]>
Commit | Line | Data |
---|---|---|
7cc19214 AC |
1 | /* Get info from stack frames; convert between frames, blocks, |
2 | functions and pc values. | |
3 | ||
4 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, | |
5 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software | |
6 | Foundation, Inc. | |
c906108c | 7 | |
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, | |
23 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
24 | |
25 | #include "defs.h" | |
26 | #include "symtab.h" | |
27 | #include "bfd.h" | |
28 | #include "symfile.h" | |
29 | #include "objfiles.h" | |
30 | #include "frame.h" | |
31 | #include "gdbcore.h" | |
32 | #include "value.h" /* for read_register */ | |
33 | #include "target.h" /* for target_has_stack */ | |
34 | #include "inferior.h" /* for read_pc */ | |
35 | #include "annotate.h" | |
4e052eda | 36 | #include "regcache.h" |
c906108c SS |
37 | |
38 | /* Prototypes for exported functions. */ | |
39 | ||
53a5351d | 40 | void _initialize_blockframe (void); |
c906108c SS |
41 | |
42 | /* A default FRAME_CHAIN_VALID, in the form that is suitable for most | |
43 | targets. If FRAME_CHAIN_VALID returns zero it means that the given | |
44 | frame is the outermost one and has no caller. */ | |
45 | ||
46 | int | |
fba45db2 | 47 | file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
48 | { |
49 | return ((chain) != 0 | |
c4093a6a | 50 | && !inside_entry_file (FRAME_SAVED_PC (thisframe))); |
c906108c SS |
51 | } |
52 | ||
53 | /* Use the alternate method of avoiding running up off the end of the | |
54 | frame chain or following frames back into the startup code. See | |
55 | the comments in objfiles.h. */ | |
c5aa993b | 56 | |
c906108c | 57 | int |
fba45db2 | 58 | func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
59 | { |
60 | return ((chain) != 0 | |
c4093a6a JM |
61 | && !inside_main_func ((thisframe)->pc) |
62 | && !inside_entry_func ((thisframe)->pc)); | |
c906108c SS |
63 | } |
64 | ||
65 | /* A very simple method of determining a valid frame */ | |
c5aa993b | 66 | |
c906108c | 67 | int |
fba45db2 | 68 | nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
69 | { |
70 | return ((chain) != 0); | |
71 | } | |
72 | ||
73 | /* Is ADDR inside the startup file? Note that if your machine | |
74 | has a way to detect the bottom of the stack, there is no need | |
75 | to call this function from FRAME_CHAIN_VALID; the reason for | |
76 | doing so is that some machines have no way of detecting bottom | |
77 | of stack. | |
78 | ||
79 | A PC of zero is always considered to be the bottom of the stack. */ | |
80 | ||
81 | int | |
fba45db2 | 82 | inside_entry_file (CORE_ADDR addr) |
c906108c SS |
83 | { |
84 | if (addr == 0) | |
85 | return 1; | |
86 | if (symfile_objfile == 0) | |
87 | return 0; | |
7a292a7a SS |
88 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
89 | { | |
90 | /* Do not stop backtracing if the pc is in the call dummy | |
c5aa993b | 91 | at the entry point. */ |
7a292a7a | 92 | /* FIXME: Won't always work with zeros for the last two arguments */ |
c5aa993b | 93 | if (PC_IN_CALL_DUMMY (addr, 0, 0)) |
7a292a7a SS |
94 | return 0; |
95 | } | |
c5aa993b JM |
96 | return (addr >= symfile_objfile->ei.entry_file_lowpc && |
97 | addr < symfile_objfile->ei.entry_file_highpc); | |
c906108c SS |
98 | } |
99 | ||
100 | /* Test a specified PC value to see if it is in the range of addresses | |
101 | that correspond to the main() function. See comments above for why | |
102 | we might want to do this. | |
103 | ||
104 | Typically called from FRAME_CHAIN_VALID. | |
105 | ||
106 | A PC of zero is always considered to be the bottom of the stack. */ | |
107 | ||
108 | int | |
fba45db2 | 109 | inside_main_func (CORE_ADDR pc) |
c906108c SS |
110 | { |
111 | if (pc == 0) | |
112 | return 1; | |
113 | if (symfile_objfile == 0) | |
114 | return 0; | |
115 | ||
116 | /* If the addr range is not set up at symbol reading time, set it up now. | |
117 | This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because | |
118 | it is unable to set it up and symbol reading time. */ | |
119 | ||
c5aa993b JM |
120 | if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC && |
121 | symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC) | |
c906108c SS |
122 | { |
123 | struct symbol *mainsym; | |
124 | ||
51cc5b07 | 125 | mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL); |
c5aa993b JM |
126 | if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK) |
127 | { | |
128 | symfile_objfile->ei.main_func_lowpc = | |
c906108c | 129 | BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym)); |
c5aa993b | 130 | symfile_objfile->ei.main_func_highpc = |
c906108c | 131 | BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym)); |
c5aa993b | 132 | } |
c906108c | 133 | } |
c5aa993b JM |
134 | return (symfile_objfile->ei.main_func_lowpc <= pc && |
135 | symfile_objfile->ei.main_func_highpc > pc); | |
c906108c SS |
136 | } |
137 | ||
138 | /* Test a specified PC value to see if it is in the range of addresses | |
139 | that correspond to the process entry point function. See comments | |
140 | in objfiles.h for why we might want to do this. | |
141 | ||
142 | Typically called from FRAME_CHAIN_VALID. | |
143 | ||
144 | A PC of zero is always considered to be the bottom of the stack. */ | |
145 | ||
146 | int | |
fba45db2 | 147 | inside_entry_func (CORE_ADDR pc) |
c906108c SS |
148 | { |
149 | if (pc == 0) | |
150 | return 1; | |
151 | if (symfile_objfile == 0) | |
152 | return 0; | |
7a292a7a SS |
153 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
154 | { | |
155 | /* Do not stop backtracing if the pc is in the call dummy | |
c5aa993b | 156 | at the entry point. */ |
7a292a7a SS |
157 | /* FIXME: Won't always work with zeros for the last two arguments */ |
158 | if (PC_IN_CALL_DUMMY (pc, 0, 0)) | |
159 | return 0; | |
160 | } | |
c5aa993b JM |
161 | return (symfile_objfile->ei.entry_func_lowpc <= pc && |
162 | symfile_objfile->ei.entry_func_highpc > pc); | |
c906108c SS |
163 | } |
164 | ||
165 | /* Info about the innermost stack frame (contents of FP register) */ | |
166 | ||
167 | static struct frame_info *current_frame; | |
168 | ||
169 | /* Cache for frame addresses already read by gdb. Valid only while | |
170 | inferior is stopped. Control variables for the frame cache should | |
171 | be local to this module. */ | |
172 | ||
173 | static struct obstack frame_cache_obstack; | |
174 | ||
175 | void * | |
fba45db2 | 176 | frame_obstack_alloc (unsigned long size) |
c906108c SS |
177 | { |
178 | return obstack_alloc (&frame_cache_obstack, size); | |
179 | } | |
180 | ||
181 | void | |
fba45db2 | 182 | frame_saved_regs_zalloc (struct frame_info *fi) |
c906108c | 183 | { |
c5aa993b | 184 | fi->saved_regs = (CORE_ADDR *) |
c906108c SS |
185 | frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); |
186 | memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); | |
187 | } | |
188 | ||
189 | ||
190 | /* Return the innermost (currently executing) stack frame. */ | |
191 | ||
192 | struct frame_info * | |
fba45db2 | 193 | get_current_frame (void) |
c906108c SS |
194 | { |
195 | if (current_frame == NULL) | |
196 | { | |
197 | if (target_has_stack) | |
198 | current_frame = create_new_frame (read_fp (), read_pc ()); | |
199 | else | |
200 | error ("No stack."); | |
201 | } | |
202 | return current_frame; | |
203 | } | |
204 | ||
205 | void | |
fba45db2 | 206 | set_current_frame (struct frame_info *frame) |
c906108c SS |
207 | { |
208 | current_frame = frame; | |
209 | } | |
210 | ||
211 | /* Create an arbitrary (i.e. address specified by user) or innermost frame. | |
212 | Always returns a non-NULL value. */ | |
213 | ||
214 | struct frame_info * | |
fba45db2 | 215 | create_new_frame (CORE_ADDR addr, CORE_ADDR pc) |
c906108c SS |
216 | { |
217 | struct frame_info *fi; | |
218 | char *name; | |
219 | ||
220 | fi = (struct frame_info *) | |
221 | obstack_alloc (&frame_cache_obstack, | |
222 | sizeof (struct frame_info)); | |
223 | ||
736d0890 MS |
224 | /* Zero all fields by default. */ |
225 | memset (fi, 0, sizeof (struct frame_info)); | |
226 | ||
c906108c SS |
227 | fi->frame = addr; |
228 | fi->pc = pc; | |
c5aa993b | 229 | find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); |
c906108c SS |
230 | fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name); |
231 | ||
5fdff426 AC |
232 | if (INIT_EXTRA_FRAME_INFO_P ()) |
233 | INIT_EXTRA_FRAME_INFO (0, fi); | |
c906108c SS |
234 | |
235 | return fi; | |
236 | } | |
237 | ||
c906108c SS |
238 | /* Return the frame that FRAME calls (NULL if FRAME is the innermost |
239 | frame). */ | |
240 | ||
241 | struct frame_info * | |
fba45db2 | 242 | get_next_frame (struct frame_info *frame) |
c906108c SS |
243 | { |
244 | return frame->next; | |
245 | } | |
246 | ||
247 | /* Flush the entire frame cache. */ | |
248 | ||
249 | void | |
fba45db2 | 250 | flush_cached_frames (void) |
c906108c SS |
251 | { |
252 | /* Since we can't really be sure what the first object allocated was */ | |
253 | obstack_free (&frame_cache_obstack, 0); | |
254 | obstack_init (&frame_cache_obstack); | |
255 | ||
c5aa993b | 256 | current_frame = NULL; /* Invalidate cache */ |
c906108c SS |
257 | select_frame (NULL, -1); |
258 | annotate_frames_invalid (); | |
259 | } | |
260 | ||
261 | /* Flush the frame cache, and start a new one if necessary. */ | |
262 | ||
263 | void | |
fba45db2 | 264 | reinit_frame_cache (void) |
c906108c SS |
265 | { |
266 | flush_cached_frames (); | |
267 | ||
39f77062 KB |
268 | /* FIXME: The inferior_ptid test is wrong if there is a corefile. */ |
269 | if (PIDGET (inferior_ptid) != 0) | |
c906108c SS |
270 | { |
271 | select_frame (get_current_frame (), 0); | |
272 | } | |
273 | } | |
274 | ||
c906108c SS |
275 | /* Return nonzero if the function for this frame lacks a prologue. Many |
276 | machines can define FRAMELESS_FUNCTION_INVOCATION to just call this | |
277 | function. */ | |
278 | ||
279 | int | |
fba45db2 | 280 | frameless_look_for_prologue (struct frame_info *frame) |
c906108c SS |
281 | { |
282 | CORE_ADDR func_start, after_prologue; | |
53a5351d | 283 | |
c906108c SS |
284 | func_start = get_pc_function_start (frame->pc); |
285 | if (func_start) | |
286 | { | |
287 | func_start += FUNCTION_START_OFFSET; | |
53a5351d JM |
288 | /* This is faster, since only care whether there *is* a |
289 | prologue, not how long it is. */ | |
dad41f9a | 290 | return PROLOGUE_FRAMELESS_P (func_start); |
c906108c SS |
291 | } |
292 | else if (frame->pc == 0) | |
53a5351d JM |
293 | /* A frame with a zero PC is usually created by dereferencing a |
294 | NULL function pointer, normally causing an immediate core dump | |
295 | of the inferior. Mark function as frameless, as the inferior | |
296 | has no chance of setting up a stack frame. */ | |
c906108c SS |
297 | return 1; |
298 | else | |
299 | /* If we can't find the start of the function, we don't really | |
300 | know whether the function is frameless, but we should be able | |
301 | to get a reasonable (i.e. best we can do under the | |
302 | circumstances) backtrace by saying that it isn't. */ | |
303 | return 0; | |
304 | } | |
305 | ||
306 | /* Default a few macros that people seldom redefine. */ | |
307 | ||
c906108c SS |
308 | #ifndef FRAME_CHAIN_COMBINE |
309 | #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) | |
310 | #endif | |
311 | ||
312 | /* Return a structure containing various interesting information | |
313 | about the frame that called NEXT_FRAME. Returns NULL | |
314 | if there is no such frame. */ | |
315 | ||
316 | struct frame_info * | |
fba45db2 | 317 | get_prev_frame (struct frame_info *next_frame) |
c906108c SS |
318 | { |
319 | CORE_ADDR address = 0; | |
320 | struct frame_info *prev; | |
321 | int fromleaf = 0; | |
322 | char *name; | |
323 | ||
324 | /* If the requested entry is in the cache, return it. | |
325 | Otherwise, figure out what the address should be for the entry | |
326 | we're about to add to the cache. */ | |
327 | ||
328 | if (!next_frame) | |
329 | { | |
330 | #if 0 | |
331 | /* This screws value_of_variable, which just wants a nice clean | |
c5aa993b JM |
332 | NULL return from block_innermost_frame if there are no frames. |
333 | I don't think I've ever seen this message happen otherwise. | |
334 | And returning NULL here is a perfectly legitimate thing to do. */ | |
c906108c SS |
335 | if (!current_frame) |
336 | { | |
337 | error ("You haven't set up a process's stack to examine."); | |
338 | } | |
339 | #endif | |
340 | ||
341 | return current_frame; | |
342 | } | |
343 | ||
344 | /* If we have the prev one, return it */ | |
345 | if (next_frame->prev) | |
346 | return next_frame->prev; | |
347 | ||
348 | /* On some machines it is possible to call a function without | |
349 | setting up a stack frame for it. On these machines, we | |
350 | define this macro to take two args; a frameinfo pointer | |
351 | identifying a frame and a variable to set or clear if it is | |
352 | or isn't leafless. */ | |
392a587b | 353 | |
c906108c SS |
354 | /* Still don't want to worry about this except on the innermost |
355 | frame. This macro will set FROMLEAF if NEXT_FRAME is a | |
356 | frameless function invocation. */ | |
357 | if (!(next_frame->next)) | |
358 | { | |
392a587b | 359 | fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame); |
c906108c SS |
360 | if (fromleaf) |
361 | address = FRAME_FP (next_frame); | |
362 | } | |
c906108c SS |
363 | |
364 | if (!fromleaf) | |
365 | { | |
366 | /* Two macros defined in tm.h specify the machine-dependent | |
c5aa993b JM |
367 | actions to be performed here. |
368 | First, get the frame's chain-pointer. | |
369 | If that is zero, the frame is the outermost frame or a leaf | |
370 | called by the outermost frame. This means that if start | |
371 | calls main without a frame, we'll return 0 (which is fine | |
372 | anyway). | |
373 | ||
374 | Nope; there's a problem. This also returns when the current | |
375 | routine is a leaf of main. This is unacceptable. We move | |
376 | this to after the ffi test; I'd rather have backtraces from | |
377 | start go curfluy than have an abort called from main not show | |
378 | main. */ | |
c906108c SS |
379 | address = FRAME_CHAIN (next_frame); |
380 | if (!FRAME_CHAIN_VALID (address, next_frame)) | |
381 | return 0; | |
382 | address = FRAME_CHAIN_COMBINE (address, next_frame); | |
383 | } | |
384 | if (address == 0) | |
385 | return 0; | |
386 | ||
387 | prev = (struct frame_info *) | |
388 | obstack_alloc (&frame_cache_obstack, | |
389 | sizeof (struct frame_info)); | |
390 | ||
bb30608f | 391 | /* Zero all fields by default. */ |
0c8053b6 | 392 | memset (prev, 0, sizeof (struct frame_info)); |
bb30608f | 393 | |
c906108c SS |
394 | if (next_frame) |
395 | next_frame->prev = prev; | |
396 | prev->next = next_frame; | |
c906108c | 397 | prev->frame = address; |
7cc19214 | 398 | prev->level = next_frame->level + 1; |
c906108c SS |
399 | |
400 | /* This change should not be needed, FIXME! We should | |
401 | determine whether any targets *need* INIT_FRAME_PC to happen | |
402 | after INIT_EXTRA_FRAME_INFO and come up with a simple way to | |
403 | express what goes on here. | |
404 | ||
c5aa993b JM |
405 | INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame |
406 | (where the PC is already set up) and here (where it isn't). | |
407 | INIT_FRAME_PC is only called from here, always after | |
408 | INIT_EXTRA_FRAME_INFO. | |
409 | ||
c906108c SS |
410 | The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC |
411 | value (which hasn't been set yet). Some other machines appear to | |
412 | require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo. | |
413 | ||
414 | We shouldn't need INIT_FRAME_PC_FIRST to add more complication to | |
415 | an already overcomplicated part of GDB. [email protected], 15Sep92. | |
416 | ||
417 | Assuming that some machines need INIT_FRAME_PC after | |
418 | INIT_EXTRA_FRAME_INFO, one possible scheme: | |
419 | ||
420 | SETUP_INNERMOST_FRAME() | |
c5aa993b JM |
421 | Default version is just create_new_frame (read_fp ()), |
422 | read_pc ()). Machines with extra frame info would do that (or the | |
423 | local equivalent) and then set the extra fields. | |
c906108c | 424 | SETUP_ARBITRARY_FRAME(argc, argv) |
c5aa993b JM |
425 | Only change here is that create_new_frame would no longer init extra |
426 | frame info; SETUP_ARBITRARY_FRAME would have to do that. | |
c906108c | 427 | INIT_PREV_FRAME(fromleaf, prev) |
c5aa993b JM |
428 | Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should |
429 | also return a flag saying whether to keep the new frame, or | |
430 | whether to discard it, because on some machines (e.g. mips) it | |
431 | is really awkward to have FRAME_CHAIN_VALID called *before* | |
432 | INIT_EXTRA_FRAME_INFO (there is no good way to get information | |
433 | deduced in FRAME_CHAIN_VALID into the extra fields of the new frame). | |
c906108c | 434 | std_frame_pc(fromleaf, prev) |
c5aa993b JM |
435 | This is the default setting for INIT_PREV_FRAME. It just does what |
436 | the default INIT_FRAME_PC does. Some machines will call it from | |
437 | INIT_PREV_FRAME (either at the beginning, the end, or in the middle). | |
438 | Some machines won't use it. | |
c906108c SS |
439 | [email protected], 13Apr93, 31Jan94, 14Dec94. */ |
440 | ||
c906108c | 441 | INIT_FRAME_PC_FIRST (fromleaf, prev); |
c906108c | 442 | |
e6b47f07 AC |
443 | if (INIT_EXTRA_FRAME_INFO_P ()) |
444 | INIT_EXTRA_FRAME_INFO (fromleaf, prev); | |
c906108c SS |
445 | |
446 | /* This entry is in the frame queue now, which is good since | |
447 | FRAME_SAVED_PC may use that queue to figure out its value | |
448 | (see tm-sparc.h). We want the pc saved in the inferior frame. */ | |
c5aa993b | 449 | INIT_FRAME_PC (fromleaf, prev); |
c906108c SS |
450 | |
451 | /* If ->frame and ->pc are unchanged, we are in the process of getting | |
452 | ourselves into an infinite backtrace. Some architectures check this | |
453 | in FRAME_CHAIN or thereabouts, but it seems like there is no reason | |
454 | this can't be an architecture-independent check. */ | |
455 | if (next_frame != NULL) | |
456 | { | |
457 | if (prev->frame == next_frame->frame | |
458 | && prev->pc == next_frame->pc) | |
459 | { | |
460 | next_frame->prev = NULL; | |
461 | obstack_free (&frame_cache_obstack, prev); | |
462 | return NULL; | |
463 | } | |
464 | } | |
465 | ||
466 | find_pc_partial_function (prev->pc, &name, | |
c5aa993b | 467 | (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); |
c906108c SS |
468 | if (IN_SIGTRAMP (prev->pc, name)) |
469 | prev->signal_handler_caller = 1; | |
470 | ||
471 | return prev; | |
472 | } | |
473 | ||
474 | CORE_ADDR | |
fba45db2 | 475 | get_frame_pc (struct frame_info *frame) |
c906108c SS |
476 | { |
477 | return frame->pc; | |
478 | } | |
479 | ||
480 | ||
481 | #ifdef FRAME_FIND_SAVED_REGS | |
482 | /* XXX - deprecated. This is a compatibility function for targets | |
483 | that do not yet implement FRAME_INIT_SAVED_REGS. */ | |
484 | /* Find the addresses in which registers are saved in FRAME. */ | |
485 | ||
486 | void | |
fba45db2 KB |
487 | get_frame_saved_regs (struct frame_info *frame, |
488 | struct frame_saved_regs *saved_regs_addr) | |
c906108c SS |
489 | { |
490 | if (frame->saved_regs == NULL) | |
491 | { | |
c5aa993b | 492 | frame->saved_regs = (CORE_ADDR *) |
c906108c SS |
493 | frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); |
494 | } | |
495 | if (saved_regs_addr == NULL) | |
496 | { | |
497 | struct frame_saved_regs saved_regs; | |
498 | FRAME_FIND_SAVED_REGS (frame, saved_regs); | |
499 | memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS); | |
500 | } | |
501 | else | |
502 | { | |
503 | FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr); | |
504 | memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS); | |
505 | } | |
506 | } | |
507 | #endif | |
508 | ||
509 | /* Return the innermost lexical block in execution | |
ae767bfb JB |
510 | in a specified stack frame. The frame address is assumed valid. |
511 | ||
512 | If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code | |
513 | address we used to choose the block. We use this to find a source | |
514 | line, to decide which macro definitions are in scope. | |
515 | ||
516 | The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's | |
517 | PC, and may not really be a valid PC at all. For example, in the | |
518 | caller of a function declared to never return, the code at the | |
519 | return address will never be reached, so the call instruction may | |
520 | be the very last instruction in the block. So the address we use | |
521 | to choose the block is actually one byte before the return address | |
522 | --- hopefully pointing us at the call instruction, or its delay | |
523 | slot instruction. */ | |
c906108c SS |
524 | |
525 | struct block * | |
ae767bfb | 526 | get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block) |
c906108c SS |
527 | { |
528 | CORE_ADDR pc; | |
529 | ||
530 | pc = frame->pc; | |
531 | if (frame->next != 0 && frame->next->signal_handler_caller == 0) | |
532 | /* We are not in the innermost frame and we were not interrupted | |
533 | by a signal. We need to subtract one to get the correct block, | |
534 | in case the call instruction was the last instruction of the block. | |
535 | If there are any machines on which the saved pc does not point to | |
536 | after the call insn, we probably want to make frame->pc point after | |
537 | the call insn anyway. */ | |
538 | --pc; | |
ae767bfb JB |
539 | |
540 | if (addr_in_block) | |
541 | *addr_in_block = pc; | |
542 | ||
c906108c SS |
543 | return block_for_pc (pc); |
544 | } | |
545 | ||
546 | struct block * | |
ae767bfb | 547 | get_current_block (CORE_ADDR *addr_in_block) |
c906108c | 548 | { |
ae767bfb JB |
549 | CORE_ADDR pc = read_pc (); |
550 | ||
551 | if (addr_in_block) | |
552 | *addr_in_block = pc; | |
553 | ||
554 | return block_for_pc (pc); | |
c906108c SS |
555 | } |
556 | ||
557 | CORE_ADDR | |
fba45db2 | 558 | get_pc_function_start (CORE_ADDR pc) |
c906108c SS |
559 | { |
560 | register struct block *bl; | |
561 | register struct symbol *symbol; | |
562 | register struct minimal_symbol *msymbol; | |
563 | CORE_ADDR fstart; | |
564 | ||
565 | if ((bl = block_for_pc (pc)) != NULL && | |
566 | (symbol = block_function (bl)) != NULL) | |
567 | { | |
568 | bl = SYMBOL_BLOCK_VALUE (symbol); | |
569 | fstart = BLOCK_START (bl); | |
570 | } | |
571 | else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL) | |
572 | { | |
573 | fstart = SYMBOL_VALUE_ADDRESS (msymbol); | |
574 | } | |
575 | else | |
576 | { | |
577 | fstart = 0; | |
578 | } | |
579 | return (fstart); | |
580 | } | |
581 | ||
582 | /* Return the symbol for the function executing in frame FRAME. */ | |
583 | ||
584 | struct symbol * | |
fba45db2 | 585 | get_frame_function (struct frame_info *frame) |
c906108c | 586 | { |
ae767bfb | 587 | register struct block *bl = get_frame_block (frame, 0); |
c906108c SS |
588 | if (bl == 0) |
589 | return 0; | |
590 | return block_function (bl); | |
591 | } | |
592 | \f | |
593 | ||
594 | /* Return the blockvector immediately containing the innermost lexical block | |
595 | containing the specified pc value and section, or 0 if there is none. | |
596 | PINDEX is a pointer to the index value of the block. If PINDEX | |
597 | is NULL, we don't pass this information back to the caller. */ | |
598 | ||
599 | struct blockvector * | |
fba45db2 KB |
600 | blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section, |
601 | int *pindex, struct symtab *symtab) | |
c906108c SS |
602 | { |
603 | register struct block *b; | |
604 | register int bot, top, half; | |
605 | struct blockvector *bl; | |
606 | ||
c5aa993b | 607 | if (symtab == 0) /* if no symtab specified by caller */ |
c906108c SS |
608 | { |
609 | /* First search all symtabs for one whose file contains our pc */ | |
610 | if ((symtab = find_pc_sect_symtab (pc, section)) == 0) | |
611 | return 0; | |
612 | } | |
613 | ||
614 | bl = BLOCKVECTOR (symtab); | |
615 | b = BLOCKVECTOR_BLOCK (bl, 0); | |
616 | ||
617 | /* Then search that symtab for the smallest block that wins. */ | |
618 | /* Use binary search to find the last block that starts before PC. */ | |
619 | ||
620 | bot = 0; | |
621 | top = BLOCKVECTOR_NBLOCKS (bl); | |
622 | ||
623 | while (top - bot > 1) | |
624 | { | |
625 | half = (top - bot + 1) >> 1; | |
626 | b = BLOCKVECTOR_BLOCK (bl, bot + half); | |
627 | if (BLOCK_START (b) <= pc) | |
628 | bot += half; | |
629 | else | |
630 | top = bot + half; | |
631 | } | |
632 | ||
633 | /* Now search backward for a block that ends after PC. */ | |
634 | ||
635 | while (bot >= 0) | |
636 | { | |
637 | b = BLOCKVECTOR_BLOCK (bl, bot); | |
43e526b9 | 638 | if (BLOCK_END (b) > pc) |
c906108c SS |
639 | { |
640 | if (pindex) | |
641 | *pindex = bot; | |
642 | return bl; | |
643 | } | |
644 | bot--; | |
645 | } | |
646 | return 0; | |
647 | } | |
648 | ||
649 | /* Return the blockvector immediately containing the innermost lexical block | |
650 | containing the specified pc value, or 0 if there is none. | |
651 | Backward compatibility, no section. */ | |
652 | ||
653 | struct blockvector * | |
fba45db2 | 654 | blockvector_for_pc (register CORE_ADDR pc, int *pindex) |
c906108c SS |
655 | { |
656 | return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc), | |
657 | pindex, NULL); | |
658 | } | |
659 | ||
660 | /* Return the innermost lexical block containing the specified pc value | |
661 | in the specified section, or 0 if there is none. */ | |
662 | ||
663 | struct block * | |
fba45db2 | 664 | block_for_pc_sect (register CORE_ADDR pc, struct sec *section) |
c906108c SS |
665 | { |
666 | register struct blockvector *bl; | |
667 | int index; | |
668 | ||
669 | bl = blockvector_for_pc_sect (pc, section, &index, NULL); | |
670 | if (bl) | |
671 | return BLOCKVECTOR_BLOCK (bl, index); | |
672 | return 0; | |
673 | } | |
674 | ||
675 | /* Return the innermost lexical block containing the specified pc value, | |
676 | or 0 if there is none. Backward compatibility, no section. */ | |
677 | ||
678 | struct block * | |
fba45db2 | 679 | block_for_pc (register CORE_ADDR pc) |
c906108c SS |
680 | { |
681 | return block_for_pc_sect (pc, find_pc_mapped_section (pc)); | |
682 | } | |
683 | ||
684 | /* Return the function containing pc value PC in section SECTION. | |
685 | Returns 0 if function is not known. */ | |
686 | ||
687 | struct symbol * | |
fba45db2 | 688 | find_pc_sect_function (CORE_ADDR pc, struct sec *section) |
c906108c SS |
689 | { |
690 | register struct block *b = block_for_pc_sect (pc, section); | |
691 | if (b == 0) | |
692 | return 0; | |
693 | return block_function (b); | |
694 | } | |
695 | ||
696 | /* Return the function containing pc value PC. | |
697 | Returns 0 if function is not known. Backward compatibility, no section */ | |
698 | ||
699 | struct symbol * | |
fba45db2 | 700 | find_pc_function (CORE_ADDR pc) |
c906108c SS |
701 | { |
702 | return find_pc_sect_function (pc, find_pc_mapped_section (pc)); | |
703 | } | |
704 | ||
705 | /* These variables are used to cache the most recent result | |
706 | * of find_pc_partial_function. */ | |
707 | ||
c5aa993b JM |
708 | static CORE_ADDR cache_pc_function_low = 0; |
709 | static CORE_ADDR cache_pc_function_high = 0; | |
710 | static char *cache_pc_function_name = 0; | |
c906108c SS |
711 | static struct sec *cache_pc_function_section = NULL; |
712 | ||
713 | /* Clear cache, e.g. when symbol table is discarded. */ | |
714 | ||
715 | void | |
fba45db2 | 716 | clear_pc_function_cache (void) |
c906108c SS |
717 | { |
718 | cache_pc_function_low = 0; | |
719 | cache_pc_function_high = 0; | |
c5aa993b | 720 | cache_pc_function_name = (char *) 0; |
c906108c SS |
721 | cache_pc_function_section = NULL; |
722 | } | |
723 | ||
724 | /* Finds the "function" (text symbol) that is smaller than PC but | |
725 | greatest of all of the potential text symbols in SECTION. Sets | |
726 | *NAME and/or *ADDRESS conditionally if that pointer is non-null. | |
727 | If ENDADDR is non-null, then set *ENDADDR to be the end of the | |
728 | function (exclusive), but passing ENDADDR as non-null means that | |
729 | the function might cause symbols to be read. This function either | |
730 | succeeds or fails (not halfway succeeds). If it succeeds, it sets | |
731 | *NAME, *ADDRESS, and *ENDADDR to real information and returns 1. | |
732 | If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and | |
733 | returns 0. */ | |
734 | ||
735 | int | |
fba45db2 KB |
736 | find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, |
737 | CORE_ADDR *address, CORE_ADDR *endaddr) | |
c906108c SS |
738 | { |
739 | struct partial_symtab *pst; | |
c5aa993b | 740 | struct symbol *f; |
c906108c SS |
741 | struct minimal_symbol *msymbol; |
742 | struct partial_symbol *psb; | |
c5aa993b | 743 | struct obj_section *osect; |
c906108c SS |
744 | int i; |
745 | CORE_ADDR mapped_pc; | |
746 | ||
747 | mapped_pc = overlay_mapped_address (pc, section); | |
748 | ||
c5aa993b | 749 | if (mapped_pc >= cache_pc_function_low && |
c906108c SS |
750 | mapped_pc < cache_pc_function_high && |
751 | section == cache_pc_function_section) | |
752 | goto return_cached_value; | |
753 | ||
754 | /* If sigtramp is in the u area, it counts as a function (especially | |
755 | important for step_1). */ | |
756 | #if defined SIGTRAMP_START | |
c5aa993b | 757 | if (IN_SIGTRAMP (mapped_pc, (char *) NULL)) |
c906108c | 758 | { |
c5aa993b JM |
759 | cache_pc_function_low = SIGTRAMP_START (mapped_pc); |
760 | cache_pc_function_high = SIGTRAMP_END (mapped_pc); | |
761 | cache_pc_function_name = "<sigtramp>"; | |
c906108c SS |
762 | cache_pc_function_section = section; |
763 | goto return_cached_value; | |
764 | } | |
765 | #endif | |
766 | ||
767 | msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section); | |
768 | pst = find_pc_sect_psymtab (mapped_pc, section); | |
769 | if (pst) | |
770 | { | |
771 | /* Need to read the symbols to get a good value for the end address. */ | |
772 | if (endaddr != NULL && !pst->readin) | |
773 | { | |
774 | /* Need to get the terminal in case symbol-reading produces | |
775 | output. */ | |
776 | target_terminal_ours_for_output (); | |
777 | PSYMTAB_TO_SYMTAB (pst); | |
778 | } | |
779 | ||
780 | if (pst->readin) | |
781 | { | |
782 | /* Checking whether the msymbol has a larger value is for the | |
783 | "pathological" case mentioned in print_frame_info. */ | |
784 | f = find_pc_sect_function (mapped_pc, section); | |
785 | if (f != NULL | |
786 | && (msymbol == NULL | |
787 | || (BLOCK_START (SYMBOL_BLOCK_VALUE (f)) | |
788 | >= SYMBOL_VALUE_ADDRESS (msymbol)))) | |
789 | { | |
c5aa993b JM |
790 | cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f)); |
791 | cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f)); | |
792 | cache_pc_function_name = SYMBOL_NAME (f); | |
c906108c SS |
793 | cache_pc_function_section = section; |
794 | goto return_cached_value; | |
795 | } | |
796 | } | |
797 | else | |
798 | { | |
799 | /* Now that static symbols go in the minimal symbol table, perhaps | |
800 | we could just ignore the partial symbols. But at least for now | |
801 | we use the partial or minimal symbol, whichever is larger. */ | |
802 | psb = find_pc_sect_psymbol (pst, mapped_pc, section); | |
803 | ||
804 | if (psb | |
805 | && (msymbol == NULL || | |
806 | (SYMBOL_VALUE_ADDRESS (psb) | |
807 | >= SYMBOL_VALUE_ADDRESS (msymbol)))) | |
808 | { | |
809 | /* This case isn't being cached currently. */ | |
810 | if (address) | |
811 | *address = SYMBOL_VALUE_ADDRESS (psb); | |
812 | if (name) | |
813 | *name = SYMBOL_NAME (psb); | |
814 | /* endaddr non-NULL can't happen here. */ | |
815 | return 1; | |
816 | } | |
817 | } | |
818 | } | |
819 | ||
820 | /* Not in the normal symbol tables, see if the pc is in a known section. | |
821 | If it's not, then give up. This ensures that anything beyond the end | |
822 | of the text seg doesn't appear to be part of the last function in the | |
823 | text segment. */ | |
824 | ||
825 | osect = find_pc_sect_section (mapped_pc, section); | |
826 | ||
827 | if (!osect) | |
828 | msymbol = NULL; | |
829 | ||
830 | /* Must be in the minimal symbol table. */ | |
831 | if (msymbol == NULL) | |
832 | { | |
833 | /* No available symbol. */ | |
834 | if (name != NULL) | |
835 | *name = 0; | |
836 | if (address != NULL) | |
837 | *address = 0; | |
838 | if (endaddr != NULL) | |
839 | *endaddr = 0; | |
840 | return 0; | |
841 | } | |
842 | ||
c5aa993b JM |
843 | cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol); |
844 | cache_pc_function_name = SYMBOL_NAME (msymbol); | |
c906108c SS |
845 | cache_pc_function_section = section; |
846 | ||
847 | /* Use the lesser of the next minimal symbol in the same section, or | |
848 | the end of the section, as the end of the function. */ | |
c5aa993b | 849 | |
c906108c SS |
850 | /* Step over other symbols at this same address, and symbols in |
851 | other sections, to find the next symbol in this section with | |
852 | a different address. */ | |
853 | ||
c5aa993b | 854 | for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++) |
c906108c | 855 | { |
c5aa993b JM |
856 | if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol) |
857 | && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol)) | |
c906108c SS |
858 | break; |
859 | } | |
860 | ||
861 | if (SYMBOL_NAME (msymbol + i) != NULL | |
862 | && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr) | |
863 | cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i); | |
864 | else | |
865 | /* We got the start address from the last msymbol in the objfile. | |
866 | So the end address is the end of the section. */ | |
867 | cache_pc_function_high = osect->endaddr; | |
868 | ||
c5aa993b | 869 | return_cached_value: |
c906108c SS |
870 | |
871 | if (address) | |
872 | { | |
873 | if (pc_in_unmapped_range (pc, section)) | |
c5aa993b | 874 | *address = overlay_unmapped_address (cache_pc_function_low, section); |
c906108c | 875 | else |
c5aa993b | 876 | *address = cache_pc_function_low; |
c906108c | 877 | } |
c5aa993b | 878 | |
c906108c SS |
879 | if (name) |
880 | *name = cache_pc_function_name; | |
881 | ||
882 | if (endaddr) | |
883 | { | |
884 | if (pc_in_unmapped_range (pc, section)) | |
c5aa993b | 885 | { |
c906108c SS |
886 | /* Because the high address is actually beyond the end of |
887 | the function (and therefore possibly beyond the end of | |
888 | the overlay), we must actually convert (high - 1) | |
889 | and then add one to that. */ | |
890 | ||
c5aa993b | 891 | *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1, |
c906108c | 892 | section); |
c5aa993b | 893 | } |
c906108c | 894 | else |
c5aa993b | 895 | *endaddr = cache_pc_function_high; |
c906108c SS |
896 | } |
897 | ||
898 | return 1; | |
899 | } | |
900 | ||
901 | /* Backward compatibility, no section argument */ | |
902 | ||
903 | int | |
fba45db2 KB |
904 | find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address, |
905 | CORE_ADDR *endaddr) | |
c906108c | 906 | { |
c5aa993b | 907 | asection *section; |
c906108c SS |
908 | |
909 | section = find_pc_overlay (pc); | |
910 | return find_pc_sect_partial_function (pc, section, name, address, endaddr); | |
911 | } | |
912 | ||
913 | /* Return the innermost stack frame executing inside of BLOCK, | |
914 | or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */ | |
915 | ||
916 | struct frame_info * | |
fba45db2 | 917 | block_innermost_frame (struct block *block) |
c906108c SS |
918 | { |
919 | struct frame_info *frame; | |
920 | register CORE_ADDR start; | |
921 | register CORE_ADDR end; | |
922 | ||
923 | if (block == NULL) | |
924 | return NULL; | |
925 | ||
926 | start = BLOCK_START (block); | |
927 | end = BLOCK_END (block); | |
928 | ||
929 | frame = NULL; | |
930 | while (1) | |
931 | { | |
932 | frame = get_prev_frame (frame); | |
933 | if (frame == NULL) | |
934 | return NULL; | |
935 | if (frame->pc >= start && frame->pc < end) | |
936 | return frame; | |
937 | } | |
938 | } | |
939 | ||
940 | /* Return the full FRAME which corresponds to the given CORE_ADDR | |
941 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
942 | ||
943 | struct frame_info * | |
fba45db2 | 944 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) |
c906108c SS |
945 | { |
946 | struct frame_info *frame = NULL; | |
947 | ||
c5aa993b | 948 | if (frame_addr == (CORE_ADDR) 0) |
c906108c SS |
949 | return NULL; |
950 | ||
951 | while (1) | |
952 | { | |
953 | frame = get_prev_frame (frame); | |
954 | if (frame == NULL) | |
955 | return NULL; | |
956 | if (FRAME_FP (frame) == frame_addr) | |
957 | return frame; | |
958 | } | |
959 | } | |
960 | ||
961 | #ifdef SIGCONTEXT_PC_OFFSET | |
962 | /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */ | |
963 | ||
964 | CORE_ADDR | |
fba45db2 | 965 | sigtramp_saved_pc (struct frame_info *frame) |
c906108c SS |
966 | { |
967 | CORE_ADDR sigcontext_addr; | |
35fc8285 | 968 | char *buf; |
c906108c SS |
969 | int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT; |
970 | int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT; | |
971 | ||
35fc8285 | 972 | buf = alloca (ptrbytes); |
c906108c SS |
973 | /* Get sigcontext address, it is the third parameter on the stack. */ |
974 | if (frame->next) | |
975 | sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next) | |
976 | + FRAME_ARGS_SKIP | |
977 | + sigcontext_offs, | |
978 | ptrbytes); | |
979 | else | |
980 | sigcontext_addr = read_memory_integer (read_register (SP_REGNUM) | |
c5aa993b | 981 | + sigcontext_offs, |
c906108c SS |
982 | ptrbytes); |
983 | ||
984 | /* Don't cause a memory_error when accessing sigcontext in case the stack | |
985 | layout has changed or the stack is corrupt. */ | |
986 | target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes); | |
987 | return extract_unsigned_integer (buf, ptrbytes); | |
988 | } | |
989 | #endif /* SIGCONTEXT_PC_OFFSET */ | |
990 | ||
7a292a7a SS |
991 | |
992 | /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK | |
993 | below is for infrun.c, which may give the macro a pc without that | |
994 | subtracted out. */ | |
995 | ||
996 | extern CORE_ADDR text_end; | |
997 | ||
998 | int | |
fba45db2 KB |
999 | pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp, |
1000 | CORE_ADDR frame_address) | |
7a292a7a SS |
1001 | { |
1002 | return ((pc) >= text_end - CALL_DUMMY_LENGTH | |
1003 | && (pc) <= text_end + DECR_PC_AFTER_BREAK); | |
1004 | } | |
1005 | ||
1006 | int | |
fba45db2 KB |
1007 | pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp, |
1008 | CORE_ADDR frame_address) | |
7a292a7a SS |
1009 | { |
1010 | return ((pc) >= text_end | |
1011 | && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK); | |
1012 | } | |
1013 | ||
1014 | /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and | |
1015 | top of the stack frame which we are checking, where "bottom" and | |
1016 | "top" refer to some section of memory which contains the code for | |
1017 | the call dummy. Calls to this macro assume that the contents of | |
1018 | SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively, | |
1019 | are the things to pass. | |
1020 | ||
1021 | This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't | |
1022 | have that meaning, but the 29k doesn't use ON_STACK. This could be | |
1023 | fixed by generalizing this scheme, perhaps by passing in a frame | |
1024 | and adding a few fields, at least on machines which need them for | |
1025 | PC_IN_CALL_DUMMY. | |
1026 | ||
1027 | Something simpler, like checking for the stack segment, doesn't work, | |
1028 | since various programs (threads implementations, gcc nested function | |
1029 | stubs, etc) may either allocate stack frames in another segment, or | |
1030 | allocate other kinds of code on the stack. */ | |
1031 | ||
1032 | int | |
fba45db2 | 1033 | pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address) |
7a292a7a SS |
1034 | { |
1035 | return (INNER_THAN ((sp), (pc)) | |
1036 | && (frame_address != 0) | |
1037 | && INNER_THAN ((pc), (frame_address))); | |
1038 | } | |
1039 | ||
1040 | int | |
fba45db2 KB |
1041 | pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp, |
1042 | CORE_ADDR frame_address) | |
7a292a7a SS |
1043 | { |
1044 | return ((pc) >= CALL_DUMMY_ADDRESS () | |
1045 | && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK)); | |
1046 | } | |
1047 | ||
c906108c SS |
1048 | |
1049 | /* | |
1050 | * GENERIC DUMMY FRAMES | |
1051 | * | |
1052 | * The following code serves to maintain the dummy stack frames for | |
1053 | * inferior function calls (ie. when gdb calls into the inferior via | |
1054 | * call_function_by_hand). This code saves the machine state before | |
b7d6b182 | 1055 | * the call in host memory, so we must maintain an independent stack |
c906108c SS |
1056 | * and keep it consistant etc. I am attempting to make this code |
1057 | * generic enough to be used by many targets. | |
1058 | * | |
1059 | * The cheapest and most generic way to do CALL_DUMMY on a new target | |
1060 | * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to | |
1061 | * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember | |
1062 | * to define PUSH_RETURN_ADDRESS, because no call instruction will be | |
1063 | * being executed by the target. Also FRAME_CHAIN_VALID as | |
c4093a6a | 1064 | * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as |
cce74817 | 1065 | * generic_fix_call_dummy. */ |
c906108c | 1066 | |
7a292a7a SS |
1067 | /* Dummy frame. This saves the processor state just prior to setting |
1068 | up the inferior function call. Older targets save the registers | |
72229eb7 | 1069 | on the target stack (but that really slows down function calls). */ |
7a292a7a SS |
1070 | |
1071 | struct dummy_frame | |
1072 | { | |
1073 | struct dummy_frame *next; | |
1074 | ||
1075 | CORE_ADDR pc; | |
1076 | CORE_ADDR fp; | |
1077 | CORE_ADDR sp; | |
43ff13b4 | 1078 | CORE_ADDR top; |
7a292a7a SS |
1079 | char *registers; |
1080 | }; | |
1081 | ||
c906108c SS |
1082 | static struct dummy_frame *dummy_frame_stack = NULL; |
1083 | ||
1084 | /* Function: find_dummy_frame(pc, fp, sp) | |
1085 | Search the stack of dummy frames for one matching the given PC, FP and SP. | |
1086 | This is the work-horse for pc_in_call_dummy and read_register_dummy */ | |
1087 | ||
c5aa993b | 1088 | char * |
fba45db2 | 1089 | generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp) |
c906108c | 1090 | { |
c5aa993b | 1091 | struct dummy_frame *dummyframe; |
c906108c SS |
1092 | |
1093 | if (pc != entry_point_address ()) | |
1094 | return 0; | |
1095 | ||
1096 | for (dummyframe = dummy_frame_stack; dummyframe != NULL; | |
1097 | dummyframe = dummyframe->next) | |
43ff13b4 JM |
1098 | if (fp == dummyframe->fp |
1099 | || fp == dummyframe->sp | |
1100 | || fp == dummyframe->top) | |
c906108c | 1101 | /* The frame in question lies between the saved fp and sp, inclusive */ |
7a292a7a | 1102 | return dummyframe->registers; |
c906108c SS |
1103 | |
1104 | return 0; | |
1105 | } | |
1106 | ||
1107 | /* Function: pc_in_call_dummy (pc, fp) | |
1108 | Return true if this is a dummy frame created by gdb for an inferior call */ | |
1109 | ||
1110 | int | |
fba45db2 | 1111 | generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp) |
c906108c SS |
1112 | { |
1113 | /* if find_dummy_frame succeeds, then PC is in a call dummy */ | |
7a292a7a SS |
1114 | /* Note: SP and not FP is passed on. */ |
1115 | return (generic_find_dummy_frame (pc, sp) != 0); | |
c906108c SS |
1116 | } |
1117 | ||
1118 | /* Function: read_register_dummy | |
1119 | Find a saved register from before GDB calls a function in the inferior */ | |
1120 | ||
1121 | CORE_ADDR | |
fba45db2 | 1122 | generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno) |
c906108c SS |
1123 | { |
1124 | char *dummy_regs = generic_find_dummy_frame (pc, fp); | |
1125 | ||
1126 | if (dummy_regs) | |
1127 | return extract_address (&dummy_regs[REGISTER_BYTE (regno)], | |
c5aa993b | 1128 | REGISTER_RAW_SIZE (regno)); |
c906108c SS |
1129 | else |
1130 | return 0; | |
1131 | } | |
1132 | ||
1133 | /* Save all the registers on the dummy frame stack. Most ports save the | |
1134 | registers on the target stack. This results in lots of unnecessary memory | |
1135 | references, which are slow when debugging via a serial line. Instead, we | |
1136 | save all the registers internally, and never write them to the stack. The | |
1137 | registers get restored when the called function returns to the entry point, | |
1138 | where a breakpoint is laying in wait. */ | |
1139 | ||
1140 | void | |
fba45db2 | 1141 | generic_push_dummy_frame (void) |
c906108c SS |
1142 | { |
1143 | struct dummy_frame *dummy_frame; | |
1144 | CORE_ADDR fp = (get_current_frame ())->frame; | |
1145 | ||
1146 | /* check to see if there are stale dummy frames, | |
1147 | perhaps left over from when a longjump took us out of a | |
1148 | function that was called by the debugger */ | |
1149 | ||
1150 | dummy_frame = dummy_frame_stack; | |
1151 | while (dummy_frame) | |
1152 | if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */ | |
1153 | { | |
1154 | dummy_frame_stack = dummy_frame->next; | |
b8c9b27d KB |
1155 | xfree (dummy_frame->registers); |
1156 | xfree (dummy_frame); | |
c906108c SS |
1157 | dummy_frame = dummy_frame_stack; |
1158 | } | |
1159 | else | |
1160 | dummy_frame = dummy_frame->next; | |
1161 | ||
1162 | dummy_frame = xmalloc (sizeof (struct dummy_frame)); | |
7a292a7a SS |
1163 | dummy_frame->registers = xmalloc (REGISTER_BYTES); |
1164 | ||
4478b372 JB |
1165 | dummy_frame->pc = read_pc (); |
1166 | dummy_frame->sp = read_sp (); | |
c5aa993b JM |
1167 | dummy_frame->top = dummy_frame->sp; |
1168 | dummy_frame->fp = fp; | |
7a292a7a | 1169 | read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES); |
c906108c SS |
1170 | dummy_frame->next = dummy_frame_stack; |
1171 | dummy_frame_stack = dummy_frame; | |
1172 | } | |
1173 | ||
43ff13b4 | 1174 | void |
fba45db2 | 1175 | generic_save_dummy_frame_tos (CORE_ADDR sp) |
43ff13b4 JM |
1176 | { |
1177 | dummy_frame_stack->top = sp; | |
1178 | } | |
1179 | ||
ed9a39eb | 1180 | /* Restore the machine state from either the saved dummy stack or a |
c906108c SS |
1181 | real stack frame. */ |
1182 | ||
1183 | void | |
ed9a39eb | 1184 | generic_pop_current_frame (void (*popper) (struct frame_info * frame)) |
c906108c SS |
1185 | { |
1186 | struct frame_info *frame = get_current_frame (); | |
ed9a39eb | 1187 | |
c5aa993b | 1188 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) |
c906108c SS |
1189 | generic_pop_dummy_frame (); |
1190 | else | |
ed9a39eb | 1191 | (*popper) (frame); |
c906108c SS |
1192 | } |
1193 | ||
1194 | /* Function: pop_dummy_frame | |
1195 | Restore the machine state from a saved dummy stack frame. */ | |
1196 | ||
1197 | void | |
fba45db2 | 1198 | generic_pop_dummy_frame (void) |
c906108c SS |
1199 | { |
1200 | struct dummy_frame *dummy_frame = dummy_frame_stack; | |
1201 | ||
1202 | /* FIXME: what if the first frame isn't the right one, eg.. | |
1203 | because one call-by-hand function has done a longjmp into another one? */ | |
1204 | ||
1205 | if (!dummy_frame) | |
1206 | error ("Can't pop dummy frame!"); | |
1207 | dummy_frame_stack = dummy_frame->next; | |
7a292a7a | 1208 | write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES); |
c906108c | 1209 | flush_cached_frames (); |
7a292a7a | 1210 | |
b8c9b27d KB |
1211 | xfree (dummy_frame->registers); |
1212 | xfree (dummy_frame); | |
c906108c SS |
1213 | } |
1214 | ||
1215 | /* Function: frame_chain_valid | |
1216 | Returns true for a user frame or a call_function_by_hand dummy frame, | |
1217 | and false for the CRT0 start-up frame. Purpose is to terminate backtrace */ | |
c5aa993b | 1218 | |
c906108c | 1219 | int |
fba45db2 | 1220 | generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi) |
c906108c | 1221 | { |
c5aa993b JM |
1222 | if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp)) |
1223 | return 1; /* don't prune CALL_DUMMY frames */ | |
1224 | else /* fall back to default algorithm (see frame.h) */ | |
c906108c SS |
1225 | return (fp != 0 |
1226 | && (INNER_THAN (fi->frame, fp) || fi->frame == fp) | |
c5aa993b | 1227 | && !inside_entry_file (FRAME_SAVED_PC (fi))); |
c906108c | 1228 | } |
c5aa993b | 1229 | |
c4093a6a | 1230 | int |
fba45db2 | 1231 | generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi) |
c4093a6a JM |
1232 | { |
1233 | if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp)) | |
1234 | return 1; /* don't prune CALL_DUMMY frames */ | |
1235 | else /* fall back to default algorithm (see frame.h) */ | |
1236 | return (fp != 0 | |
1237 | && (INNER_THAN (fi->frame, fp) || fi->frame == fp) | |
1238 | && !inside_main_func ((fi)->pc) | |
1239 | && !inside_entry_func ((fi)->pc)); | |
1240 | } | |
1241 | ||
cce74817 | 1242 | /* Function: fix_call_dummy |
c570663e | 1243 | Stub function. Generic dummy frames typically do not need to fix |
cce74817 JM |
1244 | the frame being created */ |
1245 | ||
1246 | void | |
fba45db2 KB |
1247 | generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
1248 | struct value **args, struct type *type, int gcc_p) | |
cce74817 JM |
1249 | { |
1250 | return; | |
1251 | } | |
1252 | ||
c906108c SS |
1253 | /* Function: get_saved_register |
1254 | Find register number REGNUM relative to FRAME and put its (raw, | |
1255 | target format) contents in *RAW_BUFFER. | |
1256 | ||
1257 | Set *OPTIMIZED if the variable was optimized out (and thus can't be | |
1258 | fetched). Note that this is never set to anything other than zero | |
1259 | in this implementation. | |
1260 | ||
1261 | Set *LVAL to lval_memory, lval_register, or not_lval, depending on | |
1262 | whether the value was fetched from memory, from a register, or in a | |
1263 | strange and non-modifiable way (e.g. a frame pointer which was | |
1264 | calculated rather than fetched). We will use not_lval for values | |
1265 | fetched from generic dummy frames. | |
1266 | ||
7036d6ce | 1267 | Set *ADDRP to the address, either in memory or as a REGISTER_BYTE |
c906108c SS |
1268 | offset into the registers array. If the value is stored in a dummy |
1269 | frame, set *ADDRP to zero. | |
1270 | ||
1271 | To use this implementation, define a function called | |
1272 | "get_saved_register" in your target code, which simply passes all | |
1273 | of its arguments to this function. | |
1274 | ||
1275 | The argument RAW_BUFFER must point to aligned memory. */ | |
1276 | ||
1277 | void | |
fba45db2 KB |
1278 | generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, |
1279 | struct frame_info *frame, int regnum, | |
1280 | enum lval_type *lval) | |
c906108c SS |
1281 | { |
1282 | if (!target_has_registers) | |
1283 | error ("No registers."); | |
1284 | ||
1285 | /* Normal systems don't optimize out things with register numbers. */ | |
1286 | if (optimized != NULL) | |
1287 | *optimized = 0; | |
1288 | ||
c5aa993b | 1289 | if (addrp) /* default assumption: not found in memory */ |
c906108c SS |
1290 | *addrp = 0; |
1291 | ||
1292 | /* Note: since the current frame's registers could only have been | |
1293 | saved by frames INTERIOR TO the current frame, we skip examining | |
1294 | the current frame itself: otherwise, we would be getting the | |
1295 | previous frame's registers which were saved by the current frame. */ | |
1296 | ||
1297 | while (frame && ((frame = frame->next) != NULL)) | |
1298 | { | |
1299 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) | |
1300 | { | |
c5aa993b | 1301 | if (lval) /* found it in a CALL_DUMMY frame */ |
c906108c SS |
1302 | *lval = not_lval; |
1303 | if (raw_buffer) | |
c5aa993b JM |
1304 | memcpy (raw_buffer, |
1305 | generic_find_dummy_frame (frame->pc, frame->frame) + | |
c906108c SS |
1306 | REGISTER_BYTE (regnum), |
1307 | REGISTER_RAW_SIZE (regnum)); | |
c5aa993b | 1308 | return; |
c906108c SS |
1309 | } |
1310 | ||
1311 | FRAME_INIT_SAVED_REGS (frame); | |
1312 | if (frame->saved_regs != NULL | |
1313 | && frame->saved_regs[regnum] != 0) | |
1314 | { | |
c5aa993b | 1315 | if (lval) /* found it saved on the stack */ |
c906108c SS |
1316 | *lval = lval_memory; |
1317 | if (regnum == SP_REGNUM) | |
1318 | { | |
c5aa993b JM |
1319 | if (raw_buffer) /* SP register treated specially */ |
1320 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), | |
c906108c SS |
1321 | frame->saved_regs[regnum]); |
1322 | } | |
1323 | else | |
1324 | { | |
c5aa993b | 1325 | if (addrp) /* any other register */ |
c906108c SS |
1326 | *addrp = frame->saved_regs[regnum]; |
1327 | if (raw_buffer) | |
c5aa993b | 1328 | read_memory (frame->saved_regs[regnum], raw_buffer, |
c906108c SS |
1329 | REGISTER_RAW_SIZE (regnum)); |
1330 | } | |
1331 | return; | |
1332 | } | |
1333 | } | |
1334 | ||
1335 | /* If we get thru the loop to this point, it means the register was | |
1336 | not saved in any frame. Return the actual live-register value. */ | |
1337 | ||
c5aa993b | 1338 | if (lval) /* found it in a live register */ |
c906108c SS |
1339 | *lval = lval_register; |
1340 | if (addrp) | |
1341 | *addrp = REGISTER_BYTE (regnum); | |
1342 | if (raw_buffer) | |
1343 | read_register_gen (regnum, raw_buffer); | |
1344 | } | |
c906108c SS |
1345 | |
1346 | void | |
53a5351d | 1347 | _initialize_blockframe (void) |
c906108c SS |
1348 | { |
1349 | obstack_init (&frame_cache_obstack); | |
1350 | } |