]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the SPARC for GDB, the GNU debugger. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
1e698235 | 4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, |
cda5a58a | 5 | Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | /* ??? Support for calling functions from gdb in sparc64 is unfinished. */ | |
25 | ||
26 | #include "defs.h" | |
5af923b0 | 27 | #include "arch-utils.h" |
c906108c SS |
28 | #include "frame.h" |
29 | #include "inferior.h" | |
c906108c SS |
30 | #include "target.h" |
31 | #include "value.h" | |
32 | #include "bfd.h" | |
33 | #include "gdb_string.h" | |
4e052eda | 34 | #include "regcache.h" |
ef3cf062 | 35 | #include "osabi.h" |
c906108c SS |
36 | |
37 | #ifdef USE_PROC_FS | |
38 | #include <sys/procfs.h> | |
13437d4b KB |
39 | /* Prototypes for supply_gregset etc. */ |
40 | #include "gregset.h" | |
c906108c SS |
41 | #endif |
42 | ||
43 | #include "gdbcore.h" | |
43bd9a9e | 44 | #include "gdb_assert.h" |
c906108c | 45 | |
5af923b0 MS |
46 | #include "symfile.h" /* for 'entry_point_address' */ |
47 | ||
4eb8c7fc DM |
48 | /* |
49 | * Some local macros that have multi-arch and non-multi-arch versions: | |
50 | */ | |
51 | ||
52 | #if (GDB_MULTI_ARCH > 0) | |
53 | ||
07020390 AC |
54 | #if 0 |
55 | // OBSOLETE /* Does the target have Floating Point registers? */ | |
56 | // OBSOLETE #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu) | |
57 | #endif | |
58 | #define SPARC_HAS_FPU 1 | |
4eb8c7fc DM |
59 | /* Number of bytes devoted to Floating Point registers: */ |
60 | #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes) | |
61 | /* Highest numbered Floating Point register. */ | |
62 | #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum) | |
63 | /* Size of a general (integer) register: */ | |
64 | #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size) | |
65 | /* Offset within the call dummy stack of the saved registers. */ | |
66 | #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset) | |
67 | ||
68 | #else /* non-multi-arch */ | |
69 | ||
70 | ||
71 | /* Does the target have Floating Point registers? */ | |
f81824a9 AC |
72 | #if 0 |
73 | // OBSOLETE #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE) | |
74 | // OBSOLETE #define SPARC_HAS_FPU 0 | |
75 | // OBSOLETE #else | |
76 | // OBSOLETE #define SPARC_HAS_FPU 1 | |
77 | // OBSOLETE #endif | |
4eb8c7fc | 78 | #endif |
f81824a9 | 79 | #define SPARC_HAS_FPU 1 |
4eb8c7fc DM |
80 | |
81 | /* Number of bytes devoted to Floating Point registers: */ | |
82 | #if (GDB_TARGET_IS_SPARC64) | |
83 | #define FP_REGISTER_BYTES (64 * 4) | |
84 | #else | |
85 | #if (SPARC_HAS_FPU) | |
86 | #define FP_REGISTER_BYTES (32 * 4) | |
87 | #else | |
88 | #define FP_REGISTER_BYTES 0 | |
89 | #endif | |
90 | #endif | |
91 | ||
92 | /* Highest numbered Floating Point register. */ | |
93 | #if (GDB_TARGET_IS_SPARC64) | |
94 | #define FP_MAX_REGNUM (FP0_REGNUM + 48) | |
95 | #else | |
96 | #define FP_MAX_REGNUM (FP0_REGNUM + 32) | |
97 | #endif | |
98 | ||
99 | /* Size of a general (integer) register: */ | |
100 | #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) | |
101 | ||
102 | /* Offset within the call dummy stack of the saved registers. */ | |
103 | #if (GDB_TARGET_IS_SPARC64) | |
104 | #define DUMMY_REG_SAVE_OFFSET (128 + 16) | |
105 | #else | |
106 | #define DUMMY_REG_SAVE_OFFSET 0x60 | |
107 | #endif | |
108 | ||
109 | #endif /* GDB_MULTI_ARCH */ | |
110 | ||
111 | struct gdbarch_tdep | |
112 | { | |
f81824a9 AC |
113 | #if 0 |
114 | // OBSOLETE int has_fpu; | |
115 | #endif | |
4eb8c7fc DM |
116 | int fp_register_bytes; |
117 | int y_regnum; | |
118 | int fp_max_regnum; | |
119 | int intreg_size; | |
120 | int reg_save_offset; | |
121 | int call_dummy_call_offset; | |
122 | int print_insn_mach; | |
123 | }; | |
5af923b0 MS |
124 | |
125 | /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */ | |
126 | /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ... | |
127 | * define GDB_TARGET_IS_SPARC64 \ | |
128 | * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \ | |
129 | * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \ | |
130 | * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a)) | |
131 | */ | |
132 | ||
c906108c SS |
133 | /* From infrun.c */ |
134 | extern int stop_after_trap; | |
135 | ||
136 | /* We don't store all registers immediately when requested, since they | |
137 | get sent over in large chunks anyway. Instead, we accumulate most | |
138 | of the changes and send them over once. "deferred_stores" keeps | |
139 | track of which sets of registers we have locally-changed copies of, | |
140 | so we only need send the groups that have changed. */ | |
141 | ||
5af923b0 | 142 | int deferred_stores = 0; /* Accumulated stores we want to do eventually. */ |
c906108c SS |
143 | |
144 | ||
f81824a9 AC |
145 | #if 0 |
146 | // OBSOLETE /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode | |
147 | // OBSOLETE where instructions are big-endian and data are little-endian. | |
148 | // OBSOLETE This flag is set when we detect that the target is of this type. */ | |
149 | // OBSOLETE | |
150 | // OBSOLETE int bi_endian = 0; | |
151 | #endif | |
c906108c SS |
152 | |
153 | ||
154 | /* Fetch a single instruction. Even on bi-endian machines | |
155 | such as sparc86x, instructions are always big-endian. */ | |
156 | ||
157 | static unsigned long | |
fba45db2 | 158 | fetch_instruction (CORE_ADDR pc) |
c906108c SS |
159 | { |
160 | unsigned long retval; | |
161 | int i; | |
162 | unsigned char buf[4]; | |
163 | ||
164 | read_memory (pc, buf, sizeof (buf)); | |
165 | ||
166 | /* Start at the most significant end of the integer, and work towards | |
167 | the least significant. */ | |
168 | retval = 0; | |
169 | for (i = 0; i < sizeof (buf); ++i) | |
170 | retval = (retval << 8) | buf[i]; | |
171 | return retval; | |
172 | } | |
173 | ||
174 | ||
175 | /* Branches with prediction are treated like their non-predicting cousins. */ | |
176 | /* FIXME: What about floating point branches? */ | |
177 | ||
178 | /* Macros to extract fields from sparc instructions. */ | |
179 | #define X_OP(i) (((i) >> 30) & 0x3) | |
180 | #define X_RD(i) (((i) >> 25) & 0x1f) | |
181 | #define X_A(i) (((i) >> 29) & 1) | |
182 | #define X_COND(i) (((i) >> 25) & 0xf) | |
183 | #define X_OP2(i) (((i) >> 22) & 0x7) | |
184 | #define X_IMM22(i) ((i) & 0x3fffff) | |
185 | #define X_OP3(i) (((i) >> 19) & 0x3f) | |
186 | #define X_RS1(i) (((i) >> 14) & 0x1f) | |
187 | #define X_I(i) (((i) >> 13) & 1) | |
188 | #define X_IMM13(i) ((i) & 0x1fff) | |
189 | /* Sign extension macros. */ | |
190 | #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) | |
191 | #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) | |
192 | #define X_CC(i) (((i) >> 20) & 3) | |
193 | #define X_P(i) (((i) >> 19) & 1) | |
194 | #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) | |
195 | #define X_RCOND(i) (((i) >> 25) & 7) | |
196 | #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) | |
197 | #define X_FCN(i) (((i) >> 25) & 31) | |
198 | ||
199 | typedef enum | |
200 | { | |
5af923b0 MS |
201 | Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry |
202 | } branch_type; | |
c906108c SS |
203 | |
204 | /* Simulate single-step ptrace call for sun4. Code written by Gary | |
205 | Beihl ([email protected]). */ | |
206 | ||
207 | /* npc4 and next_pc describe the situation at the time that the | |
208 | step-breakpoint was set, not necessary the current value of NPC_REGNUM. */ | |
209 | static CORE_ADDR next_pc, npc4, target; | |
210 | static int brknpc4, brktrg; | |
211 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
212 | static binsn_quantum break_mem[3]; | |
213 | ||
5af923b0 | 214 | static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *); |
c906108c SS |
215 | |
216 | /* single_step() is called just before we want to resume the inferior, | |
217 | if we want to single-step it but there is no hardware or kernel single-step | |
218 | support (as on all SPARCs). We find all the possible targets of the | |
219 | coming instruction and breakpoint them. | |
220 | ||
221 | single_step is also called just after the inferior stops. If we had | |
222 | set up a simulated single-step, we undo our damage. */ | |
223 | ||
224 | void | |
fba45db2 KB |
225 | sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */ |
226 | int insert_breakpoints_p) | |
c906108c SS |
227 | { |
228 | branch_type br; | |
229 | CORE_ADDR pc; | |
230 | long pc_instruction; | |
231 | ||
232 | if (insert_breakpoints_p) | |
233 | { | |
234 | /* Always set breakpoint for NPC. */ | |
235 | next_pc = read_register (NPC_REGNUM); | |
c5aa993b | 236 | npc4 = next_pc + 4; /* branch not taken */ |
c906108c SS |
237 | |
238 | target_insert_breakpoint (next_pc, break_mem[0]); | |
239 | /* printf_unfiltered ("set break at %x\n",next_pc); */ | |
240 | ||
241 | pc = read_register (PC_REGNUM); | |
242 | pc_instruction = fetch_instruction (pc); | |
243 | br = isbranch (pc_instruction, pc, &target); | |
244 | brknpc4 = brktrg = 0; | |
245 | ||
246 | if (br == bicca) | |
247 | { | |
248 | /* Conditional annulled branch will either end up at | |
249 | npc (if taken) or at npc+4 (if not taken). | |
250 | Trap npc+4. */ | |
251 | brknpc4 = 1; | |
252 | target_insert_breakpoint (npc4, break_mem[1]); | |
253 | } | |
254 | else if (br == baa && target != next_pc) | |
255 | { | |
256 | /* Unconditional annulled branch will always end up at | |
257 | the target. */ | |
258 | brktrg = 1; | |
259 | target_insert_breakpoint (target, break_mem[2]); | |
260 | } | |
5af923b0 | 261 | else if (GDB_TARGET_IS_SPARC64 && br == done_retry) |
c906108c SS |
262 | { |
263 | brktrg = 1; | |
264 | target_insert_breakpoint (target, break_mem[2]); | |
265 | } | |
c906108c SS |
266 | } |
267 | else | |
268 | { | |
269 | /* Remove breakpoints */ | |
270 | target_remove_breakpoint (next_pc, break_mem[0]); | |
271 | ||
272 | if (brknpc4) | |
273 | target_remove_breakpoint (npc4, break_mem[1]); | |
274 | ||
275 | if (brktrg) | |
276 | target_remove_breakpoint (target, break_mem[2]); | |
277 | } | |
278 | } | |
279 | \f | |
5af923b0 MS |
280 | struct frame_extra_info |
281 | { | |
282 | CORE_ADDR bottom; | |
283 | int in_prologue; | |
284 | int flat; | |
285 | /* Following fields only relevant for flat frames. */ | |
286 | CORE_ADDR pc_addr; | |
287 | CORE_ADDR fp_addr; | |
288 | /* Add this to ->frame to get the value of the stack pointer at the | |
289 | time of the register saves. */ | |
290 | int sp_offset; | |
291 | }; | |
292 | ||
293 | /* Call this for each newly created frame. For SPARC, we need to | |
294 | calculate the bottom of the frame, and do some extra work if the | |
295 | prologue has been generated via the -mflat option to GCC. In | |
296 | particular, we need to know where the previous fp and the pc have | |
297 | been stashed, since their exact position within the frame may vary. */ | |
c906108c SS |
298 | |
299 | void | |
fba45db2 | 300 | sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
301 | { |
302 | char *name; | |
303 | CORE_ADDR prologue_start, prologue_end; | |
304 | int insn; | |
305 | ||
a00a19e9 | 306 | frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info)); |
5af923b0 MS |
307 | frame_saved_regs_zalloc (fi); |
308 | ||
da50a4b7 | 309 | get_frame_extra_info (fi)->bottom = |
11c02a10 AC |
310 | (get_next_frame (fi) |
311 | ? (get_frame_base (fi) == get_frame_base (get_next_frame (fi)) | |
da50a4b7 | 312 | ? get_frame_extra_info (get_next_frame (fi))->bottom |
11c02a10 AC |
313 | : get_frame_base (get_next_frame (fi))) |
314 | : read_sp ()); | |
c906108c | 315 | |
0ba6dca9 AC |
316 | /* If fi->next is NULL, then we already set ->frame by passing |
317 | deprecated_read_fp() to create_new_frame. */ | |
11c02a10 | 318 | if (get_next_frame (fi)) |
c906108c | 319 | { |
5af923b0 MS |
320 | char *buf; |
321 | ||
322 | buf = alloca (MAX_REGISTER_RAW_SIZE); | |
c906108c SS |
323 | |
324 | /* Compute ->frame as if not flat. If it is flat, we'll change | |
c5aa993b | 325 | it later. */ |
11c02a10 AC |
326 | if (get_next_frame (get_next_frame (fi)) != NULL |
327 | && ((get_frame_type (get_next_frame (get_next_frame (fi))) == SIGTRAMP_FRAME) | |
328 | || deprecated_frame_in_dummy (get_next_frame (get_next_frame (fi)))) | |
329 | && frameless_look_for_prologue (get_next_frame (fi))) | |
c906108c SS |
330 | { |
331 | /* A frameless function interrupted by a signal did not change | |
332 | the frame pointer, fix up frame pointer accordingly. */ | |
11c02a10 | 333 | deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi))); |
da50a4b7 AC |
334 | get_frame_extra_info (fi)->bottom = |
335 | get_frame_extra_info (get_next_frame (fi))->bottom; | |
c906108c SS |
336 | } |
337 | else | |
338 | { | |
339 | /* Should we adjust for stack bias here? */ | |
ac2adee5 | 340 | ULONGEST tmp; |
0ba6dca9 | 341 | frame_read_unsigned_register (fi, DEPRECATED_FP_REGNUM, &tmp); |
ac2adee5 | 342 | deprecated_update_frame_base_hack (fi, tmp); |
1e2330ba AC |
343 | if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1)) |
344 | deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047); | |
c906108c SS |
345 | } |
346 | } | |
347 | ||
348 | /* Decide whether this is a function with a ``flat register window'' | |
349 | frame. For such functions, the frame pointer is actually in %i7. */ | |
da50a4b7 AC |
350 | get_frame_extra_info (fi)->flat = 0; |
351 | get_frame_extra_info (fi)->in_prologue = 0; | |
50abf9e5 | 352 | if (find_pc_partial_function (get_frame_pc (fi), &name, &prologue_start, &prologue_end)) |
c906108c SS |
353 | { |
354 | /* See if the function starts with an add (which will be of a | |
c5aa993b JM |
355 | negative number if a flat frame) to the sp. FIXME: Does not |
356 | handle large frames which will need more than one instruction | |
357 | to adjust the sp. */ | |
d0901120 | 358 | insn = fetch_instruction (prologue_start); |
c906108c SS |
359 | if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 |
360 | && X_I (insn) && X_SIMM13 (insn) < 0) | |
361 | { | |
362 | int offset = X_SIMM13 (insn); | |
363 | ||
364 | /* Then look for a save of %i7 into the frame. */ | |
365 | insn = fetch_instruction (prologue_start + 4); | |
366 | if (X_OP (insn) == 3 | |
367 | && X_RD (insn) == 31 | |
368 | && X_OP3 (insn) == 4 | |
369 | && X_RS1 (insn) == 14) | |
370 | { | |
5af923b0 MS |
371 | char *buf; |
372 | ||
373 | buf = alloca (MAX_REGISTER_RAW_SIZE); | |
c906108c SS |
374 | |
375 | /* We definitely have a flat frame now. */ | |
da50a4b7 | 376 | get_frame_extra_info (fi)->flat = 1; |
c906108c | 377 | |
da50a4b7 | 378 | get_frame_extra_info (fi)->sp_offset = offset; |
c906108c SS |
379 | |
380 | /* Overwrite the frame's address with the value in %i7. */ | |
ac2adee5 AC |
381 | { |
382 | ULONGEST tmp; | |
383 | frame_read_unsigned_register (fi, I7_REGNUM, &tmp); | |
384 | deprecated_update_frame_base_hack (fi, tmp); | |
385 | } | |
5af923b0 | 386 | |
1e2330ba AC |
387 | if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1)) |
388 | deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047); | |
5af923b0 | 389 | |
c906108c | 390 | /* Record where the fp got saved. */ |
da50a4b7 AC |
391 | get_frame_extra_info (fi)->fp_addr = |
392 | get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn); | |
c906108c SS |
393 | |
394 | /* Also try to collect where the pc got saved to. */ | |
da50a4b7 | 395 | get_frame_extra_info (fi)->pc_addr = 0; |
c906108c SS |
396 | insn = fetch_instruction (prologue_start + 12); |
397 | if (X_OP (insn) == 3 | |
398 | && X_RD (insn) == 15 | |
399 | && X_OP3 (insn) == 4 | |
400 | && X_RS1 (insn) == 14) | |
da50a4b7 AC |
401 | get_frame_extra_info (fi)->pc_addr = |
402 | get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn); | |
c906108c SS |
403 | } |
404 | } | |
c5aa993b JM |
405 | else |
406 | { | |
407 | /* Check if the PC is in the function prologue before a SAVE | |
408 | instruction has been executed yet. If so, set the frame | |
409 | to the current value of the stack pointer and set | |
410 | the in_prologue flag. */ | |
411 | CORE_ADDR addr; | |
412 | struct symtab_and_line sal; | |
413 | ||
414 | sal = find_pc_line (prologue_start, 0); | |
415 | if (sal.line == 0) /* no line info, use PC */ | |
50abf9e5 | 416 | prologue_end = get_frame_pc (fi); |
c5aa993b JM |
417 | else if (sal.end < prologue_end) |
418 | prologue_end = sal.end; | |
50abf9e5 | 419 | if (get_frame_pc (fi) < prologue_end) |
c5aa993b | 420 | { |
50abf9e5 | 421 | for (addr = prologue_start; addr < get_frame_pc (fi); addr += 4) |
c5aa993b JM |
422 | { |
423 | insn = read_memory_integer (addr, 4); | |
424 | if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c) | |
425 | break; /* SAVE seen, stop searching */ | |
426 | } | |
50abf9e5 | 427 | if (addr >= get_frame_pc (fi)) |
c5aa993b | 428 | { |
da50a4b7 | 429 | get_frame_extra_info (fi)->in_prologue = 1; |
8ccd593b | 430 | deprecated_update_frame_base_hack (fi, read_register (SP_REGNUM)); |
c5aa993b JM |
431 | } |
432 | } | |
433 | } | |
c906108c | 434 | } |
11c02a10 | 435 | if (get_next_frame (fi) && get_frame_base (fi) == 0) |
c906108c SS |
436 | { |
437 | /* Kludge to cause init_prev_frame_info to destroy the new frame. */ | |
11c02a10 AC |
438 | deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi))); |
439 | deprecated_update_frame_pc_hack (fi, get_frame_pc (get_next_frame (fi))); | |
c906108c SS |
440 | } |
441 | } | |
442 | ||
443 | CORE_ADDR | |
fba45db2 | 444 | sparc_frame_chain (struct frame_info *frame) |
c906108c | 445 | { |
618ce49f AC |
446 | /* Value that will cause DEPRECATED_FRAME_CHAIN_VALID to not worry |
447 | about the chain value. If it really is zero, we detect it later | |
448 | in sparc_init_prev_frame. | |
881324eb | 449 | |
e6ba3bc9 AC |
450 | Note: kevinb/2003-02-18: The constant 1 used to be returned here, |
451 | but, after some recent changes to legacy_frame_chain_valid(), | |
452 | this value is no longer suitable for causing | |
453 | legacy_frame_chain_valid() to "not worry about the chain value." | |
454 | The constant ~0 (i.e, 0xfff...) causes the failing test in | |
455 | legacy_frame_chain_valid() to succeed thus preserving the "not | |
456 | worry" property. I had considered using something like | |
457 | ``get_frame_base (frame) + 1''. However, I think a constant | |
458 | value is better, because when debugging this problem, I knew that | |
459 | something funny was going on as soon as I saw the constant 1 | |
460 | being used as the frame chain elsewhere in GDB. */ | |
881324eb KB |
461 | |
462 | return ~ (CORE_ADDR) 0; | |
c906108c SS |
463 | } |
464 | ||
465 | CORE_ADDR | |
fba45db2 | 466 | sparc_extract_struct_value_address (char *regbuf) |
c906108c SS |
467 | { |
468 | return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), | |
469 | REGISTER_RAW_SIZE (O0_REGNUM)); | |
470 | } | |
471 | ||
472 | /* Find the pc saved in frame FRAME. */ | |
473 | ||
474 | CORE_ADDR | |
fba45db2 | 475 | sparc_frame_saved_pc (struct frame_info *frame) |
c906108c | 476 | { |
5af923b0 | 477 | char *buf; |
c906108c SS |
478 | CORE_ADDR addr; |
479 | ||
5af923b0 | 480 | buf = alloca (MAX_REGISTER_RAW_SIZE); |
5a203e44 | 481 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
482 | { |
483 | /* This is the signal trampoline frame. | |
c5aa993b | 484 | Get the saved PC from the sigcontext structure. */ |
c906108c SS |
485 | |
486 | #ifndef SIGCONTEXT_PC_OFFSET | |
487 | #define SIGCONTEXT_PC_OFFSET 12 | |
488 | #endif | |
489 | ||
490 | CORE_ADDR sigcontext_addr; | |
5af923b0 | 491 | char *scbuf; |
c906108c SS |
492 | int saved_pc_offset = SIGCONTEXT_PC_OFFSET; |
493 | char *name = NULL; | |
494 | ||
5af923b0 MS |
495 | scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT); |
496 | ||
c906108c | 497 | /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext |
c5aa993b | 498 | as the third parameter. The offset to the saved pc is 12. */ |
50abf9e5 | 499 | find_pc_partial_function (get_frame_pc (frame), &name, |
c5aa993b | 500 | (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); |
c906108c SS |
501 | if (name && STREQ (name, "ucbsigvechandler")) |
502 | saved_pc_offset = 12; | |
503 | ||
504 | /* The sigcontext address is contained in register O2. */ | |
ac2adee5 AC |
505 | { |
506 | ULONGEST tmp; | |
507 | frame_read_unsigned_register (frame, O0_REGNUM + 2, &tmp); | |
508 | sigcontext_addr = tmp; | |
509 | } | |
c906108c SS |
510 | |
511 | /* Don't cause a memory_error when accessing sigcontext in case the | |
c5aa993b | 512 | stack layout has changed or the stack is corrupt. */ |
c906108c SS |
513 | target_read_memory (sigcontext_addr + saved_pc_offset, |
514 | scbuf, sizeof (scbuf)); | |
515 | return extract_address (scbuf, sizeof (scbuf)); | |
516 | } | |
da50a4b7 | 517 | else if (get_frame_extra_info (frame)->in_prologue || |
11c02a10 AC |
518 | (get_next_frame (frame) != NULL && |
519 | ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) || | |
520 | deprecated_frame_in_dummy (get_next_frame (frame))) && | |
5af923b0 | 521 | frameless_look_for_prologue (frame))) |
c906108c SS |
522 | { |
523 | /* A frameless function interrupted by a signal did not save | |
c5aa993b | 524 | the PC, it is still in %o7. */ |
ac2adee5 AC |
525 | ULONGEST tmp; |
526 | frame_read_unsigned_register (frame, O7_REGNUM, &tmp); | |
527 | return PC_ADJUST (tmp); | |
c906108c | 528 | } |
da50a4b7 AC |
529 | if (get_frame_extra_info (frame)->flat) |
530 | addr = get_frame_extra_info (frame)->pc_addr; | |
c906108c | 531 | else |
da50a4b7 | 532 | addr = get_frame_extra_info (frame)->bottom + FRAME_SAVED_I0 + |
c906108c SS |
533 | SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); |
534 | ||
535 | if (addr == 0) | |
536 | /* A flat frame leaf function might not save the PC anywhere, | |
537 | just leave it in %o7. */ | |
538 | return PC_ADJUST (read_register (O7_REGNUM)); | |
539 | ||
540 | read_memory (addr, buf, SPARC_INTREG_SIZE); | |
541 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); | |
542 | } | |
543 | ||
544 | /* Since an individual frame in the frame cache is defined by two | |
545 | arguments (a frame pointer and a stack pointer), we need two | |
546 | arguments to get info for an arbitrary stack frame. This routine | |
547 | takes two arguments and makes the cached frames look as if these | |
548 | two arguments defined a frame on the cache. This allows the rest | |
549 | of info frame to extract the important arguments without | |
550 | difficulty. */ | |
551 | ||
552 | struct frame_info * | |
fba45db2 | 553 | setup_arbitrary_frame (int argc, CORE_ADDR *argv) |
c906108c SS |
554 | { |
555 | struct frame_info *frame; | |
556 | ||
557 | if (argc != 2) | |
558 | error ("Sparc frame specifications require two arguments: fp and sp"); | |
559 | ||
560 | frame = create_new_frame (argv[0], 0); | |
561 | ||
562 | if (!frame) | |
8e65ff28 AC |
563 | internal_error (__FILE__, __LINE__, |
564 | "create_new_frame returned invalid frame"); | |
c5aa993b | 565 | |
da50a4b7 | 566 | get_frame_extra_info (frame)->bottom = argv[1]; |
8bedc050 | 567 | deprecated_update_frame_pc_hack (frame, DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
568 | return frame; |
569 | } | |
570 | ||
571 | /* Given a pc value, skip it forward past the function prologue by | |
572 | disassembling instructions that appear to be a prologue. | |
573 | ||
574 | If FRAMELESS_P is set, we are only testing to see if the function | |
575 | is frameless. This allows a quicker answer. | |
576 | ||
577 | This routine should be more specific in its actions; making sure | |
578 | that it uses the same register in the initial prologue section. */ | |
579 | ||
5af923b0 MS |
580 | static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *, |
581 | CORE_ADDR *); | |
c906108c | 582 | |
c5aa993b | 583 | static CORE_ADDR |
fba45db2 KB |
584 | examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi, |
585 | CORE_ADDR *saved_regs) | |
c906108c SS |
586 | { |
587 | int insn; | |
588 | int dest = -1; | |
589 | CORE_ADDR pc = start_pc; | |
590 | int is_flat = 0; | |
591 | ||
592 | insn = fetch_instruction (pc); | |
593 | ||
594 | /* Recognize the `sethi' insn and record its destination. */ | |
595 | if (X_OP (insn) == 0 && X_OP2 (insn) == 4) | |
596 | { | |
597 | dest = X_RD (insn); | |
598 | pc += 4; | |
599 | insn = fetch_instruction (pc); | |
600 | } | |
601 | ||
602 | /* Recognize an add immediate value to register to either %g1 or | |
603 | the destination register recorded above. Actually, this might | |
604 | well recognize several different arithmetic operations. | |
605 | It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" | |
606 | followed by "save %sp, %g1, %sp" is a valid prologue (Not that | |
607 | I imagine any compiler really does that, however). */ | |
608 | if (X_OP (insn) == 2 | |
609 | && X_I (insn) | |
610 | && (X_RD (insn) == 1 || X_RD (insn) == dest)) | |
611 | { | |
612 | pc += 4; | |
613 | insn = fetch_instruction (pc); | |
614 | } | |
615 | ||
616 | /* Recognize any SAVE insn. */ | |
617 | if (X_OP (insn) == 2 && X_OP3 (insn) == 60) | |
618 | { | |
619 | pc += 4; | |
c5aa993b JM |
620 | if (frameless_p) /* If the save is all we care about, */ |
621 | return pc; /* return before doing more work */ | |
c906108c SS |
622 | insn = fetch_instruction (pc); |
623 | } | |
624 | /* Recognize add to %sp. */ | |
625 | else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) | |
626 | { | |
627 | pc += 4; | |
c5aa993b JM |
628 | if (frameless_p) /* If the add is all we care about, */ |
629 | return pc; /* return before doing more work */ | |
c906108c SS |
630 | is_flat = 1; |
631 | insn = fetch_instruction (pc); | |
632 | /* Recognize store of frame pointer (i7). */ | |
633 | if (X_OP (insn) == 3 | |
634 | && X_RD (insn) == 31 | |
635 | && X_OP3 (insn) == 4 | |
636 | && X_RS1 (insn) == 14) | |
637 | { | |
638 | pc += 4; | |
639 | insn = fetch_instruction (pc); | |
640 | ||
641 | /* Recognize sub %sp, <anything>, %i7. */ | |
c5aa993b | 642 | if (X_OP (insn) == 2 |
c906108c SS |
643 | && X_OP3 (insn) == 4 |
644 | && X_RS1 (insn) == 14 | |
645 | && X_RD (insn) == 31) | |
646 | { | |
647 | pc += 4; | |
648 | insn = fetch_instruction (pc); | |
649 | } | |
650 | else | |
651 | return pc; | |
652 | } | |
653 | else | |
654 | return pc; | |
655 | } | |
656 | else | |
657 | /* Without a save or add instruction, it's not a prologue. */ | |
658 | return start_pc; | |
659 | ||
660 | while (1) | |
661 | { | |
662 | /* Recognize stores into the frame from the input registers. | |
5af923b0 MS |
663 | This recognizes all non alternate stores of an input register, |
664 | into a location offset from the frame pointer between | |
665 | +68 and +92. */ | |
666 | ||
667 | /* The above will fail for arguments that are promoted | |
668 | (eg. shorts to ints or floats to doubles), because the compiler | |
669 | will pass them in positive-offset frame space, but the prologue | |
670 | will save them (after conversion) in negative frame space at an | |
671 | unpredictable offset. Therefore I am going to remove the | |
672 | restriction on the target-address of the save, on the theory | |
673 | that any unbroken sequence of saves from input registers must | |
674 | be part of the prologue. In un-optimized code (at least), I'm | |
675 | fairly sure that the compiler would emit SOME other instruction | |
676 | (eg. a move or add) before emitting another save that is actually | |
677 | a part of the function body. | |
678 | ||
679 | Besides, the reserved stack space is different for SPARC64 anyway. | |
680 | ||
681 | MVS 4/23/2000 */ | |
682 | ||
683 | if (X_OP (insn) == 3 | |
684 | && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ | |
685 | && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ | |
686 | && X_I (insn) /* Immediate mode. */ | |
687 | && X_RS1 (insn) == 30) /* Off of frame pointer. */ | |
688 | ; /* empty statement -- fall thru to end of loop */ | |
689 | else if (GDB_TARGET_IS_SPARC64 | |
690 | && X_OP (insn) == 3 | |
691 | && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */ | |
692 | && (X_RD (insn) & 0x18) == 0x18 /* input register */ | |
693 | && X_I (insn) /* immediate mode */ | |
694 | && X_RS1 (insn) == 30) /* off of frame pointer */ | |
695 | ; /* empty statement -- fall thru to end of loop */ | |
696 | else if (X_OP (insn) == 3 | |
697 | && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */ | |
698 | && X_I (insn) /* immediate mode */ | |
699 | && X_RS1 (insn) == 30) /* off of frame pointer */ | |
700 | ; /* empty statement -- fall thru to end of loop */ | |
c906108c SS |
701 | else if (is_flat |
702 | && X_OP (insn) == 3 | |
5af923b0 MS |
703 | && X_OP3 (insn) == 4 /* store? */ |
704 | && X_RS1 (insn) == 14) /* off of frame pointer */ | |
c906108c SS |
705 | { |
706 | if (saved_regs && X_I (insn)) | |
5af923b0 | 707 | saved_regs[X_RD (insn)] = |
da50a4b7 | 708 | get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn); |
c906108c SS |
709 | } |
710 | else | |
711 | break; | |
712 | pc += 4; | |
713 | insn = fetch_instruction (pc); | |
714 | } | |
715 | ||
716 | return pc; | |
717 | } | |
718 | ||
f510d44e DM |
719 | /* Advance PC across any function entry prologue instructions to reach |
720 | some "real" code. */ | |
721 | ||
c5aa993b | 722 | CORE_ADDR |
f510d44e | 723 | sparc_skip_prologue (CORE_ADDR start_pc) |
c906108c | 724 | { |
f510d44e DM |
725 | struct symtab_and_line sal; |
726 | CORE_ADDR func_start, func_end; | |
727 | ||
728 | /* This is the preferred method, find the end of the prologue by | |
729 | using the debugging information. */ | |
730 | if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end)) | |
731 | { | |
732 | sal = find_pc_line (func_start, 0); | |
733 | ||
734 | if (sal.end < func_end | |
735 | && start_pc <= sal.end) | |
736 | return sal.end; | |
737 | } | |
738 | ||
739 | /* Oh well, examine the code by hand. */ | |
740 | return examine_prologue (start_pc, 0, NULL, NULL); | |
c906108c SS |
741 | } |
742 | ||
9319a2fe DM |
743 | /* Is the prologue at IP frameless? */ |
744 | ||
745 | int | |
746 | sparc_prologue_frameless_p (CORE_ADDR ip) | |
747 | { | |
f510d44e | 748 | return ip == examine_prologue (ip, 1, NULL, NULL); |
9319a2fe DM |
749 | } |
750 | ||
c906108c SS |
751 | /* Check instruction at ADDR to see if it is a branch. |
752 | All non-annulled instructions will go to NPC or will trap. | |
753 | Set *TARGET if we find a candidate branch; set to zero if not. | |
754 | ||
755 | This isn't static as it's used by remote-sa.sparc.c. */ | |
756 | ||
757 | static branch_type | |
fba45db2 | 758 | isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target) |
c906108c SS |
759 | { |
760 | branch_type val = not_branch; | |
761 | long int offset = 0; /* Must be signed for sign-extend. */ | |
762 | ||
763 | *target = 0; | |
764 | ||
765 | if (X_OP (instruction) == 0 | |
766 | && (X_OP2 (instruction) == 2 | |
767 | || X_OP2 (instruction) == 6 | |
768 | || X_OP2 (instruction) == 1 | |
769 | || X_OP2 (instruction) == 3 | |
770 | || X_OP2 (instruction) == 5 | |
5af923b0 | 771 | || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7))) |
c906108c SS |
772 | { |
773 | if (X_COND (instruction) == 8) | |
774 | val = X_A (instruction) ? baa : ba; | |
775 | else | |
776 | val = X_A (instruction) ? bicca : bicc; | |
777 | switch (X_OP2 (instruction)) | |
778 | { | |
5af923b0 MS |
779 | case 7: |
780 | if (!GDB_TARGET_IS_SPARC64) | |
781 | break; | |
782 | /* else fall thru */ | |
c906108c SS |
783 | case 2: |
784 | case 6: | |
c906108c SS |
785 | offset = 4 * X_DISP22 (instruction); |
786 | break; | |
787 | case 1: | |
788 | case 5: | |
789 | offset = 4 * X_DISP19 (instruction); | |
790 | break; | |
791 | case 3: | |
792 | offset = 4 * X_DISP16 (instruction); | |
793 | break; | |
794 | } | |
795 | *target = addr + offset; | |
796 | } | |
5af923b0 MS |
797 | else if (GDB_TARGET_IS_SPARC64 |
798 | && X_OP (instruction) == 2 | |
c906108c SS |
799 | && X_OP3 (instruction) == 62) |
800 | { | |
801 | if (X_FCN (instruction) == 0) | |
802 | { | |
803 | /* done */ | |
804 | *target = read_register (TNPC_REGNUM); | |
805 | val = done_retry; | |
806 | } | |
807 | else if (X_FCN (instruction) == 1) | |
808 | { | |
809 | /* retry */ | |
810 | *target = read_register (TPC_REGNUM); | |
811 | val = done_retry; | |
812 | } | |
813 | } | |
c906108c SS |
814 | |
815 | return val; | |
816 | } | |
817 | \f | |
818 | /* Find register number REGNUM relative to FRAME and put its | |
819 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
820 | was optimized out (and thus can't be fetched). If the variable | |
821 | was fetched from memory, set *ADDRP to where it was fetched from, | |
822 | otherwise it was fetched from a register. | |
823 | ||
824 | The argument RAW_BUFFER must point to aligned memory. */ | |
825 | ||
826 | void | |
fba45db2 KB |
827 | sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, |
828 | struct frame_info *frame, int regnum, | |
829 | enum lval_type *lval) | |
c906108c SS |
830 | { |
831 | struct frame_info *frame1; | |
832 | CORE_ADDR addr; | |
833 | ||
834 | if (!target_has_registers) | |
835 | error ("No registers."); | |
836 | ||
837 | if (optimized) | |
838 | *optimized = 0; | |
839 | ||
840 | addr = 0; | |
841 | ||
842 | /* FIXME This code extracted from infcmd.c; should put elsewhere! */ | |
843 | if (frame == NULL) | |
844 | { | |
845 | /* error ("No selected frame."); */ | |
846 | if (!target_has_registers) | |
c5aa993b | 847 | error ("The program has no registers now."); |
6e7f8b9c | 848 | if (deprecated_selected_frame == NULL) |
c5aa993b | 849 | error ("No selected frame."); |
c906108c | 850 | /* Try to use selected frame */ |
6e7f8b9c | 851 | frame = get_prev_frame (deprecated_selected_frame); |
c906108c | 852 | if (frame == 0) |
c5aa993b | 853 | error ("Cmd not meaningful in the outermost frame."); |
c906108c SS |
854 | } |
855 | ||
856 | ||
11c02a10 | 857 | frame1 = get_next_frame (frame); |
c906108c SS |
858 | |
859 | /* Get saved PC from the frame info if not in innermost frame. */ | |
860 | if (regnum == PC_REGNUM && frame1 != NULL) | |
861 | { | |
862 | if (lval != NULL) | |
863 | *lval = not_lval; | |
864 | if (raw_buffer != NULL) | |
865 | { | |
866 | /* Put it back in target format. */ | |
50abf9e5 | 867 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), get_frame_pc (frame)); |
c906108c SS |
868 | } |
869 | if (addrp != NULL) | |
870 | *addrp = 0; | |
871 | return; | |
872 | } | |
873 | ||
874 | while (frame1 != NULL) | |
875 | { | |
5af923b0 MS |
876 | /* FIXME MVS: wrong test for dummy frame at entry. */ |
877 | ||
da50a4b7 AC |
878 | if (get_frame_pc (frame1) >= (get_frame_extra_info (frame1)->bottom |
879 | ? get_frame_extra_info (frame1)->bottom | |
880 | : read_sp ()) | |
50abf9e5 | 881 | && get_frame_pc (frame1) <= get_frame_base (frame1)) |
c906108c SS |
882 | { |
883 | /* Dummy frame. All but the window regs are in there somewhere. | |
884 | The window registers are saved on the stack, just like in a | |
885 | normal frame. */ | |
886 | if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) | |
1e2330ba | 887 | addr = get_frame_base (frame1) + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
c906108c SS |
888 | - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); |
889 | else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
f621c63e AC |
890 | /* NOTE: cagney/2002-05-04: The call to get_prev_frame() |
891 | is safe/cheap - there will always be a prev frame. | |
892 | This is because frame1 is initialized to frame->next | |
893 | (frame1->prev == frame) and is then advanced towards | |
894 | the innermost (next) frame. */ | |
da50a4b7 | 895 | addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom |
c906108c SS |
896 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
897 | + FRAME_SAVED_I0); | |
898 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
f621c63e AC |
899 | /* NOTE: cagney/2002-05-04: The call to get_prev_frame() |
900 | is safe/cheap - there will always be a prev frame. | |
901 | This is because frame1 is initialized to frame->next | |
902 | (frame1->prev == frame) and is then advanced towards | |
903 | the innermost (next) frame. */ | |
da50a4b7 | 904 | addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom |
c906108c SS |
905 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
906 | + FRAME_SAVED_L0); | |
907 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
1e2330ba | 908 | addr = get_frame_base (frame1) + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE |
c906108c | 909 | - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); |
5af923b0 | 910 | else if (SPARC_HAS_FPU && |
60054393 | 911 | regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32) |
1e2330ba | 912 | addr = get_frame_base (frame1) + (regnum - FP0_REGNUM) * 4 |
c906108c | 913 | - (FP_REGISTER_BYTES); |
5af923b0 | 914 | else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU && |
60054393 | 915 | regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM) |
1e2330ba | 916 | addr = get_frame_base (frame1) + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 |
c906108c | 917 | - (FP_REGISTER_BYTES); |
c906108c | 918 | else if (regnum >= Y_REGNUM && regnum < NUM_REGS) |
1e2330ba | 919 | addr = get_frame_base (frame1) + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE |
c906108c SS |
920 | - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); |
921 | } | |
da50a4b7 | 922 | else if (get_frame_extra_info (frame1)->flat) |
c906108c SS |
923 | { |
924 | ||
925 | if (regnum == RP_REGNUM) | |
da50a4b7 | 926 | addr = get_frame_extra_info (frame1)->pc_addr; |
c906108c | 927 | else if (regnum == I7_REGNUM) |
da50a4b7 | 928 | addr = get_frame_extra_info (frame1)->fp_addr; |
c906108c SS |
929 | else |
930 | { | |
931 | CORE_ADDR func_start; | |
5af923b0 MS |
932 | CORE_ADDR *regs; |
933 | ||
934 | regs = alloca (NUM_REGS * sizeof (CORE_ADDR)); | |
935 | memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR)); | |
c906108c | 936 | |
50abf9e5 | 937 | find_pc_partial_function (get_frame_pc (frame1), NULL, &func_start, NULL); |
5af923b0 MS |
938 | examine_prologue (func_start, 0, frame1, regs); |
939 | addr = regs[regnum]; | |
c906108c SS |
940 | } |
941 | } | |
942 | else | |
943 | { | |
944 | /* Normal frame. Local and In registers are saved on stack. */ | |
945 | if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
da50a4b7 | 946 | addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom |
c906108c SS |
947 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
948 | + FRAME_SAVED_I0); | |
949 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
da50a4b7 | 950 | addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom |
c906108c SS |
951 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
952 | + FRAME_SAVED_L0); | |
953 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
954 | { | |
955 | /* Outs become ins. */ | |
ac2adee5 AC |
956 | int realnum; |
957 | frame_register (frame1, (regnum - O0_REGNUM + I0_REGNUM), | |
958 | optimized, lval, addrp, &realnum, raw_buffer); | |
c906108c SS |
959 | return; |
960 | } | |
961 | } | |
962 | if (addr != 0) | |
963 | break; | |
11c02a10 | 964 | frame1 = get_next_frame (frame1); |
c906108c SS |
965 | } |
966 | if (addr != 0) | |
967 | { | |
968 | if (lval != NULL) | |
969 | *lval = lval_memory; | |
970 | if (regnum == SP_REGNUM) | |
971 | { | |
972 | if (raw_buffer != NULL) | |
973 | { | |
974 | /* Put it back in target format. */ | |
975 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); | |
976 | } | |
977 | if (addrp != NULL) | |
978 | *addrp = 0; | |
979 | return; | |
980 | } | |
981 | if (raw_buffer != NULL) | |
982 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
983 | } | |
984 | else | |
985 | { | |
986 | if (lval != NULL) | |
987 | *lval = lval_register; | |
988 | addr = REGISTER_BYTE (regnum); | |
989 | if (raw_buffer != NULL) | |
4caf0990 | 990 | deprecated_read_register_gen (regnum, raw_buffer); |
c906108c SS |
991 | } |
992 | if (addrp != NULL) | |
993 | *addrp = addr; | |
994 | } | |
995 | ||
996 | /* Push an empty stack frame, and record in it the current PC, regs, etc. | |
997 | ||
998 | We save the non-windowed registers and the ins. The locals and outs | |
999 | are new; they don't need to be saved. The i's and l's of | |
1000 | the last frame were already saved on the stack. */ | |
1001 | ||
1002 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
1003 | ||
c906108c | 1004 | /* See tm-sparc.h for how this is calculated. */ |
5af923b0 | 1005 | |
c906108c | 1006 | #define DUMMY_STACK_REG_BUF_SIZE \ |
60054393 | 1007 | (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES) |
5af923b0 MS |
1008 | #define DUMMY_STACK_SIZE \ |
1009 | (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) | |
c906108c SS |
1010 | |
1011 | void | |
fba45db2 | 1012 | sparc_push_dummy_frame (void) |
c906108c SS |
1013 | { |
1014 | CORE_ADDR sp, old_sp; | |
5af923b0 MS |
1015 | char *register_temp; |
1016 | ||
1017 | register_temp = alloca (DUMMY_STACK_SIZE); | |
c906108c SS |
1018 | |
1019 | old_sp = sp = read_sp (); | |
1020 | ||
5af923b0 MS |
1021 | if (GDB_TARGET_IS_SPARC64) |
1022 | { | |
1023 | /* PC, NPC, CCR, FSR, FPRS, Y, ASI */ | |
73937e03 AC |
1024 | deprecated_read_register_bytes (REGISTER_BYTE (PC_REGNUM), |
1025 | ®ister_temp[0], | |
1026 | REGISTER_RAW_SIZE (PC_REGNUM) * 7); | |
1027 | deprecated_read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), | |
1028 | ®ister_temp[7 * SPARC_INTREG_SIZE], | |
1029 | REGISTER_RAW_SIZE (PSTATE_REGNUM)); | |
5af923b0 MS |
1030 | /* FIXME: not sure what needs to be saved here. */ |
1031 | } | |
1032 | else | |
1033 | { | |
1034 | /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ | |
73937e03 AC |
1035 | deprecated_read_register_bytes (REGISTER_BYTE (Y_REGNUM), |
1036 | ®ister_temp[0], | |
1037 | REGISTER_RAW_SIZE (Y_REGNUM) * 8); | |
5af923b0 | 1038 | } |
c906108c | 1039 | |
73937e03 AC |
1040 | deprecated_read_register_bytes (REGISTER_BYTE (O0_REGNUM), |
1041 | ®ister_temp[8 * SPARC_INTREG_SIZE], | |
1042 | SPARC_INTREG_SIZE * 8); | |
c906108c | 1043 | |
73937e03 AC |
1044 | deprecated_read_register_bytes (REGISTER_BYTE (G0_REGNUM), |
1045 | ®ister_temp[16 * SPARC_INTREG_SIZE], | |
1046 | SPARC_INTREG_SIZE * 8); | |
c906108c | 1047 | |
5af923b0 | 1048 | if (SPARC_HAS_FPU) |
73937e03 AC |
1049 | deprecated_read_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
1050 | ®ister_temp[24 * SPARC_INTREG_SIZE], | |
1051 | FP_REGISTER_BYTES); | |
c906108c SS |
1052 | |
1053 | sp -= DUMMY_STACK_SIZE; | |
1054 | ||
6c0e89ed | 1055 | DEPRECATED_DUMMY_WRITE_SP (sp); |
c906108c SS |
1056 | |
1057 | write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], | |
1058 | DUMMY_STACK_REG_BUF_SIZE); | |
1059 | ||
1060 | if (strcmp (target_shortname, "sim") != 0) | |
1061 | { | |
2757dd86 AC |
1062 | /* NOTE: cagney/2002-04-04: The code below originally contained |
1063 | GDB's _only_ call to write_fp(). That call was eliminated by | |
1064 | inlining the corresponding code. For the 64 bit case, the | |
1065 | old function (sparc64_write_fp) did the below although I'm | |
1066 | not clear why. The same goes for why this is only done when | |
1067 | the underlying target is a simulator. */ | |
f32e7a74 | 1068 | if (GDB_TARGET_IS_SPARC64) |
2757dd86 AC |
1069 | { |
1070 | /* Target is a 64 bit SPARC. */ | |
0ba6dca9 | 1071 | CORE_ADDR oldfp = read_register (DEPRECATED_FP_REGNUM); |
2757dd86 | 1072 | if (oldfp & 1) |
0ba6dca9 | 1073 | write_register (DEPRECATED_FP_REGNUM, old_sp - 2047); |
2757dd86 | 1074 | else |
0ba6dca9 | 1075 | write_register (DEPRECATED_FP_REGNUM, old_sp); |
2757dd86 AC |
1076 | } |
1077 | else | |
1078 | { | |
1079 | /* Target is a 32 bit SPARC. */ | |
0ba6dca9 | 1080 | write_register (DEPRECATED_FP_REGNUM, old_sp); |
2757dd86 | 1081 | } |
c906108c | 1082 | /* Set return address register for the call dummy to the current PC. */ |
c5aa993b | 1083 | write_register (I7_REGNUM, read_pc () - 8); |
c906108c SS |
1084 | } |
1085 | else | |
1086 | { | |
1087 | /* The call dummy will write this value to FP before executing | |
1088 | the 'save'. This ensures that register window flushes work | |
c5aa993b | 1089 | correctly in the simulator. */ |
0ba6dca9 | 1090 | write_register (G0_REGNUM + 1, read_register (DEPRECATED_FP_REGNUM)); |
c5aa993b | 1091 | |
c906108c SS |
1092 | /* The call dummy will write this value to FP after executing |
1093 | the 'save'. */ | |
c5aa993b JM |
1094 | write_register (G0_REGNUM + 2, old_sp); |
1095 | ||
c906108c | 1096 | /* The call dummy will write this value to the return address (%i7) after |
c5aa993b JM |
1097 | executing the 'save'. */ |
1098 | write_register (G0_REGNUM + 3, read_pc () - 8); | |
1099 | ||
c906108c | 1100 | /* Set the FP that the call dummy will be using after the 'save'. |
c5aa993b | 1101 | This makes backtraces from an inferior function call work properly. */ |
0ba6dca9 | 1102 | write_register (DEPRECATED_FP_REGNUM, old_sp); |
c906108c SS |
1103 | } |
1104 | } | |
1105 | ||
1106 | /* sparc_frame_find_saved_regs (). This function is here only because | |
1107 | pop_frame uses it. Note there is an interesting corner case which | |
1108 | I think few ports of GDB get right--if you are popping a frame | |
1109 | which does not save some register that *is* saved by a more inner | |
1110 | frame (such a frame will never be a dummy frame because dummy | |
ac2adee5 AC |
1111 | frames save all registers). |
1112 | ||
1113 | NOTE: cagney/2003-03-12: Since pop_frame has been rewritten to use | |
1114 | frame_unwind_register() the need for this function is questionable. | |
c906108c | 1115 | |
5af923b0 | 1116 | Stores, into an array of CORE_ADDR, |
c906108c SS |
1117 | the addresses of the saved registers of frame described by FRAME_INFO. |
1118 | This includes special registers such as pc and fp saved in special | |
1119 | ways in the stack frame. sp is even more special: | |
1120 | the address we return for it IS the sp for the next frame. | |
1121 | ||
1122 | Note that on register window machines, we are currently making the | |
1123 | assumption that window registers are being saved somewhere in the | |
1124 | frame in which they are being used. If they are stored in an | |
1125 | inferior frame, find_saved_register will break. | |
1126 | ||
1127 | On the Sun 4, the only time all registers are saved is when | |
1128 | a dummy frame is involved. Otherwise, the only saved registers | |
1129 | are the LOCAL and IN registers which are saved as a result | |
1130 | of the "save/restore" opcodes. This condition is determined | |
1131 | by address rather than by value. | |
1132 | ||
1133 | The "pc" is not stored in a frame on the SPARC. (What is stored | |
1134 | is a return address minus 8.) sparc_pop_frame knows how to | |
1135 | deal with that. Other routines might or might not. | |
1136 | ||
1137 | See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information | |
1138 | about how this works. */ | |
1139 | ||
5af923b0 | 1140 | static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *); |
c906108c SS |
1141 | |
1142 | static void | |
fba45db2 | 1143 | sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr) |
c906108c SS |
1144 | { |
1145 | register int regnum; | |
c193f6ac | 1146 | CORE_ADDR frame_addr = get_frame_base (fi); |
c906108c | 1147 | |
43bd9a9e | 1148 | gdb_assert (fi != NULL); |
c906108c | 1149 | |
5af923b0 | 1150 | memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR)); |
c906108c | 1151 | |
da50a4b7 AC |
1152 | if (get_frame_pc (fi) >= (get_frame_extra_info (fi)->bottom |
1153 | ? get_frame_extra_info (fi)->bottom | |
1154 | : read_sp ()) | |
50abf9e5 | 1155 | && get_frame_pc (fi) <= get_frame_base (fi)) |
c906108c SS |
1156 | { |
1157 | /* Dummy frame. All but the window regs are in there somewhere. */ | |
c5aa993b | 1158 | for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++) |
5af923b0 | 1159 | saved_regs_addr[regnum] = |
c906108c | 1160 | frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
c5aa993b | 1161 | - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE; |
5af923b0 | 1162 | |
c5aa993b | 1163 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++) |
5af923b0 | 1164 | saved_regs_addr[regnum] = |
c906108c | 1165 | frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
c5aa993b | 1166 | - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE; |
60054393 | 1167 | |
5af923b0 MS |
1168 | if (SPARC_HAS_FPU) |
1169 | for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++) | |
1170 | saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4 | |
1171 | - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; | |
1172 | ||
1173 | if (GDB_TARGET_IS_SPARC64) | |
c906108c | 1174 | { |
5af923b0 MS |
1175 | for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++) |
1176 | { | |
1177 | saved_regs_addr[regnum] = | |
1178 | frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE | |
1179 | - DUMMY_STACK_REG_BUF_SIZE; | |
1180 | } | |
1181 | saved_regs_addr[PSTATE_REGNUM] = | |
1182 | frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE; | |
c906108c | 1183 | } |
5af923b0 MS |
1184 | else |
1185 | for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) | |
1186 | saved_regs_addr[regnum] = | |
1187 | frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE | |
1188 | - DUMMY_STACK_REG_BUF_SIZE; | |
1189 | ||
da50a4b7 AC |
1190 | frame_addr = (get_frame_extra_info (fi)->bottom |
1191 | ? get_frame_extra_info (fi)->bottom | |
1192 | : read_sp ()); | |
c906108c | 1193 | } |
da50a4b7 | 1194 | else if (get_frame_extra_info (fi)->flat) |
c906108c SS |
1195 | { |
1196 | CORE_ADDR func_start; | |
50abf9e5 | 1197 | find_pc_partial_function (get_frame_pc (fi), NULL, &func_start, NULL); |
c906108c SS |
1198 | examine_prologue (func_start, 0, fi, saved_regs_addr); |
1199 | ||
1200 | /* Flat register window frame. */ | |
da50a4b7 AC |
1201 | saved_regs_addr[RP_REGNUM] = get_frame_extra_info (fi)->pc_addr; |
1202 | saved_regs_addr[I7_REGNUM] = get_frame_extra_info (fi)->fp_addr; | |
c906108c SS |
1203 | } |
1204 | else | |
1205 | { | |
1206 | /* Normal frame. Just Local and In registers */ | |
da50a4b7 AC |
1207 | frame_addr = (get_frame_extra_info (fi)->bottom |
1208 | ? get_frame_extra_info (fi)->bottom | |
1209 | : read_sp ()); | |
c5aa993b | 1210 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++) |
5af923b0 | 1211 | saved_regs_addr[regnum] = |
c906108c SS |
1212 | (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
1213 | + FRAME_SAVED_L0); | |
c5aa993b | 1214 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++) |
5af923b0 | 1215 | saved_regs_addr[regnum] = |
c906108c SS |
1216 | (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
1217 | + FRAME_SAVED_I0); | |
1218 | } | |
11c02a10 | 1219 | if (get_next_frame (fi)) |
c906108c | 1220 | { |
da50a4b7 | 1221 | if (get_frame_extra_info (fi)->flat) |
c906108c | 1222 | { |
da50a4b7 | 1223 | saved_regs_addr[O7_REGNUM] = get_frame_extra_info (fi)->pc_addr; |
c906108c SS |
1224 | } |
1225 | else | |
1226 | { | |
1227 | /* Pull off either the next frame pointer or the stack pointer */ | |
1228 | CORE_ADDR next_next_frame_addr = | |
da50a4b7 AC |
1229 | (get_frame_extra_info (get_next_frame (fi))->bottom |
1230 | ? get_frame_extra_info (get_next_frame (fi))->bottom | |
1231 | : read_sp ()); | |
c5aa993b | 1232 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++) |
5af923b0 | 1233 | saved_regs_addr[regnum] = |
c906108c SS |
1234 | (next_next_frame_addr |
1235 | + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE | |
1236 | + FRAME_SAVED_I0); | |
1237 | } | |
1238 | } | |
1239 | /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ | |
1240 | /* FIXME -- should this adjust for the sparc64 offset? */ | |
c193f6ac | 1241 | saved_regs_addr[SP_REGNUM] = get_frame_base (fi); |
c906108c SS |
1242 | } |
1243 | ||
1244 | /* Discard from the stack the innermost frame, restoring all saved registers. | |
1245 | ||
95486978 AC |
1246 | Note that the values stored in fsr by |
1247 | deprecated_get_frame_saved_regs are *in the context of the called | |
1248 | frame*. What this means is that the i regs of fsr must be restored | |
1249 | into the o regs of the (calling) frame that we pop into. We don't | |
1250 | care about the output regs of the calling frame, since unless it's | |
1251 | a dummy frame, it won't have any output regs in it. | |
c906108c SS |
1252 | |
1253 | We never have to bother with %l (local) regs, since the called routine's | |
1254 | locals get tossed, and the calling routine's locals are already saved | |
1255 | on its stack. */ | |
1256 | ||
1257 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
1258 | ||
1259 | void | |
fba45db2 | 1260 | sparc_pop_frame (void) |
c906108c SS |
1261 | { |
1262 | register struct frame_info *frame = get_current_frame (); | |
1263 | register CORE_ADDR pc; | |
5af923b0 MS |
1264 | CORE_ADDR *fsr; |
1265 | char *raw_buffer; | |
c906108c SS |
1266 | int regnum; |
1267 | ||
5af923b0 MS |
1268 | fsr = alloca (NUM_REGS * sizeof (CORE_ADDR)); |
1269 | raw_buffer = alloca (REGISTER_BYTES); | |
1270 | sparc_frame_find_saved_regs (frame, &fsr[0]); | |
1271 | if (SPARC_HAS_FPU) | |
c906108c | 1272 | { |
5af923b0 | 1273 | if (fsr[FP0_REGNUM]) |
60054393 | 1274 | { |
5af923b0 | 1275 | read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES); |
73937e03 AC |
1276 | deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
1277 | raw_buffer, FP_REGISTER_BYTES); | |
60054393 | 1278 | } |
5af923b0 | 1279 | if (!(GDB_TARGET_IS_SPARC64)) |
60054393 | 1280 | { |
5af923b0 MS |
1281 | if (fsr[FPS_REGNUM]) |
1282 | { | |
1283 | read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE); | |
4caf0990 | 1284 | deprecated_write_register_gen (FPS_REGNUM, raw_buffer); |
5af923b0 MS |
1285 | } |
1286 | if (fsr[CPS_REGNUM]) | |
1287 | { | |
1288 | read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE); | |
4caf0990 | 1289 | deprecated_write_register_gen (CPS_REGNUM, raw_buffer); |
5af923b0 | 1290 | } |
60054393 | 1291 | } |
60054393 | 1292 | } |
5af923b0 | 1293 | if (fsr[G1_REGNUM]) |
c906108c | 1294 | { |
5af923b0 | 1295 | read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); |
73937e03 AC |
1296 | deprecated_write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, |
1297 | 7 * SPARC_INTREG_SIZE); | |
c906108c SS |
1298 | } |
1299 | ||
da50a4b7 | 1300 | if (get_frame_extra_info (frame)->flat) |
c906108c SS |
1301 | { |
1302 | /* Each register might or might not have been saved, need to test | |
c5aa993b | 1303 | individually. */ |
c906108c | 1304 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) |
5af923b0 MS |
1305 | if (fsr[regnum]) |
1306 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c SS |
1307 | SPARC_INTREG_SIZE)); |
1308 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) | |
5af923b0 MS |
1309 | if (fsr[regnum]) |
1310 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c SS |
1311 | SPARC_INTREG_SIZE)); |
1312 | ||
1313 | /* Handle all outs except stack pointer (o0-o5; o7). */ | |
1314 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) | |
5af923b0 MS |
1315 | if (fsr[regnum]) |
1316 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c | 1317 | SPARC_INTREG_SIZE)); |
5af923b0 | 1318 | if (fsr[O0_REGNUM + 7]) |
c906108c | 1319 | write_register (O0_REGNUM + 7, |
5af923b0 | 1320 | read_memory_integer (fsr[O0_REGNUM + 7], |
c906108c SS |
1321 | SPARC_INTREG_SIZE)); |
1322 | ||
6c0e89ed | 1323 | DEPRECATED_DUMMY_WRITE_SP (get_frame_base (frame)); |
c906108c | 1324 | } |
5af923b0 | 1325 | else if (fsr[I0_REGNUM]) |
c906108c SS |
1326 | { |
1327 | CORE_ADDR sp; | |
1328 | ||
5af923b0 MS |
1329 | char *reg_temp; |
1330 | ||
69cdf6a2 | 1331 | reg_temp = alloca (SPARC_INTREG_SIZE * 16); |
c906108c | 1332 | |
5af923b0 | 1333 | read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); |
c906108c SS |
1334 | |
1335 | /* Get the ins and locals which we are about to restore. Just | |
c5aa993b JM |
1336 | moving the stack pointer is all that is really needed, except |
1337 | store_inferior_registers is then going to write the ins and | |
1338 | locals from the registers array, so we need to muck with the | |
1339 | registers array. */ | |
5af923b0 MS |
1340 | sp = fsr[SP_REGNUM]; |
1341 | ||
1342 | if (GDB_TARGET_IS_SPARC64 && (sp & 1)) | |
c906108c | 1343 | sp += 2047; |
5af923b0 | 1344 | |
c906108c SS |
1345 | read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); |
1346 | ||
1347 | /* Restore the out registers. | |
c5aa993b | 1348 | Among other things this writes the new stack pointer. */ |
73937e03 AC |
1349 | deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, |
1350 | SPARC_INTREG_SIZE * 8); | |
c906108c | 1351 | |
73937e03 AC |
1352 | deprecated_write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, |
1353 | SPARC_INTREG_SIZE * 16); | |
c906108c | 1354 | } |
5af923b0 MS |
1355 | |
1356 | if (!(GDB_TARGET_IS_SPARC64)) | |
1357 | if (fsr[PS_REGNUM]) | |
1358 | write_register (PS_REGNUM, | |
1359 | read_memory_integer (fsr[PS_REGNUM], | |
1360 | REGISTER_RAW_SIZE (PS_REGNUM))); | |
1361 | ||
1362 | if (fsr[Y_REGNUM]) | |
1363 | write_register (Y_REGNUM, | |
1364 | read_memory_integer (fsr[Y_REGNUM], | |
1365 | REGISTER_RAW_SIZE (Y_REGNUM))); | |
1366 | if (fsr[PC_REGNUM]) | |
c906108c SS |
1367 | { |
1368 | /* Explicitly specified PC (and maybe NPC) -- just restore them. */ | |
5af923b0 MS |
1369 | write_register (PC_REGNUM, |
1370 | read_memory_integer (fsr[PC_REGNUM], | |
1371 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
1372 | if (fsr[NPC_REGNUM]) | |
c906108c | 1373 | write_register (NPC_REGNUM, |
5af923b0 MS |
1374 | read_memory_integer (fsr[NPC_REGNUM], |
1375 | REGISTER_RAW_SIZE (NPC_REGNUM))); | |
c906108c | 1376 | } |
da50a4b7 | 1377 | else if (get_frame_extra_info (frame)->flat) |
c906108c | 1378 | { |
da50a4b7 | 1379 | if (get_frame_extra_info (frame)->pc_addr) |
c906108c | 1380 | pc = PC_ADJUST ((CORE_ADDR) |
da50a4b7 | 1381 | read_memory_integer (get_frame_extra_info (frame)->pc_addr, |
c906108c SS |
1382 | REGISTER_RAW_SIZE (PC_REGNUM))); |
1383 | else | |
1384 | { | |
1385 | /* I think this happens only in the innermost frame, if so then | |
1386 | it is a complicated way of saying | |
1387 | "pc = read_register (O7_REGNUM);". */ | |
ac2adee5 AC |
1388 | ULONGEST tmp; |
1389 | frame_read_unsigned_register (frame, O7_REGNUM, &tmp); | |
1390 | pc = PC_ADJUST (tmp); | |
c906108c SS |
1391 | } |
1392 | ||
c5aa993b | 1393 | write_register (PC_REGNUM, pc); |
c906108c SS |
1394 | write_register (NPC_REGNUM, pc + 4); |
1395 | } | |
5af923b0 | 1396 | else if (fsr[I7_REGNUM]) |
c906108c SS |
1397 | { |
1398 | /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ | |
5af923b0 | 1399 | pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM], |
c906108c | 1400 | SPARC_INTREG_SIZE)); |
c5aa993b | 1401 | write_register (PC_REGNUM, pc); |
c906108c SS |
1402 | write_register (NPC_REGNUM, pc + 4); |
1403 | } | |
1404 | flush_cached_frames (); | |
1405 | } | |
1406 | ||
1407 | /* On the Sun 4 under SunOS, the compile will leave a fake insn which | |
1408 | encodes the structure size being returned. If we detect such | |
1409 | a fake insn, step past it. */ | |
1410 | ||
1411 | CORE_ADDR | |
fba45db2 | 1412 | sparc_pc_adjust (CORE_ADDR pc) |
c906108c SS |
1413 | { |
1414 | unsigned long insn; | |
1415 | char buf[4]; | |
1416 | int err; | |
1417 | ||
1418 | err = target_read_memory (pc + 8, buf, 4); | |
1419 | insn = extract_unsigned_integer (buf, 4); | |
1420 | if ((err == 0) && (insn & 0xffc00000) == 0) | |
c5aa993b | 1421 | return pc + 12; |
c906108c | 1422 | else |
c5aa993b | 1423 | return pc + 8; |
c906108c SS |
1424 | } |
1425 | ||
1426 | /* If pc is in a shared library trampoline, return its target. | |
1427 | The SunOs 4.x linker rewrites the jump table entries for PIC | |
1428 | compiled modules in the main executable to bypass the dynamic linker | |
1429 | with jumps of the form | |
c5aa993b JM |
1430 | sethi %hi(addr),%g1 |
1431 | jmp %g1+%lo(addr) | |
c906108c SS |
1432 | and removes the corresponding jump table relocation entry in the |
1433 | dynamic relocations. | |
1434 | find_solib_trampoline_target relies on the presence of the jump | |
1435 | table relocation entry, so we have to detect these jump instructions | |
1436 | by hand. */ | |
1437 | ||
1438 | CORE_ADDR | |
fba45db2 | 1439 | sunos4_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1440 | { |
1441 | unsigned long insn1; | |
1442 | char buf[4]; | |
1443 | int err; | |
1444 | ||
1445 | err = target_read_memory (pc, buf, 4); | |
1446 | insn1 = extract_unsigned_integer (buf, 4); | |
1447 | if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) | |
1448 | { | |
1449 | unsigned long insn2; | |
1450 | ||
1451 | err = target_read_memory (pc + 4, buf, 4); | |
1452 | insn2 = extract_unsigned_integer (buf, 4); | |
1453 | if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) | |
1454 | { | |
1455 | CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; | |
1456 | int delta = insn2 & 0x1fff; | |
1457 | ||
1458 | /* Sign extend the displacement. */ | |
1459 | if (delta & 0x1000) | |
1460 | delta |= ~0x1fff; | |
1461 | return target_pc + delta; | |
1462 | } | |
1463 | } | |
1464 | return find_solib_trampoline_target (pc); | |
1465 | } | |
1466 | \f | |
c5aa993b | 1467 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ |
9846de1b | 1468 | /* *INDENT-OFF* */ |
c906108c SS |
1469 | /* The /proc interface divides the target machine's register set up into |
1470 | two different sets, the general register set (gregset) and the floating | |
1471 | point register set (fpregset). For each set, there is an ioctl to get | |
1472 | the current register set and another ioctl to set the current values. | |
1473 | ||
1474 | The actual structure passed through the ioctl interface is, of course, | |
1475 | naturally machine dependent, and is different for each set of registers. | |
1476 | For the sparc for example, the general register set is typically defined | |
1477 | by: | |
1478 | ||
1479 | typedef int gregset_t[38]; | |
1480 | ||
1481 | #define R_G0 0 | |
1482 | ... | |
1483 | #define R_TBR 37 | |
1484 | ||
1485 | and the floating point set by: | |
1486 | ||
1487 | typedef struct prfpregset { | |
1488 | union { | |
1489 | u_long pr_regs[32]; | |
1490 | double pr_dregs[16]; | |
1491 | } pr_fr; | |
1492 | void * pr_filler; | |
1493 | u_long pr_fsr; | |
1494 | u_char pr_qcnt; | |
1495 | u_char pr_q_entrysize; | |
1496 | u_char pr_en; | |
1497 | u_long pr_q[64]; | |
1498 | } prfpregset_t; | |
1499 | ||
1500 | These routines provide the packing and unpacking of gregset_t and | |
1501 | fpregset_t formatted data. | |
1502 | ||
1503 | */ | |
9846de1b | 1504 | /* *INDENT-ON* */ |
c906108c SS |
1505 | |
1506 | /* Given a pointer to a general register set in /proc format (gregset_t *), | |
1507 | unpack the register contents and supply them as gdb's idea of the current | |
1508 | register values. */ | |
1509 | ||
1510 | void | |
fba45db2 | 1511 | supply_gregset (gdb_gregset_t *gregsetp) |
c906108c | 1512 | { |
5af923b0 MS |
1513 | prgreg_t *regp = (prgreg_t *) gregsetp; |
1514 | int regi, offset = 0; | |
1515 | ||
1516 | /* If the host is 64-bit sparc, but the target is 32-bit sparc, | |
1517 | then the gregset may contain 64-bit ints while supply_register | |
1518 | is expecting 32-bit ints. Compensate. */ | |
1519 | if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4) | |
1520 | offset = 4; | |
c906108c SS |
1521 | |
1522 | /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ | |
5af923b0 | 1523 | /* FIXME MVS: assumes the order of the first 32 elements... */ |
c5aa993b | 1524 | for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++) |
c906108c | 1525 | { |
5af923b0 | 1526 | supply_register (regi, ((char *) (regp + regi)) + offset); |
c906108c SS |
1527 | } |
1528 | ||
1529 | /* These require a bit more care. */ | |
5af923b0 MS |
1530 | supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset); |
1531 | supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset); | |
1532 | supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset); | |
1533 | ||
1534 | if (GDB_TARGET_IS_SPARC64) | |
1535 | { | |
1536 | #ifdef R_CCR | |
1537 | supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset); | |
1538 | #else | |
1539 | supply_register (CCR_REGNUM, NULL); | |
1540 | #endif | |
1541 | #ifdef R_FPRS | |
1542 | supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset); | |
1543 | #else | |
1544 | supply_register (FPRS_REGNUM, NULL); | |
1545 | #endif | |
1546 | #ifdef R_ASI | |
1547 | supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset); | |
1548 | #else | |
1549 | supply_register (ASI_REGNUM, NULL); | |
1550 | #endif | |
1551 | } | |
1552 | else /* sparc32 */ | |
1553 | { | |
1554 | #ifdef R_PS | |
1555 | supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset); | |
1556 | #else | |
1557 | supply_register (PS_REGNUM, NULL); | |
1558 | #endif | |
1559 | ||
1560 | /* For 64-bit hosts, R_WIM and R_TBR may not be defined. | |
1561 | Steal R_ASI and R_FPRS, and hope for the best! */ | |
1562 | ||
1563 | #if !defined (R_WIM) && defined (R_ASI) | |
1564 | #define R_WIM R_ASI | |
1565 | #endif | |
1566 | ||
1567 | #if !defined (R_TBR) && defined (R_FPRS) | |
1568 | #define R_TBR R_FPRS | |
1569 | #endif | |
1570 | ||
1571 | #if defined (R_WIM) | |
1572 | supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset); | |
1573 | #else | |
1574 | supply_register (WIM_REGNUM, NULL); | |
1575 | #endif | |
1576 | ||
1577 | #if defined (R_TBR) | |
1578 | supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset); | |
1579 | #else | |
1580 | supply_register (TBR_REGNUM, NULL); | |
1581 | #endif | |
1582 | } | |
c906108c SS |
1583 | |
1584 | /* Fill inaccessible registers with zero. */ | |
5af923b0 MS |
1585 | if (GDB_TARGET_IS_SPARC64) |
1586 | { | |
1587 | /* | |
1588 | * don't know how to get value of any of the following: | |
1589 | */ | |
1590 | supply_register (VER_REGNUM, NULL); | |
1591 | supply_register (TICK_REGNUM, NULL); | |
1592 | supply_register (PIL_REGNUM, NULL); | |
1593 | supply_register (PSTATE_REGNUM, NULL); | |
1594 | supply_register (TSTATE_REGNUM, NULL); | |
1595 | supply_register (TBA_REGNUM, NULL); | |
1596 | supply_register (TL_REGNUM, NULL); | |
1597 | supply_register (TT_REGNUM, NULL); | |
1598 | supply_register (TPC_REGNUM, NULL); | |
1599 | supply_register (TNPC_REGNUM, NULL); | |
1600 | supply_register (WSTATE_REGNUM, NULL); | |
1601 | supply_register (CWP_REGNUM, NULL); | |
1602 | supply_register (CANSAVE_REGNUM, NULL); | |
1603 | supply_register (CANRESTORE_REGNUM, NULL); | |
1604 | supply_register (CLEANWIN_REGNUM, NULL); | |
1605 | supply_register (OTHERWIN_REGNUM, NULL); | |
1606 | supply_register (ASR16_REGNUM, NULL); | |
1607 | supply_register (ASR17_REGNUM, NULL); | |
1608 | supply_register (ASR18_REGNUM, NULL); | |
1609 | supply_register (ASR19_REGNUM, NULL); | |
1610 | supply_register (ASR20_REGNUM, NULL); | |
1611 | supply_register (ASR21_REGNUM, NULL); | |
1612 | supply_register (ASR22_REGNUM, NULL); | |
1613 | supply_register (ASR23_REGNUM, NULL); | |
1614 | supply_register (ASR24_REGNUM, NULL); | |
1615 | supply_register (ASR25_REGNUM, NULL); | |
1616 | supply_register (ASR26_REGNUM, NULL); | |
1617 | supply_register (ASR27_REGNUM, NULL); | |
1618 | supply_register (ASR28_REGNUM, NULL); | |
1619 | supply_register (ASR29_REGNUM, NULL); | |
1620 | supply_register (ASR30_REGNUM, NULL); | |
1621 | supply_register (ASR31_REGNUM, NULL); | |
1622 | supply_register (ICC_REGNUM, NULL); | |
1623 | supply_register (XCC_REGNUM, NULL); | |
1624 | } | |
1625 | else | |
1626 | { | |
1627 | supply_register (CPS_REGNUM, NULL); | |
1628 | } | |
c906108c SS |
1629 | } |
1630 | ||
1631 | void | |
fba45db2 | 1632 | fill_gregset (gdb_gregset_t *gregsetp, int regno) |
c906108c | 1633 | { |
5af923b0 MS |
1634 | prgreg_t *regp = (prgreg_t *) gregsetp; |
1635 | int regi, offset = 0; | |
1636 | ||
1637 | /* If the host is 64-bit sparc, but the target is 32-bit sparc, | |
1638 | then the gregset may contain 64-bit ints while supply_register | |
1639 | is expecting 32-bit ints. Compensate. */ | |
1640 | if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4) | |
1641 | offset = 4; | |
c906108c | 1642 | |
c5aa993b | 1643 | for (regi = 0; regi <= R_I7; regi++) |
5af923b0 | 1644 | if ((regno == -1) || (regno == regi)) |
4caf0990 | 1645 | deprecated_read_register_gen (regi, (char *) (regp + regi) + offset); |
5af923b0 | 1646 | |
c906108c | 1647 | if ((regno == -1) || (regno == PC_REGNUM)) |
4caf0990 | 1648 | deprecated_read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset); |
5af923b0 | 1649 | |
c906108c | 1650 | if ((regno == -1) || (regno == NPC_REGNUM)) |
4caf0990 | 1651 | deprecated_read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset); |
5af923b0 MS |
1652 | |
1653 | if ((regno == -1) || (regno == Y_REGNUM)) | |
4caf0990 | 1654 | deprecated_read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset); |
5af923b0 MS |
1655 | |
1656 | if (GDB_TARGET_IS_SPARC64) | |
c906108c | 1657 | { |
5af923b0 MS |
1658 | #ifdef R_CCR |
1659 | if (regno == -1 || regno == CCR_REGNUM) | |
4caf0990 | 1660 | deprecated_read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset); |
5af923b0 MS |
1661 | #endif |
1662 | #ifdef R_FPRS | |
1663 | if (regno == -1 || regno == FPRS_REGNUM) | |
4caf0990 | 1664 | deprecated_read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset); |
5af923b0 MS |
1665 | #endif |
1666 | #ifdef R_ASI | |
1667 | if (regno == -1 || regno == ASI_REGNUM) | |
4caf0990 | 1668 | deprecated_read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset); |
5af923b0 | 1669 | #endif |
c906108c | 1670 | } |
5af923b0 | 1671 | else /* sparc32 */ |
c906108c | 1672 | { |
5af923b0 MS |
1673 | #ifdef R_PS |
1674 | if (regno == -1 || regno == PS_REGNUM) | |
4caf0990 | 1675 | deprecated_read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset); |
5af923b0 MS |
1676 | #endif |
1677 | ||
1678 | /* For 64-bit hosts, R_WIM and R_TBR may not be defined. | |
1679 | Steal R_ASI and R_FPRS, and hope for the best! */ | |
1680 | ||
1681 | #if !defined (R_WIM) && defined (R_ASI) | |
1682 | #define R_WIM R_ASI | |
1683 | #endif | |
1684 | ||
1685 | #if !defined (R_TBR) && defined (R_FPRS) | |
1686 | #define R_TBR R_FPRS | |
1687 | #endif | |
1688 | ||
1689 | #if defined (R_WIM) | |
1690 | if (regno == -1 || regno == WIM_REGNUM) | |
4caf0990 | 1691 | deprecated_read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset); |
5af923b0 MS |
1692 | #else |
1693 | if (regno == -1 || regno == WIM_REGNUM) | |
4caf0990 | 1694 | deprecated_read_register_gen (WIM_REGNUM, NULL); |
5af923b0 MS |
1695 | #endif |
1696 | ||
1697 | #if defined (R_TBR) | |
1698 | if (regno == -1 || regno == TBR_REGNUM) | |
4caf0990 | 1699 | deprecated_read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset); |
5af923b0 MS |
1700 | #else |
1701 | if (regno == -1 || regno == TBR_REGNUM) | |
4caf0990 | 1702 | deprecated_read_register_gen (TBR_REGNUM, NULL); |
5af923b0 | 1703 | #endif |
c906108c SS |
1704 | } |
1705 | } | |
1706 | ||
c906108c | 1707 | /* Given a pointer to a floating point register set in /proc format |
c5aa993b JM |
1708 | (fpregset_t *), unpack the register contents and supply them as gdb's |
1709 | idea of the current floating point register values. */ | |
c906108c | 1710 | |
c5aa993b | 1711 | void |
fba45db2 | 1712 | supply_fpregset (gdb_fpregset_t *fpregsetp) |
c906108c SS |
1713 | { |
1714 | register int regi; | |
1715 | char *from; | |
c5aa993b | 1716 | |
5af923b0 | 1717 | if (!SPARC_HAS_FPU) |
60054393 MS |
1718 | return; |
1719 | ||
c5aa993b | 1720 | for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++) |
c906108c | 1721 | { |
c5aa993b | 1722 | from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM]; |
c906108c SS |
1723 | supply_register (regi, from); |
1724 | } | |
5af923b0 MS |
1725 | |
1726 | if (GDB_TARGET_IS_SPARC64) | |
1727 | { | |
1728 | /* | |
1729 | * don't know how to get value of the following. | |
1730 | */ | |
1731 | supply_register (FSR_REGNUM, NULL); /* zero it out for now */ | |
1732 | supply_register (FCC0_REGNUM, NULL); | |
1733 | supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */ | |
1734 | supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */ | |
1735 | supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */ | |
1736 | } | |
1737 | else | |
1738 | { | |
1739 | supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); | |
1740 | } | |
c906108c SS |
1741 | } |
1742 | ||
1743 | /* Given a pointer to a floating point register set in /proc format | |
c5aa993b JM |
1744 | (fpregset_t *), update the register specified by REGNO from gdb's idea |
1745 | of the current floating point register set. If REGNO is -1, update | |
1746 | them all. */ | |
5af923b0 | 1747 | /* This will probably need some changes for sparc64. */ |
c906108c SS |
1748 | |
1749 | void | |
fba45db2 | 1750 | fill_fpregset (gdb_fpregset_t *fpregsetp, int regno) |
c906108c SS |
1751 | { |
1752 | int regi; | |
1753 | char *to; | |
1754 | char *from; | |
1755 | ||
5af923b0 | 1756 | if (!SPARC_HAS_FPU) |
60054393 MS |
1757 | return; |
1758 | ||
c5aa993b | 1759 | for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++) |
c906108c SS |
1760 | { |
1761 | if ((regno == -1) || (regno == regi)) | |
1762 | { | |
524d7c18 | 1763 | from = (char *) &deprecated_registers[REGISTER_BYTE (regi)]; |
c5aa993b | 1764 | to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM]; |
c906108c SS |
1765 | memcpy (to, from, REGISTER_RAW_SIZE (regi)); |
1766 | } | |
1767 | } | |
5af923b0 MS |
1768 | |
1769 | if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */ | |
1770 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
1771 | { | |
524d7c18 | 1772 | from = (char *)&deprecated_registers[REGISTER_BYTE (FPS_REGNUM)]; |
5af923b0 MS |
1773 | to = (char *) &fpregsetp->pr_fsr; |
1774 | memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM)); | |
1775 | } | |
c906108c SS |
1776 | } |
1777 | ||
c5aa993b | 1778 | #endif /* USE_PROC_FS */ |
c906108c | 1779 | |
a48442a0 RE |
1780 | /* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test |
1781 | for a definition of JB_PC. */ | |
1782 | #ifdef JB_PC | |
c906108c SS |
1783 | |
1784 | /* Figure out where the longjmp will land. We expect that we have just entered | |
1785 | longjmp and haven't yet setup the stack frame, so the args are still in the | |
1786 | output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we | |
1787 | extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. | |
1788 | This routine returns true on success */ | |
1789 | ||
1790 | int | |
fba45db2 | 1791 | get_longjmp_target (CORE_ADDR *pc) |
c906108c SS |
1792 | { |
1793 | CORE_ADDR jb_addr; | |
1794 | #define LONGJMP_TARGET_SIZE 4 | |
1795 | char buf[LONGJMP_TARGET_SIZE]; | |
1796 | ||
1797 | jb_addr = read_register (O0_REGNUM); | |
1798 | ||
1799 | if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, | |
1800 | LONGJMP_TARGET_SIZE)) | |
1801 | return 0; | |
1802 | ||
1803 | *pc = extract_address (buf, LONGJMP_TARGET_SIZE); | |
1804 | ||
1805 | return 1; | |
1806 | } | |
1807 | #endif /* GET_LONGJMP_TARGET */ | |
1808 | \f | |
1809 | #ifdef STATIC_TRANSFORM_NAME | |
1810 | /* SunPRO (3.0 at least), encodes the static variables. This is not | |
1811 | related to C++ mangling, it is done for C too. */ | |
1812 | ||
1813 | char * | |
fba45db2 | 1814 | sunpro_static_transform_name (char *name) |
c906108c SS |
1815 | { |
1816 | char *p; | |
1817 | if (name[0] == '$') | |
1818 | { | |
1819 | /* For file-local statics there will be a dollar sign, a bunch | |
c5aa993b JM |
1820 | of junk (the contents of which match a string given in the |
1821 | N_OPT), a period and the name. For function-local statics | |
1822 | there will be a bunch of junk (which seems to change the | |
1823 | second character from 'A' to 'B'), a period, the name of the | |
1824 | function, and the name. So just skip everything before the | |
1825 | last period. */ | |
c906108c SS |
1826 | p = strrchr (name, '.'); |
1827 | if (p != NULL) | |
1828 | name = p + 1; | |
1829 | } | |
1830 | return name; | |
1831 | } | |
1832 | #endif /* STATIC_TRANSFORM_NAME */ | |
1833 | \f | |
1834 | ||
1835 | /* Utilities for printing registers. | |
1836 | Page numbers refer to the SPARC Architecture Manual. */ | |
1837 | ||
5af923b0 | 1838 | static void dump_ccreg (char *, int); |
c906108c SS |
1839 | |
1840 | static void | |
fba45db2 | 1841 | dump_ccreg (char *reg, int val) |
c906108c SS |
1842 | { |
1843 | /* page 41 */ | |
1844 | printf_unfiltered ("%s:%s,%s,%s,%s", reg, | |
c5aa993b JM |
1845 | val & 8 ? "N" : "NN", |
1846 | val & 4 ? "Z" : "NZ", | |
1847 | val & 2 ? "O" : "NO", | |
5af923b0 | 1848 | val & 1 ? "C" : "NC"); |
c906108c SS |
1849 | } |
1850 | ||
1851 | static char * | |
fba45db2 | 1852 | decode_asi (int val) |
c906108c SS |
1853 | { |
1854 | /* page 72 */ | |
1855 | switch (val) | |
1856 | { | |
c5aa993b JM |
1857 | case 4: |
1858 | return "ASI_NUCLEUS"; | |
1859 | case 0x0c: | |
1860 | return "ASI_NUCLEUS_LITTLE"; | |
1861 | case 0x10: | |
1862 | return "ASI_AS_IF_USER_PRIMARY"; | |
1863 | case 0x11: | |
1864 | return "ASI_AS_IF_USER_SECONDARY"; | |
1865 | case 0x18: | |
1866 | return "ASI_AS_IF_USER_PRIMARY_LITTLE"; | |
1867 | case 0x19: | |
1868 | return "ASI_AS_IF_USER_SECONDARY_LITTLE"; | |
1869 | case 0x80: | |
1870 | return "ASI_PRIMARY"; | |
1871 | case 0x81: | |
1872 | return "ASI_SECONDARY"; | |
1873 | case 0x82: | |
1874 | return "ASI_PRIMARY_NOFAULT"; | |
1875 | case 0x83: | |
1876 | return "ASI_SECONDARY_NOFAULT"; | |
1877 | case 0x88: | |
1878 | return "ASI_PRIMARY_LITTLE"; | |
1879 | case 0x89: | |
1880 | return "ASI_SECONDARY_LITTLE"; | |
1881 | case 0x8a: | |
1882 | return "ASI_PRIMARY_NOFAULT_LITTLE"; | |
1883 | case 0x8b: | |
1884 | return "ASI_SECONDARY_NOFAULT_LITTLE"; | |
1885 | default: | |
1886 | return NULL; | |
c906108c SS |
1887 | } |
1888 | } | |
1889 | ||
867f3898 | 1890 | /* Pretty print various registers. */ |
c906108c SS |
1891 | /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ |
1892 | ||
87647bb0 | 1893 | static void |
fba45db2 | 1894 | sparc_print_register_hook (int regno) |
c906108c SS |
1895 | { |
1896 | ULONGEST val; | |
1897 | ||
1898 | /* Handle double/quad versions of lower 32 fp regs. */ | |
1899 | if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32 | |
1900 | && (regno & 1) == 0) | |
1901 | { | |
1902 | char value[16]; | |
1903 | ||
6e7f8b9c AC |
1904 | if (frame_register_read (deprecated_selected_frame, regno, value) |
1905 | && frame_register_read (deprecated_selected_frame, regno + 1, value + 4)) | |
c906108c SS |
1906 | { |
1907 | printf_unfiltered ("\t"); | |
1908 | print_floating (value, builtin_type_double, gdb_stdout); | |
1909 | } | |
c5aa993b | 1910 | #if 0 /* FIXME: gdb doesn't handle long doubles */ |
c906108c SS |
1911 | if ((regno & 3) == 0) |
1912 | { | |
6e7f8b9c AC |
1913 | if (frame_register_read (deprecated_selected_frame, regno + 2, value + 8) |
1914 | && frame_register_read (deprecated_selected_frame, regno + 3, value + 12)) | |
c906108c SS |
1915 | { |
1916 | printf_unfiltered ("\t"); | |
1917 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
1918 | } | |
1919 | } | |
1920 | #endif | |
1921 | return; | |
1922 | } | |
1923 | ||
c5aa993b | 1924 | #if 0 /* FIXME: gdb doesn't handle long doubles */ |
c906108c SS |
1925 | /* Print upper fp regs as long double if appropriate. */ |
1926 | if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM | |
c5aa993b JM |
1927 | /* We test for even numbered regs and not a multiple of 4 because |
1928 | the upper fp regs are recorded as doubles. */ | |
c906108c SS |
1929 | && (regno & 1) == 0) |
1930 | { | |
1931 | char value[16]; | |
1932 | ||
6e7f8b9c AC |
1933 | if (frame_register_read (deprecated_selected_frame, regno, value) |
1934 | && frame_register_read (deprecated_selected_frame, regno + 1, value + 8)) | |
c906108c SS |
1935 | { |
1936 | printf_unfiltered ("\t"); | |
1937 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
1938 | } | |
1939 | return; | |
1940 | } | |
1941 | #endif | |
1942 | ||
1943 | /* FIXME: Some of these are priviledged registers. | |
1944 | Not sure how they should be handled. */ | |
1945 | ||
1946 | #define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) | |
1947 | ||
1948 | val = read_register (regno); | |
1949 | ||
1950 | /* pages 40 - 60 */ | |
5af923b0 MS |
1951 | if (GDB_TARGET_IS_SPARC64) |
1952 | switch (regno) | |
c906108c | 1953 | { |
5af923b0 MS |
1954 | case CCR_REGNUM: |
1955 | printf_unfiltered ("\t"); | |
1956 | dump_ccreg ("xcc", val >> 4); | |
1957 | printf_unfiltered (", "); | |
1958 | dump_ccreg ("icc", val & 15); | |
c906108c | 1959 | break; |
5af923b0 MS |
1960 | case FPRS_REGNUM: |
1961 | printf ("\tfef:%d, du:%d, dl:%d", | |
1962 | BITS (2, 1), BITS (1, 1), BITS (0, 1)); | |
c906108c | 1963 | break; |
5af923b0 MS |
1964 | case FSR_REGNUM: |
1965 | { | |
1966 | static char *fcc[4] = | |
1967 | {"=", "<", ">", "?"}; | |
1968 | static char *rd[4] = | |
1969 | {"N", "0", "+", "-"}; | |
1970 | /* Long, but I'd rather leave it as is and use a wide screen. */ | |
1971 | printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ", | |
1972 | fcc[BITS (10, 3)], fcc[BITS (32, 3)], | |
1973 | fcc[BITS (34, 3)], fcc[BITS (36, 3)], | |
1974 | rd[BITS (30, 3)], BITS (23, 31)); | |
1975 | printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", | |
1976 | BITS (22, 1), BITS (17, 7), BITS (14, 7), | |
1977 | BITS (13, 1), BITS (5, 31), BITS (0, 31)); | |
1978 | break; | |
1979 | } | |
1980 | case ASI_REGNUM: | |
1981 | { | |
1982 | char *asi = decode_asi (val); | |
1983 | if (asi != NULL) | |
1984 | printf ("\t%s", asi); | |
1985 | break; | |
1986 | } | |
1987 | case VER_REGNUM: | |
1988 | printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", | |
1989 | BITS (48, 0xffff), BITS (32, 0xffff), | |
1990 | BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); | |
1991 | break; | |
1992 | case PSTATE_REGNUM: | |
1993 | { | |
1994 | static char *mm[4] = | |
1995 | {"tso", "pso", "rso", "?"}; | |
1996 | printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ", | |
1997 | BITS (9, 1), BITS (8, 1), | |
1998 | mm[BITS (6, 3)], BITS (5, 1)); | |
1999 | printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d", | |
2000 | BITS (4, 1), BITS (3, 1), BITS (2, 1), | |
2001 | BITS (1, 1), BITS (0, 1)); | |
2002 | break; | |
2003 | } | |
2004 | case TSTATE_REGNUM: | |
2005 | /* FIXME: print all 4? */ | |
2006 | break; | |
2007 | case TT_REGNUM: | |
2008 | /* FIXME: print all 4? */ | |
2009 | break; | |
2010 | case TPC_REGNUM: | |
2011 | /* FIXME: print all 4? */ | |
2012 | break; | |
2013 | case TNPC_REGNUM: | |
2014 | /* FIXME: print all 4? */ | |
2015 | break; | |
2016 | case WSTATE_REGNUM: | |
2017 | printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); | |
2018 | break; | |
2019 | case CWP_REGNUM: | |
2020 | printf ("\t%d", BITS (0, 31)); | |
2021 | break; | |
2022 | case CANSAVE_REGNUM: | |
2023 | printf ("\t%-2d before spill", BITS (0, 31)); | |
2024 | break; | |
2025 | case CANRESTORE_REGNUM: | |
2026 | printf ("\t%-2d before fill", BITS (0, 31)); | |
2027 | break; | |
2028 | case CLEANWIN_REGNUM: | |
2029 | printf ("\t%-2d before clean", BITS (0, 31)); | |
2030 | break; | |
2031 | case OTHERWIN_REGNUM: | |
2032 | printf ("\t%d", BITS (0, 31)); | |
c906108c SS |
2033 | break; |
2034 | } | |
5af923b0 MS |
2035 | else /* Sparc32 */ |
2036 | switch (regno) | |
c906108c | 2037 | { |
5af923b0 MS |
2038 | case PS_REGNUM: |
2039 | printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d", | |
2040 | BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-', | |
2041 | BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-', | |
2042 | BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1), | |
c906108c SS |
2043 | BITS (0, 31)); |
2044 | break; | |
5af923b0 MS |
2045 | case FPS_REGNUM: |
2046 | { | |
2047 | static char *fcc[4] = | |
2048 | {"=", "<", ">", "?"}; | |
2049 | static char *rd[4] = | |
2050 | {"N", "0", "+", "-"}; | |
2051 | /* Long, but I'd rather leave it as is and use a wide screen. */ | |
2052 | printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, " | |
2053 | "fcc:%s, aexc:%d, cexc:%d", | |
2054 | rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), | |
2055 | BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31), | |
2056 | BITS (0, 31)); | |
2057 | break; | |
2058 | } | |
c906108c SS |
2059 | } |
2060 | ||
c906108c SS |
2061 | #undef BITS |
2062 | } | |
87647bb0 AC |
2063 | |
2064 | static void | |
2065 | sparc_print_registers (struct gdbarch *gdbarch, | |
2066 | struct ui_file *file, | |
2067 | struct frame_info *frame, | |
2068 | int regnum, int print_all, | |
2069 | void (*print_register_hook) (int)) | |
2070 | { | |
2071 | int i; | |
2072 | const int numregs = NUM_REGS + NUM_PSEUDO_REGS; | |
2073 | char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE); | |
2074 | char *virtual_buffer = alloca (MAX_REGISTER_VIRTUAL_SIZE); | |
2075 | ||
2076 | for (i = 0; i < numregs; i++) | |
2077 | { | |
2078 | /* Decide between printing all regs, non-float / vector regs, or | |
2079 | specific reg. */ | |
2080 | if (regnum == -1) | |
2081 | { | |
2082 | if (!print_all) | |
2083 | { | |
2084 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT) | |
2085 | continue; | |
2086 | if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i))) | |
2087 | continue; | |
2088 | } | |
2089 | } | |
2090 | else | |
2091 | { | |
2092 | if (i != regnum) | |
2093 | continue; | |
2094 | } | |
2095 | ||
2096 | /* If the register name is empty, it is undefined for this | |
2097 | processor, so don't display anything. */ | |
2098 | if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0') | |
2099 | continue; | |
2100 | ||
2101 | fputs_filtered (REGISTER_NAME (i), file); | |
2102 | print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), file); | |
2103 | ||
2104 | /* Get the data in raw format. */ | |
2105 | if (! frame_register_read (frame, i, raw_buffer)) | |
2106 | { | |
2107 | fprintf_filtered (file, "*value not available*\n"); | |
2108 | continue; | |
2109 | } | |
2110 | ||
2111 | /* FIXME: cagney/2002-08-03: This code shouldn't be necessary. | |
2112 | The function frame_register_read() should have returned the | |
2113 | pre-cooked register so no conversion is necessary. */ | |
2114 | /* Convert raw data to virtual format if necessary. */ | |
2115 | if (REGISTER_CONVERTIBLE (i)) | |
2116 | { | |
2117 | REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i), | |
2118 | raw_buffer, virtual_buffer); | |
2119 | } | |
2120 | else | |
2121 | { | |
2122 | memcpy (virtual_buffer, raw_buffer, | |
2123 | REGISTER_VIRTUAL_SIZE (i)); | |
2124 | } | |
2125 | ||
2126 | /* If virtual format is floating, print it that way, and in raw | |
2127 | hex. */ | |
2128 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT) | |
2129 | { | |
2130 | int j; | |
2131 | ||
2132 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, | |
2133 | file, 0, 1, 0, Val_pretty_default); | |
2134 | ||
2135 | fprintf_filtered (file, "\t(raw 0x"); | |
2136 | for (j = 0; j < REGISTER_RAW_SIZE (i); j++) | |
2137 | { | |
2138 | int idx; | |
2139 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2140 | idx = j; | |
2141 | else | |
2142 | idx = REGISTER_RAW_SIZE (i) - 1 - j; | |
2143 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]); | |
2144 | } | |
2145 | fprintf_filtered (file, ")"); | |
2146 | } | |
2147 | else | |
2148 | { | |
2149 | /* Print the register in hex. */ | |
2150 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, | |
2151 | file, 'x', 1, 0, Val_pretty_default); | |
2152 | /* If not a vector register, print it also according to its | |
2153 | natural format. */ | |
2154 | if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)) == 0) | |
2155 | { | |
2156 | fprintf_filtered (file, "\t"); | |
2157 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, | |
2158 | file, 0, 1, 0, Val_pretty_default); | |
2159 | } | |
2160 | } | |
2161 | ||
2162 | /* Some sparc specific info. */ | |
2163 | if (print_register_hook != NULL) | |
2164 | print_register_hook (i); | |
2165 | ||
2166 | fprintf_filtered (file, "\n"); | |
2167 | } | |
2168 | } | |
2169 | ||
2170 | static void | |
2171 | sparc_print_registers_info (struct gdbarch *gdbarch, | |
2172 | struct ui_file *file, | |
2173 | struct frame_info *frame, | |
2174 | int regnum, int print_all) | |
2175 | { | |
2176 | sparc_print_registers (gdbarch, file, frame, regnum, print_all, | |
2177 | sparc_print_register_hook); | |
2178 | } | |
2179 | ||
2180 | void | |
2181 | sparc_do_registers_info (int regnum, int all) | |
2182 | { | |
6e7f8b9c | 2183 | sparc_print_registers_info (current_gdbarch, gdb_stdout, deprecated_selected_frame, |
87647bb0 AC |
2184 | regnum, all); |
2185 | } | |
2186 | ||
f81824a9 AC |
2187 | #if 0 |
2188 | // OBSOLETE static void | |
2189 | // OBSOLETE sparclet_print_registers_info (struct gdbarch *gdbarch, | |
2190 | // OBSOLETE struct ui_file *file, | |
2191 | // OBSOLETE struct frame_info *frame, | |
2192 | // OBSOLETE int regnum, int print_all) | |
2193 | // OBSOLETE { | |
2194 | // OBSOLETE sparc_print_registers (gdbarch, file, frame, regnum, print_all, NULL); | |
2195 | // OBSOLETE } | |
2196 | // OBSOLETE | |
2197 | // OBSOLETE void | |
2198 | // OBSOLETE sparclet_do_registers_info (int regnum, int all) | |
2199 | // OBSOLETE { | |
2200 | // OBSOLETE sparclet_print_registers_info (current_gdbarch, gdb_stdout, | |
2201 | // OBSOLETE deprecated_selected_frame, regnum, all); | |
2202 | // OBSOLETE } | |
2203 | #endif | |
87647bb0 | 2204 | |
c906108c SS |
2205 | \f |
2206 | int | |
fba45db2 | 2207 | gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
2208 | { |
2209 | /* It's necessary to override mach again because print_insn messes it up. */ | |
96baa820 | 2210 | info->mach = TARGET_ARCHITECTURE->mach; |
c906108c SS |
2211 | return print_insn_sparc (memaddr, info); |
2212 | } | |
2213 | \f | |
2214 | /* The SPARC passes the arguments on the stack; arguments smaller | |
5af923b0 MS |
2215 | than an int are promoted to an int. The first 6 words worth of |
2216 | args are also passed in registers o0 - o5. */ | |
c906108c SS |
2217 | |
2218 | CORE_ADDR | |
ea7c478f | 2219 | sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 2220 | int struct_return, CORE_ADDR struct_addr) |
c906108c | 2221 | { |
5af923b0 | 2222 | int i, j, oregnum; |
c906108c SS |
2223 | int accumulate_size = 0; |
2224 | struct sparc_arg | |
2225 | { | |
2226 | char *contents; | |
2227 | int len; | |
2228 | int offset; | |
2229 | }; | |
2230 | struct sparc_arg *sparc_args = | |
5af923b0 | 2231 | (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg)); |
c906108c SS |
2232 | struct sparc_arg *m_arg; |
2233 | ||
2234 | /* Promote arguments if necessary, and calculate their stack offsets | |
2235 | and sizes. */ | |
2236 | for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++) | |
2237 | { | |
ea7c478f | 2238 | struct value *arg = args[i]; |
c906108c SS |
2239 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); |
2240 | /* Cast argument to long if necessary as the compiler does it too. */ | |
2241 | switch (TYPE_CODE (arg_type)) | |
2242 | { | |
2243 | case TYPE_CODE_INT: | |
2244 | case TYPE_CODE_BOOL: | |
2245 | case TYPE_CODE_CHAR: | |
2246 | case TYPE_CODE_RANGE: | |
2247 | case TYPE_CODE_ENUM: | |
2248 | if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long)) | |
2249 | { | |
2250 | arg_type = builtin_type_long; | |
2251 | arg = value_cast (arg_type, arg); | |
2252 | } | |
2253 | break; | |
2254 | default: | |
2255 | break; | |
2256 | } | |
2257 | m_arg->len = TYPE_LENGTH (arg_type); | |
2258 | m_arg->offset = accumulate_size; | |
2259 | accumulate_size = (accumulate_size + m_arg->len + 3) & ~3; | |
c5aa993b | 2260 | m_arg->contents = VALUE_CONTENTS (arg); |
c906108c SS |
2261 | } |
2262 | ||
2263 | /* Make room for the arguments on the stack. */ | |
1bf6d5cc AC |
2264 | accumulate_size += DEPRECATED_CALL_DUMMY_STACK_ADJUST; |
2265 | sp = ((sp - accumulate_size) & ~7) + DEPRECATED_CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
2266 | |
2267 | /* `Push' arguments on the stack. */ | |
5af923b0 MS |
2268 | for (i = 0, oregnum = 0, m_arg = sparc_args; |
2269 | i < nargs; | |
2270 | i++, m_arg++) | |
2271 | { | |
2272 | write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len); | |
2273 | for (j = 0; | |
2274 | j < m_arg->len && oregnum < 6; | |
2275 | j += SPARC_INTREG_SIZE, oregnum++) | |
4caf0990 | 2276 | deprecated_write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j); |
5af923b0 | 2277 | } |
c906108c SS |
2278 | |
2279 | return sp; | |
2280 | } | |
2281 | ||
2282 | ||
2283 | /* Extract from an array REGBUF containing the (raw) register state | |
2284 | a function return value of type TYPE, and copy that, in virtual format, | |
2285 | into VALBUF. */ | |
2286 | ||
2287 | void | |
fba45db2 | 2288 | sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf) |
c906108c SS |
2289 | { |
2290 | int typelen = TYPE_LENGTH (type); | |
2291 | int regsize = REGISTER_RAW_SIZE (O0_REGNUM); | |
2292 | ||
2293 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
c5aa993b | 2294 | memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen); |
c906108c SS |
2295 | else |
2296 | memcpy (valbuf, | |
c5aa993b JM |
2297 | ®buf[O0_REGNUM * regsize + |
2298 | (typelen >= regsize | |
778eb05e | 2299 | || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0 |
c5aa993b | 2300 | : regsize - typelen)], |
c906108c SS |
2301 | typelen); |
2302 | } | |
2303 | ||
2304 | ||
2305 | /* Write into appropriate registers a function return value | |
2306 | of type TYPE, given in virtual format. On SPARCs with FPUs, | |
2307 | float values are returned in %f0 (and %f1). In all other cases, | |
2308 | values are returned in register %o0. */ | |
2309 | ||
2310 | void | |
fba45db2 | 2311 | sparc_store_return_value (struct type *type, char *valbuf) |
c906108c SS |
2312 | { |
2313 | int regno; | |
5af923b0 MS |
2314 | char *buffer; |
2315 | ||
902d0061 | 2316 | buffer = alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
2317 | |
2318 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
2319 | /* Floating-point values are returned in the register pair */ | |
2320 | /* formed by %f0 and %f1 (doubles are, anyway). */ | |
2321 | regno = FP0_REGNUM; | |
2322 | else | |
2323 | /* Other values are returned in register %o0. */ | |
2324 | regno = O0_REGNUM; | |
2325 | ||
2326 | /* Add leading zeros to the value. */ | |
c5aa993b | 2327 | if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno)) |
c906108c | 2328 | { |
5af923b0 | 2329 | memset (buffer, 0, REGISTER_RAW_SIZE (regno)); |
c5aa993b | 2330 | memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf, |
c906108c | 2331 | TYPE_LENGTH (type)); |
4caf0990 | 2332 | deprecated_write_register_gen (regno, buffer); |
c906108c SS |
2333 | } |
2334 | else | |
73937e03 AC |
2335 | deprecated_write_register_bytes (REGISTER_BYTE (regno), valbuf, |
2336 | TYPE_LENGTH (type)); | |
c906108c SS |
2337 | } |
2338 | ||
f81824a9 AC |
2339 | #if 0 |
2340 | // OBSOLETE extern void | |
2341 | // OBSOLETE sparclet_store_return_value (struct type *type, char *valbuf) | |
2342 | // OBSOLETE { | |
2343 | // OBSOLETE /* Other values are returned in register %o0. */ | |
2344 | // OBSOLETE deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf, | |
2345 | // OBSOLETE TYPE_LENGTH (type)); | |
2346 | // OBSOLETE } | |
2347 | #endif | |
5af923b0 MS |
2348 | |
2349 | ||
4eb8c7fc DM |
2350 | #ifndef CALL_DUMMY_CALL_OFFSET |
2351 | #define CALL_DUMMY_CALL_OFFSET \ | |
2352 | (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset) | |
2353 | #endif /* CALL_DUMMY_CALL_OFFSET */ | |
2354 | ||
c906108c SS |
2355 | /* Insert the function address into a call dummy instruction sequence |
2356 | stored at DUMMY. | |
2357 | ||
2358 | For structs and unions, if the function was compiled with Sun cc, | |
2359 | it expects 'unimp' after the call. But gcc doesn't use that | |
2360 | (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY | |
2361 | can assume it is operating on a pristine CALL_DUMMY, not one that | |
2362 | has already been customized for a different function). */ | |
2363 | ||
2364 | void | |
fba45db2 KB |
2365 | sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, |
2366 | struct type *value_type, int using_gcc) | |
c906108c SS |
2367 | { |
2368 | int i; | |
2369 | ||
2370 | /* Store the relative adddress of the target function into the | |
2371 | 'call' instruction. */ | |
2372 | store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4, | |
2373 | (0x40000000 | |
2374 | | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2) | |
c5aa993b | 2375 | & 0x3fffffff))); |
c906108c | 2376 | |
9e36d949 PS |
2377 | /* If the called function returns an aggregate value, fill in the UNIMP |
2378 | instruction containing the size of the returned aggregate return value, | |
2379 | which follows the call instruction. | |
2380 | For details see the SPARC Architecture Manual Version 8, Appendix D.3. | |
2381 | ||
2382 | Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint | |
2383 | to the proper address in the call dummy, so that `finish' after a stop | |
2384 | in a call dummy works. | |
04714b91 AC |
2385 | |
2386 | Tweeking current_gdbarch is not an optimal solution, but the call | |
2387 | to sparc_fix_call_dummy is immediately followed by a call to | |
2388 | call_function_by_hand, which is the only function where | |
2389 | dummy_breakpoint_offset is actually used, if it is non-zero. */ | |
9e36d949 PS |
2390 | if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT |
2391 | || TYPE_CODE (value_type) == TYPE_CODE_UNION) | |
2392 | { | |
2393 | store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4, | |
2394 | TYPE_LENGTH (value_type) & 0x1fff); | |
2395 | set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30); | |
2396 | } | |
2397 | else | |
2398 | set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c); | |
c906108c | 2399 | |
5af923b0 | 2400 | if (!(GDB_TARGET_IS_SPARC64)) |
c906108c | 2401 | { |
5af923b0 MS |
2402 | /* If this is not a simulator target, change the first four |
2403 | instructions of the call dummy to NOPs. Those instructions | |
2404 | include a 'save' instruction and are designed to work around | |
2405 | problems with register window flushing in the simulator. */ | |
2406 | ||
2407 | if (strcmp (target_shortname, "sim") != 0) | |
2408 | { | |
2409 | for (i = 0; i < 4; i++) | |
2410 | store_unsigned_integer (dummy + (i * 4), 4, 0x01000000); | |
2411 | } | |
c906108c | 2412 | } |
c906108c | 2413 | |
f81824a9 AC |
2414 | #if 0 |
2415 | // OBSOLETE /* If this is a bi-endian target, GDB has written the call dummy | |
2416 | // OBSOLETE in little-endian order. We must byte-swap it back to big-endian. */ | |
2417 | // OBSOLETE if (bi_endian) | |
2418 | // OBSOLETE { | |
2419 | // OBSOLETE for (i = 0; i < CALL_DUMMY_LENGTH; i += 4) | |
2420 | // OBSOLETE { | |
2421 | // OBSOLETE char tmp = dummy[i]; | |
2422 | // OBSOLETE dummy[i] = dummy[i + 3]; | |
2423 | // OBSOLETE dummy[i + 3] = tmp; | |
2424 | // OBSOLETE tmp = dummy[i + 1]; | |
2425 | // OBSOLETE dummy[i + 1] = dummy[i + 2]; | |
2426 | // OBSOLETE dummy[i + 2] = tmp; | |
2427 | // OBSOLETE } | |
2428 | // OBSOLETE } | |
2429 | #endif | |
c906108c SS |
2430 | } |
2431 | ||
2432 | ||
f81824a9 AC |
2433 | #if 0 |
2434 | // OBSOLETE /* Set target byte order based on machine type. */ | |
2435 | // OBSOLETE | |
2436 | // OBSOLETE static int | |
2437 | // OBSOLETE sparc_target_architecture_hook (const bfd_arch_info_type *ap) | |
2438 | // OBSOLETE { | |
2439 | // OBSOLETE int i, j; | |
2440 | // OBSOLETE | |
2441 | // OBSOLETE if (ap->mach == bfd_mach_sparc_sparclite_le) | |
2442 | // OBSOLETE { | |
2443 | // OBSOLETE target_byte_order = BFD_ENDIAN_LITTLE; | |
2444 | // OBSOLETE bi_endian = 1; | |
2445 | // OBSOLETE } | |
2446 | // OBSOLETE else | |
2447 | // OBSOLETE bi_endian = 0; | |
2448 | // OBSOLETE return 1; | |
2449 | // OBSOLETE } | |
2450 | #endif | |
c5aa993b | 2451 | |
5af923b0 MS |
2452 | /* |
2453 | * Module "constructor" function. | |
2454 | */ | |
2455 | ||
2456 | static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info, | |
2457 | struct gdbarch_list *arches); | |
ef3cf062 | 2458 | static void sparc_dump_tdep (struct gdbarch *, struct ui_file *); |
5af923b0 | 2459 | |
c906108c | 2460 | void |
fba45db2 | 2461 | _initialize_sparc_tdep (void) |
c906108c | 2462 | { |
5af923b0 | 2463 | /* Hook us into the gdbarch mechanism. */ |
ef3cf062 | 2464 | gdbarch_register (bfd_arch_sparc, sparc_gdbarch_init, sparc_dump_tdep); |
5af923b0 | 2465 | |
d7a27068 | 2466 | deprecated_tm_print_insn = gdb_print_insn_sparc; |
810ecf9f | 2467 | deprecated_tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */ |
f81824a9 | 2468 | /* OBSOLETE target_architecture_hook = sparc_target_architecture_hook; */ |
c906108c SS |
2469 | } |
2470 | ||
5af923b0 MS |
2471 | /* Compensate for stack bias. Note that we currently don't handle |
2472 | mixed 32/64 bit code. */ | |
c906108c | 2473 | |
c906108c | 2474 | CORE_ADDR |
5af923b0 | 2475 | sparc64_read_sp (void) |
c906108c SS |
2476 | { |
2477 | CORE_ADDR sp = read_register (SP_REGNUM); | |
2478 | ||
2479 | if (sp & 1) | |
2480 | sp += 2047; | |
2481 | return sp; | |
2482 | } | |
2483 | ||
2484 | CORE_ADDR | |
5af923b0 | 2485 | sparc64_read_fp (void) |
c906108c | 2486 | { |
0ba6dca9 | 2487 | CORE_ADDR fp = read_register (DEPRECATED_FP_REGNUM); |
c906108c SS |
2488 | |
2489 | if (fp & 1) | |
2490 | fp += 2047; | |
2491 | return fp; | |
2492 | } | |
2493 | ||
2494 | void | |
fba45db2 | 2495 | sparc64_write_sp (CORE_ADDR val) |
c906108c SS |
2496 | { |
2497 | CORE_ADDR oldsp = read_register (SP_REGNUM); | |
2498 | if (oldsp & 1) | |
2499 | write_register (SP_REGNUM, val - 2047); | |
2500 | else | |
2501 | write_register (SP_REGNUM, val); | |
2502 | } | |
2503 | ||
5af923b0 MS |
2504 | /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31, |
2505 | and all other arguments in O0 to O5. They are also copied onto | |
2506 | the stack in the correct places. Apparently (empirically), | |
2507 | structs of less than 16 bytes are passed member-by-member in | |
2508 | separate registers, but I am unable to figure out the algorithm. | |
2509 | Some members go in floating point regs, but I don't know which. | |
2510 | ||
2511 | FIXME: Handle small structs (less than 16 bytes containing floats). | |
2512 | ||
2513 | The counting regimen for using both integer and FP registers | |
2514 | for argument passing is rather odd -- a single counter is used | |
2515 | for both; this means that if the arguments alternate between | |
2516 | int and float, we will waste every other register of both types. */ | |
c906108c SS |
2517 | |
2518 | CORE_ADDR | |
ea7c478f | 2519 | sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 2520 | int struct_return, CORE_ADDR struct_retaddr) |
c906108c | 2521 | { |
5af923b0 | 2522 | int i, j, register_counter = 0; |
c906108c | 2523 | CORE_ADDR tempsp; |
5af923b0 MS |
2524 | struct type *sparc_intreg_type = |
2525 | TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ? | |
2526 | builtin_type_long : builtin_type_long_long; | |
c5aa993b | 2527 | |
5af923b0 | 2528 | sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL)); |
c906108c SS |
2529 | |
2530 | /* Figure out how much space we'll need. */ | |
5af923b0 | 2531 | for (i = nargs - 1; i >= 0; i--) |
c906108c | 2532 | { |
5af923b0 | 2533 | int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i]))); |
ea7c478f | 2534 | struct value *copyarg = args[i]; |
c906108c SS |
2535 | int copylen = len; |
2536 | ||
5af923b0 | 2537 | if (copylen < SPARC_INTREG_SIZE) |
c906108c | 2538 | { |
5af923b0 MS |
2539 | copyarg = value_cast (sparc_intreg_type, copyarg); |
2540 | copylen = SPARC_INTREG_SIZE; | |
c5aa993b | 2541 | } |
c906108c SS |
2542 | sp -= copylen; |
2543 | } | |
2544 | ||
2545 | /* Round down. */ | |
2546 | sp = sp & ~7; | |
2547 | tempsp = sp; | |
2548 | ||
5af923b0 MS |
2549 | /* if STRUCT_RETURN, then first argument is the struct return location. */ |
2550 | if (struct_return) | |
2551 | write_register (O0_REGNUM + register_counter++, struct_retaddr); | |
2552 | ||
2553 | /* Now write the arguments onto the stack, while writing FP | |
2554 | arguments into the FP registers, and other arguments into the | |
2555 | first six 'O' registers. */ | |
2556 | ||
2557 | for (i = 0; i < nargs; i++) | |
c906108c | 2558 | { |
5af923b0 | 2559 | int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i]))); |
ea7c478f | 2560 | struct value *copyarg = args[i]; |
5af923b0 | 2561 | enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i])); |
c906108c SS |
2562 | int copylen = len; |
2563 | ||
5af923b0 MS |
2564 | if (typecode == TYPE_CODE_INT || |
2565 | typecode == TYPE_CODE_BOOL || | |
2566 | typecode == TYPE_CODE_CHAR || | |
2567 | typecode == TYPE_CODE_RANGE || | |
2568 | typecode == TYPE_CODE_ENUM) | |
2569 | if (len < SPARC_INTREG_SIZE) | |
2570 | { | |
2571 | /* Small ints will all take up the size of one intreg on | |
2572 | the stack. */ | |
2573 | copyarg = value_cast (sparc_intreg_type, copyarg); | |
2574 | copylen = SPARC_INTREG_SIZE; | |
2575 | } | |
2576 | ||
c906108c SS |
2577 | write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen); |
2578 | tempsp += copylen; | |
5af923b0 MS |
2579 | |
2580 | /* Corner case: Structs consisting of a single float member are floats. | |
2581 | * FIXME! I don't know about structs containing multiple floats! | |
2582 | * Structs containing mixed floats and ints are even more weird. | |
2583 | */ | |
2584 | ||
2585 | ||
2586 | ||
2587 | /* Separate float args from all other args. */ | |
2588 | if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
c906108c | 2589 | { |
5af923b0 MS |
2590 | if (register_counter < 16) |
2591 | { | |
2592 | /* This arg gets copied into a FP register. */ | |
2593 | int fpreg; | |
2594 | ||
2595 | switch (len) { | |
2596 | case 4: /* Single-precision (float) */ | |
2597 | fpreg = FP0_REGNUM + 2 * register_counter + 1; | |
2598 | register_counter += 1; | |
2599 | break; | |
2600 | case 8: /* Double-precision (double) */ | |
2601 | fpreg = FP0_REGNUM + 2 * register_counter; | |
2602 | register_counter += 1; | |
2603 | break; | |
2604 | case 16: /* Quad-precision (long double) */ | |
2605 | fpreg = FP0_REGNUM + 2 * register_counter; | |
2606 | register_counter += 2; | |
2607 | break; | |
93d56215 AC |
2608 | default: |
2609 | internal_error (__FILE__, __LINE__, "bad switch"); | |
5af923b0 | 2610 | } |
73937e03 AC |
2611 | deprecated_write_register_bytes (REGISTER_BYTE (fpreg), |
2612 | VALUE_CONTENTS (args[i]), | |
2613 | len); | |
5af923b0 | 2614 | } |
c906108c | 2615 | } |
5af923b0 MS |
2616 | else /* all other args go into the first six 'o' registers */ |
2617 | { | |
2618 | for (j = 0; | |
2619 | j < len && register_counter < 6; | |
2620 | j += SPARC_INTREG_SIZE) | |
2621 | { | |
2622 | int oreg = O0_REGNUM + register_counter; | |
2623 | ||
4caf0990 | 2624 | deprecated_write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j); |
5af923b0 MS |
2625 | register_counter += 1; |
2626 | } | |
2627 | } | |
c906108c SS |
2628 | } |
2629 | return sp; | |
2630 | } | |
2631 | ||
2632 | /* Values <= 32 bytes are returned in o0-o3 (floating-point values are | |
2633 | returned in f0-f3). */ | |
5af923b0 | 2634 | |
c906108c | 2635 | void |
fba45db2 KB |
2636 | sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf, |
2637 | int bitoffset) | |
c906108c SS |
2638 | { |
2639 | int typelen = TYPE_LENGTH (type); | |
2640 | int regsize = REGISTER_RAW_SIZE (O0_REGNUM); | |
2641 | ||
2642 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
2643 | { | |
c5aa993b | 2644 | memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen); |
c906108c SS |
2645 | return; |
2646 | } | |
2647 | ||
2648 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
2649 | || (TYPE_LENGTH (type) > 32)) | |
2650 | { | |
2651 | memcpy (valbuf, | |
c5aa993b | 2652 | ®buf[O0_REGNUM * regsize + |
c906108c SS |
2653 | (typelen >= regsize ? 0 : regsize - typelen)], |
2654 | typelen); | |
2655 | return; | |
2656 | } | |
2657 | else | |
2658 | { | |
2659 | char *o0 = ®buf[O0_REGNUM * regsize]; | |
2660 | char *f0 = ®buf[FP0_REGNUM * regsize]; | |
2661 | int x; | |
2662 | ||
2663 | for (x = 0; x < TYPE_NFIELDS (type); x++) | |
2664 | { | |
c5aa993b | 2665 | struct field *f = &TYPE_FIELDS (type)[x]; |
c906108c SS |
2666 | /* FIXME: We may need to handle static fields here. */ |
2667 | int whichreg = (f->loc.bitpos + bitoffset) / 32; | |
2668 | int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8; | |
2669 | int where = (f->loc.bitpos + bitoffset) / 8; | |
2670 | int size = TYPE_LENGTH (f->type); | |
2671 | int typecode = TYPE_CODE (f->type); | |
2672 | ||
2673 | if (typecode == TYPE_CODE_STRUCT) | |
2674 | { | |
5af923b0 MS |
2675 | sp64_extract_return_value (f->type, |
2676 | regbuf, | |
2677 | valbuf, | |
2678 | bitoffset + f->loc.bitpos); | |
c906108c | 2679 | } |
5af923b0 | 2680 | else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU) |
c906108c SS |
2681 | { |
2682 | memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size); | |
2683 | } | |
2684 | else | |
2685 | { | |
2686 | memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size); | |
2687 | } | |
2688 | } | |
2689 | } | |
2690 | } | |
2acceee2 | 2691 | |
5af923b0 MS |
2692 | extern void |
2693 | sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
2694 | { | |
2695 | sp64_extract_return_value (type, regbuf, valbuf, 0); | |
2696 | } | |
2697 | ||
f81824a9 AC |
2698 | #if 0 |
2699 | // OBSOLETE extern void | |
2700 | // OBSOLETE sparclet_extract_return_value (struct type *type, | |
2701 | // OBSOLETE char *regbuf, | |
2702 | // OBSOLETE char *valbuf) | |
2703 | // OBSOLETE { | |
2704 | // OBSOLETE regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8; | |
2705 | // OBSOLETE if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM)) | |
2706 | // OBSOLETE regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type); | |
2707 | // OBSOLETE | |
2708 | // OBSOLETE memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type)); | |
2709 | // OBSOLETE } | |
2710 | #endif | |
5af923b0 MS |
2711 | |
2712 | extern CORE_ADDR | |
2713 | sparc32_stack_align (CORE_ADDR addr) | |
2714 | { | |
2715 | return ((addr + 7) & -8); | |
2716 | } | |
2717 | ||
2718 | extern CORE_ADDR | |
2719 | sparc64_stack_align (CORE_ADDR addr) | |
2720 | { | |
2721 | return ((addr + 15) & -16); | |
2722 | } | |
2723 | ||
2724 | extern void | |
2725 | sparc_print_extra_frame_info (struct frame_info *fi) | |
2726 | { | |
da50a4b7 | 2727 | if (fi && get_frame_extra_info (fi) && get_frame_extra_info (fi)->flat) |
5af923b0 | 2728 | printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n", |
da50a4b7 AC |
2729 | paddr_nz (get_frame_extra_info (fi)->pc_addr), |
2730 | paddr_nz (get_frame_extra_info (fi)->fp_addr)); | |
5af923b0 MS |
2731 | } |
2732 | ||
2733 | /* MULTI_ARCH support */ | |
2734 | ||
fa88f677 | 2735 | static const char * |
5af923b0 MS |
2736 | sparc32_register_name (int regno) |
2737 | { | |
2738 | static char *register_names[] = | |
2739 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2740 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2741 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2742 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2743 | ||
2744 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2745 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2746 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2747 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2748 | ||
2749 | "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" | |
2750 | }; | |
2751 | ||
2752 | if (regno < 0 || | |
2753 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2754 | return NULL; | |
2755 | else | |
2756 | return register_names[regno]; | |
2757 | } | |
2758 | ||
fa88f677 | 2759 | static const char * |
5af923b0 MS |
2760 | sparc64_register_name (int regno) |
2761 | { | |
2762 | static char *register_names[] = | |
2763 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2764 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2765 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2766 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2767 | ||
2768 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2769 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2770 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2771 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2772 | "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", | |
2773 | "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62", | |
2774 | ||
2775 | "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver", | |
2776 | "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc", | |
2777 | "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin", | |
2778 | "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23", | |
2779 | "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31", | |
2780 | /* These are here at the end to simplify removing them if we have to. */ | |
2781 | "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3" | |
2782 | }; | |
2783 | ||
2784 | if (regno < 0 || | |
2785 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2786 | return NULL; | |
2787 | else | |
2788 | return register_names[regno]; | |
2789 | } | |
2790 | ||
5af923b0 | 2791 | #if 0 |
f81824a9 AC |
2792 | // OBSOLETE static const char * |
2793 | // OBSOLETE sparclite_register_name (int regno) | |
2794 | // OBSOLETE { | |
2795 | // OBSOLETE static char *register_names[] = | |
2796 | // OBSOLETE { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2797 | // OBSOLETE "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2798 | // OBSOLETE "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2799 | // OBSOLETE "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2800 | // OBSOLETE | |
2801 | // OBSOLETE "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2802 | // OBSOLETE "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2803 | // OBSOLETE "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2804 | // OBSOLETE "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2805 | // OBSOLETE | |
2806 | // OBSOLETE "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr", | |
2807 | // OBSOLETE "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr" | |
2808 | // OBSOLETE }; | |
2809 | // OBSOLETE | |
2810 | // OBSOLETE if (regno < 0 || | |
2811 | // OBSOLETE regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2812 | // OBSOLETE return NULL; | |
2813 | // OBSOLETE else | |
2814 | // OBSOLETE return register_names[regno]; | |
2815 | // OBSOLETE } | |
2816 | #endif | |
5af923b0 | 2817 | |
f81824a9 AC |
2818 | #if 0 |
2819 | // OBSOLETE static const char * | |
2820 | // OBSOLETE sparclet_register_name (int regno) | |
2821 | // OBSOLETE { | |
2822 | // OBSOLETE static char *register_names[] = | |
2823 | // OBSOLETE { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2824 | // OBSOLETE "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2825 | // OBSOLETE "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2826 | // OBSOLETE "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2827 | // OBSOLETE | |
2828 | // OBSOLETE "", "", "", "", "", "", "", "", /* no floating point registers */ | |
2829 | // OBSOLETE "", "", "", "", "", "", "", "", | |
2830 | // OBSOLETE "", "", "", "", "", "", "", "", | |
2831 | // OBSOLETE "", "", "", "", "", "", "", "", | |
2832 | // OBSOLETE | |
2833 | // OBSOLETE "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */ | |
2834 | // OBSOLETE "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "", | |
2835 | // OBSOLETE | |
2836 | // OBSOLETE /* ASR15 ASR19 (don't display them) */ | |
2837 | // OBSOLETE "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22" | |
2838 | // OBSOLETE /* None of the rest get displayed */ | |
2839 | // OBSOLETE #if 0 | |
2840 | // OBSOLETE "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7", | |
2841 | // OBSOLETE "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15", | |
2842 | // OBSOLETE "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23", | |
2843 | // OBSOLETE "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31", | |
2844 | // OBSOLETE "apsr" | |
2845 | // OBSOLETE #endif /* 0 */ | |
2846 | // OBSOLETE }; | |
2847 | // OBSOLETE | |
2848 | // OBSOLETE if (regno < 0 || | |
2849 | // OBSOLETE regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2850 | // OBSOLETE return NULL; | |
2851 | // OBSOLETE else | |
2852 | // OBSOLETE return register_names[regno]; | |
2853 | // OBSOLETE } | |
2854 | #endif | |
5af923b0 MS |
2855 | |
2856 | CORE_ADDR | |
2857 | sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp) | |
2858 | { | |
2859 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2860 | { | |
2861 | /* The return PC of the dummy_frame is the former 'current' PC | |
2862 | (where we were before we made the target function call). | |
2863 | This is saved in %i7 by push_dummy_frame. | |
2864 | ||
2865 | We will save the 'call dummy location' (ie. the address | |
2866 | to which the target function will return) in %o7. | |
2867 | This address will actually be the program's entry point. | |
2868 | There will be a special call_dummy breakpoint there. */ | |
2869 | ||
2870 | write_register (O7_REGNUM, | |
2871 | CALL_DUMMY_ADDRESS () - 8); | |
2872 | } | |
2873 | ||
2874 | return sp; | |
2875 | } | |
2876 | ||
2877 | /* Should call_function allocate stack space for a struct return? */ | |
2878 | ||
2879 | static int | |
2880 | sparc64_use_struct_convention (int gcc_p, struct type *type) | |
2881 | { | |
2882 | return (TYPE_LENGTH (type) > 32); | |
2883 | } | |
2884 | ||
2885 | /* Store the address of the place in which to copy the structure the | |
2886 | subroutine will return. This is called from call_function_by_hand. | |
2887 | The ultimate mystery is, tho, what is the value "16"? | |
2888 | ||
2889 | MVS: That's the offset from where the sp is now, to where the | |
2890 | subroutine is gonna expect to find the struct return address. */ | |
2891 | ||
2892 | static void | |
2893 | sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2894 | { | |
2895 | char *val; | |
2896 | CORE_ADDR o7; | |
2897 | ||
2898 | val = alloca (SPARC_INTREG_SIZE); | |
2899 | store_unsigned_integer (val, SPARC_INTREG_SIZE, addr); | |
2900 | write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE); | |
2901 | ||
2902 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2903 | { | |
2904 | /* Now adjust the value of the link register, which was previously | |
2905 | stored by push_return_address. Functions that return structs are | |
2906 | peculiar in that they return to link register + 12, rather than | |
2907 | link register + 8. */ | |
2908 | ||
2909 | o7 = read_register (O7_REGNUM); | |
2910 | write_register (O7_REGNUM, o7 - 4); | |
2911 | } | |
2912 | } | |
2913 | ||
2914 | static void | |
2915 | sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2916 | { | |
2917 | /* FIXME: V9 uses %o0 for this. */ | |
2918 | /* FIXME MVS: Only for small enough structs!!! */ | |
2acceee2 | 2919 | |
5af923b0 MS |
2920 | target_write_memory (sp + (16 * SPARC_INTREG_SIZE), |
2921 | (char *) &addr, SPARC_INTREG_SIZE); | |
2922 | #if 0 | |
2923 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2924 | { | |
2925 | /* Now adjust the value of the link register, which was previously | |
2926 | stored by push_return_address. Functions that return structs are | |
2927 | peculiar in that they return to link register + 12, rather than | |
2928 | link register + 8. */ | |
2929 | ||
2930 | write_register (O7_REGNUM, read_register (O7_REGNUM) - 4); | |
2931 | } | |
c906108c | 2932 | #endif |
5af923b0 MS |
2933 | } |
2934 | ||
2935 | /* Default target data type for register REGNO. */ | |
2936 | ||
2937 | static struct type * | |
2938 | sparc32_register_virtual_type (int regno) | |
2939 | { | |
2940 | if (regno == PC_REGNUM || | |
0ba6dca9 | 2941 | regno == DEPRECATED_FP_REGNUM || |
5af923b0 MS |
2942 | regno == SP_REGNUM) |
2943 | return builtin_type_unsigned_int; | |
2944 | if (regno < 32) | |
2945 | return builtin_type_int; | |
2946 | if (regno < 64) | |
2947 | return builtin_type_float; | |
2948 | return builtin_type_int; | |
2949 | } | |
2950 | ||
2951 | static struct type * | |
2952 | sparc64_register_virtual_type (int regno) | |
2953 | { | |
2954 | if (regno == PC_REGNUM || | |
0ba6dca9 | 2955 | regno == DEPRECATED_FP_REGNUM || |
5af923b0 MS |
2956 | regno == SP_REGNUM) |
2957 | return builtin_type_unsigned_long_long; | |
2958 | if (regno < 32) | |
2959 | return builtin_type_long_long; | |
2960 | if (regno < 64) | |
2961 | return builtin_type_float; | |
2962 | if (regno < 80) | |
2963 | return builtin_type_double; | |
2964 | return builtin_type_long_long; | |
2965 | } | |
2966 | ||
2967 | /* Number of bytes of storage in the actual machine representation for | |
2968 | register REGNO. */ | |
2969 | ||
2970 | static int | |
2971 | sparc32_register_size (int regno) | |
2972 | { | |
2973 | return 4; | |
2974 | } | |
2975 | ||
2976 | static int | |
2977 | sparc64_register_size (int regno) | |
2978 | { | |
2979 | return (regno < 32 ? 8 : regno < 64 ? 4 : 8); | |
2980 | } | |
2981 | ||
2982 | /* Index within the `registers' buffer of the first byte of the space | |
2983 | for register REGNO. */ | |
2984 | ||
2985 | static int | |
2986 | sparc32_register_byte (int regno) | |
2987 | { | |
2988 | return (regno * 4); | |
2989 | } | |
2990 | ||
2991 | static int | |
2992 | sparc64_register_byte (int regno) | |
2993 | { | |
2994 | if (regno < 32) | |
2995 | return regno * 8; | |
2996 | else if (regno < 64) | |
2997 | return 32 * 8 + (regno - 32) * 4; | |
2998 | else if (regno < 80) | |
2999 | return 32 * 8 + 32 * 4 + (regno - 64) * 8; | |
3000 | else | |
3001 | return 64 * 8 + (regno - 80) * 8; | |
3002 | } | |
3003 | ||
5af923b0 MS |
3004 | /* Immediately after a function call, return the saved pc. |
3005 | Can't go through the frames for this because on some machines | |
3006 | the new frame is not set up until the new function executes | |
3007 | some instructions. */ | |
3008 | ||
3009 | static CORE_ADDR | |
3010 | sparc_saved_pc_after_call (struct frame_info *fi) | |
3011 | { | |
3012 | return sparc_pc_adjust (read_register (RP_REGNUM)); | |
3013 | } | |
3014 | ||
3015 | /* Convert registers between 'raw' and 'virtual' formats. | |
3016 | They are the same on sparc, so there's nothing to do. */ | |
3017 | ||
3018 | static void | |
3019 | sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to) | |
3020 | { /* do nothing (should never be called) */ | |
3021 | } | |
3022 | ||
3023 | static void | |
3024 | sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to) | |
3025 | { /* do nothing (should never be called) */ | |
3026 | } | |
3027 | ||
3028 | /* Init saved regs: nothing to do, just a place-holder function. */ | |
3029 | ||
3030 | static void | |
3031 | sparc_frame_init_saved_regs (struct frame_info *fi_ignored) | |
3032 | { /* no-op */ | |
3033 | } | |
3034 | ||
5af923b0 MS |
3035 | /* gdbarch fix call dummy: |
3036 | All this function does is rearrange the arguments before calling | |
3037 | sparc_fix_call_dummy (which does the real work). */ | |
3038 | ||
3039 | static void | |
3040 | sparc_gdbarch_fix_call_dummy (char *dummy, | |
3041 | CORE_ADDR pc, | |
3042 | CORE_ADDR fun, | |
3043 | int nargs, | |
3044 | struct value **args, | |
3045 | struct type *type, | |
3046 | int gcc_p) | |
3047 | { | |
3048 | if (CALL_DUMMY_LOCATION == ON_STACK) | |
3049 | sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p); | |
3050 | } | |
3051 | ||
5af923b0 MS |
3052 | /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */ |
3053 | ||
3054 | static CORE_ADDR | |
3055 | sparc_call_dummy_address (void) | |
3056 | { | |
3057 | return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET; | |
3058 | } | |
3059 | ||
3060 | /* Supply the Y register number to those that need it. */ | |
3061 | ||
3062 | int | |
3063 | sparc_y_regnum (void) | |
3064 | { | |
3065 | return gdbarch_tdep (current_gdbarch)->y_regnum; | |
3066 | } | |
3067 | ||
3068 | int | |
3069 | sparc_reg_struct_has_addr (int gcc_p, struct type *type) | |
3070 | { | |
3071 | if (GDB_TARGET_IS_SPARC64) | |
3072 | return (TYPE_LENGTH (type) > 32); | |
3073 | else | |
3074 | return (gcc_p != 1); | |
3075 | } | |
3076 | ||
3077 | int | |
3078 | sparc_intreg_size (void) | |
3079 | { | |
3080 | return SPARC_INTREG_SIZE; | |
3081 | } | |
3082 | ||
3083 | static int | |
3084 | sparc_return_value_on_stack (struct type *type) | |
3085 | { | |
3086 | if (TYPE_CODE (type) == TYPE_CODE_FLT && | |
3087 | TYPE_LENGTH (type) > 8) | |
3088 | return 1; | |
3089 | else | |
3090 | return 0; | |
3091 | } | |
3092 | ||
3093 | /* | |
3094 | * Gdbarch "constructor" function. | |
3095 | */ | |
3096 | ||
3097 | #define SPARC32_CALL_DUMMY_ON_STACK | |
3098 | ||
3099 | #define SPARC_SP_REGNUM 14 | |
3100 | #define SPARC_FP_REGNUM 30 | |
3101 | #define SPARC_FP0_REGNUM 32 | |
3102 | #define SPARC32_NPC_REGNUM 69 | |
3103 | #define SPARC32_PC_REGNUM 68 | |
3104 | #define SPARC32_Y_REGNUM 64 | |
3105 | #define SPARC64_PC_REGNUM 80 | |
3106 | #define SPARC64_NPC_REGNUM 81 | |
3107 | #define SPARC64_Y_REGNUM 85 | |
3108 | ||
3109 | static struct gdbarch * | |
3110 | sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3111 | { | |
3112 | struct gdbarch *gdbarch; | |
3113 | struct gdbarch_tdep *tdep; | |
3114 | ||
3115 | static LONGEST call_dummy_32[] = | |
3116 | { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003, | |
3117 | 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c, | |
3118 | 0xd203a048, 0x40000000, 0xd003a044, 0x01000000, | |
3119 | 0x91d02001, 0x01000000 | |
3120 | }; | |
3121 | static LONGEST call_dummy_64[] = | |
3122 | { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL, | |
3123 | 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL, | |
3124 | 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL, | |
3125 | 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL, | |
3126 | 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL, | |
3127 | 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL, | |
3128 | 0xf03fa73f01000000LL, 0x0100000001000000LL, | |
3129 | 0x0100000091580000LL, 0xd027a72b93500000LL, | |
3130 | 0xd027a72791480000LL, 0xd027a72391400000LL, | |
3131 | 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL, | |
3132 | 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL, | |
3133 | 0x0100000091d02001LL, 0x0100000001000000LL | |
3134 | }; | |
3135 | static LONGEST call_dummy_nil[] = {0}; | |
3136 | ||
ef3cf062 JT |
3137 | /* Try to determine the OS ABI of the object we are loading. */ |
3138 | ||
4be87837 DJ |
3139 | if (info.abfd != NULL |
3140 | && info.osabi == GDB_OSABI_UNKNOWN) | |
ef3cf062 | 3141 | { |
4be87837 DJ |
3142 | /* If it's an ELF file, assume it's Solaris. */ |
3143 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
3144 | info.osabi = GDB_OSABI_SOLARIS; | |
ef3cf062 JT |
3145 | } |
3146 | ||
5af923b0 | 3147 | /* First see if there is already a gdbarch that can satisfy the request. */ |
4be87837 DJ |
3148 | arches = gdbarch_list_lookup_by_info (arches, &info); |
3149 | if (arches != NULL) | |
3150 | return arches->gdbarch; | |
5af923b0 MS |
3151 | |
3152 | /* None found: is the request for a sparc architecture? */ | |
aca21d9a | 3153 | if (info.bfd_arch_info->arch != bfd_arch_sparc) |
5af923b0 MS |
3154 | return NULL; /* No; then it's not for us. */ |
3155 | ||
3156 | /* Yes: create a new gdbarch for the specified machine type. */ | |
3157 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
3158 | gdbarch = gdbarch_alloc (&info, tdep); | |
3159 | ||
3160 | /* First set settings that are common for all sparc architectures. */ | |
3161 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
3162 | set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc); | |
5af923b0 MS |
3163 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
3164 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
26e9b323 | 3165 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sparc_extract_struct_value_address); |
5af923b0 MS |
3166 | set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy); |
3167 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
0ba6dca9 | 3168 | set_gdbarch_deprecated_fp_regnum (gdbarch, SPARC_FP_REGNUM); |
5af923b0 | 3169 | set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM); |
618ce49f | 3170 | set_gdbarch_deprecated_frame_chain (gdbarch, sparc_frame_chain); |
f30ee0bc | 3171 | set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs); |
5af923b0 | 3172 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); |
8bedc050 | 3173 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, sparc_frame_saved_pc); |
5af923b0 MS |
3174 | set_gdbarch_frameless_function_invocation (gdbarch, |
3175 | frameless_look_for_prologue); | |
129c1cd6 | 3176 | set_gdbarch_deprecated_get_saved_register (gdbarch, sparc_get_saved_register); |
e9582e71 | 3177 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info); |
5af923b0 MS |
3178 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
3179 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3180 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
3181 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
a0ed5532 AC |
3182 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8); |
3183 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); | |
749b82f6 | 3184 | set_gdbarch_deprecated_pop_frame (gdbarch, sparc_pop_frame); |
28f617b3 | 3185 | set_gdbarch_deprecated_push_return_address (gdbarch, sparc_push_return_address); |
f3824013 | 3186 | set_gdbarch_deprecated_push_dummy_frame (gdbarch, sparc_push_dummy_frame); |
5af923b0 MS |
3187 | set_gdbarch_read_pc (gdbarch, generic_target_read_pc); |
3188 | set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw); | |
3189 | set_gdbarch_register_convert_to_virtual (gdbarch, | |
3190 | sparc_convert_to_virtual); | |
3191 | set_gdbarch_register_convertible (gdbarch, | |
3192 | generic_register_convertible_not); | |
3193 | set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr); | |
3194 | set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack); | |
6913c89a | 3195 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call); |
9319a2fe | 3196 | set_gdbarch_prologue_frameless_p (gdbarch, sparc_prologue_frameless_p); |
5af923b0 | 3197 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
f510d44e | 3198 | set_gdbarch_skip_prologue (gdbarch, sparc_skip_prologue); |
5af923b0 | 3199 | set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); |
07555a72 | 3200 | set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0); |
5af923b0 MS |
3201 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); |
3202 | ||
3203 | /* | |
3204 | * Settings that depend only on 32/64 bit word size | |
3205 | */ | |
3206 | ||
3207 | switch (info.bfd_arch_info->mach) | |
3208 | { | |
3209 | case bfd_mach_sparc: | |
f81824a9 AC |
3210 | #if 0 |
3211 | // OBSOLETE case bfd_mach_sparc_sparclet: | |
3212 | // OBSOLETE case bfd_mach_sparc_sparclite: | |
3213 | #endif | |
5af923b0 MS |
3214 | case bfd_mach_sparc_v8plus: |
3215 | case bfd_mach_sparc_v8plusa: | |
f81824a9 AC |
3216 | #if 0 |
3217 | // OBSOLETE case bfd_mach_sparc_sparclite_le: | |
3218 | #endif | |
5af923b0 MS |
3219 | /* 32-bit machine types: */ |
3220 | ||
3221 | #ifdef SPARC32_CALL_DUMMY_ON_STACK | |
ae45cd16 | 3222 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack); |
5af923b0 MS |
3223 | set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address); |
3224 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30); | |
3225 | set_gdbarch_call_dummy_length (gdbarch, 0x38); | |
7e57f5f4 AC |
3226 | |
3227 | /* NOTE: cagney/2002-04-26: Based from info posted by Peter | |
3228 | Schauer around Oct '99. Briefly, due to aspects of the SPARC | |
3229 | ABI, it isn't possible to use ON_STACK with a strictly | |
3230 | compliant compiler. | |
3231 | ||
3232 | Peter Schauer writes ... | |
3233 | ||
3234 | No, any call from GDB to a user function returning a | |
3235 | struct/union will fail miserably. Try this: | |
3236 | ||
3237 | *NOINDENT* | |
3238 | struct x | |
3239 | { | |
3240 | int a[4]; | |
3241 | }; | |
3242 | ||
3243 | struct x gx; | |
3244 | ||
3245 | struct x | |
3246 | sret () | |
3247 | { | |
3248 | return gx; | |
3249 | } | |
3250 | ||
3251 | main () | |
3252 | { | |
3253 | int i; | |
3254 | for (i = 0; i < 4; i++) | |
3255 | gx.a[i] = i + 1; | |
3256 | gx = sret (); | |
3257 | } | |
3258 | *INDENT* | |
3259 | ||
3260 | Set a breakpoint at the gx = sret () statement, run to it and | |
3261 | issue a `print sret()'. It will not succed with your | |
3262 | approach, and I doubt that continuing the program will work | |
3263 | as well. | |
3264 | ||
3265 | For details of the ABI see the Sparc Architecture Manual. I | |
3266 | have Version 8 (Prentice Hall ISBN 0-13-825001-4) and the | |
3267 | calling conventions for functions returning aggregate values | |
3268 | are explained in Appendix D.3. */ | |
3269 | ||
5af923b0 MS |
3270 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); |
3271 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_32); | |
3272 | #else | |
ae45cd16 | 3273 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point); |
5af923b0 MS |
3274 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil); |
3275 | #endif | |
1bf6d5cc | 3276 | set_gdbarch_deprecated_call_dummy_stack_adjust (gdbarch, 68); |
5af923b0 MS |
3277 | set_gdbarch_frame_args_skip (gdbarch, 68); |
3278 | set_gdbarch_function_start_offset (gdbarch, 0); | |
3279 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3280 | set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM); | |
3281 | set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); | |
3282 | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
b81774d8 | 3283 | set_gdbarch_deprecated_push_arguments (gdbarch, sparc32_push_arguments); |
5af923b0 MS |
3284 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); |
3285 | ||
3286 | set_gdbarch_register_byte (gdbarch, sparc32_register_byte); | |
3287 | set_gdbarch_register_raw_size (gdbarch, sparc32_register_size); | |
3288 | set_gdbarch_register_size (gdbarch, 4); | |
3289 | set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size); | |
3290 | set_gdbarch_register_virtual_type (gdbarch, | |
3291 | sparc32_register_virtual_type); | |
3292 | #ifdef SPARC32_CALL_DUMMY_ON_STACK | |
3293 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32)); | |
3294 | #else | |
3295 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
3296 | #endif | |
3297 | set_gdbarch_stack_align (gdbarch, sparc32_stack_align); | |
f933a9c5 | 3298 | set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1); |
4183d812 | 3299 | set_gdbarch_deprecated_store_struct_return (gdbarch, sparc32_store_struct_return); |
5af923b0 MS |
3300 | set_gdbarch_use_struct_convention (gdbarch, |
3301 | generic_use_struct_convention); | |
6c0e89ed | 3302 | set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp); |
5af923b0 MS |
3303 | tdep->y_regnum = SPARC32_Y_REGNUM; |
3304 | tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32; | |
3305 | tdep->intreg_size = 4; | |
3306 | tdep->reg_save_offset = 0x60; | |
3307 | tdep->call_dummy_call_offset = 0x24; | |
3308 | break; | |
3309 | ||
3310 | case bfd_mach_sparc_v9: | |
3311 | case bfd_mach_sparc_v9a: | |
3312 | /* 64-bit machine types: */ | |
3313 | default: /* Any new machine type is likely to be 64-bit. */ | |
3314 | ||
3315 | #ifdef SPARC64_CALL_DUMMY_ON_STACK | |
ae45cd16 | 3316 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack); |
5af923b0 MS |
3317 | set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address); |
3318 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4); | |
3319 | set_gdbarch_call_dummy_length (gdbarch, 192); | |
3320 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
3321 | set_gdbarch_call_dummy_start_offset (gdbarch, 148); | |
3322 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_64); | |
3323 | #else | |
ae45cd16 | 3324 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point); |
5af923b0 MS |
3325 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil); |
3326 | #endif | |
1bf6d5cc | 3327 | set_gdbarch_deprecated_call_dummy_stack_adjust (gdbarch, 128); |
5af923b0 MS |
3328 | set_gdbarch_frame_args_skip (gdbarch, 136); |
3329 | set_gdbarch_function_start_offset (gdbarch, 0); | |
3330 | set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3331 | set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM); | |
3332 | set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); | |
3333 | set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
b81774d8 | 3334 | set_gdbarch_deprecated_push_arguments (gdbarch, sparc64_push_arguments); |
5af923b0 | 3335 | /* NOTE different for at_entry */ |
0ba6dca9 | 3336 | set_gdbarch_deprecated_target_read_fp (gdbarch, sparc64_read_fp); |
5af923b0 MS |
3337 | set_gdbarch_read_sp (gdbarch, sparc64_read_sp); |
3338 | /* Some of the registers aren't 64 bits, but it's a lot simpler just | |
3339 | to assume they all are (since most of them are). */ | |
3340 | set_gdbarch_register_byte (gdbarch, sparc64_register_byte); | |
3341 | set_gdbarch_register_raw_size (gdbarch, sparc64_register_size); | |
3342 | set_gdbarch_register_size (gdbarch, 8); | |
3343 | set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size); | |
3344 | set_gdbarch_register_virtual_type (gdbarch, | |
3345 | sparc64_register_virtual_type); | |
3346 | #ifdef SPARC64_CALL_DUMMY_ON_STACK | |
3347 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64)); | |
3348 | #else | |
3349 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
3350 | #endif | |
3351 | set_gdbarch_stack_align (gdbarch, sparc64_stack_align); | |
f933a9c5 | 3352 | set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1); |
4183d812 | 3353 | set_gdbarch_deprecated_store_struct_return (gdbarch, sparc64_store_struct_return); |
5af923b0 MS |
3354 | set_gdbarch_use_struct_convention (gdbarch, |
3355 | sparc64_use_struct_convention); | |
6c0e89ed | 3356 | set_gdbarch_deprecated_dummy_write_sp (gdbarch, sparc64_write_sp); |
5af923b0 MS |
3357 | tdep->y_regnum = SPARC64_Y_REGNUM; |
3358 | tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48; | |
3359 | tdep->intreg_size = 8; | |
3360 | tdep->reg_save_offset = 0x90; | |
3361 | tdep->call_dummy_call_offset = 148 + 4 * 5; | |
3362 | break; | |
3363 | } | |
3364 | ||
3365 | /* | |
3366 | * Settings that vary per-architecture: | |
3367 | */ | |
3368 | ||
3369 | switch (info.bfd_arch_info->mach) | |
3370 | { | |
3371 | case bfd_mach_sparc: | |
26e9b323 | 3372 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); |
5af923b0 MS |
3373 | set_gdbarch_num_regs (gdbarch, 72); |
3374 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3375 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
ebba8386 | 3376 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
f81824a9 AC |
3377 | #if 0 |
3378 | // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3379 | #endif | |
5af923b0 MS |
3380 | tdep->fp_register_bytes = 32 * 4; |
3381 | tdep->print_insn_mach = bfd_mach_sparc; | |
3382 | break; | |
f81824a9 AC |
3383 | #if 0 |
3384 | // OBSOLETE case bfd_mach_sparc_sparclet: | |
3385 | // OBSOLETE set_gdbarch_deprecated_extract_return_value (gdbarch, sparclet_extract_return_value); | |
3386 | // OBSOLETE set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8); | |
3387 | // OBSOLETE set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4); | |
3388 | // OBSOLETE set_gdbarch_register_name (gdbarch, sparclet_register_name); | |
3389 | // OBSOLETE set_gdbarch_deprecated_store_return_value (gdbarch, sparclet_store_return_value); | |
3390 | // OBSOLETE tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ | |
3391 | // OBSOLETE tdep->fp_register_bytes = 0; | |
3392 | // OBSOLETE tdep->print_insn_mach = bfd_mach_sparc_sparclet; | |
3393 | // OBSOLETE break; | |
3394 | #endif | |
3395 | #if 0 | |
3396 | // OBSOLETE case bfd_mach_sparc_sparclite: | |
3397 | // OBSOLETE set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); | |
3398 | // OBSOLETE set_gdbarch_num_regs (gdbarch, 80); | |
3399 | // OBSOLETE set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4); | |
3400 | // OBSOLETE set_gdbarch_register_name (gdbarch, sparclite_register_name); | |
3401 | // OBSOLETE set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); | |
3402 | // OBSOLETE tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ | |
3403 | // OBSOLETE tdep->fp_register_bytes = 0; | |
3404 | // OBSOLETE tdep->print_insn_mach = bfd_mach_sparc_sparclite; | |
3405 | // OBSOLETE break; | |
3406 | #endif | |
5af923b0 | 3407 | case bfd_mach_sparc_v8plus: |
26e9b323 | 3408 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); |
5af923b0 MS |
3409 | set_gdbarch_num_regs (gdbarch, 72); |
3410 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3411 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
ebba8386 | 3412 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
5af923b0 MS |
3413 | tdep->print_insn_mach = bfd_mach_sparc; |
3414 | tdep->fp_register_bytes = 32 * 4; | |
f81824a9 AC |
3415 | #if 0 |
3416 | // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3417 | #endif | |
5af923b0 MS |
3418 | break; |
3419 | case bfd_mach_sparc_v8plusa: | |
26e9b323 | 3420 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); |
5af923b0 MS |
3421 | set_gdbarch_num_regs (gdbarch, 72); |
3422 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3423 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
ebba8386 | 3424 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
f81824a9 AC |
3425 | #if 0 |
3426 | // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3427 | #endif | |
5af923b0 MS |
3428 | tdep->fp_register_bytes = 32 * 4; |
3429 | tdep->print_insn_mach = bfd_mach_sparc; | |
3430 | break; | |
f81824a9 AC |
3431 | #if 0 |
3432 | // OBSOLETE case bfd_mach_sparc_sparclite_le: | |
3433 | // OBSOLETE set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); | |
3434 | // OBSOLETE set_gdbarch_num_regs (gdbarch, 80); | |
3435 | // OBSOLETE set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4); | |
3436 | // OBSOLETE set_gdbarch_register_name (gdbarch, sparclite_register_name); | |
3437 | // OBSOLETE set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); | |
3438 | // OBSOLETE tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ | |
3439 | // OBSOLETE tdep->fp_register_bytes = 0; | |
3440 | // OBSOLETE tdep->print_insn_mach = bfd_mach_sparc_sparclite; | |
3441 | // OBSOLETE break; | |
3442 | #endif | |
5af923b0 | 3443 | case bfd_mach_sparc_v9: |
26e9b323 | 3444 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value); |
5af923b0 MS |
3445 | set_gdbarch_num_regs (gdbarch, 125); |
3446 | set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8); | |
3447 | set_gdbarch_register_name (gdbarch, sparc64_register_name); | |
ebba8386 | 3448 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
f81824a9 AC |
3449 | #if 0 |
3450 | // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3451 | #endif | |
5af923b0 MS |
3452 | tdep->fp_register_bytes = 64 * 4; |
3453 | tdep->print_insn_mach = bfd_mach_sparc_v9a; | |
3454 | break; | |
3455 | case bfd_mach_sparc_v9a: | |
26e9b323 | 3456 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value); |
5af923b0 MS |
3457 | set_gdbarch_num_regs (gdbarch, 125); |
3458 | set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8); | |
3459 | set_gdbarch_register_name (gdbarch, sparc64_register_name); | |
ebba8386 | 3460 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
f81824a9 AC |
3461 | #if 0 |
3462 | // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3463 | #endif | |
5af923b0 MS |
3464 | tdep->fp_register_bytes = 64 * 4; |
3465 | tdep->print_insn_mach = bfd_mach_sparc_v9a; | |
3466 | break; | |
3467 | } | |
3468 | ||
ef3cf062 | 3469 | /* Hook in OS ABI-specific overrides, if they have been registered. */ |
4be87837 | 3470 | gdbarch_init_osabi (info, gdbarch); |
ef3cf062 | 3471 | |
5af923b0 MS |
3472 | return gdbarch; |
3473 | } | |
3474 | ||
ef3cf062 JT |
3475 | static void |
3476 | sparc_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
3477 | { | |
3478 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3479 | ||
3480 | if (tdep == NULL) | |
3481 | return; | |
3482 | ||
f81824a9 AC |
3483 | #if 0 |
3484 | // OBSOLETE fprintf_unfiltered (file, "sparc_dump_tdep: has_fpu = %d\n", | |
3485 | // OBSOLETE tdep->has_fpu); | |
3486 | #endif | |
4be87837 DJ |
3487 | fprintf_unfiltered (file, "sparc_dump_tdep: fp_register_bytes = %d\n", |
3488 | tdep->fp_register_bytes); | |
3489 | fprintf_unfiltered (file, "sparc_dump_tdep: y_regnum = %d\n", | |
3490 | tdep->y_regnum); | |
3491 | fprintf_unfiltered (file, "sparc_dump_tdep: fp_max_regnum = %d\n", | |
3492 | tdep->fp_max_regnum); | |
3493 | fprintf_unfiltered (file, "sparc_dump_tdep: intreg_size = %d\n", | |
3494 | tdep->intreg_size); | |
3495 | fprintf_unfiltered (file, "sparc_dump_tdep: reg_save_offset = %d\n", | |
3496 | tdep->reg_save_offset); | |
3497 | fprintf_unfiltered (file, "sparc_dump_tdep: call_dummy_call_offset = %d\n", | |
3498 | tdep->call_dummy_call_offset); | |
3499 | fprintf_unfiltered (file, "sparc_dump_tdep: print_insn_match = %d\n", | |
d995ff4b | 3500 | tdep->print_insn_mach); |
ef3cf062 | 3501 | } |