |
bd5635a1 RP |
755 | return v; |
756 | } | |
757 | ||
758 | /* Data is completely contained within a single register. Locate the | |
759 | register's contents in a real register or in core; | |
760 | read the data in raw format. */ | |
761 | ||
762 | get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval); | |
763 | VALUE_OPTIMIZED_OUT (v) = optim; | |
764 | VALUE_LVAL (v) = lval; | |
765 | VALUE_ADDRESS (v) = addr; | |
766 | ||
767 | /* Convert the raw contents to virtual contents. | |
768 | (Just copy them if the formats are the same.) */ | |
769 | ||
0791c5ea | 770 | REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer); |
bd5635a1 RP |
771 | |
772 | if (REGISTER_CONVERTIBLE (regnum)) | |
773 | { | |
774 | /* When the raw and virtual formats differ, the virtual format | |
775 | corresponds to a specific data type. If we want that type, | |
776 | copy the data into the value. | |
777 | Otherwise, do a type-conversion. */ | |
778 | ||
779 | if (type != REGISTER_VIRTUAL_TYPE (regnum)) | |
780 | { | |
781 | /* eg a variable of type `float' in a 68881 register | |
782 | with raw type `extended' and virtual type `double'. | |
783 | Fetch it as a `double' and then convert to `float'. */ | |
784 | v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); | |
0791c5ea | 785 | memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len); |
bd5635a1 RP |
786 | v = value_cast (type, v); |
787 | } | |
788 | else | |
0791c5ea | 789 | memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len); |
bd5635a1 RP |
790 | } |
791 | else | |
792 | { | |
793 | /* Raw and virtual formats are the same for this register. */ | |
794 | ||
795 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
796 | if (len < REGISTER_RAW_SIZE (regnum)) | |
797 | { | |
798 | /* Big-endian, and we want less than full size. */ | |
799 | VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len; | |
800 | } | |
801 | #endif | |
802 | ||
0791c5ea | 803 | memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer + VALUE_OFFSET (v), len); |
bd5635a1 RP |
804 | } |
805 | ||
806 | return v; | |
807 | } | |
808 | \f | |
36b9d39c | 809 | /* Given a struct symbol for a variable or function, |
bd5635a1 | 810 | and a stack frame id, |
36b9d39c JG |
811 | return a (pointer to a) struct value containing the properly typed |
812 | address. */ | |
bd5635a1 RP |
813 | |
814 | value | |
815 | locate_var_value (var, frame) | |
816 | register struct symbol *var; | |
817 | FRAME frame; | |
818 | { | |
819 | CORE_ADDR addr = 0; | |
820 | struct type *type = SYMBOL_TYPE (var); | |
bd5635a1 RP |
821 | value lazy_value; |
822 | ||
823 | /* Evaluate it first; if the result is a memory address, we're fine. | |
824 | Lazy evaluation pays off here. */ | |
825 | ||
826 | lazy_value = read_var_value (var, frame); | |
827 | if (lazy_value == 0) | |
0791c5ea | 828 | error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); |
bd5635a1 | 829 | |
36b9d39c JG |
830 | if (VALUE_LAZY (lazy_value) |
831 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
bd5635a1 RP |
832 | { |
833 | addr = VALUE_ADDRESS (lazy_value); | |
7d9884b9 | 834 | return value_from_longest (lookup_pointer_type (type), (LONGEST) addr); |
bd5635a1 RP |
835 | } |
836 | ||
837 | /* Not a memory address; check what the problem was. */ | |
838 | switch (VALUE_LVAL (lazy_value)) | |
839 | { | |
840 | case lval_register: | |
841 | case lval_reg_frame_relative: | |
842 | error ("Address requested for identifier \"%s\" which is in a register.", | |
0791c5ea | 843 | SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
844 | break; |
845 | ||
846 | default: | |
847 | error ("Can't take address of \"%s\" which isn't an lvalue.", | |
0791c5ea | 848 | SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
849 | break; |
850 | } | |
851 | return 0; /* For lint -- never reached */ | |
852 | } |