]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
6aba47ca | 4 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
9b254dd1 | 5 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, |
0fb0cc75 | 6 | 2008, 2009 Free Software Foundation, Inc. |
c906108c | 7 | |
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 13 | (at your option) any later version. |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b | 20 | You should have received a copy of the GNU General Public License |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "gdb_string.h" | |
25 | #include <ctype.h> | |
26 | #include "symtab.h" | |
27 | #include "frame.h" | |
28 | #include "inferior.h" | |
60250e8b | 29 | #include "exceptions.h" |
c906108c | 30 | #include "breakpoint.h" |
03f2053f | 31 | #include "gdb_wait.h" |
c906108c SS |
32 | #include "gdbcore.h" |
33 | #include "gdbcmd.h" | |
210661e7 | 34 | #include "cli/cli-script.h" |
c906108c SS |
35 | #include "target.h" |
36 | #include "gdbthread.h" | |
37 | #include "annotate.h" | |
1adeb98a | 38 | #include "symfile.h" |
7a292a7a | 39 | #include "top.h" |
c906108c | 40 | #include <signal.h> |
2acceee2 | 41 | #include "inf-loop.h" |
4e052eda | 42 | #include "regcache.h" |
fd0407d6 | 43 | #include "value.h" |
06600e06 | 44 | #include "observer.h" |
f636b87d | 45 | #include "language.h" |
a77053c2 | 46 | #include "solib.h" |
f17517ea | 47 | #include "main.h" |
9f976b41 | 48 | #include "gdb_assert.h" |
034dad6f | 49 | #include "mi/mi-common.h" |
4f8d22e3 | 50 | #include "event-top.h" |
96429cc8 | 51 | #include "record.h" |
edb3359d | 52 | #include "inline-frame.h" |
c906108c SS |
53 | |
54 | /* Prototypes for local functions */ | |
55 | ||
96baa820 | 56 | static void signals_info (char *, int); |
c906108c | 57 | |
96baa820 | 58 | static void handle_command (char *, int); |
c906108c | 59 | |
96baa820 | 60 | static void sig_print_info (enum target_signal); |
c906108c | 61 | |
96baa820 | 62 | static void sig_print_header (void); |
c906108c | 63 | |
74b7792f | 64 | static void resume_cleanups (void *); |
c906108c | 65 | |
96baa820 | 66 | static int hook_stop_stub (void *); |
c906108c | 67 | |
96baa820 JM |
68 | static int restore_selected_frame (void *); |
69 | ||
70 | static void build_infrun (void); | |
71 | ||
4ef3f3be | 72 | static int follow_fork (void); |
96baa820 JM |
73 | |
74 | static void set_schedlock_func (char *args, int from_tty, | |
488f131b | 75 | struct cmd_list_element *c); |
96baa820 | 76 | |
4e1c45ea | 77 | static int currently_stepping (struct thread_info *tp); |
96baa820 | 78 | |
b3444185 PA |
79 | static int currently_stepping_or_nexting_callback (struct thread_info *tp, |
80 | void *data); | |
a7212384 | 81 | |
96baa820 JM |
82 | static void xdb_handle_command (char *args, int from_tty); |
83 | ||
6a6b96b9 | 84 | static int prepare_to_proceed (int); |
ea67f13b | 85 | |
96baa820 | 86 | void _initialize_infrun (void); |
43ff13b4 | 87 | |
e58b0e63 PA |
88 | void nullify_last_target_wait_ptid (void); |
89 | ||
5fbbeb29 CF |
90 | /* When set, stop the 'step' command if we enter a function which has |
91 | no line number information. The normal behavior is that we step | |
92 | over such function. */ | |
93 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
94 | static void |
95 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
96 | struct cmd_list_element *c, const char *value) | |
97 | { | |
98 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
99 | } | |
5fbbeb29 | 100 | |
43ff13b4 | 101 | /* In asynchronous mode, but simulating synchronous execution. */ |
96baa820 | 102 | |
43ff13b4 JM |
103 | int sync_execution = 0; |
104 | ||
c906108c SS |
105 | /* wait_for_inferior and normal_stop use this to notify the user |
106 | when the inferior stopped in a different thread than it had been | |
96baa820 JM |
107 | running in. */ |
108 | ||
39f77062 | 109 | static ptid_t previous_inferior_ptid; |
7a292a7a | 110 | |
237fc4c9 PA |
111 | int debug_displaced = 0; |
112 | static void | |
113 | show_debug_displaced (struct ui_file *file, int from_tty, | |
114 | struct cmd_list_element *c, const char *value) | |
115 | { | |
116 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
117 | } | |
118 | ||
527159b7 | 119 | static int debug_infrun = 0; |
920d2a44 AC |
120 | static void |
121 | show_debug_infrun (struct ui_file *file, int from_tty, | |
122 | struct cmd_list_element *c, const char *value) | |
123 | { | |
124 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
125 | } | |
527159b7 | 126 | |
d4f3574e SS |
127 | /* If the program uses ELF-style shared libraries, then calls to |
128 | functions in shared libraries go through stubs, which live in a | |
129 | table called the PLT (Procedure Linkage Table). The first time the | |
130 | function is called, the stub sends control to the dynamic linker, | |
131 | which looks up the function's real address, patches the stub so | |
132 | that future calls will go directly to the function, and then passes | |
133 | control to the function. | |
134 | ||
135 | If we are stepping at the source level, we don't want to see any of | |
136 | this --- we just want to skip over the stub and the dynamic linker. | |
137 | The simple approach is to single-step until control leaves the | |
138 | dynamic linker. | |
139 | ||
ca557f44 AC |
140 | However, on some systems (e.g., Red Hat's 5.2 distribution) the |
141 | dynamic linker calls functions in the shared C library, so you | |
142 | can't tell from the PC alone whether the dynamic linker is still | |
143 | running. In this case, we use a step-resume breakpoint to get us | |
144 | past the dynamic linker, as if we were using "next" to step over a | |
145 | function call. | |
d4f3574e | 146 | |
cfd8ab24 | 147 | in_solib_dynsym_resolve_code() says whether we're in the dynamic |
d4f3574e SS |
148 | linker code or not. Normally, this means we single-step. However, |
149 | if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an | |
150 | address where we can place a step-resume breakpoint to get past the | |
151 | linker's symbol resolution function. | |
152 | ||
cfd8ab24 | 153 | in_solib_dynsym_resolve_code() can generally be implemented in a |
d4f3574e SS |
154 | pretty portable way, by comparing the PC against the address ranges |
155 | of the dynamic linker's sections. | |
156 | ||
157 | SKIP_SOLIB_RESOLVER is generally going to be system-specific, since | |
158 | it depends on internal details of the dynamic linker. It's usually | |
159 | not too hard to figure out where to put a breakpoint, but it | |
160 | certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of | |
161 | sanity checking. If it can't figure things out, returning zero and | |
162 | getting the (possibly confusing) stepping behavior is better than | |
163 | signalling an error, which will obscure the change in the | |
164 | inferior's state. */ | |
c906108c | 165 | |
c906108c SS |
166 | /* This function returns TRUE if pc is the address of an instruction |
167 | that lies within the dynamic linker (such as the event hook, or the | |
168 | dld itself). | |
169 | ||
170 | This function must be used only when a dynamic linker event has | |
171 | been caught, and the inferior is being stepped out of the hook, or | |
172 | undefined results are guaranteed. */ | |
173 | ||
174 | #ifndef SOLIB_IN_DYNAMIC_LINKER | |
175 | #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0 | |
176 | #endif | |
177 | ||
c2c6d25f | 178 | |
7a292a7a SS |
179 | /* Convert the #defines into values. This is temporary until wfi control |
180 | flow is completely sorted out. */ | |
181 | ||
692590c1 MS |
182 | #ifndef CANNOT_STEP_HW_WATCHPOINTS |
183 | #define CANNOT_STEP_HW_WATCHPOINTS 0 | |
184 | #else | |
185 | #undef CANNOT_STEP_HW_WATCHPOINTS | |
186 | #define CANNOT_STEP_HW_WATCHPOINTS 1 | |
187 | #endif | |
188 | ||
c906108c SS |
189 | /* Tables of how to react to signals; the user sets them. */ |
190 | ||
191 | static unsigned char *signal_stop; | |
192 | static unsigned char *signal_print; | |
193 | static unsigned char *signal_program; | |
194 | ||
195 | #define SET_SIGS(nsigs,sigs,flags) \ | |
196 | do { \ | |
197 | int signum = (nsigs); \ | |
198 | while (signum-- > 0) \ | |
199 | if ((sigs)[signum]) \ | |
200 | (flags)[signum] = 1; \ | |
201 | } while (0) | |
202 | ||
203 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
204 | do { \ | |
205 | int signum = (nsigs); \ | |
206 | while (signum-- > 0) \ | |
207 | if ((sigs)[signum]) \ | |
208 | (flags)[signum] = 0; \ | |
209 | } while (0) | |
210 | ||
39f77062 KB |
211 | /* Value to pass to target_resume() to cause all threads to resume */ |
212 | ||
edb3359d | 213 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
214 | |
215 | /* Command list pointer for the "stop" placeholder. */ | |
216 | ||
217 | static struct cmd_list_element *stop_command; | |
218 | ||
c906108c SS |
219 | /* Function inferior was in as of last step command. */ |
220 | ||
221 | static struct symbol *step_start_function; | |
222 | ||
c906108c SS |
223 | /* Nonzero if we want to give control to the user when we're notified |
224 | of shared library events by the dynamic linker. */ | |
225 | static int stop_on_solib_events; | |
920d2a44 AC |
226 | static void |
227 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
228 | struct cmd_list_element *c, const char *value) | |
229 | { | |
230 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
231 | value); | |
232 | } | |
c906108c | 233 | |
c906108c SS |
234 | /* Nonzero means expecting a trace trap |
235 | and should stop the inferior and return silently when it happens. */ | |
236 | ||
237 | int stop_after_trap; | |
238 | ||
642fd101 DE |
239 | /* Save register contents here when executing a "finish" command or are |
240 | about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set. | |
c906108c SS |
241 | Thus this contains the return value from the called function (assuming |
242 | values are returned in a register). */ | |
243 | ||
72cec141 | 244 | struct regcache *stop_registers; |
c906108c | 245 | |
c906108c SS |
246 | /* Nonzero after stop if current stack frame should be printed. */ |
247 | ||
248 | static int stop_print_frame; | |
249 | ||
e02bc4cc | 250 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
251 | returned by target_wait()/deprecated_target_wait_hook(). This |
252 | information is returned by get_last_target_status(). */ | |
39f77062 | 253 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
254 | static struct target_waitstatus target_last_waitstatus; |
255 | ||
0d1e5fa7 PA |
256 | static void context_switch (ptid_t ptid); |
257 | ||
4e1c45ea | 258 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 PA |
259 | |
260 | void init_infwait_state (void); | |
a474d7c2 | 261 | |
53904c9e AC |
262 | static const char follow_fork_mode_child[] = "child"; |
263 | static const char follow_fork_mode_parent[] = "parent"; | |
264 | ||
488f131b | 265 | static const char *follow_fork_mode_kind_names[] = { |
53904c9e AC |
266 | follow_fork_mode_child, |
267 | follow_fork_mode_parent, | |
268 | NULL | |
ef346e04 | 269 | }; |
c906108c | 270 | |
53904c9e | 271 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
272 | static void |
273 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
274 | struct cmd_list_element *c, const char *value) | |
275 | { | |
276 | fprintf_filtered (file, _("\ | |
277 | Debugger response to a program call of fork or vfork is \"%s\".\n"), | |
278 | value); | |
279 | } | |
c906108c SS |
280 | \f |
281 | ||
e58b0e63 PA |
282 | /* Tell the target to follow the fork we're stopped at. Returns true |
283 | if the inferior should be resumed; false, if the target for some | |
284 | reason decided it's best not to resume. */ | |
285 | ||
6604731b | 286 | static int |
4ef3f3be | 287 | follow_fork (void) |
c906108c | 288 | { |
ea1dd7bc | 289 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
290 | int should_resume = 1; |
291 | struct thread_info *tp; | |
292 | ||
293 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
294 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
295 | parent thread structure's run control related fields, not just these. |
296 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
297 | struct breakpoint *step_resume_breakpoint = NULL; | |
298 | CORE_ADDR step_range_start = 0; | |
299 | CORE_ADDR step_range_end = 0; | |
300 | struct frame_id step_frame_id = { 0 }; | |
e58b0e63 PA |
301 | |
302 | if (!non_stop) | |
303 | { | |
304 | ptid_t wait_ptid; | |
305 | struct target_waitstatus wait_status; | |
306 | ||
307 | /* Get the last target status returned by target_wait(). */ | |
308 | get_last_target_status (&wait_ptid, &wait_status); | |
309 | ||
310 | /* If not stopped at a fork event, then there's nothing else to | |
311 | do. */ | |
312 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
313 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
314 | return 1; | |
315 | ||
316 | /* Check if we switched over from WAIT_PTID, since the event was | |
317 | reported. */ | |
318 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
319 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
320 | { | |
321 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
322 | target to follow it (in either direction). We'll | |
323 | afterwards refuse to resume, and inform the user what | |
324 | happened. */ | |
325 | switch_to_thread (wait_ptid); | |
326 | should_resume = 0; | |
327 | } | |
328 | } | |
329 | ||
330 | tp = inferior_thread (); | |
331 | ||
332 | /* If there were any forks/vforks that were caught and are now to be | |
333 | followed, then do so now. */ | |
334 | switch (tp->pending_follow.kind) | |
335 | { | |
336 | case TARGET_WAITKIND_FORKED: | |
337 | case TARGET_WAITKIND_VFORKED: | |
338 | { | |
339 | ptid_t parent, child; | |
340 | ||
341 | /* If the user did a next/step, etc, over a fork call, | |
342 | preserve the stepping state in the fork child. */ | |
343 | if (follow_child && should_resume) | |
344 | { | |
345 | step_resume_breakpoint | |
346 | = clone_momentary_breakpoint (tp->step_resume_breakpoint); | |
347 | step_range_start = tp->step_range_start; | |
348 | step_range_end = tp->step_range_end; | |
349 | step_frame_id = tp->step_frame_id; | |
350 | ||
351 | /* For now, delete the parent's sr breakpoint, otherwise, | |
352 | parent/child sr breakpoints are considered duplicates, | |
353 | and the child version will not be installed. Remove | |
354 | this when the breakpoints module becomes aware of | |
355 | inferiors and address spaces. */ | |
356 | delete_step_resume_breakpoint (tp); | |
357 | tp->step_range_start = 0; | |
358 | tp->step_range_end = 0; | |
359 | tp->step_frame_id = null_frame_id; | |
360 | } | |
361 | ||
362 | parent = inferior_ptid; | |
363 | child = tp->pending_follow.value.related_pid; | |
364 | ||
365 | /* Tell the target to do whatever is necessary to follow | |
366 | either parent or child. */ | |
367 | if (target_follow_fork (follow_child)) | |
368 | { | |
369 | /* Target refused to follow, or there's some other reason | |
370 | we shouldn't resume. */ | |
371 | should_resume = 0; | |
372 | } | |
373 | else | |
374 | { | |
375 | /* This pending follow fork event is now handled, one way | |
376 | or another. The previous selected thread may be gone | |
377 | from the lists by now, but if it is still around, need | |
378 | to clear the pending follow request. */ | |
e09875d4 | 379 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
380 | if (tp) |
381 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
382 | ||
383 | /* This makes sure we don't try to apply the "Switched | |
384 | over from WAIT_PID" logic above. */ | |
385 | nullify_last_target_wait_ptid (); | |
386 | ||
387 | /* If we followed the child, switch to it... */ | |
388 | if (follow_child) | |
389 | { | |
390 | switch_to_thread (child); | |
391 | ||
392 | /* ... and preserve the stepping state, in case the | |
393 | user was stepping over the fork call. */ | |
394 | if (should_resume) | |
395 | { | |
396 | tp = inferior_thread (); | |
397 | tp->step_resume_breakpoint = step_resume_breakpoint; | |
398 | tp->step_range_start = step_range_start; | |
399 | tp->step_range_end = step_range_end; | |
400 | tp->step_frame_id = step_frame_id; | |
401 | } | |
402 | else | |
403 | { | |
404 | /* If we get here, it was because we're trying to | |
405 | resume from a fork catchpoint, but, the user | |
406 | has switched threads away from the thread that | |
407 | forked. In that case, the resume command | |
408 | issued is most likely not applicable to the | |
409 | child, so just warn, and refuse to resume. */ | |
410 | warning (_("\ | |
411 | Not resuming: switched threads before following fork child.\n")); | |
412 | } | |
413 | ||
414 | /* Reset breakpoints in the child as appropriate. */ | |
415 | follow_inferior_reset_breakpoints (); | |
416 | } | |
417 | else | |
418 | switch_to_thread (parent); | |
419 | } | |
420 | } | |
421 | break; | |
422 | case TARGET_WAITKIND_SPURIOUS: | |
423 | /* Nothing to follow. */ | |
424 | break; | |
425 | default: | |
426 | internal_error (__FILE__, __LINE__, | |
427 | "Unexpected pending_follow.kind %d\n", | |
428 | tp->pending_follow.kind); | |
429 | break; | |
430 | } | |
c906108c | 431 | |
e58b0e63 | 432 | return should_resume; |
c906108c SS |
433 | } |
434 | ||
6604731b DJ |
435 | void |
436 | follow_inferior_reset_breakpoints (void) | |
c906108c | 437 | { |
4e1c45ea PA |
438 | struct thread_info *tp = inferior_thread (); |
439 | ||
6604731b DJ |
440 | /* Was there a step_resume breakpoint? (There was if the user |
441 | did a "next" at the fork() call.) If so, explicitly reset its | |
442 | thread number. | |
443 | ||
444 | step_resumes are a form of bp that are made to be per-thread. | |
445 | Since we created the step_resume bp when the parent process | |
446 | was being debugged, and now are switching to the child process, | |
447 | from the breakpoint package's viewpoint, that's a switch of | |
448 | "threads". We must update the bp's notion of which thread | |
449 | it is for, or it'll be ignored when it triggers. */ | |
450 | ||
4e1c45ea PA |
451 | if (tp->step_resume_breakpoint) |
452 | breakpoint_re_set_thread (tp->step_resume_breakpoint); | |
6604731b DJ |
453 | |
454 | /* Reinsert all breakpoints in the child. The user may have set | |
455 | breakpoints after catching the fork, in which case those | |
456 | were never set in the child, but only in the parent. This makes | |
457 | sure the inserted breakpoints match the breakpoint list. */ | |
458 | ||
459 | breakpoint_re_set (); | |
460 | insert_breakpoints (); | |
c906108c | 461 | } |
c906108c | 462 | |
1adeb98a FN |
463 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
464 | ||
c906108c | 465 | static void |
3a3e9ee3 | 466 | follow_exec (ptid_t pid, char *execd_pathname) |
c906108c | 467 | { |
7a292a7a | 468 | struct target_ops *tgt; |
4e1c45ea | 469 | struct thread_info *th = inferior_thread (); |
7a292a7a | 470 | |
c906108c SS |
471 | /* This is an exec event that we actually wish to pay attention to. |
472 | Refresh our symbol table to the newly exec'd program, remove any | |
473 | momentary bp's, etc. | |
474 | ||
475 | If there are breakpoints, they aren't really inserted now, | |
476 | since the exec() transformed our inferior into a fresh set | |
477 | of instructions. | |
478 | ||
479 | We want to preserve symbolic breakpoints on the list, since | |
480 | we have hopes that they can be reset after the new a.out's | |
481 | symbol table is read. | |
482 | ||
483 | However, any "raw" breakpoints must be removed from the list | |
484 | (e.g., the solib bp's), since their address is probably invalid | |
485 | now. | |
486 | ||
487 | And, we DON'T want to call delete_breakpoints() here, since | |
488 | that may write the bp's "shadow contents" (the instruction | |
489 | value that was overwritten witha TRAP instruction). Since | |
490 | we now have a new a.out, those shadow contents aren't valid. */ | |
491 | update_breakpoints_after_exec (); | |
492 | ||
493 | /* If there was one, it's gone now. We cannot truly step-to-next | |
494 | statement through an exec(). */ | |
4e1c45ea PA |
495 | th->step_resume_breakpoint = NULL; |
496 | th->step_range_start = 0; | |
497 | th->step_range_end = 0; | |
c906108c | 498 | |
a75724bc PA |
499 | /* The target reports the exec event to the main thread, even if |
500 | some other thread does the exec, and even if the main thread was | |
501 | already stopped --- if debugging in non-stop mode, it's possible | |
502 | the user had the main thread held stopped in the previous image | |
503 | --- release it now. This is the same behavior as step-over-exec | |
504 | with scheduler-locking on in all-stop mode. */ | |
505 | th->stop_requested = 0; | |
506 | ||
c906108c | 507 | /* What is this a.out's name? */ |
a3f17187 | 508 | printf_unfiltered (_("Executing new program: %s\n"), execd_pathname); |
c906108c SS |
509 | |
510 | /* We've followed the inferior through an exec. Therefore, the | |
511 | inferior has essentially been killed & reborn. */ | |
7a292a7a | 512 | |
c906108c | 513 | gdb_flush (gdb_stdout); |
6ca15a4b PA |
514 | |
515 | breakpoint_init_inferior (inf_execd); | |
e85a822c DJ |
516 | |
517 | if (gdb_sysroot && *gdb_sysroot) | |
518 | { | |
519 | char *name = alloca (strlen (gdb_sysroot) | |
520 | + strlen (execd_pathname) | |
521 | + 1); | |
522 | strcpy (name, gdb_sysroot); | |
523 | strcat (name, execd_pathname); | |
524 | execd_pathname = name; | |
525 | } | |
c906108c SS |
526 | |
527 | /* That a.out is now the one to use. */ | |
528 | exec_file_attach (execd_pathname, 0); | |
529 | ||
cce9b6bf PA |
530 | /* Reset the shared library package. This ensures that we get a |
531 | shlib event when the child reaches "_start", at which point the | |
532 | dld will have had a chance to initialize the child. */ | |
533 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
534 | we don't want those to be satisfied by the libraries of the | |
535 | previous incarnation of this process. */ | |
536 | no_shared_libraries (NULL, 0); | |
537 | ||
538 | /* Load the main file's symbols. */ | |
1adeb98a | 539 | symbol_file_add_main (execd_pathname, 0); |
c906108c | 540 | |
7a292a7a | 541 | #ifdef SOLIB_CREATE_INFERIOR_HOOK |
39f77062 | 542 | SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid)); |
a77053c2 MK |
543 | #else |
544 | solib_create_inferior_hook (); | |
7a292a7a | 545 | #endif |
c906108c SS |
546 | |
547 | /* Reinsert all breakpoints. (Those which were symbolic have | |
548 | been reset to the proper address in the new a.out, thanks | |
549 | to symbol_file_command...) */ | |
550 | insert_breakpoints (); | |
551 | ||
552 | /* The next resume of this inferior should bring it to the shlib | |
553 | startup breakpoints. (If the user had also set bp's on | |
554 | "main" from the old (parent) process, then they'll auto- | |
555 | matically get reset there in the new process.) */ | |
c906108c SS |
556 | } |
557 | ||
558 | /* Non-zero if we just simulating a single-step. This is needed | |
559 | because we cannot remove the breakpoints in the inferior process | |
560 | until after the `wait' in `wait_for_inferior'. */ | |
561 | static int singlestep_breakpoints_inserted_p = 0; | |
9f976b41 DJ |
562 | |
563 | /* The thread we inserted single-step breakpoints for. */ | |
564 | static ptid_t singlestep_ptid; | |
565 | ||
fd48f117 DJ |
566 | /* PC when we started this single-step. */ |
567 | static CORE_ADDR singlestep_pc; | |
568 | ||
9f976b41 DJ |
569 | /* If another thread hit the singlestep breakpoint, we save the original |
570 | thread here so that we can resume single-stepping it later. */ | |
571 | static ptid_t saved_singlestep_ptid; | |
572 | static int stepping_past_singlestep_breakpoint; | |
6a6b96b9 | 573 | |
ca67fcb8 VP |
574 | /* If not equal to null_ptid, this means that after stepping over breakpoint |
575 | is finished, we need to switch to deferred_step_ptid, and step it. | |
576 | ||
577 | The use case is when one thread has hit a breakpoint, and then the user | |
578 | has switched to another thread and issued 'step'. We need to step over | |
579 | breakpoint in the thread which hit the breakpoint, but then continue | |
580 | stepping the thread user has selected. */ | |
581 | static ptid_t deferred_step_ptid; | |
c906108c | 582 | \f |
237fc4c9 PA |
583 | /* Displaced stepping. */ |
584 | ||
585 | /* In non-stop debugging mode, we must take special care to manage | |
586 | breakpoints properly; in particular, the traditional strategy for | |
587 | stepping a thread past a breakpoint it has hit is unsuitable. | |
588 | 'Displaced stepping' is a tactic for stepping one thread past a | |
589 | breakpoint it has hit while ensuring that other threads running | |
590 | concurrently will hit the breakpoint as they should. | |
591 | ||
592 | The traditional way to step a thread T off a breakpoint in a | |
593 | multi-threaded program in all-stop mode is as follows: | |
594 | ||
595 | a0) Initially, all threads are stopped, and breakpoints are not | |
596 | inserted. | |
597 | a1) We single-step T, leaving breakpoints uninserted. | |
598 | a2) We insert breakpoints, and resume all threads. | |
599 | ||
600 | In non-stop debugging, however, this strategy is unsuitable: we | |
601 | don't want to have to stop all threads in the system in order to | |
602 | continue or step T past a breakpoint. Instead, we use displaced | |
603 | stepping: | |
604 | ||
605 | n0) Initially, T is stopped, other threads are running, and | |
606 | breakpoints are inserted. | |
607 | n1) We copy the instruction "under" the breakpoint to a separate | |
608 | location, outside the main code stream, making any adjustments | |
609 | to the instruction, register, and memory state as directed by | |
610 | T's architecture. | |
611 | n2) We single-step T over the instruction at its new location. | |
612 | n3) We adjust the resulting register and memory state as directed | |
613 | by T's architecture. This includes resetting T's PC to point | |
614 | back into the main instruction stream. | |
615 | n4) We resume T. | |
616 | ||
617 | This approach depends on the following gdbarch methods: | |
618 | ||
619 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
620 | indicate where to copy the instruction, and how much space must | |
621 | be reserved there. We use these in step n1. | |
622 | ||
623 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
624 | address, and makes any necessary adjustments to the instruction, | |
625 | register contents, and memory. We use this in step n1. | |
626 | ||
627 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
628 | we have successfuly single-stepped the instruction, to yield the | |
629 | same effect the instruction would have had if we had executed it | |
630 | at its original address. We use this in step n3. | |
631 | ||
632 | - gdbarch_displaced_step_free_closure provides cleanup. | |
633 | ||
634 | The gdbarch_displaced_step_copy_insn and | |
635 | gdbarch_displaced_step_fixup functions must be written so that | |
636 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
637 | single-stepping across the copied instruction, and then applying | |
638 | gdbarch_displaced_insn_fixup should have the same effects on the | |
639 | thread's memory and registers as stepping the instruction in place | |
640 | would have. Exactly which responsibilities fall to the copy and | |
641 | which fall to the fixup is up to the author of those functions. | |
642 | ||
643 | See the comments in gdbarch.sh for details. | |
644 | ||
645 | Note that displaced stepping and software single-step cannot | |
646 | currently be used in combination, although with some care I think | |
647 | they could be made to. Software single-step works by placing | |
648 | breakpoints on all possible subsequent instructions; if the | |
649 | displaced instruction is a PC-relative jump, those breakpoints | |
650 | could fall in very strange places --- on pages that aren't | |
651 | executable, or at addresses that are not proper instruction | |
652 | boundaries. (We do generally let other threads run while we wait | |
653 | to hit the software single-step breakpoint, and they might | |
654 | encounter such a corrupted instruction.) One way to work around | |
655 | this would be to have gdbarch_displaced_step_copy_insn fully | |
656 | simulate the effect of PC-relative instructions (and return NULL) | |
657 | on architectures that use software single-stepping. | |
658 | ||
659 | In non-stop mode, we can have independent and simultaneous step | |
660 | requests, so more than one thread may need to simultaneously step | |
661 | over a breakpoint. The current implementation assumes there is | |
662 | only one scratch space per process. In this case, we have to | |
663 | serialize access to the scratch space. If thread A wants to step | |
664 | over a breakpoint, but we are currently waiting for some other | |
665 | thread to complete a displaced step, we leave thread A stopped and | |
666 | place it in the displaced_step_request_queue. Whenever a displaced | |
667 | step finishes, we pick the next thread in the queue and start a new | |
668 | displaced step operation on it. See displaced_step_prepare and | |
669 | displaced_step_fixup for details. */ | |
670 | ||
671 | /* If this is not null_ptid, this is the thread carrying out a | |
672 | displaced single-step. This thread's state will require fixing up | |
673 | once it has completed its step. */ | |
674 | static ptid_t displaced_step_ptid; | |
675 | ||
676 | struct displaced_step_request | |
677 | { | |
678 | ptid_t ptid; | |
679 | struct displaced_step_request *next; | |
680 | }; | |
681 | ||
682 | /* A queue of pending displaced stepping requests. */ | |
683 | struct displaced_step_request *displaced_step_request_queue; | |
684 | ||
685 | /* The architecture the thread had when we stepped it. */ | |
686 | static struct gdbarch *displaced_step_gdbarch; | |
687 | ||
688 | /* The closure provided gdbarch_displaced_step_copy_insn, to be used | |
689 | for post-step cleanup. */ | |
690 | static struct displaced_step_closure *displaced_step_closure; | |
691 | ||
692 | /* The address of the original instruction, and the copy we made. */ | |
693 | static CORE_ADDR displaced_step_original, displaced_step_copy; | |
694 | ||
695 | /* Saved contents of copy area. */ | |
696 | static gdb_byte *displaced_step_saved_copy; | |
697 | ||
fff08868 HZ |
698 | /* Enum strings for "set|show displaced-stepping". */ |
699 | ||
700 | static const char can_use_displaced_stepping_auto[] = "auto"; | |
701 | static const char can_use_displaced_stepping_on[] = "on"; | |
702 | static const char can_use_displaced_stepping_off[] = "off"; | |
703 | static const char *can_use_displaced_stepping_enum[] = | |
704 | { | |
705 | can_use_displaced_stepping_auto, | |
706 | can_use_displaced_stepping_on, | |
707 | can_use_displaced_stepping_off, | |
708 | NULL, | |
709 | }; | |
710 | ||
711 | /* If ON, and the architecture supports it, GDB will use displaced | |
712 | stepping to step over breakpoints. If OFF, or if the architecture | |
713 | doesn't support it, GDB will instead use the traditional | |
714 | hold-and-step approach. If AUTO (which is the default), GDB will | |
715 | decide which technique to use to step over breakpoints depending on | |
716 | which of all-stop or non-stop mode is active --- displaced stepping | |
717 | in non-stop mode; hold-and-step in all-stop mode. */ | |
718 | ||
719 | static const char *can_use_displaced_stepping = | |
720 | can_use_displaced_stepping_auto; | |
721 | ||
237fc4c9 PA |
722 | static void |
723 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
724 | struct cmd_list_element *c, | |
725 | const char *value) | |
726 | { | |
fff08868 HZ |
727 | if (can_use_displaced_stepping == can_use_displaced_stepping_auto) |
728 | fprintf_filtered (file, _("\ | |
729 | Debugger's willingness to use displaced stepping to step over \ | |
730 | breakpoints is %s (currently %s).\n"), | |
731 | value, non_stop ? "on" : "off"); | |
732 | else | |
733 | fprintf_filtered (file, _("\ | |
734 | Debugger's willingness to use displaced stepping to step over \ | |
735 | breakpoints is %s.\n"), value); | |
237fc4c9 PA |
736 | } |
737 | ||
fff08868 HZ |
738 | /* Return non-zero if displaced stepping can/should be used to step |
739 | over breakpoints. */ | |
740 | ||
237fc4c9 PA |
741 | static int |
742 | use_displaced_stepping (struct gdbarch *gdbarch) | |
743 | { | |
fff08868 HZ |
744 | return (((can_use_displaced_stepping == can_use_displaced_stepping_auto |
745 | && non_stop) | |
746 | || can_use_displaced_stepping == can_use_displaced_stepping_on) | |
96429cc8 HZ |
747 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
748 | && !RECORD_IS_USED); | |
237fc4c9 PA |
749 | } |
750 | ||
751 | /* Clean out any stray displaced stepping state. */ | |
752 | static void | |
753 | displaced_step_clear (void) | |
754 | { | |
755 | /* Indicate that there is no cleanup pending. */ | |
756 | displaced_step_ptid = null_ptid; | |
757 | ||
758 | if (displaced_step_closure) | |
759 | { | |
760 | gdbarch_displaced_step_free_closure (displaced_step_gdbarch, | |
761 | displaced_step_closure); | |
762 | displaced_step_closure = NULL; | |
763 | } | |
764 | } | |
765 | ||
766 | static void | |
9f5a595d | 767 | displaced_step_clear_cleanup (void *ignore) |
237fc4c9 | 768 | { |
9f5a595d | 769 | displaced_step_clear (); |
237fc4c9 PA |
770 | } |
771 | ||
772 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
773 | void | |
774 | displaced_step_dump_bytes (struct ui_file *file, | |
775 | const gdb_byte *buf, | |
776 | size_t len) | |
777 | { | |
778 | int i; | |
779 | ||
780 | for (i = 0; i < len; i++) | |
781 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
782 | fputs_unfiltered ("\n", file); | |
783 | } | |
784 | ||
785 | /* Prepare to single-step, using displaced stepping. | |
786 | ||
787 | Note that we cannot use displaced stepping when we have a signal to | |
788 | deliver. If we have a signal to deliver and an instruction to step | |
789 | over, then after the step, there will be no indication from the | |
790 | target whether the thread entered a signal handler or ignored the | |
791 | signal and stepped over the instruction successfully --- both cases | |
792 | result in a simple SIGTRAP. In the first case we mustn't do a | |
793 | fixup, and in the second case we must --- but we can't tell which. | |
794 | Comments in the code for 'random signals' in handle_inferior_event | |
795 | explain how we handle this case instead. | |
796 | ||
797 | Returns 1 if preparing was successful -- this thread is going to be | |
798 | stepped now; or 0 if displaced stepping this thread got queued. */ | |
799 | static int | |
800 | displaced_step_prepare (ptid_t ptid) | |
801 | { | |
ad53cd71 | 802 | struct cleanup *old_cleanups, *ignore_cleanups; |
237fc4c9 PA |
803 | struct regcache *regcache = get_thread_regcache (ptid); |
804 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
805 | CORE_ADDR original, copy; | |
806 | ULONGEST len; | |
807 | struct displaced_step_closure *closure; | |
808 | ||
809 | /* We should never reach this function if the architecture does not | |
810 | support displaced stepping. */ | |
811 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
812 | ||
813 | /* For the first cut, we're displaced stepping one thread at a | |
814 | time. */ | |
815 | ||
816 | if (!ptid_equal (displaced_step_ptid, null_ptid)) | |
817 | { | |
818 | /* Already waiting for a displaced step to finish. Defer this | |
819 | request and place in queue. */ | |
820 | struct displaced_step_request *req, *new_req; | |
821 | ||
822 | if (debug_displaced) | |
823 | fprintf_unfiltered (gdb_stdlog, | |
824 | "displaced: defering step of %s\n", | |
825 | target_pid_to_str (ptid)); | |
826 | ||
827 | new_req = xmalloc (sizeof (*new_req)); | |
828 | new_req->ptid = ptid; | |
829 | new_req->next = NULL; | |
830 | ||
831 | if (displaced_step_request_queue) | |
832 | { | |
833 | for (req = displaced_step_request_queue; | |
834 | req && req->next; | |
835 | req = req->next) | |
836 | ; | |
837 | req->next = new_req; | |
838 | } | |
839 | else | |
840 | displaced_step_request_queue = new_req; | |
841 | ||
842 | return 0; | |
843 | } | |
844 | else | |
845 | { | |
846 | if (debug_displaced) | |
847 | fprintf_unfiltered (gdb_stdlog, | |
848 | "displaced: stepping %s now\n", | |
849 | target_pid_to_str (ptid)); | |
850 | } | |
851 | ||
852 | displaced_step_clear (); | |
853 | ||
ad53cd71 PA |
854 | old_cleanups = save_inferior_ptid (); |
855 | inferior_ptid = ptid; | |
856 | ||
515630c5 | 857 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
858 | |
859 | copy = gdbarch_displaced_step_location (gdbarch); | |
860 | len = gdbarch_max_insn_length (gdbarch); | |
861 | ||
862 | /* Save the original contents of the copy area. */ | |
863 | displaced_step_saved_copy = xmalloc (len); | |
ad53cd71 PA |
864 | ignore_cleanups = make_cleanup (free_current_contents, |
865 | &displaced_step_saved_copy); | |
237fc4c9 PA |
866 | read_memory (copy, displaced_step_saved_copy, len); |
867 | if (debug_displaced) | |
868 | { | |
5af949e3 UW |
869 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
870 | paddress (gdbarch, copy)); | |
237fc4c9 PA |
871 | displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len); |
872 | }; | |
873 | ||
874 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 875 | original, copy, regcache); |
237fc4c9 PA |
876 | |
877 | /* We don't support the fully-simulated case at present. */ | |
878 | gdb_assert (closure); | |
879 | ||
9f5a595d UW |
880 | /* Save the information we need to fix things up if the step |
881 | succeeds. */ | |
882 | displaced_step_ptid = ptid; | |
883 | displaced_step_gdbarch = gdbarch; | |
884 | displaced_step_closure = closure; | |
885 | displaced_step_original = original; | |
886 | displaced_step_copy = copy; | |
887 | ||
888 | make_cleanup (displaced_step_clear_cleanup, 0); | |
237fc4c9 PA |
889 | |
890 | /* Resume execution at the copy. */ | |
515630c5 | 891 | regcache_write_pc (regcache, copy); |
237fc4c9 | 892 | |
ad53cd71 PA |
893 | discard_cleanups (ignore_cleanups); |
894 | ||
895 | do_cleanups (old_cleanups); | |
237fc4c9 PA |
896 | |
897 | if (debug_displaced) | |
5af949e3 UW |
898 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
899 | paddress (gdbarch, copy)); | |
237fc4c9 | 900 | |
237fc4c9 PA |
901 | return 1; |
902 | } | |
903 | ||
237fc4c9 PA |
904 | static void |
905 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len) | |
906 | { | |
907 | struct cleanup *ptid_cleanup = save_inferior_ptid (); | |
908 | inferior_ptid = ptid; | |
909 | write_memory (memaddr, myaddr, len); | |
910 | do_cleanups (ptid_cleanup); | |
911 | } | |
912 | ||
913 | static void | |
914 | displaced_step_fixup (ptid_t event_ptid, enum target_signal signal) | |
915 | { | |
916 | struct cleanup *old_cleanups; | |
917 | ||
918 | /* Was this event for the pid we displaced? */ | |
919 | if (ptid_equal (displaced_step_ptid, null_ptid) | |
920 | || ! ptid_equal (displaced_step_ptid, event_ptid)) | |
921 | return; | |
922 | ||
923 | old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0); | |
924 | ||
925 | /* Restore the contents of the copy area. */ | |
926 | { | |
927 | ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch); | |
928 | write_memory_ptid (displaced_step_ptid, displaced_step_copy, | |
929 | displaced_step_saved_copy, len); | |
930 | if (debug_displaced) | |
5af949e3 UW |
931 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n", |
932 | paddress (displaced_step_gdbarch, | |
933 | displaced_step_copy)); | |
237fc4c9 PA |
934 | } |
935 | ||
936 | /* Did the instruction complete successfully? */ | |
937 | if (signal == TARGET_SIGNAL_TRAP) | |
938 | { | |
939 | /* Fix up the resulting state. */ | |
940 | gdbarch_displaced_step_fixup (displaced_step_gdbarch, | |
941 | displaced_step_closure, | |
942 | displaced_step_original, | |
943 | displaced_step_copy, | |
944 | get_thread_regcache (displaced_step_ptid)); | |
945 | } | |
946 | else | |
947 | { | |
948 | /* Since the instruction didn't complete, all we can do is | |
949 | relocate the PC. */ | |
515630c5 UW |
950 | struct regcache *regcache = get_thread_regcache (event_ptid); |
951 | CORE_ADDR pc = regcache_read_pc (regcache); | |
237fc4c9 | 952 | pc = displaced_step_original + (pc - displaced_step_copy); |
515630c5 | 953 | regcache_write_pc (regcache, pc); |
237fc4c9 PA |
954 | } |
955 | ||
956 | do_cleanups (old_cleanups); | |
957 | ||
1c5cfe86 PA |
958 | displaced_step_ptid = null_ptid; |
959 | ||
237fc4c9 PA |
960 | /* Are there any pending displaced stepping requests? If so, run |
961 | one now. */ | |
1c5cfe86 | 962 | while (displaced_step_request_queue) |
237fc4c9 PA |
963 | { |
964 | struct displaced_step_request *head; | |
965 | ptid_t ptid; | |
5af949e3 | 966 | struct regcache *regcache; |
1c5cfe86 | 967 | CORE_ADDR actual_pc; |
237fc4c9 PA |
968 | |
969 | head = displaced_step_request_queue; | |
970 | ptid = head->ptid; | |
971 | displaced_step_request_queue = head->next; | |
972 | xfree (head); | |
973 | ||
ad53cd71 PA |
974 | context_switch (ptid); |
975 | ||
5af949e3 UW |
976 | regcache = get_thread_regcache (ptid); |
977 | actual_pc = regcache_read_pc (regcache); | |
1c5cfe86 PA |
978 | |
979 | if (breakpoint_here_p (actual_pc)) | |
ad53cd71 | 980 | { |
1c5cfe86 PA |
981 | if (debug_displaced) |
982 | fprintf_unfiltered (gdb_stdlog, | |
983 | "displaced: stepping queued %s now\n", | |
984 | target_pid_to_str (ptid)); | |
985 | ||
986 | displaced_step_prepare (ptid); | |
987 | ||
988 | if (debug_displaced) | |
989 | { | |
5af949e3 | 990 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1c5cfe86 PA |
991 | gdb_byte buf[4]; |
992 | ||
5af949e3 UW |
993 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", |
994 | paddress (gdbarch, actual_pc)); | |
1c5cfe86 PA |
995 | read_memory (actual_pc, buf, sizeof (buf)); |
996 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
997 | } | |
998 | ||
999 | target_resume (ptid, 1, TARGET_SIGNAL_0); | |
1000 | ||
1001 | /* Done, we're stepping a thread. */ | |
1002 | break; | |
ad53cd71 | 1003 | } |
1c5cfe86 PA |
1004 | else |
1005 | { | |
1006 | int step; | |
1007 | struct thread_info *tp = inferior_thread (); | |
1008 | ||
1009 | /* The breakpoint we were sitting under has since been | |
1010 | removed. */ | |
1011 | tp->trap_expected = 0; | |
1012 | ||
1013 | /* Go back to what we were trying to do. */ | |
1014 | step = currently_stepping (tp); | |
ad53cd71 | 1015 | |
1c5cfe86 PA |
1016 | if (debug_displaced) |
1017 | fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n", | |
1018 | target_pid_to_str (tp->ptid), step); | |
1019 | ||
1020 | target_resume (ptid, step, TARGET_SIGNAL_0); | |
1021 | tp->stop_signal = TARGET_SIGNAL_0; | |
1022 | ||
1023 | /* This request was discarded. See if there's any other | |
1024 | thread waiting for its turn. */ | |
1025 | } | |
237fc4c9 PA |
1026 | } |
1027 | } | |
1028 | ||
5231c1fd PA |
1029 | /* Update global variables holding ptids to hold NEW_PTID if they were |
1030 | holding OLD_PTID. */ | |
1031 | static void | |
1032 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
1033 | { | |
1034 | struct displaced_step_request *it; | |
1035 | ||
1036 | if (ptid_equal (inferior_ptid, old_ptid)) | |
1037 | inferior_ptid = new_ptid; | |
1038 | ||
1039 | if (ptid_equal (singlestep_ptid, old_ptid)) | |
1040 | singlestep_ptid = new_ptid; | |
1041 | ||
1042 | if (ptid_equal (displaced_step_ptid, old_ptid)) | |
1043 | displaced_step_ptid = new_ptid; | |
1044 | ||
1045 | if (ptid_equal (deferred_step_ptid, old_ptid)) | |
1046 | deferred_step_ptid = new_ptid; | |
1047 | ||
1048 | for (it = displaced_step_request_queue; it; it = it->next) | |
1049 | if (ptid_equal (it->ptid, old_ptid)) | |
1050 | it->ptid = new_ptid; | |
1051 | } | |
1052 | ||
237fc4c9 PA |
1053 | \f |
1054 | /* Resuming. */ | |
c906108c SS |
1055 | |
1056 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 1057 | static void |
74b7792f | 1058 | resume_cleanups (void *ignore) |
c906108c SS |
1059 | { |
1060 | normal_stop (); | |
1061 | } | |
1062 | ||
53904c9e AC |
1063 | static const char schedlock_off[] = "off"; |
1064 | static const char schedlock_on[] = "on"; | |
1065 | static const char schedlock_step[] = "step"; | |
488f131b | 1066 | static const char *scheduler_enums[] = { |
ef346e04 AC |
1067 | schedlock_off, |
1068 | schedlock_on, | |
1069 | schedlock_step, | |
1070 | NULL | |
1071 | }; | |
920d2a44 AC |
1072 | static const char *scheduler_mode = schedlock_off; |
1073 | static void | |
1074 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
1075 | struct cmd_list_element *c, const char *value) | |
1076 | { | |
1077 | fprintf_filtered (file, _("\ | |
1078 | Mode for locking scheduler during execution is \"%s\".\n"), | |
1079 | value); | |
1080 | } | |
c906108c SS |
1081 | |
1082 | static void | |
96baa820 | 1083 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 1084 | { |
eefe576e AC |
1085 | if (!target_can_lock_scheduler) |
1086 | { | |
1087 | scheduler_mode = schedlock_off; | |
1088 | error (_("Target '%s' cannot support this command."), target_shortname); | |
1089 | } | |
c906108c SS |
1090 | } |
1091 | ||
d4db2f36 PA |
1092 | /* True if execution commands resume all threads of all processes by |
1093 | default; otherwise, resume only threads of the current inferior | |
1094 | process. */ | |
1095 | int sched_multi = 0; | |
1096 | ||
2facfe5c DD |
1097 | /* Try to setup for software single stepping over the specified location. |
1098 | Return 1 if target_resume() should use hardware single step. | |
1099 | ||
1100 | GDBARCH the current gdbarch. | |
1101 | PC the location to step over. */ | |
1102 | ||
1103 | static int | |
1104 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1105 | { | |
1106 | int hw_step = 1; | |
1107 | ||
1108 | if (gdbarch_software_single_step_p (gdbarch) | |
1109 | && gdbarch_software_single_step (gdbarch, get_current_frame ())) | |
1110 | { | |
1111 | hw_step = 0; | |
1112 | /* Do not pull these breakpoints until after a `wait' in | |
1113 | `wait_for_inferior' */ | |
1114 | singlestep_breakpoints_inserted_p = 1; | |
1115 | singlestep_ptid = inferior_ptid; | |
1116 | singlestep_pc = pc; | |
1117 | } | |
1118 | return hw_step; | |
1119 | } | |
c906108c SS |
1120 | |
1121 | /* Resume the inferior, but allow a QUIT. This is useful if the user | |
1122 | wants to interrupt some lengthy single-stepping operation | |
1123 | (for child processes, the SIGINT goes to the inferior, and so | |
1124 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
1125 | other targets, that's not true). | |
1126 | ||
1127 | STEP nonzero if we should step (zero to continue instead). | |
1128 | SIG is the signal to give the inferior (zero for none). */ | |
1129 | void | |
96baa820 | 1130 | resume (int step, enum target_signal sig) |
c906108c SS |
1131 | { |
1132 | int should_resume = 1; | |
74b7792f | 1133 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
515630c5 UW |
1134 | struct regcache *regcache = get_current_regcache (); |
1135 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
4e1c45ea | 1136 | struct thread_info *tp = inferior_thread (); |
515630c5 | 1137 | CORE_ADDR pc = regcache_read_pc (regcache); |
c7e8a53c | 1138 | |
c906108c SS |
1139 | QUIT; |
1140 | ||
527159b7 | 1141 | if (debug_infrun) |
237fc4c9 PA |
1142 | fprintf_unfiltered (gdb_stdlog, |
1143 | "infrun: resume (step=%d, signal=%d), " | |
4e1c45ea PA |
1144 | "trap_expected=%d\n", |
1145 | step, sig, tp->trap_expected); | |
c906108c | 1146 | |
692590c1 MS |
1147 | /* Some targets (e.g. Solaris x86) have a kernel bug when stepping |
1148 | over an instruction that causes a page fault without triggering | |
1149 | a hardware watchpoint. The kernel properly notices that it shouldn't | |
1150 | stop, because the hardware watchpoint is not triggered, but it forgets | |
1151 | the step request and continues the program normally. | |
1152 | Work around the problem by removing hardware watchpoints if a step is | |
1153 | requested, GDB will check for a hardware watchpoint trigger after the | |
1154 | step anyway. */ | |
c36b740a | 1155 | if (CANNOT_STEP_HW_WATCHPOINTS && step) |
692590c1 | 1156 | remove_hw_watchpoints (); |
488f131b | 1157 | |
692590c1 | 1158 | |
c2c6d25f JM |
1159 | /* Normally, by the time we reach `resume', the breakpoints are either |
1160 | removed or inserted, as appropriate. The exception is if we're sitting | |
1161 | at a permanent breakpoint; we need to step over it, but permanent | |
1162 | breakpoints can't be removed. So we have to test for it here. */ | |
237fc4c9 | 1163 | if (breakpoint_here_p (pc) == permanent_breakpoint_here) |
6d350bb5 | 1164 | { |
515630c5 UW |
1165 | if (gdbarch_skip_permanent_breakpoint_p (gdbarch)) |
1166 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
6d350bb5 UW |
1167 | else |
1168 | error (_("\ | |
1169 | The program is stopped at a permanent breakpoint, but GDB does not know\n\ | |
1170 | how to step past a permanent breakpoint on this architecture. Try using\n\ | |
1171 | a command like `return' or `jump' to continue execution.")); | |
1172 | } | |
c2c6d25f | 1173 | |
237fc4c9 PA |
1174 | /* If enabled, step over breakpoints by executing a copy of the |
1175 | instruction at a different address. | |
1176 | ||
1177 | We can't use displaced stepping when we have a signal to deliver; | |
1178 | the comments for displaced_step_prepare explain why. The | |
1179 | comments in the handle_inferior event for dealing with 'random | |
1180 | signals' explain what we do instead. */ | |
515630c5 | 1181 | if (use_displaced_stepping (gdbarch) |
4e1c45ea | 1182 | && tp->trap_expected |
237fc4c9 PA |
1183 | && sig == TARGET_SIGNAL_0) |
1184 | { | |
1185 | if (!displaced_step_prepare (inferior_ptid)) | |
d56b7306 VP |
1186 | { |
1187 | /* Got placed in displaced stepping queue. Will be resumed | |
1188 | later when all the currently queued displaced stepping | |
7f7efbd9 VP |
1189 | requests finish. The thread is not executing at this point, |
1190 | and the call to set_executing will be made later. But we | |
1191 | need to call set_running here, since from frontend point of view, | |
1192 | the thread is running. */ | |
1193 | set_running (inferior_ptid, 1); | |
d56b7306 VP |
1194 | discard_cleanups (old_cleanups); |
1195 | return; | |
1196 | } | |
237fc4c9 PA |
1197 | } |
1198 | ||
2facfe5c DD |
1199 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
1200 | if (step) | |
1201 | step = maybe_software_singlestep (gdbarch, pc); | |
c906108c | 1202 | |
c906108c SS |
1203 | if (should_resume) |
1204 | { | |
39f77062 | 1205 | ptid_t resume_ptid; |
dfcd3bfb | 1206 | |
cd76b0b7 VP |
1207 | /* If STEP is set, it's a request to use hardware stepping |
1208 | facilities. But in that case, we should never | |
1209 | use singlestep breakpoint. */ | |
1210 | gdb_assert (!(singlestep_breakpoints_inserted_p && step)); | |
1211 | ||
d4db2f36 PA |
1212 | /* Decide the set of threads to ask the target to resume. Start |
1213 | by assuming everything will be resumed, than narrow the set | |
1214 | by applying increasingly restricting conditions. */ | |
1215 | ||
1216 | /* By default, resume all threads of all processes. */ | |
1217 | resume_ptid = RESUME_ALL; | |
1218 | ||
1219 | /* Maybe resume only all threads of the current process. */ | |
1220 | if (!sched_multi && target_supports_multi_process ()) | |
1221 | { | |
1222 | resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
1223 | } | |
1224 | ||
1225 | /* Maybe resume a single thread after all. */ | |
cd76b0b7 VP |
1226 | if (singlestep_breakpoints_inserted_p |
1227 | && stepping_past_singlestep_breakpoint) | |
c906108c | 1228 | { |
cd76b0b7 VP |
1229 | /* The situation here is as follows. In thread T1 we wanted to |
1230 | single-step. Lacking hardware single-stepping we've | |
1231 | set breakpoint at the PC of the next instruction -- call it | |
1232 | P. After resuming, we've hit that breakpoint in thread T2. | |
1233 | Now we've removed original breakpoint, inserted breakpoint | |
1234 | at P+1, and try to step to advance T2 past breakpoint. | |
1235 | We need to step only T2, as if T1 is allowed to freely run, | |
1236 | it can run past P, and if other threads are allowed to run, | |
1237 | they can hit breakpoint at P+1, and nested hits of single-step | |
1238 | breakpoints is not something we'd want -- that's complicated | |
1239 | to support, and has no value. */ | |
1240 | resume_ptid = inferior_ptid; | |
1241 | } | |
d4db2f36 PA |
1242 | else if ((step || singlestep_breakpoints_inserted_p) |
1243 | && tp->trap_expected) | |
cd76b0b7 | 1244 | { |
74960c60 VP |
1245 | /* We're allowing a thread to run past a breakpoint it has |
1246 | hit, by single-stepping the thread with the breakpoint | |
1247 | removed. In which case, we need to single-step only this | |
1248 | thread, and keep others stopped, as they can miss this | |
1249 | breakpoint if allowed to run. | |
1250 | ||
1251 | The current code actually removes all breakpoints when | |
1252 | doing this, not just the one being stepped over, so if we | |
1253 | let other threads run, we can actually miss any | |
1254 | breakpoint, not just the one at PC. */ | |
ef5cf84e | 1255 | resume_ptid = inferior_ptid; |
c906108c | 1256 | } |
d4db2f36 | 1257 | else if (non_stop) |
94cc34af PA |
1258 | { |
1259 | /* With non-stop mode on, threads are always handled | |
1260 | individually. */ | |
1261 | resume_ptid = inferior_ptid; | |
1262 | } | |
1263 | else if ((scheduler_mode == schedlock_on) | |
1264 | || (scheduler_mode == schedlock_step | |
1265 | && (step || singlestep_breakpoints_inserted_p))) | |
c906108c | 1266 | { |
ef5cf84e | 1267 | /* User-settable 'scheduler' mode requires solo thread resume. */ |
488f131b | 1268 | resume_ptid = inferior_ptid; |
c906108c | 1269 | } |
ef5cf84e | 1270 | |
515630c5 | 1271 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
c4ed33b9 AC |
1272 | { |
1273 | /* Most targets can step a breakpoint instruction, thus | |
1274 | executing it normally. But if this one cannot, just | |
1275 | continue and we will hit it anyway. */ | |
237fc4c9 | 1276 | if (step && breakpoint_inserted_here_p (pc)) |
c4ed33b9 AC |
1277 | step = 0; |
1278 | } | |
237fc4c9 PA |
1279 | |
1280 | if (debug_displaced | |
515630c5 | 1281 | && use_displaced_stepping (gdbarch) |
4e1c45ea | 1282 | && tp->trap_expected) |
237fc4c9 | 1283 | { |
515630c5 | 1284 | struct regcache *resume_regcache = get_thread_regcache (resume_ptid); |
5af949e3 | 1285 | struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache); |
515630c5 | 1286 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); |
237fc4c9 PA |
1287 | gdb_byte buf[4]; |
1288 | ||
5af949e3 UW |
1289 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", |
1290 | paddress (resume_gdbarch, actual_pc)); | |
237fc4c9 PA |
1291 | read_memory (actual_pc, buf, sizeof (buf)); |
1292 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
1293 | } | |
1294 | ||
e58b0e63 PA |
1295 | /* Install inferior's terminal modes. */ |
1296 | target_terminal_inferior (); | |
1297 | ||
2020b7ab PA |
1298 | /* Avoid confusing the next resume, if the next stop/resume |
1299 | happens to apply to another thread. */ | |
1300 | tp->stop_signal = TARGET_SIGNAL_0; | |
607cecd2 PA |
1301 | |
1302 | target_resume (resume_ptid, step, sig); | |
c906108c SS |
1303 | } |
1304 | ||
1305 | discard_cleanups (old_cleanups); | |
1306 | } | |
1307 | \f | |
237fc4c9 | 1308 | /* Proceeding. */ |
c906108c SS |
1309 | |
1310 | /* Clear out all variables saying what to do when inferior is continued. | |
1311 | First do this, then set the ones you want, then call `proceed'. */ | |
1312 | ||
a7212384 UW |
1313 | static void |
1314 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 1315 | { |
a7212384 UW |
1316 | if (debug_infrun) |
1317 | fprintf_unfiltered (gdb_stdlog, | |
1318 | "infrun: clear_proceed_status_thread (%s)\n", | |
1319 | target_pid_to_str (tp->ptid)); | |
d6b48e9c | 1320 | |
a7212384 UW |
1321 | tp->trap_expected = 0; |
1322 | tp->step_range_start = 0; | |
1323 | tp->step_range_end = 0; | |
1324 | tp->step_frame_id = null_frame_id; | |
edb3359d | 1325 | tp->step_stack_frame_id = null_frame_id; |
a7212384 UW |
1326 | tp->step_over_calls = STEP_OVER_UNDEBUGGABLE; |
1327 | tp->stop_requested = 0; | |
4e1c45ea | 1328 | |
a7212384 | 1329 | tp->stop_step = 0; |
32400beb | 1330 | |
a7212384 | 1331 | tp->proceed_to_finish = 0; |
414c69f7 | 1332 | |
a7212384 UW |
1333 | /* Discard any remaining commands or status from previous stop. */ |
1334 | bpstat_clear (&tp->stop_bpstat); | |
1335 | } | |
32400beb | 1336 | |
a7212384 UW |
1337 | static int |
1338 | clear_proceed_status_callback (struct thread_info *tp, void *data) | |
1339 | { | |
1340 | if (is_exited (tp->ptid)) | |
1341 | return 0; | |
d6b48e9c | 1342 | |
a7212384 UW |
1343 | clear_proceed_status_thread (tp); |
1344 | return 0; | |
1345 | } | |
1346 | ||
1347 | void | |
1348 | clear_proceed_status (void) | |
1349 | { | |
1350 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
1351 | { | |
1352 | struct inferior *inferior; | |
1353 | ||
1354 | if (non_stop) | |
1355 | { | |
1356 | /* If in non-stop mode, only delete the per-thread status | |
1357 | of the current thread. */ | |
1358 | clear_proceed_status_thread (inferior_thread ()); | |
1359 | } | |
1360 | else | |
1361 | { | |
1362 | /* In all-stop mode, delete the per-thread status of | |
1363 | *all* threads. */ | |
1364 | iterate_over_threads (clear_proceed_status_callback, NULL); | |
1365 | } | |
1366 | ||
d6b48e9c PA |
1367 | inferior = current_inferior (); |
1368 | inferior->stop_soon = NO_STOP_QUIETLY; | |
4e1c45ea PA |
1369 | } |
1370 | ||
c906108c | 1371 | stop_after_trap = 0; |
f3b1572e PA |
1372 | |
1373 | observer_notify_about_to_proceed (); | |
c906108c | 1374 | |
d5c31457 UW |
1375 | if (stop_registers) |
1376 | { | |
1377 | regcache_xfree (stop_registers); | |
1378 | stop_registers = NULL; | |
1379 | } | |
c906108c SS |
1380 | } |
1381 | ||
5a437975 DE |
1382 | /* Check the current thread against the thread that reported the most recent |
1383 | event. If a step-over is required return TRUE and set the current thread | |
1384 | to the old thread. Otherwise return FALSE. | |
1385 | ||
1386 | This should be suitable for any targets that support threads. */ | |
ea67f13b DJ |
1387 | |
1388 | static int | |
6a6b96b9 | 1389 | prepare_to_proceed (int step) |
ea67f13b DJ |
1390 | { |
1391 | ptid_t wait_ptid; | |
1392 | struct target_waitstatus wait_status; | |
5a437975 DE |
1393 | int schedlock_enabled; |
1394 | ||
1395 | /* With non-stop mode on, threads are always handled individually. */ | |
1396 | gdb_assert (! non_stop); | |
ea67f13b DJ |
1397 | |
1398 | /* Get the last target status returned by target_wait(). */ | |
1399 | get_last_target_status (&wait_ptid, &wait_status); | |
1400 | ||
6a6b96b9 | 1401 | /* Make sure we were stopped at a breakpoint. */ |
ea67f13b | 1402 | if (wait_status.kind != TARGET_WAITKIND_STOPPED |
6a6b96b9 | 1403 | || wait_status.value.sig != TARGET_SIGNAL_TRAP) |
ea67f13b DJ |
1404 | { |
1405 | return 0; | |
1406 | } | |
1407 | ||
5a437975 DE |
1408 | schedlock_enabled = (scheduler_mode == schedlock_on |
1409 | || (scheduler_mode == schedlock_step | |
1410 | && step)); | |
1411 | ||
d4db2f36 PA |
1412 | /* Don't switch over to WAIT_PTID if scheduler locking is on. */ |
1413 | if (schedlock_enabled) | |
1414 | return 0; | |
1415 | ||
1416 | /* Don't switch over if we're about to resume some other process | |
1417 | other than WAIT_PTID's, and schedule-multiple is off. */ | |
1418 | if (!sched_multi | |
1419 | && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid)) | |
1420 | return 0; | |
1421 | ||
6a6b96b9 | 1422 | /* Switched over from WAIT_PID. */ |
ea67f13b | 1423 | if (!ptid_equal (wait_ptid, minus_one_ptid) |
d4db2f36 | 1424 | && !ptid_equal (inferior_ptid, wait_ptid)) |
ea67f13b | 1425 | { |
515630c5 UW |
1426 | struct regcache *regcache = get_thread_regcache (wait_ptid); |
1427 | ||
1428 | if (breakpoint_here_p (regcache_read_pc (regcache))) | |
ea67f13b | 1429 | { |
515630c5 UW |
1430 | /* If stepping, remember current thread to switch back to. */ |
1431 | if (step) | |
1432 | deferred_step_ptid = inferior_ptid; | |
ea67f13b | 1433 | |
515630c5 UW |
1434 | /* Switch back to WAIT_PID thread. */ |
1435 | switch_to_thread (wait_ptid); | |
6a6b96b9 | 1436 | |
515630c5 UW |
1437 | /* We return 1 to indicate that there is a breakpoint here, |
1438 | so we need to step over it before continuing to avoid | |
1439 | hitting it straight away. */ | |
1440 | return 1; | |
1441 | } | |
ea67f13b DJ |
1442 | } |
1443 | ||
1444 | return 0; | |
ea67f13b | 1445 | } |
e4846b08 | 1446 | |
c906108c SS |
1447 | /* Basic routine for continuing the program in various fashions. |
1448 | ||
1449 | ADDR is the address to resume at, or -1 for resume where stopped. | |
1450 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 1451 | or -1 for act according to how it stopped. |
c906108c | 1452 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
1453 | -1 means return after that and print nothing. |
1454 | You should probably set various step_... variables | |
1455 | before calling here, if you are stepping. | |
c906108c SS |
1456 | |
1457 | You should call clear_proceed_status before calling proceed. */ | |
1458 | ||
1459 | void | |
96baa820 | 1460 | proceed (CORE_ADDR addr, enum target_signal siggnal, int step) |
c906108c | 1461 | { |
e58b0e63 PA |
1462 | struct regcache *regcache; |
1463 | struct gdbarch *gdbarch; | |
4e1c45ea | 1464 | struct thread_info *tp; |
e58b0e63 | 1465 | CORE_ADDR pc; |
c906108c SS |
1466 | int oneproc = 0; |
1467 | ||
e58b0e63 PA |
1468 | /* If we're stopped at a fork/vfork, follow the branch set by the |
1469 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
1470 | resuming the current thread. */ | |
1471 | if (!follow_fork ()) | |
1472 | { | |
1473 | /* The target for some reason decided not to resume. */ | |
1474 | normal_stop (); | |
1475 | return; | |
1476 | } | |
1477 | ||
1478 | regcache = get_current_regcache (); | |
1479 | gdbarch = get_regcache_arch (regcache); | |
1480 | pc = regcache_read_pc (regcache); | |
1481 | ||
c906108c | 1482 | if (step > 0) |
515630c5 | 1483 | step_start_function = find_pc_function (pc); |
c906108c SS |
1484 | if (step < 0) |
1485 | stop_after_trap = 1; | |
1486 | ||
2acceee2 | 1487 | if (addr == (CORE_ADDR) -1) |
c906108c | 1488 | { |
b2175913 MS |
1489 | if (pc == stop_pc && breakpoint_here_p (pc) |
1490 | && execution_direction != EXEC_REVERSE) | |
3352ef37 AC |
1491 | /* There is a breakpoint at the address we will resume at, |
1492 | step one instruction before inserting breakpoints so that | |
1493 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
1494 | breakpoint). |
1495 | ||
1496 | Note, we don't do this in reverse, because we won't | |
1497 | actually be executing the breakpoint insn anyway. | |
1498 | We'll be (un-)executing the previous instruction. */ | |
1499 | ||
c906108c | 1500 | oneproc = 1; |
515630c5 UW |
1501 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
1502 | && gdbarch_single_step_through_delay (gdbarch, | |
1503 | get_current_frame ())) | |
3352ef37 AC |
1504 | /* We stepped onto an instruction that needs to be stepped |
1505 | again before re-inserting the breakpoint, do so. */ | |
c906108c SS |
1506 | oneproc = 1; |
1507 | } | |
1508 | else | |
1509 | { | |
515630c5 | 1510 | regcache_write_pc (regcache, addr); |
c906108c SS |
1511 | } |
1512 | ||
527159b7 | 1513 | if (debug_infrun) |
8a9de0e4 | 1514 | fprintf_unfiltered (gdb_stdlog, |
5af949e3 UW |
1515 | "infrun: proceed (addr=%s, signal=%d, step=%d)\n", |
1516 | paddress (gdbarch, addr), siggnal, step); | |
527159b7 | 1517 | |
94cc34af PA |
1518 | if (non_stop) |
1519 | /* In non-stop, each thread is handled individually. The context | |
1520 | must already be set to the right thread here. */ | |
1521 | ; | |
1522 | else | |
1523 | { | |
1524 | /* In a multi-threaded task we may select another thread and | |
1525 | then continue or step. | |
c906108c | 1526 | |
94cc34af PA |
1527 | But if the old thread was stopped at a breakpoint, it will |
1528 | immediately cause another breakpoint stop without any | |
1529 | execution (i.e. it will report a breakpoint hit incorrectly). | |
1530 | So we must step over it first. | |
c906108c | 1531 | |
94cc34af PA |
1532 | prepare_to_proceed checks the current thread against the |
1533 | thread that reported the most recent event. If a step-over | |
1534 | is required it returns TRUE and sets the current thread to | |
1535 | the old thread. */ | |
1536 | if (prepare_to_proceed (step)) | |
1537 | oneproc = 1; | |
1538 | } | |
c906108c | 1539 | |
4e1c45ea PA |
1540 | /* prepare_to_proceed may change the current thread. */ |
1541 | tp = inferior_thread (); | |
1542 | ||
c906108c | 1543 | if (oneproc) |
74960c60 | 1544 | { |
4e1c45ea | 1545 | tp->trap_expected = 1; |
237fc4c9 PA |
1546 | /* If displaced stepping is enabled, we can step over the |
1547 | breakpoint without hitting it, so leave all breakpoints | |
1548 | inserted. Otherwise we need to disable all breakpoints, step | |
1549 | one instruction, and then re-add them when that step is | |
1550 | finished. */ | |
515630c5 | 1551 | if (!use_displaced_stepping (gdbarch)) |
237fc4c9 | 1552 | remove_breakpoints (); |
74960c60 | 1553 | } |
237fc4c9 PA |
1554 | |
1555 | /* We can insert breakpoints if we're not trying to step over one, | |
1556 | or if we are stepping over one but we're using displaced stepping | |
1557 | to do so. */ | |
4e1c45ea | 1558 | if (! tp->trap_expected || use_displaced_stepping (gdbarch)) |
c36b740a | 1559 | insert_breakpoints (); |
c906108c | 1560 | |
2020b7ab PA |
1561 | if (!non_stop) |
1562 | { | |
1563 | /* Pass the last stop signal to the thread we're resuming, | |
1564 | irrespective of whether the current thread is the thread that | |
1565 | got the last event or not. This was historically GDB's | |
1566 | behaviour before keeping a stop_signal per thread. */ | |
1567 | ||
1568 | struct thread_info *last_thread; | |
1569 | ptid_t last_ptid; | |
1570 | struct target_waitstatus last_status; | |
1571 | ||
1572 | get_last_target_status (&last_ptid, &last_status); | |
1573 | if (!ptid_equal (inferior_ptid, last_ptid) | |
1574 | && !ptid_equal (last_ptid, null_ptid) | |
1575 | && !ptid_equal (last_ptid, minus_one_ptid)) | |
1576 | { | |
e09875d4 | 1577 | last_thread = find_thread_ptid (last_ptid); |
2020b7ab PA |
1578 | if (last_thread) |
1579 | { | |
1580 | tp->stop_signal = last_thread->stop_signal; | |
1581 | last_thread->stop_signal = TARGET_SIGNAL_0; | |
1582 | } | |
1583 | } | |
1584 | } | |
1585 | ||
c906108c | 1586 | if (siggnal != TARGET_SIGNAL_DEFAULT) |
2020b7ab | 1587 | tp->stop_signal = siggnal; |
c906108c SS |
1588 | /* If this signal should not be seen by program, |
1589 | give it zero. Used for debugging signals. */ | |
2020b7ab PA |
1590 | else if (!signal_program[tp->stop_signal]) |
1591 | tp->stop_signal = TARGET_SIGNAL_0; | |
c906108c SS |
1592 | |
1593 | annotate_starting (); | |
1594 | ||
1595 | /* Make sure that output from GDB appears before output from the | |
1596 | inferior. */ | |
1597 | gdb_flush (gdb_stdout); | |
1598 | ||
e4846b08 JJ |
1599 | /* Refresh prev_pc value just prior to resuming. This used to be |
1600 | done in stop_stepping, however, setting prev_pc there did not handle | |
1601 | scenarios such as inferior function calls or returning from | |
1602 | a function via the return command. In those cases, the prev_pc | |
1603 | value was not set properly for subsequent commands. The prev_pc value | |
1604 | is used to initialize the starting line number in the ecs. With an | |
1605 | invalid value, the gdb next command ends up stopping at the position | |
1606 | represented by the next line table entry past our start position. | |
1607 | On platforms that generate one line table entry per line, this | |
1608 | is not a problem. However, on the ia64, the compiler generates | |
1609 | extraneous line table entries that do not increase the line number. | |
1610 | When we issue the gdb next command on the ia64 after an inferior call | |
1611 | or a return command, we often end up a few instructions forward, still | |
1612 | within the original line we started. | |
1613 | ||
1614 | An attempt was made to have init_execution_control_state () refresh | |
1615 | the prev_pc value before calculating the line number. This approach | |
1616 | did not work because on platforms that use ptrace, the pc register | |
1617 | cannot be read unless the inferior is stopped. At that point, we | |
515630c5 | 1618 | are not guaranteed the inferior is stopped and so the regcache_read_pc () |
e4846b08 | 1619 | call can fail. Setting the prev_pc value here ensures the value is |
8fb3e588 | 1620 | updated correctly when the inferior is stopped. */ |
4e1c45ea | 1621 | tp->prev_pc = regcache_read_pc (get_current_regcache ()); |
e4846b08 | 1622 | |
59f0d5d9 | 1623 | /* Fill in with reasonable starting values. */ |
4e1c45ea | 1624 | init_thread_stepping_state (tp); |
59f0d5d9 | 1625 | |
59f0d5d9 PA |
1626 | /* Reset to normal state. */ |
1627 | init_infwait_state (); | |
1628 | ||
c906108c | 1629 | /* Resume inferior. */ |
2020b7ab | 1630 | resume (oneproc || step || bpstat_should_step (), tp->stop_signal); |
c906108c SS |
1631 | |
1632 | /* Wait for it to stop (if not standalone) | |
1633 | and in any case decode why it stopped, and act accordingly. */ | |
43ff13b4 JM |
1634 | /* Do this only if we are not using the event loop, or if the target |
1635 | does not support asynchronous execution. */ | |
362646f5 | 1636 | if (!target_can_async_p ()) |
43ff13b4 | 1637 | { |
ae123ec6 | 1638 | wait_for_inferior (0); |
43ff13b4 JM |
1639 | normal_stop (); |
1640 | } | |
c906108c | 1641 | } |
c906108c SS |
1642 | \f |
1643 | ||
1644 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 1645 | |
c906108c | 1646 | void |
8621d6a9 | 1647 | start_remote (int from_tty) |
c906108c | 1648 | { |
d6b48e9c | 1649 | struct inferior *inferior; |
c906108c | 1650 | init_wait_for_inferior (); |
d6b48e9c PA |
1651 | |
1652 | inferior = current_inferior (); | |
1653 | inferior->stop_soon = STOP_QUIETLY_REMOTE; | |
43ff13b4 | 1654 | |
6426a772 JM |
1655 | /* Always go on waiting for the target, regardless of the mode. */ |
1656 | /* FIXME: cagney/1999-09-23: At present it isn't possible to | |
7e73cedf | 1657 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
1658 | nothing is returned (instead of just blocking). Because of this, |
1659 | targets expecting an immediate response need to, internally, set | |
1660 | things up so that the target_wait() is forced to eventually | |
1661 | timeout. */ | |
1662 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to | |
1663 | differentiate to its caller what the state of the target is after | |
1664 | the initial open has been performed. Here we're assuming that | |
1665 | the target has stopped. It should be possible to eventually have | |
1666 | target_open() return to the caller an indication that the target | |
1667 | is currently running and GDB state should be set to the same as | |
1668 | for an async run. */ | |
ae123ec6 | 1669 | wait_for_inferior (0); |
8621d6a9 DJ |
1670 | |
1671 | /* Now that the inferior has stopped, do any bookkeeping like | |
1672 | loading shared libraries. We want to do this before normal_stop, | |
1673 | so that the displayed frame is up to date. */ | |
1674 | post_create_inferior (¤t_target, from_tty); | |
1675 | ||
6426a772 | 1676 | normal_stop (); |
c906108c SS |
1677 | } |
1678 | ||
1679 | /* Initialize static vars when a new inferior begins. */ | |
1680 | ||
1681 | void | |
96baa820 | 1682 | init_wait_for_inferior (void) |
c906108c SS |
1683 | { |
1684 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 1685 | |
c906108c SS |
1686 | breakpoint_init_inferior (inf_starting); |
1687 | ||
c906108c | 1688 | clear_proceed_status (); |
9f976b41 DJ |
1689 | |
1690 | stepping_past_singlestep_breakpoint = 0; | |
ca67fcb8 | 1691 | deferred_step_ptid = null_ptid; |
ca005067 DJ |
1692 | |
1693 | target_last_wait_ptid = minus_one_ptid; | |
237fc4c9 | 1694 | |
0d1e5fa7 PA |
1695 | previous_inferior_ptid = null_ptid; |
1696 | init_infwait_state (); | |
1697 | ||
237fc4c9 | 1698 | displaced_step_clear (); |
edb3359d DJ |
1699 | |
1700 | /* Discard any skipped inlined frames. */ | |
1701 | clear_inline_frame_state (minus_one_ptid); | |
c906108c | 1702 | } |
237fc4c9 | 1703 | |
c906108c | 1704 | \f |
b83266a0 SS |
1705 | /* This enum encodes possible reasons for doing a target_wait, so that |
1706 | wfi can call target_wait in one place. (Ultimately the call will be | |
1707 | moved out of the infinite loop entirely.) */ | |
1708 | ||
c5aa993b JM |
1709 | enum infwait_states |
1710 | { | |
cd0fc7c3 SS |
1711 | infwait_normal_state, |
1712 | infwait_thread_hop_state, | |
d983da9c | 1713 | infwait_step_watch_state, |
cd0fc7c3 | 1714 | infwait_nonstep_watch_state |
b83266a0 SS |
1715 | }; |
1716 | ||
11cf8741 JM |
1717 | /* Why did the inferior stop? Used to print the appropriate messages |
1718 | to the interface from within handle_inferior_event(). */ | |
1719 | enum inferior_stop_reason | |
1720 | { | |
11cf8741 JM |
1721 | /* Step, next, nexti, stepi finished. */ |
1722 | END_STEPPING_RANGE, | |
11cf8741 JM |
1723 | /* Inferior terminated by signal. */ |
1724 | SIGNAL_EXITED, | |
1725 | /* Inferior exited. */ | |
1726 | EXITED, | |
1727 | /* Inferior received signal, and user asked to be notified. */ | |
b2175913 MS |
1728 | SIGNAL_RECEIVED, |
1729 | /* Reverse execution -- target ran out of history info. */ | |
1730 | NO_HISTORY | |
11cf8741 JM |
1731 | }; |
1732 | ||
0d1e5fa7 PA |
1733 | /* The PTID we'll do a target_wait on.*/ |
1734 | ptid_t waiton_ptid; | |
1735 | ||
1736 | /* Current inferior wait state. */ | |
1737 | enum infwait_states infwait_state; | |
cd0fc7c3 | 1738 | |
0d1e5fa7 PA |
1739 | /* Data to be passed around while handling an event. This data is |
1740 | discarded between events. */ | |
c5aa993b | 1741 | struct execution_control_state |
488f131b | 1742 | { |
0d1e5fa7 | 1743 | ptid_t ptid; |
4e1c45ea PA |
1744 | /* The thread that got the event, if this was a thread event; NULL |
1745 | otherwise. */ | |
1746 | struct thread_info *event_thread; | |
1747 | ||
488f131b | 1748 | struct target_waitstatus ws; |
488f131b JB |
1749 | int random_signal; |
1750 | CORE_ADDR stop_func_start; | |
1751 | CORE_ADDR stop_func_end; | |
1752 | char *stop_func_name; | |
488f131b | 1753 | int new_thread_event; |
488f131b JB |
1754 | int wait_some_more; |
1755 | }; | |
1756 | ||
edb3359d | 1757 | static void init_execution_control_state (struct execution_control_state *ecs); |
488f131b | 1758 | |
ec9499be | 1759 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 1760 | |
568d6575 UW |
1761 | static void handle_step_into_function (struct gdbarch *gdbarch, |
1762 | struct execution_control_state *ecs); | |
1763 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
1764 | struct execution_control_state *ecs); | |
44cbf7b5 | 1765 | static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame); |
14e60db5 | 1766 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); |
a6d9a66e UW |
1767 | static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
1768 | struct symtab_and_line sr_sal, | |
44cbf7b5 | 1769 | struct frame_id sr_id); |
a6d9a66e | 1770 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
611c83ae | 1771 | |
104c1213 JM |
1772 | static void stop_stepping (struct execution_control_state *ecs); |
1773 | static void prepare_to_wait (struct execution_control_state *ecs); | |
d4f3574e | 1774 | static void keep_going (struct execution_control_state *ecs); |
488f131b JB |
1775 | static void print_stop_reason (enum inferior_stop_reason stop_reason, |
1776 | int stop_info); | |
104c1213 | 1777 | |
252fbfc8 PA |
1778 | /* Callback for iterate over threads. If the thread is stopped, but |
1779 | the user/frontend doesn't know about that yet, go through | |
1780 | normal_stop, as if the thread had just stopped now. ARG points at | |
1781 | a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If | |
1782 | ptid_is_pid(PTID) is true, applies to all threads of the process | |
1783 | pointed at by PTID. Otherwise, apply only to the thread pointed by | |
1784 | PTID. */ | |
1785 | ||
1786 | static int | |
1787 | infrun_thread_stop_requested_callback (struct thread_info *info, void *arg) | |
1788 | { | |
1789 | ptid_t ptid = * (ptid_t *) arg; | |
1790 | ||
1791 | if ((ptid_equal (info->ptid, ptid) | |
1792 | || ptid_equal (minus_one_ptid, ptid) | |
1793 | || (ptid_is_pid (ptid) | |
1794 | && ptid_get_pid (ptid) == ptid_get_pid (info->ptid))) | |
1795 | && is_running (info->ptid) | |
1796 | && !is_executing (info->ptid)) | |
1797 | { | |
1798 | struct cleanup *old_chain; | |
1799 | struct execution_control_state ecss; | |
1800 | struct execution_control_state *ecs = &ecss; | |
1801 | ||
1802 | memset (ecs, 0, sizeof (*ecs)); | |
1803 | ||
1804 | old_chain = make_cleanup_restore_current_thread (); | |
1805 | ||
1806 | switch_to_thread (info->ptid); | |
1807 | ||
1808 | /* Go through handle_inferior_event/normal_stop, so we always | |
1809 | have consistent output as if the stop event had been | |
1810 | reported. */ | |
1811 | ecs->ptid = info->ptid; | |
e09875d4 | 1812 | ecs->event_thread = find_thread_ptid (info->ptid); |
252fbfc8 PA |
1813 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; |
1814 | ecs->ws.value.sig = TARGET_SIGNAL_0; | |
1815 | ||
1816 | handle_inferior_event (ecs); | |
1817 | ||
1818 | if (!ecs->wait_some_more) | |
1819 | { | |
1820 | struct thread_info *tp; | |
1821 | ||
1822 | normal_stop (); | |
1823 | ||
1824 | /* Finish off the continuations. The continations | |
1825 | themselves are responsible for realising the thread | |
1826 | didn't finish what it was supposed to do. */ | |
1827 | tp = inferior_thread (); | |
1828 | do_all_intermediate_continuations_thread (tp); | |
1829 | do_all_continuations_thread (tp); | |
1830 | } | |
1831 | ||
1832 | do_cleanups (old_chain); | |
1833 | } | |
1834 | ||
1835 | return 0; | |
1836 | } | |
1837 | ||
1838 | /* This function is attached as a "thread_stop_requested" observer. | |
1839 | Cleanup local state that assumed the PTID was to be resumed, and | |
1840 | report the stop to the frontend. */ | |
1841 | ||
2c0b251b | 1842 | static void |
252fbfc8 PA |
1843 | infrun_thread_stop_requested (ptid_t ptid) |
1844 | { | |
1845 | struct displaced_step_request *it, *next, *prev = NULL; | |
1846 | ||
1847 | /* PTID was requested to stop. Remove it from the displaced | |
1848 | stepping queue, so we don't try to resume it automatically. */ | |
1849 | for (it = displaced_step_request_queue; it; it = next) | |
1850 | { | |
1851 | next = it->next; | |
1852 | ||
1853 | if (ptid_equal (it->ptid, ptid) | |
1854 | || ptid_equal (minus_one_ptid, ptid) | |
1855 | || (ptid_is_pid (ptid) | |
1856 | && ptid_get_pid (ptid) == ptid_get_pid (it->ptid))) | |
1857 | { | |
1858 | if (displaced_step_request_queue == it) | |
1859 | displaced_step_request_queue = it->next; | |
1860 | else | |
1861 | prev->next = it->next; | |
1862 | ||
1863 | xfree (it); | |
1864 | } | |
1865 | else | |
1866 | prev = it; | |
1867 | } | |
1868 | ||
1869 | iterate_over_threads (infrun_thread_stop_requested_callback, &ptid); | |
1870 | } | |
1871 | ||
a07daef3 PA |
1872 | static void |
1873 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
1874 | { | |
1875 | if (ptid_equal (target_last_wait_ptid, tp->ptid)) | |
1876 | nullify_last_target_wait_ptid (); | |
1877 | } | |
1878 | ||
4e1c45ea PA |
1879 | /* Callback for iterate_over_threads. */ |
1880 | ||
1881 | static int | |
1882 | delete_step_resume_breakpoint_callback (struct thread_info *info, void *data) | |
1883 | { | |
1884 | if (is_exited (info->ptid)) | |
1885 | return 0; | |
1886 | ||
1887 | delete_step_resume_breakpoint (info); | |
1888 | return 0; | |
1889 | } | |
1890 | ||
1891 | /* In all-stop, delete the step resume breakpoint of any thread that | |
1892 | had one. In non-stop, delete the step resume breakpoint of the | |
1893 | thread that just stopped. */ | |
1894 | ||
1895 | static void | |
1896 | delete_step_thread_step_resume_breakpoint (void) | |
1897 | { | |
1898 | if (!target_has_execution | |
1899 | || ptid_equal (inferior_ptid, null_ptid)) | |
1900 | /* If the inferior has exited, we have already deleted the step | |
1901 | resume breakpoints out of GDB's lists. */ | |
1902 | return; | |
1903 | ||
1904 | if (non_stop) | |
1905 | { | |
1906 | /* If in non-stop mode, only delete the step-resume or | |
1907 | longjmp-resume breakpoint of the thread that just stopped | |
1908 | stepping. */ | |
1909 | struct thread_info *tp = inferior_thread (); | |
1910 | delete_step_resume_breakpoint (tp); | |
1911 | } | |
1912 | else | |
1913 | /* In all-stop mode, delete all step-resume and longjmp-resume | |
1914 | breakpoints of any thread that had them. */ | |
1915 | iterate_over_threads (delete_step_resume_breakpoint_callback, NULL); | |
1916 | } | |
1917 | ||
1918 | /* A cleanup wrapper. */ | |
1919 | ||
1920 | static void | |
1921 | delete_step_thread_step_resume_breakpoint_cleanup (void *arg) | |
1922 | { | |
1923 | delete_step_thread_step_resume_breakpoint (); | |
1924 | } | |
1925 | ||
223698f8 DE |
1926 | /* Pretty print the results of target_wait, for debugging purposes. */ |
1927 | ||
1928 | static void | |
1929 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, | |
1930 | const struct target_waitstatus *ws) | |
1931 | { | |
1932 | char *status_string = target_waitstatus_to_string (ws); | |
1933 | struct ui_file *tmp_stream = mem_fileopen (); | |
1934 | char *text; | |
1935 | long len; | |
1936 | ||
1937 | /* The text is split over several lines because it was getting too long. | |
1938 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
1939 | output as a unit; we want only one timestamp printed if debug_timestamp | |
1940 | is set. */ | |
1941 | ||
1942 | fprintf_unfiltered (tmp_stream, | |
1943 | "infrun: target_wait (%d", PIDGET (waiton_ptid)); | |
1944 | if (PIDGET (waiton_ptid) != -1) | |
1945 | fprintf_unfiltered (tmp_stream, | |
1946 | " [%s]", target_pid_to_str (waiton_ptid)); | |
1947 | fprintf_unfiltered (tmp_stream, ", status) =\n"); | |
1948 | fprintf_unfiltered (tmp_stream, | |
1949 | "infrun: %d [%s],\n", | |
1950 | PIDGET (result_ptid), target_pid_to_str (result_ptid)); | |
1951 | fprintf_unfiltered (tmp_stream, | |
1952 | "infrun: %s\n", | |
1953 | status_string); | |
1954 | ||
1955 | text = ui_file_xstrdup (tmp_stream, &len); | |
1956 | ||
1957 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
1958 | a gcc error: the format attribute requires a string literal. */ | |
1959 | fprintf_unfiltered (gdb_stdlog, "%s", text); | |
1960 | ||
1961 | xfree (status_string); | |
1962 | xfree (text); | |
1963 | ui_file_delete (tmp_stream); | |
1964 | } | |
1965 | ||
cd0fc7c3 | 1966 | /* Wait for control to return from inferior to debugger. |
ae123ec6 JB |
1967 | |
1968 | If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals | |
1969 | as if they were SIGTRAP signals. This can be useful during | |
1970 | the startup sequence on some targets such as HP/UX, where | |
1971 | we receive an EXEC event instead of the expected SIGTRAP. | |
1972 | ||
cd0fc7c3 SS |
1973 | If inferior gets a signal, we may decide to start it up again |
1974 | instead of returning. That is why there is a loop in this function. | |
1975 | When this function actually returns it means the inferior | |
1976 | should be left stopped and GDB should read more commands. */ | |
1977 | ||
1978 | void | |
ae123ec6 | 1979 | wait_for_inferior (int treat_exec_as_sigtrap) |
cd0fc7c3 SS |
1980 | { |
1981 | struct cleanup *old_cleanups; | |
0d1e5fa7 | 1982 | struct execution_control_state ecss; |
cd0fc7c3 | 1983 | struct execution_control_state *ecs; |
c906108c | 1984 | |
527159b7 | 1985 | if (debug_infrun) |
ae123ec6 JB |
1986 | fprintf_unfiltered |
1987 | (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n", | |
1988 | treat_exec_as_sigtrap); | |
527159b7 | 1989 | |
4e1c45ea PA |
1990 | old_cleanups = |
1991 | make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL); | |
cd0fc7c3 | 1992 | |
cd0fc7c3 | 1993 | ecs = &ecss; |
0d1e5fa7 PA |
1994 | memset (ecs, 0, sizeof (*ecs)); |
1995 | ||
e0bb1c1c PA |
1996 | /* We'll update this if & when we switch to a new thread. */ |
1997 | previous_inferior_ptid = inferior_ptid; | |
1998 | ||
c906108c SS |
1999 | while (1) |
2000 | { | |
29f49a6a PA |
2001 | struct cleanup *old_chain; |
2002 | ||
ec9499be UW |
2003 | /* We have to invalidate the registers BEFORE calling target_wait |
2004 | because they can be loaded from the target while in target_wait. | |
2005 | This makes remote debugging a bit more efficient for those | |
2006 | targets that provide critical registers as part of their normal | |
2007 | status mechanism. */ | |
2008 | ||
2009 | overlay_cache_invalid = 1; | |
2010 | registers_changed (); | |
2011 | ||
9a4105ab | 2012 | if (deprecated_target_wait_hook) |
47608cb1 | 2013 | ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0); |
cd0fc7c3 | 2014 | else |
47608cb1 | 2015 | ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 2016 | |
f00150c9 | 2017 | if (debug_infrun) |
223698f8 | 2018 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 2019 | |
ae123ec6 JB |
2020 | if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD) |
2021 | { | |
2022 | xfree (ecs->ws.value.execd_pathname); | |
2023 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; | |
2024 | ecs->ws.value.sig = TARGET_SIGNAL_TRAP; | |
2025 | } | |
2026 | ||
29f49a6a PA |
2027 | /* If an error happens while handling the event, propagate GDB's |
2028 | knowledge of the executing state to the frontend/user running | |
2029 | state. */ | |
2030 | old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
2031 | ||
cd0fc7c3 SS |
2032 | /* Now figure out what to do with the result of the result. */ |
2033 | handle_inferior_event (ecs); | |
c906108c | 2034 | |
29f49a6a PA |
2035 | /* No error, don't finish the state yet. */ |
2036 | discard_cleanups (old_chain); | |
2037 | ||
cd0fc7c3 SS |
2038 | if (!ecs->wait_some_more) |
2039 | break; | |
2040 | } | |
4e1c45ea | 2041 | |
cd0fc7c3 SS |
2042 | do_cleanups (old_cleanups); |
2043 | } | |
c906108c | 2044 | |
43ff13b4 JM |
2045 | /* Asynchronous version of wait_for_inferior. It is called by the |
2046 | event loop whenever a change of state is detected on the file | |
2047 | descriptor corresponding to the target. It can be called more than | |
2048 | once to complete a single execution command. In such cases we need | |
a474d7c2 PA |
2049 | to keep the state in a global variable ECSS. If it is the last time |
2050 | that this function is called for a single execution command, then | |
2051 | report to the user that the inferior has stopped, and do the | |
2052 | necessary cleanups. */ | |
43ff13b4 JM |
2053 | |
2054 | void | |
fba45db2 | 2055 | fetch_inferior_event (void *client_data) |
43ff13b4 | 2056 | { |
0d1e5fa7 | 2057 | struct execution_control_state ecss; |
a474d7c2 | 2058 | struct execution_control_state *ecs = &ecss; |
4f8d22e3 | 2059 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
29f49a6a | 2060 | struct cleanup *ts_old_chain; |
4f8d22e3 | 2061 | int was_sync = sync_execution; |
43ff13b4 | 2062 | |
0d1e5fa7 PA |
2063 | memset (ecs, 0, sizeof (*ecs)); |
2064 | ||
ec9499be UW |
2065 | /* We'll update this if & when we switch to a new thread. */ |
2066 | previous_inferior_ptid = inferior_ptid; | |
e0bb1c1c | 2067 | |
4f8d22e3 PA |
2068 | if (non_stop) |
2069 | /* In non-stop mode, the user/frontend should not notice a thread | |
2070 | switch due to internal events. Make sure we reverse to the | |
2071 | user selected thread and frame after handling the event and | |
2072 | running any breakpoint commands. */ | |
2073 | make_cleanup_restore_current_thread (); | |
2074 | ||
59f0d5d9 PA |
2075 | /* We have to invalidate the registers BEFORE calling target_wait |
2076 | because they can be loaded from the target while in target_wait. | |
2077 | This makes remote debugging a bit more efficient for those | |
2078 | targets that provide critical registers as part of their normal | |
2079 | status mechanism. */ | |
43ff13b4 | 2080 | |
ec9499be | 2081 | overlay_cache_invalid = 1; |
59f0d5d9 | 2082 | registers_changed (); |
43ff13b4 | 2083 | |
9a4105ab | 2084 | if (deprecated_target_wait_hook) |
a474d7c2 | 2085 | ecs->ptid = |
47608cb1 | 2086 | deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG); |
43ff13b4 | 2087 | else |
47608cb1 | 2088 | ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG); |
43ff13b4 | 2089 | |
f00150c9 | 2090 | if (debug_infrun) |
223698f8 | 2091 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 2092 | |
94cc34af PA |
2093 | if (non_stop |
2094 | && ecs->ws.kind != TARGET_WAITKIND_IGNORE | |
2095 | && ecs->ws.kind != TARGET_WAITKIND_EXITED | |
2096 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) | |
2097 | /* In non-stop mode, each thread is handled individually. Switch | |
2098 | early, so the global state is set correctly for this | |
2099 | thread. */ | |
2100 | context_switch (ecs->ptid); | |
2101 | ||
29f49a6a PA |
2102 | /* If an error happens while handling the event, propagate GDB's |
2103 | knowledge of the executing state to the frontend/user running | |
2104 | state. */ | |
2105 | if (!non_stop) | |
2106 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
2107 | else | |
2108 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); | |
2109 | ||
43ff13b4 | 2110 | /* Now figure out what to do with the result of the result. */ |
a474d7c2 | 2111 | handle_inferior_event (ecs); |
43ff13b4 | 2112 | |
a474d7c2 | 2113 | if (!ecs->wait_some_more) |
43ff13b4 | 2114 | { |
d6b48e9c PA |
2115 | struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); |
2116 | ||
4e1c45ea | 2117 | delete_step_thread_step_resume_breakpoint (); |
f107f563 | 2118 | |
d6b48e9c PA |
2119 | /* We may not find an inferior if this was a process exit. */ |
2120 | if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY) | |
83c265ab PA |
2121 | normal_stop (); |
2122 | ||
af679fd0 PA |
2123 | if (target_has_execution |
2124 | && ecs->ws.kind != TARGET_WAITKIND_EXITED | |
2125 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED | |
2126 | && ecs->event_thread->step_multi | |
414c69f7 | 2127 | && ecs->event_thread->stop_step) |
c2d11a7d JM |
2128 | inferior_event_handler (INF_EXEC_CONTINUE, NULL); |
2129 | else | |
2130 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
43ff13b4 | 2131 | } |
4f8d22e3 | 2132 | |
29f49a6a PA |
2133 | /* No error, don't finish the thread states yet. */ |
2134 | discard_cleanups (ts_old_chain); | |
2135 | ||
4f8d22e3 PA |
2136 | /* Revert thread and frame. */ |
2137 | do_cleanups (old_chain); | |
2138 | ||
2139 | /* If the inferior was in sync execution mode, and now isn't, | |
2140 | restore the prompt. */ | |
2141 | if (was_sync && !sync_execution) | |
2142 | display_gdb_prompt (0); | |
43ff13b4 JM |
2143 | } |
2144 | ||
edb3359d DJ |
2145 | /* Record the frame and location we're currently stepping through. */ |
2146 | void | |
2147 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
2148 | { | |
2149 | struct thread_info *tp = inferior_thread (); | |
2150 | ||
2151 | tp->step_frame_id = get_frame_id (frame); | |
2152 | tp->step_stack_frame_id = get_stack_frame_id (frame); | |
2153 | ||
2154 | tp->current_symtab = sal.symtab; | |
2155 | tp->current_line = sal.line; | |
2156 | } | |
2157 | ||
cd0fc7c3 SS |
2158 | /* Prepare an execution control state for looping through a |
2159 | wait_for_inferior-type loop. */ | |
2160 | ||
edb3359d | 2161 | static void |
96baa820 | 2162 | init_execution_control_state (struct execution_control_state *ecs) |
cd0fc7c3 SS |
2163 | { |
2164 | ecs->random_signal = 0; | |
0d1e5fa7 PA |
2165 | } |
2166 | ||
2167 | /* Clear context switchable stepping state. */ | |
2168 | ||
2169 | void | |
4e1c45ea | 2170 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 PA |
2171 | { |
2172 | tss->stepping_over_breakpoint = 0; | |
2173 | tss->step_after_step_resume_breakpoint = 0; | |
2174 | tss->stepping_through_solib_after_catch = 0; | |
2175 | tss->stepping_through_solib_catchpoints = NULL; | |
cd0fc7c3 SS |
2176 | } |
2177 | ||
e02bc4cc | 2178 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
2179 | target_wait()/deprecated_target_wait_hook(). The data is actually |
2180 | cached by handle_inferior_event(), which gets called immediately | |
2181 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
2182 | |
2183 | void | |
488f131b | 2184 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 2185 | { |
39f77062 | 2186 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
2187 | *status = target_last_waitstatus; |
2188 | } | |
2189 | ||
ac264b3b MS |
2190 | void |
2191 | nullify_last_target_wait_ptid (void) | |
2192 | { | |
2193 | target_last_wait_ptid = minus_one_ptid; | |
2194 | } | |
2195 | ||
dcf4fbde | 2196 | /* Switch thread contexts. */ |
dd80620e MS |
2197 | |
2198 | static void | |
0d1e5fa7 | 2199 | context_switch (ptid_t ptid) |
dd80620e | 2200 | { |
fd48f117 DJ |
2201 | if (debug_infrun) |
2202 | { | |
2203 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
2204 | target_pid_to_str (inferior_ptid)); | |
2205 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
0d1e5fa7 | 2206 | target_pid_to_str (ptid)); |
fd48f117 DJ |
2207 | } |
2208 | ||
0d1e5fa7 | 2209 | switch_to_thread (ptid); |
dd80620e MS |
2210 | } |
2211 | ||
4fa8626c DJ |
2212 | static void |
2213 | adjust_pc_after_break (struct execution_control_state *ecs) | |
2214 | { | |
24a73cce UW |
2215 | struct regcache *regcache; |
2216 | struct gdbarch *gdbarch; | |
8aad930b | 2217 | CORE_ADDR breakpoint_pc; |
4fa8626c | 2218 | |
4fa8626c DJ |
2219 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
2220 | we aren't, just return. | |
9709f61c DJ |
2221 | |
2222 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
2223 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
2224 | implemented by software breakpoints should be handled through the normal | |
2225 | breakpoint layer. | |
8fb3e588 | 2226 | |
4fa8626c DJ |
2227 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
2228 | different signals (SIGILL or SIGEMT for instance), but it is less | |
2229 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
2230 | gdbarch_decr_pc_after_break. I don't know any specific target that |
2231 | generates these signals at breakpoints (the code has been in GDB since at | |
2232 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 2233 | |
e6cf7916 UW |
2234 | In earlier versions of GDB, a target with |
2235 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
2236 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
2237 | target with both of these set in GDB history, and it seems unlikely to be | |
2238 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c DJ |
2239 | |
2240 | if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) | |
2241 | return; | |
2242 | ||
2243 | if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP) | |
2244 | return; | |
2245 | ||
4058b839 PA |
2246 | /* In reverse execution, when a breakpoint is hit, the instruction |
2247 | under it has already been de-executed. The reported PC always | |
2248 | points at the breakpoint address, so adjusting it further would | |
2249 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
2250 | architecture: | |
2251 | ||
2252 | B1 0x08000000 : INSN1 | |
2253 | B2 0x08000001 : INSN2 | |
2254 | 0x08000002 : INSN3 | |
2255 | PC -> 0x08000003 : INSN4 | |
2256 | ||
2257 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
2258 | from that point should hit B2 as below. Reading the PC when the | |
2259 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
2260 | been de-executed already. | |
2261 | ||
2262 | B1 0x08000000 : INSN1 | |
2263 | B2 PC -> 0x08000001 : INSN2 | |
2264 | 0x08000002 : INSN3 | |
2265 | 0x08000003 : INSN4 | |
2266 | ||
2267 | We can't apply the same logic as for forward execution, because | |
2268 | we would wrongly adjust the PC to 0x08000000, since there's a | |
2269 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
2270 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
2271 | behaviour. */ | |
2272 | if (execution_direction == EXEC_REVERSE) | |
2273 | return; | |
2274 | ||
24a73cce UW |
2275 | /* If this target does not decrement the PC after breakpoints, then |
2276 | we have nothing to do. */ | |
2277 | regcache = get_thread_regcache (ecs->ptid); | |
2278 | gdbarch = get_regcache_arch (regcache); | |
2279 | if (gdbarch_decr_pc_after_break (gdbarch) == 0) | |
2280 | return; | |
2281 | ||
8aad930b AC |
2282 | /* Find the location where (if we've hit a breakpoint) the |
2283 | breakpoint would be. */ | |
515630c5 UW |
2284 | breakpoint_pc = regcache_read_pc (regcache) |
2285 | - gdbarch_decr_pc_after_break (gdbarch); | |
8aad930b | 2286 | |
1c5cfe86 PA |
2287 | /* Check whether there actually is a software breakpoint inserted at |
2288 | that location. | |
2289 | ||
2290 | If in non-stop mode, a race condition is possible where we've | |
2291 | removed a breakpoint, but stop events for that breakpoint were | |
2292 | already queued and arrive later. To suppress those spurious | |
2293 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
2294 | and retire them after a number of stop events are reported. */ | |
2295 | if (software_breakpoint_inserted_here_p (breakpoint_pc) | |
2296 | || (non_stop && moribund_breakpoint_here_p (breakpoint_pc))) | |
8aad930b | 2297 | { |
96429cc8 HZ |
2298 | struct cleanup *old_cleanups = NULL; |
2299 | if (RECORD_IS_USED) | |
2300 | old_cleanups = record_gdb_operation_disable_set (); | |
2301 | ||
1c0fdd0e UW |
2302 | /* When using hardware single-step, a SIGTRAP is reported for both |
2303 | a completed single-step and a software breakpoint. Need to | |
2304 | differentiate between the two, as the latter needs adjusting | |
2305 | but the former does not. | |
2306 | ||
2307 | The SIGTRAP can be due to a completed hardware single-step only if | |
2308 | - we didn't insert software single-step breakpoints | |
2309 | - the thread to be examined is still the current thread | |
2310 | - this thread is currently being stepped | |
2311 | ||
2312 | If any of these events did not occur, we must have stopped due | |
2313 | to hitting a software breakpoint, and have to back up to the | |
2314 | breakpoint address. | |
2315 | ||
2316 | As a special case, we could have hardware single-stepped a | |
2317 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
2318 | we also need to back up to the breakpoint address. */ | |
2319 | ||
2320 | if (singlestep_breakpoints_inserted_p | |
2321 | || !ptid_equal (ecs->ptid, inferior_ptid) | |
4e1c45ea PA |
2322 | || !currently_stepping (ecs->event_thread) |
2323 | || ecs->event_thread->prev_pc == breakpoint_pc) | |
515630c5 | 2324 | regcache_write_pc (regcache, breakpoint_pc); |
96429cc8 HZ |
2325 | |
2326 | if (RECORD_IS_USED) | |
2327 | do_cleanups (old_cleanups); | |
8aad930b | 2328 | } |
4fa8626c DJ |
2329 | } |
2330 | ||
0d1e5fa7 PA |
2331 | void |
2332 | init_infwait_state (void) | |
2333 | { | |
2334 | waiton_ptid = pid_to_ptid (-1); | |
2335 | infwait_state = infwait_normal_state; | |
2336 | } | |
2337 | ||
94cc34af PA |
2338 | void |
2339 | error_is_running (void) | |
2340 | { | |
2341 | error (_("\ | |
2342 | Cannot execute this command while the selected thread is running.")); | |
2343 | } | |
2344 | ||
2345 | void | |
2346 | ensure_not_running (void) | |
2347 | { | |
2348 | if (is_running (inferior_ptid)) | |
2349 | error_is_running (); | |
2350 | } | |
2351 | ||
edb3359d DJ |
2352 | static int |
2353 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
2354 | { | |
2355 | for (frame = get_prev_frame (frame); | |
2356 | frame != NULL; | |
2357 | frame = get_prev_frame (frame)) | |
2358 | { | |
2359 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
2360 | return 1; | |
2361 | if (get_frame_type (frame) != INLINE_FRAME) | |
2362 | break; | |
2363 | } | |
2364 | ||
2365 | return 0; | |
2366 | } | |
2367 | ||
cd0fc7c3 SS |
2368 | /* Given an execution control state that has been freshly filled in |
2369 | by an event from the inferior, figure out what it means and take | |
2370 | appropriate action. */ | |
c906108c | 2371 | |
ec9499be | 2372 | static void |
96baa820 | 2373 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 2374 | { |
568d6575 UW |
2375 | struct frame_info *frame; |
2376 | struct gdbarch *gdbarch; | |
c8edd8b4 | 2377 | int sw_single_step_trap_p = 0; |
d983da9c DJ |
2378 | int stopped_by_watchpoint; |
2379 | int stepped_after_stopped_by_watchpoint = 0; | |
2afb61aa | 2380 | struct symtab_and_line stop_pc_sal; |
d6b48e9c PA |
2381 | enum stop_kind stop_soon; |
2382 | ||
2383 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED | |
2384 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED | |
2385 | && ecs->ws.kind != TARGET_WAITKIND_IGNORE) | |
2386 | { | |
2387 | struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); | |
2388 | gdb_assert (inf); | |
2389 | stop_soon = inf->stop_soon; | |
2390 | } | |
2391 | else | |
2392 | stop_soon = NO_STOP_QUIETLY; | |
cd0fc7c3 | 2393 | |
e02bc4cc | 2394 | /* Cache the last pid/waitstatus. */ |
39f77062 | 2395 | target_last_wait_ptid = ecs->ptid; |
0d1e5fa7 | 2396 | target_last_waitstatus = ecs->ws; |
e02bc4cc | 2397 | |
ca005067 DJ |
2398 | /* Always clear state belonging to the previous time we stopped. */ |
2399 | stop_stack_dummy = 0; | |
2400 | ||
8c90c137 LM |
2401 | /* If it's a new process, add it to the thread database */ |
2402 | ||
2403 | ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid) | |
2404 | && !ptid_equal (ecs->ptid, minus_one_ptid) | |
2405 | && !in_thread_list (ecs->ptid)); | |
2406 | ||
2407 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED | |
2408 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event) | |
2409 | add_thread (ecs->ptid); | |
2410 | ||
e09875d4 | 2411 | ecs->event_thread = find_thread_ptid (ecs->ptid); |
88ed393a JK |
2412 | |
2413 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
2414 | adjust_pc_after_break (ecs); | |
2415 | ||
2416 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
2417 | reinit_frame_cache (); | |
2418 | ||
8c90c137 LM |
2419 | if (ecs->ws.kind != TARGET_WAITKIND_IGNORE) |
2420 | { | |
1c5cfe86 PA |
2421 | breakpoint_retire_moribund (); |
2422 | ||
48844aa6 PA |
2423 | /* Mark the non-executing threads accordingly. In all-stop, all |
2424 | threads of all processes are stopped when we get any event | |
2425 | reported. In non-stop mode, only the event thread stops. If | |
2426 | we're handling a process exit in non-stop mode, there's | |
2427 | nothing to do, as threads of the dead process are gone, and | |
2428 | threads of any other process were left running. */ | |
2429 | if (!non_stop) | |
2430 | set_executing (minus_one_ptid, 0); | |
2431 | else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED | |
2432 | && ecs->ws.kind != TARGET_WAITKIND_EXITED) | |
2433 | set_executing (inferior_ptid, 0); | |
8c90c137 LM |
2434 | } |
2435 | ||
0d1e5fa7 | 2436 | switch (infwait_state) |
488f131b JB |
2437 | { |
2438 | case infwait_thread_hop_state: | |
527159b7 | 2439 | if (debug_infrun) |
8a9de0e4 | 2440 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n"); |
65e82032 | 2441 | break; |
b83266a0 | 2442 | |
488f131b | 2443 | case infwait_normal_state: |
527159b7 | 2444 | if (debug_infrun) |
8a9de0e4 | 2445 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n"); |
d983da9c DJ |
2446 | break; |
2447 | ||
2448 | case infwait_step_watch_state: | |
2449 | if (debug_infrun) | |
2450 | fprintf_unfiltered (gdb_stdlog, | |
2451 | "infrun: infwait_step_watch_state\n"); | |
2452 | ||
2453 | stepped_after_stopped_by_watchpoint = 1; | |
488f131b | 2454 | break; |
b83266a0 | 2455 | |
488f131b | 2456 | case infwait_nonstep_watch_state: |
527159b7 | 2457 | if (debug_infrun) |
8a9de0e4 AC |
2458 | fprintf_unfiltered (gdb_stdlog, |
2459 | "infrun: infwait_nonstep_watch_state\n"); | |
488f131b | 2460 | insert_breakpoints (); |
c906108c | 2461 | |
488f131b JB |
2462 | /* FIXME-maybe: is this cleaner than setting a flag? Does it |
2463 | handle things like signals arriving and other things happening | |
2464 | in combination correctly? */ | |
2465 | stepped_after_stopped_by_watchpoint = 1; | |
2466 | break; | |
65e82032 AC |
2467 | |
2468 | default: | |
e2e0b3e5 | 2469 | internal_error (__FILE__, __LINE__, _("bad switch")); |
488f131b | 2470 | } |
ec9499be | 2471 | |
0d1e5fa7 | 2472 | infwait_state = infwait_normal_state; |
ec9499be | 2473 | waiton_ptid = pid_to_ptid (-1); |
c906108c | 2474 | |
488f131b JB |
2475 | switch (ecs->ws.kind) |
2476 | { | |
2477 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 2478 | if (debug_infrun) |
8a9de0e4 | 2479 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
b0f4b84b DJ |
2480 | /* Ignore gracefully during startup of the inferior, as it might |
2481 | be the shell which has just loaded some objects, otherwise | |
2482 | add the symbols for the newly loaded objects. Also ignore at | |
2483 | the beginning of an attach or remote session; we will query | |
2484 | the full list of libraries once the connection is | |
2485 | established. */ | |
c0236d92 | 2486 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 2487 | { |
488f131b JB |
2488 | /* Check for any newly added shared libraries if we're |
2489 | supposed to be adding them automatically. Switch | |
2490 | terminal for any messages produced by | |
2491 | breakpoint_re_set. */ | |
2492 | target_terminal_ours_for_output (); | |
aff6338a | 2493 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
2494 | stack's section table is kept up-to-date. Architectures, |
2495 | (e.g., PPC64), use the section table to perform | |
2496 | operations such as address => section name and hence | |
2497 | require the table to contain all sections (including | |
2498 | those found in shared libraries). */ | |
b0f4b84b | 2499 | #ifdef SOLIB_ADD |
aff6338a | 2500 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
b0f4b84b DJ |
2501 | #else |
2502 | solib_add (NULL, 0, ¤t_target, auto_solib_add); | |
2503 | #endif | |
488f131b JB |
2504 | target_terminal_inferior (); |
2505 | ||
b0f4b84b DJ |
2506 | /* If requested, stop when the dynamic linker notifies |
2507 | gdb of events. This allows the user to get control | |
2508 | and place breakpoints in initializer routines for | |
2509 | dynamically loaded objects (among other things). */ | |
2510 | if (stop_on_solib_events) | |
2511 | { | |
2512 | stop_stepping (ecs); | |
2513 | return; | |
2514 | } | |
2515 | ||
2516 | /* NOTE drow/2007-05-11: This might be a good place to check | |
2517 | for "catch load". */ | |
488f131b | 2518 | } |
b0f4b84b DJ |
2519 | |
2520 | /* If we are skipping through a shell, or through shared library | |
2521 | loading that we aren't interested in, resume the program. If | |
2522 | we're running the program normally, also resume. But stop if | |
2523 | we're attaching or setting up a remote connection. */ | |
2524 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) | |
2525 | { | |
74960c60 VP |
2526 | /* Loading of shared libraries might have changed breakpoint |
2527 | addresses. Make sure new breakpoints are inserted. */ | |
0b02b92d UW |
2528 | if (stop_soon == NO_STOP_QUIETLY |
2529 | && !breakpoints_always_inserted_mode ()) | |
74960c60 | 2530 | insert_breakpoints (); |
b0f4b84b DJ |
2531 | resume (0, TARGET_SIGNAL_0); |
2532 | prepare_to_wait (ecs); | |
2533 | return; | |
2534 | } | |
2535 | ||
2536 | break; | |
c5aa993b | 2537 | |
488f131b | 2538 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 2539 | if (debug_infrun) |
8a9de0e4 | 2540 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
488f131b JB |
2541 | resume (0, TARGET_SIGNAL_0); |
2542 | prepare_to_wait (ecs); | |
2543 | return; | |
c5aa993b | 2544 | |
488f131b | 2545 | case TARGET_WAITKIND_EXITED: |
527159b7 | 2546 | if (debug_infrun) |
8a9de0e4 | 2547 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n"); |
fb66883a | 2548 | inferior_ptid = ecs->ptid; |
488f131b JB |
2549 | target_terminal_ours (); /* Must do this before mourn anyway */ |
2550 | print_stop_reason (EXITED, ecs->ws.value.integer); | |
2551 | ||
2552 | /* Record the exit code in the convenience variable $_exitcode, so | |
2553 | that the user can inspect this again later. */ | |
4fa62494 UW |
2554 | set_internalvar_integer (lookup_internalvar ("_exitcode"), |
2555 | (LONGEST) ecs->ws.value.integer); | |
488f131b JB |
2556 | gdb_flush (gdb_stdout); |
2557 | target_mourn_inferior (); | |
1c0fdd0e | 2558 | singlestep_breakpoints_inserted_p = 0; |
488f131b JB |
2559 | stop_print_frame = 0; |
2560 | stop_stepping (ecs); | |
2561 | return; | |
c5aa993b | 2562 | |
488f131b | 2563 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 2564 | if (debug_infrun) |
8a9de0e4 | 2565 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n"); |
fb66883a | 2566 | inferior_ptid = ecs->ptid; |
488f131b | 2567 | stop_print_frame = 0; |
488f131b | 2568 | target_terminal_ours (); /* Must do this before mourn anyway */ |
c5aa993b | 2569 | |
488f131b JB |
2570 | /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't |
2571 | reach here unless the inferior is dead. However, for years | |
2572 | target_kill() was called here, which hints that fatal signals aren't | |
2573 | really fatal on some systems. If that's true, then some changes | |
2574 | may be needed. */ | |
2575 | target_mourn_inferior (); | |
c906108c | 2576 | |
2020b7ab | 2577 | print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig); |
1c0fdd0e | 2578 | singlestep_breakpoints_inserted_p = 0; |
488f131b JB |
2579 | stop_stepping (ecs); |
2580 | return; | |
c906108c | 2581 | |
488f131b JB |
2582 | /* The following are the only cases in which we keep going; |
2583 | the above cases end in a continue or goto. */ | |
2584 | case TARGET_WAITKIND_FORKED: | |
deb3b17b | 2585 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 2586 | if (debug_infrun) |
8a9de0e4 | 2587 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); |
c906108c | 2588 | |
5a2901d9 DJ |
2589 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
2590 | { | |
0d1e5fa7 | 2591 | context_switch (ecs->ptid); |
35f196d9 | 2592 | reinit_frame_cache (); |
5a2901d9 DJ |
2593 | } |
2594 | ||
b242c3c2 PA |
2595 | /* Immediately detach breakpoints from the child before there's |
2596 | any chance of letting the user delete breakpoints from the | |
2597 | breakpoint lists. If we don't do this early, it's easy to | |
2598 | leave left over traps in the child, vis: "break foo; catch | |
2599 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
2600 | the fork on the last `continue', and by that time the | |
2601 | breakpoint at "foo" is long gone from the breakpoint table. | |
2602 | If we vforked, then we don't need to unpatch here, since both | |
2603 | parent and child are sharing the same memory pages; we'll | |
2604 | need to unpatch at follow/detach time instead to be certain | |
2605 | that new breakpoints added between catchpoint hit time and | |
2606 | vfork follow are detached. */ | |
2607 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
2608 | { | |
2609 | int child_pid = ptid_get_pid (ecs->ws.value.related_pid); | |
2610 | ||
2611 | /* This won't actually modify the breakpoint list, but will | |
2612 | physically remove the breakpoints from the child. */ | |
2613 | detach_breakpoints (child_pid); | |
2614 | } | |
2615 | ||
e58b0e63 PA |
2616 | /* In case the event is caught by a catchpoint, remember that |
2617 | the event is to be followed at the next resume of the thread, | |
2618 | and not immediately. */ | |
2619 | ecs->event_thread->pending_follow = ecs->ws; | |
2620 | ||
fb14de7b | 2621 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
675bf4cb | 2622 | |
347bddb7 | 2623 | ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid); |
675bf4cb | 2624 | |
347bddb7 | 2625 | ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat); |
04e68871 DJ |
2626 | |
2627 | /* If no catchpoint triggered for this, then keep going. */ | |
2628 | if (ecs->random_signal) | |
2629 | { | |
e58b0e63 PA |
2630 | int should_resume; |
2631 | ||
2020b7ab | 2632 | ecs->event_thread->stop_signal = TARGET_SIGNAL_0; |
e58b0e63 PA |
2633 | |
2634 | should_resume = follow_fork (); | |
2635 | ||
2636 | ecs->event_thread = inferior_thread (); | |
2637 | ecs->ptid = inferior_ptid; | |
2638 | ||
2639 | if (should_resume) | |
2640 | keep_going (ecs); | |
2641 | else | |
2642 | stop_stepping (ecs); | |
04e68871 DJ |
2643 | return; |
2644 | } | |
2020b7ab | 2645 | ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP; |
488f131b JB |
2646 | goto process_event_stop_test; |
2647 | ||
2648 | case TARGET_WAITKIND_EXECD: | |
527159b7 | 2649 | if (debug_infrun) |
fc5261f2 | 2650 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b | 2651 | |
5a2901d9 DJ |
2652 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
2653 | { | |
0d1e5fa7 | 2654 | context_switch (ecs->ptid); |
35f196d9 | 2655 | reinit_frame_cache (); |
5a2901d9 DJ |
2656 | } |
2657 | ||
fb14de7b | 2658 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
795e548f PA |
2659 | |
2660 | /* This causes the eventpoints and symbol table to be reset. | |
2661 | Must do this now, before trying to determine whether to | |
2662 | stop. */ | |
71b43ef8 | 2663 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f PA |
2664 | |
2665 | ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid); | |
2666 | ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat); | |
2667 | ||
71b43ef8 PA |
2668 | /* Note that this may be referenced from inside |
2669 | bpstat_stop_status above, through inferior_has_execd. */ | |
2670 | xfree (ecs->ws.value.execd_pathname); | |
2671 | ecs->ws.value.execd_pathname = NULL; | |
2672 | ||
04e68871 DJ |
2673 | /* If no catchpoint triggered for this, then keep going. */ |
2674 | if (ecs->random_signal) | |
2675 | { | |
2020b7ab | 2676 | ecs->event_thread->stop_signal = TARGET_SIGNAL_0; |
04e68871 DJ |
2677 | keep_going (ecs); |
2678 | return; | |
2679 | } | |
2020b7ab | 2680 | ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP; |
488f131b JB |
2681 | goto process_event_stop_test; |
2682 | ||
b4dc5ffa MK |
2683 | /* Be careful not to try to gather much state about a thread |
2684 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 2685 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 2686 | if (debug_infrun) |
8a9de0e4 | 2687 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); |
488f131b JB |
2688 | resume (0, TARGET_SIGNAL_0); |
2689 | prepare_to_wait (ecs); | |
2690 | return; | |
c906108c | 2691 | |
488f131b JB |
2692 | /* Before examining the threads further, step this thread to |
2693 | get it entirely out of the syscall. (We get notice of the | |
2694 | event when the thread is just on the verge of exiting a | |
2695 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 2696 | into user code.) */ |
488f131b | 2697 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 2698 | if (debug_infrun) |
8a9de0e4 | 2699 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); |
488f131b | 2700 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); |
488f131b JB |
2701 | prepare_to_wait (ecs); |
2702 | return; | |
c906108c | 2703 | |
488f131b | 2704 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 2705 | if (debug_infrun) |
8a9de0e4 | 2706 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
2020b7ab | 2707 | ecs->event_thread->stop_signal = ecs->ws.value.sig; |
488f131b | 2708 | break; |
c906108c | 2709 | |
b2175913 MS |
2710 | case TARGET_WAITKIND_NO_HISTORY: |
2711 | /* Reverse execution: target ran out of history info. */ | |
fb14de7b | 2712 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
b2175913 MS |
2713 | print_stop_reason (NO_HISTORY, 0); |
2714 | stop_stepping (ecs); | |
2715 | return; | |
2716 | ||
488f131b JB |
2717 | /* We had an event in the inferior, but we are not interested |
2718 | in handling it at this level. The lower layers have already | |
8e7d2c16 | 2719 | done what needs to be done, if anything. |
8fb3e588 AC |
2720 | |
2721 | One of the possible circumstances for this is when the | |
2722 | inferior produces output for the console. The inferior has | |
2723 | not stopped, and we are ignoring the event. Another possible | |
2724 | circumstance is any event which the lower level knows will be | |
2725 | reported multiple times without an intervening resume. */ | |
488f131b | 2726 | case TARGET_WAITKIND_IGNORE: |
527159b7 | 2727 | if (debug_infrun) |
8a9de0e4 | 2728 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); |
8e7d2c16 | 2729 | prepare_to_wait (ecs); |
488f131b JB |
2730 | return; |
2731 | } | |
c906108c | 2732 | |
488f131b JB |
2733 | if (ecs->new_thread_event) |
2734 | { | |
94cc34af PA |
2735 | if (non_stop) |
2736 | /* Non-stop assumes that the target handles adding new threads | |
2737 | to the thread list. */ | |
2738 | internal_error (__FILE__, __LINE__, "\ | |
2739 | targets should add new threads to the thread list themselves in non-stop mode."); | |
2740 | ||
2741 | /* We may want to consider not doing a resume here in order to | |
2742 | give the user a chance to play with the new thread. It might | |
2743 | be good to make that a user-settable option. */ | |
2744 | ||
2745 | /* At this point, all threads are stopped (happens automatically | |
2746 | in either the OS or the native code). Therefore we need to | |
2747 | continue all threads in order to make progress. */ | |
2748 | ||
173853dc PA |
2749 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
2750 | context_switch (ecs->ptid); | |
488f131b JB |
2751 | target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0); |
2752 | prepare_to_wait (ecs); | |
2753 | return; | |
2754 | } | |
c906108c | 2755 | |
2020b7ab | 2756 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED) |
252fbfc8 PA |
2757 | { |
2758 | /* Do we need to clean up the state of a thread that has | |
2759 | completed a displaced single-step? (Doing so usually affects | |
2760 | the PC, so do it here, before we set stop_pc.) */ | |
2761 | displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal); | |
2762 | ||
2763 | /* If we either finished a single-step or hit a breakpoint, but | |
2764 | the user wanted this thread to be stopped, pretend we got a | |
2765 | SIG0 (generic unsignaled stop). */ | |
2766 | ||
2767 | if (ecs->event_thread->stop_requested | |
2768 | && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) | |
2769 | ecs->event_thread->stop_signal = TARGET_SIGNAL_0; | |
2770 | } | |
237fc4c9 | 2771 | |
515630c5 | 2772 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
488f131b | 2773 | |
527159b7 | 2774 | if (debug_infrun) |
237fc4c9 | 2775 | { |
5af949e3 UW |
2776 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
2777 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
2778 | ||
2779 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
2780 | paddress (gdbarch, stop_pc)); | |
d92524f1 | 2781 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
2782 | { |
2783 | CORE_ADDR addr; | |
2784 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); | |
2785 | ||
2786 | if (target_stopped_data_address (¤t_target, &addr)) | |
2787 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
2788 | "infrun: stopped data address = %s\n", |
2789 | paddress (gdbarch, addr)); | |
237fc4c9 PA |
2790 | else |
2791 | fprintf_unfiltered (gdb_stdlog, | |
2792 | "infrun: (no data address available)\n"); | |
2793 | } | |
2794 | } | |
527159b7 | 2795 | |
9f976b41 DJ |
2796 | if (stepping_past_singlestep_breakpoint) |
2797 | { | |
1c0fdd0e | 2798 | gdb_assert (singlestep_breakpoints_inserted_p); |
9f976b41 DJ |
2799 | gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid)); |
2800 | gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid)); | |
2801 | ||
2802 | stepping_past_singlestep_breakpoint = 0; | |
2803 | ||
2804 | /* We've either finished single-stepping past the single-step | |
8fb3e588 AC |
2805 | breakpoint, or stopped for some other reason. It would be nice if |
2806 | we could tell, but we can't reliably. */ | |
2020b7ab | 2807 | if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) |
8fb3e588 | 2808 | { |
527159b7 | 2809 | if (debug_infrun) |
8a9de0e4 | 2810 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n"); |
9f976b41 | 2811 | /* Pull the single step breakpoints out of the target. */ |
e0cd558a | 2812 | remove_single_step_breakpoints (); |
9f976b41 DJ |
2813 | singlestep_breakpoints_inserted_p = 0; |
2814 | ||
2815 | ecs->random_signal = 0; | |
2816 | ||
0d1e5fa7 | 2817 | context_switch (saved_singlestep_ptid); |
9a4105ab AC |
2818 | if (deprecated_context_hook) |
2819 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
9f976b41 DJ |
2820 | |
2821 | resume (1, TARGET_SIGNAL_0); | |
2822 | prepare_to_wait (ecs); | |
2823 | return; | |
2824 | } | |
2825 | } | |
2826 | ||
ca67fcb8 | 2827 | if (!ptid_equal (deferred_step_ptid, null_ptid)) |
6a6b96b9 | 2828 | { |
94cc34af PA |
2829 | /* In non-stop mode, there's never a deferred_step_ptid set. */ |
2830 | gdb_assert (!non_stop); | |
2831 | ||
6a6b96b9 UW |
2832 | /* If we stopped for some other reason than single-stepping, ignore |
2833 | the fact that we were supposed to switch back. */ | |
2020b7ab | 2834 | if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) |
6a6b96b9 UW |
2835 | { |
2836 | if (debug_infrun) | |
2837 | fprintf_unfiltered (gdb_stdlog, | |
ca67fcb8 | 2838 | "infrun: handling deferred step\n"); |
6a6b96b9 UW |
2839 | |
2840 | /* Pull the single step breakpoints out of the target. */ | |
2841 | if (singlestep_breakpoints_inserted_p) | |
2842 | { | |
2843 | remove_single_step_breakpoints (); | |
2844 | singlestep_breakpoints_inserted_p = 0; | |
2845 | } | |
2846 | ||
2847 | /* Note: We do not call context_switch at this point, as the | |
2848 | context is already set up for stepping the original thread. */ | |
ca67fcb8 VP |
2849 | switch_to_thread (deferred_step_ptid); |
2850 | deferred_step_ptid = null_ptid; | |
6a6b96b9 UW |
2851 | /* Suppress spurious "Switching to ..." message. */ |
2852 | previous_inferior_ptid = inferior_ptid; | |
2853 | ||
2854 | resume (1, TARGET_SIGNAL_0); | |
2855 | prepare_to_wait (ecs); | |
2856 | return; | |
2857 | } | |
ca67fcb8 VP |
2858 | |
2859 | deferred_step_ptid = null_ptid; | |
6a6b96b9 UW |
2860 | } |
2861 | ||
488f131b JB |
2862 | /* See if a thread hit a thread-specific breakpoint that was meant for |
2863 | another thread. If so, then step that thread past the breakpoint, | |
2864 | and continue it. */ | |
2865 | ||
2020b7ab | 2866 | if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) |
488f131b | 2867 | { |
9f976b41 DJ |
2868 | int thread_hop_needed = 0; |
2869 | ||
f8d40ec8 JB |
2870 | /* Check if a regular breakpoint has been hit before checking |
2871 | for a potential single step breakpoint. Otherwise, GDB will | |
2872 | not see this breakpoint hit when stepping onto breakpoints. */ | |
c36b740a | 2873 | if (regular_breakpoint_inserted_here_p (stop_pc)) |
488f131b | 2874 | { |
c5aa993b | 2875 | ecs->random_signal = 0; |
4fa8626c | 2876 | if (!breakpoint_thread_match (stop_pc, ecs->ptid)) |
9f976b41 DJ |
2877 | thread_hop_needed = 1; |
2878 | } | |
1c0fdd0e | 2879 | else if (singlestep_breakpoints_inserted_p) |
9f976b41 | 2880 | { |
fd48f117 DJ |
2881 | /* We have not context switched yet, so this should be true |
2882 | no matter which thread hit the singlestep breakpoint. */ | |
2883 | gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid)); | |
2884 | if (debug_infrun) | |
2885 | fprintf_unfiltered (gdb_stdlog, "infrun: software single step " | |
2886 | "trap for %s\n", | |
2887 | target_pid_to_str (ecs->ptid)); | |
2888 | ||
9f976b41 DJ |
2889 | ecs->random_signal = 0; |
2890 | /* The call to in_thread_list is necessary because PTIDs sometimes | |
2891 | change when we go from single-threaded to multi-threaded. If | |
2892 | the singlestep_ptid is still in the list, assume that it is | |
2893 | really different from ecs->ptid. */ | |
2894 | if (!ptid_equal (singlestep_ptid, ecs->ptid) | |
2895 | && in_thread_list (singlestep_ptid)) | |
2896 | { | |
fd48f117 DJ |
2897 | /* If the PC of the thread we were trying to single-step |
2898 | has changed, discard this event (which we were going | |
2899 | to ignore anyway), and pretend we saw that thread | |
2900 | trap. This prevents us continuously moving the | |
2901 | single-step breakpoint forward, one instruction at a | |
2902 | time. If the PC has changed, then the thread we were | |
2903 | trying to single-step has trapped or been signalled, | |
2904 | but the event has not been reported to GDB yet. | |
2905 | ||
2906 | There might be some cases where this loses signal | |
2907 | information, if a signal has arrived at exactly the | |
2908 | same time that the PC changed, but this is the best | |
2909 | we can do with the information available. Perhaps we | |
2910 | should arrange to report all events for all threads | |
2911 | when they stop, or to re-poll the remote looking for | |
2912 | this particular thread (i.e. temporarily enable | |
2913 | schedlock). */ | |
515630c5 UW |
2914 | |
2915 | CORE_ADDR new_singlestep_pc | |
2916 | = regcache_read_pc (get_thread_regcache (singlestep_ptid)); | |
2917 | ||
2918 | if (new_singlestep_pc != singlestep_pc) | |
fd48f117 | 2919 | { |
2020b7ab PA |
2920 | enum target_signal stop_signal; |
2921 | ||
fd48f117 DJ |
2922 | if (debug_infrun) |
2923 | fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread," | |
2924 | " but expected thread advanced also\n"); | |
2925 | ||
2926 | /* The current context still belongs to | |
2927 | singlestep_ptid. Don't swap here, since that's | |
2928 | the context we want to use. Just fudge our | |
2929 | state and continue. */ | |
2020b7ab PA |
2930 | stop_signal = ecs->event_thread->stop_signal; |
2931 | ecs->event_thread->stop_signal = TARGET_SIGNAL_0; | |
fd48f117 | 2932 | ecs->ptid = singlestep_ptid; |
e09875d4 | 2933 | ecs->event_thread = find_thread_ptid (ecs->ptid); |
2020b7ab | 2934 | ecs->event_thread->stop_signal = stop_signal; |
515630c5 | 2935 | stop_pc = new_singlestep_pc; |
fd48f117 DJ |
2936 | } |
2937 | else | |
2938 | { | |
2939 | if (debug_infrun) | |
2940 | fprintf_unfiltered (gdb_stdlog, | |
2941 | "infrun: unexpected thread\n"); | |
2942 | ||
2943 | thread_hop_needed = 1; | |
2944 | stepping_past_singlestep_breakpoint = 1; | |
2945 | saved_singlestep_ptid = singlestep_ptid; | |
2946 | } | |
9f976b41 DJ |
2947 | } |
2948 | } | |
2949 | ||
2950 | if (thread_hop_needed) | |
8fb3e588 | 2951 | { |
9f5a595d | 2952 | struct regcache *thread_regcache; |
237fc4c9 | 2953 | int remove_status = 0; |
8fb3e588 | 2954 | |
527159b7 | 2955 | if (debug_infrun) |
8a9de0e4 | 2956 | fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n"); |
527159b7 | 2957 | |
b3444185 PA |
2958 | /* Switch context before touching inferior memory, the |
2959 | previous thread may have exited. */ | |
2960 | if (!ptid_equal (inferior_ptid, ecs->ptid)) | |
2961 | context_switch (ecs->ptid); | |
2962 | ||
8fb3e588 AC |
2963 | /* Saw a breakpoint, but it was hit by the wrong thread. |
2964 | Just continue. */ | |
2965 | ||
1c0fdd0e | 2966 | if (singlestep_breakpoints_inserted_p) |
488f131b | 2967 | { |
8fb3e588 | 2968 | /* Pull the single step breakpoints out of the target. */ |
e0cd558a | 2969 | remove_single_step_breakpoints (); |
8fb3e588 AC |
2970 | singlestep_breakpoints_inserted_p = 0; |
2971 | } | |
2972 | ||
237fc4c9 PA |
2973 | /* If the arch can displace step, don't remove the |
2974 | breakpoints. */ | |
9f5a595d UW |
2975 | thread_regcache = get_thread_regcache (ecs->ptid); |
2976 | if (!use_displaced_stepping (get_regcache_arch (thread_regcache))) | |
237fc4c9 PA |
2977 | remove_status = remove_breakpoints (); |
2978 | ||
8fb3e588 AC |
2979 | /* Did we fail to remove breakpoints? If so, try |
2980 | to set the PC past the bp. (There's at least | |
2981 | one situation in which we can fail to remove | |
2982 | the bp's: On HP-UX's that use ttrace, we can't | |
2983 | change the address space of a vforking child | |
2984 | process until the child exits (well, okay, not | |
2985 | then either :-) or execs. */ | |
2986 | if (remove_status != 0) | |
9d9cd7ac | 2987 | error (_("Cannot step over breakpoint hit in wrong thread")); |
8fb3e588 AC |
2988 | else |
2989 | { /* Single step */ | |
94cc34af PA |
2990 | if (!non_stop) |
2991 | { | |
2992 | /* Only need to require the next event from this | |
2993 | thread in all-stop mode. */ | |
2994 | waiton_ptid = ecs->ptid; | |
2995 | infwait_state = infwait_thread_hop_state; | |
2996 | } | |
8fb3e588 | 2997 | |
4e1c45ea | 2998 | ecs->event_thread->stepping_over_breakpoint = 1; |
8fb3e588 | 2999 | keep_going (ecs); |
8fb3e588 AC |
3000 | return; |
3001 | } | |
488f131b | 3002 | } |
1c0fdd0e | 3003 | else if (singlestep_breakpoints_inserted_p) |
8fb3e588 AC |
3004 | { |
3005 | sw_single_step_trap_p = 1; | |
3006 | ecs->random_signal = 0; | |
3007 | } | |
488f131b JB |
3008 | } |
3009 | else | |
3010 | ecs->random_signal = 1; | |
c906108c | 3011 | |
488f131b | 3012 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
3013 | so, then switch to that thread. */ |
3014 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 3015 | { |
527159b7 | 3016 | if (debug_infrun) |
8a9de0e4 | 3017 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 3018 | |
0d1e5fa7 | 3019 | context_switch (ecs->ptid); |
c5aa993b | 3020 | |
9a4105ab AC |
3021 | if (deprecated_context_hook) |
3022 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
488f131b | 3023 | } |
c906108c | 3024 | |
568d6575 UW |
3025 | /* At this point, get hold of the now-current thread's frame. */ |
3026 | frame = get_current_frame (); | |
3027 | gdbarch = get_frame_arch (frame); | |
3028 | ||
1c0fdd0e | 3029 | if (singlestep_breakpoints_inserted_p) |
488f131b JB |
3030 | { |
3031 | /* Pull the single step breakpoints out of the target. */ | |
e0cd558a | 3032 | remove_single_step_breakpoints (); |
488f131b JB |
3033 | singlestep_breakpoints_inserted_p = 0; |
3034 | } | |
c906108c | 3035 | |
d983da9c DJ |
3036 | if (stepped_after_stopped_by_watchpoint) |
3037 | stopped_by_watchpoint = 0; | |
3038 | else | |
3039 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
3040 | ||
3041 | /* If necessary, step over this watchpoint. We'll be back to display | |
3042 | it in a moment. */ | |
3043 | if (stopped_by_watchpoint | |
d92524f1 | 3044 | && (target_have_steppable_watchpoint |
568d6575 | 3045 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 3046 | { |
488f131b JB |
3047 | /* At this point, we are stopped at an instruction which has |
3048 | attempted to write to a piece of memory under control of | |
3049 | a watchpoint. The instruction hasn't actually executed | |
3050 | yet. If we were to evaluate the watchpoint expression | |
3051 | now, we would get the old value, and therefore no change | |
3052 | would seem to have occurred. | |
3053 | ||
3054 | In order to make watchpoints work `right', we really need | |
3055 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
3056 | watchpoint expression. We do this by single-stepping the |
3057 | target. | |
3058 | ||
3059 | It may not be necessary to disable the watchpoint to stop over | |
3060 | it. For example, the PA can (with some kernel cooperation) | |
3061 | single step over a watchpoint without disabling the watchpoint. | |
3062 | ||
3063 | It is far more common to need to disable a watchpoint to step | |
3064 | the inferior over it. If we have non-steppable watchpoints, | |
3065 | we must disable the current watchpoint; it's simplest to | |
3066 | disable all watchpoints and breakpoints. */ | |
2facfe5c DD |
3067 | int hw_step = 1; |
3068 | ||
d92524f1 | 3069 | if (!target_have_steppable_watchpoint) |
d983da9c | 3070 | remove_breakpoints (); |
2facfe5c | 3071 | /* Single step */ |
568d6575 | 3072 | hw_step = maybe_software_singlestep (gdbarch, stop_pc); |
2facfe5c | 3073 | target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0); |
0d1e5fa7 | 3074 | waiton_ptid = ecs->ptid; |
d92524f1 | 3075 | if (target_have_steppable_watchpoint) |
0d1e5fa7 | 3076 | infwait_state = infwait_step_watch_state; |
d983da9c | 3077 | else |
0d1e5fa7 | 3078 | infwait_state = infwait_nonstep_watch_state; |
488f131b JB |
3079 | prepare_to_wait (ecs); |
3080 | return; | |
3081 | } | |
3082 | ||
488f131b JB |
3083 | ecs->stop_func_start = 0; |
3084 | ecs->stop_func_end = 0; | |
3085 | ecs->stop_func_name = 0; | |
3086 | /* Don't care about return value; stop_func_start and stop_func_name | |
3087 | will both be 0 if it doesn't work. */ | |
3088 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
3089 | &ecs->stop_func_start, &ecs->stop_func_end); | |
cbf3b44a | 3090 | ecs->stop_func_start |
568d6575 | 3091 | += gdbarch_deprecated_function_start_offset (gdbarch); |
4e1c45ea | 3092 | ecs->event_thread->stepping_over_breakpoint = 0; |
347bddb7 | 3093 | bpstat_clear (&ecs->event_thread->stop_bpstat); |
414c69f7 | 3094 | ecs->event_thread->stop_step = 0; |
488f131b JB |
3095 | stop_print_frame = 1; |
3096 | ecs->random_signal = 0; | |
3097 | stopped_by_random_signal = 0; | |
488f131b | 3098 | |
edb3359d DJ |
3099 | /* Hide inlined functions starting here, unless we just performed stepi or |
3100 | nexti. After stepi and nexti, always show the innermost frame (not any | |
3101 | inline function call sites). */ | |
3102 | if (ecs->event_thread->step_range_end != 1) | |
3103 | skip_inline_frames (ecs->ptid); | |
3104 | ||
2020b7ab | 3105 | if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP |
4e1c45ea | 3106 | && ecs->event_thread->trap_expected |
568d6575 | 3107 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 3108 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 3109 | { |
b50d7442 | 3110 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 AC |
3111 | also on an instruction that needs to be stepped multiple |
3112 | times before it's been fully executing. E.g., architectures | |
3113 | with a delay slot. It needs to be stepped twice, once for | |
3114 | the instruction and once for the delay slot. */ | |
3115 | int step_through_delay | |
568d6575 | 3116 | = gdbarch_single_step_through_delay (gdbarch, frame); |
527159b7 | 3117 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 3118 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
4e1c45ea | 3119 | if (ecs->event_thread->step_range_end == 0 && step_through_delay) |
3352ef37 AC |
3120 | { |
3121 | /* The user issued a continue when stopped at a breakpoint. | |
3122 | Set up for another trap and get out of here. */ | |
4e1c45ea | 3123 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
3124 | keep_going (ecs); |
3125 | return; | |
3126 | } | |
3127 | else if (step_through_delay) | |
3128 | { | |
3129 | /* The user issued a step when stopped at a breakpoint. | |
3130 | Maybe we should stop, maybe we should not - the delay | |
3131 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
3132 | case, don't decide that here, just set |
3133 | ecs->stepping_over_breakpoint, making sure we | |
3134 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 3135 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
3136 | } |
3137 | } | |
3138 | ||
488f131b JB |
3139 | /* Look at the cause of the stop, and decide what to do. |
3140 | The alternatives are: | |
0d1e5fa7 PA |
3141 | 1) stop_stepping and return; to really stop and return to the debugger, |
3142 | 2) keep_going and return to start up again | |
4e1c45ea | 3143 | (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once) |
488f131b JB |
3144 | 3) set ecs->random_signal to 1, and the decision between 1 and 2 |
3145 | will be made according to the signal handling tables. */ | |
3146 | ||
3147 | /* First, distinguish signals caused by the debugger from signals | |
03cebad2 MK |
3148 | that have to do with the program's own actions. Note that |
3149 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
3150 | on the operating system version. Here we detect when a SIGILL or | |
3151 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
3152 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
3153 | when we're trying to execute a breakpoint instruction on a | |
3154 | non-executable stack. This happens for call dummy breakpoints | |
3155 | for architectures like SPARC that place call dummies on the | |
237fc4c9 | 3156 | stack. |
488f131b | 3157 | |
237fc4c9 PA |
3158 | If we're doing a displaced step past a breakpoint, then the |
3159 | breakpoint is always inserted at the original instruction; | |
3160 | non-standard signals can't be explained by the breakpoint. */ | |
2020b7ab | 3161 | if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP |
4e1c45ea | 3162 | || (! ecs->event_thread->trap_expected |
237fc4c9 | 3163 | && breakpoint_inserted_here_p (stop_pc) |
2020b7ab PA |
3164 | && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL |
3165 | || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV | |
3166 | || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT)) | |
b0f4b84b DJ |
3167 | || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP |
3168 | || stop_soon == STOP_QUIETLY_REMOTE) | |
488f131b | 3169 | { |
2020b7ab | 3170 | if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap) |
488f131b | 3171 | { |
527159b7 | 3172 | if (debug_infrun) |
8a9de0e4 | 3173 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); |
488f131b JB |
3174 | stop_print_frame = 0; |
3175 | stop_stepping (ecs); | |
3176 | return; | |
3177 | } | |
c54cfec8 EZ |
3178 | |
3179 | /* This is originated from start_remote(), start_inferior() and | |
3180 | shared libraries hook functions. */ | |
b0f4b84b | 3181 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) |
488f131b | 3182 | { |
527159b7 | 3183 | if (debug_infrun) |
8a9de0e4 | 3184 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); |
488f131b JB |
3185 | stop_stepping (ecs); |
3186 | return; | |
3187 | } | |
3188 | ||
c54cfec8 | 3189 | /* This originates from attach_command(). We need to overwrite |
a0d21d28 PA |
3190 | the stop_signal here, because some kernels don't ignore a |
3191 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
3192 | See more comments in inferior.h. On the other hand, if we | |
a0ef4274 | 3193 | get a non-SIGSTOP, report it to the user - assume the backend |
a0d21d28 PA |
3194 | will handle the SIGSTOP if it should show up later. |
3195 | ||
3196 | Also consider that the attach is complete when we see a | |
3197 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
3198 | target extended-remote report it instead of a SIGSTOP | |
3199 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
e0ba6746 PA |
3200 | signal, so this is no exception. |
3201 | ||
3202 | Also consider that the attach is complete when we see a | |
3203 | TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
3204 | the target to stop all threads of the inferior, in case the | |
3205 | low level attach operation doesn't stop them implicitly. If | |
3206 | they weren't stopped implicitly, then the stub will report a | |
3207 | TARGET_SIGNAL_0, meaning: stopped for no particular reason | |
3208 | other than GDB's request. */ | |
a0ef4274 | 3209 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP |
2020b7ab | 3210 | && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP |
e0ba6746 PA |
3211 | || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP |
3212 | || ecs->event_thread->stop_signal == TARGET_SIGNAL_0)) | |
c54cfec8 EZ |
3213 | { |
3214 | stop_stepping (ecs); | |
2020b7ab | 3215 | ecs->event_thread->stop_signal = TARGET_SIGNAL_0; |
c54cfec8 EZ |
3216 | return; |
3217 | } | |
3218 | ||
fba57f8f | 3219 | /* See if there is a breakpoint at the current PC. */ |
347bddb7 | 3220 | ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid); |
fba57f8f VP |
3221 | |
3222 | /* Following in case break condition called a | |
3223 | function. */ | |
3224 | stop_print_frame = 1; | |
488f131b | 3225 | |
73dd234f | 3226 | /* NOTE: cagney/2003-03-29: These two checks for a random signal |
8fb3e588 AC |
3227 | at one stage in the past included checks for an inferior |
3228 | function call's call dummy's return breakpoint. The original | |
3229 | comment, that went with the test, read: | |
73dd234f | 3230 | |
8fb3e588 AC |
3231 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
3232 | another signal besides SIGTRAP, so check here as well as | |
3233 | above.'' | |
73dd234f | 3234 | |
8002d778 | 3235 | If someone ever tries to get call dummys on a |
73dd234f | 3236 | non-executable stack to work (where the target would stop |
03cebad2 MK |
3237 | with something like a SIGSEGV), then those tests might need |
3238 | to be re-instated. Given, however, that the tests were only | |
73dd234f | 3239 | enabled when momentary breakpoints were not being used, I |
03cebad2 MK |
3240 | suspect that it won't be the case. |
3241 | ||
8fb3e588 AC |
3242 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
3243 | be necessary for call dummies on a non-executable stack on | |
3244 | SPARC. */ | |
73dd234f | 3245 | |
2020b7ab | 3246 | if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) |
488f131b | 3247 | ecs->random_signal |
347bddb7 | 3248 | = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat) |
4e1c45ea PA |
3249 | || ecs->event_thread->trap_expected |
3250 | || (ecs->event_thread->step_range_end | |
3251 | && ecs->event_thread->step_resume_breakpoint == NULL)); | |
488f131b JB |
3252 | else |
3253 | { | |
347bddb7 | 3254 | ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat); |
488f131b | 3255 | if (!ecs->random_signal) |
2020b7ab | 3256 | ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP; |
488f131b JB |
3257 | } |
3258 | } | |
3259 | ||
3260 | /* When we reach this point, we've pretty much decided | |
3261 | that the reason for stopping must've been a random | |
3262 | (unexpected) signal. */ | |
3263 | ||
3264 | else | |
3265 | ecs->random_signal = 1; | |
488f131b | 3266 | |
04e68871 | 3267 | process_event_stop_test: |
568d6575 UW |
3268 | |
3269 | /* Re-fetch current thread's frame in case we did a | |
3270 | "goto process_event_stop_test" above. */ | |
3271 | frame = get_current_frame (); | |
3272 | gdbarch = get_frame_arch (frame); | |
3273 | ||
488f131b JB |
3274 | /* For the program's own signals, act according to |
3275 | the signal handling tables. */ | |
3276 | ||
3277 | if (ecs->random_signal) | |
3278 | { | |
3279 | /* Signal not for debugging purposes. */ | |
3280 | int printed = 0; | |
3281 | ||
527159b7 | 3282 | if (debug_infrun) |
2020b7ab PA |
3283 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", |
3284 | ecs->event_thread->stop_signal); | |
527159b7 | 3285 | |
488f131b JB |
3286 | stopped_by_random_signal = 1; |
3287 | ||
2020b7ab | 3288 | if (signal_print[ecs->event_thread->stop_signal]) |
488f131b JB |
3289 | { |
3290 | printed = 1; | |
3291 | target_terminal_ours_for_output (); | |
2020b7ab | 3292 | print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal); |
488f131b | 3293 | } |
252fbfc8 PA |
3294 | /* Always stop on signals if we're either just gaining control |
3295 | of the program, or the user explicitly requested this thread | |
3296 | to remain stopped. */ | |
d6b48e9c | 3297 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 3298 | || ecs->event_thread->stop_requested |
d6b48e9c | 3299 | || signal_stop_state (ecs->event_thread->stop_signal)) |
488f131b JB |
3300 | { |
3301 | stop_stepping (ecs); | |
3302 | return; | |
3303 | } | |
3304 | /* If not going to stop, give terminal back | |
3305 | if we took it away. */ | |
3306 | else if (printed) | |
3307 | target_terminal_inferior (); | |
3308 | ||
3309 | /* Clear the signal if it should not be passed. */ | |
2020b7ab PA |
3310 | if (signal_program[ecs->event_thread->stop_signal] == 0) |
3311 | ecs->event_thread->stop_signal = TARGET_SIGNAL_0; | |
488f131b | 3312 | |
fb14de7b | 3313 | if (ecs->event_thread->prev_pc == stop_pc |
4e1c45ea PA |
3314 | && ecs->event_thread->trap_expected |
3315 | && ecs->event_thread->step_resume_breakpoint == NULL) | |
68f53502 AC |
3316 | { |
3317 | /* We were just starting a new sequence, attempting to | |
3318 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 3319 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
3320 | of the stepping range so GDB needs to remember to, when |
3321 | the signal handler returns, resume stepping off that | |
3322 | breakpoint. */ | |
3323 | /* To simplify things, "continue" is forced to use the same | |
3324 | code paths as single-step - set a breakpoint at the | |
3325 | signal return address and then, once hit, step off that | |
3326 | breakpoint. */ | |
237fc4c9 PA |
3327 | if (debug_infrun) |
3328 | fprintf_unfiltered (gdb_stdlog, | |
3329 | "infrun: signal arrived while stepping over " | |
3330 | "breakpoint\n"); | |
d3169d93 | 3331 | |
568d6575 | 3332 | insert_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 3333 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
9d799f85 AC |
3334 | keep_going (ecs); |
3335 | return; | |
68f53502 | 3336 | } |
9d799f85 | 3337 | |
4e1c45ea | 3338 | if (ecs->event_thread->step_range_end != 0 |
2020b7ab | 3339 | && ecs->event_thread->stop_signal != TARGET_SIGNAL_0 |
4e1c45ea PA |
3340 | && (ecs->event_thread->step_range_start <= stop_pc |
3341 | && stop_pc < ecs->event_thread->step_range_end) | |
edb3359d DJ |
3342 | && frame_id_eq (get_stack_frame_id (frame), |
3343 | ecs->event_thread->step_stack_frame_id) | |
4e1c45ea | 3344 | && ecs->event_thread->step_resume_breakpoint == NULL) |
d303a6c7 AC |
3345 | { |
3346 | /* The inferior is about to take a signal that will take it | |
3347 | out of the single step range. Set a breakpoint at the | |
3348 | current PC (which is presumably where the signal handler | |
3349 | will eventually return) and then allow the inferior to | |
3350 | run free. | |
3351 | ||
3352 | Note that this is only needed for a signal delivered | |
3353 | while in the single-step range. Nested signals aren't a | |
3354 | problem as they eventually all return. */ | |
237fc4c9 PA |
3355 | if (debug_infrun) |
3356 | fprintf_unfiltered (gdb_stdlog, | |
3357 | "infrun: signal may take us out of " | |
3358 | "single-step range\n"); | |
3359 | ||
568d6575 | 3360 | insert_step_resume_breakpoint_at_frame (frame); |
9d799f85 AC |
3361 | keep_going (ecs); |
3362 | return; | |
d303a6c7 | 3363 | } |
9d799f85 AC |
3364 | |
3365 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
3366 | when either there's a nested signal, or when there's a | |
3367 | pending signal enabled just as the signal handler returns | |
3368 | (leaving the inferior at the step-resume-breakpoint without | |
3369 | actually executing it). Either way continue until the | |
3370 | breakpoint is really hit. */ | |
488f131b JB |
3371 | keep_going (ecs); |
3372 | return; | |
3373 | } | |
3374 | ||
3375 | /* Handle cases caused by hitting a breakpoint. */ | |
3376 | { | |
3377 | CORE_ADDR jmp_buf_pc; | |
3378 | struct bpstat_what what; | |
3379 | ||
347bddb7 | 3380 | what = bpstat_what (ecs->event_thread->stop_bpstat); |
488f131b JB |
3381 | |
3382 | if (what.call_dummy) | |
3383 | { | |
3384 | stop_stack_dummy = 1; | |
c5aa993b | 3385 | } |
c906108c | 3386 | |
488f131b | 3387 | switch (what.main_action) |
c5aa993b | 3388 | { |
488f131b | 3389 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: |
611c83ae PA |
3390 | /* If we hit the breakpoint at longjmp while stepping, we |
3391 | install a momentary breakpoint at the target of the | |
3392 | jmp_buf. */ | |
3393 | ||
3394 | if (debug_infrun) | |
3395 | fprintf_unfiltered (gdb_stdlog, | |
3396 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
3397 | ||
4e1c45ea | 3398 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 3399 | |
568d6575 UW |
3400 | if (!gdbarch_get_longjmp_target_p (gdbarch) |
3401 | || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc)) | |
c5aa993b | 3402 | { |
611c83ae PA |
3403 | if (debug_infrun) |
3404 | fprintf_unfiltered (gdb_stdlog, "\ | |
3405 | infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n"); | |
488f131b | 3406 | keep_going (ecs); |
104c1213 | 3407 | return; |
c5aa993b | 3408 | } |
488f131b | 3409 | |
611c83ae PA |
3410 | /* We're going to replace the current step-resume breakpoint |
3411 | with a longjmp-resume breakpoint. */ | |
4e1c45ea | 3412 | delete_step_resume_breakpoint (ecs->event_thread); |
611c83ae PA |
3413 | |
3414 | /* Insert a breakpoint at resume address. */ | |
a6d9a66e | 3415 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); |
c906108c | 3416 | |
488f131b JB |
3417 | keep_going (ecs); |
3418 | return; | |
c906108c | 3419 | |
488f131b | 3420 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
527159b7 | 3421 | if (debug_infrun) |
611c83ae PA |
3422 | fprintf_unfiltered (gdb_stdlog, |
3423 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
3424 | ||
4e1c45ea PA |
3425 | gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL); |
3426 | delete_step_resume_breakpoint (ecs->event_thread); | |
611c83ae | 3427 | |
414c69f7 | 3428 | ecs->event_thread->stop_step = 1; |
611c83ae PA |
3429 | print_stop_reason (END_STEPPING_RANGE, 0); |
3430 | stop_stepping (ecs); | |
3431 | return; | |
488f131b JB |
3432 | |
3433 | case BPSTAT_WHAT_SINGLE: | |
527159b7 | 3434 | if (debug_infrun) |
8802d8ed | 3435 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); |
4e1c45ea | 3436 | ecs->event_thread->stepping_over_breakpoint = 1; |
488f131b JB |
3437 | /* Still need to check other stuff, at least the case |
3438 | where we are stepping and step out of the right range. */ | |
3439 | break; | |
c906108c | 3440 | |
488f131b | 3441 | case BPSTAT_WHAT_STOP_NOISY: |
527159b7 | 3442 | if (debug_infrun) |
8802d8ed | 3443 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); |
488f131b | 3444 | stop_print_frame = 1; |
c906108c | 3445 | |
d303a6c7 AC |
3446 | /* We are about to nuke the step_resume_breakpointt via the |
3447 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 3448 | |
488f131b JB |
3449 | stop_stepping (ecs); |
3450 | return; | |
c5aa993b | 3451 | |
488f131b | 3452 | case BPSTAT_WHAT_STOP_SILENT: |
527159b7 | 3453 | if (debug_infrun) |
8802d8ed | 3454 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); |
488f131b | 3455 | stop_print_frame = 0; |
c5aa993b | 3456 | |
d303a6c7 AC |
3457 | /* We are about to nuke the step_resume_breakpoin via the |
3458 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 3459 | |
488f131b | 3460 | stop_stepping (ecs); |
e441088d | 3461 | return; |
c5aa993b | 3462 | |
488f131b | 3463 | case BPSTAT_WHAT_STEP_RESUME: |
527159b7 | 3464 | if (debug_infrun) |
8802d8ed | 3465 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); |
527159b7 | 3466 | |
4e1c45ea PA |
3467 | delete_step_resume_breakpoint (ecs->event_thread); |
3468 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
68f53502 AC |
3469 | { |
3470 | /* Back when the step-resume breakpoint was inserted, we | |
3471 | were trying to single-step off a breakpoint. Go back | |
3472 | to doing that. */ | |
4e1c45ea PA |
3473 | ecs->event_thread->step_after_step_resume_breakpoint = 0; |
3474 | ecs->event_thread->stepping_over_breakpoint = 1; | |
68f53502 AC |
3475 | keep_going (ecs); |
3476 | return; | |
3477 | } | |
b2175913 MS |
3478 | if (stop_pc == ecs->stop_func_start |
3479 | && execution_direction == EXEC_REVERSE) | |
3480 | { | |
3481 | /* We are stepping over a function call in reverse, and | |
3482 | just hit the step-resume breakpoint at the start | |
3483 | address of the function. Go back to single-stepping, | |
3484 | which should take us back to the function call. */ | |
3485 | ecs->event_thread->stepping_over_breakpoint = 1; | |
3486 | keep_going (ecs); | |
3487 | return; | |
3488 | } | |
488f131b JB |
3489 | break; |
3490 | ||
488f131b | 3491 | case BPSTAT_WHAT_CHECK_SHLIBS: |
c906108c | 3492 | { |
527159b7 | 3493 | if (debug_infrun) |
8802d8ed | 3494 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n"); |
488f131b JB |
3495 | |
3496 | /* Check for any newly added shared libraries if we're | |
3497 | supposed to be adding them automatically. Switch | |
3498 | terminal for any messages produced by | |
3499 | breakpoint_re_set. */ | |
3500 | target_terminal_ours_for_output (); | |
aff6338a | 3501 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
3502 | stack's section table is kept up-to-date. Architectures, |
3503 | (e.g., PPC64), use the section table to perform | |
3504 | operations such as address => section name and hence | |
3505 | require the table to contain all sections (including | |
3506 | those found in shared libraries). */ | |
a77053c2 | 3507 | #ifdef SOLIB_ADD |
aff6338a | 3508 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
a77053c2 MK |
3509 | #else |
3510 | solib_add (NULL, 0, ¤t_target, auto_solib_add); | |
3511 | #endif | |
488f131b JB |
3512 | target_terminal_inferior (); |
3513 | ||
488f131b JB |
3514 | /* If requested, stop when the dynamic linker notifies |
3515 | gdb of events. This allows the user to get control | |
3516 | and place breakpoints in initializer routines for | |
3517 | dynamically loaded objects (among other things). */ | |
877522db | 3518 | if (stop_on_solib_events || stop_stack_dummy) |
d4f3574e | 3519 | { |
488f131b | 3520 | stop_stepping (ecs); |
d4f3574e SS |
3521 | return; |
3522 | } | |
c5aa993b | 3523 | else |
c5aa993b | 3524 | { |
488f131b | 3525 | /* We want to step over this breakpoint, then keep going. */ |
4e1c45ea | 3526 | ecs->event_thread->stepping_over_breakpoint = 1; |
488f131b | 3527 | break; |
c5aa993b | 3528 | } |
488f131b | 3529 | } |
488f131b | 3530 | break; |
c906108c | 3531 | |
488f131b JB |
3532 | case BPSTAT_WHAT_LAST: |
3533 | /* Not a real code, but listed here to shut up gcc -Wall. */ | |
c906108c | 3534 | |
488f131b JB |
3535 | case BPSTAT_WHAT_KEEP_CHECKING: |
3536 | break; | |
3537 | } | |
3538 | } | |
c906108c | 3539 | |
488f131b JB |
3540 | /* We come here if we hit a breakpoint but should not |
3541 | stop for it. Possibly we also were stepping | |
3542 | and should stop for that. So fall through and | |
3543 | test for stepping. But, if not stepping, | |
3544 | do not stop. */ | |
c906108c | 3545 | |
a7212384 UW |
3546 | /* In all-stop mode, if we're currently stepping but have stopped in |
3547 | some other thread, we need to switch back to the stepped thread. */ | |
3548 | if (!non_stop) | |
3549 | { | |
3550 | struct thread_info *tp; | |
b3444185 | 3551 | tp = iterate_over_threads (currently_stepping_or_nexting_callback, |
a7212384 UW |
3552 | ecs->event_thread); |
3553 | if (tp) | |
3554 | { | |
3555 | /* However, if the current thread is blocked on some internal | |
3556 | breakpoint, and we simply need to step over that breakpoint | |
3557 | to get it going again, do that first. */ | |
3558 | if ((ecs->event_thread->trap_expected | |
3559 | && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP) | |
3560 | || ecs->event_thread->stepping_over_breakpoint) | |
3561 | { | |
3562 | keep_going (ecs); | |
3563 | return; | |
3564 | } | |
3565 | ||
66852e9c PA |
3566 | /* If the stepping thread exited, then don't try to switch |
3567 | back and resume it, which could fail in several different | |
3568 | ways depending on the target. Instead, just keep going. | |
3569 | ||
3570 | We can find a stepping dead thread in the thread list in | |
3571 | two cases: | |
3572 | ||
3573 | - The target supports thread exit events, and when the | |
3574 | target tries to delete the thread from the thread list, | |
3575 | inferior_ptid pointed at the exiting thread. In such | |
3576 | case, calling delete_thread does not really remove the | |
3577 | thread from the list; instead, the thread is left listed, | |
3578 | with 'exited' state. | |
3579 | ||
3580 | - The target's debug interface does not support thread | |
3581 | exit events, and so we have no idea whatsoever if the | |
3582 | previously stepping thread is still alive. For that | |
3583 | reason, we need to synchronously query the target | |
3584 | now. */ | |
b3444185 PA |
3585 | if (is_exited (tp->ptid) |
3586 | || !target_thread_alive (tp->ptid)) | |
3587 | { | |
3588 | if (debug_infrun) | |
3589 | fprintf_unfiltered (gdb_stdlog, "\ | |
3590 | infrun: not switching back to stepped thread, it has vanished\n"); | |
3591 | ||
3592 | delete_thread (tp->ptid); | |
3593 | keep_going (ecs); | |
3594 | return; | |
3595 | } | |
3596 | ||
a7212384 UW |
3597 | /* Otherwise, we no longer expect a trap in the current thread. |
3598 | Clear the trap_expected flag before switching back -- this is | |
3599 | what keep_going would do as well, if we called it. */ | |
3600 | ecs->event_thread->trap_expected = 0; | |
3601 | ||
3602 | if (debug_infrun) | |
3603 | fprintf_unfiltered (gdb_stdlog, | |
3604 | "infrun: switching back to stepped thread\n"); | |
3605 | ||
3606 | ecs->event_thread = tp; | |
3607 | ecs->ptid = tp->ptid; | |
3608 | context_switch (ecs->ptid); | |
3609 | keep_going (ecs); | |
3610 | return; | |
3611 | } | |
3612 | } | |
3613 | ||
9d1ff73f MS |
3614 | /* Are we stepping to get the inferior out of the dynamic linker's |
3615 | hook (and possibly the dld itself) after catching a shlib | |
3616 | event? */ | |
4e1c45ea | 3617 | if (ecs->event_thread->stepping_through_solib_after_catch) |
488f131b JB |
3618 | { |
3619 | #if defined(SOLIB_ADD) | |
3620 | /* Have we reached our destination? If not, keep going. */ | |
3621 | if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc)) | |
3622 | { | |
527159b7 | 3623 | if (debug_infrun) |
8a9de0e4 | 3624 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n"); |
4e1c45ea | 3625 | ecs->event_thread->stepping_over_breakpoint = 1; |
488f131b | 3626 | keep_going (ecs); |
104c1213 | 3627 | return; |
488f131b JB |
3628 | } |
3629 | #endif | |
527159b7 | 3630 | if (debug_infrun) |
8a9de0e4 | 3631 | fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n"); |
488f131b JB |
3632 | /* Else, stop and report the catchpoint(s) whose triggering |
3633 | caused us to begin stepping. */ | |
4e1c45ea | 3634 | ecs->event_thread->stepping_through_solib_after_catch = 0; |
347bddb7 PA |
3635 | bpstat_clear (&ecs->event_thread->stop_bpstat); |
3636 | ecs->event_thread->stop_bpstat | |
3637 | = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints); | |
4e1c45ea | 3638 | bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints); |
488f131b JB |
3639 | stop_print_frame = 1; |
3640 | stop_stepping (ecs); | |
3641 | return; | |
3642 | } | |
c906108c | 3643 | |
4e1c45ea | 3644 | if (ecs->event_thread->step_resume_breakpoint) |
488f131b | 3645 | { |
527159b7 | 3646 | if (debug_infrun) |
d3169d93 DJ |
3647 | fprintf_unfiltered (gdb_stdlog, |
3648 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 3649 | |
488f131b JB |
3650 | /* Having a step-resume breakpoint overrides anything |
3651 | else having to do with stepping commands until | |
3652 | that breakpoint is reached. */ | |
488f131b JB |
3653 | keep_going (ecs); |
3654 | return; | |
3655 | } | |
c5aa993b | 3656 | |
4e1c45ea | 3657 | if (ecs->event_thread->step_range_end == 0) |
488f131b | 3658 | { |
527159b7 | 3659 | if (debug_infrun) |
8a9de0e4 | 3660 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 3661 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
3662 | keep_going (ecs); |
3663 | return; | |
3664 | } | |
c5aa993b | 3665 | |
488f131b | 3666 | /* If stepping through a line, keep going if still within it. |
c906108c | 3667 | |
488f131b JB |
3668 | Note that step_range_end is the address of the first instruction |
3669 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
3670 | within it! |
3671 | ||
3672 | Note also that during reverse execution, we may be stepping | |
3673 | through a function epilogue and therefore must detect when | |
3674 | the current-frame changes in the middle of a line. */ | |
3675 | ||
4e1c45ea | 3676 | if (stop_pc >= ecs->event_thread->step_range_start |
31410e84 MS |
3677 | && stop_pc < ecs->event_thread->step_range_end |
3678 | && (execution_direction != EXEC_REVERSE | |
388a8562 | 3679 | || frame_id_eq (get_frame_id (frame), |
31410e84 | 3680 | ecs->event_thread->step_frame_id))) |
488f131b | 3681 | { |
527159b7 | 3682 | if (debug_infrun) |
5af949e3 UW |
3683 | fprintf_unfiltered |
3684 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
3685 | paddress (gdbarch, ecs->event_thread->step_range_start), | |
3686 | paddress (gdbarch, ecs->event_thread->step_range_end)); | |
b2175913 MS |
3687 | |
3688 | /* When stepping backward, stop at beginning of line range | |
3689 | (unless it's the function entry point, in which case | |
3690 | keep going back to the call point). */ | |
3691 | if (stop_pc == ecs->event_thread->step_range_start | |
3692 | && stop_pc != ecs->stop_func_start | |
3693 | && execution_direction == EXEC_REVERSE) | |
3694 | { | |
3695 | ecs->event_thread->stop_step = 1; | |
3696 | print_stop_reason (END_STEPPING_RANGE, 0); | |
3697 | stop_stepping (ecs); | |
3698 | } | |
3699 | else | |
3700 | keep_going (ecs); | |
3701 | ||
488f131b JB |
3702 | return; |
3703 | } | |
c5aa993b | 3704 | |
488f131b | 3705 | /* We stepped out of the stepping range. */ |
c906108c | 3706 | |
488f131b | 3707 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
3708 | loader dynamic symbol resolution code... |
3709 | ||
3710 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
3711 | time loader code and reach the callee's address. | |
3712 | ||
3713 | EXEC_REVERSE: we've already executed the callee (backward), and | |
3714 | the runtime loader code is handled just like any other | |
3715 | undebuggable function call. Now we need only keep stepping | |
3716 | backward through the trampoline code, and that's handled further | |
3717 | down, so there is nothing for us to do here. */ | |
3718 | ||
3719 | if (execution_direction != EXEC_REVERSE | |
3720 | && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE | |
cfd8ab24 | 3721 | && in_solib_dynsym_resolve_code (stop_pc)) |
488f131b | 3722 | { |
4c8c40e6 | 3723 | CORE_ADDR pc_after_resolver = |
568d6575 | 3724 | gdbarch_skip_solib_resolver (gdbarch, stop_pc); |
c906108c | 3725 | |
527159b7 | 3726 | if (debug_infrun) |
8a9de0e4 | 3727 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n"); |
527159b7 | 3728 | |
488f131b JB |
3729 | if (pc_after_resolver) |
3730 | { | |
3731 | /* Set up a step-resume breakpoint at the address | |
3732 | indicated by SKIP_SOLIB_RESOLVER. */ | |
3733 | struct symtab_and_line sr_sal; | |
fe39c653 | 3734 | init_sal (&sr_sal); |
488f131b JB |
3735 | sr_sal.pc = pc_after_resolver; |
3736 | ||
a6d9a66e UW |
3737 | insert_step_resume_breakpoint_at_sal (gdbarch, |
3738 | sr_sal, null_frame_id); | |
c5aa993b | 3739 | } |
c906108c | 3740 | |
488f131b JB |
3741 | keep_going (ecs); |
3742 | return; | |
3743 | } | |
c906108c | 3744 | |
4e1c45ea | 3745 | if (ecs->event_thread->step_range_end != 1 |
078130d0 PA |
3746 | && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE |
3747 | || ecs->event_thread->step_over_calls == STEP_OVER_ALL) | |
568d6575 | 3748 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 3749 | { |
527159b7 | 3750 | if (debug_infrun) |
8a9de0e4 | 3751 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n"); |
42edda50 | 3752 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
3753 | a signal trampoline (either by a signal being delivered or by |
3754 | the signal handler returning). Just single-step until the | |
3755 | inferior leaves the trampoline (either by calling the handler | |
3756 | or returning). */ | |
488f131b JB |
3757 | keep_going (ecs); |
3758 | return; | |
3759 | } | |
c906108c | 3760 | |
c17eaafe DJ |
3761 | /* Check for subroutine calls. The check for the current frame |
3762 | equalling the step ID is not necessary - the check of the | |
3763 | previous frame's ID is sufficient - but it is a common case and | |
3764 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
3765 | |
3766 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
3767 | being equal, so to get into this block, both the current and | |
3768 | previous frame must have valid frame IDs. */ | |
edb3359d DJ |
3769 | if (!frame_id_eq (get_stack_frame_id (frame), |
3770 | ecs->event_thread->step_stack_frame_id) | |
fdd654f3 MS |
3771 | && frame_id_eq (frame_unwind_caller_id (frame), |
3772 | ecs->event_thread->step_stack_frame_id)) | |
488f131b | 3773 | { |
95918acb | 3774 | CORE_ADDR real_stop_pc; |
8fb3e588 | 3775 | |
527159b7 | 3776 | if (debug_infrun) |
8a9de0e4 | 3777 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 3778 | |
078130d0 | 3779 | if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE) |
4e1c45ea | 3780 | || ((ecs->event_thread->step_range_end == 1) |
d80b854b | 3781 | && in_prologue (gdbarch, ecs->event_thread->prev_pc, |
4e1c45ea | 3782 | ecs->stop_func_start))) |
95918acb AC |
3783 | { |
3784 | /* I presume that step_over_calls is only 0 when we're | |
3785 | supposed to be stepping at the assembly language level | |
3786 | ("stepi"). Just stop. */ | |
3787 | /* Also, maybe we just did a "nexti" inside a prolog, so we | |
3788 | thought it was a subroutine call but it was not. Stop as | |
3789 | well. FENN */ | |
388a8562 | 3790 | /* And this works the same backward as frontward. MVS */ |
414c69f7 | 3791 | ecs->event_thread->stop_step = 1; |
95918acb AC |
3792 | print_stop_reason (END_STEPPING_RANGE, 0); |
3793 | stop_stepping (ecs); | |
3794 | return; | |
3795 | } | |
8fb3e588 | 3796 | |
388a8562 MS |
3797 | /* Reverse stepping through solib trampolines. */ |
3798 | ||
3799 | if (execution_direction == EXEC_REVERSE | |
fdd654f3 | 3800 | && ecs->event_thread->step_over_calls != STEP_OVER_NONE |
388a8562 MS |
3801 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
3802 | || (ecs->stop_func_start == 0 | |
3803 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
3804 | { | |
3805 | /* Any solib trampoline code can be handled in reverse | |
3806 | by simply continuing to single-step. We have already | |
3807 | executed the solib function (backwards), and a few | |
3808 | steps will take us back through the trampoline to the | |
3809 | caller. */ | |
3810 | keep_going (ecs); | |
3811 | return; | |
3812 | } | |
3813 | ||
078130d0 | 3814 | if (ecs->event_thread->step_over_calls == STEP_OVER_ALL) |
8567c30f | 3815 | { |
b2175913 MS |
3816 | /* We're doing a "next". |
3817 | ||
3818 | Normal (forward) execution: set a breakpoint at the | |
3819 | callee's return address (the address at which the caller | |
3820 | will resume). | |
3821 | ||
3822 | Reverse (backward) execution. set the step-resume | |
3823 | breakpoint at the start of the function that we just | |
3824 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 3825 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
3826 | |
3827 | if (execution_direction == EXEC_REVERSE) | |
3828 | { | |
3829 | struct symtab_and_line sr_sal; | |
3067f6e5 | 3830 | |
388a8562 MS |
3831 | /* Normal function call return (static or dynamic). */ |
3832 | init_sal (&sr_sal); | |
3833 | sr_sal.pc = ecs->stop_func_start; | |
a6d9a66e UW |
3834 | insert_step_resume_breakpoint_at_sal (gdbarch, |
3835 | sr_sal, null_frame_id); | |
b2175913 MS |
3836 | } |
3837 | else | |
568d6575 | 3838 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 3839 | |
8567c30f AC |
3840 | keep_going (ecs); |
3841 | return; | |
3842 | } | |
a53c66de | 3843 | |
95918acb | 3844 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
3845 | calling routine and the real function), locate the real |
3846 | function. That's what tells us (a) whether we want to step | |
3847 | into it at all, and (b) what prologue we want to run to the | |
3848 | end of, if we do step into it. */ | |
568d6575 | 3849 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 3850 | if (real_stop_pc == 0) |
568d6575 | 3851 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
3852 | if (real_stop_pc != 0) |
3853 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 3854 | |
db5f024e | 3855 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 RC |
3856 | { |
3857 | struct symtab_and_line sr_sal; | |
3858 | init_sal (&sr_sal); | |
3859 | sr_sal.pc = ecs->stop_func_start; | |
3860 | ||
a6d9a66e UW |
3861 | insert_step_resume_breakpoint_at_sal (gdbarch, |
3862 | sr_sal, null_frame_id); | |
8fb3e588 AC |
3863 | keep_going (ecs); |
3864 | return; | |
1b2bfbb9 RC |
3865 | } |
3866 | ||
95918acb | 3867 | /* If we have line number information for the function we are |
8fb3e588 | 3868 | thinking of stepping into, step into it. |
95918acb | 3869 | |
8fb3e588 AC |
3870 | If there are several symtabs at that PC (e.g. with include |
3871 | files), just want to know whether *any* of them have line | |
3872 | numbers. find_pc_line handles this. */ | |
95918acb AC |
3873 | { |
3874 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 3875 | |
95918acb AC |
3876 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
3877 | if (tmp_sal.line != 0) | |
3878 | { | |
b2175913 | 3879 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 3880 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 3881 | else |
568d6575 | 3882 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
3883 | return; |
3884 | } | |
3885 | } | |
3886 | ||
3887 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
3888 | set, we stop the step so that the user has a chance to switch |
3889 | in assembly mode. */ | |
078130d0 PA |
3890 | if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE |
3891 | && step_stop_if_no_debug) | |
95918acb | 3892 | { |
414c69f7 | 3893 | ecs->event_thread->stop_step = 1; |
95918acb AC |
3894 | print_stop_reason (END_STEPPING_RANGE, 0); |
3895 | stop_stepping (ecs); | |
3896 | return; | |
3897 | } | |
3898 | ||
b2175913 MS |
3899 | if (execution_direction == EXEC_REVERSE) |
3900 | { | |
3901 | /* Set a breakpoint at callee's start address. | |
3902 | From there we can step once and be back in the caller. */ | |
3903 | struct symtab_and_line sr_sal; | |
3904 | init_sal (&sr_sal); | |
3905 | sr_sal.pc = ecs->stop_func_start; | |
a6d9a66e UW |
3906 | insert_step_resume_breakpoint_at_sal (gdbarch, |
3907 | sr_sal, null_frame_id); | |
b2175913 MS |
3908 | } |
3909 | else | |
3910 | /* Set a breakpoint at callee's return address (the address | |
3911 | at which the caller will resume). */ | |
568d6575 | 3912 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 3913 | |
95918acb | 3914 | keep_going (ecs); |
488f131b | 3915 | return; |
488f131b | 3916 | } |
c906108c | 3917 | |
fdd654f3 MS |
3918 | /* Reverse stepping through solib trampolines. */ |
3919 | ||
3920 | if (execution_direction == EXEC_REVERSE | |
3921 | && ecs->event_thread->step_over_calls != STEP_OVER_NONE) | |
3922 | { | |
3923 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) | |
3924 | || (ecs->stop_func_start == 0 | |
3925 | && in_solib_dynsym_resolve_code (stop_pc))) | |
3926 | { | |
3927 | /* Any solib trampoline code can be handled in reverse | |
3928 | by simply continuing to single-step. We have already | |
3929 | executed the solib function (backwards), and a few | |
3930 | steps will take us back through the trampoline to the | |
3931 | caller. */ | |
3932 | keep_going (ecs); | |
3933 | return; | |
3934 | } | |
3935 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
3936 | { | |
3937 | /* Stepped backward into the solib dynsym resolver. | |
3938 | Set a breakpoint at its start and continue, then | |
3939 | one more step will take us out. */ | |
3940 | struct symtab_and_line sr_sal; | |
3941 | init_sal (&sr_sal); | |
3942 | sr_sal.pc = ecs->stop_func_start; | |
3943 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
3944 | sr_sal, null_frame_id); | |
3945 | keep_going (ecs); | |
3946 | return; | |
3947 | } | |
3948 | } | |
3949 | ||
488f131b JB |
3950 | /* If we're in the return path from a shared library trampoline, |
3951 | we want to proceed through the trampoline when stepping. */ | |
568d6575 | 3952 | if (gdbarch_in_solib_return_trampoline (gdbarch, |
e76f05fa | 3953 | stop_pc, ecs->stop_func_name)) |
488f131b | 3954 | { |
488f131b | 3955 | /* Determine where this trampoline returns. */ |
52f729a7 | 3956 | CORE_ADDR real_stop_pc; |
568d6575 | 3957 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
c906108c | 3958 | |
527159b7 | 3959 | if (debug_infrun) |
8a9de0e4 | 3960 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n"); |
527159b7 | 3961 | |
488f131b | 3962 | /* Only proceed through if we know where it's going. */ |
d764a824 | 3963 | if (real_stop_pc) |
488f131b JB |
3964 | { |
3965 | /* And put the step-breakpoint there and go until there. */ | |
3966 | struct symtab_and_line sr_sal; | |
3967 | ||
fe39c653 | 3968 | init_sal (&sr_sal); /* initialize to zeroes */ |
d764a824 | 3969 | sr_sal.pc = real_stop_pc; |
488f131b | 3970 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
44cbf7b5 AC |
3971 | |
3972 | /* Do not specify what the fp should be when we stop since | |
3973 | on some machines the prologue is where the new fp value | |
3974 | is established. */ | |
a6d9a66e UW |
3975 | insert_step_resume_breakpoint_at_sal (gdbarch, |
3976 | sr_sal, null_frame_id); | |
c906108c | 3977 | |
488f131b JB |
3978 | /* Restart without fiddling with the step ranges or |
3979 | other state. */ | |
3980 | keep_going (ecs); | |
3981 | return; | |
3982 | } | |
3983 | } | |
c906108c | 3984 | |
2afb61aa | 3985 | stop_pc_sal = find_pc_line (stop_pc, 0); |
7ed0fe66 | 3986 | |
1b2bfbb9 RC |
3987 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
3988 | the trampoline processing logic, however, there are some trampolines | |
3989 | that have no names, so we should do trampoline handling first. */ | |
078130d0 | 3990 | if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 3991 | && ecs->stop_func_name == NULL |
2afb61aa | 3992 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 3993 | { |
527159b7 | 3994 | if (debug_infrun) |
8a9de0e4 | 3995 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n"); |
527159b7 | 3996 | |
1b2bfbb9 | 3997 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
3998 | undebuggable function (where there is no debugging information |
3999 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
4000 | inferior stopped). Since we want to skip this kind of code, |
4001 | we keep going until the inferior returns from this | |
14e60db5 DJ |
4002 | function - unless the user has asked us not to (via |
4003 | set step-mode) or we no longer know how to get back | |
4004 | to the call site. */ | |
4005 | if (step_stop_if_no_debug | |
c7ce8faa | 4006 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
4007 | { |
4008 | /* If we have no line number and the step-stop-if-no-debug | |
4009 | is set, we stop the step so that the user has a chance to | |
4010 | switch in assembly mode. */ | |
414c69f7 | 4011 | ecs->event_thread->stop_step = 1; |
1b2bfbb9 RC |
4012 | print_stop_reason (END_STEPPING_RANGE, 0); |
4013 | stop_stepping (ecs); | |
4014 | return; | |
4015 | } | |
4016 | else | |
4017 | { | |
4018 | /* Set a breakpoint at callee's return address (the address | |
4019 | at which the caller will resume). */ | |
568d6575 | 4020 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
4021 | keep_going (ecs); |
4022 | return; | |
4023 | } | |
4024 | } | |
4025 | ||
4e1c45ea | 4026 | if (ecs->event_thread->step_range_end == 1) |
1b2bfbb9 RC |
4027 | { |
4028 | /* It is stepi or nexti. We always want to stop stepping after | |
4029 | one instruction. */ | |
527159b7 | 4030 | if (debug_infrun) |
8a9de0e4 | 4031 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
414c69f7 | 4032 | ecs->event_thread->stop_step = 1; |
1b2bfbb9 RC |
4033 | print_stop_reason (END_STEPPING_RANGE, 0); |
4034 | stop_stepping (ecs); | |
4035 | return; | |
4036 | } | |
4037 | ||
2afb61aa | 4038 | if (stop_pc_sal.line == 0) |
488f131b JB |
4039 | { |
4040 | /* We have no line number information. That means to stop | |
4041 | stepping (does this always happen right after one instruction, | |
4042 | when we do "s" in a function with no line numbers, | |
4043 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 4044 | if (debug_infrun) |
8a9de0e4 | 4045 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
414c69f7 | 4046 | ecs->event_thread->stop_step = 1; |
488f131b JB |
4047 | print_stop_reason (END_STEPPING_RANGE, 0); |
4048 | stop_stepping (ecs); | |
4049 | return; | |
4050 | } | |
c906108c | 4051 | |
edb3359d DJ |
4052 | /* Look for "calls" to inlined functions, part one. If the inline |
4053 | frame machinery detected some skipped call sites, we have entered | |
4054 | a new inline function. */ | |
4055 | ||
4056 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
4057 | ecs->event_thread->step_frame_id) | |
4058 | && inline_skipped_frames (ecs->ptid)) | |
4059 | { | |
4060 | struct symtab_and_line call_sal; | |
4061 | ||
4062 | if (debug_infrun) | |
4063 | fprintf_unfiltered (gdb_stdlog, | |
4064 | "infrun: stepped into inlined function\n"); | |
4065 | ||
4066 | find_frame_sal (get_current_frame (), &call_sal); | |
4067 | ||
4068 | if (ecs->event_thread->step_over_calls != STEP_OVER_ALL) | |
4069 | { | |
4070 | /* For "step", we're going to stop. But if the call site | |
4071 | for this inlined function is on the same source line as | |
4072 | we were previously stepping, go down into the function | |
4073 | first. Otherwise stop at the call site. */ | |
4074 | ||
4075 | if (call_sal.line == ecs->event_thread->current_line | |
4076 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
4077 | step_into_inline_frame (ecs->ptid); | |
4078 | ||
4079 | ecs->event_thread->stop_step = 1; | |
4080 | print_stop_reason (END_STEPPING_RANGE, 0); | |
4081 | stop_stepping (ecs); | |
4082 | return; | |
4083 | } | |
4084 | else | |
4085 | { | |
4086 | /* For "next", we should stop at the call site if it is on a | |
4087 | different source line. Otherwise continue through the | |
4088 | inlined function. */ | |
4089 | if (call_sal.line == ecs->event_thread->current_line | |
4090 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
4091 | keep_going (ecs); | |
4092 | else | |
4093 | { | |
4094 | ecs->event_thread->stop_step = 1; | |
4095 | print_stop_reason (END_STEPPING_RANGE, 0); | |
4096 | stop_stepping (ecs); | |
4097 | } | |
4098 | return; | |
4099 | } | |
4100 | } | |
4101 | ||
4102 | /* Look for "calls" to inlined functions, part two. If we are still | |
4103 | in the same real function we were stepping through, but we have | |
4104 | to go further up to find the exact frame ID, we are stepping | |
4105 | through a more inlined call beyond its call site. */ | |
4106 | ||
4107 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
4108 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
4109 | ecs->event_thread->step_frame_id) | |
4110 | && stepped_in_from (get_current_frame (), | |
4111 | ecs->event_thread->step_frame_id)) | |
4112 | { | |
4113 | if (debug_infrun) | |
4114 | fprintf_unfiltered (gdb_stdlog, | |
4115 | "infrun: stepping through inlined function\n"); | |
4116 | ||
4117 | if (ecs->event_thread->step_over_calls == STEP_OVER_ALL) | |
4118 | keep_going (ecs); | |
4119 | else | |
4120 | { | |
4121 | ecs->event_thread->stop_step = 1; | |
4122 | print_stop_reason (END_STEPPING_RANGE, 0); | |
4123 | stop_stepping (ecs); | |
4124 | } | |
4125 | return; | |
4126 | } | |
4127 | ||
2afb61aa | 4128 | if ((stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
4129 | && (ecs->event_thread->current_line != stop_pc_sal.line |
4130 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
4131 | { |
4132 | /* We are at the start of a different line. So stop. Note that | |
4133 | we don't stop if we step into the middle of a different line. | |
4134 | That is said to make things like for (;;) statements work | |
4135 | better. */ | |
527159b7 | 4136 | if (debug_infrun) |
8a9de0e4 | 4137 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n"); |
414c69f7 | 4138 | ecs->event_thread->stop_step = 1; |
488f131b JB |
4139 | print_stop_reason (END_STEPPING_RANGE, 0); |
4140 | stop_stepping (ecs); | |
4141 | return; | |
4142 | } | |
c906108c | 4143 | |
488f131b | 4144 | /* We aren't done stepping. |
c906108c | 4145 | |
488f131b JB |
4146 | Optimize by setting the stepping range to the line. |
4147 | (We might not be in the original line, but if we entered a | |
4148 | new line in mid-statement, we continue stepping. This makes | |
4149 | things like for(;;) statements work better.) */ | |
c906108c | 4150 | |
4e1c45ea PA |
4151 | ecs->event_thread->step_range_start = stop_pc_sal.pc; |
4152 | ecs->event_thread->step_range_end = stop_pc_sal.end; | |
edb3359d | 4153 | set_step_info (frame, stop_pc_sal); |
488f131b | 4154 | |
527159b7 | 4155 | if (debug_infrun) |
8a9de0e4 | 4156 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 4157 | keep_going (ecs); |
104c1213 JM |
4158 | } |
4159 | ||
b3444185 | 4160 | /* Is thread TP in the middle of single-stepping? */ |
104c1213 | 4161 | |
a7212384 | 4162 | static int |
b3444185 | 4163 | currently_stepping (struct thread_info *tp) |
a7212384 | 4164 | { |
b3444185 PA |
4165 | return ((tp->step_range_end && tp->step_resume_breakpoint == NULL) |
4166 | || tp->trap_expected | |
4167 | || tp->stepping_through_solib_after_catch | |
4168 | || bpstat_should_step ()); | |
a7212384 UW |
4169 | } |
4170 | ||
b3444185 PA |
4171 | /* Returns true if any thread *but* the one passed in "data" is in the |
4172 | middle of stepping or of handling a "next". */ | |
a7212384 | 4173 | |
104c1213 | 4174 | static int |
b3444185 | 4175 | currently_stepping_or_nexting_callback (struct thread_info *tp, void *data) |
104c1213 | 4176 | { |
b3444185 PA |
4177 | if (tp == data) |
4178 | return 0; | |
4179 | ||
4180 | return (tp->step_range_end | |
4181 | || tp->trap_expected | |
4182 | || tp->stepping_through_solib_after_catch); | |
104c1213 | 4183 | } |
c906108c | 4184 | |
b2175913 MS |
4185 | /* Inferior has stepped into a subroutine call with source code that |
4186 | we should not step over. Do step to the first line of code in | |
4187 | it. */ | |
c2c6d25f JM |
4188 | |
4189 | static void | |
568d6575 UW |
4190 | handle_step_into_function (struct gdbarch *gdbarch, |
4191 | struct execution_control_state *ecs) | |
c2c6d25f JM |
4192 | { |
4193 | struct symtab *s; | |
2afb61aa | 4194 | struct symtab_and_line stop_func_sal, sr_sal; |
c2c6d25f JM |
4195 | |
4196 | s = find_pc_symtab (stop_pc); | |
4197 | if (s && s->language != language_asm) | |
568d6575 | 4198 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 | 4199 | ecs->stop_func_start); |
c2c6d25f | 4200 | |
2afb61aa | 4201 | stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
4202 | /* Use the step_resume_break to step until the end of the prologue, |
4203 | even if that involves jumps (as it seems to on the vax under | |
4204 | 4.2). */ | |
4205 | /* If the prologue ends in the middle of a source line, continue to | |
4206 | the end of that source line (if it is still within the function). | |
4207 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
4208 | if (stop_func_sal.end |
4209 | && stop_func_sal.pc != ecs->stop_func_start | |
4210 | && stop_func_sal.end < ecs->stop_func_end) | |
4211 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 4212 | |
2dbd5e30 KB |
4213 | /* Architectures which require breakpoint adjustment might not be able |
4214 | to place a breakpoint at the computed address. If so, the test | |
4215 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
4216 | ecs->stop_func_start to an address at which a breakpoint may be | |
4217 | legitimately placed. | |
8fb3e588 | 4218 | |
2dbd5e30 KB |
4219 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
4220 | made, GDB will enter an infinite loop when stepping through | |
4221 | optimized code consisting of VLIW instructions which contain | |
4222 | subinstructions corresponding to different source lines. On | |
4223 | FR-V, it's not permitted to place a breakpoint on any but the | |
4224 | first subinstruction of a VLIW instruction. When a breakpoint is | |
4225 | set, GDB will adjust the breakpoint address to the beginning of | |
4226 | the VLIW instruction. Thus, we need to make the corresponding | |
4227 | adjustment here when computing the stop address. */ | |
8fb3e588 | 4228 | |
568d6575 | 4229 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
4230 | { |
4231 | ecs->stop_func_start | |
568d6575 | 4232 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 4233 | ecs->stop_func_start); |
2dbd5e30 KB |
4234 | } |
4235 | ||
c2c6d25f JM |
4236 | if (ecs->stop_func_start == stop_pc) |
4237 | { | |
4238 | /* We are already there: stop now. */ | |
414c69f7 | 4239 | ecs->event_thread->stop_step = 1; |
488f131b | 4240 | print_stop_reason (END_STEPPING_RANGE, 0); |
c2c6d25f JM |
4241 | stop_stepping (ecs); |
4242 | return; | |
4243 | } | |
4244 | else | |
4245 | { | |
4246 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 4247 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
4248 | sr_sal.pc = ecs->stop_func_start; |
4249 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
44cbf7b5 | 4250 | |
c2c6d25f | 4251 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
4252 | some machines the prologue is where the new fp value is |
4253 | established. */ | |
a6d9a66e | 4254 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
4255 | |
4256 | /* And make sure stepping stops right away then. */ | |
4e1c45ea | 4257 | ecs->event_thread->step_range_end = ecs->event_thread->step_range_start; |
c2c6d25f JM |
4258 | } |
4259 | keep_going (ecs); | |
4260 | } | |
d4f3574e | 4261 | |
b2175913 MS |
4262 | /* Inferior has stepped backward into a subroutine call with source |
4263 | code that we should not step over. Do step to the beginning of the | |
4264 | last line of code in it. */ | |
4265 | ||
4266 | static void | |
568d6575 UW |
4267 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
4268 | struct execution_control_state *ecs) | |
b2175913 MS |
4269 | { |
4270 | struct symtab *s; | |
4271 | struct symtab_and_line stop_func_sal, sr_sal; | |
4272 | ||
4273 | s = find_pc_symtab (stop_pc); | |
4274 | if (s && s->language != language_asm) | |
568d6575 | 4275 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 MS |
4276 | ecs->stop_func_start); |
4277 | ||
4278 | stop_func_sal = find_pc_line (stop_pc, 0); | |
4279 | ||
4280 | /* OK, we're just going to keep stepping here. */ | |
4281 | if (stop_func_sal.pc == stop_pc) | |
4282 | { | |
4283 | /* We're there already. Just stop stepping now. */ | |
4284 | ecs->event_thread->stop_step = 1; | |
4285 | print_stop_reason (END_STEPPING_RANGE, 0); | |
4286 | stop_stepping (ecs); | |
4287 | } | |
4288 | else | |
4289 | { | |
4290 | /* Else just reset the step range and keep going. | |
4291 | No step-resume breakpoint, they don't work for | |
4292 | epilogues, which can have multiple entry paths. */ | |
4293 | ecs->event_thread->step_range_start = stop_func_sal.pc; | |
4294 | ecs->event_thread->step_range_end = stop_func_sal.end; | |
4295 | keep_going (ecs); | |
4296 | } | |
4297 | return; | |
4298 | } | |
4299 | ||
d3169d93 | 4300 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
4301 | This is used to both functions and to skip over code. */ |
4302 | ||
4303 | static void | |
a6d9a66e UW |
4304 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
4305 | struct symtab_and_line sr_sal, | |
44cbf7b5 AC |
4306 | struct frame_id sr_id) |
4307 | { | |
611c83ae PA |
4308 | /* There should never be more than one step-resume or longjmp-resume |
4309 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 4310 | step_resume_breakpoint when one is already active. */ |
4e1c45ea | 4311 | gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL); |
d3169d93 DJ |
4312 | |
4313 | if (debug_infrun) | |
4314 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
4315 | "infrun: inserting step-resume breakpoint at %s\n", |
4316 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 4317 | |
4e1c45ea | 4318 | inferior_thread ()->step_resume_breakpoint |
a6d9a66e | 4319 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume); |
44cbf7b5 | 4320 | } |
7ce450bd | 4321 | |
d3169d93 | 4322 | /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used |
14e60db5 | 4323 | to skip a potential signal handler. |
7ce450bd | 4324 | |
14e60db5 DJ |
4325 | This is called with the interrupted function's frame. The signal |
4326 | handler, when it returns, will resume the interrupted function at | |
4327 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
4328 | |
4329 | static void | |
44cbf7b5 | 4330 | insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
4331 | { |
4332 | struct symtab_and_line sr_sal; | |
a6d9a66e | 4333 | struct gdbarch *gdbarch; |
d303a6c7 | 4334 | |
f4c1edd8 | 4335 | gdb_assert (return_frame != NULL); |
d303a6c7 AC |
4336 | init_sal (&sr_sal); /* initialize to zeros */ |
4337 | ||
a6d9a66e | 4338 | gdbarch = get_frame_arch (return_frame); |
568d6575 | 4339 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 AC |
4340 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
4341 | ||
a6d9a66e UW |
4342 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
4343 | get_stack_frame_id (return_frame)); | |
d303a6c7 AC |
4344 | } |
4345 | ||
14e60db5 DJ |
4346 | /* Similar to insert_step_resume_breakpoint_at_frame, except |
4347 | but a breakpoint at the previous frame's PC. This is used to | |
4348 | skip a function after stepping into it (for "next" or if the called | |
4349 | function has no debugging information). | |
4350 | ||
4351 | The current function has almost always been reached by single | |
4352 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
4353 | current function, and the breakpoint will be set at the caller's | |
4354 | resume address. | |
4355 | ||
4356 | This is a separate function rather than reusing | |
4357 | insert_step_resume_breakpoint_at_frame in order to avoid | |
4358 | get_prev_frame, which may stop prematurely (see the implementation | |
c7ce8faa | 4359 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
4360 | |
4361 | static void | |
4362 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
4363 | { | |
4364 | struct symtab_and_line sr_sal; | |
a6d9a66e | 4365 | struct gdbarch *gdbarch; |
14e60db5 DJ |
4366 | |
4367 | /* We shouldn't have gotten here if we don't know where the call site | |
4368 | is. */ | |
c7ce8faa | 4369 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 DJ |
4370 | |
4371 | init_sal (&sr_sal); /* initialize to zeros */ | |
4372 | ||
a6d9a66e | 4373 | gdbarch = frame_unwind_caller_arch (next_frame); |
c7ce8faa DJ |
4374 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
4375 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 DJ |
4376 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
4377 | ||
a6d9a66e | 4378 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 4379 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
4380 | } |
4381 | ||
611c83ae PA |
4382 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
4383 | new breakpoint at the target of a jmp_buf. The handling of | |
4384 | longjmp-resume uses the same mechanisms used for handling | |
4385 | "step-resume" breakpoints. */ | |
4386 | ||
4387 | static void | |
a6d9a66e | 4388 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae PA |
4389 | { |
4390 | /* There should never be more than one step-resume or longjmp-resume | |
4391 | breakpoint per thread, so we should never be setting a new | |
4392 | longjmp_resume_breakpoint when one is already active. */ | |
4e1c45ea | 4393 | gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL); |
611c83ae PA |
4394 | |
4395 | if (debug_infrun) | |
4396 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
4397 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
4398 | paddress (gdbarch, pc)); | |
611c83ae | 4399 | |
4e1c45ea | 4400 | inferior_thread ()->step_resume_breakpoint = |
a6d9a66e | 4401 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume); |
611c83ae PA |
4402 | } |
4403 | ||
104c1213 JM |
4404 | static void |
4405 | stop_stepping (struct execution_control_state *ecs) | |
4406 | { | |
527159b7 | 4407 | if (debug_infrun) |
8a9de0e4 | 4408 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n"); |
527159b7 | 4409 | |
cd0fc7c3 SS |
4410 | /* Let callers know we don't want to wait for the inferior anymore. */ |
4411 | ecs->wait_some_more = 0; | |
4412 | } | |
4413 | ||
d4f3574e SS |
4414 | /* This function handles various cases where we need to continue |
4415 | waiting for the inferior. */ | |
4416 | /* (Used to be the keep_going: label in the old wait_for_inferior) */ | |
4417 | ||
4418 | static void | |
4419 | keep_going (struct execution_control_state *ecs) | |
4420 | { | |
d4f3574e | 4421 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b UW |
4422 | ecs->event_thread->prev_pc |
4423 | = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
d4f3574e | 4424 | |
d4f3574e SS |
4425 | /* If we did not do break;, it means we should keep running the |
4426 | inferior and not return to debugger. */ | |
4427 | ||
2020b7ab PA |
4428 | if (ecs->event_thread->trap_expected |
4429 | && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP) | |
d4f3574e SS |
4430 | { |
4431 | /* We took a signal (which we are supposed to pass through to | |
4e1c45ea PA |
4432 | the inferior, else we'd not get here) and we haven't yet |
4433 | gotten our trap. Simply continue. */ | |
2020b7ab PA |
4434 | resume (currently_stepping (ecs->event_thread), |
4435 | ecs->event_thread->stop_signal); | |
d4f3574e SS |
4436 | } |
4437 | else | |
4438 | { | |
4439 | /* Either the trap was not expected, but we are continuing | |
488f131b JB |
4440 | anyway (the user asked that this signal be passed to the |
4441 | child) | |
4442 | -- or -- | |
4443 | The signal was SIGTRAP, e.g. it was our signal, but we | |
4444 | decided we should resume from it. | |
d4f3574e | 4445 | |
c36b740a | 4446 | We're going to run this baby now! |
d4f3574e | 4447 | |
c36b740a VP |
4448 | Note that insert_breakpoints won't try to re-insert |
4449 | already inserted breakpoints. Therefore, we don't | |
4450 | care if breakpoints were already inserted, or not. */ | |
4451 | ||
4e1c45ea | 4452 | if (ecs->event_thread->stepping_over_breakpoint) |
45e8c884 | 4453 | { |
9f5a595d UW |
4454 | struct regcache *thread_regcache = get_thread_regcache (ecs->ptid); |
4455 | if (!use_displaced_stepping (get_regcache_arch (thread_regcache))) | |
237fc4c9 PA |
4456 | /* Since we can't do a displaced step, we have to remove |
4457 | the breakpoint while we step it. To keep things | |
4458 | simple, we remove them all. */ | |
4459 | remove_breakpoints (); | |
45e8c884 VP |
4460 | } |
4461 | else | |
d4f3574e | 4462 | { |
e236ba44 | 4463 | struct gdb_exception e; |
569631c6 UW |
4464 | /* Stop stepping when inserting breakpoints |
4465 | has failed. */ | |
e236ba44 VP |
4466 | TRY_CATCH (e, RETURN_MASK_ERROR) |
4467 | { | |
4468 | insert_breakpoints (); | |
4469 | } | |
4470 | if (e.reason < 0) | |
d4f3574e SS |
4471 | { |
4472 | stop_stepping (ecs); | |
4473 | return; | |
4474 | } | |
d4f3574e SS |
4475 | } |
4476 | ||
4e1c45ea | 4477 | ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint; |
d4f3574e SS |
4478 | |
4479 | /* Do not deliver SIGNAL_TRAP (except when the user explicitly | |
488f131b JB |
4480 | specifies that such a signal should be delivered to the |
4481 | target program). | |
4482 | ||
4483 | Typically, this would occure when a user is debugging a | |
4484 | target monitor on a simulator: the target monitor sets a | |
4485 | breakpoint; the simulator encounters this break-point and | |
4486 | halts the simulation handing control to GDB; GDB, noteing | |
4487 | that the break-point isn't valid, returns control back to the | |
4488 | simulator; the simulator then delivers the hardware | |
4489 | equivalent of a SIGNAL_TRAP to the program being debugged. */ | |
4490 | ||
2020b7ab PA |
4491 | if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP |
4492 | && !signal_program[ecs->event_thread->stop_signal]) | |
4493 | ecs->event_thread->stop_signal = TARGET_SIGNAL_0; | |
d4f3574e | 4494 | |
2020b7ab PA |
4495 | resume (currently_stepping (ecs->event_thread), |
4496 | ecs->event_thread->stop_signal); | |
d4f3574e SS |
4497 | } |
4498 | ||
488f131b | 4499 | prepare_to_wait (ecs); |
d4f3574e SS |
4500 | } |
4501 | ||
104c1213 JM |
4502 | /* This function normally comes after a resume, before |
4503 | handle_inferior_event exits. It takes care of any last bits of | |
4504 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 4505 | |
104c1213 JM |
4506 | static void |
4507 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 4508 | { |
527159b7 | 4509 | if (debug_infrun) |
8a9de0e4 | 4510 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 4511 | |
104c1213 JM |
4512 | /* This is the old end of the while loop. Let everybody know we |
4513 | want to wait for the inferior some more and get called again | |
4514 | soon. */ | |
4515 | ecs->wait_some_more = 1; | |
c906108c | 4516 | } |
11cf8741 JM |
4517 | |
4518 | /* Print why the inferior has stopped. We always print something when | |
4519 | the inferior exits, or receives a signal. The rest of the cases are | |
4520 | dealt with later on in normal_stop() and print_it_typical(). Ideally | |
4521 | there should be a call to this function from handle_inferior_event() | |
4522 | each time stop_stepping() is called.*/ | |
4523 | static void | |
4524 | print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info) | |
4525 | { | |
4526 | switch (stop_reason) | |
4527 | { | |
11cf8741 JM |
4528 | case END_STEPPING_RANGE: |
4529 | /* We are done with a step/next/si/ni command. */ | |
4530 | /* For now print nothing. */ | |
fb40c209 | 4531 | /* Print a message only if not in the middle of doing a "step n" |
488f131b | 4532 | operation for n > 1 */ |
414c69f7 PA |
4533 | if (!inferior_thread ()->step_multi |
4534 | || !inferior_thread ()->stop_step) | |
9dc5e2a9 | 4535 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
4536 | ui_out_field_string |
4537 | (uiout, "reason", | |
4538 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); | |
11cf8741 | 4539 | break; |
11cf8741 JM |
4540 | case SIGNAL_EXITED: |
4541 | /* The inferior was terminated by a signal. */ | |
8b93c638 | 4542 | annotate_signalled (); |
9dc5e2a9 | 4543 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
4544 | ui_out_field_string |
4545 | (uiout, "reason", | |
4546 | async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
8b93c638 JM |
4547 | ui_out_text (uiout, "\nProgram terminated with signal "); |
4548 | annotate_signal_name (); | |
488f131b JB |
4549 | ui_out_field_string (uiout, "signal-name", |
4550 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
4551 | annotate_signal_name_end (); |
4552 | ui_out_text (uiout, ", "); | |
4553 | annotate_signal_string (); | |
488f131b JB |
4554 | ui_out_field_string (uiout, "signal-meaning", |
4555 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
4556 | annotate_signal_string_end (); |
4557 | ui_out_text (uiout, ".\n"); | |
4558 | ui_out_text (uiout, "The program no longer exists.\n"); | |
11cf8741 JM |
4559 | break; |
4560 | case EXITED: | |
4561 | /* The inferior program is finished. */ | |
8b93c638 JM |
4562 | annotate_exited (stop_info); |
4563 | if (stop_info) | |
4564 | { | |
9dc5e2a9 | 4565 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
4566 | ui_out_field_string (uiout, "reason", |
4567 | async_reason_lookup (EXEC_ASYNC_EXITED)); | |
8b93c638 | 4568 | ui_out_text (uiout, "\nProgram exited with code "); |
488f131b JB |
4569 | ui_out_field_fmt (uiout, "exit-code", "0%o", |
4570 | (unsigned int) stop_info); | |
8b93c638 JM |
4571 | ui_out_text (uiout, ".\n"); |
4572 | } | |
4573 | else | |
4574 | { | |
9dc5e2a9 | 4575 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
4576 | ui_out_field_string |
4577 | (uiout, "reason", | |
4578 | async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
8b93c638 JM |
4579 | ui_out_text (uiout, "\nProgram exited normally.\n"); |
4580 | } | |
f17517ea AS |
4581 | /* Support the --return-child-result option. */ |
4582 | return_child_result_value = stop_info; | |
11cf8741 JM |
4583 | break; |
4584 | case SIGNAL_RECEIVED: | |
252fbfc8 PA |
4585 | /* Signal received. The signal table tells us to print about |
4586 | it. */ | |
8b93c638 | 4587 | annotate_signal (); |
252fbfc8 PA |
4588 | |
4589 | if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout)) | |
4590 | { | |
4591 | struct thread_info *t = inferior_thread (); | |
4592 | ||
4593 | ui_out_text (uiout, "\n["); | |
4594 | ui_out_field_string (uiout, "thread-name", | |
4595 | target_pid_to_str (t->ptid)); | |
4596 | ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num); | |
4597 | ui_out_text (uiout, " stopped"); | |
4598 | } | |
4599 | else | |
4600 | { | |
4601 | ui_out_text (uiout, "\nProgram received signal "); | |
4602 | annotate_signal_name (); | |
4603 | if (ui_out_is_mi_like_p (uiout)) | |
4604 | ui_out_field_string | |
4605 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
4606 | ui_out_field_string (uiout, "signal-name", | |
4607 | target_signal_to_name (stop_info)); | |
4608 | annotate_signal_name_end (); | |
4609 | ui_out_text (uiout, ", "); | |
4610 | annotate_signal_string (); | |
4611 | ui_out_field_string (uiout, "signal-meaning", | |
4612 | target_signal_to_string (stop_info)); | |
4613 | annotate_signal_string_end (); | |
4614 | } | |
8b93c638 | 4615 | ui_out_text (uiout, ".\n"); |
11cf8741 | 4616 | break; |
b2175913 MS |
4617 | case NO_HISTORY: |
4618 | /* Reverse execution: target ran out of history info. */ | |
4619 | ui_out_text (uiout, "\nNo more reverse-execution history.\n"); | |
4620 | break; | |
11cf8741 | 4621 | default: |
8e65ff28 | 4622 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 4623 | _("print_stop_reason: unrecognized enum value")); |
11cf8741 JM |
4624 | break; |
4625 | } | |
4626 | } | |
c906108c | 4627 | \f |
43ff13b4 | 4628 | |
c906108c SS |
4629 | /* Here to return control to GDB when the inferior stops for real. |
4630 | Print appropriate messages, remove breakpoints, give terminal our modes. | |
4631 | ||
4632 | STOP_PRINT_FRAME nonzero means print the executing frame | |
4633 | (pc, function, args, file, line number and line text). | |
4634 | BREAKPOINTS_FAILED nonzero means stop was due to error | |
4635 | attempting to insert breakpoints. */ | |
4636 | ||
4637 | void | |
96baa820 | 4638 | normal_stop (void) |
c906108c | 4639 | { |
73b65bb0 DJ |
4640 | struct target_waitstatus last; |
4641 | ptid_t last_ptid; | |
29f49a6a | 4642 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
73b65bb0 DJ |
4643 | |
4644 | get_last_target_status (&last_ptid, &last); | |
4645 | ||
29f49a6a PA |
4646 | /* If an exception is thrown from this point on, make sure to |
4647 | propagate GDB's knowledge of the executing state to the | |
4648 | frontend/user running state. A QUIT is an easy exception to see | |
4649 | here, so do this before any filtered output. */ | |
c35b1492 PA |
4650 | if (!non_stop) |
4651 | make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
4652 | else if (last.kind != TARGET_WAITKIND_SIGNALLED | |
4653 | && last.kind != TARGET_WAITKIND_EXITED) | |
4654 | make_cleanup (finish_thread_state_cleanup, &inferior_ptid); | |
29f49a6a | 4655 | |
4f8d22e3 PA |
4656 | /* In non-stop mode, we don't want GDB to switch threads behind the |
4657 | user's back, to avoid races where the user is typing a command to | |
4658 | apply to thread x, but GDB switches to thread y before the user | |
4659 | finishes entering the command. */ | |
4660 | ||
c906108c SS |
4661 | /* As with the notification of thread events, we want to delay |
4662 | notifying the user that we've switched thread context until | |
4663 | the inferior actually stops. | |
4664 | ||
73b65bb0 DJ |
4665 | There's no point in saying anything if the inferior has exited. |
4666 | Note that SIGNALLED here means "exited with a signal", not | |
4667 | "received a signal". */ | |
4f8d22e3 PA |
4668 | if (!non_stop |
4669 | && !ptid_equal (previous_inferior_ptid, inferior_ptid) | |
73b65bb0 DJ |
4670 | && target_has_execution |
4671 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
4672 | && last.kind != TARGET_WAITKIND_EXITED) | |
c906108c SS |
4673 | { |
4674 | target_terminal_ours_for_output (); | |
a3f17187 | 4675 | printf_filtered (_("[Switching to %s]\n"), |
c95310c6 | 4676 | target_pid_to_str (inferior_ptid)); |
b8fa951a | 4677 | annotate_thread_changed (); |
39f77062 | 4678 | previous_inferior_ptid = inferior_ptid; |
c906108c | 4679 | } |
c906108c | 4680 | |
74960c60 | 4681 | if (!breakpoints_always_inserted_mode () && target_has_execution) |
c906108c SS |
4682 | { |
4683 | if (remove_breakpoints ()) | |
4684 | { | |
4685 | target_terminal_ours_for_output (); | |
a3f17187 AC |
4686 | printf_filtered (_("\ |
4687 | Cannot remove breakpoints because program is no longer writable.\n\ | |
a3f17187 | 4688 | Further execution is probably impossible.\n")); |
c906108c SS |
4689 | } |
4690 | } | |
c906108c | 4691 | |
c906108c SS |
4692 | /* If an auto-display called a function and that got a signal, |
4693 | delete that auto-display to avoid an infinite recursion. */ | |
4694 | ||
4695 | if (stopped_by_random_signal) | |
4696 | disable_current_display (); | |
4697 | ||
4698 | /* Don't print a message if in the middle of doing a "step n" | |
4699 | operation for n > 1 */ | |
af679fd0 PA |
4700 | if (target_has_execution |
4701 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
4702 | && last.kind != TARGET_WAITKIND_EXITED | |
4703 | && inferior_thread ()->step_multi | |
414c69f7 | 4704 | && inferior_thread ()->stop_step) |
c906108c SS |
4705 | goto done; |
4706 | ||
4707 | target_terminal_ours (); | |
4708 | ||
7abfe014 DJ |
4709 | /* Set the current source location. This will also happen if we |
4710 | display the frame below, but the current SAL will be incorrect | |
4711 | during a user hook-stop function. */ | |
d729566a | 4712 | if (has_stack_frames () && !stop_stack_dummy) |
7abfe014 DJ |
4713 | set_current_sal_from_frame (get_current_frame (), 1); |
4714 | ||
dd7e2d2b PA |
4715 | /* Let the user/frontend see the threads as stopped. */ |
4716 | do_cleanups (old_chain); | |
4717 | ||
4718 | /* Look up the hook_stop and run it (CLI internally handles problem | |
4719 | of stop_command's pre-hook not existing). */ | |
4720 | if (stop_command) | |
4721 | catch_errors (hook_stop_stub, stop_command, | |
4722 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
4723 | ||
d729566a | 4724 | if (!has_stack_frames ()) |
d51fd4c8 | 4725 | goto done; |
c906108c | 4726 | |
32400beb PA |
4727 | if (last.kind == TARGET_WAITKIND_SIGNALLED |
4728 | || last.kind == TARGET_WAITKIND_EXITED) | |
4729 | goto done; | |
4730 | ||
c906108c SS |
4731 | /* Select innermost stack frame - i.e., current frame is frame 0, |
4732 | and current location is based on that. | |
4733 | Don't do this on return from a stack dummy routine, | |
4734 | or if the program has exited. */ | |
4735 | ||
4736 | if (!stop_stack_dummy) | |
4737 | { | |
0f7d239c | 4738 | select_frame (get_current_frame ()); |
c906108c SS |
4739 | |
4740 | /* Print current location without a level number, if | |
c5aa993b JM |
4741 | we have changed functions or hit a breakpoint. |
4742 | Print source line if we have one. | |
4743 | bpstat_print() contains the logic deciding in detail | |
4744 | what to print, based on the event(s) that just occurred. */ | |
c906108c | 4745 | |
d01a8610 AS |
4746 | /* If --batch-silent is enabled then there's no need to print the current |
4747 | source location, and to try risks causing an error message about | |
4748 | missing source files. */ | |
4749 | if (stop_print_frame && !batch_silent) | |
c906108c SS |
4750 | { |
4751 | int bpstat_ret; | |
4752 | int source_flag; | |
917317f4 | 4753 | int do_frame_printing = 1; |
347bddb7 | 4754 | struct thread_info *tp = inferior_thread (); |
c906108c | 4755 | |
347bddb7 | 4756 | bpstat_ret = bpstat_print (tp->stop_bpstat); |
917317f4 JM |
4757 | switch (bpstat_ret) |
4758 | { | |
4759 | case PRINT_UNKNOWN: | |
b0f4b84b DJ |
4760 | /* If we had hit a shared library event breakpoint, |
4761 | bpstat_print would print out this message. If we hit | |
4762 | an OS-level shared library event, do the same | |
4763 | thing. */ | |
4764 | if (last.kind == TARGET_WAITKIND_LOADED) | |
4765 | { | |
4766 | printf_filtered (_("Stopped due to shared library event\n")); | |
4767 | source_flag = SRC_LINE; /* something bogus */ | |
4768 | do_frame_printing = 0; | |
4769 | break; | |
4770 | } | |
4771 | ||
aa0cd9c1 | 4772 | /* FIXME: cagney/2002-12-01: Given that a frame ID does |
8fb3e588 AC |
4773 | (or should) carry around the function and does (or |
4774 | should) use that when doing a frame comparison. */ | |
414c69f7 | 4775 | if (tp->stop_step |
347bddb7 | 4776 | && frame_id_eq (tp->step_frame_id, |
aa0cd9c1 | 4777 | get_frame_id (get_current_frame ())) |
917317f4 | 4778 | && step_start_function == find_pc_function (stop_pc)) |
488f131b | 4779 | source_flag = SRC_LINE; /* finished step, just print source line */ |
917317f4 | 4780 | else |
488f131b | 4781 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
4782 | break; |
4783 | case PRINT_SRC_AND_LOC: | |
488f131b | 4784 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
4785 | break; |
4786 | case PRINT_SRC_ONLY: | |
c5394b80 | 4787 | source_flag = SRC_LINE; |
917317f4 JM |
4788 | break; |
4789 | case PRINT_NOTHING: | |
488f131b | 4790 | source_flag = SRC_LINE; /* something bogus */ |
917317f4 JM |
4791 | do_frame_printing = 0; |
4792 | break; | |
4793 | default: | |
e2e0b3e5 | 4794 | internal_error (__FILE__, __LINE__, _("Unknown value.")); |
917317f4 | 4795 | } |
c906108c SS |
4796 | |
4797 | /* The behavior of this routine with respect to the source | |
4798 | flag is: | |
c5394b80 JM |
4799 | SRC_LINE: Print only source line |
4800 | LOCATION: Print only location | |
4801 | SRC_AND_LOC: Print location and source line */ | |
917317f4 | 4802 | if (do_frame_printing) |
b04f3ab4 | 4803 | print_stack_frame (get_selected_frame (NULL), 0, source_flag); |
c906108c SS |
4804 | |
4805 | /* Display the auto-display expressions. */ | |
4806 | do_displays (); | |
4807 | } | |
4808 | } | |
4809 | ||
4810 | /* Save the function value return registers, if we care. | |
4811 | We might be about to restore their previous contents. */ | |
32400beb | 4812 | if (inferior_thread ()->proceed_to_finish) |
d5c31457 UW |
4813 | { |
4814 | /* This should not be necessary. */ | |
4815 | if (stop_registers) | |
4816 | regcache_xfree (stop_registers); | |
4817 | ||
4818 | /* NB: The copy goes through to the target picking up the value of | |
4819 | all the registers. */ | |
4820 | stop_registers = regcache_dup (get_current_regcache ()); | |
4821 | } | |
c906108c SS |
4822 | |
4823 | if (stop_stack_dummy) | |
4824 | { | |
b89667eb DE |
4825 | /* Pop the empty frame that contains the stack dummy. |
4826 | This also restores inferior state prior to the call | |
4827 | (struct inferior_thread_state). */ | |
4828 | struct frame_info *frame = get_current_frame (); | |
4829 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
4830 | frame_pop (frame); | |
4831 | /* frame_pop() calls reinit_frame_cache as the last thing it does | |
4832 | which means there's currently no selected frame. We don't need | |
4833 | to re-establish a selected frame if the dummy call returns normally, | |
4834 | that will be done by restore_inferior_status. However, we do have | |
4835 | to handle the case where the dummy call is returning after being | |
4836 | stopped (e.g. the dummy call previously hit a breakpoint). We | |
4837 | can't know which case we have so just always re-establish a | |
4838 | selected frame here. */ | |
0f7d239c | 4839 | select_frame (get_current_frame ()); |
c906108c SS |
4840 | } |
4841 | ||
c906108c SS |
4842 | done: |
4843 | annotate_stopped (); | |
41d2bdb4 PA |
4844 | |
4845 | /* Suppress the stop observer if we're in the middle of: | |
4846 | ||
4847 | - a step n (n > 1), as there still more steps to be done. | |
4848 | ||
4849 | - a "finish" command, as the observer will be called in | |
4850 | finish_command_continuation, so it can include the inferior | |
4851 | function's return value. | |
4852 | ||
4853 | - calling an inferior function, as we pretend we inferior didn't | |
4854 | run at all. The return value of the call is handled by the | |
4855 | expression evaluator, through call_function_by_hand. */ | |
4856 | ||
4857 | if (!target_has_execution | |
4858 | || last.kind == TARGET_WAITKIND_SIGNALLED | |
4859 | || last.kind == TARGET_WAITKIND_EXITED | |
4860 | || (!inferior_thread ()->step_multi | |
4861 | && !(inferior_thread ()->stop_bpstat | |
c5a4d20b PA |
4862 | && inferior_thread ()->proceed_to_finish) |
4863 | && !inferior_thread ()->in_infcall)) | |
347bddb7 PA |
4864 | { |
4865 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
1d33d6ba VP |
4866 | observer_notify_normal_stop (inferior_thread ()->stop_bpstat, |
4867 | stop_print_frame); | |
347bddb7 | 4868 | else |
1d33d6ba | 4869 | observer_notify_normal_stop (NULL, stop_print_frame); |
347bddb7 | 4870 | } |
347bddb7 | 4871 | |
48844aa6 PA |
4872 | if (target_has_execution) |
4873 | { | |
4874 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
4875 | && last.kind != TARGET_WAITKIND_EXITED) | |
4876 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
4877 | Delete any breakpoint that is to be deleted at the next stop. */ | |
4878 | breakpoint_auto_delete (inferior_thread ()->stop_bpstat); | |
94cc34af | 4879 | } |
c906108c SS |
4880 | } |
4881 | ||
4882 | static int | |
96baa820 | 4883 | hook_stop_stub (void *cmd) |
c906108c | 4884 | { |
5913bcb0 | 4885 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
4886 | return (0); |
4887 | } | |
4888 | \f | |
c5aa993b | 4889 | int |
96baa820 | 4890 | signal_stop_state (int signo) |
c906108c | 4891 | { |
d6b48e9c | 4892 | return signal_stop[signo]; |
c906108c SS |
4893 | } |
4894 | ||
c5aa993b | 4895 | int |
96baa820 | 4896 | signal_print_state (int signo) |
c906108c SS |
4897 | { |
4898 | return signal_print[signo]; | |
4899 | } | |
4900 | ||
c5aa993b | 4901 | int |
96baa820 | 4902 | signal_pass_state (int signo) |
c906108c SS |
4903 | { |
4904 | return signal_program[signo]; | |
4905 | } | |
4906 | ||
488f131b | 4907 | int |
7bda5e4a | 4908 | signal_stop_update (int signo, int state) |
d4f3574e SS |
4909 | { |
4910 | int ret = signal_stop[signo]; | |
4911 | signal_stop[signo] = state; | |
4912 | return ret; | |
4913 | } | |
4914 | ||
488f131b | 4915 | int |
7bda5e4a | 4916 | signal_print_update (int signo, int state) |
d4f3574e SS |
4917 | { |
4918 | int ret = signal_print[signo]; | |
4919 | signal_print[signo] = state; | |
4920 | return ret; | |
4921 | } | |
4922 | ||
488f131b | 4923 | int |
7bda5e4a | 4924 | signal_pass_update (int signo, int state) |
d4f3574e SS |
4925 | { |
4926 | int ret = signal_program[signo]; | |
4927 | signal_program[signo] = state; | |
4928 | return ret; | |
4929 | } | |
4930 | ||
c906108c | 4931 | static void |
96baa820 | 4932 | sig_print_header (void) |
c906108c | 4933 | { |
a3f17187 AC |
4934 | printf_filtered (_("\ |
4935 | Signal Stop\tPrint\tPass to program\tDescription\n")); | |
c906108c SS |
4936 | } |
4937 | ||
4938 | static void | |
96baa820 | 4939 | sig_print_info (enum target_signal oursig) |
c906108c | 4940 | { |
54363045 | 4941 | const char *name = target_signal_to_name (oursig); |
c906108c | 4942 | int name_padding = 13 - strlen (name); |
96baa820 | 4943 | |
c906108c SS |
4944 | if (name_padding <= 0) |
4945 | name_padding = 0; | |
4946 | ||
4947 | printf_filtered ("%s", name); | |
488f131b | 4948 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
4949 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
4950 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
4951 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
4952 | printf_filtered ("%s\n", target_signal_to_string (oursig)); | |
4953 | } | |
4954 | ||
4955 | /* Specify how various signals in the inferior should be handled. */ | |
4956 | ||
4957 | static void | |
96baa820 | 4958 | handle_command (char *args, int from_tty) |
c906108c SS |
4959 | { |
4960 | char **argv; | |
4961 | int digits, wordlen; | |
4962 | int sigfirst, signum, siglast; | |
4963 | enum target_signal oursig; | |
4964 | int allsigs; | |
4965 | int nsigs; | |
4966 | unsigned char *sigs; | |
4967 | struct cleanup *old_chain; | |
4968 | ||
4969 | if (args == NULL) | |
4970 | { | |
e2e0b3e5 | 4971 | error_no_arg (_("signal to handle")); |
c906108c SS |
4972 | } |
4973 | ||
4974 | /* Allocate and zero an array of flags for which signals to handle. */ | |
4975 | ||
4976 | nsigs = (int) TARGET_SIGNAL_LAST; | |
4977 | sigs = (unsigned char *) alloca (nsigs); | |
4978 | memset (sigs, 0, nsigs); | |
4979 | ||
4980 | /* Break the command line up into args. */ | |
4981 | ||
d1a41061 | 4982 | argv = gdb_buildargv (args); |
7a292a7a | 4983 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
4984 | |
4985 | /* Walk through the args, looking for signal oursigs, signal names, and | |
4986 | actions. Signal numbers and signal names may be interspersed with | |
4987 | actions, with the actions being performed for all signals cumulatively | |
4988 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ | |
4989 | ||
4990 | while (*argv != NULL) | |
4991 | { | |
4992 | wordlen = strlen (*argv); | |
4993 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
4994 | {; | |
4995 | } | |
4996 | allsigs = 0; | |
4997 | sigfirst = siglast = -1; | |
4998 | ||
4999 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
5000 | { | |
5001 | /* Apply action to all signals except those used by the | |
5002 | debugger. Silently skip those. */ | |
5003 | allsigs = 1; | |
5004 | sigfirst = 0; | |
5005 | siglast = nsigs - 1; | |
5006 | } | |
5007 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
5008 | { | |
5009 | SET_SIGS (nsigs, sigs, signal_stop); | |
5010 | SET_SIGS (nsigs, sigs, signal_print); | |
5011 | } | |
5012 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
5013 | { | |
5014 | UNSET_SIGS (nsigs, sigs, signal_program); | |
5015 | } | |
5016 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
5017 | { | |
5018 | SET_SIGS (nsigs, sigs, signal_print); | |
5019 | } | |
5020 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
5021 | { | |
5022 | SET_SIGS (nsigs, sigs, signal_program); | |
5023 | } | |
5024 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
5025 | { | |
5026 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
5027 | } | |
5028 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
5029 | { | |
5030 | SET_SIGS (nsigs, sigs, signal_program); | |
5031 | } | |
5032 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
5033 | { | |
5034 | UNSET_SIGS (nsigs, sigs, signal_print); | |
5035 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
5036 | } | |
5037 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
5038 | { | |
5039 | UNSET_SIGS (nsigs, sigs, signal_program); | |
5040 | } | |
5041 | else if (digits > 0) | |
5042 | { | |
5043 | /* It is numeric. The numeric signal refers to our own | |
5044 | internal signal numbering from target.h, not to host/target | |
5045 | signal number. This is a feature; users really should be | |
5046 | using symbolic names anyway, and the common ones like | |
5047 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
5048 | ||
5049 | sigfirst = siglast = (int) | |
5050 | target_signal_from_command (atoi (*argv)); | |
5051 | if ((*argv)[digits] == '-') | |
5052 | { | |
5053 | siglast = (int) | |
5054 | target_signal_from_command (atoi ((*argv) + digits + 1)); | |
5055 | } | |
5056 | if (sigfirst > siglast) | |
5057 | { | |
5058 | /* Bet he didn't figure we'd think of this case... */ | |
5059 | signum = sigfirst; | |
5060 | sigfirst = siglast; | |
5061 | siglast = signum; | |
5062 | } | |
5063 | } | |
5064 | else | |
5065 | { | |
5066 | oursig = target_signal_from_name (*argv); | |
5067 | if (oursig != TARGET_SIGNAL_UNKNOWN) | |
5068 | { | |
5069 | sigfirst = siglast = (int) oursig; | |
5070 | } | |
5071 | else | |
5072 | { | |
5073 | /* Not a number and not a recognized flag word => complain. */ | |
8a3fe4f8 | 5074 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); |
c906108c SS |
5075 | } |
5076 | } | |
5077 | ||
5078 | /* If any signal numbers or symbol names were found, set flags for | |
c5aa993b | 5079 | which signals to apply actions to. */ |
c906108c SS |
5080 | |
5081 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
5082 | { | |
5083 | switch ((enum target_signal) signum) | |
5084 | { | |
5085 | case TARGET_SIGNAL_TRAP: | |
5086 | case TARGET_SIGNAL_INT: | |
5087 | if (!allsigs && !sigs[signum]) | |
5088 | { | |
9e2f0ad4 HZ |
5089 | if (query (_("%s is used by the debugger.\n\ |
5090 | Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum))) | |
c906108c SS |
5091 | { |
5092 | sigs[signum] = 1; | |
5093 | } | |
5094 | else | |
5095 | { | |
a3f17187 | 5096 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
5097 | gdb_flush (gdb_stdout); |
5098 | } | |
5099 | } | |
5100 | break; | |
5101 | case TARGET_SIGNAL_0: | |
5102 | case TARGET_SIGNAL_DEFAULT: | |
5103 | case TARGET_SIGNAL_UNKNOWN: | |
5104 | /* Make sure that "all" doesn't print these. */ | |
5105 | break; | |
5106 | default: | |
5107 | sigs[signum] = 1; | |
5108 | break; | |
5109 | } | |
5110 | } | |
5111 | ||
5112 | argv++; | |
5113 | } | |
5114 | ||
3a031f65 PA |
5115 | for (signum = 0; signum < nsigs; signum++) |
5116 | if (sigs[signum]) | |
5117 | { | |
5118 | target_notice_signals (inferior_ptid); | |
c906108c | 5119 | |
3a031f65 PA |
5120 | if (from_tty) |
5121 | { | |
5122 | /* Show the results. */ | |
5123 | sig_print_header (); | |
5124 | for (; signum < nsigs; signum++) | |
5125 | if (sigs[signum]) | |
5126 | sig_print_info (signum); | |
5127 | } | |
5128 | ||
5129 | break; | |
5130 | } | |
c906108c SS |
5131 | |
5132 | do_cleanups (old_chain); | |
5133 | } | |
5134 | ||
5135 | static void | |
96baa820 | 5136 | xdb_handle_command (char *args, int from_tty) |
c906108c SS |
5137 | { |
5138 | char **argv; | |
5139 | struct cleanup *old_chain; | |
5140 | ||
d1a41061 PP |
5141 | if (args == NULL) |
5142 | error_no_arg (_("xdb command")); | |
5143 | ||
c906108c SS |
5144 | /* Break the command line up into args. */ |
5145 | ||
d1a41061 | 5146 | argv = gdb_buildargv (args); |
7a292a7a | 5147 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
5148 | if (argv[1] != (char *) NULL) |
5149 | { | |
5150 | char *argBuf; | |
5151 | int bufLen; | |
5152 | ||
5153 | bufLen = strlen (argv[0]) + 20; | |
5154 | argBuf = (char *) xmalloc (bufLen); | |
5155 | if (argBuf) | |
5156 | { | |
5157 | int validFlag = 1; | |
5158 | enum target_signal oursig; | |
5159 | ||
5160 | oursig = target_signal_from_name (argv[0]); | |
5161 | memset (argBuf, 0, bufLen); | |
5162 | if (strcmp (argv[1], "Q") == 0) | |
5163 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
5164 | else | |
5165 | { | |
5166 | if (strcmp (argv[1], "s") == 0) | |
5167 | { | |
5168 | if (!signal_stop[oursig]) | |
5169 | sprintf (argBuf, "%s %s", argv[0], "stop"); | |
5170 | else | |
5171 | sprintf (argBuf, "%s %s", argv[0], "nostop"); | |
5172 | } | |
5173 | else if (strcmp (argv[1], "i") == 0) | |
5174 | { | |
5175 | if (!signal_program[oursig]) | |
5176 | sprintf (argBuf, "%s %s", argv[0], "pass"); | |
5177 | else | |
5178 | sprintf (argBuf, "%s %s", argv[0], "nopass"); | |
5179 | } | |
5180 | else if (strcmp (argv[1], "r") == 0) | |
5181 | { | |
5182 | if (!signal_print[oursig]) | |
5183 | sprintf (argBuf, "%s %s", argv[0], "print"); | |
5184 | else | |
5185 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
5186 | } | |
5187 | else | |
5188 | validFlag = 0; | |
5189 | } | |
5190 | if (validFlag) | |
5191 | handle_command (argBuf, from_tty); | |
5192 | else | |
a3f17187 | 5193 | printf_filtered (_("Invalid signal handling flag.\n")); |
c906108c | 5194 | if (argBuf) |
b8c9b27d | 5195 | xfree (argBuf); |
c906108c SS |
5196 | } |
5197 | } | |
5198 | do_cleanups (old_chain); | |
5199 | } | |
5200 | ||
5201 | /* Print current contents of the tables set by the handle command. | |
5202 | It is possible we should just be printing signals actually used | |
5203 | by the current target (but for things to work right when switching | |
5204 | targets, all signals should be in the signal tables). */ | |
5205 | ||
5206 | static void | |
96baa820 | 5207 | signals_info (char *signum_exp, int from_tty) |
c906108c SS |
5208 | { |
5209 | enum target_signal oursig; | |
5210 | sig_print_header (); | |
5211 | ||
5212 | if (signum_exp) | |
5213 | { | |
5214 | /* First see if this is a symbol name. */ | |
5215 | oursig = target_signal_from_name (signum_exp); | |
5216 | if (oursig == TARGET_SIGNAL_UNKNOWN) | |
5217 | { | |
5218 | /* No, try numeric. */ | |
5219 | oursig = | |
bb518678 | 5220 | target_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
5221 | } |
5222 | sig_print_info (oursig); | |
5223 | return; | |
5224 | } | |
5225 | ||
5226 | printf_filtered ("\n"); | |
5227 | /* These ugly casts brought to you by the native VAX compiler. */ | |
5228 | for (oursig = TARGET_SIGNAL_FIRST; | |
5229 | (int) oursig < (int) TARGET_SIGNAL_LAST; | |
5230 | oursig = (enum target_signal) ((int) oursig + 1)) | |
5231 | { | |
5232 | QUIT; | |
5233 | ||
5234 | if (oursig != TARGET_SIGNAL_UNKNOWN | |
488f131b | 5235 | && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0) |
c906108c SS |
5236 | sig_print_info (oursig); |
5237 | } | |
5238 | ||
a3f17187 | 5239 | printf_filtered (_("\nUse the \"handle\" command to change these tables.\n")); |
c906108c | 5240 | } |
4aa995e1 PA |
5241 | |
5242 | /* The $_siginfo convenience variable is a bit special. We don't know | |
5243 | for sure the type of the value until we actually have a chance to | |
5244 | fetch the data. The type can change depending on gdbarch, so it it | |
5245 | also dependent on which thread you have selected. | |
5246 | ||
5247 | 1. making $_siginfo be an internalvar that creates a new value on | |
5248 | access. | |
5249 | ||
5250 | 2. making the value of $_siginfo be an lval_computed value. */ | |
5251 | ||
5252 | /* This function implements the lval_computed support for reading a | |
5253 | $_siginfo value. */ | |
5254 | ||
5255 | static void | |
5256 | siginfo_value_read (struct value *v) | |
5257 | { | |
5258 | LONGEST transferred; | |
5259 | ||
5260 | transferred = | |
5261 | target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, | |
5262 | NULL, | |
5263 | value_contents_all_raw (v), | |
5264 | value_offset (v), | |
5265 | TYPE_LENGTH (value_type (v))); | |
5266 | ||
5267 | if (transferred != TYPE_LENGTH (value_type (v))) | |
5268 | error (_("Unable to read siginfo")); | |
5269 | } | |
5270 | ||
5271 | /* This function implements the lval_computed support for writing a | |
5272 | $_siginfo value. */ | |
5273 | ||
5274 | static void | |
5275 | siginfo_value_write (struct value *v, struct value *fromval) | |
5276 | { | |
5277 | LONGEST transferred; | |
5278 | ||
5279 | transferred = target_write (¤t_target, | |
5280 | TARGET_OBJECT_SIGNAL_INFO, | |
5281 | NULL, | |
5282 | value_contents_all_raw (fromval), | |
5283 | value_offset (v), | |
5284 | TYPE_LENGTH (value_type (fromval))); | |
5285 | ||
5286 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
5287 | error (_("Unable to write siginfo")); | |
5288 | } | |
5289 | ||
5290 | static struct lval_funcs siginfo_value_funcs = | |
5291 | { | |
5292 | siginfo_value_read, | |
5293 | siginfo_value_write | |
5294 | }; | |
5295 | ||
5296 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
5297 | the current thread using architecture GDBARCH. Return a void value |
5298 | if there's no object available. */ | |
4aa995e1 | 5299 | |
2c0b251b | 5300 | static struct value * |
78267919 | 5301 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var) |
4aa995e1 | 5302 | { |
4aa995e1 | 5303 | if (target_has_stack |
78267919 UW |
5304 | && !ptid_equal (inferior_ptid, null_ptid) |
5305 | && gdbarch_get_siginfo_type_p (gdbarch)) | |
4aa995e1 | 5306 | { |
78267919 UW |
5307 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
5308 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); | |
4aa995e1 PA |
5309 | } |
5310 | ||
78267919 | 5311 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
5312 | } |
5313 | ||
c906108c | 5314 | \f |
b89667eb DE |
5315 | /* Inferior thread state. |
5316 | These are details related to the inferior itself, and don't include | |
5317 | things like what frame the user had selected or what gdb was doing | |
5318 | with the target at the time. | |
5319 | For inferior function calls these are things we want to restore | |
5320 | regardless of whether the function call successfully completes | |
5321 | or the dummy frame has to be manually popped. */ | |
5322 | ||
5323 | struct inferior_thread_state | |
7a292a7a SS |
5324 | { |
5325 | enum target_signal stop_signal; | |
5326 | CORE_ADDR stop_pc; | |
b89667eb DE |
5327 | struct regcache *registers; |
5328 | }; | |
5329 | ||
5330 | struct inferior_thread_state * | |
5331 | save_inferior_thread_state (void) | |
5332 | { | |
5333 | struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state); | |
5334 | struct thread_info *tp = inferior_thread (); | |
5335 | ||
5336 | inf_state->stop_signal = tp->stop_signal; | |
5337 | inf_state->stop_pc = stop_pc; | |
5338 | ||
5339 | inf_state->registers = regcache_dup (get_current_regcache ()); | |
5340 | ||
5341 | return inf_state; | |
5342 | } | |
5343 | ||
5344 | /* Restore inferior session state to INF_STATE. */ | |
5345 | ||
5346 | void | |
5347 | restore_inferior_thread_state (struct inferior_thread_state *inf_state) | |
5348 | { | |
5349 | struct thread_info *tp = inferior_thread (); | |
5350 | ||
5351 | tp->stop_signal = inf_state->stop_signal; | |
5352 | stop_pc = inf_state->stop_pc; | |
5353 | ||
5354 | /* The inferior can be gone if the user types "print exit(0)" | |
5355 | (and perhaps other times). */ | |
5356 | if (target_has_execution) | |
5357 | /* NB: The register write goes through to the target. */ | |
5358 | regcache_cpy (get_current_regcache (), inf_state->registers); | |
5359 | regcache_xfree (inf_state->registers); | |
5360 | xfree (inf_state); | |
5361 | } | |
5362 | ||
5363 | static void | |
5364 | do_restore_inferior_thread_state_cleanup (void *state) | |
5365 | { | |
5366 | restore_inferior_thread_state (state); | |
5367 | } | |
5368 | ||
5369 | struct cleanup * | |
5370 | make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state) | |
5371 | { | |
5372 | return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state); | |
5373 | } | |
5374 | ||
5375 | void | |
5376 | discard_inferior_thread_state (struct inferior_thread_state *inf_state) | |
5377 | { | |
5378 | regcache_xfree (inf_state->registers); | |
5379 | xfree (inf_state); | |
5380 | } | |
5381 | ||
5382 | struct regcache * | |
5383 | get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state) | |
5384 | { | |
5385 | return inf_state->registers; | |
5386 | } | |
5387 | ||
5388 | /* Session related state for inferior function calls. | |
5389 | These are the additional bits of state that need to be restored | |
5390 | when an inferior function call successfully completes. */ | |
5391 | ||
5392 | struct inferior_status | |
5393 | { | |
7a292a7a SS |
5394 | bpstat stop_bpstat; |
5395 | int stop_step; | |
5396 | int stop_stack_dummy; | |
5397 | int stopped_by_random_signal; | |
ca67fcb8 | 5398 | int stepping_over_breakpoint; |
7a292a7a SS |
5399 | CORE_ADDR step_range_start; |
5400 | CORE_ADDR step_range_end; | |
aa0cd9c1 | 5401 | struct frame_id step_frame_id; |
edb3359d | 5402 | struct frame_id step_stack_frame_id; |
5fbbeb29 | 5403 | enum step_over_calls_kind step_over_calls; |
7a292a7a SS |
5404 | CORE_ADDR step_resume_break_address; |
5405 | int stop_after_trap; | |
c0236d92 | 5406 | int stop_soon; |
7a292a7a | 5407 | |
b89667eb | 5408 | /* ID if the selected frame when the inferior function call was made. */ |
101dcfbe AC |
5409 | struct frame_id selected_frame_id; |
5410 | ||
7a292a7a | 5411 | int proceed_to_finish; |
c5a4d20b | 5412 | int in_infcall; |
7a292a7a SS |
5413 | }; |
5414 | ||
c906108c | 5415 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 5416 | connection. */ |
c906108c | 5417 | |
7a292a7a | 5418 | struct inferior_status * |
b89667eb | 5419 | save_inferior_status (void) |
c906108c | 5420 | { |
72cec141 | 5421 | struct inferior_status *inf_status = XMALLOC (struct inferior_status); |
4e1c45ea | 5422 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 5423 | struct inferior *inf = current_inferior (); |
7a292a7a | 5424 | |
414c69f7 | 5425 | inf_status->stop_step = tp->stop_step; |
c906108c SS |
5426 | inf_status->stop_stack_dummy = stop_stack_dummy; |
5427 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
4e1c45ea PA |
5428 | inf_status->stepping_over_breakpoint = tp->trap_expected; |
5429 | inf_status->step_range_start = tp->step_range_start; | |
5430 | inf_status->step_range_end = tp->step_range_end; | |
5431 | inf_status->step_frame_id = tp->step_frame_id; | |
edb3359d | 5432 | inf_status->step_stack_frame_id = tp->step_stack_frame_id; |
078130d0 | 5433 | inf_status->step_over_calls = tp->step_over_calls; |
c906108c | 5434 | inf_status->stop_after_trap = stop_after_trap; |
d6b48e9c | 5435 | inf_status->stop_soon = inf->stop_soon; |
c906108c SS |
5436 | /* Save original bpstat chain here; replace it with copy of chain. |
5437 | If caller's caller is walking the chain, they'll be happier if we | |
7a292a7a SS |
5438 | hand them back the original chain when restore_inferior_status is |
5439 | called. */ | |
347bddb7 PA |
5440 | inf_status->stop_bpstat = tp->stop_bpstat; |
5441 | tp->stop_bpstat = bpstat_copy (tp->stop_bpstat); | |
32400beb | 5442 | inf_status->proceed_to_finish = tp->proceed_to_finish; |
c5a4d20b | 5443 | inf_status->in_infcall = tp->in_infcall; |
c5aa993b | 5444 | |
206415a3 | 5445 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 5446 | |
7a292a7a | 5447 | return inf_status; |
c906108c SS |
5448 | } |
5449 | ||
c906108c | 5450 | static int |
96baa820 | 5451 | restore_selected_frame (void *args) |
c906108c | 5452 | { |
488f131b | 5453 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 5454 | struct frame_info *frame; |
c906108c | 5455 | |
101dcfbe | 5456 | frame = frame_find_by_id (*fid); |
c906108c | 5457 | |
aa0cd9c1 AC |
5458 | /* If inf_status->selected_frame_id is NULL, there was no previously |
5459 | selected frame. */ | |
101dcfbe | 5460 | if (frame == NULL) |
c906108c | 5461 | { |
8a3fe4f8 | 5462 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
5463 | return 0; |
5464 | } | |
5465 | ||
0f7d239c | 5466 | select_frame (frame); |
c906108c SS |
5467 | |
5468 | return (1); | |
5469 | } | |
5470 | ||
b89667eb DE |
5471 | /* Restore inferior session state to INF_STATUS. */ |
5472 | ||
c906108c | 5473 | void |
96baa820 | 5474 | restore_inferior_status (struct inferior_status *inf_status) |
c906108c | 5475 | { |
4e1c45ea | 5476 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 5477 | struct inferior *inf = current_inferior (); |
4e1c45ea | 5478 | |
414c69f7 | 5479 | tp->stop_step = inf_status->stop_step; |
c906108c SS |
5480 | stop_stack_dummy = inf_status->stop_stack_dummy; |
5481 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
4e1c45ea PA |
5482 | tp->trap_expected = inf_status->stepping_over_breakpoint; |
5483 | tp->step_range_start = inf_status->step_range_start; | |
5484 | tp->step_range_end = inf_status->step_range_end; | |
5485 | tp->step_frame_id = inf_status->step_frame_id; | |
edb3359d | 5486 | tp->step_stack_frame_id = inf_status->step_stack_frame_id; |
078130d0 | 5487 | tp->step_over_calls = inf_status->step_over_calls; |
c906108c | 5488 | stop_after_trap = inf_status->stop_after_trap; |
d6b48e9c | 5489 | inf->stop_soon = inf_status->stop_soon; |
347bddb7 PA |
5490 | bpstat_clear (&tp->stop_bpstat); |
5491 | tp->stop_bpstat = inf_status->stop_bpstat; | |
b89667eb | 5492 | inf_status->stop_bpstat = NULL; |
32400beb | 5493 | tp->proceed_to_finish = inf_status->proceed_to_finish; |
c5a4d20b | 5494 | tp->in_infcall = inf_status->in_infcall; |
c906108c | 5495 | |
b89667eb | 5496 | if (target_has_stack) |
c906108c | 5497 | { |
c906108c | 5498 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
5499 | walking the stack might encounter a garbage pointer and |
5500 | error() trying to dereference it. */ | |
488f131b JB |
5501 | if (catch_errors |
5502 | (restore_selected_frame, &inf_status->selected_frame_id, | |
5503 | "Unable to restore previously selected frame:\n", | |
5504 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
5505 | /* Error in restoring the selected frame. Select the innermost |
5506 | frame. */ | |
0f7d239c | 5507 | select_frame (get_current_frame ()); |
c906108c | 5508 | } |
c906108c | 5509 | |
72cec141 | 5510 | xfree (inf_status); |
7a292a7a | 5511 | } |
c906108c | 5512 | |
74b7792f AC |
5513 | static void |
5514 | do_restore_inferior_status_cleanup (void *sts) | |
5515 | { | |
5516 | restore_inferior_status (sts); | |
5517 | } | |
5518 | ||
5519 | struct cleanup * | |
5520 | make_cleanup_restore_inferior_status (struct inferior_status *inf_status) | |
5521 | { | |
5522 | return make_cleanup (do_restore_inferior_status_cleanup, inf_status); | |
5523 | } | |
5524 | ||
c906108c | 5525 | void |
96baa820 | 5526 | discard_inferior_status (struct inferior_status *inf_status) |
7a292a7a SS |
5527 | { |
5528 | /* See save_inferior_status for info on stop_bpstat. */ | |
5529 | bpstat_clear (&inf_status->stop_bpstat); | |
72cec141 | 5530 | xfree (inf_status); |
7a292a7a | 5531 | } |
b89667eb | 5532 | \f |
47932f85 | 5533 | int |
3a3e9ee3 | 5534 | inferior_has_forked (ptid_t pid, ptid_t *child_pid) |
47932f85 DJ |
5535 | { |
5536 | struct target_waitstatus last; | |
5537 | ptid_t last_ptid; | |
5538 | ||
5539 | get_last_target_status (&last_ptid, &last); | |
5540 | ||
5541 | if (last.kind != TARGET_WAITKIND_FORKED) | |
5542 | return 0; | |
5543 | ||
3a3e9ee3 | 5544 | if (!ptid_equal (last_ptid, pid)) |
47932f85 DJ |
5545 | return 0; |
5546 | ||
5547 | *child_pid = last.value.related_pid; | |
5548 | return 1; | |
5549 | } | |
5550 | ||
5551 | int | |
3a3e9ee3 | 5552 | inferior_has_vforked (ptid_t pid, ptid_t *child_pid) |
47932f85 DJ |
5553 | { |
5554 | struct target_waitstatus last; | |
5555 | ptid_t last_ptid; | |
5556 | ||
5557 | get_last_target_status (&last_ptid, &last); | |
5558 | ||
5559 | if (last.kind != TARGET_WAITKIND_VFORKED) | |
5560 | return 0; | |
5561 | ||
3a3e9ee3 | 5562 | if (!ptid_equal (last_ptid, pid)) |
47932f85 DJ |
5563 | return 0; |
5564 | ||
5565 | *child_pid = last.value.related_pid; | |
5566 | return 1; | |
5567 | } | |
5568 | ||
5569 | int | |
3a3e9ee3 | 5570 | inferior_has_execd (ptid_t pid, char **execd_pathname) |
47932f85 DJ |
5571 | { |
5572 | struct target_waitstatus last; | |
5573 | ptid_t last_ptid; | |
5574 | ||
5575 | get_last_target_status (&last_ptid, &last); | |
5576 | ||
5577 | if (last.kind != TARGET_WAITKIND_EXECD) | |
5578 | return 0; | |
5579 | ||
3a3e9ee3 | 5580 | if (!ptid_equal (last_ptid, pid)) |
47932f85 DJ |
5581 | return 0; |
5582 | ||
5583 | *execd_pathname = xstrdup (last.value.execd_pathname); | |
5584 | return 1; | |
5585 | } | |
5586 | ||
ca6724c1 KB |
5587 | /* Oft used ptids */ |
5588 | ptid_t null_ptid; | |
5589 | ptid_t minus_one_ptid; | |
5590 | ||
5591 | /* Create a ptid given the necessary PID, LWP, and TID components. */ | |
488f131b | 5592 | |
ca6724c1 KB |
5593 | ptid_t |
5594 | ptid_build (int pid, long lwp, long tid) | |
5595 | { | |
5596 | ptid_t ptid; | |
5597 | ||
5598 | ptid.pid = pid; | |
5599 | ptid.lwp = lwp; | |
5600 | ptid.tid = tid; | |
5601 | return ptid; | |
5602 | } | |
5603 | ||
5604 | /* Create a ptid from just a pid. */ | |
5605 | ||
5606 | ptid_t | |
5607 | pid_to_ptid (int pid) | |
5608 | { | |
5609 | return ptid_build (pid, 0, 0); | |
5610 | } | |
5611 | ||
5612 | /* Fetch the pid (process id) component from a ptid. */ | |
5613 | ||
5614 | int | |
5615 | ptid_get_pid (ptid_t ptid) | |
5616 | { | |
5617 | return ptid.pid; | |
5618 | } | |
5619 | ||
5620 | /* Fetch the lwp (lightweight process) component from a ptid. */ | |
5621 | ||
5622 | long | |
5623 | ptid_get_lwp (ptid_t ptid) | |
5624 | { | |
5625 | return ptid.lwp; | |
5626 | } | |
5627 | ||
5628 | /* Fetch the tid (thread id) component from a ptid. */ | |
5629 | ||
5630 | long | |
5631 | ptid_get_tid (ptid_t ptid) | |
5632 | { | |
5633 | return ptid.tid; | |
5634 | } | |
5635 | ||
5636 | /* ptid_equal() is used to test equality of two ptids. */ | |
5637 | ||
5638 | int | |
5639 | ptid_equal (ptid_t ptid1, ptid_t ptid2) | |
5640 | { | |
5641 | return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp | |
488f131b | 5642 | && ptid1.tid == ptid2.tid); |
ca6724c1 KB |
5643 | } |
5644 | ||
252fbfc8 PA |
5645 | /* Returns true if PTID represents a process. */ |
5646 | ||
5647 | int | |
5648 | ptid_is_pid (ptid_t ptid) | |
5649 | { | |
5650 | if (ptid_equal (minus_one_ptid, ptid)) | |
5651 | return 0; | |
5652 | if (ptid_equal (null_ptid, ptid)) | |
5653 | return 0; | |
5654 | ||
5655 | return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0); | |
5656 | } | |
5657 | ||
ca6724c1 KB |
5658 | /* restore_inferior_ptid() will be used by the cleanup machinery |
5659 | to restore the inferior_ptid value saved in a call to | |
5660 | save_inferior_ptid(). */ | |
ce696e05 KB |
5661 | |
5662 | static void | |
5663 | restore_inferior_ptid (void *arg) | |
5664 | { | |
5665 | ptid_t *saved_ptid_ptr = arg; | |
5666 | inferior_ptid = *saved_ptid_ptr; | |
5667 | xfree (arg); | |
5668 | } | |
5669 | ||
5670 | /* Save the value of inferior_ptid so that it may be restored by a | |
5671 | later call to do_cleanups(). Returns the struct cleanup pointer | |
5672 | needed for later doing the cleanup. */ | |
5673 | ||
5674 | struct cleanup * | |
5675 | save_inferior_ptid (void) | |
5676 | { | |
5677 | ptid_t *saved_ptid_ptr; | |
5678 | ||
5679 | saved_ptid_ptr = xmalloc (sizeof (ptid_t)); | |
5680 | *saved_ptid_ptr = inferior_ptid; | |
5681 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
5682 | } | |
c5aa993b | 5683 | \f |
488f131b | 5684 | |
b2175913 MS |
5685 | /* User interface for reverse debugging: |
5686 | Set exec-direction / show exec-direction commands | |
5687 | (returns error unless target implements to_set_exec_direction method). */ | |
5688 | ||
5689 | enum exec_direction_kind execution_direction = EXEC_FORWARD; | |
5690 | static const char exec_forward[] = "forward"; | |
5691 | static const char exec_reverse[] = "reverse"; | |
5692 | static const char *exec_direction = exec_forward; | |
5693 | static const char *exec_direction_names[] = { | |
5694 | exec_forward, | |
5695 | exec_reverse, | |
5696 | NULL | |
5697 | }; | |
5698 | ||
5699 | static void | |
5700 | set_exec_direction_func (char *args, int from_tty, | |
5701 | struct cmd_list_element *cmd) | |
5702 | { | |
5703 | if (target_can_execute_reverse) | |
5704 | { | |
5705 | if (!strcmp (exec_direction, exec_forward)) | |
5706 | execution_direction = EXEC_FORWARD; | |
5707 | else if (!strcmp (exec_direction, exec_reverse)) | |
5708 | execution_direction = EXEC_REVERSE; | |
5709 | } | |
5710 | } | |
5711 | ||
5712 | static void | |
5713 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
5714 | struct cmd_list_element *cmd, const char *value) | |
5715 | { | |
5716 | switch (execution_direction) { | |
5717 | case EXEC_FORWARD: | |
5718 | fprintf_filtered (out, _("Forward.\n")); | |
5719 | break; | |
5720 | case EXEC_REVERSE: | |
5721 | fprintf_filtered (out, _("Reverse.\n")); | |
5722 | break; | |
5723 | case EXEC_ERROR: | |
5724 | default: | |
5725 | fprintf_filtered (out, | |
5726 | _("Forward (target `%s' does not support exec-direction).\n"), | |
5727 | target_shortname); | |
5728 | break; | |
5729 | } | |
5730 | } | |
5731 | ||
5732 | /* User interface for non-stop mode. */ | |
5733 | ||
ad52ddc6 PA |
5734 | int non_stop = 0; |
5735 | static int non_stop_1 = 0; | |
5736 | ||
5737 | static void | |
5738 | set_non_stop (char *args, int from_tty, | |
5739 | struct cmd_list_element *c) | |
5740 | { | |
5741 | if (target_has_execution) | |
5742 | { | |
5743 | non_stop_1 = non_stop; | |
5744 | error (_("Cannot change this setting while the inferior is running.")); | |
5745 | } | |
5746 | ||
5747 | non_stop = non_stop_1; | |
5748 | } | |
5749 | ||
5750 | static void | |
5751 | show_non_stop (struct ui_file *file, int from_tty, | |
5752 | struct cmd_list_element *c, const char *value) | |
5753 | { | |
5754 | fprintf_filtered (file, | |
5755 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
5756 | value); | |
5757 | } | |
5758 | ||
d4db2f36 PA |
5759 | static void |
5760 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
5761 | struct cmd_list_element *c, const char *value) | |
5762 | { | |
5763 | fprintf_filtered (file, _("\ | |
5764 | Resuming the execution of threads of all processes is %s.\n"), value); | |
5765 | } | |
ad52ddc6 | 5766 | |
c906108c | 5767 | void |
96baa820 | 5768 | _initialize_infrun (void) |
c906108c | 5769 | { |
52f0bd74 AC |
5770 | int i; |
5771 | int numsigs; | |
c906108c SS |
5772 | struct cmd_list_element *c; |
5773 | ||
1bedd215 AC |
5774 | add_info ("signals", signals_info, _("\ |
5775 | What debugger does when program gets various signals.\n\ | |
5776 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
5777 | add_info_alias ("handle", "signals", 0); |
5778 | ||
1bedd215 AC |
5779 | add_com ("handle", class_run, handle_command, _("\ |
5780 | Specify how to handle a signal.\n\ | |
c906108c SS |
5781 | Args are signals and actions to apply to those signals.\n\ |
5782 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
5783 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
5784 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
5785 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 AC |
5786 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
5787 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ | |
c906108c SS |
5788 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
5789 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
5790 | Print means print a message if this signal happens.\n\ | |
5791 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
5792 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 5793 | Pass and Stop may be combined.")); |
c906108c SS |
5794 | if (xdb_commands) |
5795 | { | |
1bedd215 AC |
5796 | add_com ("lz", class_info, signals_info, _("\ |
5797 | What debugger does when program gets various signals.\n\ | |
5798 | Specify a signal as argument to print info on that signal only.")); | |
5799 | add_com ("z", class_run, xdb_handle_command, _("\ | |
5800 | Specify how to handle a signal.\n\ | |
c906108c SS |
5801 | Args are signals and actions to apply to those signals.\n\ |
5802 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
5803 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
5804 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
5805 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 AC |
5806 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
5807 | Recognized actions include \"s\" (toggles between stop and nostop), \n\ | |
c906108c SS |
5808 | \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ |
5809 | nopass), \"Q\" (noprint)\n\ | |
5810 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
5811 | Print means print a message if this signal happens.\n\ | |
5812 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
5813 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 5814 | Pass and Stop may be combined.")); |
c906108c SS |
5815 | } |
5816 | ||
5817 | if (!dbx_commands) | |
1a966eab AC |
5818 | stop_command = add_cmd ("stop", class_obscure, |
5819 | not_just_help_class_command, _("\ | |
5820 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 5821 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 5822 | of the program stops."), &cmdlist); |
c906108c | 5823 | |
85c07804 AC |
5824 | add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
5825 | Set inferior debugging."), _("\ | |
5826 | Show inferior debugging."), _("\ | |
5827 | When non-zero, inferior specific debugging is enabled."), | |
5828 | NULL, | |
920d2a44 | 5829 | show_debug_infrun, |
85c07804 | 5830 | &setdebuglist, &showdebuglist); |
527159b7 | 5831 | |
237fc4c9 PA |
5832 | add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\ |
5833 | Set displaced stepping debugging."), _("\ | |
5834 | Show displaced stepping debugging."), _("\ | |
5835 | When non-zero, displaced stepping specific debugging is enabled."), | |
5836 | NULL, | |
5837 | show_debug_displaced, | |
5838 | &setdebuglist, &showdebuglist); | |
5839 | ||
ad52ddc6 PA |
5840 | add_setshow_boolean_cmd ("non-stop", no_class, |
5841 | &non_stop_1, _("\ | |
5842 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
5843 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
5844 | When debugging a multi-threaded program and this setting is\n\ | |
5845 | off (the default, also called all-stop mode), when one thread stops\n\ | |
5846 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
5847 | all other threads in the program while you interact with the thread of\n\ | |
5848 | interest. When you continue or step a thread, you can allow the other\n\ | |
5849 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
5850 | thread's state, all threads stop.\n\ | |
5851 | \n\ | |
5852 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
5853 | to run freely. You'll be able to step each thread independently,\n\ | |
5854 | leave it stopped or free to run as needed."), | |
5855 | set_non_stop, | |
5856 | show_non_stop, | |
5857 | &setlist, | |
5858 | &showlist); | |
5859 | ||
c906108c | 5860 | numsigs = (int) TARGET_SIGNAL_LAST; |
488f131b | 5861 | signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); |
c906108c SS |
5862 | signal_print = (unsigned char *) |
5863 | xmalloc (sizeof (signal_print[0]) * numsigs); | |
5864 | signal_program = (unsigned char *) | |
5865 | xmalloc (sizeof (signal_program[0]) * numsigs); | |
5866 | for (i = 0; i < numsigs; i++) | |
5867 | { | |
5868 | signal_stop[i] = 1; | |
5869 | signal_print[i] = 1; | |
5870 | signal_program[i] = 1; | |
5871 | } | |
5872 | ||
5873 | /* Signals caused by debugger's own actions | |
5874 | should not be given to the program afterwards. */ | |
5875 | signal_program[TARGET_SIGNAL_TRAP] = 0; | |
5876 | signal_program[TARGET_SIGNAL_INT] = 0; | |
5877 | ||
5878 | /* Signals that are not errors should not normally enter the debugger. */ | |
5879 | signal_stop[TARGET_SIGNAL_ALRM] = 0; | |
5880 | signal_print[TARGET_SIGNAL_ALRM] = 0; | |
5881 | signal_stop[TARGET_SIGNAL_VTALRM] = 0; | |
5882 | signal_print[TARGET_SIGNAL_VTALRM] = 0; | |
5883 | signal_stop[TARGET_SIGNAL_PROF] = 0; | |
5884 | signal_print[TARGET_SIGNAL_PROF] = 0; | |
5885 | signal_stop[TARGET_SIGNAL_CHLD] = 0; | |
5886 | signal_print[TARGET_SIGNAL_CHLD] = 0; | |
5887 | signal_stop[TARGET_SIGNAL_IO] = 0; | |
5888 | signal_print[TARGET_SIGNAL_IO] = 0; | |
5889 | signal_stop[TARGET_SIGNAL_POLL] = 0; | |
5890 | signal_print[TARGET_SIGNAL_POLL] = 0; | |
5891 | signal_stop[TARGET_SIGNAL_URG] = 0; | |
5892 | signal_print[TARGET_SIGNAL_URG] = 0; | |
5893 | signal_stop[TARGET_SIGNAL_WINCH] = 0; | |
5894 | signal_print[TARGET_SIGNAL_WINCH] = 0; | |
5895 | ||
cd0fc7c3 SS |
5896 | /* These signals are used internally by user-level thread |
5897 | implementations. (See signal(5) on Solaris.) Like the above | |
5898 | signals, a healthy program receives and handles them as part of | |
5899 | its normal operation. */ | |
5900 | signal_stop[TARGET_SIGNAL_LWP] = 0; | |
5901 | signal_print[TARGET_SIGNAL_LWP] = 0; | |
5902 | signal_stop[TARGET_SIGNAL_WAITING] = 0; | |
5903 | signal_print[TARGET_SIGNAL_WAITING] = 0; | |
5904 | signal_stop[TARGET_SIGNAL_CANCEL] = 0; | |
5905 | signal_print[TARGET_SIGNAL_CANCEL] = 0; | |
5906 | ||
85c07804 AC |
5907 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
5908 | &stop_on_solib_events, _("\ | |
5909 | Set stopping for shared library events."), _("\ | |
5910 | Show stopping for shared library events."), _("\ | |
c906108c SS |
5911 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
5912 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 AC |
5913 | to the user would be loading/unloading of a new library."), |
5914 | NULL, | |
920d2a44 | 5915 | show_stop_on_solib_events, |
85c07804 | 5916 | &setlist, &showlist); |
c906108c | 5917 | |
7ab04401 AC |
5918 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
5919 | follow_fork_mode_kind_names, | |
5920 | &follow_fork_mode_string, _("\ | |
5921 | Set debugger response to a program call of fork or vfork."), _("\ | |
5922 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
5923 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
5924 | parent - the original process is debugged after a fork\n\ | |
5925 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 5926 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
5927 | By default, the debugger will follow the parent process."), |
5928 | NULL, | |
920d2a44 | 5929 | show_follow_fork_mode_string, |
7ab04401 AC |
5930 | &setlist, &showlist); |
5931 | ||
5932 | add_setshow_enum_cmd ("scheduler-locking", class_run, | |
5933 | scheduler_enums, &scheduler_mode, _("\ | |
5934 | Set mode for locking scheduler during execution."), _("\ | |
5935 | Show mode for locking scheduler during execution."), _("\ | |
c906108c SS |
5936 | off == no locking (threads may preempt at any time)\n\ |
5937 | on == full locking (no thread except the current thread may run)\n\ | |
5938 | step == scheduler locked during every single-step operation.\n\ | |
5939 | In this mode, no other thread may run during a step command.\n\ | |
7ab04401 AC |
5940 | Other threads may run while stepping over a function call ('next')."), |
5941 | set_schedlock_func, /* traps on target vector */ | |
920d2a44 | 5942 | show_scheduler_mode, |
7ab04401 | 5943 | &setlist, &showlist); |
5fbbeb29 | 5944 | |
d4db2f36 PA |
5945 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
5946 | Set mode for resuming threads of all processes."), _("\ | |
5947 | Show mode for resuming threads of all processes."), _("\ | |
5948 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
5949 | threads of all processes. When off (which is the default), execution\n\ | |
5950 | commands only resume the threads of the current process. The set of\n\ | |
5951 | threads that are resumed is further refined by the scheduler-locking\n\ | |
5952 | mode (see help set scheduler-locking)."), | |
5953 | NULL, | |
5954 | show_schedule_multiple, | |
5955 | &setlist, &showlist); | |
5956 | ||
5bf193a2 AC |
5957 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
5958 | Set mode of the step operation."), _("\ | |
5959 | Show mode of the step operation."), _("\ | |
5960 | When set, doing a step over a function without debug line information\n\ | |
5961 | will stop at the first instruction of that function. Otherwise, the\n\ | |
5962 | function is skipped and the step command stops at a different source line."), | |
5963 | NULL, | |
920d2a44 | 5964 | show_step_stop_if_no_debug, |
5bf193a2 | 5965 | &setlist, &showlist); |
ca6724c1 | 5966 | |
fff08868 HZ |
5967 | add_setshow_enum_cmd ("displaced-stepping", class_run, |
5968 | can_use_displaced_stepping_enum, | |
5969 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
5970 | Set debugger's willingness to use displaced stepping."), _("\ |
5971 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
5972 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
5973 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
5974 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
5975 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
5976 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
5977 | use it in all-stop mode (see help set non-stop)."), | |
5978 | NULL, | |
5979 | show_can_use_displaced_stepping, | |
5980 | &setlist, &showlist); | |
237fc4c9 | 5981 | |
b2175913 MS |
5982 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
5983 | &exec_direction, _("Set direction of execution.\n\ | |
5984 | Options are 'forward' or 'reverse'."), | |
5985 | _("Show direction of execution (forward/reverse)."), | |
5986 | _("Tells gdb whether to execute forward or backward."), | |
5987 | set_exec_direction_func, show_exec_direction_func, | |
5988 | &setlist, &showlist); | |
5989 | ||
ca6724c1 KB |
5990 | /* ptid initializations */ |
5991 | null_ptid = ptid_build (0, 0, 0); | |
5992 | minus_one_ptid = ptid_build (-1, 0, 0); | |
5993 | inferior_ptid = null_ptid; | |
5994 | target_last_wait_ptid = minus_one_ptid; | |
237fc4c9 | 5995 | displaced_step_ptid = null_ptid; |
5231c1fd PA |
5996 | |
5997 | observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); | |
252fbfc8 | 5998 | observer_attach_thread_stop_requested (infrun_thread_stop_requested); |
a07daef3 | 5999 | observer_attach_thread_exit (infrun_thread_thread_exit); |
4aa995e1 PA |
6000 | |
6001 | /* Explicitly create without lookup, since that tries to create a | |
6002 | value with a void typed value, and when we get here, gdbarch | |
6003 | isn't initialized yet. At this point, we're quite sure there | |
6004 | isn't another convenience variable of the same name. */ | |
6005 | create_internalvar_type_lazy ("_siginfo", siginfo_make_value); | |
c906108c | 6006 | } |