]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Get info from stack frames; |
2 | convert between frames, blocks, functions and pc values. | |
3 | Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998 | |
4 | Free Software Foundation, Inc. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "bfd.h" | |
25 | #include "symfile.h" | |
26 | #include "objfiles.h" | |
27 | #include "frame.h" | |
28 | #include "gdbcore.h" | |
29 | #include "value.h" /* for read_register */ | |
30 | #include "target.h" /* for target_has_stack */ | |
31 | #include "inferior.h" /* for read_pc */ | |
32 | #include "annotate.h" | |
33 | ||
34 | /* Prototypes for exported functions. */ | |
35 | ||
36 | void _initialize_blockframe PARAMS ((void)); | |
37 | ||
38 | /* A default FRAME_CHAIN_VALID, in the form that is suitable for most | |
39 | targets. If FRAME_CHAIN_VALID returns zero it means that the given | |
40 | frame is the outermost one and has no caller. */ | |
41 | ||
42 | int | |
43 | default_frame_chain_valid (chain, thisframe) | |
44 | CORE_ADDR chain; | |
45 | struct frame_info *thisframe; | |
46 | { | |
47 | return ((chain) != 0 | |
48 | && !inside_main_func ((thisframe) -> pc) | |
49 | && !inside_entry_func ((thisframe) -> pc)); | |
50 | } | |
51 | ||
52 | /* Use the alternate method of avoiding running up off the end of the | |
53 | frame chain or following frames back into the startup code. See | |
54 | the comments in objfiles.h. */ | |
55 | ||
56 | int | |
57 | alternate_frame_chain_valid (chain, thisframe) | |
58 | CORE_ADDR chain; | |
59 | struct frame_info *thisframe; | |
60 | { | |
61 | return ((chain) != 0 | |
62 | && !inside_entry_file (FRAME_SAVED_PC (thisframe))); | |
63 | } | |
64 | ||
65 | /* A very simple method of determining a valid frame */ | |
66 | ||
67 | int | |
68 | nonnull_frame_chain_valid (chain, thisframe) | |
69 | CORE_ADDR chain; | |
70 | struct frame_info *thisframe; | |
71 | { | |
72 | return ((chain) != 0); | |
73 | } | |
74 | ||
75 | /* Is ADDR inside the startup file? Note that if your machine | |
76 | has a way to detect the bottom of the stack, there is no need | |
77 | to call this function from FRAME_CHAIN_VALID; the reason for | |
78 | doing so is that some machines have no way of detecting bottom | |
79 | of stack. | |
80 | ||
81 | A PC of zero is always considered to be the bottom of the stack. */ | |
82 | ||
83 | int | |
84 | inside_entry_file (addr) | |
85 | CORE_ADDR addr; | |
86 | { | |
87 | if (addr == 0) | |
88 | return 1; | |
89 | if (symfile_objfile == 0) | |
90 | return 0; | |
91 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT | |
92 | /* Do not stop backtracing if the pc is in the call dummy | |
93 | at the entry point. */ | |
94 | /* FIXME: Won't always work with zeros for the last two arguments */ | |
95 | if (PC_IN_CALL_DUMMY (addr, 0, 0)) | |
96 | return 0; | |
97 | #endif | |
98 | return (addr >= symfile_objfile -> ei.entry_file_lowpc && | |
99 | addr < symfile_objfile -> ei.entry_file_highpc); | |
100 | } | |
101 | ||
102 | /* Test a specified PC value to see if it is in the range of addresses | |
103 | that correspond to the main() function. See comments above for why | |
104 | we might want to do this. | |
105 | ||
106 | Typically called from FRAME_CHAIN_VALID. | |
107 | ||
108 | A PC of zero is always considered to be the bottom of the stack. */ | |
109 | ||
110 | int | |
111 | inside_main_func (pc) | |
112 | CORE_ADDR pc; | |
113 | { | |
114 | if (pc == 0) | |
115 | return 1; | |
116 | if (symfile_objfile == 0) | |
117 | return 0; | |
118 | ||
119 | /* If the addr range is not set up at symbol reading time, set it up now. | |
120 | This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because | |
121 | it is unable to set it up and symbol reading time. */ | |
122 | ||
123 | if (symfile_objfile -> ei.main_func_lowpc == INVALID_ENTRY_LOWPC && | |
124 | symfile_objfile -> ei.main_func_highpc == INVALID_ENTRY_HIGHPC) | |
125 | { | |
126 | struct symbol *mainsym; | |
127 | ||
128 | mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL); | |
129 | if (mainsym && SYMBOL_CLASS(mainsym) == LOC_BLOCK) | |
130 | { | |
131 | symfile_objfile->ei.main_func_lowpc = | |
132 | BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym)); | |
133 | symfile_objfile->ei.main_func_highpc = | |
134 | BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym)); | |
135 | } | |
136 | } | |
137 | return (symfile_objfile -> ei.main_func_lowpc <= pc && | |
138 | symfile_objfile -> ei.main_func_highpc > pc); | |
139 | } | |
140 | ||
141 | /* Test a specified PC value to see if it is in the range of addresses | |
142 | that correspond to the process entry point function. See comments | |
143 | in objfiles.h for why we might want to do this. | |
144 | ||
145 | Typically called from FRAME_CHAIN_VALID. | |
146 | ||
147 | A PC of zero is always considered to be the bottom of the stack. */ | |
148 | ||
149 | int | |
150 | inside_entry_func (pc) | |
151 | CORE_ADDR pc; | |
152 | { | |
153 | if (pc == 0) | |
154 | return 1; | |
155 | if (symfile_objfile == 0) | |
156 | return 0; | |
157 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT | |
158 | /* Do not stop backtracing if the pc is in the call dummy | |
159 | at the entry point. */ | |
160 | /* FIXME: Won't always work with zeros for the last two arguments */ | |
161 | if (PC_IN_CALL_DUMMY (pc, 0, 0)) | |
162 | return 0; | |
163 | #endif | |
164 | return (symfile_objfile -> ei.entry_func_lowpc <= pc && | |
165 | symfile_objfile -> ei.entry_func_highpc > pc); | |
166 | } | |
167 | ||
168 | /* Info about the innermost stack frame (contents of FP register) */ | |
169 | ||
170 | static struct frame_info *current_frame; | |
171 | ||
172 | /* Cache for frame addresses already read by gdb. Valid only while | |
173 | inferior is stopped. Control variables for the frame cache should | |
174 | be local to this module. */ | |
175 | ||
176 | static struct obstack frame_cache_obstack; | |
177 | ||
178 | void * | |
179 | frame_obstack_alloc (size) | |
180 | unsigned long size; | |
181 | { | |
182 | return obstack_alloc (&frame_cache_obstack, size); | |
183 | } | |
184 | ||
185 | void | |
186 | frame_saved_regs_zalloc (fi) | |
187 | struct frame_info *fi; | |
188 | { | |
189 | fi->saved_regs = (CORE_ADDR*) | |
190 | frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); | |
191 | memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); | |
192 | } | |
193 | ||
194 | ||
195 | /* Return the innermost (currently executing) stack frame. */ | |
196 | ||
197 | struct frame_info * | |
198 | get_current_frame () | |
199 | { | |
200 | if (current_frame == NULL) | |
201 | { | |
202 | if (target_has_stack) | |
203 | current_frame = create_new_frame (read_fp (), read_pc ()); | |
204 | else | |
205 | error ("No stack."); | |
206 | } | |
207 | return current_frame; | |
208 | } | |
209 | ||
210 | void | |
211 | set_current_frame (frame) | |
212 | struct frame_info *frame; | |
213 | { | |
214 | current_frame = frame; | |
215 | } | |
216 | ||
217 | /* Create an arbitrary (i.e. address specified by user) or innermost frame. | |
218 | Always returns a non-NULL value. */ | |
219 | ||
220 | struct frame_info * | |
221 | create_new_frame (addr, pc) | |
222 | CORE_ADDR addr; | |
223 | CORE_ADDR pc; | |
224 | { | |
225 | struct frame_info *fi; | |
226 | char *name; | |
227 | ||
228 | fi = (struct frame_info *) | |
229 | obstack_alloc (&frame_cache_obstack, | |
230 | sizeof (struct frame_info)); | |
231 | ||
232 | /* Arbitrary frame */ | |
233 | fi->saved_regs = NULL; | |
234 | fi->next = NULL; | |
235 | fi->prev = NULL; | |
236 | fi->frame = addr; | |
237 | fi->pc = pc; | |
238 | find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
239 | fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name); | |
240 | ||
241 | #ifdef INIT_EXTRA_FRAME_INFO | |
242 | INIT_EXTRA_FRAME_INFO (0, fi); | |
243 | #endif | |
244 | ||
245 | return fi; | |
246 | } | |
247 | ||
248 | /* Return the frame that called FI. | |
249 | If FI is the original frame (it has no caller), return 0. */ | |
250 | ||
251 | struct frame_info * | |
252 | get_prev_frame (frame) | |
253 | struct frame_info *frame; | |
254 | { | |
255 | return get_prev_frame_info (frame); | |
256 | } | |
257 | ||
258 | /* Return the frame that FRAME calls (NULL if FRAME is the innermost | |
259 | frame). */ | |
260 | ||
261 | struct frame_info * | |
262 | get_next_frame (frame) | |
263 | struct frame_info *frame; | |
264 | { | |
265 | return frame->next; | |
266 | } | |
267 | ||
268 | /* Flush the entire frame cache. */ | |
269 | ||
270 | void | |
271 | flush_cached_frames () | |
272 | { | |
273 | /* Since we can't really be sure what the first object allocated was */ | |
274 | obstack_free (&frame_cache_obstack, 0); | |
275 | obstack_init (&frame_cache_obstack); | |
276 | ||
277 | current_frame = NULL; /* Invalidate cache */ | |
278 | select_frame (NULL, -1); | |
279 | annotate_frames_invalid (); | |
280 | } | |
281 | ||
282 | /* Flush the frame cache, and start a new one if necessary. */ | |
283 | ||
284 | void | |
285 | reinit_frame_cache () | |
286 | { | |
287 | flush_cached_frames (); | |
288 | ||
289 | /* FIXME: The inferior_pid test is wrong if there is a corefile. */ | |
290 | if (inferior_pid != 0) | |
291 | { | |
292 | select_frame (get_current_frame (), 0); | |
293 | } | |
294 | } | |
295 | ||
296 | /* If a machine allows frameless functions, it should define a macro | |
297 | FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct | |
298 | frame_info for the frame, and FRAMELESS should be set to nonzero | |
299 | if it represents a frameless function invocation. */ | |
300 | ||
301 | /* Return nonzero if the function for this frame lacks a prologue. Many | |
302 | machines can define FRAMELESS_FUNCTION_INVOCATION to just call this | |
303 | function. */ | |
304 | ||
305 | int | |
306 | frameless_look_for_prologue (frame) | |
307 | struct frame_info *frame; | |
308 | { | |
309 | CORE_ADDR func_start, after_prologue; | |
310 | func_start = get_pc_function_start (frame->pc); | |
311 | if (func_start) | |
312 | { | |
313 | func_start += FUNCTION_START_OFFSET; | |
314 | after_prologue = func_start; | |
315 | #ifdef SKIP_PROLOGUE_FRAMELESS_P | |
316 | /* This is faster, since only care whether there *is* a prologue, | |
317 | not how long it is. */ | |
318 | SKIP_PROLOGUE_FRAMELESS_P (after_prologue); | |
319 | #else | |
320 | SKIP_PROLOGUE (after_prologue); | |
321 | #endif | |
322 | return after_prologue == func_start; | |
323 | } | |
324 | else if (frame->pc == 0) | |
325 | /* A frame with a zero PC is usually created by dereferencing a NULL | |
326 | function pointer, normally causing an immediate core dump of the | |
327 | inferior. Mark function as frameless, as the inferior has no chance | |
328 | of setting up a stack frame. */ | |
329 | return 1; | |
330 | else | |
331 | /* If we can't find the start of the function, we don't really | |
332 | know whether the function is frameless, but we should be able | |
333 | to get a reasonable (i.e. best we can do under the | |
334 | circumstances) backtrace by saying that it isn't. */ | |
335 | return 0; | |
336 | } | |
337 | ||
338 | /* Default a few macros that people seldom redefine. */ | |
339 | ||
340 | #if !defined (INIT_FRAME_PC) | |
341 | #define INIT_FRAME_PC(fromleaf, prev) \ | |
342 | prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \ | |
343 | prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); | |
344 | #endif | |
345 | ||
346 | #ifndef FRAME_CHAIN_COMBINE | |
347 | #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) | |
348 | #endif | |
349 | ||
350 | /* Return a structure containing various interesting information | |
351 | about the frame that called NEXT_FRAME. Returns NULL | |
352 | if there is no such frame. */ | |
353 | ||
354 | struct frame_info * | |
355 | get_prev_frame_info (next_frame) | |
356 | struct frame_info *next_frame; | |
357 | { | |
358 | CORE_ADDR address = 0; | |
359 | struct frame_info *prev; | |
360 | int fromleaf = 0; | |
361 | char *name; | |
362 | ||
363 | /* If the requested entry is in the cache, return it. | |
364 | Otherwise, figure out what the address should be for the entry | |
365 | we're about to add to the cache. */ | |
366 | ||
367 | if (!next_frame) | |
368 | { | |
369 | #if 0 | |
370 | /* This screws value_of_variable, which just wants a nice clean | |
371 | NULL return from block_innermost_frame if there are no frames. | |
372 | I don't think I've ever seen this message happen otherwise. | |
373 | And returning NULL here is a perfectly legitimate thing to do. */ | |
374 | if (!current_frame) | |
375 | { | |
376 | error ("You haven't set up a process's stack to examine."); | |
377 | } | |
378 | #endif | |
379 | ||
380 | return current_frame; | |
381 | } | |
382 | ||
383 | /* If we have the prev one, return it */ | |
384 | if (next_frame->prev) | |
385 | return next_frame->prev; | |
386 | ||
387 | /* On some machines it is possible to call a function without | |
388 | setting up a stack frame for it. On these machines, we | |
389 | define this macro to take two args; a frameinfo pointer | |
390 | identifying a frame and a variable to set or clear if it is | |
391 | or isn't leafless. */ | |
392 | #ifdef FRAMELESS_FUNCTION_INVOCATION | |
393 | /* Still don't want to worry about this except on the innermost | |
394 | frame. This macro will set FROMLEAF if NEXT_FRAME is a | |
395 | frameless function invocation. */ | |
396 | if (!(next_frame->next)) | |
397 | { | |
398 | FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf); | |
399 | if (fromleaf) | |
400 | address = FRAME_FP (next_frame); | |
401 | } | |
402 | #endif | |
403 | ||
404 | if (!fromleaf) | |
405 | { | |
406 | /* Two macros defined in tm.h specify the machine-dependent | |
407 | actions to be performed here. | |
408 | First, get the frame's chain-pointer. | |
409 | If that is zero, the frame is the outermost frame or a leaf | |
410 | called by the outermost frame. This means that if start | |
411 | calls main without a frame, we'll return 0 (which is fine | |
412 | anyway). | |
413 | ||
414 | Nope; there's a problem. This also returns when the current | |
415 | routine is a leaf of main. This is unacceptable. We move | |
416 | this to after the ffi test; I'd rather have backtraces from | |
417 | start go curfluy than have an abort called from main not show | |
418 | main. */ | |
419 | address = FRAME_CHAIN (next_frame); | |
420 | if (!FRAME_CHAIN_VALID (address, next_frame)) | |
421 | return 0; | |
422 | address = FRAME_CHAIN_COMBINE (address, next_frame); | |
423 | } | |
424 | if (address == 0) | |
425 | return 0; | |
426 | ||
427 | prev = (struct frame_info *) | |
428 | obstack_alloc (&frame_cache_obstack, | |
429 | sizeof (struct frame_info)); | |
430 | ||
431 | prev->saved_regs = NULL; | |
432 | if (next_frame) | |
433 | next_frame->prev = prev; | |
434 | prev->next = next_frame; | |
435 | prev->prev = (struct frame_info *) 0; | |
436 | prev->frame = address; | |
437 | prev->signal_handler_caller = 0; | |
438 | ||
439 | /* This change should not be needed, FIXME! We should | |
440 | determine whether any targets *need* INIT_FRAME_PC to happen | |
441 | after INIT_EXTRA_FRAME_INFO and come up with a simple way to | |
442 | express what goes on here. | |
443 | ||
444 | INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame | |
445 | (where the PC is already set up) and here (where it isn't). | |
446 | INIT_FRAME_PC is only called from here, always after | |
447 | INIT_EXTRA_FRAME_INFO. | |
448 | ||
449 | The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC | |
450 | value (which hasn't been set yet). Some other machines appear to | |
451 | require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo. | |
452 | ||
453 | We shouldn't need INIT_FRAME_PC_FIRST to add more complication to | |
454 | an already overcomplicated part of GDB. [email protected], 15Sep92. | |
455 | ||
456 | Assuming that some machines need INIT_FRAME_PC after | |
457 | INIT_EXTRA_FRAME_INFO, one possible scheme: | |
458 | ||
459 | SETUP_INNERMOST_FRAME() | |
460 | Default version is just create_new_frame (read_fp ()), | |
461 | read_pc ()). Machines with extra frame info would do that (or the | |
462 | local equivalent) and then set the extra fields. | |
463 | SETUP_ARBITRARY_FRAME(argc, argv) | |
464 | Only change here is that create_new_frame would no longer init extra | |
465 | frame info; SETUP_ARBITRARY_FRAME would have to do that. | |
466 | INIT_PREV_FRAME(fromleaf, prev) | |
467 | Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should | |
468 | also return a flag saying whether to keep the new frame, or | |
469 | whether to discard it, because on some machines (e.g. mips) it | |
470 | is really awkward to have FRAME_CHAIN_VALID called *before* | |
471 | INIT_EXTRA_FRAME_INFO (there is no good way to get information | |
472 | deduced in FRAME_CHAIN_VALID into the extra fields of the new frame). | |
473 | std_frame_pc(fromleaf, prev) | |
474 | This is the default setting for INIT_PREV_FRAME. It just does what | |
475 | the default INIT_FRAME_PC does. Some machines will call it from | |
476 | INIT_PREV_FRAME (either at the beginning, the end, or in the middle). | |
477 | Some machines won't use it. | |
478 | [email protected], 13Apr93, 31Jan94, 14Dec94. */ | |
479 | ||
480 | #ifdef INIT_FRAME_PC_FIRST | |
481 | INIT_FRAME_PC_FIRST (fromleaf, prev); | |
482 | #endif | |
483 | ||
484 | #ifdef INIT_EXTRA_FRAME_INFO | |
485 | INIT_EXTRA_FRAME_INFO(fromleaf, prev); | |
486 | #endif | |
487 | ||
488 | /* This entry is in the frame queue now, which is good since | |
489 | FRAME_SAVED_PC may use that queue to figure out its value | |
490 | (see tm-sparc.h). We want the pc saved in the inferior frame. */ | |
491 | INIT_FRAME_PC(fromleaf, prev); | |
492 | ||
493 | /* If ->frame and ->pc are unchanged, we are in the process of getting | |
494 | ourselves into an infinite backtrace. Some architectures check this | |
495 | in FRAME_CHAIN or thereabouts, but it seems like there is no reason | |
496 | this can't be an architecture-independent check. */ | |
497 | if (next_frame != NULL) | |
498 | { | |
499 | if (prev->frame == next_frame->frame | |
500 | && prev->pc == next_frame->pc) | |
501 | { | |
502 | next_frame->prev = NULL; | |
503 | obstack_free (&frame_cache_obstack, prev); | |
504 | return NULL; | |
505 | } | |
506 | } | |
507 | ||
508 | find_pc_partial_function (prev->pc, &name, | |
509 | (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
510 | if (IN_SIGTRAMP (prev->pc, name)) | |
511 | prev->signal_handler_caller = 1; | |
512 | ||
513 | return prev; | |
514 | } | |
515 | ||
516 | CORE_ADDR | |
517 | get_frame_pc (frame) | |
518 | struct frame_info *frame; | |
519 | { | |
520 | return frame->pc; | |
521 | } | |
522 | ||
523 | ||
524 | #ifdef FRAME_FIND_SAVED_REGS | |
525 | /* XXX - deprecated. This is a compatibility function for targets | |
526 | that do not yet implement FRAME_INIT_SAVED_REGS. */ | |
527 | /* Find the addresses in which registers are saved in FRAME. */ | |
528 | ||
529 | void | |
530 | get_frame_saved_regs (frame, saved_regs_addr) | |
531 | struct frame_info *frame; | |
532 | struct frame_saved_regs *saved_regs_addr; | |
533 | { | |
534 | if (frame->saved_regs == NULL) | |
535 | { | |
536 | frame->saved_regs = (CORE_ADDR*) | |
537 | frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); | |
538 | } | |
539 | if (saved_regs_addr == NULL) | |
540 | { | |
541 | struct frame_saved_regs saved_regs; | |
542 | FRAME_FIND_SAVED_REGS (frame, saved_regs); | |
543 | memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS); | |
544 | } | |
545 | else | |
546 | { | |
547 | FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr); | |
548 | memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS); | |
549 | } | |
550 | } | |
551 | #endif | |
552 | ||
553 | /* Return the innermost lexical block in execution | |
554 | in a specified stack frame. The frame address is assumed valid. */ | |
555 | ||
556 | struct block * | |
557 | get_frame_block (frame) | |
558 | struct frame_info *frame; | |
559 | { | |
560 | CORE_ADDR pc; | |
561 | ||
562 | pc = frame->pc; | |
563 | if (frame->next != 0 && frame->next->signal_handler_caller == 0) | |
564 | /* We are not in the innermost frame and we were not interrupted | |
565 | by a signal. We need to subtract one to get the correct block, | |
566 | in case the call instruction was the last instruction of the block. | |
567 | If there are any machines on which the saved pc does not point to | |
568 | after the call insn, we probably want to make frame->pc point after | |
569 | the call insn anyway. */ | |
570 | --pc; | |
571 | return block_for_pc (pc); | |
572 | } | |
573 | ||
574 | struct block * | |
575 | get_current_block () | |
576 | { | |
577 | return block_for_pc (read_pc ()); | |
578 | } | |
579 | ||
580 | CORE_ADDR | |
581 | get_pc_function_start (pc) | |
582 | CORE_ADDR pc; | |
583 | { | |
584 | register struct block *bl; | |
585 | register struct symbol *symbol; | |
586 | register struct minimal_symbol *msymbol; | |
587 | CORE_ADDR fstart; | |
588 | ||
589 | if ((bl = block_for_pc (pc)) != NULL && | |
590 | (symbol = block_function (bl)) != NULL) | |
591 | { | |
592 | bl = SYMBOL_BLOCK_VALUE (symbol); | |
593 | fstart = BLOCK_START (bl); | |
594 | } | |
595 | else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL) | |
596 | { | |
597 | fstart = SYMBOL_VALUE_ADDRESS (msymbol); | |
598 | } | |
599 | else | |
600 | { | |
601 | fstart = 0; | |
602 | } | |
603 | return (fstart); | |
604 | } | |
605 | ||
606 | /* Return the symbol for the function executing in frame FRAME. */ | |
607 | ||
608 | struct symbol * | |
609 | get_frame_function (frame) | |
610 | struct frame_info *frame; | |
611 | { | |
612 | register struct block *bl = get_frame_block (frame); | |
613 | if (bl == 0) | |
614 | return 0; | |
615 | return block_function (bl); | |
616 | } | |
617 | \f | |
618 | ||
619 | /* Return the blockvector immediately containing the innermost lexical block | |
620 | containing the specified pc value and section, or 0 if there is none. | |
621 | PINDEX is a pointer to the index value of the block. If PINDEX | |
622 | is NULL, we don't pass this information back to the caller. */ | |
623 | ||
624 | struct blockvector * | |
625 | blockvector_for_pc_sect (pc, section, pindex, symtab) | |
626 | register CORE_ADDR pc; | |
627 | struct sec *section; | |
628 | int *pindex; | |
629 | struct symtab *symtab; | |
630 | ||
631 | { | |
632 | register struct block *b; | |
633 | register int bot, top, half; | |
634 | struct blockvector *bl; | |
635 | ||
636 | if (symtab == 0) /* if no symtab specified by caller */ | |
637 | { | |
638 | /* First search all symtabs for one whose file contains our pc */ | |
639 | if ((symtab = find_pc_sect_symtab (pc, section)) == 0) | |
640 | return 0; | |
641 | } | |
642 | ||
643 | bl = BLOCKVECTOR (symtab); | |
644 | b = BLOCKVECTOR_BLOCK (bl, 0); | |
645 | ||
646 | /* Then search that symtab for the smallest block that wins. */ | |
647 | /* Use binary search to find the last block that starts before PC. */ | |
648 | ||
649 | bot = 0; | |
650 | top = BLOCKVECTOR_NBLOCKS (bl); | |
651 | ||
652 | while (top - bot > 1) | |
653 | { | |
654 | half = (top - bot + 1) >> 1; | |
655 | b = BLOCKVECTOR_BLOCK (bl, bot + half); | |
656 | if (BLOCK_START (b) <= pc) | |
657 | bot += half; | |
658 | else | |
659 | top = bot + half; | |
660 | } | |
661 | ||
662 | /* Now search backward for a block that ends after PC. */ | |
663 | ||
664 | while (bot >= 0) | |
665 | { | |
666 | b = BLOCKVECTOR_BLOCK (bl, bot); | |
667 | if (BLOCK_END (b) >= pc) | |
668 | { | |
669 | if (pindex) | |
670 | *pindex = bot; | |
671 | return bl; | |
672 | } | |
673 | bot--; | |
674 | } | |
675 | return 0; | |
676 | } | |
677 | ||
678 | /* Return the blockvector immediately containing the innermost lexical block | |
679 | containing the specified pc value, or 0 if there is none. | |
680 | Backward compatibility, no section. */ | |
681 | ||
682 | struct blockvector * | |
683 | blockvector_for_pc (pc, pindex) | |
684 | register CORE_ADDR pc; | |
685 | int *pindex; | |
686 | { | |
687 | return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc), | |
688 | pindex, NULL); | |
689 | } | |
690 | ||
691 | /* Return the innermost lexical block containing the specified pc value | |
692 | in the specified section, or 0 if there is none. */ | |
693 | ||
694 | struct block * | |
695 | block_for_pc_sect (pc, section) | |
696 | register CORE_ADDR pc; | |
697 | struct sec *section; | |
698 | { | |
699 | register struct blockvector *bl; | |
700 | int index; | |
701 | ||
702 | bl = blockvector_for_pc_sect (pc, section, &index, NULL); | |
703 | if (bl) | |
704 | return BLOCKVECTOR_BLOCK (bl, index); | |
705 | return 0; | |
706 | } | |
707 | ||
708 | /* Return the innermost lexical block containing the specified pc value, | |
709 | or 0 if there is none. Backward compatibility, no section. */ | |
710 | ||
711 | struct block * | |
712 | block_for_pc (pc) | |
713 | register CORE_ADDR pc; | |
714 | { | |
715 | return block_for_pc_sect (pc, find_pc_mapped_section (pc)); | |
716 | } | |
717 | ||
718 | /* Return the function containing pc value PC in section SECTION. | |
719 | Returns 0 if function is not known. */ | |
720 | ||
721 | struct symbol * | |
722 | find_pc_sect_function (pc, section) | |
723 | CORE_ADDR pc; | |
724 | struct sec *section; | |
725 | { | |
726 | register struct block *b = block_for_pc_sect (pc, section); | |
727 | if (b == 0) | |
728 | return 0; | |
729 | return block_function (b); | |
730 | } | |
731 | ||
732 | /* Return the function containing pc value PC. | |
733 | Returns 0 if function is not known. Backward compatibility, no section */ | |
734 | ||
735 | struct symbol * | |
736 | find_pc_function (pc) | |
737 | CORE_ADDR pc; | |
738 | { | |
739 | return find_pc_sect_function (pc, find_pc_mapped_section (pc)); | |
740 | } | |
741 | ||
742 | /* These variables are used to cache the most recent result | |
743 | * of find_pc_partial_function. */ | |
744 | ||
745 | static CORE_ADDR cache_pc_function_low = 0; | |
746 | static CORE_ADDR cache_pc_function_high = 0; | |
747 | static char *cache_pc_function_name = 0; | |
748 | static struct sec *cache_pc_function_section = NULL; | |
749 | ||
750 | /* Clear cache, e.g. when symbol table is discarded. */ | |
751 | ||
752 | void | |
753 | clear_pc_function_cache() | |
754 | { | |
755 | cache_pc_function_low = 0; | |
756 | cache_pc_function_high = 0; | |
757 | cache_pc_function_name = (char *)0; | |
758 | cache_pc_function_section = NULL; | |
759 | } | |
760 | ||
761 | /* Finds the "function" (text symbol) that is smaller than PC but | |
762 | greatest of all of the potential text symbols in SECTION. Sets | |
763 | *NAME and/or *ADDRESS conditionally if that pointer is non-null. | |
764 | If ENDADDR is non-null, then set *ENDADDR to be the end of the | |
765 | function (exclusive), but passing ENDADDR as non-null means that | |
766 | the function might cause symbols to be read. This function either | |
767 | succeeds or fails (not halfway succeeds). If it succeeds, it sets | |
768 | *NAME, *ADDRESS, and *ENDADDR to real information and returns 1. | |
769 | If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and | |
770 | returns 0. */ | |
771 | ||
772 | int | |
773 | find_pc_sect_partial_function (pc, section, name, address, endaddr) | |
774 | CORE_ADDR pc; | |
775 | asection *section; | |
776 | char **name; | |
777 | CORE_ADDR *address; | |
778 | CORE_ADDR *endaddr; | |
779 | { | |
780 | struct partial_symtab *pst; | |
781 | struct symbol *f; | |
782 | struct minimal_symbol *msymbol; | |
783 | struct partial_symbol *psb; | |
784 | struct obj_section *osect; | |
785 | int i; | |
786 | CORE_ADDR mapped_pc; | |
787 | ||
788 | mapped_pc = overlay_mapped_address (pc, section); | |
789 | ||
790 | if (mapped_pc >= cache_pc_function_low && | |
791 | mapped_pc < cache_pc_function_high && | |
792 | section == cache_pc_function_section) | |
793 | goto return_cached_value; | |
794 | ||
795 | /* If sigtramp is in the u area, it counts as a function (especially | |
796 | important for step_1). */ | |
797 | #if defined SIGTRAMP_START | |
798 | if (IN_SIGTRAMP (mapped_pc, (char *)NULL)) | |
799 | { | |
800 | cache_pc_function_low = SIGTRAMP_START (mapped_pc); | |
801 | cache_pc_function_high = SIGTRAMP_END (mapped_pc); | |
802 | cache_pc_function_name = "<sigtramp>"; | |
803 | cache_pc_function_section = section; | |
804 | goto return_cached_value; | |
805 | } | |
806 | #endif | |
807 | ||
808 | msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section); | |
809 | pst = find_pc_sect_psymtab (mapped_pc, section); | |
810 | if (pst) | |
811 | { | |
812 | /* Need to read the symbols to get a good value for the end address. */ | |
813 | if (endaddr != NULL && !pst->readin) | |
814 | { | |
815 | /* Need to get the terminal in case symbol-reading produces | |
816 | output. */ | |
817 | target_terminal_ours_for_output (); | |
818 | PSYMTAB_TO_SYMTAB (pst); | |
819 | } | |
820 | ||
821 | if (pst->readin) | |
822 | { | |
823 | /* Checking whether the msymbol has a larger value is for the | |
824 | "pathological" case mentioned in print_frame_info. */ | |
825 | f = find_pc_sect_function (mapped_pc, section); | |
826 | if (f != NULL | |
827 | && (msymbol == NULL | |
828 | || (BLOCK_START (SYMBOL_BLOCK_VALUE (f)) | |
829 | >= SYMBOL_VALUE_ADDRESS (msymbol)))) | |
830 | { | |
831 | cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f)); | |
832 | cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f)); | |
833 | cache_pc_function_name = SYMBOL_NAME (f); | |
834 | cache_pc_function_section = section; | |
835 | goto return_cached_value; | |
836 | } | |
837 | } | |
838 | else | |
839 | { | |
840 | /* Now that static symbols go in the minimal symbol table, perhaps | |
841 | we could just ignore the partial symbols. But at least for now | |
842 | we use the partial or minimal symbol, whichever is larger. */ | |
843 | psb = find_pc_sect_psymbol (pst, mapped_pc, section); | |
844 | ||
845 | if (psb | |
846 | && (msymbol == NULL || | |
847 | (SYMBOL_VALUE_ADDRESS (psb) | |
848 | >= SYMBOL_VALUE_ADDRESS (msymbol)))) | |
849 | { | |
850 | /* This case isn't being cached currently. */ | |
851 | if (address) | |
852 | *address = SYMBOL_VALUE_ADDRESS (psb); | |
853 | if (name) | |
854 | *name = SYMBOL_NAME (psb); | |
855 | /* endaddr non-NULL can't happen here. */ | |
856 | return 1; | |
857 | } | |
858 | } | |
859 | } | |
860 | ||
861 | /* Not in the normal symbol tables, see if the pc is in a known section. | |
862 | If it's not, then give up. This ensures that anything beyond the end | |
863 | of the text seg doesn't appear to be part of the last function in the | |
864 | text segment. */ | |
865 | ||
866 | osect = find_pc_sect_section (mapped_pc, section); | |
867 | ||
868 | if (!osect) | |
869 | msymbol = NULL; | |
870 | ||
871 | /* Must be in the minimal symbol table. */ | |
872 | if (msymbol == NULL) | |
873 | { | |
874 | /* No available symbol. */ | |
875 | if (name != NULL) | |
876 | *name = 0; | |
877 | if (address != NULL) | |
878 | *address = 0; | |
879 | if (endaddr != NULL) | |
880 | *endaddr = 0; | |
881 | return 0; | |
882 | } | |
883 | ||
884 | cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol); | |
885 | cache_pc_function_name = SYMBOL_NAME (msymbol); | |
886 | cache_pc_function_section = section; | |
887 | ||
888 | /* Use the lesser of the next minimal symbol in the same section, or | |
889 | the end of the section, as the end of the function. */ | |
890 | ||
891 | /* Step over other symbols at this same address, and symbols in | |
892 | other sections, to find the next symbol in this section with | |
893 | a different address. */ | |
894 | ||
895 | for (i=1; SYMBOL_NAME (msymbol+i) != NULL; i++) | |
896 | { | |
897 | if (SYMBOL_VALUE_ADDRESS (msymbol+i) != SYMBOL_VALUE_ADDRESS (msymbol) | |
898 | && SYMBOL_BFD_SECTION (msymbol+i) == SYMBOL_BFD_SECTION (msymbol)) | |
899 | break; | |
900 | } | |
901 | ||
902 | if (SYMBOL_NAME (msymbol + i) != NULL | |
903 | && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr) | |
904 | cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i); | |
905 | else | |
906 | /* We got the start address from the last msymbol in the objfile. | |
907 | So the end address is the end of the section. */ | |
908 | cache_pc_function_high = osect->endaddr; | |
909 | ||
910 | return_cached_value: | |
911 | ||
912 | if (address) | |
913 | { | |
914 | if (pc_in_unmapped_range (pc, section)) | |
915 | *address = overlay_unmapped_address (cache_pc_function_low, section); | |
916 | else | |
917 | *address = cache_pc_function_low; | |
918 | } | |
919 | ||
920 | if (name) | |
921 | *name = cache_pc_function_name; | |
922 | ||
923 | if (endaddr) | |
924 | { | |
925 | if (pc_in_unmapped_range (pc, section)) | |
926 | { | |
927 | /* Because the high address is actually beyond the end of | |
928 | the function (and therefore possibly beyond the end of | |
929 | the overlay), we must actually convert (high - 1) | |
930 | and then add one to that. */ | |
931 | ||
932 | *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1, | |
933 | section); | |
934 | } | |
935 | else | |
936 | *endaddr = cache_pc_function_high; | |
937 | } | |
938 | ||
939 | return 1; | |
940 | } | |
941 | ||
942 | /* Backward compatibility, no section argument */ | |
943 | ||
944 | int | |
945 | find_pc_partial_function (pc, name, address, endaddr) | |
946 | CORE_ADDR pc; | |
947 | char **name; | |
948 | CORE_ADDR *address; | |
949 | CORE_ADDR *endaddr; | |
950 | { | |
951 | asection *section; | |
952 | ||
953 | section = find_pc_overlay (pc); | |
954 | return find_pc_sect_partial_function (pc, section, name, address, endaddr); | |
955 | } | |
956 | ||
957 | /* Return the innermost stack frame executing inside of BLOCK, | |
958 | or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */ | |
959 | ||
960 | struct frame_info * | |
961 | block_innermost_frame (block) | |
962 | struct block *block; | |
963 | { | |
964 | struct frame_info *frame; | |
965 | register CORE_ADDR start; | |
966 | register CORE_ADDR end; | |
967 | ||
968 | if (block == NULL) | |
969 | return NULL; | |
970 | ||
971 | start = BLOCK_START (block); | |
972 | end = BLOCK_END (block); | |
973 | ||
974 | frame = NULL; | |
975 | while (1) | |
976 | { | |
977 | frame = get_prev_frame (frame); | |
978 | if (frame == NULL) | |
979 | return NULL; | |
980 | if (frame->pc >= start && frame->pc < end) | |
981 | return frame; | |
982 | } | |
983 | } | |
984 | ||
985 | /* Return the full FRAME which corresponds to the given CORE_ADDR | |
986 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
987 | ||
988 | struct frame_info * | |
989 | find_frame_addr_in_frame_chain (frame_addr) | |
990 | CORE_ADDR frame_addr; | |
991 | { | |
992 | struct frame_info *frame = NULL; | |
993 | ||
994 | if (frame_addr == (CORE_ADDR)0) | |
995 | return NULL; | |
996 | ||
997 | while (1) | |
998 | { | |
999 | frame = get_prev_frame (frame); | |
1000 | if (frame == NULL) | |
1001 | return NULL; | |
1002 | if (FRAME_FP (frame) == frame_addr) | |
1003 | return frame; | |
1004 | } | |
1005 | } | |
1006 | ||
1007 | #ifdef SIGCONTEXT_PC_OFFSET | |
1008 | /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */ | |
1009 | ||
1010 | CORE_ADDR | |
1011 | sigtramp_saved_pc (frame) | |
1012 | struct frame_info *frame; | |
1013 | { | |
1014 | CORE_ADDR sigcontext_addr; | |
1015 | char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; | |
1016 | int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT; | |
1017 | int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT; | |
1018 | ||
1019 | /* Get sigcontext address, it is the third parameter on the stack. */ | |
1020 | if (frame->next) | |
1021 | sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next) | |
1022 | + FRAME_ARGS_SKIP | |
1023 | + sigcontext_offs, | |
1024 | ptrbytes); | |
1025 | else | |
1026 | sigcontext_addr = read_memory_integer (read_register (SP_REGNUM) | |
1027 | + sigcontext_offs, | |
1028 | ptrbytes); | |
1029 | ||
1030 | /* Don't cause a memory_error when accessing sigcontext in case the stack | |
1031 | layout has changed or the stack is corrupt. */ | |
1032 | target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes); | |
1033 | return extract_unsigned_integer (buf, ptrbytes); | |
1034 | } | |
1035 | #endif /* SIGCONTEXT_PC_OFFSET */ | |
1036 | ||
1037 | #ifdef USE_GENERIC_DUMMY_FRAMES | |
1038 | ||
1039 | /* | |
1040 | * GENERIC DUMMY FRAMES | |
1041 | * | |
1042 | * The following code serves to maintain the dummy stack frames for | |
1043 | * inferior function calls (ie. when gdb calls into the inferior via | |
1044 | * call_function_by_hand). This code saves the machine state before | |
1045 | * the call in host memory, so we must maintain an independant stack | |
1046 | * and keep it consistant etc. I am attempting to make this code | |
1047 | * generic enough to be used by many targets. | |
1048 | * | |
1049 | * The cheapest and most generic way to do CALL_DUMMY on a new target | |
1050 | * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to | |
1051 | * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember | |
1052 | * to define PUSH_RETURN_ADDRESS, because no call instruction will be | |
1053 | * being executed by the target. Also FRAME_CHAIN_VALID as | |
1054 | * generic_frame_chain_valid. */ | |
1055 | ||
1056 | static struct dummy_frame *dummy_frame_stack = NULL; | |
1057 | ||
1058 | /* Function: find_dummy_frame(pc, fp, sp) | |
1059 | Search the stack of dummy frames for one matching the given PC, FP and SP. | |
1060 | This is the work-horse for pc_in_call_dummy and read_register_dummy */ | |
1061 | ||
1062 | char * | |
1063 | generic_find_dummy_frame (pc, fp) | |
1064 | CORE_ADDR pc; | |
1065 | CORE_ADDR fp; | |
1066 | { | |
1067 | struct dummy_frame * dummyframe; | |
1068 | ||
1069 | if (pc != entry_point_address ()) | |
1070 | return 0; | |
1071 | ||
1072 | for (dummyframe = dummy_frame_stack; dummyframe != NULL; | |
1073 | dummyframe = dummyframe->next) | |
1074 | if (fp == dummyframe->fp || fp == dummyframe->sp) | |
1075 | /* The frame in question lies between the saved fp and sp, inclusive */ | |
1076 | return dummyframe->regs; | |
1077 | ||
1078 | return 0; | |
1079 | } | |
1080 | ||
1081 | /* Function: pc_in_call_dummy (pc, fp) | |
1082 | Return true if this is a dummy frame created by gdb for an inferior call */ | |
1083 | ||
1084 | int | |
1085 | generic_pc_in_call_dummy (pc, fp) | |
1086 | CORE_ADDR pc; | |
1087 | CORE_ADDR fp; | |
1088 | { | |
1089 | /* if find_dummy_frame succeeds, then PC is in a call dummy */ | |
1090 | return (generic_find_dummy_frame (pc, fp) != 0); | |
1091 | } | |
1092 | ||
1093 | /* Function: read_register_dummy | |
1094 | Find a saved register from before GDB calls a function in the inferior */ | |
1095 | ||
1096 | CORE_ADDR | |
1097 | generic_read_register_dummy (pc, fp, regno) | |
1098 | CORE_ADDR pc; | |
1099 | CORE_ADDR fp; | |
1100 | int regno; | |
1101 | { | |
1102 | char *dummy_regs = generic_find_dummy_frame (pc, fp); | |
1103 | ||
1104 | if (dummy_regs) | |
1105 | return extract_address (&dummy_regs[REGISTER_BYTE (regno)], | |
1106 | REGISTER_RAW_SIZE(regno)); | |
1107 | else | |
1108 | return 0; | |
1109 | } | |
1110 | ||
1111 | /* Save all the registers on the dummy frame stack. Most ports save the | |
1112 | registers on the target stack. This results in lots of unnecessary memory | |
1113 | references, which are slow when debugging via a serial line. Instead, we | |
1114 | save all the registers internally, and never write them to the stack. The | |
1115 | registers get restored when the called function returns to the entry point, | |
1116 | where a breakpoint is laying in wait. */ | |
1117 | ||
1118 | void | |
1119 | generic_push_dummy_frame () | |
1120 | { | |
1121 | struct dummy_frame *dummy_frame; | |
1122 | CORE_ADDR fp = (get_current_frame ())->frame; | |
1123 | ||
1124 | /* check to see if there are stale dummy frames, | |
1125 | perhaps left over from when a longjump took us out of a | |
1126 | function that was called by the debugger */ | |
1127 | ||
1128 | dummy_frame = dummy_frame_stack; | |
1129 | while (dummy_frame) | |
1130 | if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */ | |
1131 | { | |
1132 | dummy_frame_stack = dummy_frame->next; | |
1133 | free (dummy_frame); | |
1134 | dummy_frame = dummy_frame_stack; | |
1135 | } | |
1136 | else | |
1137 | dummy_frame = dummy_frame->next; | |
1138 | ||
1139 | dummy_frame = xmalloc (sizeof (struct dummy_frame)); | |
1140 | dummy_frame->pc = read_register (PC_REGNUM); | |
1141 | dummy_frame->sp = read_register (SP_REGNUM); | |
1142 | dummy_frame->fp = fp; | |
1143 | read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES); | |
1144 | dummy_frame->next = dummy_frame_stack; | |
1145 | dummy_frame_stack = dummy_frame; | |
1146 | } | |
1147 | ||
1148 | /* Function: pop_frame | |
1149 | Restore the machine state from either the saved dummy stack or a | |
1150 | real stack frame. */ | |
1151 | ||
1152 | void | |
1153 | generic_pop_current_frame (pop) | |
1154 | void (*pop) PARAMS ((struct frame_info *frame)); | |
1155 | { | |
1156 | struct frame_info *frame = get_current_frame (); | |
1157 | if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame)) | |
1158 | generic_pop_dummy_frame (); | |
1159 | else | |
1160 | pop (frame); | |
1161 | } | |
1162 | ||
1163 | /* Function: pop_dummy_frame | |
1164 | Restore the machine state from a saved dummy stack frame. */ | |
1165 | ||
1166 | void | |
1167 | generic_pop_dummy_frame () | |
1168 | { | |
1169 | struct dummy_frame *dummy_frame = dummy_frame_stack; | |
1170 | ||
1171 | /* FIXME: what if the first frame isn't the right one, eg.. | |
1172 | because one call-by-hand function has done a longjmp into another one? */ | |
1173 | ||
1174 | if (!dummy_frame) | |
1175 | error ("Can't pop dummy frame!"); | |
1176 | dummy_frame_stack = dummy_frame->next; | |
1177 | write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES); | |
1178 | flush_cached_frames (); | |
1179 | free (dummy_frame); | |
1180 | } | |
1181 | ||
1182 | /* Function: frame_chain_valid | |
1183 | Returns true for a user frame or a call_function_by_hand dummy frame, | |
1184 | and false for the CRT0 start-up frame. Purpose is to terminate backtrace */ | |
1185 | ||
1186 | int | |
1187 | generic_frame_chain_valid (fp, fi) | |
1188 | CORE_ADDR fp; | |
1189 | struct frame_info *fi; | |
1190 | { | |
1191 | if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp)) | |
1192 | return 1; /* don't prune CALL_DUMMY frames */ | |
1193 | else /* fall back to default algorithm (see frame.h) */ | |
1194 | return (fp != 0 | |
1195 | && (INNER_THAN (fi->frame, fp) || fi->frame == fp) | |
1196 | && !inside_entry_file (FRAME_SAVED_PC(fi))); | |
1197 | } | |
1198 | ||
1199 | /* Function: get_saved_register | |
1200 | Find register number REGNUM relative to FRAME and put its (raw, | |
1201 | target format) contents in *RAW_BUFFER. | |
1202 | ||
1203 | Set *OPTIMIZED if the variable was optimized out (and thus can't be | |
1204 | fetched). Note that this is never set to anything other than zero | |
1205 | in this implementation. | |
1206 | ||
1207 | Set *LVAL to lval_memory, lval_register, or not_lval, depending on | |
1208 | whether the value was fetched from memory, from a register, or in a | |
1209 | strange and non-modifiable way (e.g. a frame pointer which was | |
1210 | calculated rather than fetched). We will use not_lval for values | |
1211 | fetched from generic dummy frames. | |
1212 | ||
1213 | Set *ADDRP to the address, either in memory on as a REGISTER_BYTE | |
1214 | offset into the registers array. If the value is stored in a dummy | |
1215 | frame, set *ADDRP to zero. | |
1216 | ||
1217 | To use this implementation, define a function called | |
1218 | "get_saved_register" in your target code, which simply passes all | |
1219 | of its arguments to this function. | |
1220 | ||
1221 | The argument RAW_BUFFER must point to aligned memory. */ | |
1222 | ||
1223 | void | |
1224 | generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
1225 | char *raw_buffer; | |
1226 | int *optimized; | |
1227 | CORE_ADDR *addrp; | |
1228 | struct frame_info *frame; | |
1229 | int regnum; | |
1230 | enum lval_type *lval; | |
1231 | { | |
1232 | if (!target_has_registers) | |
1233 | error ("No registers."); | |
1234 | ||
1235 | /* Normal systems don't optimize out things with register numbers. */ | |
1236 | if (optimized != NULL) | |
1237 | *optimized = 0; | |
1238 | ||
1239 | if (addrp) /* default assumption: not found in memory */ | |
1240 | *addrp = 0; | |
1241 | ||
1242 | /* Note: since the current frame's registers could only have been | |
1243 | saved by frames INTERIOR TO the current frame, we skip examining | |
1244 | the current frame itself: otherwise, we would be getting the | |
1245 | previous frame's registers which were saved by the current frame. */ | |
1246 | ||
1247 | while (frame && ((frame = frame->next) != NULL)) | |
1248 | { | |
1249 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) | |
1250 | { | |
1251 | if (lval) /* found it in a CALL_DUMMY frame */ | |
1252 | *lval = not_lval; | |
1253 | if (raw_buffer) | |
1254 | memcpy (raw_buffer, | |
1255 | generic_find_dummy_frame (frame->pc, frame->frame) + | |
1256 | REGISTER_BYTE (regnum), | |
1257 | REGISTER_RAW_SIZE (regnum)); | |
1258 | return; | |
1259 | } | |
1260 | ||
1261 | FRAME_INIT_SAVED_REGS (frame); | |
1262 | if (frame->saved_regs != NULL | |
1263 | && frame->saved_regs[regnum] != 0) | |
1264 | { | |
1265 | if (lval) /* found it saved on the stack */ | |
1266 | *lval = lval_memory; | |
1267 | if (regnum == SP_REGNUM) | |
1268 | { | |
1269 | if (raw_buffer) /* SP register treated specially */ | |
1270 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), | |
1271 | frame->saved_regs[regnum]); | |
1272 | } | |
1273 | else | |
1274 | { | |
1275 | if (addrp) /* any other register */ | |
1276 | *addrp = frame->saved_regs[regnum]; | |
1277 | if (raw_buffer) | |
1278 | read_memory (frame->saved_regs[regnum], raw_buffer, | |
1279 | REGISTER_RAW_SIZE (regnum)); | |
1280 | } | |
1281 | return; | |
1282 | } | |
1283 | } | |
1284 | ||
1285 | /* If we get thru the loop to this point, it means the register was | |
1286 | not saved in any frame. Return the actual live-register value. */ | |
1287 | ||
1288 | if (lval) /* found it in a live register */ | |
1289 | *lval = lval_register; | |
1290 | if (addrp) | |
1291 | *addrp = REGISTER_BYTE (regnum); | |
1292 | if (raw_buffer) | |
1293 | read_register_gen (regnum, raw_buffer); | |
1294 | } | |
1295 | #endif /* USE_GENERIC_DUMMY_FRAMES */ | |
1296 | ||
1297 | void | |
1298 | _initialize_blockframe () | |
1299 | { | |
1300 | obstack_init (&frame_cache_obstack); | |
1301 | } |