]>
Commit | Line | Data |
---|---|---|
96309189 MS |
1 | /* Renesas M32C target-dependent code for GDB, the GNU debugger. |
2 | ||
3 | Copyright 2004, 2005 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | #include "defs.h" | |
23 | ||
24 | #include <stdarg.h> | |
25 | ||
26 | #if defined (HAVE_STRING_H) | |
27 | #include <string.h> | |
28 | #endif | |
29 | ||
30 | #include "gdb_assert.h" | |
31 | #include "elf-bfd.h" | |
32 | #include "elf/m32c.h" | |
33 | #include "gdb/sim-m32c.h" | |
34 | #include "dis-asm.h" | |
35 | #include "gdbtypes.h" | |
36 | #include "regcache.h" | |
37 | #include "arch-utils.h" | |
38 | #include "frame.h" | |
39 | #include "frame-unwind.h" | |
40 | #include "dwarf2-frame.h" | |
41 | #include "dwarf2expr.h" | |
42 | #include "symtab.h" | |
43 | #include "gdbcore.h" | |
44 | #include "value.h" | |
45 | #include "reggroups.h" | |
46 | #include "prologue-value.h" | |
47 | #include "target.h" | |
48 | ||
49 | \f | |
50 | /* The m32c tdep structure. */ | |
51 | ||
52 | static struct reggroup *m32c_dma_reggroup; | |
53 | ||
54 | struct m32c_reg; | |
55 | ||
56 | /* The type of a function that moves the value of REG between CACHE or | |
57 | BUF --- in either direction. */ | |
58 | typedef void (m32c_move_reg_t) (struct m32c_reg *reg, | |
59 | struct regcache *cache, | |
60 | void *buf); | |
61 | ||
62 | struct m32c_reg | |
63 | { | |
64 | /* The name of this register. */ | |
65 | const char *name; | |
66 | ||
67 | /* Its type. */ | |
68 | struct type *type; | |
69 | ||
70 | /* The architecture this register belongs to. */ | |
71 | struct gdbarch *arch; | |
72 | ||
73 | /* Its GDB register number. */ | |
74 | int num; | |
75 | ||
76 | /* Its sim register number. */ | |
77 | int sim_num; | |
78 | ||
79 | /* Its DWARF register number, or -1 if it doesn't have one. */ | |
80 | int dwarf_num; | |
81 | ||
82 | /* Register group memberships. */ | |
83 | unsigned int general_p : 1; | |
84 | unsigned int dma_p : 1; | |
85 | unsigned int system_p : 1; | |
86 | unsigned int save_restore_p : 1; | |
87 | ||
88 | /* Functions to read its value from a regcache, and write its value | |
89 | to a regcache. */ | |
90 | m32c_move_reg_t *read, *write; | |
91 | ||
92 | /* Data for READ and WRITE functions. The exact meaning depends on | |
93 | the specific functions selected; see the comments for those | |
94 | functions. */ | |
95 | struct m32c_reg *rx, *ry; | |
96 | int n; | |
97 | }; | |
98 | ||
99 | ||
100 | /* An overestimate of the number of raw and pseudoregisters we will | |
101 | have. The exact answer depends on the variant of the architecture | |
102 | at hand, but we can use this to declare statically allocated | |
103 | arrays, and bump it up when needed. */ | |
104 | #define M32C_MAX_NUM_REGS (75) | |
105 | ||
106 | /* The largest assigned DWARF register number. */ | |
107 | #define M32C_MAX_DWARF_REGNUM (40) | |
108 | ||
109 | ||
110 | struct gdbarch_tdep | |
111 | { | |
112 | /* All the registers for this variant, indexed by GDB register | |
113 | number, and the number of registers present. */ | |
114 | struct m32c_reg regs[M32C_MAX_NUM_REGS]; | |
115 | ||
116 | /* The number of valid registers. */ | |
117 | int num_regs; | |
118 | ||
119 | /* Interesting registers. These are pointers into REGS. */ | |
120 | struct m32c_reg *pc, *flg; | |
121 | struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1; | |
122 | struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0; | |
123 | struct m32c_reg *sb, *fb, *sp; | |
124 | ||
125 | /* A table indexed by DWARF register numbers, pointing into | |
126 | REGS. */ | |
127 | struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1]; | |
128 | ||
129 | /* Types for this architecture. We can't use the builtin_type_foo | |
130 | types, because they're not initialized when building a gdbarch | |
131 | structure. */ | |
132 | struct type *voyd, *ptr_voyd, *func_voyd; | |
133 | struct type *uint8, *uint16; | |
134 | struct type *int8, *int16, *int32, *int64; | |
135 | ||
136 | /* The types for data address and code address registers. */ | |
137 | struct type *data_addr_reg_type, *code_addr_reg_type; | |
138 | ||
139 | /* The number of bytes a return address pushed by a 'jsr' instruction | |
140 | occupies on the stack. */ | |
141 | int ret_addr_bytes; | |
142 | ||
143 | /* The number of bytes an address register occupies on the stack | |
144 | when saved by an 'enter' or 'pushm' instruction. */ | |
145 | int push_addr_bytes; | |
146 | }; | |
147 | ||
148 | \f | |
149 | /* Types. */ | |
150 | ||
151 | static void | |
152 | make_types (struct gdbarch *arch) | |
153 | { | |
154 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
155 | unsigned long mach = gdbarch_bfd_arch_info (arch)->mach; | |
156 | int data_addr_reg_bits, code_addr_reg_bits; | |
157 | char type_name[50]; | |
158 | ||
159 | #if 0 | |
160 | /* This is used to clip CORE_ADDR values, so this value is | |
161 | appropriate both on the m32c, where pointers are 32 bits long, | |
162 | and on the m16c, where pointers are sixteen bits long, but there | |
163 | may be code above the 64k boundary. */ | |
164 | set_gdbarch_addr_bit (arch, 24); | |
165 | #else | |
166 | /* GCC uses 32 bits for addrs in the dwarf info, even though | |
167 | only 16/24 bits are used. Setting addr_bit to 24 causes | |
168 | errors in reading the dwarf addresses. */ | |
169 | set_gdbarch_addr_bit (arch, 32); | |
170 | #endif | |
171 | ||
172 | set_gdbarch_int_bit (arch, 16); | |
173 | switch (mach) | |
174 | { | |
175 | case bfd_mach_m16c: | |
176 | data_addr_reg_bits = 16; | |
177 | code_addr_reg_bits = 24; | |
178 | set_gdbarch_ptr_bit (arch, 16); | |
179 | tdep->ret_addr_bytes = 3; | |
180 | tdep->push_addr_bytes = 2; | |
181 | break; | |
182 | ||
183 | case bfd_mach_m32c: | |
184 | data_addr_reg_bits = 24; | |
185 | code_addr_reg_bits = 24; | |
186 | set_gdbarch_ptr_bit (arch, 32); | |
187 | tdep->ret_addr_bytes = 4; | |
188 | tdep->push_addr_bytes = 4; | |
189 | break; | |
190 | ||
191 | default: | |
192 | gdb_assert (0); | |
193 | } | |
194 | ||
195 | /* The builtin_type_mumble variables are sometimes uninitialized when | |
196 | this is called, so we avoid using them. */ | |
197 | tdep->voyd = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL); | |
198 | tdep->ptr_voyd = init_type (TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / 8, | |
199 | TYPE_FLAG_UNSIGNED, NULL, NULL); | |
200 | TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd; | |
201 | tdep->func_voyd = lookup_function_type (tdep->voyd); | |
202 | ||
203 | sprintf (type_name, "%s_data_addr_t", | |
204 | gdbarch_bfd_arch_info (arch)->printable_name); | |
205 | tdep->data_addr_reg_type | |
206 | = init_type (TYPE_CODE_PTR, data_addr_reg_bits / 8, | |
207 | TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL); | |
208 | TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd; | |
209 | ||
210 | sprintf (type_name, "%s_code_addr_t", | |
211 | gdbarch_bfd_arch_info (arch)->printable_name); | |
212 | tdep->code_addr_reg_type | |
213 | = init_type (TYPE_CODE_PTR, code_addr_reg_bits / 8, | |
214 | TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL); | |
215 | TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd; | |
216 | ||
217 | tdep->uint8 = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, | |
218 | "uint8_t", NULL); | |
219 | tdep->uint16 = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, | |
220 | "uint16_t", NULL); | |
221 | tdep->int8 = init_type (TYPE_CODE_INT, 1, 0, "int8_t", NULL); | |
222 | tdep->int16 = init_type (TYPE_CODE_INT, 2, 0, "int16_t", NULL); | |
223 | tdep->int32 = init_type (TYPE_CODE_INT, 4, 0, "int32_t", NULL); | |
224 | tdep->int64 = init_type (TYPE_CODE_INT, 8, 0, "int64_t", NULL); | |
225 | } | |
226 | ||
227 | ||
228 | \f | |
229 | /* Register set. */ | |
230 | ||
231 | static const char * | |
232 | m32c_register_name (int num) | |
233 | { | |
234 | return gdbarch_tdep (current_gdbarch)->regs[num].name; | |
235 | } | |
236 | ||
237 | ||
238 | static struct type * | |
239 | m32c_register_type (struct gdbarch *arch, int reg_nr) | |
240 | { | |
241 | return gdbarch_tdep (arch)->regs[reg_nr].type; | |
242 | } | |
243 | ||
244 | ||
245 | static int | |
246 | m32c_register_sim_regno (int reg_nr) | |
247 | { | |
248 | return gdbarch_tdep (current_gdbarch)->regs[reg_nr].sim_num; | |
249 | } | |
250 | ||
251 | ||
252 | static int | |
253 | m32c_debug_info_reg_to_regnum (int reg_nr) | |
254 | { | |
255 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
256 | if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM | |
257 | && tdep->dwarf_regs[reg_nr]) | |
258 | return tdep->dwarf_regs[reg_nr]->num; | |
259 | else | |
260 | /* The DWARF CFI code expects to see -1 for invalid register | |
261 | numbers. */ | |
262 | return -1; | |
263 | } | |
264 | ||
265 | ||
266 | int | |
267 | m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
268 | struct reggroup *group) | |
269 | { | |
270 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
271 | struct m32c_reg *reg = &tdep->regs[regnum]; | |
272 | ||
273 | /* The anonymous raw registers aren't in any groups. */ | |
274 | if (! reg->name) | |
275 | return 0; | |
276 | ||
277 | if (group == all_reggroup) | |
278 | return 1; | |
279 | ||
280 | if (group == general_reggroup | |
281 | && reg->general_p) | |
282 | return 1; | |
283 | ||
284 | if (group == m32c_dma_reggroup | |
285 | && reg->dma_p) | |
286 | return 1; | |
287 | ||
288 | if (group == system_reggroup | |
289 | && reg->system_p) | |
290 | return 1; | |
291 | ||
292 | /* Since the m32c DWARF register numbers refer to cooked registers, not | |
293 | raw registers, and frame_pop depends on the save and restore groups | |
294 | containing registers the DWARF CFI will actually mention, our save | |
295 | and restore groups are cooked registers, not raw registers. (This is | |
296 | why we can't use the default reggroup function.) */ | |
297 | if ((group == save_reggroup | |
298 | || group == restore_reggroup) | |
299 | && reg->save_restore_p) | |
300 | return 1; | |
301 | ||
302 | return 0; | |
303 | } | |
304 | ||
305 | ||
306 | /* Register move functions. We declare them here using | |
307 | m32c_move_reg_t to check the types. */ | |
308 | static m32c_move_reg_t m32c_raw_read, m32c_raw_write; | |
309 | static m32c_move_reg_t m32c_banked_read, m32c_banked_write; | |
310 | static m32c_move_reg_t m32c_sb_read, m32c_sb_write; | |
311 | static m32c_move_reg_t m32c_part_read, m32c_part_write; | |
312 | static m32c_move_reg_t m32c_cat_read, m32c_cat_write; | |
313 | static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write; | |
314 | ||
315 | ||
316 | /* Copy the value of the raw register REG from CACHE to BUF. */ | |
317 | static void | |
318 | m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
319 | { | |
320 | regcache_raw_read (cache, reg->num, buf); | |
321 | } | |
322 | ||
323 | ||
324 | /* Copy the value of the raw register REG from BUF to CACHE. */ | |
325 | static void | |
326 | m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
327 | { | |
328 | regcache_raw_write (cache, reg->num, (const void *) buf); | |
329 | } | |
330 | ||
331 | ||
332 | /* Return the value of the 'flg' register in CACHE. */ | |
333 | static int | |
334 | m32c_read_flg (struct regcache *cache) | |
335 | { | |
336 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache)); | |
337 | ULONGEST flg; | |
338 | regcache_raw_read_unsigned (cache, tdep->flg->num, &flg); | |
339 | return flg & 0xffff; | |
340 | } | |
341 | ||
342 | ||
343 | /* Move the value of a banked register from CACHE to BUF. | |
344 | If the value of the 'flg' register in CACHE has any of the bits | |
345 | masked in REG->n set, then read REG->ry. Otherwise, read | |
346 | REG->rx. */ | |
347 | static void | |
348 | m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
349 | { | |
350 | struct m32c_reg *bank_reg | |
351 | = ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx); | |
352 | regcache_raw_read (cache, bank_reg->num, buf); | |
353 | } | |
354 | ||
355 | ||
356 | /* Move the value of a banked register from BUF to CACHE. | |
357 | If the value of the 'flg' register in CACHE has any of the bits | |
358 | masked in REG->n set, then write REG->ry. Otherwise, write | |
359 | REG->rx. */ | |
360 | static void | |
361 | m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
362 | { | |
363 | struct m32c_reg *bank_reg | |
364 | = ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx); | |
365 | regcache_raw_write (cache, bank_reg->num, (const void *) buf); | |
366 | } | |
367 | ||
368 | ||
369 | /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a | |
370 | banked register; on bfd_mach_m16c, it's not. */ | |
371 | static void | |
372 | m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
373 | { | |
374 | if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c) | |
375 | m32c_raw_read (reg->rx, cache, buf); | |
376 | else | |
377 | m32c_banked_read (reg, cache, buf); | |
378 | } | |
379 | ||
380 | ||
381 | /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a | |
382 | banked register; on bfd_mach_m16c, it's not. */ | |
383 | static void | |
384 | m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
385 | { | |
386 | if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c) | |
387 | m32c_raw_write (reg->rx, cache, buf); | |
388 | else | |
389 | m32c_banked_write (reg, cache, buf); | |
390 | } | |
391 | ||
392 | ||
393 | /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P | |
394 | and *LEN_P to the offset and length, in bytes, of the part REG | |
395 | occupies in its underlying register. The offset is from the | |
396 | lower-addressed end, regardless of the architecture's endianness. | |
397 | (The M32C family is always little-endian, but let's keep those | |
398 | assumptions out of here.) */ | |
399 | static void | |
400 | m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p) | |
401 | { | |
402 | /* The length of the containing register, of which REG is one part. */ | |
403 | int containing_len = TYPE_LENGTH (reg->rx->type); | |
404 | ||
405 | /* The length of one "element" in our imaginary array. */ | |
406 | int elt_len = TYPE_LENGTH (reg->type); | |
407 | ||
408 | /* The offset of REG's "element" from the least significant end of | |
409 | the containing register. */ | |
410 | int elt_offset = reg->n * elt_len; | |
411 | ||
412 | /* If we extend off the end, trim the length of the element. */ | |
413 | if (elt_offset + elt_len > containing_len) | |
414 | { | |
415 | elt_len = containing_len - elt_offset; | |
416 | /* We shouldn't be declaring partial registers that go off the | |
417 | end of their containing registers. */ | |
418 | gdb_assert (elt_len > 0); | |
419 | } | |
420 | ||
421 | /* Flip the offset around if we're big-endian. */ | |
422 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
423 | elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len; | |
424 | ||
425 | *offset_p = elt_offset; | |
426 | *len_p = elt_len; | |
427 | } | |
428 | ||
429 | ||
430 | /* Move the value of a partial register (r0h, intbl, etc.) from CACHE | |
431 | to BUF. Treating the value of the register REG->rx as an array of | |
432 | REG->type values, where higher indices refer to more significant | |
433 | bits, read the value of the REG->n'th element. */ | |
434 | static void | |
435 | m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
436 | { | |
437 | int offset, len; | |
438 | memset (buf, 0, TYPE_LENGTH (reg->type)); | |
439 | m32c_find_part (reg, &offset, &len); | |
440 | regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf); | |
441 | } | |
442 | ||
443 | ||
444 | /* Move the value of a banked register from BUF to CACHE. | |
445 | Treating the value of the register REG->rx as an array of REG->type | |
446 | values, where higher indices refer to more significant bits, write | |
447 | the value of the REG->n'th element. */ | |
448 | static void | |
449 | m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
450 | { | |
451 | int offset, len; | |
452 | m32c_find_part (reg, &offset, &len); | |
453 | regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf); | |
454 | } | |
455 | ||
456 | ||
457 | /* Move the value of REG from CACHE to BUF. REG's value is the | |
458 | concatenation of the values of the registers REG->rx and REG->ry, | |
459 | with REG->rx contributing the more significant bits. */ | |
460 | static void | |
461 | m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
462 | { | |
463 | int high_bytes = TYPE_LENGTH (reg->rx->type); | |
464 | int low_bytes = TYPE_LENGTH (reg->ry->type); | |
465 | /* For address arithmetic. */ | |
466 | unsigned char *cbuf = buf; | |
467 | ||
468 | gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes); | |
469 | ||
470 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
471 | { | |
472 | regcache_cooked_read (cache, reg->rx->num, cbuf); | |
473 | regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes); | |
474 | } | |
475 | else | |
476 | { | |
477 | regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes); | |
478 | regcache_cooked_read (cache, reg->ry->num, cbuf); | |
479 | } | |
480 | } | |
481 | ||
482 | ||
483 | /* Move the value of REG from CACHE to BUF. REG's value is the | |
484 | concatenation of the values of the registers REG->rx and REG->ry, | |
485 | with REG->rx contributing the more significant bits. */ | |
486 | static void | |
487 | m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
488 | { | |
489 | int high_bytes = TYPE_LENGTH (reg->rx->type); | |
490 | int low_bytes = TYPE_LENGTH (reg->ry->type); | |
491 | /* For address arithmetic. */ | |
492 | unsigned char *cbuf = buf; | |
493 | ||
494 | gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes); | |
495 | ||
496 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
497 | { | |
498 | regcache_cooked_write (cache, reg->rx->num, cbuf); | |
499 | regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes); | |
500 | } | |
501 | else | |
502 | { | |
503 | regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes); | |
504 | regcache_cooked_write (cache, reg->ry->num, cbuf); | |
505 | } | |
506 | } | |
507 | ||
508 | ||
509 | /* Copy the value of the raw register REG from CACHE to BUF. REG is | |
510 | the concatenation (from most significant to least) of r3, r2, r1, | |
511 | and r0. */ | |
512 | static void | |
513 | m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
514 | { | |
515 | struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch); | |
516 | int len = TYPE_LENGTH (tdep->r0->type); | |
517 | ||
518 | /* For address arithmetic. */ | |
519 | unsigned char *cbuf = buf; | |
520 | ||
521 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
522 | { | |
523 | regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3); | |
524 | regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2); | |
525 | regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1); | |
526 | regcache_cooked_read (cache, tdep->r3->num, cbuf); | |
527 | } | |
528 | else | |
529 | { | |
530 | regcache_cooked_read (cache, tdep->r0->num, cbuf); | |
531 | regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1); | |
532 | regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2); | |
533 | regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3); | |
534 | } | |
535 | } | |
536 | ||
537 | ||
538 | /* Copy the value of the raw register REG from BUF to CACHE. REG is | |
539 | the concatenation (from most significant to least) of r3, r2, r1, | |
540 | and r0. */ | |
541 | static void | |
542 | m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf) | |
543 | { | |
544 | struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch); | |
545 | int len = TYPE_LENGTH (tdep->r0->type); | |
546 | ||
547 | /* For address arithmetic. */ | |
548 | unsigned char *cbuf = buf; | |
549 | ||
550 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
551 | { | |
552 | regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3); | |
553 | regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2); | |
554 | regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1); | |
555 | regcache_cooked_write (cache, tdep->r3->num, cbuf); | |
556 | } | |
557 | else | |
558 | { | |
559 | regcache_cooked_write (cache, tdep->r0->num, cbuf); | |
560 | regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1); | |
561 | regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2); | |
562 | regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3); | |
563 | } | |
564 | } | |
565 | ||
566 | ||
567 | static void | |
568 | m32c_pseudo_register_read (struct gdbarch *arch, | |
569 | struct regcache *cache, | |
570 | int cookednum, | |
571 | gdb_byte *buf) | |
572 | { | |
573 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
574 | struct m32c_reg *reg; | |
575 | ||
576 | gdb_assert (0 <= cookednum && cookednum < tdep->num_regs); | |
577 | gdb_assert (arch == get_regcache_arch (cache)); | |
578 | gdb_assert (arch == tdep->regs[cookednum].arch); | |
579 | reg = &tdep->regs[cookednum]; | |
580 | ||
581 | reg->read (reg, cache, buf); | |
582 | } | |
583 | ||
584 | ||
585 | static void | |
586 | m32c_pseudo_register_write (struct gdbarch *arch, | |
587 | struct regcache *cache, | |
588 | int cookednum, | |
589 | const gdb_byte *buf) | |
590 | { | |
591 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
592 | struct m32c_reg *reg; | |
593 | ||
594 | gdb_assert (0 <= cookednum && cookednum < tdep->num_regs); | |
595 | gdb_assert (arch == get_regcache_arch (cache)); | |
596 | gdb_assert (arch == tdep->regs[cookednum].arch); | |
597 | reg = &tdep->regs[cookednum]; | |
598 | ||
599 | reg->write (reg, cache, (void *) buf); | |
600 | } | |
601 | ||
602 | ||
603 | /* Add a register with the given fields to the end of ARCH's table. | |
604 | Return a pointer to the newly added register. */ | |
605 | static struct m32c_reg * | |
606 | add_reg (struct gdbarch *arch, | |
607 | const char *name, | |
608 | struct type *type, | |
609 | int sim_num, | |
610 | m32c_move_reg_t *read, | |
611 | m32c_move_reg_t *write, | |
612 | struct m32c_reg *rx, | |
613 | struct m32c_reg *ry, | |
614 | int n) | |
615 | { | |
616 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
617 | struct m32c_reg *r = &tdep->regs[tdep->num_regs]; | |
618 | ||
619 | gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS); | |
620 | ||
621 | r->name = name; | |
622 | r->type = type; | |
623 | r->arch = arch; | |
624 | r->num = tdep->num_regs; | |
625 | r->sim_num = sim_num; | |
626 | r->dwarf_num = -1; | |
627 | r->general_p = 0; | |
628 | r->dma_p = 0; | |
629 | r->system_p = 0; | |
630 | r->save_restore_p = 0; | |
631 | r->read = read; | |
632 | r->write = write; | |
633 | r->rx = rx; | |
634 | r->ry = ry; | |
635 | r->n = n; | |
636 | ||
637 | tdep->num_regs++; | |
638 | ||
639 | return r; | |
640 | } | |
641 | ||
642 | ||
643 | /* Record NUM as REG's DWARF register number. */ | |
644 | static void | |
645 | set_dwarf_regnum (struct m32c_reg *reg, int num) | |
646 | { | |
647 | gdb_assert (num < M32C_MAX_NUM_REGS); | |
648 | ||
649 | /* Update the reg->DWARF mapping. Only count the first number | |
650 | assigned to this register. */ | |
651 | if (reg->dwarf_num == -1) | |
652 | reg->dwarf_num = num; | |
653 | ||
654 | /* Update the DWARF->reg mapping. */ | |
655 | gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg; | |
656 | } | |
657 | ||
658 | ||
659 | /* Mark REG as a general-purpose register, and return it. */ | |
660 | static struct m32c_reg * | |
661 | mark_general (struct m32c_reg *reg) | |
662 | { | |
663 | reg->general_p = 1; | |
664 | return reg; | |
665 | } | |
666 | ||
667 | ||
668 | /* Mark REG as a DMA register, and return it. */ | |
669 | static struct m32c_reg * | |
670 | mark_dma (struct m32c_reg *reg) | |
671 | { | |
672 | reg->dma_p = 1; | |
673 | return reg; | |
674 | } | |
675 | ||
676 | ||
677 | /* Mark REG as a SYSTEM register, and return it. */ | |
678 | static struct m32c_reg * | |
679 | mark_system (struct m32c_reg *reg) | |
680 | { | |
681 | reg->system_p = 1; | |
682 | return reg; | |
683 | } | |
684 | ||
685 | ||
686 | /* Mark REG as a save-restore register, and return it. */ | |
687 | static struct m32c_reg * | |
688 | mark_save_restore (struct m32c_reg *reg) | |
689 | { | |
690 | reg->save_restore_p = 1; | |
691 | return reg; | |
692 | } | |
693 | ||
694 | ||
695 | #define FLAGBIT_B 0x0010 | |
696 | #define FLAGBIT_U 0x0080 | |
697 | ||
698 | /* Handy macros for declaring registers. These all evaluate to | |
699 | pointers to the register declared. Macros that define two | |
700 | registers evaluate to a pointer to the first. */ | |
701 | ||
702 | /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */ | |
703 | #define R(name, type, sim_num) \ | |
704 | (add_reg (arch, (name), (type), (sim_num), \ | |
705 | m32c_raw_read, m32c_raw_write, NULL, NULL, 0)) | |
706 | ||
707 | /* The simulator register number for a raw register named NAME. */ | |
708 | #define SIM(name) (m32c_sim_reg_ ## name) | |
709 | ||
710 | /* A raw unsigned 16-bit data register named NAME. | |
711 | NAME should be an identifier, not a string. */ | |
712 | #define R16U(name) \ | |
713 | (R(#name, tdep->uint16, SIM (name))) | |
714 | ||
715 | /* A raw data address register named NAME. | |
716 | NAME should be an identifier, not a string. */ | |
717 | #define RA(name) \ | |
718 | (R(#name, tdep->data_addr_reg_type, SIM (name))) | |
719 | ||
720 | /* A raw code address register named NAME. NAME should | |
721 | be an identifier, not a string. */ | |
722 | #define RC(name) \ | |
723 | (R(#name, tdep->code_addr_reg_type, SIM (name))) | |
724 | ||
725 | /* A pair of raw registers named NAME0 and NAME1, with type TYPE. | |
726 | NAME should be an identifier, not a string. */ | |
727 | #define RP(name, type) \ | |
728 | (R(#name "0", (type), SIM (name ## 0)), \ | |
729 | R(#name "1", (type), SIM (name ## 1)) - 1) | |
730 | ||
731 | /* A raw banked general-purpose data register named NAME. | |
732 | NAME should be an identifier, not a string. */ | |
733 | #define RBD(name) \ | |
734 | (R(NULL, tdep->int16, SIM (name ## _bank0)), \ | |
735 | R(NULL, tdep->int16, SIM (name ## _bank1)) - 1) | |
736 | ||
737 | /* A raw banked data address register named NAME. | |
738 | NAME should be an identifier, not a string. */ | |
739 | #define RBA(name) \ | |
740 | (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \ | |
741 | R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1) | |
742 | ||
743 | /* A cooked register named NAME referring to a raw banked register | |
744 | from the bank selected by the current value of FLG. RAW_PAIR | |
745 | should be a pointer to the first register in the banked pair. | |
746 | NAME must be an identifier, not a string. */ | |
747 | #define CB(name, raw_pair) \ | |
748 | (add_reg (arch, #name, (raw_pair)->type, 0, \ | |
749 | m32c_banked_read, m32c_banked_write, \ | |
750 | (raw_pair), (raw_pair + 1), FLAGBIT_B)) | |
751 | ||
752 | /* A pair of registers named NAMEH and NAMEL, of type TYPE, that | |
753 | access the top and bottom halves of the register pointed to by | |
754 | NAME. NAME should be an identifier. */ | |
755 | #define CHL(name, type) \ | |
756 | (add_reg (arch, #name "h", (type), 0, \ | |
757 | m32c_part_read, m32c_part_write, name, NULL, 1), \ | |
758 | add_reg (arch, #name "l", (type), 0, \ | |
759 | m32c_part_read, m32c_part_write, name, NULL, 0) - 1) | |
760 | ||
761 | /* A register constructed by concatenating the two registers HIGH and | |
762 | LOW, whose name is HIGHLOW and whose type is TYPE. */ | |
763 | #define CCAT(high, low, type) \ | |
764 | (add_reg (arch, #high #low, (type), 0, \ | |
765 | m32c_cat_read, m32c_cat_write, (high), (low), 0)) | |
766 | ||
767 | /* Abbreviations for marking register group membership. */ | |
768 | #define G(reg) (mark_general (reg)) | |
769 | #define S(reg) (mark_system (reg)) | |
770 | #define DMA(reg) (mark_dma (reg)) | |
771 | ||
772 | ||
773 | /* Construct the register set for ARCH. */ | |
774 | static void | |
775 | make_regs (struct gdbarch *arch) | |
776 | { | |
777 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
778 | int mach = gdbarch_bfd_arch_info (arch)->mach; | |
779 | ||
780 | struct m32c_reg *raw_r0_pair = RBD (r0); | |
781 | struct m32c_reg *raw_r1_pair = RBD (r1); | |
782 | struct m32c_reg *raw_r2_pair = RBD (r2); | |
783 | struct m32c_reg *raw_r3_pair = RBD (r3); | |
784 | struct m32c_reg *raw_a0_pair = RBA (a0); | |
785 | struct m32c_reg *raw_a1_pair = RBA (a1); | |
786 | struct m32c_reg *raw_fb_pair = RBA (fb); | |
787 | ||
788 | /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c. | |
789 | We always declare both raw registers, and deal with the distinction | |
790 | in the pseudoregister. */ | |
791 | struct m32c_reg *raw_sb_pair = RBA (sb); | |
792 | ||
793 | struct m32c_reg *usp = S (RA (usp)); | |
794 | struct m32c_reg *isp = S (RA (isp)); | |
795 | struct m32c_reg *intb = S (RC (intb)); | |
796 | struct m32c_reg *pc = G (RC (pc)); | |
797 | struct m32c_reg *flg = G (R16U (flg)); | |
798 | ||
799 | if (mach == bfd_mach_m32c) | |
800 | { | |
801 | struct m32c_reg *svf = S (R16U (svf)); | |
802 | struct m32c_reg *svp = S (RC (svp)); | |
803 | struct m32c_reg *vct = S (RC (vct)); | |
804 | ||
805 | struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8)); | |
806 | struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16)); | |
807 | struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16)); | |
808 | struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type)); | |
809 | struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type)); | |
810 | struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type)); | |
811 | } | |
812 | ||
813 | int num_raw_regs = tdep->num_regs; | |
814 | ||
815 | struct m32c_reg *r0 = G (CB (r0, raw_r0_pair)); | |
816 | struct m32c_reg *r1 = G (CB (r1, raw_r1_pair)); | |
817 | struct m32c_reg *r2 = G (CB (r2, raw_r2_pair)); | |
818 | struct m32c_reg *r3 = G (CB (r3, raw_r3_pair)); | |
819 | struct m32c_reg *a0 = G (CB (a0, raw_a0_pair)); | |
820 | struct m32c_reg *a1 = G (CB (a1, raw_a1_pair)); | |
821 | struct m32c_reg *fb = G (CB (fb, raw_fb_pair)); | |
822 | ||
823 | /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c. | |
824 | Specify custom read/write functions that do the right thing. */ | |
825 | struct m32c_reg *sb | |
826 | = G (add_reg (arch, "sb", raw_sb_pair->type, 0, | |
827 | m32c_sb_read, m32c_sb_write, | |
828 | raw_sb_pair, raw_sb_pair + 1, 0)); | |
829 | ||
830 | /* The current sp is either usp or isp, depending on the value of | |
831 | the FLG register's U bit. */ | |
832 | struct m32c_reg *sp | |
833 | = G (add_reg (arch, "sp", usp->type, 0, | |
834 | m32c_banked_read, m32c_banked_write, isp, usp, FLAGBIT_U)); | |
835 | ||
836 | struct m32c_reg *r0hl = CHL (r0, tdep->int8); | |
837 | struct m32c_reg *r1hl = CHL (r1, tdep->int8); | |
838 | struct m32c_reg *r2hl = CHL (r2, tdep->int8); | |
839 | struct m32c_reg *r3hl = CHL (r3, tdep->int8); | |
840 | struct m32c_reg *intbhl = CHL (intb, tdep->int16); | |
841 | ||
842 | struct m32c_reg *r2r0 = CCAT (r2, r0, tdep->int32); | |
843 | struct m32c_reg *r3r1 = CCAT (r3, r1, tdep->int32); | |
844 | struct m32c_reg *r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64); | |
845 | ||
846 | struct m32c_reg *r3r2r1r0 | |
847 | = add_reg (arch, "r3r2r1r0", tdep->int64, 0, | |
848 | m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0); | |
849 | ||
850 | struct m32c_reg *a1a0; | |
851 | if (mach == bfd_mach_m16c) | |
852 | a1a0 = CCAT (a1, a0, tdep->int32); | |
853 | else | |
854 | a1a0 = NULL; | |
855 | ||
856 | int num_cooked_regs = tdep->num_regs - num_raw_regs; | |
857 | ||
858 | tdep->pc = pc; | |
859 | tdep->flg = flg; | |
860 | tdep->r0 = r0; | |
861 | tdep->r1 = r1; | |
862 | tdep->r2 = r2; | |
863 | tdep->r3 = r3; | |
864 | tdep->r2r0 = r2r0; | |
865 | tdep->r3r2r1r0 = r3r2r1r0; | |
866 | tdep->r3r1r2r0 = r3r1r2r0; | |
867 | tdep->a0 = a0; | |
868 | tdep->a1 = a1; | |
869 | tdep->sb = sb; | |
870 | tdep->fb = fb; | |
871 | tdep->sp = sp; | |
872 | ||
873 | /* Set up the DWARF register table. */ | |
874 | memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs)); | |
875 | set_dwarf_regnum (r0hl + 1, 0x01); | |
876 | set_dwarf_regnum (r0hl + 0, 0x02); | |
877 | set_dwarf_regnum (r1hl + 1, 0x03); | |
878 | set_dwarf_regnum (r1hl + 0, 0x04); | |
879 | set_dwarf_regnum (r0, 0x05); | |
880 | set_dwarf_regnum (r1, 0x06); | |
881 | set_dwarf_regnum (r2, 0x07); | |
882 | set_dwarf_regnum (r3, 0x08); | |
883 | set_dwarf_regnum (a0, 0x09); | |
884 | set_dwarf_regnum (a1, 0x0a); | |
885 | set_dwarf_regnum (fb, 0x0b); | |
886 | set_dwarf_regnum (sp, 0x0c); | |
887 | set_dwarf_regnum (pc, 0x0d); /* GCC's invention */ | |
888 | set_dwarf_regnum (sb, 0x13); | |
889 | set_dwarf_regnum (r2r0, 0x15); | |
890 | set_dwarf_regnum (r3r1, 0x16); | |
891 | if (a1a0) | |
892 | set_dwarf_regnum (a1a0, 0x17); | |
893 | ||
894 | /* Enumerate the save/restore register group. | |
895 | ||
896 | The regcache_save and regcache_restore functions apply their read | |
897 | function to each register in this group. | |
898 | ||
899 | Since frame_pop supplies frame_unwind_register as its read | |
900 | function, the registers meaningful to the Dwarf unwinder need to | |
901 | be in this group. | |
902 | ||
903 | On the other hand, when we make inferior calls, save_inferior_status | |
904 | and restore_inferior_status use them to preserve the current register | |
905 | values across the inferior call. For this, you'd kind of like to | |
906 | preserve all the raw registers, to protect the interrupted code from | |
907 | any sort of bank switching the callee might have done. But we handle | |
908 | those cases so badly anyway --- for example, it matters whether we | |
909 | restore FLG before or after we restore the general-purpose registers, | |
910 | but there's no way to express that --- that it isn't worth worrying | |
911 | about. | |
912 | ||
913 | We omit control registers like inthl: if you call a function that | |
914 | changes those, it's probably because you wanted that change to be | |
915 | visible to the interrupted code. */ | |
916 | mark_save_restore (r0); | |
917 | mark_save_restore (r1); | |
918 | mark_save_restore (r2); | |
919 | mark_save_restore (r3); | |
920 | mark_save_restore (a0); | |
921 | mark_save_restore (a1); | |
922 | mark_save_restore (sb); | |
923 | mark_save_restore (fb); | |
924 | mark_save_restore (sp); | |
925 | mark_save_restore (pc); | |
926 | mark_save_restore (flg); | |
927 | ||
928 | set_gdbarch_num_regs (arch, num_raw_regs); | |
929 | set_gdbarch_num_pseudo_regs (arch, num_cooked_regs); | |
930 | set_gdbarch_pc_regnum (arch, pc->num); | |
931 | set_gdbarch_sp_regnum (arch, sp->num); | |
932 | set_gdbarch_register_name (arch, m32c_register_name); | |
933 | set_gdbarch_register_type (arch, m32c_register_type); | |
934 | set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read); | |
935 | set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write); | |
936 | set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno); | |
937 | set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum); | |
938 | set_gdbarch_dwarf_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum); | |
939 | set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum); | |
940 | set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p); | |
941 | ||
942 | reggroup_add (arch, general_reggroup); | |
943 | reggroup_add (arch, all_reggroup); | |
944 | reggroup_add (arch, save_reggroup); | |
945 | reggroup_add (arch, restore_reggroup); | |
946 | reggroup_add (arch, system_reggroup); | |
947 | reggroup_add (arch, m32c_dma_reggroup); | |
948 | } | |
949 | ||
950 | ||
951 | \f | |
952 | /* Breakpoints. */ | |
953 | ||
954 | static const unsigned char * | |
955 | m32c_breakpoint_from_pc (CORE_ADDR *pc, int *len) | |
956 | { | |
957 | static unsigned char break_insn[] = { 0x00 }; /* brk */ | |
958 | ||
959 | *len = sizeof (break_insn); | |
960 | return break_insn; | |
961 | } | |
962 | ||
963 | ||
964 | \f | |
965 | /* Prologue analysis. */ | |
966 | ||
967 | struct m32c_prologue | |
968 | { | |
969 | /* For consistency with the DWARF 2 .debug_frame info generated by | |
970 | GCC, a frame's CFA is the address immediately after the saved | |
971 | return address. */ | |
972 | ||
973 | /* The architecture for which we generated this prologue info. */ | |
974 | struct gdbarch *arch; | |
975 | ||
976 | enum { | |
977 | /* This function uses a frame pointer. */ | |
978 | prologue_with_frame_ptr, | |
979 | ||
980 | /* This function has no frame pointer. */ | |
981 | prologue_sans_frame_ptr, | |
982 | ||
983 | /* This function sets up the stack, so its frame is the first | |
984 | frame on the stack. */ | |
985 | prologue_first_frame | |
986 | ||
987 | } kind; | |
988 | ||
989 | /* If KIND is prologue_with_frame_ptr, this is the offset from the | |
990 | CFA to where the frame pointer points. This is always zero or | |
991 | negative. */ | |
992 | LONGEST frame_ptr_offset; | |
993 | ||
994 | /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to | |
995 | the stack pointer --- always zero or negative. | |
996 | ||
997 | Calling this a "size" is a bit misleading, but given that the | |
998 | stack grows downwards, using offsets for everything keeps one | |
999 | from going completely sign-crazy: you never change anything's | |
1000 | sign for an ADD instruction; always change the second operand's | |
1001 | sign for a SUB instruction; and everything takes care of | |
1002 | itself. | |
1003 | ||
1004 | Functions that use alloca don't have a constant frame size. But | |
1005 | they always have frame pointers, so we must use that to find the | |
1006 | CFA (and perhaps to unwind the stack pointer). */ | |
1007 | LONGEST frame_size; | |
1008 | ||
1009 | /* The address of the first instruction at which the frame has been | |
1010 | set up and the arguments are where the debug info says they are | |
1011 | --- as best as we can tell. */ | |
1012 | CORE_ADDR prologue_end; | |
1013 | ||
1014 | /* reg_offset[R] is the offset from the CFA at which register R is | |
1015 | saved, or 1 if register R has not been saved. (Real values are | |
1016 | always zero or negative.) */ | |
1017 | LONGEST reg_offset[M32C_MAX_NUM_REGS]; | |
1018 | }; | |
1019 | ||
1020 | ||
1021 | /* The longest I've seen, anyway. */ | |
1022 | #define M32C_MAX_INSN_LEN (9) | |
1023 | ||
1024 | /* Processor state, for the prologue analyzer. */ | |
1025 | struct m32c_pv_state | |
1026 | { | |
1027 | struct gdbarch *arch; | |
1028 | pv_t r0, r1, r2, r3; | |
1029 | pv_t a0, a1; | |
1030 | pv_t sb, fb, sp; | |
1031 | pv_t pc; | |
1032 | struct pv_area *stack; | |
1033 | ||
1034 | /* Bytes from the current PC, the address they were read from, | |
1035 | and the address of the next unconsumed byte. */ | |
1036 | gdb_byte insn[M32C_MAX_INSN_LEN]; | |
1037 | CORE_ADDR scan_pc, next_addr; | |
1038 | }; | |
1039 | ||
1040 | ||
1041 | /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if | |
1042 | all went well, or non-zero if simulating the action would trash our | |
1043 | state. */ | |
1044 | static int | |
1045 | m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size) | |
1046 | { | |
1047 | if (pv_area_store_would_trash (state->stack, state->sp)) | |
1048 | return 1; | |
1049 | ||
1050 | state->sp = pv_add_constant (state->sp, -size); | |
1051 | pv_area_store (state->stack, state->sp, size, value); | |
1052 | ||
1053 | return 0; | |
1054 | } | |
1055 | ||
1056 | ||
1057 | /* A source or destination location for an m16c or m32c | |
1058 | instruction. */ | |
1059 | struct srcdest | |
1060 | { | |
1061 | /* If srcdest_reg, the location is a register pointed to by REG. | |
1062 | If srcdest_partial_reg, the location is part of a register pointed | |
1063 | to by REG. We don't try to handle this too well. | |
1064 | If srcdest_mem, the location is memory whose address is ADDR. */ | |
1065 | enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind; | |
1066 | pv_t *reg, addr; | |
1067 | }; | |
1068 | ||
1069 | ||
1070 | /* Return the SIZE-byte value at LOC in STATE. */ | |
1071 | static pv_t | |
1072 | m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size) | |
1073 | { | |
1074 | if (loc.kind == srcdest_mem) | |
1075 | return pv_area_fetch (state->stack, loc.addr, size); | |
1076 | else if (loc.kind == srcdest_partial_reg) | |
1077 | return pv_unknown (); | |
1078 | else | |
1079 | return *loc.reg; | |
1080 | } | |
1081 | ||
1082 | ||
1083 | /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if | |
1084 | all went well, or non-zero if simulating the store would trash our | |
1085 | state. */ | |
1086 | static int | |
1087 | m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc, | |
1088 | pv_t value, int size) | |
1089 | { | |
1090 | if (loc.kind == srcdest_mem) | |
1091 | { | |
1092 | if (pv_area_store_would_trash (state->stack, loc.addr)) | |
1093 | return 1; | |
1094 | pv_area_store (state->stack, loc.addr, size, value); | |
1095 | } | |
1096 | else if (loc.kind == srcdest_partial_reg) | |
1097 | *loc.reg = pv_unknown (); | |
1098 | else | |
1099 | *loc.reg = value; | |
1100 | ||
1101 | return 0; | |
1102 | } | |
1103 | ||
1104 | ||
1105 | static int | |
1106 | m32c_sign_ext (int v, int bits) | |
1107 | { | |
1108 | int mask = 1 << (bits - 1); | |
1109 | return (v ^ mask) - mask; | |
1110 | } | |
1111 | ||
1112 | static unsigned int | |
1113 | m32c_next_byte (struct m32c_pv_state *st) | |
1114 | { | |
1115 | gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn)); | |
1116 | return st->insn[st->next_addr++ - st->scan_pc]; | |
1117 | } | |
1118 | ||
1119 | static int | |
1120 | m32c_udisp8 (struct m32c_pv_state *st) | |
1121 | { | |
1122 | return m32c_next_byte (st); | |
1123 | } | |
1124 | ||
1125 | ||
1126 | static int | |
1127 | m32c_sdisp8 (struct m32c_pv_state *st) | |
1128 | { | |
1129 | return m32c_sign_ext (m32c_next_byte (st), 8); | |
1130 | } | |
1131 | ||
1132 | ||
1133 | static int | |
1134 | m32c_udisp16 (struct m32c_pv_state *st) | |
1135 | { | |
1136 | int low = m32c_next_byte (st); | |
1137 | int high = m32c_next_byte (st); | |
1138 | ||
1139 | return low + (high << 8); | |
1140 | } | |
1141 | ||
1142 | ||
1143 | static int | |
1144 | m32c_sdisp16 (struct m32c_pv_state *st) | |
1145 | { | |
1146 | int low = m32c_next_byte (st); | |
1147 | int high = m32c_next_byte (st); | |
1148 | ||
1149 | return m32c_sign_ext (low + (high << 8), 16); | |
1150 | } | |
1151 | ||
1152 | ||
1153 | static int | |
1154 | m32c_udisp24 (struct m32c_pv_state *st) | |
1155 | { | |
1156 | int low = m32c_next_byte (st); | |
1157 | int mid = m32c_next_byte (st); | |
1158 | int high = m32c_next_byte (st); | |
1159 | ||
1160 | return low + (mid << 8) + (high << 16); | |
1161 | } | |
1162 | ||
1163 | ||
1164 | /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */ | |
1165 | static int | |
1166 | m32c_get_src23 (unsigned char *i) | |
1167 | { | |
1168 | return (((i[0] & 0x70) >> 2) | |
1169 | | ((i[1] & 0x30) >> 4)); | |
1170 | } | |
1171 | ||
1172 | ||
1173 | /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */ | |
1174 | static int | |
1175 | m32c_get_dest23 (unsigned char *i) | |
1176 | { | |
1177 | return (((i[0] & 0x0e) << 1) | |
1178 | | ((i[1] & 0xc0) >> 6)); | |
1179 | } | |
1180 | ||
1181 | ||
1182 | static struct srcdest | |
1183 | m32c_decode_srcdest4 (struct m32c_pv_state *st, | |
1184 | int code, int size) | |
1185 | { | |
1186 | struct srcdest sd; | |
1187 | ||
1188 | if (code < 6) | |
1189 | sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg); | |
1190 | else | |
1191 | sd.kind = srcdest_mem; | |
1192 | ||
1193 | switch (code) | |
1194 | { | |
1195 | case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break; | |
1196 | case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break; | |
1197 | case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break; | |
1198 | case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break; | |
1199 | ||
1200 | case 0x4: sd.reg = &st->a0; break; | |
1201 | case 0x5: sd.reg = &st->a1; break; | |
1202 | ||
1203 | case 0x6: sd.addr = st->a0; break; | |
1204 | case 0x7: sd.addr = st->a1; break; | |
1205 | ||
1206 | case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break; | |
1207 | case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break; | |
1208 | case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break; | |
1209 | case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break; | |
1210 | ||
1211 | case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break; | |
1212 | case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break; | |
1213 | case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break; | |
1214 | case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break; | |
1215 | ||
1216 | default: | |
1217 | gdb_assert (0); | |
1218 | } | |
1219 | ||
1220 | return sd; | |
1221 | } | |
1222 | ||
1223 | ||
1224 | static struct srcdest | |
1225 | m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind) | |
1226 | { | |
1227 | struct srcdest sd; | |
1228 | ||
1229 | switch (code) | |
1230 | { | |
1231 | case 0x12: | |
1232 | case 0x13: | |
1233 | case 0x10: | |
1234 | case 0x11: | |
1235 | sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg; | |
1236 | break; | |
1237 | ||
1238 | case 0x02: | |
1239 | case 0x03: | |
1240 | sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg; | |
1241 | break; | |
1242 | ||
1243 | default: | |
1244 | sd.kind = srcdest_mem; | |
1245 | break; | |
1246 | ||
1247 | } | |
1248 | ||
1249 | switch (code) | |
1250 | { | |
1251 | case 0x12: sd.reg = &st->r0; break; | |
1252 | case 0x13: sd.reg = &st->r1; break; | |
1253 | case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break; | |
1254 | case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break; | |
1255 | case 0x02: sd.reg = &st->a0; break; | |
1256 | case 0x03: sd.reg = &st->a1; break; | |
1257 | ||
1258 | case 0x00: sd.addr = st->a0; break; | |
1259 | case 0x01: sd.addr = st->a1; break; | |
1260 | case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break; | |
1261 | case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break; | |
1262 | case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break; | |
1263 | case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break; | |
1264 | case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break; | |
1265 | case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break; | |
1266 | case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break; | |
1267 | case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break; | |
1268 | case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break; | |
1269 | case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break; | |
1270 | case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break; | |
1271 | case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break; | |
1272 | default: | |
1273 | gdb_assert (0); | |
1274 | } | |
1275 | ||
1276 | if (ind) | |
1277 | { | |
1278 | sd.addr = m32c_srcdest_fetch (st, sd, 4); | |
1279 | sd.kind = srcdest_mem; | |
1280 | } | |
1281 | ||
1282 | return sd; | |
1283 | } | |
1284 | ||
1285 | ||
1286 | /* The r16c and r32c machines have instructions with similar | |
1287 | semantics, but completely different machine language encodings. So | |
1288 | we break out the semantics into their own functions, and leave | |
1289 | machine-specific decoding in m32c_analyze_prologue. | |
1290 | ||
1291 | The following functions all expect their arguments already decoded, | |
1292 | and they all return zero if analysis should continue past this | |
1293 | instruction, or non-zero if analysis should stop. */ | |
1294 | ||
1295 | ||
1296 | /* Simulate an 'enter SIZE' instruction in STATE. */ | |
1297 | static int | |
1298 | m32c_pv_enter (struct m32c_pv_state *state, int size) | |
1299 | { | |
1300 | struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch); | |
1301 | ||
1302 | /* If simulating this store would require us to forget | |
1303 | everything we know about the stack frame in the name of | |
1304 | accuracy, it would be better to just quit now. */ | |
1305 | if (pv_area_store_would_trash (state->stack, state->sp)) | |
1306 | return 1; | |
1307 | ||
1308 | if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes)) | |
1309 | return 1; | |
1310 | state->fb = state->sp; | |
1311 | state->sp = pv_add_constant (state->sp, -size); | |
1312 | ||
1313 | return 0; | |
1314 | } | |
1315 | ||
1316 | ||
1317 | static int | |
1318 | m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg, | |
1319 | int bit, int src, int size) | |
1320 | { | |
1321 | if (bit & src) | |
1322 | { | |
1323 | if (m32c_pv_push (state, reg, size)) | |
1324 | return 1; | |
1325 | } | |
1326 | ||
1327 | return 0; | |
1328 | } | |
1329 | ||
1330 | ||
1331 | /* Simulate a 'pushm SRC' instruction in STATE. */ | |
1332 | static int | |
1333 | m32c_pv_pushm (struct m32c_pv_state *state, int src) | |
1334 | { | |
1335 | struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch); | |
1336 | ||
1337 | /* The bits in SRC indicating which registers to save are: | |
1338 | r0 r1 r2 r3 a0 a1 sb fb */ | |
1339 | return | |
1340 | ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes) | |
1341 | || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes) | |
1342 | || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes) | |
1343 | || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes) | |
1344 | || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2) | |
1345 | || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2) | |
1346 | || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2) | |
1347 | || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2)); | |
1348 | } | |
1349 | ||
1350 | /* Return non-zero if VALUE is the first incoming argument register. */ | |
1351 | ||
1352 | static int | |
1353 | m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value) | |
1354 | { | |
1355 | struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch); | |
1356 | return (value.kind == pvk_register | |
1357 | && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c | |
1358 | ? (value.reg == tdep->r1->num) | |
1359 | : (value.reg == tdep->r0->num)) | |
1360 | && value.k == 0); | |
1361 | } | |
1362 | ||
1363 | /* Return non-zero if VALUE is an incoming argument register. */ | |
1364 | ||
1365 | static int | |
1366 | m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value) | |
1367 | { | |
1368 | struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch); | |
1369 | return (value.kind == pvk_register | |
1370 | && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c | |
1371 | ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num) | |
1372 | : (value.reg == tdep->r0->num)) | |
1373 | && value.k == 0); | |
1374 | } | |
1375 | ||
1376 | /* Return non-zero if a store of VALUE to LOC is probably spilling an | |
1377 | argument register to its stack slot in STATE. Such instructions | |
1378 | should be included in the prologue, if possible. | |
1379 | ||
1380 | The store is a spill if: | |
1381 | - the value being stored is the original value of an argument register; | |
1382 | - the value has not already been stored somewhere in STACK; and | |
1383 | - LOC is a stack slot (e.g., a memory location whose address is | |
1384 | relative to the original value of the SP). */ | |
1385 | ||
1386 | static int | |
1387 | m32c_is_arg_spill (struct m32c_pv_state *st, | |
1388 | struct srcdest loc, | |
1389 | pv_t value) | |
1390 | { | |
1391 | struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch); | |
1392 | ||
1393 | return (m32c_is_arg_reg (st, value) | |
1394 | && loc.kind == srcdest_mem | |
1395 | && pv_is_register (loc.addr, tdep->sp->num) | |
1396 | && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0)); | |
1397 | } | |
1398 | ||
1399 | /* Return non-zero if a store of VALUE to LOC is probably | |
1400 | copying the struct return address into an address register | |
1401 | for immediate use. This is basically a "spill" into the | |
1402 | address register, instead of onto the stack. | |
1403 | ||
1404 | The prerequisites are: | |
1405 | - value being stored is original value of the FIRST arg register; | |
1406 | - value has not already been stored on stack; and | |
1407 | - LOC is an address register (a0 or a1). */ | |
1408 | ||
1409 | static int | |
1410 | m32c_is_struct_return (struct m32c_pv_state *st, | |
1411 | struct srcdest loc, | |
1412 | pv_t value) | |
1413 | { | |
1414 | struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch); | |
1415 | ||
1416 | return (m32c_is_1st_arg_reg (st, value) | |
1417 | && !pv_area_find_reg (st->stack, st->arch, value.reg, 0) | |
1418 | && loc.kind == srcdest_reg | |
1419 | && (pv_is_register (*loc.reg, tdep->a0->num) | |
1420 | || pv_is_register (*loc.reg, tdep->a1->num))); | |
1421 | } | |
1422 | ||
1423 | /* Return non-zero if a 'pushm' saving the registers indicated by SRC | |
1424 | was a register save: | |
1425 | - all the named registers should have their original values, and | |
1426 | - the stack pointer should be at a constant offset from the | |
1427 | original stack pointer. */ | |
1428 | static int | |
1429 | m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src) | |
1430 | { | |
1431 | struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch); | |
1432 | /* The bits in SRC indicating which registers to save are: | |
1433 | r0 r1 r2 r3 a0 a1 sb fb */ | |
1434 | return | |
1435 | (pv_is_register (st->sp, tdep->sp->num) | |
1436 | && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0)) | |
1437 | && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0)) | |
1438 | && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0)) | |
1439 | && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0)) | |
1440 | && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0)) | |
1441 | && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0)) | |
1442 | && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0)) | |
1443 | && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0))); | |
1444 | } | |
1445 | ||
1446 | ||
1447 | /* Function for finding saved registers in a 'struct pv_area'; we pass | |
1448 | this to pv_area_scan. | |
1449 | ||
1450 | If VALUE is a saved register, ADDR says it was saved at a constant | |
1451 | offset from the frame base, and SIZE indicates that the whole | |
1452 | register was saved, record its offset in RESULT_UNTYPED. */ | |
1453 | static void | |
1454 | check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value) | |
1455 | { | |
1456 | struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped; | |
1457 | struct gdbarch *arch = prologue->arch; | |
1458 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
1459 | ||
1460 | /* Is this the unchanged value of some register being saved on the | |
1461 | stack? */ | |
1462 | if (value.kind == pvk_register | |
1463 | && value.k == 0 | |
1464 | && pv_is_register (addr, tdep->sp->num)) | |
1465 | { | |
1466 | /* Some registers require special handling: they're saved as a | |
1467 | larger value than the register itself. */ | |
1468 | CORE_ADDR saved_size = register_size (arch, value.reg); | |
1469 | ||
1470 | if (value.reg == tdep->pc->num) | |
1471 | saved_size = tdep->ret_addr_bytes; | |
1472 | else if (gdbarch_register_type (arch, value.reg) | |
1473 | == tdep->data_addr_reg_type) | |
1474 | saved_size = tdep->push_addr_bytes; | |
1475 | ||
1476 | if (size == saved_size) | |
1477 | { | |
1478 | /* Find which end of the saved value corresponds to our | |
1479 | register. */ | |
1480 | if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) | |
1481 | prologue->reg_offset[value.reg] | |
1482 | = (addr.k + saved_size - register_size (arch, value.reg)); | |
1483 | else | |
1484 | prologue->reg_offset[value.reg] = addr.k; | |
1485 | } | |
1486 | } | |
1487 | } | |
1488 | ||
1489 | ||
1490 | /* Analyze the function prologue for ARCH at START, going no further | |
1491 | than LIMIT, and place a description of what we found in | |
1492 | PROLOGUE. */ | |
1493 | void | |
1494 | m32c_analyze_prologue (struct gdbarch *arch, | |
1495 | CORE_ADDR start, CORE_ADDR limit, | |
1496 | struct m32c_prologue *prologue) | |
1497 | { | |
1498 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
1499 | unsigned long mach = gdbarch_bfd_arch_info (arch)->mach; | |
1500 | CORE_ADDR after_last_frame_related_insn; | |
1501 | struct cleanup *back_to; | |
1502 | struct m32c_pv_state st; | |
1503 | ||
1504 | st.arch = arch; | |
1505 | st.r0 = pv_register (tdep->r0->num, 0); | |
1506 | st.r1 = pv_register (tdep->r1->num, 0); | |
1507 | st.r2 = pv_register (tdep->r2->num, 0); | |
1508 | st.r3 = pv_register (tdep->r3->num, 0); | |
1509 | st.a0 = pv_register (tdep->a0->num, 0); | |
1510 | st.a1 = pv_register (tdep->a1->num, 0); | |
1511 | st.sb = pv_register (tdep->sb->num, 0); | |
1512 | st.fb = pv_register (tdep->fb->num, 0); | |
1513 | st.sp = pv_register (tdep->sp->num, 0); | |
1514 | st.pc = pv_register (tdep->pc->num, 0); | |
1515 | st.stack = make_pv_area (tdep->sp->num); | |
1516 | back_to = make_cleanup_free_pv_area (st.stack); | |
1517 | ||
1518 | /* Record that the call instruction has saved the return address on | |
1519 | the stack. */ | |
1520 | m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes); | |
1521 | ||
1522 | memset (prologue, 0, sizeof (*prologue)); | |
1523 | prologue->arch = arch; | |
1524 | { | |
1525 | int i; | |
1526 | for (i = 0; i < M32C_MAX_NUM_REGS; i++) | |
1527 | prologue->reg_offset[i] = 1; | |
1528 | } | |
1529 | ||
1530 | st.scan_pc = after_last_frame_related_insn = start; | |
1531 | ||
1532 | while (st.scan_pc < limit) | |
1533 | { | |
1534 | pv_t pre_insn_fb = st.fb; | |
1535 | pv_t pre_insn_sp = st.sp; | |
1536 | ||
1537 | /* In theory we could get in trouble by trying to read ahead | |
1538 | here, when we only know we're expecting one byte. In | |
1539 | practice I doubt anyone will care, and it makes the rest of | |
1540 | the code easier. */ | |
1541 | if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn))) | |
1542 | /* If we can't fetch the instruction from memory, stop here | |
1543 | and hope for the best. */ | |
1544 | break; | |
1545 | st.next_addr = st.scan_pc; | |
1546 | ||
1547 | /* The assembly instructions are written as they appear in the | |
1548 | section of the processor manuals that describe the | |
1549 | instruction encodings. | |
1550 | ||
1551 | When a single assembly language instruction has several | |
1552 | different machine-language encodings, the manual | |
1553 | distinguishes them by a number in parens, before the | |
1554 | mnemonic. Those numbers are included, as well. | |
1555 | ||
1556 | The srcdest decoding instructions have the same names as the | |
1557 | analogous functions in the simulator. */ | |
1558 | if (mach == bfd_mach_m16c) | |
1559 | { | |
1560 | /* (1) ENTER #imm8 */ | |
1561 | if (st.insn[0] == 0x7c && st.insn[1] == 0xf2) | |
1562 | { | |
1563 | if (m32c_pv_enter (&st, st.insn[2])) | |
1564 | break; | |
1565 | st.next_addr += 3; | |
1566 | } | |
1567 | /* (1) PUSHM src */ | |
1568 | else if (st.insn[0] == 0xec) | |
1569 | { | |
1570 | int src = st.insn[1]; | |
1571 | if (m32c_pv_pushm (&st, src)) | |
1572 | break; | |
1573 | st.next_addr += 2; | |
1574 | ||
1575 | if (m32c_pushm_is_reg_save (&st, src)) | |
1576 | after_last_frame_related_insn = st.next_addr; | |
1577 | } | |
1578 | ||
1579 | /* (6) MOV.size:G src, dest */ | |
1580 | else if ((st.insn[0] & 0xfe) == 0x72) | |
1581 | { | |
1582 | int size = (st.insn[0] & 0x01) ? 2 : 1; | |
1583 | ||
1584 | st.next_addr += 2; | |
1585 | ||
1586 | struct srcdest src | |
1587 | = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size); | |
1588 | struct srcdest dest | |
1589 | = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size); | |
1590 | pv_t src_value = m32c_srcdest_fetch (&st, src, size); | |
1591 | ||
1592 | if (m32c_is_arg_spill (&st, dest, src_value)) | |
1593 | after_last_frame_related_insn = st.next_addr; | |
1594 | else if (m32c_is_struct_return (&st, dest, src_value)) | |
1595 | after_last_frame_related_insn = st.next_addr; | |
1596 | ||
1597 | if (m32c_srcdest_store (&st, dest, src_value, size)) | |
1598 | break; | |
1599 | } | |
1600 | ||
1601 | /* (1) LDC #IMM16, sp */ | |
1602 | else if (st.insn[0] == 0xeb | |
1603 | && st.insn[1] == 0x50) | |
1604 | { | |
1605 | st.next_addr += 2; | |
1606 | st.sp = pv_constant (m32c_udisp16 (&st)); | |
1607 | } | |
1608 | ||
1609 | else | |
1610 | /* We've hit some instruction we don't know how to simulate. | |
1611 | Strictly speaking, we should set every value we're | |
1612 | tracking to "unknown". But we'll be optimistic, assume | |
1613 | that we have enough information already, and stop | |
1614 | analysis here. */ | |
1615 | break; | |
1616 | } | |
1617 | else | |
1618 | { | |
1619 | int src_indirect = 0; | |
1620 | int dest_indirect = 0; | |
1621 | int i = 0; | |
1622 | ||
1623 | gdb_assert (mach == bfd_mach_m32c); | |
1624 | ||
1625 | /* Check for prefix bytes indicating indirect addressing. */ | |
1626 | if (st.insn[0] == 0x41) | |
1627 | { | |
1628 | src_indirect = 1; | |
1629 | i++; | |
1630 | } | |
1631 | else if (st.insn[0] == 0x09) | |
1632 | { | |
1633 | dest_indirect = 1; | |
1634 | i++; | |
1635 | } | |
1636 | else if (st.insn[0] == 0x49) | |
1637 | { | |
1638 | src_indirect = dest_indirect = 1; | |
1639 | i++; | |
1640 | } | |
1641 | ||
1642 | /* (1) ENTER #imm8 */ | |
1643 | if (st.insn[i] == 0xec) | |
1644 | { | |
1645 | if (m32c_pv_enter (&st, st.insn[i + 1])) | |
1646 | break; | |
1647 | st.next_addr += 2; | |
1648 | } | |
1649 | ||
1650 | /* (1) PUSHM src */ | |
1651 | else if (st.insn[i] == 0x8f) | |
1652 | { | |
1653 | int src = st.insn[i + 1]; | |
1654 | if (m32c_pv_pushm (&st, src)) | |
1655 | break; | |
1656 | st.next_addr += 2; | |
1657 | ||
1658 | if (m32c_pushm_is_reg_save (&st, src)) | |
1659 | after_last_frame_related_insn = st.next_addr; | |
1660 | } | |
1661 | ||
1662 | /* (7) MOV.size:G src, dest */ | |
1663 | else if ((st.insn[i] & 0x80) == 0x80 | |
1664 | && (st.insn[i + 1] & 0x0f) == 0x0b | |
1665 | && m32c_get_src23 (&st.insn[i]) < 20 | |
1666 | && m32c_get_dest23 (&st.insn[i]) < 20) | |
1667 | { | |
1668 | int bw = st.insn[i] & 0x01; | |
1669 | int size = bw ? 2 : 1; | |
1670 | ||
1671 | st.next_addr += 2; | |
1672 | ||
1673 | struct srcdest src | |
1674 | = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]), | |
1675 | size, src_indirect); | |
1676 | struct srcdest dest | |
1677 | = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]), | |
1678 | size, dest_indirect); | |
1679 | pv_t src_value = m32c_srcdest_fetch (&st, src, size); | |
1680 | ||
1681 | if (m32c_is_arg_spill (&st, dest, src_value)) | |
1682 | after_last_frame_related_insn = st.next_addr; | |
1683 | ||
1684 | if (m32c_srcdest_store (&st, dest, src_value, size)) | |
1685 | break; | |
1686 | } | |
1687 | /* (2) LDC #IMM24, sp */ | |
1688 | else if (st.insn[i] == 0xd5 | |
1689 | && st.insn[i + 1] == 0x29) | |
1690 | { | |
1691 | st.next_addr += 2; | |
1692 | st.sp = pv_constant (m32c_udisp24 (&st)); | |
1693 | } | |
1694 | else | |
1695 | /* We've hit some instruction we don't know how to simulate. | |
1696 | Strictly speaking, we should set every value we're | |
1697 | tracking to "unknown". But we'll be optimistic, assume | |
1698 | that we have enough information already, and stop | |
1699 | analysis here. */ | |
1700 | break; | |
1701 | } | |
1702 | ||
1703 | /* If this instruction changed the FB or decreased the SP (i.e., | |
1704 | allocated more stack space), then this may be a good place to | |
1705 | declare the prologue finished. However, there are some | |
1706 | exceptions: | |
1707 | ||
1708 | - If the instruction just changed the FB back to its original | |
1709 | value, then that's probably a restore instruction. The | |
1710 | prologue should definitely end before that. | |
1711 | ||
1712 | - If the instruction increased the value of the SP (that is, | |
1713 | shrunk the frame), then it's probably part of a frame | |
1714 | teardown sequence, and the prologue should end before | |
1715 | that. */ | |
1716 | ||
1717 | if (! pv_is_identical (st.fb, pre_insn_fb)) | |
1718 | { | |
1719 | if (! pv_is_register_k (st.fb, tdep->fb->num, 0)) | |
1720 | after_last_frame_related_insn = st.next_addr; | |
1721 | } | |
1722 | else if (! pv_is_identical (st.sp, pre_insn_sp)) | |
1723 | { | |
1724 | /* The comparison of the constants looks odd, there, because | |
1725 | .k is unsigned. All it really means is that the SP is | |
1726 | lower than it was before the instruction. */ | |
1727 | if ( pv_is_register (pre_insn_sp, tdep->sp->num) | |
1728 | && pv_is_register (st.sp, tdep->sp->num) | |
1729 | && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k))) | |
1730 | after_last_frame_related_insn = st.next_addr; | |
1731 | } | |
1732 | ||
1733 | st.scan_pc = st.next_addr; | |
1734 | } | |
1735 | ||
1736 | /* Did we load a constant value into the stack pointer? */ | |
1737 | if (pv_is_constant (st.sp)) | |
1738 | prologue->kind = prologue_first_frame; | |
1739 | ||
1740 | /* Alternatively, did we initialize the frame pointer? Remember | |
1741 | that the CFA is the address after the return address. */ | |
1742 | if (pv_is_register (st.fb, tdep->sp->num)) | |
1743 | { | |
1744 | prologue->kind = prologue_with_frame_ptr; | |
1745 | prologue->frame_ptr_offset = st.fb.k; | |
1746 | } | |
1747 | ||
1748 | /* Is the frame size a known constant? Remember that frame_size is | |
1749 | actually the offset from the CFA to the SP (i.e., a negative | |
1750 | value). */ | |
1751 | else if (pv_is_register (st.sp, tdep->sp->num)) | |
1752 | { | |
1753 | prologue->kind = prologue_sans_frame_ptr; | |
1754 | prologue->frame_size = st.sp.k; | |
1755 | } | |
1756 | ||
1757 | /* We haven't been able to make sense of this function's frame. Treat | |
1758 | it as the first frame. */ | |
1759 | else | |
1760 | prologue->kind = prologue_first_frame; | |
1761 | ||
1762 | /* Record where all the registers were saved. */ | |
1763 | pv_area_scan (st.stack, check_for_saved, (void *) prologue); | |
1764 | ||
1765 | prologue->prologue_end = after_last_frame_related_insn; | |
1766 | ||
1767 | do_cleanups (back_to); | |
1768 | } | |
1769 | ||
1770 | ||
1771 | static CORE_ADDR | |
1772 | m32c_skip_prologue (CORE_ADDR ip) | |
1773 | { | |
1774 | char *name; | |
1775 | CORE_ADDR func_addr, func_end, sal_end; | |
1776 | struct m32c_prologue p; | |
1777 | ||
1778 | /* Try to find the extent of the function that contains IP. */ | |
1779 | if (! find_pc_partial_function (ip, &name, &func_addr, &func_end)) | |
1780 | return ip; | |
1781 | ||
1782 | /* Find end by prologue analysis. */ | |
1783 | m32c_analyze_prologue (current_gdbarch, ip, func_end, &p); | |
1784 | /* Find end by line info. */ | |
1785 | sal_end = skip_prologue_using_sal (ip); | |
1786 | /* Return whichever is lower. */ | |
1787 | if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end) | |
1788 | return sal_end; | |
1789 | else | |
1790 | return p.prologue_end; | |
1791 | } | |
1792 | ||
1793 | ||
1794 | \f | |
1795 | /* Stack unwinding. */ | |
1796 | ||
1797 | static struct m32c_prologue * | |
1798 | m32c_analyze_frame_prologue (struct frame_info *next_frame, | |
1799 | void **this_prologue_cache) | |
1800 | { | |
1801 | if (! *this_prologue_cache) | |
1802 | { | |
1803 | CORE_ADDR func_start = frame_func_unwind (next_frame); | |
1804 | CORE_ADDR stop_addr = frame_pc_unwind (next_frame); | |
1805 | ||
1806 | /* If we couldn't find any function containing the PC, then | |
1807 | just initialize the prologue cache, but don't do anything. */ | |
1808 | if (! func_start) | |
1809 | stop_addr = func_start; | |
1810 | ||
1811 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue); | |
1812 | m32c_analyze_prologue (get_frame_arch (next_frame), | |
1813 | func_start, stop_addr, *this_prologue_cache); | |
1814 | } | |
1815 | ||
1816 | return *this_prologue_cache; | |
1817 | } | |
1818 | ||
1819 | ||
1820 | static CORE_ADDR | |
1821 | m32c_frame_base (struct frame_info *next_frame, | |
1822 | void **this_prologue_cache) | |
1823 | { | |
1824 | struct m32c_prologue *p | |
1825 | = m32c_analyze_frame_prologue (next_frame, this_prologue_cache); | |
1826 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); | |
1827 | ||
1828 | /* In functions that use alloca, the distance between the stack | |
1829 | pointer and the frame base varies dynamically, so we can't use | |
1830 | the SP plus static information like prologue analysis to find the | |
1831 | frame base. However, such functions must have a frame pointer, | |
1832 | to be able to restore the SP on exit. So whenever we do have a | |
1833 | frame pointer, use that to find the base. */ | |
1834 | switch (p->kind) | |
1835 | { | |
1836 | case prologue_with_frame_ptr: | |
1837 | { | |
1838 | CORE_ADDR fb | |
1839 | = frame_unwind_register_unsigned (next_frame, tdep->fb->num); | |
1840 | return fb - p->frame_ptr_offset; | |
1841 | } | |
1842 | ||
1843 | case prologue_sans_frame_ptr: | |
1844 | { | |
1845 | CORE_ADDR sp | |
1846 | = frame_unwind_register_unsigned (next_frame, tdep->sp->num); | |
1847 | return sp - p->frame_size; | |
1848 | } | |
1849 | ||
1850 | case prologue_first_frame: | |
1851 | return 0; | |
1852 | ||
1853 | default: | |
1854 | gdb_assert (0); | |
1855 | } | |
1856 | } | |
1857 | ||
1858 | ||
1859 | static void | |
1860 | m32c_this_id (struct frame_info *next_frame, | |
1861 | void **this_prologue_cache, | |
1862 | struct frame_id *this_id) | |
1863 | { | |
1864 | CORE_ADDR base = m32c_frame_base (next_frame, this_prologue_cache); | |
1865 | ||
1866 | if (base) | |
1867 | *this_id = frame_id_build (base, frame_func_unwind (next_frame)); | |
1868 | /* Otherwise, leave it unset, and that will terminate the backtrace. */ | |
1869 | } | |
1870 | ||
1871 | ||
1872 | static void | |
1873 | m32c_prev_register (struct frame_info *next_frame, | |
1874 | void **this_prologue_cache, | |
1875 | int regnum, int *optimizedp, | |
1876 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1877 | int *realnump, gdb_byte *bufferp) | |
1878 | { | |
1879 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); | |
1880 | struct m32c_prologue *p | |
1881 | = m32c_analyze_frame_prologue (next_frame, this_prologue_cache); | |
1882 | CORE_ADDR frame_base = m32c_frame_base (next_frame, this_prologue_cache); | |
1883 | int reg_size = register_size (get_frame_arch (next_frame), regnum); | |
1884 | ||
1885 | if (regnum == tdep->sp->num) | |
1886 | { | |
1887 | *optimizedp = 0; | |
1888 | *lvalp = not_lval; | |
1889 | *addrp = 0; | |
1890 | *realnump = -1; | |
1891 | if (bufferp) | |
1892 | store_unsigned_integer (bufferp, reg_size, frame_base); | |
1893 | } | |
1894 | ||
1895 | /* If prologue analysis says we saved this register somewhere, | |
1896 | return a description of the stack slot holding it. */ | |
1897 | else if (p->reg_offset[regnum] != 1) | |
1898 | { | |
1899 | *optimizedp = 0; | |
1900 | *lvalp = lval_memory; | |
1901 | *addrp = frame_base + p->reg_offset[regnum]; | |
1902 | *realnump = -1; | |
1903 | if (bufferp) | |
1904 | get_frame_memory (next_frame, *addrp, bufferp, reg_size); | |
1905 | } | |
1906 | ||
1907 | /* Otherwise, presume we haven't changed the value of this | |
1908 | register, and get it from the next frame. */ | |
1909 | else | |
1910 | frame_register_unwind (next_frame, regnum, | |
1911 | optimizedp, lvalp, addrp, realnump, bufferp); | |
1912 | } | |
1913 | ||
1914 | ||
1915 | static const struct frame_unwind m32c_unwind = { | |
1916 | NORMAL_FRAME, | |
1917 | m32c_this_id, | |
1918 | m32c_prev_register | |
1919 | }; | |
1920 | ||
1921 | ||
1922 | static const struct frame_unwind * | |
1923 | m32c_frame_sniffer (struct frame_info *next_frame) | |
1924 | { | |
1925 | return &m32c_unwind; | |
1926 | } | |
1927 | ||
1928 | ||
1929 | static CORE_ADDR | |
1930 | m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame) | |
1931 | { | |
1932 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
1933 | return frame_unwind_register_unsigned (next_frame, tdep->pc->num); | |
1934 | } | |
1935 | ||
1936 | ||
1937 | static CORE_ADDR | |
1938 | m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame) | |
1939 | { | |
1940 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
1941 | return frame_unwind_register_unsigned (next_frame, tdep->sp->num); | |
1942 | } | |
1943 | ||
1944 | \f | |
1945 | /* Inferior calls. */ | |
1946 | ||
1947 | /* The calling conventions, according to GCC: | |
1948 | ||
1949 | r8c, m16c | |
1950 | --------- | |
1951 | First arg may be passed in r1l or r1 if it (1) fits (QImode or | |
1952 | HImode), (2) is named, and (3) is an integer or pointer type (no | |
1953 | structs, floats, etc). Otherwise, it's passed on the stack. | |
1954 | ||
1955 | Second arg may be passed in r2, same restrictions (but not QImode), | |
1956 | even if the first arg is passed on the stack. | |
1957 | ||
1958 | Third and further args are passed on the stack. No padding is | |
1959 | used, stack "alignment" is 8 bits. | |
1960 | ||
1961 | m32cm, m32c | |
1962 | ----------- | |
1963 | ||
1964 | First arg may be passed in r0l or r0, same restrictions as above. | |
1965 | ||
1966 | Second and further args are passed on the stack. Padding is used | |
1967 | after QImode parameters (i.e. lower-addressed byte is the value, | |
1968 | higher-addressed byte is the padding), stack "alignment" is 16 | |
1969 | bits. */ | |
1970 | ||
1971 | ||
1972 | /* Return true if TYPE is a type that can be passed in registers. (We | |
1973 | ignore the size, and pay attention only to the type code; | |
1974 | acceptable sizes depends on which register is being considered to | |
1975 | hold it.) */ | |
1976 | static int | |
1977 | m32c_reg_arg_type (struct type *type) | |
1978 | { | |
1979 | enum type_code code = TYPE_CODE (type); | |
1980 | ||
1981 | return (code == TYPE_CODE_INT | |
1982 | || code == TYPE_CODE_ENUM | |
1983 | || code == TYPE_CODE_PTR | |
1984 | || code == TYPE_CODE_REF | |
1985 | || code == TYPE_CODE_BOOL | |
1986 | || code == TYPE_CODE_CHAR); | |
1987 | } | |
1988 | ||
1989 | ||
1990 | static CORE_ADDR | |
1991 | m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
1992 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
1993 | struct value **args, CORE_ADDR sp, int struct_return, | |
1994 | CORE_ADDR struct_addr) | |
1995 | { | |
1996 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1997 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
1998 | CORE_ADDR cfa; | |
1999 | int i; | |
2000 | ||
2001 | /* The number of arguments given in this function's prototype, or | |
2002 | zero if it has a non-prototyped function type. The m32c ABI | |
2003 | passes arguments mentioned in the prototype differently from | |
2004 | those in the ellipsis of a varargs function, or from those passed | |
2005 | to a non-prototyped function. */ | |
2006 | int num_prototyped_args = 0; | |
2007 | ||
2008 | { | |
2009 | struct type *func_type = value_type (function); | |
2010 | ||
2011 | gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC || | |
2012 | TYPE_CODE (func_type) == TYPE_CODE_METHOD); | |
2013 | ||
2014 | #if 0 | |
2015 | /* The ABI description in gcc/config/m32c/m32c.abi says that | |
2016 | we need to handle prototyped and non-prototyped functions | |
2017 | separately, but the code in GCC doesn't actually do so. */ | |
2018 | if (TYPE_PROTOTYPED (func_type)) | |
2019 | #endif | |
2020 | num_prototyped_args = TYPE_NFIELDS (func_type); | |
2021 | } | |
2022 | ||
2023 | /* First, if the function returns an aggregate by value, push a | |
2024 | pointer to a buffer for it. This doesn't affect the way | |
2025 | subsequent arguments are allocated to registers. */ | |
2026 | if (struct_return) | |
2027 | { | |
2028 | int ptr_len = TYPE_LENGTH (tdep->ptr_voyd); | |
2029 | sp -= ptr_len; | |
2030 | write_memory_unsigned_integer (sp, ptr_len, struct_addr); | |
2031 | } | |
2032 | ||
2033 | /* Push the arguments. */ | |
2034 | for (i = nargs - 1; i >= 0; i--) | |
2035 | { | |
2036 | struct value *arg = args[i]; | |
2037 | const gdb_byte *arg_bits = value_contents (arg); | |
2038 | struct type *arg_type = value_type (arg); | |
2039 | ULONGEST arg_size = TYPE_LENGTH (arg_type); | |
2040 | ||
2041 | /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */ | |
2042 | if (i == 0 | |
2043 | && arg_size <= 2 | |
2044 | && i < num_prototyped_args | |
2045 | && m32c_reg_arg_type (arg_type)) | |
2046 | { | |
2047 | /* Extract and re-store as an integer as a terse way to make | |
2048 | sure it ends up in the least significant end of r1. (GDB | |
2049 | should avoid assuming endianness, even on uni-endian | |
2050 | processors.) */ | |
2051 | ULONGEST u = extract_unsigned_integer (arg_bits, arg_size); | |
2052 | struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0; | |
2053 | regcache_cooked_write_unsigned (regcache, reg->num, u); | |
2054 | } | |
2055 | ||
2056 | /* Can it go in r2? */ | |
2057 | else if (mach == bfd_mach_m16c | |
2058 | && i == 1 | |
2059 | && arg_size == 2 | |
2060 | && i < num_prototyped_args | |
2061 | && m32c_reg_arg_type (arg_type)) | |
2062 | regcache_cooked_write (regcache, tdep->r2->num, arg_bits); | |
2063 | ||
2064 | /* Everything else goes on the stack. */ | |
2065 | else | |
2066 | { | |
2067 | sp -= arg_size; | |
2068 | ||
2069 | /* Align the stack. */ | |
2070 | if (mach == bfd_mach_m32c) | |
2071 | sp &= ~1; | |
2072 | ||
2073 | write_memory (sp, arg_bits, arg_size); | |
2074 | } | |
2075 | } | |
2076 | ||
2077 | /* This is the CFA we use to identify the dummy frame. */ | |
2078 | cfa = sp; | |
2079 | ||
2080 | /* Push the return address. */ | |
2081 | sp -= tdep->ret_addr_bytes; | |
2082 | write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr); | |
2083 | ||
2084 | /* Update the stack pointer. */ | |
2085 | regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp); | |
2086 | ||
2087 | /* We need to borrow an odd trick from the i386 target here. | |
2088 | ||
2089 | The value we return from this function gets used as the stack | |
2090 | address (the CFA) for the dummy frame's ID. The obvious thing is | |
2091 | to return the new TOS. However, that points at the return | |
2092 | address, saved on the stack, which is inconsistent with the CFA's | |
2093 | described by GCC's DWARF 2 .debug_frame information: DWARF 2 | |
2094 | .debug_frame info uses the address immediately after the saved | |
2095 | return address. So you end up with a dummy frame whose CFA | |
2096 | points at the return address, but the frame for the function | |
2097 | being called has a CFA pointing after the return address: the | |
2098 | younger CFA is *greater than* the older CFA. The sanity checks | |
2099 | in frame.c don't like that. | |
2100 | ||
2101 | So we try to be consistent with the CFA's used by DWARF 2. | |
2102 | Having a dummy frame and a real frame with the *same* CFA is | |
2103 | tolerable. */ | |
2104 | return cfa; | |
2105 | } | |
2106 | ||
2107 | ||
2108 | static struct frame_id | |
2109 | m32c_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2110 | { | |
2111 | /* This needs to return a frame ID whose PC is the return address | |
2112 | passed to m32c_push_dummy_call, and whose stack_addr is the SP | |
2113 | m32c_push_dummy_call returned. | |
2114 | ||
2115 | m32c_unwind_sp gives us the CFA, which is the value the SP had | |
2116 | before the return address was pushed. */ | |
2117 | return frame_id_build (m32c_unwind_sp (gdbarch, next_frame), | |
2118 | frame_pc_unwind (next_frame)); | |
2119 | } | |
2120 | ||
2121 | ||
2122 | \f | |
2123 | /* Return values. */ | |
2124 | ||
2125 | /* Return value conventions, according to GCC: | |
2126 | ||
2127 | r8c, m16c | |
2128 | --------- | |
2129 | ||
2130 | QImode in r0l | |
2131 | HImode in r0 | |
2132 | SImode in r2r0 | |
2133 | near pointer in r0 | |
2134 | far pointer in r2r0 | |
2135 | ||
2136 | Aggregate values (regardless of size) are returned by pushing a | |
2137 | pointer to a temporary area on the stack after the args are pushed. | |
2138 | The function fills in this area with the value. Note that this | |
2139 | pointer on the stack does not affect how register arguments, if any, | |
2140 | are configured. | |
2141 | ||
2142 | m32cm, m32c | |
2143 | ----------- | |
2144 | Same. */ | |
2145 | ||
2146 | /* Return non-zero if values of type TYPE are returned by storing them | |
2147 | in a buffer whose address is passed on the stack, ahead of the | |
2148 | other arguments. */ | |
2149 | static int | |
2150 | m32c_return_by_passed_buf (struct type *type) | |
2151 | { | |
2152 | enum type_code code = TYPE_CODE (type); | |
2153 | ||
2154 | return (code == TYPE_CODE_STRUCT | |
2155 | || code == TYPE_CODE_UNION); | |
2156 | } | |
2157 | ||
2158 | static enum return_value_convention | |
2159 | m32c_return_value (struct gdbarch *gdbarch, | |
2160 | struct type *valtype, | |
2161 | struct regcache *regcache, | |
2162 | gdb_byte *readbuf, | |
2163 | const gdb_byte *writebuf) | |
2164 | { | |
2165 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2166 | enum return_value_convention conv; | |
2167 | ULONGEST valtype_len = TYPE_LENGTH (valtype); | |
2168 | ||
2169 | if (m32c_return_by_passed_buf (valtype)) | |
2170 | conv = RETURN_VALUE_STRUCT_CONVENTION; | |
2171 | else | |
2172 | conv = RETURN_VALUE_REGISTER_CONVENTION; | |
2173 | ||
2174 | if (readbuf) | |
2175 | { | |
2176 | /* We should never be called to find values being returned by | |
2177 | RETURN_VALUE_STRUCT_CONVENTION. Those can't be located, | |
2178 | unless we made the call ourselves. */ | |
2179 | gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION); | |
2180 | ||
2181 | gdb_assert (valtype_len <= 8); | |
2182 | ||
2183 | /* Anything that fits in r0 is returned there. */ | |
2184 | if (valtype_len <= TYPE_LENGTH (tdep->r0->type)) | |
2185 | { | |
2186 | ULONGEST u; | |
2187 | regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u); | |
2188 | store_unsigned_integer (readbuf, valtype_len, u); | |
2189 | } | |
2190 | else | |
2191 | { | |
2192 | /* Everything else is passed in mem0, using as many bytes as | |
2193 | needed. This is not what the Renesas tools do, but it's | |
2194 | what GCC does at the moment. */ | |
2195 | struct minimal_symbol *mem0 | |
2196 | = lookup_minimal_symbol ("mem0", NULL, NULL); | |
2197 | ||
2198 | if (! mem0) | |
2199 | error ("The return value is stored in memory at 'mem0', " | |
2200 | "but GDB cannot find\n" | |
2201 | "its address."); | |
2202 | read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len); | |
2203 | } | |
2204 | } | |
2205 | ||
2206 | if (writebuf) | |
2207 | { | |
2208 | /* We should never be called to store values to be returned | |
2209 | using RETURN_VALUE_STRUCT_CONVENTION. We have no way of | |
2210 | finding the buffer, unless we made the call ourselves. */ | |
2211 | gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION); | |
2212 | ||
2213 | gdb_assert (valtype_len <= 8); | |
2214 | ||
2215 | /* Anything that fits in r0 is returned there. */ | |
2216 | if (valtype_len <= TYPE_LENGTH (tdep->r0->type)) | |
2217 | { | |
2218 | ULONGEST u = extract_unsigned_integer (writebuf, valtype_len); | |
2219 | regcache_cooked_write_unsigned (regcache, tdep->r0->num, u); | |
2220 | } | |
2221 | else | |
2222 | { | |
2223 | /* Everything else is passed in mem0, using as many bytes as | |
2224 | needed. This is not what the Renesas tools do, but it's | |
2225 | what GCC does at the moment. */ | |
2226 | struct minimal_symbol *mem0 | |
2227 | = lookup_minimal_symbol ("mem0", NULL, NULL); | |
2228 | ||
2229 | if (! mem0) | |
2230 | error ("The return value is stored in memory at 'mem0', " | |
2231 | "but GDB cannot find\n" | |
2232 | " its address."); | |
2233 | write_memory (SYMBOL_VALUE_ADDRESS (mem0), | |
2234 | (char *) writebuf, valtype_len); | |
2235 | } | |
2236 | } | |
2237 | ||
2238 | return conv; | |
2239 | } | |
2240 | ||
2241 | ||
2242 | \f | |
2243 | /* Trampolines. */ | |
2244 | ||
2245 | /* The m16c and m32c use a trampoline function for indirect function | |
2246 | calls. An indirect call looks like this: | |
2247 | ||
2248 | ... push arguments ... | |
2249 | ... push target function address ... | |
2250 | jsr.a m32c_jsri16 | |
2251 | ||
2252 | The code for m32c_jsri16 looks like this: | |
2253 | ||
2254 | m32c_jsri16: | |
2255 | ||
2256 | # Save return address. | |
2257 | pop.w m32c_jsri_ret | |
2258 | pop.b m32c_jsri_ret+2 | |
2259 | ||
2260 | # Store target function address. | |
2261 | pop.w m32c_jsri_addr | |
2262 | ||
2263 | # Re-push return address. | |
2264 | push.b m32c_jsri_ret+2 | |
2265 | push.w m32c_jsri_ret | |
2266 | ||
2267 | # Call the target function. | |
2268 | jmpi.a m32c_jsri_addr | |
2269 | ||
2270 | Without further information, GDB will treat calls to m32c_jsri16 | |
2271 | like calls to any other function. Since m32c_jsri16 doesn't have | |
2272 | debugging information, that normally means that GDB sets a step- | |
2273 | resume breakpoint and lets the program continue --- which is not | |
2274 | what the user wanted. (Giving the trampoline debugging info | |
2275 | doesn't help: the user expects the program to stop in the function | |
2276 | their program is calling, not in some trampoline code they've never | |
2277 | seen before.) | |
2278 | ||
2279 | The SKIP_TRAMPOLINE_CODE gdbarch method tells GDB how to step | |
2280 | through such trampoline functions transparently to the user. When | |
2281 | given the address of a trampoline function's first instruction, | |
2282 | SKIP_TRAMPOLINE_CODE should return the address of the first | |
2283 | instruction of the function really being called. If GDB decides it | |
2284 | wants to step into that function, it will set a breakpoint there | |
2285 | and silently continue to it. | |
2286 | ||
2287 | We recognize the trampoline by name, and extract the target address | |
2288 | directly from the stack. This isn't great, but recognizing by its | |
2289 | code sequence seems more fragile. */ | |
2290 | ||
2291 | static CORE_ADDR | |
2292 | m32c_skip_trampoline_code (CORE_ADDR stop_pc) | |
2293 | { | |
2294 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2295 | ||
2296 | /* It would be nicer to simply look up the addresses of known | |
2297 | trampolines once, and then compare stop_pc with them. However, | |
2298 | we'd need to ensure that that cached address got invalidated when | |
2299 | someone loaded a new executable, and I'm not quite sure of the | |
2300 | best way to do that. find_pc_partial_function does do some | |
2301 | caching, so we'll see how this goes. */ | |
2302 | char *name; | |
2303 | CORE_ADDR start, end; | |
2304 | ||
2305 | if (find_pc_partial_function (stop_pc, &name, &start, &end)) | |
2306 | { | |
2307 | /* Are we stopped at the beginning of the trampoline function? */ | |
2308 | if (strcmp (name, "m32c_jsri16") == 0 | |
2309 | && stop_pc == start) | |
2310 | { | |
2311 | /* Get the stack pointer. The return address is at the top, | |
2312 | and the target function's address is just below that. We | |
2313 | know it's a two-byte address, since the trampoline is | |
2314 | m32c_jsri*16*. */ | |
2315 | CORE_ADDR sp = get_frame_sp (get_current_frame ()); | |
2316 | CORE_ADDR target | |
2317 | = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2); | |
2318 | ||
2319 | /* What we have now is the address of a jump instruction. | |
2320 | What we need is the destination of that jump. | |
2321 | The opcode is 1 byte, and the destination is the next 3 bytes. | |
2322 | */ | |
2323 | target = read_memory_unsigned_integer (target + 1, 3); | |
2324 | return target; | |
2325 | } | |
2326 | } | |
2327 | ||
2328 | return 0; | |
2329 | } | |
2330 | ||
2331 | ||
2332 | /* Address/pointer conversions. */ | |
2333 | ||
2334 | /* On the m16c, there is a 24-bit address space, but only a very few | |
2335 | instructions can generate addresses larger than 0xffff: jumps, | |
2336 | jumps to subroutines, and the lde/std (load/store extended) | |
2337 | instructions. | |
2338 | ||
2339 | Since GCC can only support one size of pointer, we can't have | |
2340 | distinct 'near' and 'far' pointer types; we have to pick one size | |
2341 | for everything. If we wanted to use 24-bit pointers, then GCC | |
2342 | would have to use lde and ste for all memory references, which | |
2343 | would be terrible for performance and code size. So the GNU | |
2344 | toolchain uses 16-bit pointers for everything, and gives up the | |
2345 | ability to have pointers point outside the first 64k of memory. | |
2346 | ||
2347 | However, as a special hack, we let the linker place functions at | |
2348 | addresses above 0xffff, as long as it also places a trampoline in | |
2349 | the low 64k for every function whose address is taken. Each | |
2350 | trampoline consists of a single jmp.a instruction that jumps to the | |
2351 | function's real entry point. Pointers to functions can be 16 bits | |
2352 | long, even though the functions themselves are at higher addresses: | |
2353 | the pointers refer to the trampolines, not the functions. | |
2354 | ||
2355 | This complicates things for GDB, however: given the address of a | |
2356 | function (from debug info or linker symbols, say) which could be | |
2357 | anywhere in the 24-bit address space, how can we find an | |
2358 | appropriate 16-bit value to use as a pointer to it? | |
2359 | ||
2360 | If the linker has not generated a trampoline for the function, | |
2361 | we're out of luck. Well, I guess we could malloc some space and | |
2362 | write a jmp.a instruction to it, but I'm not going to get into that | |
2363 | at the moment. | |
2364 | ||
2365 | If the linker has generated a trampoline for the function, then it | |
2366 | also emitted a symbol for the trampoline: if the function's linker | |
2367 | symbol is named NAME, then the function's trampoline's linker | |
2368 | symbol is named NAME.plt. | |
2369 | ||
2370 | So, given a code address: | |
2371 | - We try to find a linker symbol at that address. | |
2372 | - If we find such a symbol named NAME, we look for a linker symbol | |
2373 | named NAME.plt. | |
2374 | - If we find such a symbol, we assume it is a trampoline, and use | |
2375 | its address as the pointer value. | |
2376 | ||
2377 | And, given a function pointer: | |
2378 | - We try to find a linker symbol at that address named NAME.plt. | |
2379 | - If we find such a symbol, we look for a linker symbol named NAME. | |
2380 | - If we find that, we provide that as the function's address. | |
2381 | - If any of the above steps fail, we return the original address | |
2382 | unchanged; it might really be a function in the low 64k. | |
2383 | ||
2384 | See? You *knew* there was a reason you wanted to be a computer | |
2385 | programmer! :) */ | |
2386 | ||
2387 | static void | |
2388 | m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr) | |
2389 | { | |
2390 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR || | |
2391 | TYPE_CODE (type) == TYPE_CODE_REF); | |
2392 | ||
2393 | enum type_code target_code = TYPE_CODE (TYPE_TARGET_TYPE (type)); | |
2394 | ||
2395 | if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD) | |
2396 | { | |
2397 | /* Try to find a linker symbol at this address. */ | |
2398 | struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr); | |
2399 | ||
2400 | if (! func_msym) | |
2401 | error ("Cannot convert code address %s to function pointer:\n" | |
2402 | "couldn't find a symbol at that address, to find trampoline.", | |
2403 | paddr_nz (addr)); | |
2404 | ||
2405 | char *func_name = SYMBOL_LINKAGE_NAME (func_msym); | |
2406 | char *tramp_name = xmalloc (strlen (func_name) + 5); | |
2407 | strcpy (tramp_name, func_name); | |
2408 | strcat (tramp_name, ".plt"); | |
2409 | ||
2410 | /* Try to find a linker symbol for the trampoline. */ | |
2411 | struct minimal_symbol *tramp_msym | |
2412 | = lookup_minimal_symbol (tramp_name, NULL, NULL); | |
2413 | ||
2414 | /* We've either got another copy of the name now, or don't need | |
2415 | the name any more. */ | |
2416 | xfree (tramp_name); | |
2417 | ||
2418 | if (! tramp_msym) | |
2419 | error ("Cannot convert code address %s to function pointer:\n" | |
2420 | "couldn't find trampoline named '%s.plt'.", | |
2421 | paddr_nz (addr), func_name); | |
2422 | ||
2423 | /* The trampoline's address is our pointer. */ | |
2424 | addr = SYMBOL_VALUE_ADDRESS (tramp_msym); | |
2425 | } | |
2426 | ||
2427 | store_unsigned_integer (buf, TYPE_LENGTH (type), addr); | |
2428 | } | |
2429 | ||
2430 | ||
2431 | static CORE_ADDR | |
2432 | m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf) | |
2433 | { | |
2434 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR || | |
2435 | TYPE_CODE (type) == TYPE_CODE_REF); | |
2436 | ||
2437 | CORE_ADDR ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type)); | |
2438 | ||
2439 | enum type_code target_code = TYPE_CODE (TYPE_TARGET_TYPE (type)); | |
2440 | ||
2441 | if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD) | |
2442 | { | |
2443 | /* See if there is a minimal symbol at that address whose name is | |
2444 | "NAME.plt". */ | |
2445 | struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr); | |
2446 | ||
2447 | if (ptr_msym) | |
2448 | { | |
2449 | char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym); | |
2450 | int len = strlen (ptr_msym_name); | |
2451 | ||
2452 | if (len > 4 | |
2453 | && strcmp (ptr_msym_name + len - 4, ".plt") == 0) | |
2454 | { | |
2455 | /* We have a .plt symbol; try to find the symbol for the | |
2456 | corresponding function. | |
2457 | ||
2458 | Since the trampoline contains a jump instruction, we | |
2459 | could also just extract the jump's target address. I | |
2460 | don't see much advantage one way or the other. */ | |
2461 | char *func_name = xmalloc (len - 4 + 1); | |
2462 | memcpy (func_name, ptr_msym_name, len - 4); | |
2463 | func_name[len - 4] = '\0'; | |
2464 | struct minimal_symbol *func_msym | |
2465 | = lookup_minimal_symbol (func_name, NULL, NULL); | |
2466 | ||
2467 | /* If we do have such a symbol, return its value as the | |
2468 | function's true address. */ | |
2469 | if (func_msym) | |
2470 | ptr = SYMBOL_VALUE_ADDRESS (func_msym); | |
2471 | } | |
2472 | } | |
2473 | } | |
2474 | ||
2475 | return ptr; | |
2476 | } | |
2477 | ||
2478 | ||
2479 | \f | |
2480 | /* Initialization. */ | |
2481 | ||
2482 | static struct gdbarch * | |
2483 | m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2484 | { | |
2485 | struct gdbarch *arch; | |
2486 | struct gdbarch_tdep *tdep; | |
2487 | unsigned long mach = info.bfd_arch_info->mach; | |
2488 | ||
2489 | /* Find a candidate among the list of architectures we've created | |
2490 | already. */ | |
2491 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
2492 | arches != NULL; | |
2493 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2494 | return arches->gdbarch; | |
2495 | ||
2496 | tdep = xcalloc (1, sizeof (*tdep)); | |
2497 | arch = gdbarch_alloc (&info, tdep); | |
2498 | ||
2499 | /* Essential types. */ | |
2500 | make_types (arch); | |
2501 | ||
2502 | /* Address/pointer conversions. */ | |
2503 | if (mach == bfd_mach_m16c) | |
2504 | { | |
2505 | set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer); | |
2506 | set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address); | |
2507 | } | |
2508 | ||
2509 | /* Register set. */ | |
2510 | make_regs (arch); | |
2511 | ||
2512 | /* Disassembly. */ | |
2513 | set_gdbarch_print_insn (arch, print_insn_m32c); | |
2514 | ||
2515 | /* Breakpoints. */ | |
2516 | set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc); | |
2517 | ||
2518 | /* Prologue analysis and unwinding. */ | |
2519 | set_gdbarch_inner_than (arch, core_addr_lessthan); | |
2520 | set_gdbarch_skip_prologue (arch, m32c_skip_prologue); | |
2521 | set_gdbarch_unwind_pc (arch, m32c_unwind_pc); | |
2522 | set_gdbarch_unwind_sp (arch, m32c_unwind_sp); | |
2523 | #if 0 | |
2524 | /* I'm dropping the dwarf2 sniffer because it has a few problems. | |
2525 | They may be in the dwarf2 cfi code in GDB, or they may be in | |
2526 | the debug info emitted by the upstream toolchain. I don't | |
2527 | know which, but I do know that the prologue analyzer works better. | |
2528 | MVS 04/13/06 | |
2529 | */ | |
2530 | frame_unwind_append_sniffer (arch, dwarf2_frame_sniffer); | |
2531 | #endif | |
2532 | frame_unwind_append_sniffer (arch, m32c_frame_sniffer); | |
2533 | ||
2534 | /* Inferior calls. */ | |
2535 | set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call); | |
2536 | set_gdbarch_return_value (arch, m32c_return_value); | |
2537 | set_gdbarch_unwind_dummy_id (arch, m32c_unwind_dummy_id); | |
2538 | ||
2539 | /* Trampolines. */ | |
2540 | set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code); | |
2541 | ||
2542 | return arch; | |
2543 | } | |
2544 | ||
2545 | ||
2546 | void | |
2547 | _initialize_m32c_tdep (void) | |
2548 | { | |
2549 | register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init); | |
2550 | ||
2551 | m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP); | |
2552 | } |