]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the SPARC for GDB, the GNU debugger. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, | |
5 | Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | /* ??? Support for calling functions from gdb in sparc64 is unfinished. */ | |
25 | ||
26 | #include "defs.h" | |
5af923b0 | 27 | #include "arch-utils.h" |
c906108c SS |
28 | #include "frame.h" |
29 | #include "inferior.h" | |
c906108c SS |
30 | #include "target.h" |
31 | #include "value.h" | |
32 | #include "bfd.h" | |
33 | #include "gdb_string.h" | |
4e052eda | 34 | #include "regcache.h" |
ef3cf062 | 35 | #include "osabi.h" |
c906108c SS |
36 | |
37 | #ifdef USE_PROC_FS | |
38 | #include <sys/procfs.h> | |
13437d4b KB |
39 | /* Prototypes for supply_gregset etc. */ |
40 | #include "gregset.h" | |
c906108c SS |
41 | #endif |
42 | ||
43 | #include "gdbcore.h" | |
44 | ||
5af923b0 MS |
45 | #include "symfile.h" /* for 'entry_point_address' */ |
46 | ||
4eb8c7fc DM |
47 | /* |
48 | * Some local macros that have multi-arch and non-multi-arch versions: | |
49 | */ | |
50 | ||
51 | #if (GDB_MULTI_ARCH > 0) | |
52 | ||
53 | /* Does the target have Floating Point registers? */ | |
54 | #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu) | |
55 | /* Number of bytes devoted to Floating Point registers: */ | |
56 | #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes) | |
57 | /* Highest numbered Floating Point register. */ | |
58 | #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum) | |
59 | /* Size of a general (integer) register: */ | |
60 | #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size) | |
61 | /* Offset within the call dummy stack of the saved registers. */ | |
62 | #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset) | |
63 | ||
64 | #else /* non-multi-arch */ | |
65 | ||
66 | ||
67 | /* Does the target have Floating Point registers? */ | |
68 | #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE) | |
69 | #define SPARC_HAS_FPU 0 | |
70 | #else | |
71 | #define SPARC_HAS_FPU 1 | |
72 | #endif | |
73 | ||
74 | /* Number of bytes devoted to Floating Point registers: */ | |
75 | #if (GDB_TARGET_IS_SPARC64) | |
76 | #define FP_REGISTER_BYTES (64 * 4) | |
77 | #else | |
78 | #if (SPARC_HAS_FPU) | |
79 | #define FP_REGISTER_BYTES (32 * 4) | |
80 | #else | |
81 | #define FP_REGISTER_BYTES 0 | |
82 | #endif | |
83 | #endif | |
84 | ||
85 | /* Highest numbered Floating Point register. */ | |
86 | #if (GDB_TARGET_IS_SPARC64) | |
87 | #define FP_MAX_REGNUM (FP0_REGNUM + 48) | |
88 | #else | |
89 | #define FP_MAX_REGNUM (FP0_REGNUM + 32) | |
90 | #endif | |
91 | ||
92 | /* Size of a general (integer) register: */ | |
93 | #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) | |
94 | ||
95 | /* Offset within the call dummy stack of the saved registers. */ | |
96 | #if (GDB_TARGET_IS_SPARC64) | |
97 | #define DUMMY_REG_SAVE_OFFSET (128 + 16) | |
98 | #else | |
99 | #define DUMMY_REG_SAVE_OFFSET 0x60 | |
100 | #endif | |
101 | ||
102 | #endif /* GDB_MULTI_ARCH */ | |
103 | ||
104 | struct gdbarch_tdep | |
105 | { | |
106 | int has_fpu; | |
107 | int fp_register_bytes; | |
108 | int y_regnum; | |
109 | int fp_max_regnum; | |
110 | int intreg_size; | |
111 | int reg_save_offset; | |
112 | int call_dummy_call_offset; | |
113 | int print_insn_mach; | |
ef3cf062 JT |
114 | |
115 | enum gdb_osabi osabi; | |
4eb8c7fc | 116 | }; |
5af923b0 MS |
117 | |
118 | /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */ | |
119 | /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ... | |
120 | * define GDB_TARGET_IS_SPARC64 \ | |
121 | * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \ | |
122 | * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \ | |
123 | * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a)) | |
124 | */ | |
125 | ||
c906108c SS |
126 | /* From infrun.c */ |
127 | extern int stop_after_trap; | |
128 | ||
129 | /* We don't store all registers immediately when requested, since they | |
130 | get sent over in large chunks anyway. Instead, we accumulate most | |
131 | of the changes and send them over once. "deferred_stores" keeps | |
132 | track of which sets of registers we have locally-changed copies of, | |
133 | so we only need send the groups that have changed. */ | |
134 | ||
5af923b0 | 135 | int deferred_stores = 0; /* Accumulated stores we want to do eventually. */ |
c906108c SS |
136 | |
137 | ||
138 | /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode | |
139 | where instructions are big-endian and data are little-endian. | |
140 | This flag is set when we detect that the target is of this type. */ | |
141 | ||
142 | int bi_endian = 0; | |
143 | ||
144 | ||
145 | /* Fetch a single instruction. Even on bi-endian machines | |
146 | such as sparc86x, instructions are always big-endian. */ | |
147 | ||
148 | static unsigned long | |
fba45db2 | 149 | fetch_instruction (CORE_ADDR pc) |
c906108c SS |
150 | { |
151 | unsigned long retval; | |
152 | int i; | |
153 | unsigned char buf[4]; | |
154 | ||
155 | read_memory (pc, buf, sizeof (buf)); | |
156 | ||
157 | /* Start at the most significant end of the integer, and work towards | |
158 | the least significant. */ | |
159 | retval = 0; | |
160 | for (i = 0; i < sizeof (buf); ++i) | |
161 | retval = (retval << 8) | buf[i]; | |
162 | return retval; | |
163 | } | |
164 | ||
165 | ||
166 | /* Branches with prediction are treated like their non-predicting cousins. */ | |
167 | /* FIXME: What about floating point branches? */ | |
168 | ||
169 | /* Macros to extract fields from sparc instructions. */ | |
170 | #define X_OP(i) (((i) >> 30) & 0x3) | |
171 | #define X_RD(i) (((i) >> 25) & 0x1f) | |
172 | #define X_A(i) (((i) >> 29) & 1) | |
173 | #define X_COND(i) (((i) >> 25) & 0xf) | |
174 | #define X_OP2(i) (((i) >> 22) & 0x7) | |
175 | #define X_IMM22(i) ((i) & 0x3fffff) | |
176 | #define X_OP3(i) (((i) >> 19) & 0x3f) | |
177 | #define X_RS1(i) (((i) >> 14) & 0x1f) | |
178 | #define X_I(i) (((i) >> 13) & 1) | |
179 | #define X_IMM13(i) ((i) & 0x1fff) | |
180 | /* Sign extension macros. */ | |
181 | #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) | |
182 | #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) | |
183 | #define X_CC(i) (((i) >> 20) & 3) | |
184 | #define X_P(i) (((i) >> 19) & 1) | |
185 | #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) | |
186 | #define X_RCOND(i) (((i) >> 25) & 7) | |
187 | #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) | |
188 | #define X_FCN(i) (((i) >> 25) & 31) | |
189 | ||
190 | typedef enum | |
191 | { | |
5af923b0 MS |
192 | Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry |
193 | } branch_type; | |
c906108c SS |
194 | |
195 | /* Simulate single-step ptrace call for sun4. Code written by Gary | |
196 | Beihl ([email protected]). */ | |
197 | ||
198 | /* npc4 and next_pc describe the situation at the time that the | |
199 | step-breakpoint was set, not necessary the current value of NPC_REGNUM. */ | |
200 | static CORE_ADDR next_pc, npc4, target; | |
201 | static int brknpc4, brktrg; | |
202 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
203 | static binsn_quantum break_mem[3]; | |
204 | ||
5af923b0 | 205 | static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *); |
c906108c SS |
206 | |
207 | /* single_step() is called just before we want to resume the inferior, | |
208 | if we want to single-step it but there is no hardware or kernel single-step | |
209 | support (as on all SPARCs). We find all the possible targets of the | |
210 | coming instruction and breakpoint them. | |
211 | ||
212 | single_step is also called just after the inferior stops. If we had | |
213 | set up a simulated single-step, we undo our damage. */ | |
214 | ||
215 | void | |
fba45db2 KB |
216 | sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */ |
217 | int insert_breakpoints_p) | |
c906108c SS |
218 | { |
219 | branch_type br; | |
220 | CORE_ADDR pc; | |
221 | long pc_instruction; | |
222 | ||
223 | if (insert_breakpoints_p) | |
224 | { | |
225 | /* Always set breakpoint for NPC. */ | |
226 | next_pc = read_register (NPC_REGNUM); | |
c5aa993b | 227 | npc4 = next_pc + 4; /* branch not taken */ |
c906108c SS |
228 | |
229 | target_insert_breakpoint (next_pc, break_mem[0]); | |
230 | /* printf_unfiltered ("set break at %x\n",next_pc); */ | |
231 | ||
232 | pc = read_register (PC_REGNUM); | |
233 | pc_instruction = fetch_instruction (pc); | |
234 | br = isbranch (pc_instruction, pc, &target); | |
235 | brknpc4 = brktrg = 0; | |
236 | ||
237 | if (br == bicca) | |
238 | { | |
239 | /* Conditional annulled branch will either end up at | |
240 | npc (if taken) or at npc+4 (if not taken). | |
241 | Trap npc+4. */ | |
242 | brknpc4 = 1; | |
243 | target_insert_breakpoint (npc4, break_mem[1]); | |
244 | } | |
245 | else if (br == baa && target != next_pc) | |
246 | { | |
247 | /* Unconditional annulled branch will always end up at | |
248 | the target. */ | |
249 | brktrg = 1; | |
250 | target_insert_breakpoint (target, break_mem[2]); | |
251 | } | |
5af923b0 | 252 | else if (GDB_TARGET_IS_SPARC64 && br == done_retry) |
c906108c SS |
253 | { |
254 | brktrg = 1; | |
255 | target_insert_breakpoint (target, break_mem[2]); | |
256 | } | |
c906108c SS |
257 | } |
258 | else | |
259 | { | |
260 | /* Remove breakpoints */ | |
261 | target_remove_breakpoint (next_pc, break_mem[0]); | |
262 | ||
263 | if (brknpc4) | |
264 | target_remove_breakpoint (npc4, break_mem[1]); | |
265 | ||
266 | if (brktrg) | |
267 | target_remove_breakpoint (target, break_mem[2]); | |
268 | } | |
269 | } | |
270 | \f | |
5af923b0 MS |
271 | struct frame_extra_info |
272 | { | |
273 | CORE_ADDR bottom; | |
274 | int in_prologue; | |
275 | int flat; | |
276 | /* Following fields only relevant for flat frames. */ | |
277 | CORE_ADDR pc_addr; | |
278 | CORE_ADDR fp_addr; | |
279 | /* Add this to ->frame to get the value of the stack pointer at the | |
280 | time of the register saves. */ | |
281 | int sp_offset; | |
282 | }; | |
283 | ||
284 | /* Call this for each newly created frame. For SPARC, we need to | |
285 | calculate the bottom of the frame, and do some extra work if the | |
286 | prologue has been generated via the -mflat option to GCC. In | |
287 | particular, we need to know where the previous fp and the pc have | |
288 | been stashed, since their exact position within the frame may vary. */ | |
c906108c SS |
289 | |
290 | void | |
fba45db2 | 291 | sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
292 | { |
293 | char *name; | |
294 | CORE_ADDR prologue_start, prologue_end; | |
295 | int insn; | |
296 | ||
5af923b0 MS |
297 | fi->extra_info = (struct frame_extra_info *) |
298 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
299 | frame_saved_regs_zalloc (fi); | |
300 | ||
301 | fi->extra_info->bottom = | |
c906108c | 302 | (fi->next ? |
5af923b0 MS |
303 | (fi->frame == fi->next->frame ? fi->next->extra_info->bottom : |
304 | fi->next->frame) : read_sp ()); | |
c906108c SS |
305 | |
306 | /* If fi->next is NULL, then we already set ->frame by passing read_fp() | |
307 | to create_new_frame. */ | |
308 | if (fi->next) | |
309 | { | |
5af923b0 MS |
310 | char *buf; |
311 | ||
312 | buf = alloca (MAX_REGISTER_RAW_SIZE); | |
c906108c SS |
313 | |
314 | /* Compute ->frame as if not flat. If it is flat, we'll change | |
c5aa993b | 315 | it later. */ |
c906108c | 316 | if (fi->next->next != NULL |
5a203e44 | 317 | && ((get_frame_type (fi->next->next) == SIGTRAMP_FRAME) |
bf1e52be | 318 | || deprecated_frame_in_dummy (fi->next->next)) |
c906108c SS |
319 | && frameless_look_for_prologue (fi->next)) |
320 | { | |
321 | /* A frameless function interrupted by a signal did not change | |
322 | the frame pointer, fix up frame pointer accordingly. */ | |
c193f6ac | 323 | fi->frame = get_frame_base (fi->next); |
5af923b0 | 324 | fi->extra_info->bottom = fi->next->extra_info->bottom; |
c906108c SS |
325 | } |
326 | else | |
327 | { | |
328 | /* Should we adjust for stack bias here? */ | |
329 | get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0); | |
330 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)); | |
c5aa993b | 331 | |
5af923b0 MS |
332 | if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1)) |
333 | fi->frame += 2047; | |
c906108c SS |
334 | } |
335 | } | |
336 | ||
337 | /* Decide whether this is a function with a ``flat register window'' | |
338 | frame. For such functions, the frame pointer is actually in %i7. */ | |
5af923b0 MS |
339 | fi->extra_info->flat = 0; |
340 | fi->extra_info->in_prologue = 0; | |
c906108c SS |
341 | if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end)) |
342 | { | |
343 | /* See if the function starts with an add (which will be of a | |
c5aa993b JM |
344 | negative number if a flat frame) to the sp. FIXME: Does not |
345 | handle large frames which will need more than one instruction | |
346 | to adjust the sp. */ | |
d0901120 | 347 | insn = fetch_instruction (prologue_start); |
c906108c SS |
348 | if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 |
349 | && X_I (insn) && X_SIMM13 (insn) < 0) | |
350 | { | |
351 | int offset = X_SIMM13 (insn); | |
352 | ||
353 | /* Then look for a save of %i7 into the frame. */ | |
354 | insn = fetch_instruction (prologue_start + 4); | |
355 | if (X_OP (insn) == 3 | |
356 | && X_RD (insn) == 31 | |
357 | && X_OP3 (insn) == 4 | |
358 | && X_RS1 (insn) == 14) | |
359 | { | |
5af923b0 MS |
360 | char *buf; |
361 | ||
362 | buf = alloca (MAX_REGISTER_RAW_SIZE); | |
c906108c SS |
363 | |
364 | /* We definitely have a flat frame now. */ | |
5af923b0 | 365 | fi->extra_info->flat = 1; |
c906108c | 366 | |
5af923b0 | 367 | fi->extra_info->sp_offset = offset; |
c906108c SS |
368 | |
369 | /* Overwrite the frame's address with the value in %i7. */ | |
370 | get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0); | |
371 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)); | |
5af923b0 MS |
372 | |
373 | if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1)) | |
c906108c | 374 | fi->frame += 2047; |
5af923b0 | 375 | |
c906108c | 376 | /* Record where the fp got saved. */ |
5af923b0 MS |
377 | fi->extra_info->fp_addr = |
378 | fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); | |
c906108c SS |
379 | |
380 | /* Also try to collect where the pc got saved to. */ | |
5af923b0 | 381 | fi->extra_info->pc_addr = 0; |
c906108c SS |
382 | insn = fetch_instruction (prologue_start + 12); |
383 | if (X_OP (insn) == 3 | |
384 | && X_RD (insn) == 15 | |
385 | && X_OP3 (insn) == 4 | |
386 | && X_RS1 (insn) == 14) | |
5af923b0 MS |
387 | fi->extra_info->pc_addr = |
388 | fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); | |
c906108c SS |
389 | } |
390 | } | |
c5aa993b JM |
391 | else |
392 | { | |
393 | /* Check if the PC is in the function prologue before a SAVE | |
394 | instruction has been executed yet. If so, set the frame | |
395 | to the current value of the stack pointer and set | |
396 | the in_prologue flag. */ | |
397 | CORE_ADDR addr; | |
398 | struct symtab_and_line sal; | |
399 | ||
400 | sal = find_pc_line (prologue_start, 0); | |
401 | if (sal.line == 0) /* no line info, use PC */ | |
402 | prologue_end = fi->pc; | |
403 | else if (sal.end < prologue_end) | |
404 | prologue_end = sal.end; | |
405 | if (fi->pc < prologue_end) | |
406 | { | |
407 | for (addr = prologue_start; addr < fi->pc; addr += 4) | |
408 | { | |
409 | insn = read_memory_integer (addr, 4); | |
410 | if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c) | |
411 | break; /* SAVE seen, stop searching */ | |
412 | } | |
413 | if (addr >= fi->pc) | |
414 | { | |
5af923b0 | 415 | fi->extra_info->in_prologue = 1; |
c5aa993b JM |
416 | fi->frame = read_register (SP_REGNUM); |
417 | } | |
418 | } | |
419 | } | |
c906108c SS |
420 | } |
421 | if (fi->next && fi->frame == 0) | |
422 | { | |
423 | /* Kludge to cause init_prev_frame_info to destroy the new frame. */ | |
424 | fi->frame = fi->next->frame; | |
425 | fi->pc = fi->next->pc; | |
426 | } | |
427 | } | |
428 | ||
429 | CORE_ADDR | |
fba45db2 | 430 | sparc_frame_chain (struct frame_info *frame) |
c906108c SS |
431 | { |
432 | /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain | |
8140e7ac | 433 | value. If it really is zero, we detect it later in |
c906108c | 434 | sparc_init_prev_frame. */ |
c5aa993b | 435 | return (CORE_ADDR) 1; |
c906108c SS |
436 | } |
437 | ||
438 | CORE_ADDR | |
fba45db2 | 439 | sparc_extract_struct_value_address (char *regbuf) |
c906108c SS |
440 | { |
441 | return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), | |
442 | REGISTER_RAW_SIZE (O0_REGNUM)); | |
443 | } | |
444 | ||
445 | /* Find the pc saved in frame FRAME. */ | |
446 | ||
447 | CORE_ADDR | |
fba45db2 | 448 | sparc_frame_saved_pc (struct frame_info *frame) |
c906108c | 449 | { |
5af923b0 | 450 | char *buf; |
c906108c SS |
451 | CORE_ADDR addr; |
452 | ||
5af923b0 | 453 | buf = alloca (MAX_REGISTER_RAW_SIZE); |
5a203e44 | 454 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
455 | { |
456 | /* This is the signal trampoline frame. | |
c5aa993b | 457 | Get the saved PC from the sigcontext structure. */ |
c906108c SS |
458 | |
459 | #ifndef SIGCONTEXT_PC_OFFSET | |
460 | #define SIGCONTEXT_PC_OFFSET 12 | |
461 | #endif | |
462 | ||
463 | CORE_ADDR sigcontext_addr; | |
5af923b0 | 464 | char *scbuf; |
c906108c SS |
465 | int saved_pc_offset = SIGCONTEXT_PC_OFFSET; |
466 | char *name = NULL; | |
467 | ||
5af923b0 MS |
468 | scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT); |
469 | ||
c906108c | 470 | /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext |
c5aa993b | 471 | as the third parameter. The offset to the saved pc is 12. */ |
c906108c | 472 | find_pc_partial_function (frame->pc, &name, |
c5aa993b | 473 | (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); |
c906108c SS |
474 | if (name && STREQ (name, "ucbsigvechandler")) |
475 | saved_pc_offset = 12; | |
476 | ||
477 | /* The sigcontext address is contained in register O2. */ | |
c5aa993b JM |
478 | get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL, |
479 | frame, O0_REGNUM + 2, (enum lval_type *) NULL); | |
c906108c SS |
480 | sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2)); |
481 | ||
482 | /* Don't cause a memory_error when accessing sigcontext in case the | |
c5aa993b | 483 | stack layout has changed or the stack is corrupt. */ |
c906108c SS |
484 | target_read_memory (sigcontext_addr + saved_pc_offset, |
485 | scbuf, sizeof (scbuf)); | |
486 | return extract_address (scbuf, sizeof (scbuf)); | |
487 | } | |
5af923b0 MS |
488 | else if (frame->extra_info->in_prologue || |
489 | (frame->next != NULL && | |
5a203e44 | 490 | ((get_frame_type (frame->next) == SIGTRAMP_FRAME) || |
bf1e52be | 491 | deprecated_frame_in_dummy (frame->next)) && |
5af923b0 | 492 | frameless_look_for_prologue (frame))) |
c906108c SS |
493 | { |
494 | /* A frameless function interrupted by a signal did not save | |
c5aa993b JM |
495 | the PC, it is still in %o7. */ |
496 | get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL, | |
497 | frame, O7_REGNUM, (enum lval_type *) NULL); | |
c906108c SS |
498 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); |
499 | } | |
5af923b0 MS |
500 | if (frame->extra_info->flat) |
501 | addr = frame->extra_info->pc_addr; | |
c906108c | 502 | else |
5af923b0 | 503 | addr = frame->extra_info->bottom + FRAME_SAVED_I0 + |
c906108c SS |
504 | SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); |
505 | ||
506 | if (addr == 0) | |
507 | /* A flat frame leaf function might not save the PC anywhere, | |
508 | just leave it in %o7. */ | |
509 | return PC_ADJUST (read_register (O7_REGNUM)); | |
510 | ||
511 | read_memory (addr, buf, SPARC_INTREG_SIZE); | |
512 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); | |
513 | } | |
514 | ||
515 | /* Since an individual frame in the frame cache is defined by two | |
516 | arguments (a frame pointer and a stack pointer), we need two | |
517 | arguments to get info for an arbitrary stack frame. This routine | |
518 | takes two arguments and makes the cached frames look as if these | |
519 | two arguments defined a frame on the cache. This allows the rest | |
520 | of info frame to extract the important arguments without | |
521 | difficulty. */ | |
522 | ||
523 | struct frame_info * | |
fba45db2 | 524 | setup_arbitrary_frame (int argc, CORE_ADDR *argv) |
c906108c SS |
525 | { |
526 | struct frame_info *frame; | |
527 | ||
528 | if (argc != 2) | |
529 | error ("Sparc frame specifications require two arguments: fp and sp"); | |
530 | ||
531 | frame = create_new_frame (argv[0], 0); | |
532 | ||
533 | if (!frame) | |
8e65ff28 AC |
534 | internal_error (__FILE__, __LINE__, |
535 | "create_new_frame returned invalid frame"); | |
c5aa993b | 536 | |
5af923b0 | 537 | frame->extra_info->bottom = argv[1]; |
c906108c SS |
538 | frame->pc = FRAME_SAVED_PC (frame); |
539 | return frame; | |
540 | } | |
541 | ||
542 | /* Given a pc value, skip it forward past the function prologue by | |
543 | disassembling instructions that appear to be a prologue. | |
544 | ||
545 | If FRAMELESS_P is set, we are only testing to see if the function | |
546 | is frameless. This allows a quicker answer. | |
547 | ||
548 | This routine should be more specific in its actions; making sure | |
549 | that it uses the same register in the initial prologue section. */ | |
550 | ||
5af923b0 MS |
551 | static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *, |
552 | CORE_ADDR *); | |
c906108c | 553 | |
c5aa993b | 554 | static CORE_ADDR |
fba45db2 KB |
555 | examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi, |
556 | CORE_ADDR *saved_regs) | |
c906108c SS |
557 | { |
558 | int insn; | |
559 | int dest = -1; | |
560 | CORE_ADDR pc = start_pc; | |
561 | int is_flat = 0; | |
562 | ||
563 | insn = fetch_instruction (pc); | |
564 | ||
565 | /* Recognize the `sethi' insn and record its destination. */ | |
566 | if (X_OP (insn) == 0 && X_OP2 (insn) == 4) | |
567 | { | |
568 | dest = X_RD (insn); | |
569 | pc += 4; | |
570 | insn = fetch_instruction (pc); | |
571 | } | |
572 | ||
573 | /* Recognize an add immediate value to register to either %g1 or | |
574 | the destination register recorded above. Actually, this might | |
575 | well recognize several different arithmetic operations. | |
576 | It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" | |
577 | followed by "save %sp, %g1, %sp" is a valid prologue (Not that | |
578 | I imagine any compiler really does that, however). */ | |
579 | if (X_OP (insn) == 2 | |
580 | && X_I (insn) | |
581 | && (X_RD (insn) == 1 || X_RD (insn) == dest)) | |
582 | { | |
583 | pc += 4; | |
584 | insn = fetch_instruction (pc); | |
585 | } | |
586 | ||
587 | /* Recognize any SAVE insn. */ | |
588 | if (X_OP (insn) == 2 && X_OP3 (insn) == 60) | |
589 | { | |
590 | pc += 4; | |
c5aa993b JM |
591 | if (frameless_p) /* If the save is all we care about, */ |
592 | return pc; /* return before doing more work */ | |
c906108c SS |
593 | insn = fetch_instruction (pc); |
594 | } | |
595 | /* Recognize add to %sp. */ | |
596 | else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) | |
597 | { | |
598 | pc += 4; | |
c5aa993b JM |
599 | if (frameless_p) /* If the add is all we care about, */ |
600 | return pc; /* return before doing more work */ | |
c906108c SS |
601 | is_flat = 1; |
602 | insn = fetch_instruction (pc); | |
603 | /* Recognize store of frame pointer (i7). */ | |
604 | if (X_OP (insn) == 3 | |
605 | && X_RD (insn) == 31 | |
606 | && X_OP3 (insn) == 4 | |
607 | && X_RS1 (insn) == 14) | |
608 | { | |
609 | pc += 4; | |
610 | insn = fetch_instruction (pc); | |
611 | ||
612 | /* Recognize sub %sp, <anything>, %i7. */ | |
c5aa993b | 613 | if (X_OP (insn) == 2 |
c906108c SS |
614 | && X_OP3 (insn) == 4 |
615 | && X_RS1 (insn) == 14 | |
616 | && X_RD (insn) == 31) | |
617 | { | |
618 | pc += 4; | |
619 | insn = fetch_instruction (pc); | |
620 | } | |
621 | else | |
622 | return pc; | |
623 | } | |
624 | else | |
625 | return pc; | |
626 | } | |
627 | else | |
628 | /* Without a save or add instruction, it's not a prologue. */ | |
629 | return start_pc; | |
630 | ||
631 | while (1) | |
632 | { | |
633 | /* Recognize stores into the frame from the input registers. | |
5af923b0 MS |
634 | This recognizes all non alternate stores of an input register, |
635 | into a location offset from the frame pointer between | |
636 | +68 and +92. */ | |
637 | ||
638 | /* The above will fail for arguments that are promoted | |
639 | (eg. shorts to ints or floats to doubles), because the compiler | |
640 | will pass them in positive-offset frame space, but the prologue | |
641 | will save them (after conversion) in negative frame space at an | |
642 | unpredictable offset. Therefore I am going to remove the | |
643 | restriction on the target-address of the save, on the theory | |
644 | that any unbroken sequence of saves from input registers must | |
645 | be part of the prologue. In un-optimized code (at least), I'm | |
646 | fairly sure that the compiler would emit SOME other instruction | |
647 | (eg. a move or add) before emitting another save that is actually | |
648 | a part of the function body. | |
649 | ||
650 | Besides, the reserved stack space is different for SPARC64 anyway. | |
651 | ||
652 | MVS 4/23/2000 */ | |
653 | ||
654 | if (X_OP (insn) == 3 | |
655 | && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ | |
656 | && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ | |
657 | && X_I (insn) /* Immediate mode. */ | |
658 | && X_RS1 (insn) == 30) /* Off of frame pointer. */ | |
659 | ; /* empty statement -- fall thru to end of loop */ | |
660 | else if (GDB_TARGET_IS_SPARC64 | |
661 | && X_OP (insn) == 3 | |
662 | && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */ | |
663 | && (X_RD (insn) & 0x18) == 0x18 /* input register */ | |
664 | && X_I (insn) /* immediate mode */ | |
665 | && X_RS1 (insn) == 30) /* off of frame pointer */ | |
666 | ; /* empty statement -- fall thru to end of loop */ | |
667 | else if (X_OP (insn) == 3 | |
668 | && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */ | |
669 | && X_I (insn) /* immediate mode */ | |
670 | && X_RS1 (insn) == 30) /* off of frame pointer */ | |
671 | ; /* empty statement -- fall thru to end of loop */ | |
c906108c SS |
672 | else if (is_flat |
673 | && X_OP (insn) == 3 | |
5af923b0 MS |
674 | && X_OP3 (insn) == 4 /* store? */ |
675 | && X_RS1 (insn) == 14) /* off of frame pointer */ | |
c906108c SS |
676 | { |
677 | if (saved_regs && X_I (insn)) | |
5af923b0 MS |
678 | saved_regs[X_RD (insn)] = |
679 | fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); | |
c906108c SS |
680 | } |
681 | else | |
682 | break; | |
683 | pc += 4; | |
684 | insn = fetch_instruction (pc); | |
685 | } | |
686 | ||
687 | return pc; | |
688 | } | |
689 | ||
f510d44e DM |
690 | /* Advance PC across any function entry prologue instructions to reach |
691 | some "real" code. */ | |
692 | ||
c5aa993b | 693 | CORE_ADDR |
f510d44e | 694 | sparc_skip_prologue (CORE_ADDR start_pc) |
c906108c | 695 | { |
f510d44e DM |
696 | struct symtab_and_line sal; |
697 | CORE_ADDR func_start, func_end; | |
698 | ||
699 | /* This is the preferred method, find the end of the prologue by | |
700 | using the debugging information. */ | |
701 | if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end)) | |
702 | { | |
703 | sal = find_pc_line (func_start, 0); | |
704 | ||
705 | if (sal.end < func_end | |
706 | && start_pc <= sal.end) | |
707 | return sal.end; | |
708 | } | |
709 | ||
710 | /* Oh well, examine the code by hand. */ | |
711 | return examine_prologue (start_pc, 0, NULL, NULL); | |
c906108c SS |
712 | } |
713 | ||
9319a2fe DM |
714 | /* Is the prologue at IP frameless? */ |
715 | ||
716 | int | |
717 | sparc_prologue_frameless_p (CORE_ADDR ip) | |
718 | { | |
f510d44e | 719 | return ip == examine_prologue (ip, 1, NULL, NULL); |
9319a2fe DM |
720 | } |
721 | ||
c906108c SS |
722 | /* Check instruction at ADDR to see if it is a branch. |
723 | All non-annulled instructions will go to NPC or will trap. | |
724 | Set *TARGET if we find a candidate branch; set to zero if not. | |
725 | ||
726 | This isn't static as it's used by remote-sa.sparc.c. */ | |
727 | ||
728 | static branch_type | |
fba45db2 | 729 | isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target) |
c906108c SS |
730 | { |
731 | branch_type val = not_branch; | |
732 | long int offset = 0; /* Must be signed for sign-extend. */ | |
733 | ||
734 | *target = 0; | |
735 | ||
736 | if (X_OP (instruction) == 0 | |
737 | && (X_OP2 (instruction) == 2 | |
738 | || X_OP2 (instruction) == 6 | |
739 | || X_OP2 (instruction) == 1 | |
740 | || X_OP2 (instruction) == 3 | |
741 | || X_OP2 (instruction) == 5 | |
5af923b0 | 742 | || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7))) |
c906108c SS |
743 | { |
744 | if (X_COND (instruction) == 8) | |
745 | val = X_A (instruction) ? baa : ba; | |
746 | else | |
747 | val = X_A (instruction) ? bicca : bicc; | |
748 | switch (X_OP2 (instruction)) | |
749 | { | |
5af923b0 MS |
750 | case 7: |
751 | if (!GDB_TARGET_IS_SPARC64) | |
752 | break; | |
753 | /* else fall thru */ | |
c906108c SS |
754 | case 2: |
755 | case 6: | |
c906108c SS |
756 | offset = 4 * X_DISP22 (instruction); |
757 | break; | |
758 | case 1: | |
759 | case 5: | |
760 | offset = 4 * X_DISP19 (instruction); | |
761 | break; | |
762 | case 3: | |
763 | offset = 4 * X_DISP16 (instruction); | |
764 | break; | |
765 | } | |
766 | *target = addr + offset; | |
767 | } | |
5af923b0 MS |
768 | else if (GDB_TARGET_IS_SPARC64 |
769 | && X_OP (instruction) == 2 | |
c906108c SS |
770 | && X_OP3 (instruction) == 62) |
771 | { | |
772 | if (X_FCN (instruction) == 0) | |
773 | { | |
774 | /* done */ | |
775 | *target = read_register (TNPC_REGNUM); | |
776 | val = done_retry; | |
777 | } | |
778 | else if (X_FCN (instruction) == 1) | |
779 | { | |
780 | /* retry */ | |
781 | *target = read_register (TPC_REGNUM); | |
782 | val = done_retry; | |
783 | } | |
784 | } | |
c906108c SS |
785 | |
786 | return val; | |
787 | } | |
788 | \f | |
789 | /* Find register number REGNUM relative to FRAME and put its | |
790 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
791 | was optimized out (and thus can't be fetched). If the variable | |
792 | was fetched from memory, set *ADDRP to where it was fetched from, | |
793 | otherwise it was fetched from a register. | |
794 | ||
795 | The argument RAW_BUFFER must point to aligned memory. */ | |
796 | ||
797 | void | |
fba45db2 KB |
798 | sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, |
799 | struct frame_info *frame, int regnum, | |
800 | enum lval_type *lval) | |
c906108c SS |
801 | { |
802 | struct frame_info *frame1; | |
803 | CORE_ADDR addr; | |
804 | ||
805 | if (!target_has_registers) | |
806 | error ("No registers."); | |
807 | ||
808 | if (optimized) | |
809 | *optimized = 0; | |
810 | ||
811 | addr = 0; | |
812 | ||
813 | /* FIXME This code extracted from infcmd.c; should put elsewhere! */ | |
814 | if (frame == NULL) | |
815 | { | |
816 | /* error ("No selected frame."); */ | |
817 | if (!target_has_registers) | |
c5aa993b | 818 | error ("The program has no registers now."); |
6e7f8b9c | 819 | if (deprecated_selected_frame == NULL) |
c5aa993b | 820 | error ("No selected frame."); |
c906108c | 821 | /* Try to use selected frame */ |
6e7f8b9c | 822 | frame = get_prev_frame (deprecated_selected_frame); |
c906108c | 823 | if (frame == 0) |
c5aa993b | 824 | error ("Cmd not meaningful in the outermost frame."); |
c906108c SS |
825 | } |
826 | ||
827 | ||
828 | frame1 = frame->next; | |
829 | ||
830 | /* Get saved PC from the frame info if not in innermost frame. */ | |
831 | if (regnum == PC_REGNUM && frame1 != NULL) | |
832 | { | |
833 | if (lval != NULL) | |
834 | *lval = not_lval; | |
835 | if (raw_buffer != NULL) | |
836 | { | |
837 | /* Put it back in target format. */ | |
838 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); | |
839 | } | |
840 | if (addrp != NULL) | |
841 | *addrp = 0; | |
842 | return; | |
843 | } | |
844 | ||
845 | while (frame1 != NULL) | |
846 | { | |
5af923b0 MS |
847 | /* FIXME MVS: wrong test for dummy frame at entry. */ |
848 | ||
849 | if (frame1->pc >= (frame1->extra_info->bottom ? | |
850 | frame1->extra_info->bottom : read_sp ()) | |
c193f6ac | 851 | && frame1->pc <= get_frame_base (frame1)) |
c906108c SS |
852 | { |
853 | /* Dummy frame. All but the window regs are in there somewhere. | |
854 | The window registers are saved on the stack, just like in a | |
855 | normal frame. */ | |
856 | if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) | |
857 | addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE | |
858 | - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); | |
859 | else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
f621c63e AC |
860 | /* NOTE: cagney/2002-05-04: The call to get_prev_frame() |
861 | is safe/cheap - there will always be a prev frame. | |
862 | This is because frame1 is initialized to frame->next | |
863 | (frame1->prev == frame) and is then advanced towards | |
864 | the innermost (next) frame. */ | |
bf75c8c1 | 865 | addr = (get_prev_frame (frame1)->extra_info->bottom |
c906108c SS |
866 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
867 | + FRAME_SAVED_I0); | |
868 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
f621c63e AC |
869 | /* NOTE: cagney/2002-05-04: The call to get_prev_frame() |
870 | is safe/cheap - there will always be a prev frame. | |
871 | This is because frame1 is initialized to frame->next | |
872 | (frame1->prev == frame) and is then advanced towards | |
873 | the innermost (next) frame. */ | |
bf75c8c1 | 874 | addr = (get_prev_frame (frame1)->extra_info->bottom |
c906108c SS |
875 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
876 | + FRAME_SAVED_L0); | |
877 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
878 | addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE | |
879 | - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); | |
5af923b0 | 880 | else if (SPARC_HAS_FPU && |
60054393 | 881 | regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32) |
c906108c SS |
882 | addr = frame1->frame + (regnum - FP0_REGNUM) * 4 |
883 | - (FP_REGISTER_BYTES); | |
5af923b0 | 884 | else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU && |
60054393 | 885 | regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM) |
c906108c SS |
886 | addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 |
887 | - (FP_REGISTER_BYTES); | |
c906108c SS |
888 | else if (regnum >= Y_REGNUM && regnum < NUM_REGS) |
889 | addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE | |
890 | - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); | |
891 | } | |
5af923b0 | 892 | else if (frame1->extra_info->flat) |
c906108c SS |
893 | { |
894 | ||
895 | if (regnum == RP_REGNUM) | |
5af923b0 | 896 | addr = frame1->extra_info->pc_addr; |
c906108c | 897 | else if (regnum == I7_REGNUM) |
5af923b0 | 898 | addr = frame1->extra_info->fp_addr; |
c906108c SS |
899 | else |
900 | { | |
901 | CORE_ADDR func_start; | |
5af923b0 MS |
902 | CORE_ADDR *regs; |
903 | ||
904 | regs = alloca (NUM_REGS * sizeof (CORE_ADDR)); | |
905 | memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR)); | |
c906108c SS |
906 | |
907 | find_pc_partial_function (frame1->pc, NULL, &func_start, NULL); | |
5af923b0 MS |
908 | examine_prologue (func_start, 0, frame1, regs); |
909 | addr = regs[regnum]; | |
c906108c SS |
910 | } |
911 | } | |
912 | else | |
913 | { | |
914 | /* Normal frame. Local and In registers are saved on stack. */ | |
915 | if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
bf75c8c1 | 916 | addr = (get_prev_frame (frame1)->extra_info->bottom |
c906108c SS |
917 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
918 | + FRAME_SAVED_I0); | |
919 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
bf75c8c1 | 920 | addr = (get_prev_frame (frame1)->extra_info->bottom |
c906108c SS |
921 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
922 | + FRAME_SAVED_L0); | |
923 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
924 | { | |
925 | /* Outs become ins. */ | |
926 | get_saved_register (raw_buffer, optimized, addrp, frame1, | |
927 | (regnum - O0_REGNUM + I0_REGNUM), lval); | |
928 | return; | |
929 | } | |
930 | } | |
931 | if (addr != 0) | |
932 | break; | |
933 | frame1 = frame1->next; | |
934 | } | |
935 | if (addr != 0) | |
936 | { | |
937 | if (lval != NULL) | |
938 | *lval = lval_memory; | |
939 | if (regnum == SP_REGNUM) | |
940 | { | |
941 | if (raw_buffer != NULL) | |
942 | { | |
943 | /* Put it back in target format. */ | |
944 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); | |
945 | } | |
946 | if (addrp != NULL) | |
947 | *addrp = 0; | |
948 | return; | |
949 | } | |
950 | if (raw_buffer != NULL) | |
951 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
952 | } | |
953 | else | |
954 | { | |
955 | if (lval != NULL) | |
956 | *lval = lval_register; | |
957 | addr = REGISTER_BYTE (regnum); | |
958 | if (raw_buffer != NULL) | |
4caf0990 | 959 | deprecated_read_register_gen (regnum, raw_buffer); |
c906108c SS |
960 | } |
961 | if (addrp != NULL) | |
962 | *addrp = addr; | |
963 | } | |
964 | ||
965 | /* Push an empty stack frame, and record in it the current PC, regs, etc. | |
966 | ||
967 | We save the non-windowed registers and the ins. The locals and outs | |
968 | are new; they don't need to be saved. The i's and l's of | |
969 | the last frame were already saved on the stack. */ | |
970 | ||
971 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
972 | ||
c906108c | 973 | /* See tm-sparc.h for how this is calculated. */ |
5af923b0 | 974 | |
c906108c | 975 | #define DUMMY_STACK_REG_BUF_SIZE \ |
60054393 | 976 | (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES) |
5af923b0 MS |
977 | #define DUMMY_STACK_SIZE \ |
978 | (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) | |
c906108c SS |
979 | |
980 | void | |
fba45db2 | 981 | sparc_push_dummy_frame (void) |
c906108c SS |
982 | { |
983 | CORE_ADDR sp, old_sp; | |
5af923b0 MS |
984 | char *register_temp; |
985 | ||
986 | register_temp = alloca (DUMMY_STACK_SIZE); | |
c906108c SS |
987 | |
988 | old_sp = sp = read_sp (); | |
989 | ||
5af923b0 MS |
990 | if (GDB_TARGET_IS_SPARC64) |
991 | { | |
992 | /* PC, NPC, CCR, FSR, FPRS, Y, ASI */ | |
73937e03 AC |
993 | deprecated_read_register_bytes (REGISTER_BYTE (PC_REGNUM), |
994 | ®ister_temp[0], | |
995 | REGISTER_RAW_SIZE (PC_REGNUM) * 7); | |
996 | deprecated_read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), | |
997 | ®ister_temp[7 * SPARC_INTREG_SIZE], | |
998 | REGISTER_RAW_SIZE (PSTATE_REGNUM)); | |
5af923b0 MS |
999 | /* FIXME: not sure what needs to be saved here. */ |
1000 | } | |
1001 | else | |
1002 | { | |
1003 | /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ | |
73937e03 AC |
1004 | deprecated_read_register_bytes (REGISTER_BYTE (Y_REGNUM), |
1005 | ®ister_temp[0], | |
1006 | REGISTER_RAW_SIZE (Y_REGNUM) * 8); | |
5af923b0 | 1007 | } |
c906108c | 1008 | |
73937e03 AC |
1009 | deprecated_read_register_bytes (REGISTER_BYTE (O0_REGNUM), |
1010 | ®ister_temp[8 * SPARC_INTREG_SIZE], | |
1011 | SPARC_INTREG_SIZE * 8); | |
c906108c | 1012 | |
73937e03 AC |
1013 | deprecated_read_register_bytes (REGISTER_BYTE (G0_REGNUM), |
1014 | ®ister_temp[16 * SPARC_INTREG_SIZE], | |
1015 | SPARC_INTREG_SIZE * 8); | |
c906108c | 1016 | |
5af923b0 | 1017 | if (SPARC_HAS_FPU) |
73937e03 AC |
1018 | deprecated_read_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
1019 | ®ister_temp[24 * SPARC_INTREG_SIZE], | |
1020 | FP_REGISTER_BYTES); | |
c906108c SS |
1021 | |
1022 | sp -= DUMMY_STACK_SIZE; | |
1023 | ||
1024 | write_sp (sp); | |
1025 | ||
1026 | write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], | |
1027 | DUMMY_STACK_REG_BUF_SIZE); | |
1028 | ||
1029 | if (strcmp (target_shortname, "sim") != 0) | |
1030 | { | |
2757dd86 AC |
1031 | /* NOTE: cagney/2002-04-04: The code below originally contained |
1032 | GDB's _only_ call to write_fp(). That call was eliminated by | |
1033 | inlining the corresponding code. For the 64 bit case, the | |
1034 | old function (sparc64_write_fp) did the below although I'm | |
1035 | not clear why. The same goes for why this is only done when | |
1036 | the underlying target is a simulator. */ | |
f32e7a74 | 1037 | if (GDB_TARGET_IS_SPARC64) |
2757dd86 AC |
1038 | { |
1039 | /* Target is a 64 bit SPARC. */ | |
1040 | CORE_ADDR oldfp = read_register (FP_REGNUM); | |
1041 | if (oldfp & 1) | |
1042 | write_register (FP_REGNUM, old_sp - 2047); | |
1043 | else | |
1044 | write_register (FP_REGNUM, old_sp); | |
1045 | } | |
1046 | else | |
1047 | { | |
1048 | /* Target is a 32 bit SPARC. */ | |
1049 | write_register (FP_REGNUM, old_sp); | |
1050 | } | |
c906108c | 1051 | /* Set return address register for the call dummy to the current PC. */ |
c5aa993b | 1052 | write_register (I7_REGNUM, read_pc () - 8); |
c906108c SS |
1053 | } |
1054 | else | |
1055 | { | |
1056 | /* The call dummy will write this value to FP before executing | |
1057 | the 'save'. This ensures that register window flushes work | |
c5aa993b JM |
1058 | correctly in the simulator. */ |
1059 | write_register (G0_REGNUM + 1, read_register (FP_REGNUM)); | |
1060 | ||
c906108c SS |
1061 | /* The call dummy will write this value to FP after executing |
1062 | the 'save'. */ | |
c5aa993b JM |
1063 | write_register (G0_REGNUM + 2, old_sp); |
1064 | ||
c906108c | 1065 | /* The call dummy will write this value to the return address (%i7) after |
c5aa993b JM |
1066 | executing the 'save'. */ |
1067 | write_register (G0_REGNUM + 3, read_pc () - 8); | |
1068 | ||
c906108c | 1069 | /* Set the FP that the call dummy will be using after the 'save'. |
c5aa993b | 1070 | This makes backtraces from an inferior function call work properly. */ |
c906108c SS |
1071 | write_register (FP_REGNUM, old_sp); |
1072 | } | |
1073 | } | |
1074 | ||
1075 | /* sparc_frame_find_saved_regs (). This function is here only because | |
1076 | pop_frame uses it. Note there is an interesting corner case which | |
1077 | I think few ports of GDB get right--if you are popping a frame | |
1078 | which does not save some register that *is* saved by a more inner | |
1079 | frame (such a frame will never be a dummy frame because dummy | |
1080 | frames save all registers). Rewriting pop_frame to use | |
1081 | get_saved_register would solve this problem and also get rid of the | |
1082 | ugly duplication between sparc_frame_find_saved_regs and | |
1083 | get_saved_register. | |
1084 | ||
5af923b0 | 1085 | Stores, into an array of CORE_ADDR, |
c906108c SS |
1086 | the addresses of the saved registers of frame described by FRAME_INFO. |
1087 | This includes special registers such as pc and fp saved in special | |
1088 | ways in the stack frame. sp is even more special: | |
1089 | the address we return for it IS the sp for the next frame. | |
1090 | ||
1091 | Note that on register window machines, we are currently making the | |
1092 | assumption that window registers are being saved somewhere in the | |
1093 | frame in which they are being used. If they are stored in an | |
1094 | inferior frame, find_saved_register will break. | |
1095 | ||
1096 | On the Sun 4, the only time all registers are saved is when | |
1097 | a dummy frame is involved. Otherwise, the only saved registers | |
1098 | are the LOCAL and IN registers which are saved as a result | |
1099 | of the "save/restore" opcodes. This condition is determined | |
1100 | by address rather than by value. | |
1101 | ||
1102 | The "pc" is not stored in a frame on the SPARC. (What is stored | |
1103 | is a return address minus 8.) sparc_pop_frame knows how to | |
1104 | deal with that. Other routines might or might not. | |
1105 | ||
1106 | See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information | |
1107 | about how this works. */ | |
1108 | ||
5af923b0 | 1109 | static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *); |
c906108c SS |
1110 | |
1111 | static void | |
fba45db2 | 1112 | sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr) |
c906108c SS |
1113 | { |
1114 | register int regnum; | |
c193f6ac | 1115 | CORE_ADDR frame_addr = get_frame_base (fi); |
c906108c SS |
1116 | |
1117 | if (!fi) | |
8e65ff28 AC |
1118 | internal_error (__FILE__, __LINE__, |
1119 | "Bad frame info struct in FRAME_FIND_SAVED_REGS"); | |
c906108c | 1120 | |
5af923b0 | 1121 | memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR)); |
c906108c | 1122 | |
5af923b0 MS |
1123 | if (fi->pc >= (fi->extra_info->bottom ? |
1124 | fi->extra_info->bottom : read_sp ()) | |
c193f6ac | 1125 | && fi->pc <= get_frame_base (fi)) |
c906108c SS |
1126 | { |
1127 | /* Dummy frame. All but the window regs are in there somewhere. */ | |
c5aa993b | 1128 | for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++) |
5af923b0 | 1129 | saved_regs_addr[regnum] = |
c906108c | 1130 | frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
c5aa993b | 1131 | - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE; |
5af923b0 | 1132 | |
c5aa993b | 1133 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++) |
5af923b0 | 1134 | saved_regs_addr[regnum] = |
c906108c | 1135 | frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
c5aa993b | 1136 | - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE; |
60054393 | 1137 | |
5af923b0 MS |
1138 | if (SPARC_HAS_FPU) |
1139 | for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++) | |
1140 | saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4 | |
1141 | - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; | |
1142 | ||
1143 | if (GDB_TARGET_IS_SPARC64) | |
c906108c | 1144 | { |
5af923b0 MS |
1145 | for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++) |
1146 | { | |
1147 | saved_regs_addr[regnum] = | |
1148 | frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE | |
1149 | - DUMMY_STACK_REG_BUF_SIZE; | |
1150 | } | |
1151 | saved_regs_addr[PSTATE_REGNUM] = | |
1152 | frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE; | |
c906108c | 1153 | } |
5af923b0 MS |
1154 | else |
1155 | for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) | |
1156 | saved_regs_addr[regnum] = | |
1157 | frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE | |
1158 | - DUMMY_STACK_REG_BUF_SIZE; | |
1159 | ||
1160 | frame_addr = fi->extra_info->bottom ? | |
1161 | fi->extra_info->bottom : read_sp (); | |
c906108c | 1162 | } |
5af923b0 | 1163 | else if (fi->extra_info->flat) |
c906108c SS |
1164 | { |
1165 | CORE_ADDR func_start; | |
1166 | find_pc_partial_function (fi->pc, NULL, &func_start, NULL); | |
1167 | examine_prologue (func_start, 0, fi, saved_regs_addr); | |
1168 | ||
1169 | /* Flat register window frame. */ | |
5af923b0 MS |
1170 | saved_regs_addr[RP_REGNUM] = fi->extra_info->pc_addr; |
1171 | saved_regs_addr[I7_REGNUM] = fi->extra_info->fp_addr; | |
c906108c SS |
1172 | } |
1173 | else | |
1174 | { | |
1175 | /* Normal frame. Just Local and In registers */ | |
5af923b0 MS |
1176 | frame_addr = fi->extra_info->bottom ? |
1177 | fi->extra_info->bottom : read_sp (); | |
c5aa993b | 1178 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++) |
5af923b0 | 1179 | saved_regs_addr[regnum] = |
c906108c SS |
1180 | (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
1181 | + FRAME_SAVED_L0); | |
c5aa993b | 1182 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++) |
5af923b0 | 1183 | saved_regs_addr[regnum] = |
c906108c SS |
1184 | (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
1185 | + FRAME_SAVED_I0); | |
1186 | } | |
1187 | if (fi->next) | |
1188 | { | |
5af923b0 | 1189 | if (fi->extra_info->flat) |
c906108c | 1190 | { |
5af923b0 | 1191 | saved_regs_addr[O7_REGNUM] = fi->extra_info->pc_addr; |
c906108c SS |
1192 | } |
1193 | else | |
1194 | { | |
1195 | /* Pull off either the next frame pointer or the stack pointer */ | |
1196 | CORE_ADDR next_next_frame_addr = | |
5af923b0 MS |
1197 | (fi->next->extra_info->bottom ? |
1198 | fi->next->extra_info->bottom : read_sp ()); | |
c5aa993b | 1199 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++) |
5af923b0 | 1200 | saved_regs_addr[regnum] = |
c906108c SS |
1201 | (next_next_frame_addr |
1202 | + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE | |
1203 | + FRAME_SAVED_I0); | |
1204 | } | |
1205 | } | |
1206 | /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ | |
1207 | /* FIXME -- should this adjust for the sparc64 offset? */ | |
c193f6ac | 1208 | saved_regs_addr[SP_REGNUM] = get_frame_base (fi); |
c906108c SS |
1209 | } |
1210 | ||
1211 | /* Discard from the stack the innermost frame, restoring all saved registers. | |
1212 | ||
95486978 AC |
1213 | Note that the values stored in fsr by |
1214 | deprecated_get_frame_saved_regs are *in the context of the called | |
1215 | frame*. What this means is that the i regs of fsr must be restored | |
1216 | into the o regs of the (calling) frame that we pop into. We don't | |
1217 | care about the output regs of the calling frame, since unless it's | |
1218 | a dummy frame, it won't have any output regs in it. | |
c906108c SS |
1219 | |
1220 | We never have to bother with %l (local) regs, since the called routine's | |
1221 | locals get tossed, and the calling routine's locals are already saved | |
1222 | on its stack. */ | |
1223 | ||
1224 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
1225 | ||
1226 | void | |
fba45db2 | 1227 | sparc_pop_frame (void) |
c906108c SS |
1228 | { |
1229 | register struct frame_info *frame = get_current_frame (); | |
1230 | register CORE_ADDR pc; | |
5af923b0 MS |
1231 | CORE_ADDR *fsr; |
1232 | char *raw_buffer; | |
c906108c SS |
1233 | int regnum; |
1234 | ||
5af923b0 MS |
1235 | fsr = alloca (NUM_REGS * sizeof (CORE_ADDR)); |
1236 | raw_buffer = alloca (REGISTER_BYTES); | |
1237 | sparc_frame_find_saved_regs (frame, &fsr[0]); | |
1238 | if (SPARC_HAS_FPU) | |
c906108c | 1239 | { |
5af923b0 | 1240 | if (fsr[FP0_REGNUM]) |
60054393 | 1241 | { |
5af923b0 | 1242 | read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES); |
73937e03 AC |
1243 | deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
1244 | raw_buffer, FP_REGISTER_BYTES); | |
60054393 | 1245 | } |
5af923b0 | 1246 | if (!(GDB_TARGET_IS_SPARC64)) |
60054393 | 1247 | { |
5af923b0 MS |
1248 | if (fsr[FPS_REGNUM]) |
1249 | { | |
1250 | read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE); | |
4caf0990 | 1251 | deprecated_write_register_gen (FPS_REGNUM, raw_buffer); |
5af923b0 MS |
1252 | } |
1253 | if (fsr[CPS_REGNUM]) | |
1254 | { | |
1255 | read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE); | |
4caf0990 | 1256 | deprecated_write_register_gen (CPS_REGNUM, raw_buffer); |
5af923b0 | 1257 | } |
60054393 | 1258 | } |
60054393 | 1259 | } |
5af923b0 | 1260 | if (fsr[G1_REGNUM]) |
c906108c | 1261 | { |
5af923b0 | 1262 | read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); |
73937e03 AC |
1263 | deprecated_write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, |
1264 | 7 * SPARC_INTREG_SIZE); | |
c906108c SS |
1265 | } |
1266 | ||
5af923b0 | 1267 | if (frame->extra_info->flat) |
c906108c SS |
1268 | { |
1269 | /* Each register might or might not have been saved, need to test | |
c5aa993b | 1270 | individually. */ |
c906108c | 1271 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) |
5af923b0 MS |
1272 | if (fsr[regnum]) |
1273 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c SS |
1274 | SPARC_INTREG_SIZE)); |
1275 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) | |
5af923b0 MS |
1276 | if (fsr[regnum]) |
1277 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c SS |
1278 | SPARC_INTREG_SIZE)); |
1279 | ||
1280 | /* Handle all outs except stack pointer (o0-o5; o7). */ | |
1281 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) | |
5af923b0 MS |
1282 | if (fsr[regnum]) |
1283 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c | 1284 | SPARC_INTREG_SIZE)); |
5af923b0 | 1285 | if (fsr[O0_REGNUM + 7]) |
c906108c | 1286 | write_register (O0_REGNUM + 7, |
5af923b0 | 1287 | read_memory_integer (fsr[O0_REGNUM + 7], |
c906108c SS |
1288 | SPARC_INTREG_SIZE)); |
1289 | ||
1290 | write_sp (frame->frame); | |
1291 | } | |
5af923b0 | 1292 | else if (fsr[I0_REGNUM]) |
c906108c SS |
1293 | { |
1294 | CORE_ADDR sp; | |
1295 | ||
5af923b0 MS |
1296 | char *reg_temp; |
1297 | ||
69cdf6a2 | 1298 | reg_temp = alloca (SPARC_INTREG_SIZE * 16); |
c906108c | 1299 | |
5af923b0 | 1300 | read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); |
c906108c SS |
1301 | |
1302 | /* Get the ins and locals which we are about to restore. Just | |
c5aa993b JM |
1303 | moving the stack pointer is all that is really needed, except |
1304 | store_inferior_registers is then going to write the ins and | |
1305 | locals from the registers array, so we need to muck with the | |
1306 | registers array. */ | |
5af923b0 MS |
1307 | sp = fsr[SP_REGNUM]; |
1308 | ||
1309 | if (GDB_TARGET_IS_SPARC64 && (sp & 1)) | |
c906108c | 1310 | sp += 2047; |
5af923b0 | 1311 | |
c906108c SS |
1312 | read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); |
1313 | ||
1314 | /* Restore the out registers. | |
c5aa993b | 1315 | Among other things this writes the new stack pointer. */ |
73937e03 AC |
1316 | deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, |
1317 | SPARC_INTREG_SIZE * 8); | |
c906108c | 1318 | |
73937e03 AC |
1319 | deprecated_write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, |
1320 | SPARC_INTREG_SIZE * 16); | |
c906108c | 1321 | } |
5af923b0 MS |
1322 | |
1323 | if (!(GDB_TARGET_IS_SPARC64)) | |
1324 | if (fsr[PS_REGNUM]) | |
1325 | write_register (PS_REGNUM, | |
1326 | read_memory_integer (fsr[PS_REGNUM], | |
1327 | REGISTER_RAW_SIZE (PS_REGNUM))); | |
1328 | ||
1329 | if (fsr[Y_REGNUM]) | |
1330 | write_register (Y_REGNUM, | |
1331 | read_memory_integer (fsr[Y_REGNUM], | |
1332 | REGISTER_RAW_SIZE (Y_REGNUM))); | |
1333 | if (fsr[PC_REGNUM]) | |
c906108c SS |
1334 | { |
1335 | /* Explicitly specified PC (and maybe NPC) -- just restore them. */ | |
5af923b0 MS |
1336 | write_register (PC_REGNUM, |
1337 | read_memory_integer (fsr[PC_REGNUM], | |
1338 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
1339 | if (fsr[NPC_REGNUM]) | |
c906108c | 1340 | write_register (NPC_REGNUM, |
5af923b0 MS |
1341 | read_memory_integer (fsr[NPC_REGNUM], |
1342 | REGISTER_RAW_SIZE (NPC_REGNUM))); | |
c906108c | 1343 | } |
5af923b0 | 1344 | else if (frame->extra_info->flat) |
c906108c | 1345 | { |
5af923b0 | 1346 | if (frame->extra_info->pc_addr) |
c906108c | 1347 | pc = PC_ADJUST ((CORE_ADDR) |
5af923b0 | 1348 | read_memory_integer (frame->extra_info->pc_addr, |
c906108c SS |
1349 | REGISTER_RAW_SIZE (PC_REGNUM))); |
1350 | else | |
1351 | { | |
1352 | /* I think this happens only in the innermost frame, if so then | |
1353 | it is a complicated way of saying | |
1354 | "pc = read_register (O7_REGNUM);". */ | |
5af923b0 MS |
1355 | char *buf; |
1356 | ||
1357 | buf = alloca (MAX_REGISTER_RAW_SIZE); | |
c906108c SS |
1358 | get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0); |
1359 | pc = PC_ADJUST (extract_address | |
1360 | (buf, REGISTER_RAW_SIZE (O7_REGNUM))); | |
1361 | } | |
1362 | ||
c5aa993b | 1363 | write_register (PC_REGNUM, pc); |
c906108c SS |
1364 | write_register (NPC_REGNUM, pc + 4); |
1365 | } | |
5af923b0 | 1366 | else if (fsr[I7_REGNUM]) |
c906108c SS |
1367 | { |
1368 | /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ | |
5af923b0 | 1369 | pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM], |
c906108c | 1370 | SPARC_INTREG_SIZE)); |
c5aa993b | 1371 | write_register (PC_REGNUM, pc); |
c906108c SS |
1372 | write_register (NPC_REGNUM, pc + 4); |
1373 | } | |
1374 | flush_cached_frames (); | |
1375 | } | |
1376 | ||
1377 | /* On the Sun 4 under SunOS, the compile will leave a fake insn which | |
1378 | encodes the structure size being returned. If we detect such | |
1379 | a fake insn, step past it. */ | |
1380 | ||
1381 | CORE_ADDR | |
fba45db2 | 1382 | sparc_pc_adjust (CORE_ADDR pc) |
c906108c SS |
1383 | { |
1384 | unsigned long insn; | |
1385 | char buf[4]; | |
1386 | int err; | |
1387 | ||
1388 | err = target_read_memory (pc + 8, buf, 4); | |
1389 | insn = extract_unsigned_integer (buf, 4); | |
1390 | if ((err == 0) && (insn & 0xffc00000) == 0) | |
c5aa993b | 1391 | return pc + 12; |
c906108c | 1392 | else |
c5aa993b | 1393 | return pc + 8; |
c906108c SS |
1394 | } |
1395 | ||
1396 | /* If pc is in a shared library trampoline, return its target. | |
1397 | The SunOs 4.x linker rewrites the jump table entries for PIC | |
1398 | compiled modules in the main executable to bypass the dynamic linker | |
1399 | with jumps of the form | |
c5aa993b JM |
1400 | sethi %hi(addr),%g1 |
1401 | jmp %g1+%lo(addr) | |
c906108c SS |
1402 | and removes the corresponding jump table relocation entry in the |
1403 | dynamic relocations. | |
1404 | find_solib_trampoline_target relies on the presence of the jump | |
1405 | table relocation entry, so we have to detect these jump instructions | |
1406 | by hand. */ | |
1407 | ||
1408 | CORE_ADDR | |
fba45db2 | 1409 | sunos4_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1410 | { |
1411 | unsigned long insn1; | |
1412 | char buf[4]; | |
1413 | int err; | |
1414 | ||
1415 | err = target_read_memory (pc, buf, 4); | |
1416 | insn1 = extract_unsigned_integer (buf, 4); | |
1417 | if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) | |
1418 | { | |
1419 | unsigned long insn2; | |
1420 | ||
1421 | err = target_read_memory (pc + 4, buf, 4); | |
1422 | insn2 = extract_unsigned_integer (buf, 4); | |
1423 | if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) | |
1424 | { | |
1425 | CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; | |
1426 | int delta = insn2 & 0x1fff; | |
1427 | ||
1428 | /* Sign extend the displacement. */ | |
1429 | if (delta & 0x1000) | |
1430 | delta |= ~0x1fff; | |
1431 | return target_pc + delta; | |
1432 | } | |
1433 | } | |
1434 | return find_solib_trampoline_target (pc); | |
1435 | } | |
1436 | \f | |
c5aa993b | 1437 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ |
9846de1b | 1438 | /* *INDENT-OFF* */ |
c906108c SS |
1439 | /* The /proc interface divides the target machine's register set up into |
1440 | two different sets, the general register set (gregset) and the floating | |
1441 | point register set (fpregset). For each set, there is an ioctl to get | |
1442 | the current register set and another ioctl to set the current values. | |
1443 | ||
1444 | The actual structure passed through the ioctl interface is, of course, | |
1445 | naturally machine dependent, and is different for each set of registers. | |
1446 | For the sparc for example, the general register set is typically defined | |
1447 | by: | |
1448 | ||
1449 | typedef int gregset_t[38]; | |
1450 | ||
1451 | #define R_G0 0 | |
1452 | ... | |
1453 | #define R_TBR 37 | |
1454 | ||
1455 | and the floating point set by: | |
1456 | ||
1457 | typedef struct prfpregset { | |
1458 | union { | |
1459 | u_long pr_regs[32]; | |
1460 | double pr_dregs[16]; | |
1461 | } pr_fr; | |
1462 | void * pr_filler; | |
1463 | u_long pr_fsr; | |
1464 | u_char pr_qcnt; | |
1465 | u_char pr_q_entrysize; | |
1466 | u_char pr_en; | |
1467 | u_long pr_q[64]; | |
1468 | } prfpregset_t; | |
1469 | ||
1470 | These routines provide the packing and unpacking of gregset_t and | |
1471 | fpregset_t formatted data. | |
1472 | ||
1473 | */ | |
9846de1b | 1474 | /* *INDENT-ON* */ |
c906108c SS |
1475 | |
1476 | /* Given a pointer to a general register set in /proc format (gregset_t *), | |
1477 | unpack the register contents and supply them as gdb's idea of the current | |
1478 | register values. */ | |
1479 | ||
1480 | void | |
fba45db2 | 1481 | supply_gregset (gdb_gregset_t *gregsetp) |
c906108c | 1482 | { |
5af923b0 MS |
1483 | prgreg_t *regp = (prgreg_t *) gregsetp; |
1484 | int regi, offset = 0; | |
1485 | ||
1486 | /* If the host is 64-bit sparc, but the target is 32-bit sparc, | |
1487 | then the gregset may contain 64-bit ints while supply_register | |
1488 | is expecting 32-bit ints. Compensate. */ | |
1489 | if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4) | |
1490 | offset = 4; | |
c906108c SS |
1491 | |
1492 | /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ | |
5af923b0 | 1493 | /* FIXME MVS: assumes the order of the first 32 elements... */ |
c5aa993b | 1494 | for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++) |
c906108c | 1495 | { |
5af923b0 | 1496 | supply_register (regi, ((char *) (regp + regi)) + offset); |
c906108c SS |
1497 | } |
1498 | ||
1499 | /* These require a bit more care. */ | |
5af923b0 MS |
1500 | supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset); |
1501 | supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset); | |
1502 | supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset); | |
1503 | ||
1504 | if (GDB_TARGET_IS_SPARC64) | |
1505 | { | |
1506 | #ifdef R_CCR | |
1507 | supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset); | |
1508 | #else | |
1509 | supply_register (CCR_REGNUM, NULL); | |
1510 | #endif | |
1511 | #ifdef R_FPRS | |
1512 | supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset); | |
1513 | #else | |
1514 | supply_register (FPRS_REGNUM, NULL); | |
1515 | #endif | |
1516 | #ifdef R_ASI | |
1517 | supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset); | |
1518 | #else | |
1519 | supply_register (ASI_REGNUM, NULL); | |
1520 | #endif | |
1521 | } | |
1522 | else /* sparc32 */ | |
1523 | { | |
1524 | #ifdef R_PS | |
1525 | supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset); | |
1526 | #else | |
1527 | supply_register (PS_REGNUM, NULL); | |
1528 | #endif | |
1529 | ||
1530 | /* For 64-bit hosts, R_WIM and R_TBR may not be defined. | |
1531 | Steal R_ASI and R_FPRS, and hope for the best! */ | |
1532 | ||
1533 | #if !defined (R_WIM) && defined (R_ASI) | |
1534 | #define R_WIM R_ASI | |
1535 | #endif | |
1536 | ||
1537 | #if !defined (R_TBR) && defined (R_FPRS) | |
1538 | #define R_TBR R_FPRS | |
1539 | #endif | |
1540 | ||
1541 | #if defined (R_WIM) | |
1542 | supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset); | |
1543 | #else | |
1544 | supply_register (WIM_REGNUM, NULL); | |
1545 | #endif | |
1546 | ||
1547 | #if defined (R_TBR) | |
1548 | supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset); | |
1549 | #else | |
1550 | supply_register (TBR_REGNUM, NULL); | |
1551 | #endif | |
1552 | } | |
c906108c SS |
1553 | |
1554 | /* Fill inaccessible registers with zero. */ | |
5af923b0 MS |
1555 | if (GDB_TARGET_IS_SPARC64) |
1556 | { | |
1557 | /* | |
1558 | * don't know how to get value of any of the following: | |
1559 | */ | |
1560 | supply_register (VER_REGNUM, NULL); | |
1561 | supply_register (TICK_REGNUM, NULL); | |
1562 | supply_register (PIL_REGNUM, NULL); | |
1563 | supply_register (PSTATE_REGNUM, NULL); | |
1564 | supply_register (TSTATE_REGNUM, NULL); | |
1565 | supply_register (TBA_REGNUM, NULL); | |
1566 | supply_register (TL_REGNUM, NULL); | |
1567 | supply_register (TT_REGNUM, NULL); | |
1568 | supply_register (TPC_REGNUM, NULL); | |
1569 | supply_register (TNPC_REGNUM, NULL); | |
1570 | supply_register (WSTATE_REGNUM, NULL); | |
1571 | supply_register (CWP_REGNUM, NULL); | |
1572 | supply_register (CANSAVE_REGNUM, NULL); | |
1573 | supply_register (CANRESTORE_REGNUM, NULL); | |
1574 | supply_register (CLEANWIN_REGNUM, NULL); | |
1575 | supply_register (OTHERWIN_REGNUM, NULL); | |
1576 | supply_register (ASR16_REGNUM, NULL); | |
1577 | supply_register (ASR17_REGNUM, NULL); | |
1578 | supply_register (ASR18_REGNUM, NULL); | |
1579 | supply_register (ASR19_REGNUM, NULL); | |
1580 | supply_register (ASR20_REGNUM, NULL); | |
1581 | supply_register (ASR21_REGNUM, NULL); | |
1582 | supply_register (ASR22_REGNUM, NULL); | |
1583 | supply_register (ASR23_REGNUM, NULL); | |
1584 | supply_register (ASR24_REGNUM, NULL); | |
1585 | supply_register (ASR25_REGNUM, NULL); | |
1586 | supply_register (ASR26_REGNUM, NULL); | |
1587 | supply_register (ASR27_REGNUM, NULL); | |
1588 | supply_register (ASR28_REGNUM, NULL); | |
1589 | supply_register (ASR29_REGNUM, NULL); | |
1590 | supply_register (ASR30_REGNUM, NULL); | |
1591 | supply_register (ASR31_REGNUM, NULL); | |
1592 | supply_register (ICC_REGNUM, NULL); | |
1593 | supply_register (XCC_REGNUM, NULL); | |
1594 | } | |
1595 | else | |
1596 | { | |
1597 | supply_register (CPS_REGNUM, NULL); | |
1598 | } | |
c906108c SS |
1599 | } |
1600 | ||
1601 | void | |
fba45db2 | 1602 | fill_gregset (gdb_gregset_t *gregsetp, int regno) |
c906108c | 1603 | { |
5af923b0 MS |
1604 | prgreg_t *regp = (prgreg_t *) gregsetp; |
1605 | int regi, offset = 0; | |
1606 | ||
1607 | /* If the host is 64-bit sparc, but the target is 32-bit sparc, | |
1608 | then the gregset may contain 64-bit ints while supply_register | |
1609 | is expecting 32-bit ints. Compensate. */ | |
1610 | if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4) | |
1611 | offset = 4; | |
c906108c | 1612 | |
c5aa993b | 1613 | for (regi = 0; regi <= R_I7; regi++) |
5af923b0 | 1614 | if ((regno == -1) || (regno == regi)) |
4caf0990 | 1615 | deprecated_read_register_gen (regi, (char *) (regp + regi) + offset); |
5af923b0 | 1616 | |
c906108c | 1617 | if ((regno == -1) || (regno == PC_REGNUM)) |
4caf0990 | 1618 | deprecated_read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset); |
5af923b0 | 1619 | |
c906108c | 1620 | if ((regno == -1) || (regno == NPC_REGNUM)) |
4caf0990 | 1621 | deprecated_read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset); |
5af923b0 MS |
1622 | |
1623 | if ((regno == -1) || (regno == Y_REGNUM)) | |
4caf0990 | 1624 | deprecated_read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset); |
5af923b0 MS |
1625 | |
1626 | if (GDB_TARGET_IS_SPARC64) | |
c906108c | 1627 | { |
5af923b0 MS |
1628 | #ifdef R_CCR |
1629 | if (regno == -1 || regno == CCR_REGNUM) | |
4caf0990 | 1630 | deprecated_read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset); |
5af923b0 MS |
1631 | #endif |
1632 | #ifdef R_FPRS | |
1633 | if (regno == -1 || regno == FPRS_REGNUM) | |
4caf0990 | 1634 | deprecated_read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset); |
5af923b0 MS |
1635 | #endif |
1636 | #ifdef R_ASI | |
1637 | if (regno == -1 || regno == ASI_REGNUM) | |
4caf0990 | 1638 | deprecated_read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset); |
5af923b0 | 1639 | #endif |
c906108c | 1640 | } |
5af923b0 | 1641 | else /* sparc32 */ |
c906108c | 1642 | { |
5af923b0 MS |
1643 | #ifdef R_PS |
1644 | if (regno == -1 || regno == PS_REGNUM) | |
4caf0990 | 1645 | deprecated_read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset); |
5af923b0 MS |
1646 | #endif |
1647 | ||
1648 | /* For 64-bit hosts, R_WIM and R_TBR may not be defined. | |
1649 | Steal R_ASI and R_FPRS, and hope for the best! */ | |
1650 | ||
1651 | #if !defined (R_WIM) && defined (R_ASI) | |
1652 | #define R_WIM R_ASI | |
1653 | #endif | |
1654 | ||
1655 | #if !defined (R_TBR) && defined (R_FPRS) | |
1656 | #define R_TBR R_FPRS | |
1657 | #endif | |
1658 | ||
1659 | #if defined (R_WIM) | |
1660 | if (regno == -1 || regno == WIM_REGNUM) | |
4caf0990 | 1661 | deprecated_read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset); |
5af923b0 MS |
1662 | #else |
1663 | if (regno == -1 || regno == WIM_REGNUM) | |
4caf0990 | 1664 | deprecated_read_register_gen (WIM_REGNUM, NULL); |
5af923b0 MS |
1665 | #endif |
1666 | ||
1667 | #if defined (R_TBR) | |
1668 | if (regno == -1 || regno == TBR_REGNUM) | |
4caf0990 | 1669 | deprecated_read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset); |
5af923b0 MS |
1670 | #else |
1671 | if (regno == -1 || regno == TBR_REGNUM) | |
4caf0990 | 1672 | deprecated_read_register_gen (TBR_REGNUM, NULL); |
5af923b0 | 1673 | #endif |
c906108c SS |
1674 | } |
1675 | } | |
1676 | ||
c906108c | 1677 | /* Given a pointer to a floating point register set in /proc format |
c5aa993b JM |
1678 | (fpregset_t *), unpack the register contents and supply them as gdb's |
1679 | idea of the current floating point register values. */ | |
c906108c | 1680 | |
c5aa993b | 1681 | void |
fba45db2 | 1682 | supply_fpregset (gdb_fpregset_t *fpregsetp) |
c906108c SS |
1683 | { |
1684 | register int regi; | |
1685 | char *from; | |
c5aa993b | 1686 | |
5af923b0 | 1687 | if (!SPARC_HAS_FPU) |
60054393 MS |
1688 | return; |
1689 | ||
c5aa993b | 1690 | for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++) |
c906108c | 1691 | { |
c5aa993b | 1692 | from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM]; |
c906108c SS |
1693 | supply_register (regi, from); |
1694 | } | |
5af923b0 MS |
1695 | |
1696 | if (GDB_TARGET_IS_SPARC64) | |
1697 | { | |
1698 | /* | |
1699 | * don't know how to get value of the following. | |
1700 | */ | |
1701 | supply_register (FSR_REGNUM, NULL); /* zero it out for now */ | |
1702 | supply_register (FCC0_REGNUM, NULL); | |
1703 | supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */ | |
1704 | supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */ | |
1705 | supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */ | |
1706 | } | |
1707 | else | |
1708 | { | |
1709 | supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); | |
1710 | } | |
c906108c SS |
1711 | } |
1712 | ||
1713 | /* Given a pointer to a floating point register set in /proc format | |
c5aa993b JM |
1714 | (fpregset_t *), update the register specified by REGNO from gdb's idea |
1715 | of the current floating point register set. If REGNO is -1, update | |
1716 | them all. */ | |
5af923b0 | 1717 | /* This will probably need some changes for sparc64. */ |
c906108c SS |
1718 | |
1719 | void | |
fba45db2 | 1720 | fill_fpregset (gdb_fpregset_t *fpregsetp, int regno) |
c906108c SS |
1721 | { |
1722 | int regi; | |
1723 | char *to; | |
1724 | char *from; | |
1725 | ||
5af923b0 | 1726 | if (!SPARC_HAS_FPU) |
60054393 MS |
1727 | return; |
1728 | ||
c5aa993b | 1729 | for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++) |
c906108c SS |
1730 | { |
1731 | if ((regno == -1) || (regno == regi)) | |
1732 | { | |
524d7c18 | 1733 | from = (char *) &deprecated_registers[REGISTER_BYTE (regi)]; |
c5aa993b | 1734 | to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM]; |
c906108c SS |
1735 | memcpy (to, from, REGISTER_RAW_SIZE (regi)); |
1736 | } | |
1737 | } | |
5af923b0 MS |
1738 | |
1739 | if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */ | |
1740 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
1741 | { | |
524d7c18 | 1742 | from = (char *)&deprecated_registers[REGISTER_BYTE (FPS_REGNUM)]; |
5af923b0 MS |
1743 | to = (char *) &fpregsetp->pr_fsr; |
1744 | memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM)); | |
1745 | } | |
c906108c SS |
1746 | } |
1747 | ||
c5aa993b | 1748 | #endif /* USE_PROC_FS */ |
c906108c | 1749 | |
a48442a0 RE |
1750 | /* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test |
1751 | for a definition of JB_PC. */ | |
1752 | #ifdef JB_PC | |
c906108c SS |
1753 | |
1754 | /* Figure out where the longjmp will land. We expect that we have just entered | |
1755 | longjmp and haven't yet setup the stack frame, so the args are still in the | |
1756 | output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we | |
1757 | extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. | |
1758 | This routine returns true on success */ | |
1759 | ||
1760 | int | |
fba45db2 | 1761 | get_longjmp_target (CORE_ADDR *pc) |
c906108c SS |
1762 | { |
1763 | CORE_ADDR jb_addr; | |
1764 | #define LONGJMP_TARGET_SIZE 4 | |
1765 | char buf[LONGJMP_TARGET_SIZE]; | |
1766 | ||
1767 | jb_addr = read_register (O0_REGNUM); | |
1768 | ||
1769 | if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, | |
1770 | LONGJMP_TARGET_SIZE)) | |
1771 | return 0; | |
1772 | ||
1773 | *pc = extract_address (buf, LONGJMP_TARGET_SIZE); | |
1774 | ||
1775 | return 1; | |
1776 | } | |
1777 | #endif /* GET_LONGJMP_TARGET */ | |
1778 | \f | |
1779 | #ifdef STATIC_TRANSFORM_NAME | |
1780 | /* SunPRO (3.0 at least), encodes the static variables. This is not | |
1781 | related to C++ mangling, it is done for C too. */ | |
1782 | ||
1783 | char * | |
fba45db2 | 1784 | sunpro_static_transform_name (char *name) |
c906108c SS |
1785 | { |
1786 | char *p; | |
1787 | if (name[0] == '$') | |
1788 | { | |
1789 | /* For file-local statics there will be a dollar sign, a bunch | |
c5aa993b JM |
1790 | of junk (the contents of which match a string given in the |
1791 | N_OPT), a period and the name. For function-local statics | |
1792 | there will be a bunch of junk (which seems to change the | |
1793 | second character from 'A' to 'B'), a period, the name of the | |
1794 | function, and the name. So just skip everything before the | |
1795 | last period. */ | |
c906108c SS |
1796 | p = strrchr (name, '.'); |
1797 | if (p != NULL) | |
1798 | name = p + 1; | |
1799 | } | |
1800 | return name; | |
1801 | } | |
1802 | #endif /* STATIC_TRANSFORM_NAME */ | |
1803 | \f | |
1804 | ||
1805 | /* Utilities for printing registers. | |
1806 | Page numbers refer to the SPARC Architecture Manual. */ | |
1807 | ||
5af923b0 | 1808 | static void dump_ccreg (char *, int); |
c906108c SS |
1809 | |
1810 | static void | |
fba45db2 | 1811 | dump_ccreg (char *reg, int val) |
c906108c SS |
1812 | { |
1813 | /* page 41 */ | |
1814 | printf_unfiltered ("%s:%s,%s,%s,%s", reg, | |
c5aa993b JM |
1815 | val & 8 ? "N" : "NN", |
1816 | val & 4 ? "Z" : "NZ", | |
1817 | val & 2 ? "O" : "NO", | |
5af923b0 | 1818 | val & 1 ? "C" : "NC"); |
c906108c SS |
1819 | } |
1820 | ||
1821 | static char * | |
fba45db2 | 1822 | decode_asi (int val) |
c906108c SS |
1823 | { |
1824 | /* page 72 */ | |
1825 | switch (val) | |
1826 | { | |
c5aa993b JM |
1827 | case 4: |
1828 | return "ASI_NUCLEUS"; | |
1829 | case 0x0c: | |
1830 | return "ASI_NUCLEUS_LITTLE"; | |
1831 | case 0x10: | |
1832 | return "ASI_AS_IF_USER_PRIMARY"; | |
1833 | case 0x11: | |
1834 | return "ASI_AS_IF_USER_SECONDARY"; | |
1835 | case 0x18: | |
1836 | return "ASI_AS_IF_USER_PRIMARY_LITTLE"; | |
1837 | case 0x19: | |
1838 | return "ASI_AS_IF_USER_SECONDARY_LITTLE"; | |
1839 | case 0x80: | |
1840 | return "ASI_PRIMARY"; | |
1841 | case 0x81: | |
1842 | return "ASI_SECONDARY"; | |
1843 | case 0x82: | |
1844 | return "ASI_PRIMARY_NOFAULT"; | |
1845 | case 0x83: | |
1846 | return "ASI_SECONDARY_NOFAULT"; | |
1847 | case 0x88: | |
1848 | return "ASI_PRIMARY_LITTLE"; | |
1849 | case 0x89: | |
1850 | return "ASI_SECONDARY_LITTLE"; | |
1851 | case 0x8a: | |
1852 | return "ASI_PRIMARY_NOFAULT_LITTLE"; | |
1853 | case 0x8b: | |
1854 | return "ASI_SECONDARY_NOFAULT_LITTLE"; | |
1855 | default: | |
1856 | return NULL; | |
c906108c SS |
1857 | } |
1858 | } | |
1859 | ||
1860 | /* PRINT_REGISTER_HOOK routine. | |
1861 | Pretty print various registers. */ | |
1862 | /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ | |
1863 | ||
87647bb0 | 1864 | static void |
fba45db2 | 1865 | sparc_print_register_hook (int regno) |
c906108c SS |
1866 | { |
1867 | ULONGEST val; | |
1868 | ||
1869 | /* Handle double/quad versions of lower 32 fp regs. */ | |
1870 | if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32 | |
1871 | && (regno & 1) == 0) | |
1872 | { | |
1873 | char value[16]; | |
1874 | ||
6e7f8b9c AC |
1875 | if (frame_register_read (deprecated_selected_frame, regno, value) |
1876 | && frame_register_read (deprecated_selected_frame, regno + 1, value + 4)) | |
c906108c SS |
1877 | { |
1878 | printf_unfiltered ("\t"); | |
1879 | print_floating (value, builtin_type_double, gdb_stdout); | |
1880 | } | |
c5aa993b | 1881 | #if 0 /* FIXME: gdb doesn't handle long doubles */ |
c906108c SS |
1882 | if ((regno & 3) == 0) |
1883 | { | |
6e7f8b9c AC |
1884 | if (frame_register_read (deprecated_selected_frame, regno + 2, value + 8) |
1885 | && frame_register_read (deprecated_selected_frame, regno + 3, value + 12)) | |
c906108c SS |
1886 | { |
1887 | printf_unfiltered ("\t"); | |
1888 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
1889 | } | |
1890 | } | |
1891 | #endif | |
1892 | return; | |
1893 | } | |
1894 | ||
c5aa993b | 1895 | #if 0 /* FIXME: gdb doesn't handle long doubles */ |
c906108c SS |
1896 | /* Print upper fp regs as long double if appropriate. */ |
1897 | if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM | |
c5aa993b JM |
1898 | /* We test for even numbered regs and not a multiple of 4 because |
1899 | the upper fp regs are recorded as doubles. */ | |
c906108c SS |
1900 | && (regno & 1) == 0) |
1901 | { | |
1902 | char value[16]; | |
1903 | ||
6e7f8b9c AC |
1904 | if (frame_register_read (deprecated_selected_frame, regno, value) |
1905 | && frame_register_read (deprecated_selected_frame, regno + 1, value + 8)) | |
c906108c SS |
1906 | { |
1907 | printf_unfiltered ("\t"); | |
1908 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
1909 | } | |
1910 | return; | |
1911 | } | |
1912 | #endif | |
1913 | ||
1914 | /* FIXME: Some of these are priviledged registers. | |
1915 | Not sure how they should be handled. */ | |
1916 | ||
1917 | #define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) | |
1918 | ||
1919 | val = read_register (regno); | |
1920 | ||
1921 | /* pages 40 - 60 */ | |
5af923b0 MS |
1922 | if (GDB_TARGET_IS_SPARC64) |
1923 | switch (regno) | |
c906108c | 1924 | { |
5af923b0 MS |
1925 | case CCR_REGNUM: |
1926 | printf_unfiltered ("\t"); | |
1927 | dump_ccreg ("xcc", val >> 4); | |
1928 | printf_unfiltered (", "); | |
1929 | dump_ccreg ("icc", val & 15); | |
c906108c | 1930 | break; |
5af923b0 MS |
1931 | case FPRS_REGNUM: |
1932 | printf ("\tfef:%d, du:%d, dl:%d", | |
1933 | BITS (2, 1), BITS (1, 1), BITS (0, 1)); | |
c906108c | 1934 | break; |
5af923b0 MS |
1935 | case FSR_REGNUM: |
1936 | { | |
1937 | static char *fcc[4] = | |
1938 | {"=", "<", ">", "?"}; | |
1939 | static char *rd[4] = | |
1940 | {"N", "0", "+", "-"}; | |
1941 | /* Long, but I'd rather leave it as is and use a wide screen. */ | |
1942 | printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ", | |
1943 | fcc[BITS (10, 3)], fcc[BITS (32, 3)], | |
1944 | fcc[BITS (34, 3)], fcc[BITS (36, 3)], | |
1945 | rd[BITS (30, 3)], BITS (23, 31)); | |
1946 | printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", | |
1947 | BITS (22, 1), BITS (17, 7), BITS (14, 7), | |
1948 | BITS (13, 1), BITS (5, 31), BITS (0, 31)); | |
1949 | break; | |
1950 | } | |
1951 | case ASI_REGNUM: | |
1952 | { | |
1953 | char *asi = decode_asi (val); | |
1954 | if (asi != NULL) | |
1955 | printf ("\t%s", asi); | |
1956 | break; | |
1957 | } | |
1958 | case VER_REGNUM: | |
1959 | printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", | |
1960 | BITS (48, 0xffff), BITS (32, 0xffff), | |
1961 | BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); | |
1962 | break; | |
1963 | case PSTATE_REGNUM: | |
1964 | { | |
1965 | static char *mm[4] = | |
1966 | {"tso", "pso", "rso", "?"}; | |
1967 | printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ", | |
1968 | BITS (9, 1), BITS (8, 1), | |
1969 | mm[BITS (6, 3)], BITS (5, 1)); | |
1970 | printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d", | |
1971 | BITS (4, 1), BITS (3, 1), BITS (2, 1), | |
1972 | BITS (1, 1), BITS (0, 1)); | |
1973 | break; | |
1974 | } | |
1975 | case TSTATE_REGNUM: | |
1976 | /* FIXME: print all 4? */ | |
1977 | break; | |
1978 | case TT_REGNUM: | |
1979 | /* FIXME: print all 4? */ | |
1980 | break; | |
1981 | case TPC_REGNUM: | |
1982 | /* FIXME: print all 4? */ | |
1983 | break; | |
1984 | case TNPC_REGNUM: | |
1985 | /* FIXME: print all 4? */ | |
1986 | break; | |
1987 | case WSTATE_REGNUM: | |
1988 | printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); | |
1989 | break; | |
1990 | case CWP_REGNUM: | |
1991 | printf ("\t%d", BITS (0, 31)); | |
1992 | break; | |
1993 | case CANSAVE_REGNUM: | |
1994 | printf ("\t%-2d before spill", BITS (0, 31)); | |
1995 | break; | |
1996 | case CANRESTORE_REGNUM: | |
1997 | printf ("\t%-2d before fill", BITS (0, 31)); | |
1998 | break; | |
1999 | case CLEANWIN_REGNUM: | |
2000 | printf ("\t%-2d before clean", BITS (0, 31)); | |
2001 | break; | |
2002 | case OTHERWIN_REGNUM: | |
2003 | printf ("\t%d", BITS (0, 31)); | |
c906108c SS |
2004 | break; |
2005 | } | |
5af923b0 MS |
2006 | else /* Sparc32 */ |
2007 | switch (regno) | |
c906108c | 2008 | { |
5af923b0 MS |
2009 | case PS_REGNUM: |
2010 | printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d", | |
2011 | BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-', | |
2012 | BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-', | |
2013 | BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1), | |
c906108c SS |
2014 | BITS (0, 31)); |
2015 | break; | |
5af923b0 MS |
2016 | case FPS_REGNUM: |
2017 | { | |
2018 | static char *fcc[4] = | |
2019 | {"=", "<", ">", "?"}; | |
2020 | static char *rd[4] = | |
2021 | {"N", "0", "+", "-"}; | |
2022 | /* Long, but I'd rather leave it as is and use a wide screen. */ | |
2023 | printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, " | |
2024 | "fcc:%s, aexc:%d, cexc:%d", | |
2025 | rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), | |
2026 | BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31), | |
2027 | BITS (0, 31)); | |
2028 | break; | |
2029 | } | |
c906108c SS |
2030 | } |
2031 | ||
c906108c SS |
2032 | #undef BITS |
2033 | } | |
87647bb0 AC |
2034 | |
2035 | static void | |
2036 | sparc_print_registers (struct gdbarch *gdbarch, | |
2037 | struct ui_file *file, | |
2038 | struct frame_info *frame, | |
2039 | int regnum, int print_all, | |
2040 | void (*print_register_hook) (int)) | |
2041 | { | |
2042 | int i; | |
2043 | const int numregs = NUM_REGS + NUM_PSEUDO_REGS; | |
2044 | char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE); | |
2045 | char *virtual_buffer = alloca (MAX_REGISTER_VIRTUAL_SIZE); | |
2046 | ||
2047 | for (i = 0; i < numregs; i++) | |
2048 | { | |
2049 | /* Decide between printing all regs, non-float / vector regs, or | |
2050 | specific reg. */ | |
2051 | if (regnum == -1) | |
2052 | { | |
2053 | if (!print_all) | |
2054 | { | |
2055 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT) | |
2056 | continue; | |
2057 | if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i))) | |
2058 | continue; | |
2059 | } | |
2060 | } | |
2061 | else | |
2062 | { | |
2063 | if (i != regnum) | |
2064 | continue; | |
2065 | } | |
2066 | ||
2067 | /* If the register name is empty, it is undefined for this | |
2068 | processor, so don't display anything. */ | |
2069 | if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0') | |
2070 | continue; | |
2071 | ||
2072 | fputs_filtered (REGISTER_NAME (i), file); | |
2073 | print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), file); | |
2074 | ||
2075 | /* Get the data in raw format. */ | |
2076 | if (! frame_register_read (frame, i, raw_buffer)) | |
2077 | { | |
2078 | fprintf_filtered (file, "*value not available*\n"); | |
2079 | continue; | |
2080 | } | |
2081 | ||
2082 | /* FIXME: cagney/2002-08-03: This code shouldn't be necessary. | |
2083 | The function frame_register_read() should have returned the | |
2084 | pre-cooked register so no conversion is necessary. */ | |
2085 | /* Convert raw data to virtual format if necessary. */ | |
2086 | if (REGISTER_CONVERTIBLE (i)) | |
2087 | { | |
2088 | REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i), | |
2089 | raw_buffer, virtual_buffer); | |
2090 | } | |
2091 | else | |
2092 | { | |
2093 | memcpy (virtual_buffer, raw_buffer, | |
2094 | REGISTER_VIRTUAL_SIZE (i)); | |
2095 | } | |
2096 | ||
2097 | /* If virtual format is floating, print it that way, and in raw | |
2098 | hex. */ | |
2099 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT) | |
2100 | { | |
2101 | int j; | |
2102 | ||
2103 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, | |
2104 | file, 0, 1, 0, Val_pretty_default); | |
2105 | ||
2106 | fprintf_filtered (file, "\t(raw 0x"); | |
2107 | for (j = 0; j < REGISTER_RAW_SIZE (i); j++) | |
2108 | { | |
2109 | int idx; | |
2110 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2111 | idx = j; | |
2112 | else | |
2113 | idx = REGISTER_RAW_SIZE (i) - 1 - j; | |
2114 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]); | |
2115 | } | |
2116 | fprintf_filtered (file, ")"); | |
2117 | } | |
2118 | else | |
2119 | { | |
2120 | /* Print the register in hex. */ | |
2121 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, | |
2122 | file, 'x', 1, 0, Val_pretty_default); | |
2123 | /* If not a vector register, print it also according to its | |
2124 | natural format. */ | |
2125 | if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)) == 0) | |
2126 | { | |
2127 | fprintf_filtered (file, "\t"); | |
2128 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, | |
2129 | file, 0, 1, 0, Val_pretty_default); | |
2130 | } | |
2131 | } | |
2132 | ||
2133 | /* Some sparc specific info. */ | |
2134 | if (print_register_hook != NULL) | |
2135 | print_register_hook (i); | |
2136 | ||
2137 | fprintf_filtered (file, "\n"); | |
2138 | } | |
2139 | } | |
2140 | ||
2141 | static void | |
2142 | sparc_print_registers_info (struct gdbarch *gdbarch, | |
2143 | struct ui_file *file, | |
2144 | struct frame_info *frame, | |
2145 | int regnum, int print_all) | |
2146 | { | |
2147 | sparc_print_registers (gdbarch, file, frame, regnum, print_all, | |
2148 | sparc_print_register_hook); | |
2149 | } | |
2150 | ||
2151 | void | |
2152 | sparc_do_registers_info (int regnum, int all) | |
2153 | { | |
6e7f8b9c | 2154 | sparc_print_registers_info (current_gdbarch, gdb_stdout, deprecated_selected_frame, |
87647bb0 AC |
2155 | regnum, all); |
2156 | } | |
2157 | ||
2158 | static void | |
2159 | sparclet_print_registers_info (struct gdbarch *gdbarch, | |
2160 | struct ui_file *file, | |
2161 | struct frame_info *frame, | |
2162 | int regnum, int print_all) | |
2163 | { | |
2164 | sparc_print_registers (gdbarch, file, frame, regnum, print_all, NULL); | |
2165 | } | |
2166 | ||
2167 | void | |
2168 | sparclet_do_registers_info (int regnum, int all) | |
2169 | { | |
6e7f8b9c AC |
2170 | sparclet_print_registers_info (current_gdbarch, gdb_stdout, |
2171 | deprecated_selected_frame, regnum, all); | |
87647bb0 AC |
2172 | } |
2173 | ||
c906108c SS |
2174 | \f |
2175 | int | |
fba45db2 | 2176 | gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
2177 | { |
2178 | /* It's necessary to override mach again because print_insn messes it up. */ | |
96baa820 | 2179 | info->mach = TARGET_ARCHITECTURE->mach; |
c906108c SS |
2180 | return print_insn_sparc (memaddr, info); |
2181 | } | |
2182 | \f | |
2183 | /* The SPARC passes the arguments on the stack; arguments smaller | |
5af923b0 MS |
2184 | than an int are promoted to an int. The first 6 words worth of |
2185 | args are also passed in registers o0 - o5. */ | |
c906108c SS |
2186 | |
2187 | CORE_ADDR | |
ea7c478f | 2188 | sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 2189 | int struct_return, CORE_ADDR struct_addr) |
c906108c | 2190 | { |
5af923b0 | 2191 | int i, j, oregnum; |
c906108c SS |
2192 | int accumulate_size = 0; |
2193 | struct sparc_arg | |
2194 | { | |
2195 | char *contents; | |
2196 | int len; | |
2197 | int offset; | |
2198 | }; | |
2199 | struct sparc_arg *sparc_args = | |
5af923b0 | 2200 | (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg)); |
c906108c SS |
2201 | struct sparc_arg *m_arg; |
2202 | ||
2203 | /* Promote arguments if necessary, and calculate their stack offsets | |
2204 | and sizes. */ | |
2205 | for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++) | |
2206 | { | |
ea7c478f | 2207 | struct value *arg = args[i]; |
c906108c SS |
2208 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); |
2209 | /* Cast argument to long if necessary as the compiler does it too. */ | |
2210 | switch (TYPE_CODE (arg_type)) | |
2211 | { | |
2212 | case TYPE_CODE_INT: | |
2213 | case TYPE_CODE_BOOL: | |
2214 | case TYPE_CODE_CHAR: | |
2215 | case TYPE_CODE_RANGE: | |
2216 | case TYPE_CODE_ENUM: | |
2217 | if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long)) | |
2218 | { | |
2219 | arg_type = builtin_type_long; | |
2220 | arg = value_cast (arg_type, arg); | |
2221 | } | |
2222 | break; | |
2223 | default: | |
2224 | break; | |
2225 | } | |
2226 | m_arg->len = TYPE_LENGTH (arg_type); | |
2227 | m_arg->offset = accumulate_size; | |
2228 | accumulate_size = (accumulate_size + m_arg->len + 3) & ~3; | |
c5aa993b | 2229 | m_arg->contents = VALUE_CONTENTS (arg); |
c906108c SS |
2230 | } |
2231 | ||
2232 | /* Make room for the arguments on the stack. */ | |
2233 | accumulate_size += CALL_DUMMY_STACK_ADJUST; | |
2234 | sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST; | |
2235 | ||
2236 | /* `Push' arguments on the stack. */ | |
5af923b0 MS |
2237 | for (i = 0, oregnum = 0, m_arg = sparc_args; |
2238 | i < nargs; | |
2239 | i++, m_arg++) | |
2240 | { | |
2241 | write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len); | |
2242 | for (j = 0; | |
2243 | j < m_arg->len && oregnum < 6; | |
2244 | j += SPARC_INTREG_SIZE, oregnum++) | |
4caf0990 | 2245 | deprecated_write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j); |
5af923b0 | 2246 | } |
c906108c SS |
2247 | |
2248 | return sp; | |
2249 | } | |
2250 | ||
2251 | ||
2252 | /* Extract from an array REGBUF containing the (raw) register state | |
2253 | a function return value of type TYPE, and copy that, in virtual format, | |
2254 | into VALBUF. */ | |
2255 | ||
2256 | void | |
fba45db2 | 2257 | sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf) |
c906108c SS |
2258 | { |
2259 | int typelen = TYPE_LENGTH (type); | |
2260 | int regsize = REGISTER_RAW_SIZE (O0_REGNUM); | |
2261 | ||
2262 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
c5aa993b | 2263 | memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen); |
c906108c SS |
2264 | else |
2265 | memcpy (valbuf, | |
c5aa993b JM |
2266 | ®buf[O0_REGNUM * regsize + |
2267 | (typelen >= regsize | |
778eb05e | 2268 | || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0 |
c5aa993b | 2269 | : regsize - typelen)], |
c906108c SS |
2270 | typelen); |
2271 | } | |
2272 | ||
2273 | ||
2274 | /* Write into appropriate registers a function return value | |
2275 | of type TYPE, given in virtual format. On SPARCs with FPUs, | |
2276 | float values are returned in %f0 (and %f1). In all other cases, | |
2277 | values are returned in register %o0. */ | |
2278 | ||
2279 | void | |
fba45db2 | 2280 | sparc_store_return_value (struct type *type, char *valbuf) |
c906108c SS |
2281 | { |
2282 | int regno; | |
5af923b0 MS |
2283 | char *buffer; |
2284 | ||
902d0061 | 2285 | buffer = alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
2286 | |
2287 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
2288 | /* Floating-point values are returned in the register pair */ | |
2289 | /* formed by %f0 and %f1 (doubles are, anyway). */ | |
2290 | regno = FP0_REGNUM; | |
2291 | else | |
2292 | /* Other values are returned in register %o0. */ | |
2293 | regno = O0_REGNUM; | |
2294 | ||
2295 | /* Add leading zeros to the value. */ | |
c5aa993b | 2296 | if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno)) |
c906108c | 2297 | { |
5af923b0 | 2298 | memset (buffer, 0, REGISTER_RAW_SIZE (regno)); |
c5aa993b | 2299 | memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf, |
c906108c | 2300 | TYPE_LENGTH (type)); |
4caf0990 | 2301 | deprecated_write_register_gen (regno, buffer); |
c906108c SS |
2302 | } |
2303 | else | |
73937e03 AC |
2304 | deprecated_write_register_bytes (REGISTER_BYTE (regno), valbuf, |
2305 | TYPE_LENGTH (type)); | |
c906108c SS |
2306 | } |
2307 | ||
5af923b0 MS |
2308 | extern void |
2309 | sparclet_store_return_value (struct type *type, char *valbuf) | |
2310 | { | |
2311 | /* Other values are returned in register %o0. */ | |
73937e03 AC |
2312 | deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf, |
2313 | TYPE_LENGTH (type)); | |
5af923b0 MS |
2314 | } |
2315 | ||
2316 | ||
4eb8c7fc DM |
2317 | #ifndef CALL_DUMMY_CALL_OFFSET |
2318 | #define CALL_DUMMY_CALL_OFFSET \ | |
2319 | (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset) | |
2320 | #endif /* CALL_DUMMY_CALL_OFFSET */ | |
2321 | ||
c906108c SS |
2322 | /* Insert the function address into a call dummy instruction sequence |
2323 | stored at DUMMY. | |
2324 | ||
2325 | For structs and unions, if the function was compiled with Sun cc, | |
2326 | it expects 'unimp' after the call. But gcc doesn't use that | |
2327 | (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY | |
2328 | can assume it is operating on a pristine CALL_DUMMY, not one that | |
2329 | has already been customized for a different function). */ | |
2330 | ||
2331 | void | |
fba45db2 KB |
2332 | sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, |
2333 | struct type *value_type, int using_gcc) | |
c906108c SS |
2334 | { |
2335 | int i; | |
2336 | ||
2337 | /* Store the relative adddress of the target function into the | |
2338 | 'call' instruction. */ | |
2339 | store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4, | |
2340 | (0x40000000 | |
2341 | | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2) | |
c5aa993b | 2342 | & 0x3fffffff))); |
c906108c | 2343 | |
9e36d949 PS |
2344 | /* If the called function returns an aggregate value, fill in the UNIMP |
2345 | instruction containing the size of the returned aggregate return value, | |
2346 | which follows the call instruction. | |
2347 | For details see the SPARC Architecture Manual Version 8, Appendix D.3. | |
2348 | ||
2349 | Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint | |
2350 | to the proper address in the call dummy, so that `finish' after a stop | |
2351 | in a call dummy works. | |
2352 | Tweeking current_gdbarch is not an optimal solution, but the call to | |
2353 | sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy, | |
2354 | which is the only function where dummy_breakpoint_offset is actually | |
2355 | used, if it is non-zero. */ | |
2356 | if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT | |
2357 | || TYPE_CODE (value_type) == TYPE_CODE_UNION) | |
2358 | { | |
2359 | store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4, | |
2360 | TYPE_LENGTH (value_type) & 0x1fff); | |
2361 | set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30); | |
2362 | } | |
2363 | else | |
2364 | set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c); | |
c906108c | 2365 | |
5af923b0 | 2366 | if (!(GDB_TARGET_IS_SPARC64)) |
c906108c | 2367 | { |
5af923b0 MS |
2368 | /* If this is not a simulator target, change the first four |
2369 | instructions of the call dummy to NOPs. Those instructions | |
2370 | include a 'save' instruction and are designed to work around | |
2371 | problems with register window flushing in the simulator. */ | |
2372 | ||
2373 | if (strcmp (target_shortname, "sim") != 0) | |
2374 | { | |
2375 | for (i = 0; i < 4; i++) | |
2376 | store_unsigned_integer (dummy + (i * 4), 4, 0x01000000); | |
2377 | } | |
c906108c | 2378 | } |
c906108c SS |
2379 | |
2380 | /* If this is a bi-endian target, GDB has written the call dummy | |
2381 | in little-endian order. We must byte-swap it back to big-endian. */ | |
2382 | if (bi_endian) | |
2383 | { | |
2384 | for (i = 0; i < CALL_DUMMY_LENGTH; i += 4) | |
2385 | { | |
c5aa993b JM |
2386 | char tmp = dummy[i]; |
2387 | dummy[i] = dummy[i + 3]; | |
2388 | dummy[i + 3] = tmp; | |
2389 | tmp = dummy[i + 1]; | |
2390 | dummy[i + 1] = dummy[i + 2]; | |
2391 | dummy[i + 2] = tmp; | |
c906108c SS |
2392 | } |
2393 | } | |
2394 | } | |
2395 | ||
2396 | ||
2397 | /* Set target byte order based on machine type. */ | |
2398 | ||
2399 | static int | |
fba45db2 | 2400 | sparc_target_architecture_hook (const bfd_arch_info_type *ap) |
c906108c SS |
2401 | { |
2402 | int i, j; | |
2403 | ||
2404 | if (ap->mach == bfd_mach_sparc_sparclite_le) | |
2405 | { | |
3fd3d7d2 AC |
2406 | target_byte_order = BFD_ENDIAN_LITTLE; |
2407 | bi_endian = 1; | |
c906108c SS |
2408 | } |
2409 | else | |
2410 | bi_endian = 0; | |
2411 | return 1; | |
2412 | } | |
c906108c | 2413 | \f |
c5aa993b | 2414 | |
5af923b0 MS |
2415 | /* |
2416 | * Module "constructor" function. | |
2417 | */ | |
2418 | ||
2419 | static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info, | |
2420 | struct gdbarch_list *arches); | |
ef3cf062 | 2421 | static void sparc_dump_tdep (struct gdbarch *, struct ui_file *); |
5af923b0 | 2422 | |
c906108c | 2423 | void |
fba45db2 | 2424 | _initialize_sparc_tdep (void) |
c906108c | 2425 | { |
5af923b0 | 2426 | /* Hook us into the gdbarch mechanism. */ |
ef3cf062 | 2427 | gdbarch_register (bfd_arch_sparc, sparc_gdbarch_init, sparc_dump_tdep); |
5af923b0 | 2428 | |
c906108c | 2429 | tm_print_insn = gdb_print_insn_sparc; |
c5aa993b | 2430 | tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */ |
c906108c SS |
2431 | target_architecture_hook = sparc_target_architecture_hook; |
2432 | } | |
2433 | ||
5af923b0 MS |
2434 | /* Compensate for stack bias. Note that we currently don't handle |
2435 | mixed 32/64 bit code. */ | |
c906108c | 2436 | |
c906108c | 2437 | CORE_ADDR |
5af923b0 | 2438 | sparc64_read_sp (void) |
c906108c SS |
2439 | { |
2440 | CORE_ADDR sp = read_register (SP_REGNUM); | |
2441 | ||
2442 | if (sp & 1) | |
2443 | sp += 2047; | |
2444 | return sp; | |
2445 | } | |
2446 | ||
2447 | CORE_ADDR | |
5af923b0 | 2448 | sparc64_read_fp (void) |
c906108c SS |
2449 | { |
2450 | CORE_ADDR fp = read_register (FP_REGNUM); | |
2451 | ||
2452 | if (fp & 1) | |
2453 | fp += 2047; | |
2454 | return fp; | |
2455 | } | |
2456 | ||
2457 | void | |
fba45db2 | 2458 | sparc64_write_sp (CORE_ADDR val) |
c906108c SS |
2459 | { |
2460 | CORE_ADDR oldsp = read_register (SP_REGNUM); | |
2461 | if (oldsp & 1) | |
2462 | write_register (SP_REGNUM, val - 2047); | |
2463 | else | |
2464 | write_register (SP_REGNUM, val); | |
2465 | } | |
2466 | ||
5af923b0 MS |
2467 | /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31, |
2468 | and all other arguments in O0 to O5. They are also copied onto | |
2469 | the stack in the correct places. Apparently (empirically), | |
2470 | structs of less than 16 bytes are passed member-by-member in | |
2471 | separate registers, but I am unable to figure out the algorithm. | |
2472 | Some members go in floating point regs, but I don't know which. | |
2473 | ||
2474 | FIXME: Handle small structs (less than 16 bytes containing floats). | |
2475 | ||
2476 | The counting regimen for using both integer and FP registers | |
2477 | for argument passing is rather odd -- a single counter is used | |
2478 | for both; this means that if the arguments alternate between | |
2479 | int and float, we will waste every other register of both types. */ | |
c906108c SS |
2480 | |
2481 | CORE_ADDR | |
ea7c478f | 2482 | sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 2483 | int struct_return, CORE_ADDR struct_retaddr) |
c906108c | 2484 | { |
5af923b0 | 2485 | int i, j, register_counter = 0; |
c906108c | 2486 | CORE_ADDR tempsp; |
5af923b0 MS |
2487 | struct type *sparc_intreg_type = |
2488 | TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ? | |
2489 | builtin_type_long : builtin_type_long_long; | |
c5aa993b | 2490 | |
5af923b0 | 2491 | sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL)); |
c906108c SS |
2492 | |
2493 | /* Figure out how much space we'll need. */ | |
5af923b0 | 2494 | for (i = nargs - 1; i >= 0; i--) |
c906108c | 2495 | { |
5af923b0 | 2496 | int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i]))); |
ea7c478f | 2497 | struct value *copyarg = args[i]; |
c906108c SS |
2498 | int copylen = len; |
2499 | ||
5af923b0 | 2500 | if (copylen < SPARC_INTREG_SIZE) |
c906108c | 2501 | { |
5af923b0 MS |
2502 | copyarg = value_cast (sparc_intreg_type, copyarg); |
2503 | copylen = SPARC_INTREG_SIZE; | |
c5aa993b | 2504 | } |
c906108c SS |
2505 | sp -= copylen; |
2506 | } | |
2507 | ||
2508 | /* Round down. */ | |
2509 | sp = sp & ~7; | |
2510 | tempsp = sp; | |
2511 | ||
5af923b0 MS |
2512 | /* if STRUCT_RETURN, then first argument is the struct return location. */ |
2513 | if (struct_return) | |
2514 | write_register (O0_REGNUM + register_counter++, struct_retaddr); | |
2515 | ||
2516 | /* Now write the arguments onto the stack, while writing FP | |
2517 | arguments into the FP registers, and other arguments into the | |
2518 | first six 'O' registers. */ | |
2519 | ||
2520 | for (i = 0; i < nargs; i++) | |
c906108c | 2521 | { |
5af923b0 | 2522 | int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i]))); |
ea7c478f | 2523 | struct value *copyarg = args[i]; |
5af923b0 | 2524 | enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i])); |
c906108c SS |
2525 | int copylen = len; |
2526 | ||
5af923b0 MS |
2527 | if (typecode == TYPE_CODE_INT || |
2528 | typecode == TYPE_CODE_BOOL || | |
2529 | typecode == TYPE_CODE_CHAR || | |
2530 | typecode == TYPE_CODE_RANGE || | |
2531 | typecode == TYPE_CODE_ENUM) | |
2532 | if (len < SPARC_INTREG_SIZE) | |
2533 | { | |
2534 | /* Small ints will all take up the size of one intreg on | |
2535 | the stack. */ | |
2536 | copyarg = value_cast (sparc_intreg_type, copyarg); | |
2537 | copylen = SPARC_INTREG_SIZE; | |
2538 | } | |
2539 | ||
c906108c SS |
2540 | write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen); |
2541 | tempsp += copylen; | |
5af923b0 MS |
2542 | |
2543 | /* Corner case: Structs consisting of a single float member are floats. | |
2544 | * FIXME! I don't know about structs containing multiple floats! | |
2545 | * Structs containing mixed floats and ints are even more weird. | |
2546 | */ | |
2547 | ||
2548 | ||
2549 | ||
2550 | /* Separate float args from all other args. */ | |
2551 | if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
c906108c | 2552 | { |
5af923b0 MS |
2553 | if (register_counter < 16) |
2554 | { | |
2555 | /* This arg gets copied into a FP register. */ | |
2556 | int fpreg; | |
2557 | ||
2558 | switch (len) { | |
2559 | case 4: /* Single-precision (float) */ | |
2560 | fpreg = FP0_REGNUM + 2 * register_counter + 1; | |
2561 | register_counter += 1; | |
2562 | break; | |
2563 | case 8: /* Double-precision (double) */ | |
2564 | fpreg = FP0_REGNUM + 2 * register_counter; | |
2565 | register_counter += 1; | |
2566 | break; | |
2567 | case 16: /* Quad-precision (long double) */ | |
2568 | fpreg = FP0_REGNUM + 2 * register_counter; | |
2569 | register_counter += 2; | |
2570 | break; | |
93d56215 AC |
2571 | default: |
2572 | internal_error (__FILE__, __LINE__, "bad switch"); | |
5af923b0 | 2573 | } |
73937e03 AC |
2574 | deprecated_write_register_bytes (REGISTER_BYTE (fpreg), |
2575 | VALUE_CONTENTS (args[i]), | |
2576 | len); | |
5af923b0 | 2577 | } |
c906108c | 2578 | } |
5af923b0 MS |
2579 | else /* all other args go into the first six 'o' registers */ |
2580 | { | |
2581 | for (j = 0; | |
2582 | j < len && register_counter < 6; | |
2583 | j += SPARC_INTREG_SIZE) | |
2584 | { | |
2585 | int oreg = O0_REGNUM + register_counter; | |
2586 | ||
4caf0990 | 2587 | deprecated_write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j); |
5af923b0 MS |
2588 | register_counter += 1; |
2589 | } | |
2590 | } | |
c906108c SS |
2591 | } |
2592 | return sp; | |
2593 | } | |
2594 | ||
2595 | /* Values <= 32 bytes are returned in o0-o3 (floating-point values are | |
2596 | returned in f0-f3). */ | |
5af923b0 | 2597 | |
c906108c | 2598 | void |
fba45db2 KB |
2599 | sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf, |
2600 | int bitoffset) | |
c906108c SS |
2601 | { |
2602 | int typelen = TYPE_LENGTH (type); | |
2603 | int regsize = REGISTER_RAW_SIZE (O0_REGNUM); | |
2604 | ||
2605 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
2606 | { | |
c5aa993b | 2607 | memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen); |
c906108c SS |
2608 | return; |
2609 | } | |
2610 | ||
2611 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
2612 | || (TYPE_LENGTH (type) > 32)) | |
2613 | { | |
2614 | memcpy (valbuf, | |
c5aa993b | 2615 | ®buf[O0_REGNUM * regsize + |
c906108c SS |
2616 | (typelen >= regsize ? 0 : regsize - typelen)], |
2617 | typelen); | |
2618 | return; | |
2619 | } | |
2620 | else | |
2621 | { | |
2622 | char *o0 = ®buf[O0_REGNUM * regsize]; | |
2623 | char *f0 = ®buf[FP0_REGNUM * regsize]; | |
2624 | int x; | |
2625 | ||
2626 | for (x = 0; x < TYPE_NFIELDS (type); x++) | |
2627 | { | |
c5aa993b | 2628 | struct field *f = &TYPE_FIELDS (type)[x]; |
c906108c SS |
2629 | /* FIXME: We may need to handle static fields here. */ |
2630 | int whichreg = (f->loc.bitpos + bitoffset) / 32; | |
2631 | int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8; | |
2632 | int where = (f->loc.bitpos + bitoffset) / 8; | |
2633 | int size = TYPE_LENGTH (f->type); | |
2634 | int typecode = TYPE_CODE (f->type); | |
2635 | ||
2636 | if (typecode == TYPE_CODE_STRUCT) | |
2637 | { | |
5af923b0 MS |
2638 | sp64_extract_return_value (f->type, |
2639 | regbuf, | |
2640 | valbuf, | |
2641 | bitoffset + f->loc.bitpos); | |
c906108c | 2642 | } |
5af923b0 | 2643 | else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU) |
c906108c SS |
2644 | { |
2645 | memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size); | |
2646 | } | |
2647 | else | |
2648 | { | |
2649 | memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size); | |
2650 | } | |
2651 | } | |
2652 | } | |
2653 | } | |
2acceee2 | 2654 | |
5af923b0 MS |
2655 | extern void |
2656 | sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
2657 | { | |
2658 | sp64_extract_return_value (type, regbuf, valbuf, 0); | |
2659 | } | |
2660 | ||
2661 | extern void | |
2662 | sparclet_extract_return_value (struct type *type, | |
2663 | char *regbuf, | |
2664 | char *valbuf) | |
2665 | { | |
2666 | regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8; | |
2667 | if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM)) | |
2668 | regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type); | |
2669 | ||
2670 | memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type)); | |
2671 | } | |
2672 | ||
2673 | ||
2674 | extern CORE_ADDR | |
2675 | sparc32_stack_align (CORE_ADDR addr) | |
2676 | { | |
2677 | return ((addr + 7) & -8); | |
2678 | } | |
2679 | ||
2680 | extern CORE_ADDR | |
2681 | sparc64_stack_align (CORE_ADDR addr) | |
2682 | { | |
2683 | return ((addr + 15) & -16); | |
2684 | } | |
2685 | ||
2686 | extern void | |
2687 | sparc_print_extra_frame_info (struct frame_info *fi) | |
2688 | { | |
2689 | if (fi && fi->extra_info && fi->extra_info->flat) | |
2690 | printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n", | |
2691 | paddr_nz (fi->extra_info->pc_addr), | |
2692 | paddr_nz (fi->extra_info->fp_addr)); | |
2693 | } | |
2694 | ||
2695 | /* MULTI_ARCH support */ | |
2696 | ||
fa88f677 | 2697 | static const char * |
5af923b0 MS |
2698 | sparc32_register_name (int regno) |
2699 | { | |
2700 | static char *register_names[] = | |
2701 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2702 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2703 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2704 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2705 | ||
2706 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2707 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2708 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2709 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2710 | ||
2711 | "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" | |
2712 | }; | |
2713 | ||
2714 | if (regno < 0 || | |
2715 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2716 | return NULL; | |
2717 | else | |
2718 | return register_names[regno]; | |
2719 | } | |
2720 | ||
fa88f677 | 2721 | static const char * |
5af923b0 MS |
2722 | sparc64_register_name (int regno) |
2723 | { | |
2724 | static char *register_names[] = | |
2725 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2726 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2727 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2728 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2729 | ||
2730 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2731 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2732 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2733 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2734 | "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", | |
2735 | "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62", | |
2736 | ||
2737 | "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver", | |
2738 | "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc", | |
2739 | "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin", | |
2740 | "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23", | |
2741 | "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31", | |
2742 | /* These are here at the end to simplify removing them if we have to. */ | |
2743 | "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3" | |
2744 | }; | |
2745 | ||
2746 | if (regno < 0 || | |
2747 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2748 | return NULL; | |
2749 | else | |
2750 | return register_names[regno]; | |
2751 | } | |
2752 | ||
fa88f677 | 2753 | static const char * |
5af923b0 MS |
2754 | sparclite_register_name (int regno) |
2755 | { | |
2756 | static char *register_names[] = | |
2757 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2758 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2759 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2760 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2761 | ||
2762 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2763 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2764 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2765 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2766 | ||
2767 | "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr", | |
2768 | "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr" | |
2769 | }; | |
2770 | ||
2771 | if (regno < 0 || | |
2772 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2773 | return NULL; | |
2774 | else | |
2775 | return register_names[regno]; | |
2776 | } | |
2777 | ||
fa88f677 | 2778 | static const char * |
5af923b0 MS |
2779 | sparclet_register_name (int regno) |
2780 | { | |
2781 | static char *register_names[] = | |
2782 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2783 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2784 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2785 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2786 | ||
2787 | "", "", "", "", "", "", "", "", /* no floating point registers */ | |
2788 | "", "", "", "", "", "", "", "", | |
2789 | "", "", "", "", "", "", "", "", | |
2790 | "", "", "", "", "", "", "", "", | |
2791 | ||
2792 | "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */ | |
2793 | "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "", | |
2794 | ||
2795 | /* ASR15 ASR19 (don't display them) */ | |
2796 | "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22" | |
2797 | /* None of the rest get displayed */ | |
2798 | #if 0 | |
2799 | "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7", | |
2800 | "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15", | |
2801 | "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23", | |
2802 | "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31", | |
2803 | "apsr" | |
2804 | #endif /* 0 */ | |
2805 | }; | |
2806 | ||
2807 | if (regno < 0 || | |
2808 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2809 | return NULL; | |
2810 | else | |
2811 | return register_names[regno]; | |
2812 | } | |
2813 | ||
2814 | CORE_ADDR | |
2815 | sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp) | |
2816 | { | |
2817 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2818 | { | |
2819 | /* The return PC of the dummy_frame is the former 'current' PC | |
2820 | (where we were before we made the target function call). | |
2821 | This is saved in %i7 by push_dummy_frame. | |
2822 | ||
2823 | We will save the 'call dummy location' (ie. the address | |
2824 | to which the target function will return) in %o7. | |
2825 | This address will actually be the program's entry point. | |
2826 | There will be a special call_dummy breakpoint there. */ | |
2827 | ||
2828 | write_register (O7_REGNUM, | |
2829 | CALL_DUMMY_ADDRESS () - 8); | |
2830 | } | |
2831 | ||
2832 | return sp; | |
2833 | } | |
2834 | ||
2835 | /* Should call_function allocate stack space for a struct return? */ | |
2836 | ||
2837 | static int | |
2838 | sparc64_use_struct_convention (int gcc_p, struct type *type) | |
2839 | { | |
2840 | return (TYPE_LENGTH (type) > 32); | |
2841 | } | |
2842 | ||
2843 | /* Store the address of the place in which to copy the structure the | |
2844 | subroutine will return. This is called from call_function_by_hand. | |
2845 | The ultimate mystery is, tho, what is the value "16"? | |
2846 | ||
2847 | MVS: That's the offset from where the sp is now, to where the | |
2848 | subroutine is gonna expect to find the struct return address. */ | |
2849 | ||
2850 | static void | |
2851 | sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2852 | { | |
2853 | char *val; | |
2854 | CORE_ADDR o7; | |
2855 | ||
2856 | val = alloca (SPARC_INTREG_SIZE); | |
2857 | store_unsigned_integer (val, SPARC_INTREG_SIZE, addr); | |
2858 | write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE); | |
2859 | ||
2860 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2861 | { | |
2862 | /* Now adjust the value of the link register, which was previously | |
2863 | stored by push_return_address. Functions that return structs are | |
2864 | peculiar in that they return to link register + 12, rather than | |
2865 | link register + 8. */ | |
2866 | ||
2867 | o7 = read_register (O7_REGNUM); | |
2868 | write_register (O7_REGNUM, o7 - 4); | |
2869 | } | |
2870 | } | |
2871 | ||
2872 | static void | |
2873 | sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2874 | { | |
2875 | /* FIXME: V9 uses %o0 for this. */ | |
2876 | /* FIXME MVS: Only for small enough structs!!! */ | |
2acceee2 | 2877 | |
5af923b0 MS |
2878 | target_write_memory (sp + (16 * SPARC_INTREG_SIZE), |
2879 | (char *) &addr, SPARC_INTREG_SIZE); | |
2880 | #if 0 | |
2881 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2882 | { | |
2883 | /* Now adjust the value of the link register, which was previously | |
2884 | stored by push_return_address. Functions that return structs are | |
2885 | peculiar in that they return to link register + 12, rather than | |
2886 | link register + 8. */ | |
2887 | ||
2888 | write_register (O7_REGNUM, read_register (O7_REGNUM) - 4); | |
2889 | } | |
c906108c | 2890 | #endif |
5af923b0 MS |
2891 | } |
2892 | ||
2893 | /* Default target data type for register REGNO. */ | |
2894 | ||
2895 | static struct type * | |
2896 | sparc32_register_virtual_type (int regno) | |
2897 | { | |
2898 | if (regno == PC_REGNUM || | |
2899 | regno == FP_REGNUM || | |
2900 | regno == SP_REGNUM) | |
2901 | return builtin_type_unsigned_int; | |
2902 | if (regno < 32) | |
2903 | return builtin_type_int; | |
2904 | if (regno < 64) | |
2905 | return builtin_type_float; | |
2906 | return builtin_type_int; | |
2907 | } | |
2908 | ||
2909 | static struct type * | |
2910 | sparc64_register_virtual_type (int regno) | |
2911 | { | |
2912 | if (regno == PC_REGNUM || | |
2913 | regno == FP_REGNUM || | |
2914 | regno == SP_REGNUM) | |
2915 | return builtin_type_unsigned_long_long; | |
2916 | if (regno < 32) | |
2917 | return builtin_type_long_long; | |
2918 | if (regno < 64) | |
2919 | return builtin_type_float; | |
2920 | if (regno < 80) | |
2921 | return builtin_type_double; | |
2922 | return builtin_type_long_long; | |
2923 | } | |
2924 | ||
2925 | /* Number of bytes of storage in the actual machine representation for | |
2926 | register REGNO. */ | |
2927 | ||
2928 | static int | |
2929 | sparc32_register_size (int regno) | |
2930 | { | |
2931 | return 4; | |
2932 | } | |
2933 | ||
2934 | static int | |
2935 | sparc64_register_size (int regno) | |
2936 | { | |
2937 | return (regno < 32 ? 8 : regno < 64 ? 4 : 8); | |
2938 | } | |
2939 | ||
2940 | /* Index within the `registers' buffer of the first byte of the space | |
2941 | for register REGNO. */ | |
2942 | ||
2943 | static int | |
2944 | sparc32_register_byte (int regno) | |
2945 | { | |
2946 | return (regno * 4); | |
2947 | } | |
2948 | ||
2949 | static int | |
2950 | sparc64_register_byte (int regno) | |
2951 | { | |
2952 | if (regno < 32) | |
2953 | return regno * 8; | |
2954 | else if (regno < 64) | |
2955 | return 32 * 8 + (regno - 32) * 4; | |
2956 | else if (regno < 80) | |
2957 | return 32 * 8 + 32 * 4 + (regno - 64) * 8; | |
2958 | else | |
2959 | return 64 * 8 + (regno - 80) * 8; | |
2960 | } | |
2961 | ||
5af923b0 MS |
2962 | /* Immediately after a function call, return the saved pc. |
2963 | Can't go through the frames for this because on some machines | |
2964 | the new frame is not set up until the new function executes | |
2965 | some instructions. */ | |
2966 | ||
2967 | static CORE_ADDR | |
2968 | sparc_saved_pc_after_call (struct frame_info *fi) | |
2969 | { | |
2970 | return sparc_pc_adjust (read_register (RP_REGNUM)); | |
2971 | } | |
2972 | ||
2973 | /* Convert registers between 'raw' and 'virtual' formats. | |
2974 | They are the same on sparc, so there's nothing to do. */ | |
2975 | ||
2976 | static void | |
2977 | sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to) | |
2978 | { /* do nothing (should never be called) */ | |
2979 | } | |
2980 | ||
2981 | static void | |
2982 | sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to) | |
2983 | { /* do nothing (should never be called) */ | |
2984 | } | |
2985 | ||
2986 | /* Init saved regs: nothing to do, just a place-holder function. */ | |
2987 | ||
2988 | static void | |
2989 | sparc_frame_init_saved_regs (struct frame_info *fi_ignored) | |
2990 | { /* no-op */ | |
2991 | } | |
2992 | ||
5af923b0 MS |
2993 | /* gdbarch fix call dummy: |
2994 | All this function does is rearrange the arguments before calling | |
2995 | sparc_fix_call_dummy (which does the real work). */ | |
2996 | ||
2997 | static void | |
2998 | sparc_gdbarch_fix_call_dummy (char *dummy, | |
2999 | CORE_ADDR pc, | |
3000 | CORE_ADDR fun, | |
3001 | int nargs, | |
3002 | struct value **args, | |
3003 | struct type *type, | |
3004 | int gcc_p) | |
3005 | { | |
3006 | if (CALL_DUMMY_LOCATION == ON_STACK) | |
3007 | sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p); | |
3008 | } | |
3009 | ||
3010 | /* Coerce float to double: a no-op. */ | |
3011 | ||
3012 | static int | |
3013 | sparc_coerce_float_to_double (struct type *formal, struct type *actual) | |
3014 | { | |
3015 | return 1; | |
3016 | } | |
3017 | ||
3018 | /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */ | |
3019 | ||
3020 | static CORE_ADDR | |
3021 | sparc_call_dummy_address (void) | |
3022 | { | |
3023 | return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET; | |
3024 | } | |
3025 | ||
3026 | /* Supply the Y register number to those that need it. */ | |
3027 | ||
3028 | int | |
3029 | sparc_y_regnum (void) | |
3030 | { | |
3031 | return gdbarch_tdep (current_gdbarch)->y_regnum; | |
3032 | } | |
3033 | ||
3034 | int | |
3035 | sparc_reg_struct_has_addr (int gcc_p, struct type *type) | |
3036 | { | |
3037 | if (GDB_TARGET_IS_SPARC64) | |
3038 | return (TYPE_LENGTH (type) > 32); | |
3039 | else | |
3040 | return (gcc_p != 1); | |
3041 | } | |
3042 | ||
3043 | int | |
3044 | sparc_intreg_size (void) | |
3045 | { | |
3046 | return SPARC_INTREG_SIZE; | |
3047 | } | |
3048 | ||
3049 | static int | |
3050 | sparc_return_value_on_stack (struct type *type) | |
3051 | { | |
3052 | if (TYPE_CODE (type) == TYPE_CODE_FLT && | |
3053 | TYPE_LENGTH (type) > 8) | |
3054 | return 1; | |
3055 | else | |
3056 | return 0; | |
3057 | } | |
3058 | ||
3059 | /* | |
3060 | * Gdbarch "constructor" function. | |
3061 | */ | |
3062 | ||
3063 | #define SPARC32_CALL_DUMMY_ON_STACK | |
3064 | ||
3065 | #define SPARC_SP_REGNUM 14 | |
3066 | #define SPARC_FP_REGNUM 30 | |
3067 | #define SPARC_FP0_REGNUM 32 | |
3068 | #define SPARC32_NPC_REGNUM 69 | |
3069 | #define SPARC32_PC_REGNUM 68 | |
3070 | #define SPARC32_Y_REGNUM 64 | |
3071 | #define SPARC64_PC_REGNUM 80 | |
3072 | #define SPARC64_NPC_REGNUM 81 | |
3073 | #define SPARC64_Y_REGNUM 85 | |
3074 | ||
3075 | static struct gdbarch * | |
3076 | sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3077 | { | |
3078 | struct gdbarch *gdbarch; | |
3079 | struct gdbarch_tdep *tdep; | |
ef3cf062 | 3080 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
5af923b0 MS |
3081 | |
3082 | static LONGEST call_dummy_32[] = | |
3083 | { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003, | |
3084 | 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c, | |
3085 | 0xd203a048, 0x40000000, 0xd003a044, 0x01000000, | |
3086 | 0x91d02001, 0x01000000 | |
3087 | }; | |
3088 | static LONGEST call_dummy_64[] = | |
3089 | { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL, | |
3090 | 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL, | |
3091 | 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL, | |
3092 | 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL, | |
3093 | 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL, | |
3094 | 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL, | |
3095 | 0xf03fa73f01000000LL, 0x0100000001000000LL, | |
3096 | 0x0100000091580000LL, 0xd027a72b93500000LL, | |
3097 | 0xd027a72791480000LL, 0xd027a72391400000LL, | |
3098 | 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL, | |
3099 | 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL, | |
3100 | 0x0100000091d02001LL, 0x0100000001000000LL | |
3101 | }; | |
3102 | static LONGEST call_dummy_nil[] = {0}; | |
3103 | ||
ef3cf062 JT |
3104 | /* Try to determine the OS ABI of the object we are loading. */ |
3105 | ||
3106 | if (info.abfd != NULL) | |
3107 | { | |
3108 | osabi = gdbarch_lookup_osabi (info.abfd); | |
3109 | if (osabi == GDB_OSABI_UNKNOWN) | |
3110 | { | |
3111 | /* If it's an ELF file, assume it's Solaris. */ | |
3112 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
3113 | osabi = GDB_OSABI_SOLARIS; | |
3114 | } | |
3115 | } | |
3116 | ||
5af923b0 | 3117 | /* First see if there is already a gdbarch that can satisfy the request. */ |
ef3cf062 JT |
3118 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
3119 | arches != NULL; | |
3120 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
3121 | { | |
3122 | /* Make sure the ABI selection matches. */ | |
3123 | tdep = gdbarch_tdep (arches->gdbarch); | |
3124 | if (tdep && tdep->osabi == osabi) | |
3125 | return arches->gdbarch; | |
3126 | } | |
5af923b0 MS |
3127 | |
3128 | /* None found: is the request for a sparc architecture? */ | |
aca21d9a | 3129 | if (info.bfd_arch_info->arch != bfd_arch_sparc) |
5af923b0 MS |
3130 | return NULL; /* No; then it's not for us. */ |
3131 | ||
3132 | /* Yes: create a new gdbarch for the specified machine type. */ | |
3133 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
3134 | gdbarch = gdbarch_alloc (&info, tdep); | |
3135 | ||
ef3cf062 JT |
3136 | tdep->osabi = osabi; |
3137 | ||
5af923b0 MS |
3138 | /* First set settings that are common for all sparc architectures. */ |
3139 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
3140 | set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc); | |
3141 | set_gdbarch_coerce_float_to_double (gdbarch, | |
3142 | sparc_coerce_float_to_double); | |
3143 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
3144 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
3145 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1); | |
3146 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
3147 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
26e9b323 | 3148 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sparc_extract_struct_value_address); |
5af923b0 MS |
3149 | set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy); |
3150 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3151 | set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM); | |
3152 | set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM); | |
5af923b0 MS |
3153 | set_gdbarch_frame_chain (gdbarch, sparc_frame_chain); |
3154 | set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs); | |
5af923b0 MS |
3155 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); |
3156 | set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc); | |
3157 | set_gdbarch_frameless_function_invocation (gdbarch, | |
3158 | frameless_look_for_prologue); | |
3159 | set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register); | |
5af923b0 MS |
3160 | set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info); |
3161 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
3162 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3163 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
3164 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3165 | set_gdbarch_max_register_raw_size (gdbarch, 8); | |
3166 | set_gdbarch_max_register_virtual_size (gdbarch, 8); | |
5af923b0 MS |
3167 | set_gdbarch_pop_frame (gdbarch, sparc_pop_frame); |
3168 | set_gdbarch_push_return_address (gdbarch, sparc_push_return_address); | |
3169 | set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame); | |
3170 | set_gdbarch_read_pc (gdbarch, generic_target_read_pc); | |
3171 | set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw); | |
3172 | set_gdbarch_register_convert_to_virtual (gdbarch, | |
3173 | sparc_convert_to_virtual); | |
3174 | set_gdbarch_register_convertible (gdbarch, | |
3175 | generic_register_convertible_not); | |
3176 | set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr); | |
3177 | set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack); | |
3178 | set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call); | |
9319a2fe | 3179 | set_gdbarch_prologue_frameless_p (gdbarch, sparc_prologue_frameless_p); |
5af923b0 | 3180 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
f510d44e | 3181 | set_gdbarch_skip_prologue (gdbarch, sparc_skip_prologue); |
5af923b0 | 3182 | set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); |
07555a72 | 3183 | set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0); |
5af923b0 MS |
3184 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); |
3185 | ||
3186 | /* | |
3187 | * Settings that depend only on 32/64 bit word size | |
3188 | */ | |
3189 | ||
3190 | switch (info.bfd_arch_info->mach) | |
3191 | { | |
3192 | case bfd_mach_sparc: | |
3193 | case bfd_mach_sparc_sparclet: | |
3194 | case bfd_mach_sparc_sparclite: | |
3195 | case bfd_mach_sparc_v8plus: | |
3196 | case bfd_mach_sparc_v8plusa: | |
3197 | case bfd_mach_sparc_sparclite_le: | |
3198 | /* 32-bit machine types: */ | |
3199 | ||
3200 | #ifdef SPARC32_CALL_DUMMY_ON_STACK | |
ae45cd16 | 3201 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack); |
5af923b0 MS |
3202 | set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address); |
3203 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30); | |
3204 | set_gdbarch_call_dummy_length (gdbarch, 0x38); | |
7e57f5f4 AC |
3205 | |
3206 | /* NOTE: cagney/2002-04-26: Based from info posted by Peter | |
3207 | Schauer around Oct '99. Briefly, due to aspects of the SPARC | |
3208 | ABI, it isn't possible to use ON_STACK with a strictly | |
3209 | compliant compiler. | |
3210 | ||
3211 | Peter Schauer writes ... | |
3212 | ||
3213 | No, any call from GDB to a user function returning a | |
3214 | struct/union will fail miserably. Try this: | |
3215 | ||
3216 | *NOINDENT* | |
3217 | struct x | |
3218 | { | |
3219 | int a[4]; | |
3220 | }; | |
3221 | ||
3222 | struct x gx; | |
3223 | ||
3224 | struct x | |
3225 | sret () | |
3226 | { | |
3227 | return gx; | |
3228 | } | |
3229 | ||
3230 | main () | |
3231 | { | |
3232 | int i; | |
3233 | for (i = 0; i < 4; i++) | |
3234 | gx.a[i] = i + 1; | |
3235 | gx = sret (); | |
3236 | } | |
3237 | *INDENT* | |
3238 | ||
3239 | Set a breakpoint at the gx = sret () statement, run to it and | |
3240 | issue a `print sret()'. It will not succed with your | |
3241 | approach, and I doubt that continuing the program will work | |
3242 | as well. | |
3243 | ||
3244 | For details of the ABI see the Sparc Architecture Manual. I | |
3245 | have Version 8 (Prentice Hall ISBN 0-13-825001-4) and the | |
3246 | calling conventions for functions returning aggregate values | |
3247 | are explained in Appendix D.3. */ | |
3248 | ||
5af923b0 MS |
3249 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); |
3250 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_32); | |
3251 | #else | |
ae45cd16 | 3252 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point); |
5af923b0 MS |
3253 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); |
3254 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
3255 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
5af923b0 MS |
3256 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil); |
3257 | #endif | |
3258 | set_gdbarch_call_dummy_stack_adjust (gdbarch, 68); | |
3259 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
3260 | set_gdbarch_frame_args_skip (gdbarch, 68); | |
3261 | set_gdbarch_function_start_offset (gdbarch, 0); | |
3262 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3263 | set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM); | |
3264 | set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); | |
3265 | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3266 | set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments); | |
3267 | set_gdbarch_read_fp (gdbarch, generic_target_read_fp); | |
3268 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); | |
3269 | ||
3270 | set_gdbarch_register_byte (gdbarch, sparc32_register_byte); | |
3271 | set_gdbarch_register_raw_size (gdbarch, sparc32_register_size); | |
3272 | set_gdbarch_register_size (gdbarch, 4); | |
3273 | set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size); | |
3274 | set_gdbarch_register_virtual_type (gdbarch, | |
3275 | sparc32_register_virtual_type); | |
3276 | #ifdef SPARC32_CALL_DUMMY_ON_STACK | |
3277 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32)); | |
3278 | #else | |
3279 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
3280 | #endif | |
3281 | set_gdbarch_stack_align (gdbarch, sparc32_stack_align); | |
3282 | set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return); | |
3283 | set_gdbarch_use_struct_convention (gdbarch, | |
3284 | generic_use_struct_convention); | |
5af923b0 MS |
3285 | set_gdbarch_write_sp (gdbarch, generic_target_write_sp); |
3286 | tdep->y_regnum = SPARC32_Y_REGNUM; | |
3287 | tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32; | |
3288 | tdep->intreg_size = 4; | |
3289 | tdep->reg_save_offset = 0x60; | |
3290 | tdep->call_dummy_call_offset = 0x24; | |
3291 | break; | |
3292 | ||
3293 | case bfd_mach_sparc_v9: | |
3294 | case bfd_mach_sparc_v9a: | |
3295 | /* 64-bit machine types: */ | |
3296 | default: /* Any new machine type is likely to be 64-bit. */ | |
3297 | ||
3298 | #ifdef SPARC64_CALL_DUMMY_ON_STACK | |
ae45cd16 | 3299 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack); |
5af923b0 MS |
3300 | set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address); |
3301 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4); | |
3302 | set_gdbarch_call_dummy_length (gdbarch, 192); | |
3303 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
3304 | set_gdbarch_call_dummy_start_offset (gdbarch, 148); | |
3305 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_64); | |
3306 | #else | |
ae45cd16 | 3307 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point); |
5af923b0 MS |
3308 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); |
3309 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
3310 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
5af923b0 MS |
3311 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); |
3312 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil); | |
3313 | #endif | |
3314 | set_gdbarch_call_dummy_stack_adjust (gdbarch, 128); | |
3315 | set_gdbarch_frame_args_skip (gdbarch, 136); | |
3316 | set_gdbarch_function_start_offset (gdbarch, 0); | |
3317 | set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3318 | set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM); | |
3319 | set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); | |
3320 | set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3321 | set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments); | |
3322 | /* NOTE different for at_entry */ | |
3323 | set_gdbarch_read_fp (gdbarch, sparc64_read_fp); | |
3324 | set_gdbarch_read_sp (gdbarch, sparc64_read_sp); | |
3325 | /* Some of the registers aren't 64 bits, but it's a lot simpler just | |
3326 | to assume they all are (since most of them are). */ | |
3327 | set_gdbarch_register_byte (gdbarch, sparc64_register_byte); | |
3328 | set_gdbarch_register_raw_size (gdbarch, sparc64_register_size); | |
3329 | set_gdbarch_register_size (gdbarch, 8); | |
3330 | set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size); | |
3331 | set_gdbarch_register_virtual_type (gdbarch, | |
3332 | sparc64_register_virtual_type); | |
3333 | #ifdef SPARC64_CALL_DUMMY_ON_STACK | |
3334 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64)); | |
3335 | #else | |
3336 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
3337 | #endif | |
3338 | set_gdbarch_stack_align (gdbarch, sparc64_stack_align); | |
3339 | set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return); | |
3340 | set_gdbarch_use_struct_convention (gdbarch, | |
3341 | sparc64_use_struct_convention); | |
5af923b0 MS |
3342 | set_gdbarch_write_sp (gdbarch, sparc64_write_sp); |
3343 | tdep->y_regnum = SPARC64_Y_REGNUM; | |
3344 | tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48; | |
3345 | tdep->intreg_size = 8; | |
3346 | tdep->reg_save_offset = 0x90; | |
3347 | tdep->call_dummy_call_offset = 148 + 4 * 5; | |
3348 | break; | |
3349 | } | |
3350 | ||
3351 | /* | |
3352 | * Settings that vary per-architecture: | |
3353 | */ | |
3354 | ||
3355 | switch (info.bfd_arch_info->mach) | |
3356 | { | |
3357 | case bfd_mach_sparc: | |
26e9b323 | 3358 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); |
5af923b0 MS |
3359 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
3360 | set_gdbarch_num_regs (gdbarch, 72); | |
3361 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3362 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
ebba8386 | 3363 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
5af923b0 MS |
3364 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ |
3365 | tdep->fp_register_bytes = 32 * 4; | |
3366 | tdep->print_insn_mach = bfd_mach_sparc; | |
3367 | break; | |
3368 | case bfd_mach_sparc_sparclet: | |
26e9b323 | 3369 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparclet_extract_return_value); |
5af923b0 MS |
3370 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
3371 | set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8); | |
3372 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4); | |
3373 | set_gdbarch_register_name (gdbarch, sparclet_register_name); | |
ebba8386 | 3374 | set_gdbarch_deprecated_store_return_value (gdbarch, sparclet_store_return_value); |
5af923b0 MS |
3375 | tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ |
3376 | tdep->fp_register_bytes = 0; | |
3377 | tdep->print_insn_mach = bfd_mach_sparc_sparclet; | |
3378 | break; | |
3379 | case bfd_mach_sparc_sparclite: | |
26e9b323 | 3380 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); |
5af923b0 MS |
3381 | set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); |
3382 | set_gdbarch_num_regs (gdbarch, 80); | |
3383 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4); | |
3384 | set_gdbarch_register_name (gdbarch, sparclite_register_name); | |
ebba8386 | 3385 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
5af923b0 MS |
3386 | tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ |
3387 | tdep->fp_register_bytes = 0; | |
3388 | tdep->print_insn_mach = bfd_mach_sparc_sparclite; | |
3389 | break; | |
3390 | case bfd_mach_sparc_v8plus: | |
26e9b323 | 3391 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); |
5af923b0 MS |
3392 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
3393 | set_gdbarch_num_regs (gdbarch, 72); | |
3394 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3395 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
ebba8386 | 3396 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
5af923b0 MS |
3397 | tdep->print_insn_mach = bfd_mach_sparc; |
3398 | tdep->fp_register_bytes = 32 * 4; | |
3399 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3400 | break; | |
3401 | case bfd_mach_sparc_v8plusa: | |
26e9b323 | 3402 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); |
5af923b0 MS |
3403 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
3404 | set_gdbarch_num_regs (gdbarch, 72); | |
3405 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3406 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
ebba8386 | 3407 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
5af923b0 MS |
3408 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ |
3409 | tdep->fp_register_bytes = 32 * 4; | |
3410 | tdep->print_insn_mach = bfd_mach_sparc; | |
3411 | break; | |
3412 | case bfd_mach_sparc_sparclite_le: | |
26e9b323 | 3413 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value); |
5af923b0 MS |
3414 | set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); |
3415 | set_gdbarch_num_regs (gdbarch, 80); | |
3416 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4); | |
3417 | set_gdbarch_register_name (gdbarch, sparclite_register_name); | |
ebba8386 | 3418 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
5af923b0 MS |
3419 | tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ |
3420 | tdep->fp_register_bytes = 0; | |
3421 | tdep->print_insn_mach = bfd_mach_sparc_sparclite; | |
3422 | break; | |
3423 | case bfd_mach_sparc_v9: | |
26e9b323 | 3424 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value); |
5af923b0 MS |
3425 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
3426 | set_gdbarch_num_regs (gdbarch, 125); | |
3427 | set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8); | |
3428 | set_gdbarch_register_name (gdbarch, sparc64_register_name); | |
ebba8386 | 3429 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
5af923b0 MS |
3430 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ |
3431 | tdep->fp_register_bytes = 64 * 4; | |
3432 | tdep->print_insn_mach = bfd_mach_sparc_v9a; | |
3433 | break; | |
3434 | case bfd_mach_sparc_v9a: | |
26e9b323 | 3435 | set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value); |
5af923b0 MS |
3436 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
3437 | set_gdbarch_num_regs (gdbarch, 125); | |
3438 | set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8); | |
3439 | set_gdbarch_register_name (gdbarch, sparc64_register_name); | |
ebba8386 | 3440 | set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value); |
5af923b0 MS |
3441 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ |
3442 | tdep->fp_register_bytes = 64 * 4; | |
3443 | tdep->print_insn_mach = bfd_mach_sparc_v9a; | |
3444 | break; | |
3445 | } | |
3446 | ||
ef3cf062 JT |
3447 | /* Hook in OS ABI-specific overrides, if they have been registered. */ |
3448 | gdbarch_init_osabi (info, gdbarch, osabi); | |
3449 | ||
5af923b0 MS |
3450 | return gdbarch; |
3451 | } | |
3452 | ||
ef3cf062 JT |
3453 | static void |
3454 | sparc_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
3455 | { | |
3456 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3457 | ||
3458 | if (tdep == NULL) | |
3459 | return; | |
3460 | ||
3461 | fprintf_unfiltered (file, "sparc_dump_tdep: OS ABI = %s\n", | |
3462 | gdbarch_osabi_name (tdep->osabi)); | |
3463 | } |