]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating the minimal symbol tables. |
197e01b6 | 2 | Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, |
0fb0cc75 | 3 | 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc. |
c906108c SS |
4 | Contributed by Cygnus Support, using pieces from other GDB modules. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | ||
22 | /* This file contains support routines for creating, manipulating, and | |
23 | destroying minimal symbol tables. | |
24 | ||
25 | Minimal symbol tables are used to hold some very basic information about | |
26 | all defined global symbols (text, data, bss, abs, etc). The only two | |
27 | required pieces of information are the symbol's name and the address | |
28 | associated with that symbol. | |
29 | ||
30 | In many cases, even if a file was compiled with no special options for | |
31 | debugging at all, as long as was not stripped it will contain sufficient | |
32 | information to build useful minimal symbol tables using this structure. | |
c5aa993b | 33 | |
c906108c SS |
34 | Even when a file contains enough debugging information to build a full |
35 | symbol table, these minimal symbols are still useful for quickly mapping | |
36 | between names and addresses, and vice versa. They are also sometimes used | |
37 | to figure out what full symbol table entries need to be read in. */ | |
38 | ||
39 | ||
40 | #include "defs.h" | |
9227b5eb | 41 | #include <ctype.h> |
c906108c SS |
42 | #include "gdb_string.h" |
43 | #include "symtab.h" | |
44 | #include "bfd.h" | |
45 | #include "symfile.h" | |
46 | #include "objfiles.h" | |
47 | #include "demangle.h" | |
7ed49443 JB |
48 | #include "value.h" |
49 | #include "cp-abi.h" | |
42848c96 | 50 | #include "target.h" |
71c25dea TT |
51 | #include "cp-support.h" |
52 | #include "language.h" | |
c906108c SS |
53 | |
54 | /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. | |
55 | At the end, copy them all into one newly allocated location on an objfile's | |
56 | symbol obstack. */ | |
57 | ||
58 | #define BUNCH_SIZE 127 | |
59 | ||
60 | struct msym_bunch | |
c5aa993b JM |
61 | { |
62 | struct msym_bunch *next; | |
63 | struct minimal_symbol contents[BUNCH_SIZE]; | |
64 | }; | |
c906108c SS |
65 | |
66 | /* Bunch currently being filled up. | |
67 | The next field points to chain of filled bunches. */ | |
68 | ||
69 | static struct msym_bunch *msym_bunch; | |
70 | ||
71 | /* Number of slots filled in current bunch. */ | |
72 | ||
73 | static int msym_bunch_index; | |
74 | ||
75 | /* Total number of minimal symbols recorded so far for the objfile. */ | |
76 | ||
77 | static int msym_count; | |
78 | ||
9227b5eb JB |
79 | /* Compute a hash code based using the same criteria as `strcmp_iw'. */ |
80 | ||
81 | unsigned int | |
82 | msymbol_hash_iw (const char *string) | |
83 | { | |
84 | unsigned int hash = 0; | |
85 | while (*string && *string != '(') | |
86 | { | |
87 | while (isspace (*string)) | |
88 | ++string; | |
89 | if (*string && *string != '(') | |
375f3d86 DJ |
90 | { |
91 | hash = hash * 67 + *string - 113; | |
92 | ++string; | |
93 | } | |
9227b5eb | 94 | } |
261397f8 | 95 | return hash; |
9227b5eb JB |
96 | } |
97 | ||
98 | /* Compute a hash code for a string. */ | |
99 | ||
100 | unsigned int | |
101 | msymbol_hash (const char *string) | |
102 | { | |
103 | unsigned int hash = 0; | |
104 | for (; *string; ++string) | |
375f3d86 | 105 | hash = hash * 67 + *string - 113; |
261397f8 | 106 | return hash; |
9227b5eb JB |
107 | } |
108 | ||
109 | /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */ | |
110 | void | |
111 | add_minsym_to_hash_table (struct minimal_symbol *sym, | |
112 | struct minimal_symbol **table) | |
113 | { | |
114 | if (sym->hash_next == NULL) | |
115 | { | |
f56f77c1 DC |
116 | unsigned int hash |
117 | = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; | |
9227b5eb JB |
118 | sym->hash_next = table[hash]; |
119 | table[hash] = sym; | |
120 | } | |
121 | } | |
122 | ||
0729fd50 DB |
123 | /* Add the minimal symbol SYM to an objfile's minsym demangled hash table, |
124 | TABLE. */ | |
125 | static void | |
126 | add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, | |
127 | struct minimal_symbol **table) | |
128 | { | |
129 | if (sym->demangled_hash_next == NULL) | |
130 | { | |
3567439c DJ |
131 | unsigned int hash |
132 | = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; | |
0729fd50 DB |
133 | sym->demangled_hash_next = table[hash]; |
134 | table[hash] = sym; | |
135 | } | |
136 | } | |
137 | ||
c906108c | 138 | |
bccdca4a UW |
139 | /* Return OBJFILE where minimal symbol SYM is defined. */ |
140 | struct objfile * | |
141 | msymbol_objfile (struct minimal_symbol *sym) | |
142 | { | |
143 | struct objfile *objf; | |
144 | struct minimal_symbol *tsym; | |
145 | ||
146 | unsigned int hash | |
147 | = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; | |
148 | ||
149 | for (objf = object_files; objf; objf = objf->next) | |
150 | for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next) | |
151 | if (tsym == sym) | |
152 | return objf; | |
153 | ||
154 | /* We should always be able to find the objfile ... */ | |
155 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); | |
156 | } | |
157 | ||
158 | ||
c906108c SS |
159 | /* Look through all the current minimal symbol tables and find the |
160 | first minimal symbol that matches NAME. If OBJF is non-NULL, limit | |
72a5efb3 DJ |
161 | the search to that objfile. If SFILE is non-NULL, the only file-scope |
162 | symbols considered will be from that source file (global symbols are | |
163 | still preferred). Returns a pointer to the minimal symbol that | |
c906108c SS |
164 | matches, or NULL if no match is found. |
165 | ||
166 | Note: One instance where there may be duplicate minimal symbols with | |
167 | the same name is when the symbol tables for a shared library and the | |
168 | symbol tables for an executable contain global symbols with the same | |
d73f140a JB |
169 | names (the dynamic linker deals with the duplication). |
170 | ||
171 | It's also possible to have minimal symbols with different mangled | |
172 | names, but identical demangled names. For example, the GNU C++ v3 | |
173 | ABI requires the generation of two (or perhaps three) copies of | |
174 | constructor functions --- "in-charge", "not-in-charge", and | |
175 | "allocate" copies; destructors may be duplicated as well. | |
176 | Obviously, there must be distinct mangled names for each of these, | |
177 | but the demangled names are all the same: S::S or S::~S. */ | |
c906108c SS |
178 | |
179 | struct minimal_symbol * | |
aa1ee363 | 180 | lookup_minimal_symbol (const char *name, const char *sfile, |
fba45db2 | 181 | struct objfile *objf) |
c906108c SS |
182 | { |
183 | struct objfile *objfile; | |
184 | struct minimal_symbol *msymbol; | |
185 | struct minimal_symbol *found_symbol = NULL; | |
186 | struct minimal_symbol *found_file_symbol = NULL; | |
187 | struct minimal_symbol *trampoline_symbol = NULL; | |
188 | ||
261397f8 DJ |
189 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
190 | unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE; | |
9227b5eb | 191 | |
71c25dea TT |
192 | int needtofreename = 0; |
193 | const char *modified_name; | |
194 | ||
c906108c SS |
195 | if (sfile != NULL) |
196 | { | |
197 | char *p = strrchr (sfile, '/'); | |
198 | if (p != NULL) | |
199 | sfile = p + 1; | |
200 | } | |
c906108c | 201 | |
71c25dea TT |
202 | /* For C++, canonicalize the input name. */ |
203 | modified_name = name; | |
204 | if (current_language->la_language == language_cplus) | |
205 | { | |
206 | char *cname = cp_canonicalize_string (name); | |
207 | if (cname) | |
208 | { | |
209 | modified_name = cname; | |
210 | needtofreename = 1; | |
211 | } | |
212 | } | |
213 | ||
c906108c SS |
214 | for (objfile = object_files; |
215 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 216 | objfile = objfile->next) |
c906108c | 217 | { |
56e3f43c DJ |
218 | if (objf == NULL || objf == objfile |
219 | || objf->separate_debug_objfile == objfile) | |
c906108c | 220 | { |
9227b5eb JB |
221 | /* Do two passes: the first over the ordinary hash table, |
222 | and the second over the demangled hash table. */ | |
0729fd50 | 223 | int pass; |
9227b5eb | 224 | |
0729fd50 | 225 | for (pass = 1; pass <= 2 && found_symbol == NULL; pass++) |
c906108c | 226 | { |
0729fd50 DB |
227 | /* Select hash list according to pass. */ |
228 | if (pass == 1) | |
229 | msymbol = objfile->msymbol_hash[hash]; | |
230 | else | |
231 | msymbol = objfile->msymbol_demangled_hash[dem_hash]; | |
232 | ||
233 | while (msymbol != NULL && found_symbol == NULL) | |
c906108c | 234 | { |
3567439c DJ |
235 | int match; |
236 | ||
237 | if (pass == 1) | |
71c25dea TT |
238 | { |
239 | match = strcmp (SYMBOL_LINKAGE_NAME (msymbol), | |
240 | modified_name) == 0; | |
241 | } | |
3567439c | 242 | else |
71c25dea TT |
243 | { |
244 | match = SYMBOL_MATCHES_SEARCH_NAME (msymbol, | |
245 | modified_name); | |
246 | } | |
247 | ||
3567439c | 248 | if (match) |
c906108c | 249 | { |
0729fd50 DB |
250 | switch (MSYMBOL_TYPE (msymbol)) |
251 | { | |
252 | case mst_file_text: | |
253 | case mst_file_data: | |
254 | case mst_file_bss: | |
6314a349 AC |
255 | if (sfile == NULL |
256 | || strcmp (msymbol->filename, sfile) == 0) | |
0729fd50 | 257 | found_file_symbol = msymbol; |
0729fd50 DB |
258 | break; |
259 | ||
260 | case mst_solib_trampoline: | |
261 | ||
262 | /* If a trampoline symbol is found, we prefer to | |
263 | keep looking for the *real* symbol. If the | |
264 | actual symbol is not found, then we'll use the | |
265 | trampoline entry. */ | |
266 | if (trampoline_symbol == NULL) | |
267 | trampoline_symbol = msymbol; | |
268 | break; | |
269 | ||
270 | case mst_unknown: | |
271 | default: | |
272 | found_symbol = msymbol; | |
273 | break; | |
274 | } | |
c906108c | 275 | } |
9227b5eb | 276 | |
0729fd50 DB |
277 | /* Find the next symbol on the hash chain. */ |
278 | if (pass == 1) | |
279 | msymbol = msymbol->hash_next; | |
280 | else | |
281 | msymbol = msymbol->demangled_hash_next; | |
9227b5eb | 282 | } |
c906108c SS |
283 | } |
284 | } | |
285 | } | |
71c25dea TT |
286 | |
287 | if (needtofreename) | |
288 | xfree ((void *) modified_name); | |
289 | ||
c906108c SS |
290 | /* External symbols are best. */ |
291 | if (found_symbol) | |
292 | return found_symbol; | |
293 | ||
294 | /* File-local symbols are next best. */ | |
295 | if (found_file_symbol) | |
296 | return found_file_symbol; | |
297 | ||
298 | /* Symbols for shared library trampolines are next best. */ | |
299 | if (trampoline_symbol) | |
300 | return trampoline_symbol; | |
301 | ||
302 | return NULL; | |
303 | } | |
304 | ||
305 | /* Look through all the current minimal symbol tables and find the | |
72a5efb3 | 306 | first minimal symbol that matches NAME and has text type. If OBJF |
5520a790 EZ |
307 | is non-NULL, limit the search to that objfile. Returns a pointer |
308 | to the minimal symbol that matches, or NULL if no match is found. | |
72a5efb3 DJ |
309 | |
310 | This function only searches the mangled (linkage) names. */ | |
c5aa993b | 311 | |
c906108c | 312 | struct minimal_symbol * |
5520a790 | 313 | lookup_minimal_symbol_text (const char *name, struct objfile *objf) |
c906108c SS |
314 | { |
315 | struct objfile *objfile; | |
316 | struct minimal_symbol *msymbol; | |
317 | struct minimal_symbol *found_symbol = NULL; | |
318 | struct minimal_symbol *found_file_symbol = NULL; | |
319 | ||
72a5efb3 DJ |
320 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
321 | ||
c906108c SS |
322 | for (objfile = object_files; |
323 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 324 | objfile = objfile->next) |
c906108c | 325 | { |
56e3f43c DJ |
326 | if (objf == NULL || objf == objfile |
327 | || objf->separate_debug_objfile == objfile) | |
c906108c | 328 | { |
72a5efb3 DJ |
329 | for (msymbol = objfile->msymbol_hash[hash]; |
330 | msymbol != NULL && found_symbol == NULL; | |
331 | msymbol = msymbol->hash_next) | |
c906108c | 332 | { |
f56f77c1 | 333 | if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && |
c906108c SS |
334 | (MSYMBOL_TYPE (msymbol) == mst_text || |
335 | MSYMBOL_TYPE (msymbol) == mst_file_text)) | |
336 | { | |
337 | switch (MSYMBOL_TYPE (msymbol)) | |
338 | { | |
339 | case mst_file_text: | |
c906108c | 340 | found_file_symbol = msymbol; |
c906108c SS |
341 | break; |
342 | default: | |
343 | found_symbol = msymbol; | |
344 | break; | |
345 | } | |
346 | } | |
347 | } | |
348 | } | |
349 | } | |
350 | /* External symbols are best. */ | |
351 | if (found_symbol) | |
352 | return found_symbol; | |
353 | ||
354 | /* File-local symbols are next best. */ | |
355 | if (found_file_symbol) | |
356 | return found_file_symbol; | |
357 | ||
358 | return NULL; | |
359 | } | |
360 | ||
907fc202 UW |
361 | /* Look through all the current minimal symbol tables and find the |
362 | first minimal symbol that matches NAME and PC. If OBJF is non-NULL, | |
363 | limit the search to that objfile. Returns a pointer to the minimal | |
364 | symbol that matches, or NULL if no match is found. */ | |
365 | ||
366 | struct minimal_symbol * | |
367 | lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name, | |
368 | struct objfile *objf) | |
369 | { | |
370 | struct objfile *objfile; | |
371 | struct minimal_symbol *msymbol; | |
372 | ||
373 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; | |
374 | ||
375 | for (objfile = object_files; | |
376 | objfile != NULL; | |
377 | objfile = objfile->next) | |
378 | { | |
379 | if (objf == NULL || objf == objfile | |
380 | || objf->separate_debug_objfile == objfile) | |
381 | { | |
382 | for (msymbol = objfile->msymbol_hash[hash]; | |
383 | msymbol != NULL; | |
384 | msymbol = msymbol->hash_next) | |
385 | { | |
386 | if (SYMBOL_VALUE_ADDRESS (msymbol) == pc | |
387 | && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0) | |
388 | return msymbol; | |
389 | } | |
390 | } | |
391 | } | |
392 | ||
393 | return NULL; | |
394 | } | |
395 | ||
c906108c | 396 | /* Look through all the current minimal symbol tables and find the |
5520a790 EZ |
397 | first minimal symbol that matches NAME and is a solib trampoline. |
398 | If OBJF is non-NULL, limit the search to that objfile. Returns a | |
399 | pointer to the minimal symbol that matches, or NULL if no match is | |
400 | found. | |
72a5efb3 DJ |
401 | |
402 | This function only searches the mangled (linkage) names. */ | |
c5aa993b | 403 | |
c906108c | 404 | struct minimal_symbol * |
aa1ee363 | 405 | lookup_minimal_symbol_solib_trampoline (const char *name, |
aa1ee363 | 406 | struct objfile *objf) |
c906108c SS |
407 | { |
408 | struct objfile *objfile; | |
409 | struct minimal_symbol *msymbol; | |
410 | struct minimal_symbol *found_symbol = NULL; | |
411 | ||
72a5efb3 DJ |
412 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
413 | ||
c906108c SS |
414 | for (objfile = object_files; |
415 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 416 | objfile = objfile->next) |
c906108c | 417 | { |
56e3f43c DJ |
418 | if (objf == NULL || objf == objfile |
419 | || objf->separate_debug_objfile == objfile) | |
c906108c | 420 | { |
72a5efb3 DJ |
421 | for (msymbol = objfile->msymbol_hash[hash]; |
422 | msymbol != NULL && found_symbol == NULL; | |
423 | msymbol = msymbol->hash_next) | |
c906108c | 424 | { |
f56f77c1 | 425 | if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && |
c906108c SS |
426 | MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
427 | return msymbol; | |
428 | } | |
429 | } | |
430 | } | |
431 | ||
432 | return NULL; | |
433 | } | |
434 | ||
c906108c SS |
435 | /* Search through the minimal symbol table for each objfile and find |
436 | the symbol whose address is the largest address that is still less | |
00878c6e PP |
437 | than or equal to PC, and matches SECTION (which is not NULL). |
438 | Returns a pointer to the minimal symbol if such a symbol is found, | |
439 | or NULL if PC is not in a suitable range. | |
440 | Note that we need to look through ALL the minimal symbol tables | |
441 | before deciding on the symbol that comes closest to the specified PC. | |
442 | This is because objfiles can overlap, for example objfile A has .text | |
443 | at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and | |
444 | .data at 0x40048. | |
c906108c | 445 | |
2eaf8d2a DJ |
446 | If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when |
447 | there are text and trampoline symbols at the same address. | |
448 | Otherwise prefer mst_text symbols. */ | |
449 | ||
450 | static struct minimal_symbol * | |
714835d5 UW |
451 | lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc, |
452 | struct obj_section *section, | |
2eaf8d2a | 453 | int want_trampoline) |
c906108c SS |
454 | { |
455 | int lo; | |
456 | int hi; | |
457 | int new; | |
458 | struct objfile *objfile; | |
459 | struct minimal_symbol *msymbol; | |
460 | struct minimal_symbol *best_symbol = NULL; | |
2eaf8d2a | 461 | enum minimal_symbol_type want_type, other_type; |
c906108c | 462 | |
2eaf8d2a DJ |
463 | want_type = want_trampoline ? mst_solib_trampoline : mst_text; |
464 | other_type = want_trampoline ? mst_text : mst_solib_trampoline; | |
00878c6e PP |
465 | |
466 | /* We can not require the symbol found to be in section, because | |
96225718 DJ |
467 | e.g. IRIX 6.5 mdebug relies on this code returning an absolute |
468 | symbol - but find_pc_section won't return an absolute section and | |
469 | hence the code below would skip over absolute symbols. We can | |
470 | still take advantage of the call to find_pc_section, though - the | |
471 | object file still must match. In case we have separate debug | |
472 | files, search both the file and its separate debug file. There's | |
473 | no telling which one will have the minimal symbols. */ | |
474 | ||
00878c6e PP |
475 | gdb_assert (section != NULL); |
476 | objfile = section->objfile; | |
96225718 DJ |
477 | if (objfile->separate_debug_objfile) |
478 | objfile = objfile->separate_debug_objfile; | |
479 | ||
480 | for (; objfile != NULL; objfile = objfile->separate_debug_objfile_backlink) | |
c906108c SS |
481 | { |
482 | /* If this objfile has a minimal symbol table, go search it using | |
c5aa993b JM |
483 | a binary search. Note that a minimal symbol table always consists |
484 | of at least two symbols, a "real" symbol and the terminating | |
485 | "null symbol". If there are no real symbols, then there is no | |
486 | minimal symbol table at all. */ | |
c906108c | 487 | |
15831452 | 488 | if (objfile->minimal_symbol_count > 0) |
c906108c | 489 | { |
29e8a844 DJ |
490 | int best_zero_sized = -1; |
491 | ||
15831452 | 492 | msymbol = objfile->msymbols; |
c906108c | 493 | lo = 0; |
c5aa993b | 494 | hi = objfile->minimal_symbol_count - 1; |
c906108c SS |
495 | |
496 | /* This code assumes that the minimal symbols are sorted by | |
497 | ascending address values. If the pc value is greater than or | |
498 | equal to the first symbol's address, then some symbol in this | |
499 | minimal symbol table is a suitable candidate for being the | |
500 | "best" symbol. This includes the last real symbol, for cases | |
501 | where the pc value is larger than any address in this vector. | |
502 | ||
503 | By iterating until the address associated with the current | |
504 | hi index (the endpoint of the test interval) is less than | |
505 | or equal to the desired pc value, we accomplish two things: | |
506 | (1) the case where the pc value is larger than any minimal | |
507 | symbol address is trivially solved, (2) the address associated | |
508 | with the hi index is always the one we want when the interation | |
509 | terminates. In essence, we are iterating the test interval | |
510 | down until the pc value is pushed out of it from the high end. | |
511 | ||
512 | Warning: this code is trickier than it would appear at first. */ | |
513 | ||
514 | /* Should also require that pc is <= end of objfile. FIXME! */ | |
515 | if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) | |
516 | { | |
517 | while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) | |
518 | { | |
519 | /* pc is still strictly less than highest address */ | |
520 | /* Note "new" will always be >= lo */ | |
521 | new = (lo + hi) / 2; | |
522 | if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || | |
523 | (lo == new)) | |
524 | { | |
525 | hi = new; | |
526 | } | |
527 | else | |
528 | { | |
529 | lo = new; | |
530 | } | |
531 | } | |
532 | ||
533 | /* If we have multiple symbols at the same address, we want | |
c5aa993b JM |
534 | hi to point to the last one. That way we can find the |
535 | right symbol if it has an index greater than hi. */ | |
536 | while (hi < objfile->minimal_symbol_count - 1 | |
c906108c | 537 | && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) |
c5aa993b | 538 | == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1]))) |
c906108c SS |
539 | hi++; |
540 | ||
29e8a844 DJ |
541 | /* Skip various undesirable symbols. */ |
542 | while (hi >= 0) | |
543 | { | |
544 | /* Skip any absolute symbols. This is apparently | |
545 | what adb and dbx do, and is needed for the CM-5. | |
546 | There are two known possible problems: (1) on | |
547 | ELF, apparently end, edata, etc. are absolute. | |
548 | Not sure ignoring them here is a big deal, but if | |
549 | we want to use them, the fix would go in | |
550 | elfread.c. (2) I think shared library entry | |
551 | points on the NeXT are absolute. If we want | |
552 | special handling for this it probably should be | |
553 | triggered by a special mst_abs_or_lib or some | |
554 | such. */ | |
555 | ||
712f90be | 556 | if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs) |
29e8a844 DJ |
557 | { |
558 | hi--; | |
559 | continue; | |
560 | } | |
561 | ||
562 | /* If SECTION was specified, skip any symbol from | |
563 | wrong section. */ | |
564 | if (section | |
565 | /* Some types of debug info, such as COFF, | |
566 | don't fill the bfd_section member, so don't | |
567 | throw away symbols on those platforms. */ | |
714835d5 UW |
568 | && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL |
569 | && (!matching_obj_sections | |
570 | (SYMBOL_OBJ_SECTION (&msymbol[hi]), section))) | |
29e8a844 DJ |
571 | { |
572 | hi--; | |
573 | continue; | |
574 | } | |
575 | ||
2eaf8d2a DJ |
576 | /* If we are looking for a trampoline and this is a |
577 | text symbol, or the other way around, check the | |
578 | preceeding symbol too. If they are otherwise | |
579 | identical prefer that one. */ | |
580 | if (hi > 0 | |
581 | && MSYMBOL_TYPE (&msymbol[hi]) == other_type | |
582 | && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type | |
583 | && (MSYMBOL_SIZE (&msymbol[hi]) | |
584 | == MSYMBOL_SIZE (&msymbol[hi - 1])) | |
585 | && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) | |
586 | == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])) | |
714835d5 UW |
587 | && (SYMBOL_OBJ_SECTION (&msymbol[hi]) |
588 | == SYMBOL_OBJ_SECTION (&msymbol[hi - 1]))) | |
2eaf8d2a DJ |
589 | { |
590 | hi--; | |
591 | continue; | |
592 | } | |
593 | ||
29e8a844 DJ |
594 | /* If the minimal symbol has a zero size, save it |
595 | but keep scanning backwards looking for one with | |
596 | a non-zero size. A zero size may mean that the | |
597 | symbol isn't an object or function (e.g. a | |
598 | label), or it may just mean that the size was not | |
599 | specified. */ | |
600 | if (MSYMBOL_SIZE (&msymbol[hi]) == 0 | |
601 | && best_zero_sized == -1) | |
602 | { | |
603 | best_zero_sized = hi; | |
604 | hi--; | |
605 | continue; | |
606 | } | |
607 | ||
f7a6bb70 DJ |
608 | /* If we are past the end of the current symbol, try |
609 | the previous symbol if it has a larger overlapping | |
610 | size. This happens on i686-pc-linux-gnu with glibc; | |
611 | the nocancel variants of system calls are inside | |
612 | the cancellable variants, but both have sizes. */ | |
613 | if (hi > 0 | |
614 | && MSYMBOL_SIZE (&msymbol[hi]) != 0 | |
615 | && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) | |
616 | + MSYMBOL_SIZE (&msymbol[hi])) | |
617 | && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]) | |
618 | + MSYMBOL_SIZE (&msymbol[hi - 1]))) | |
619 | { | |
620 | hi--; | |
621 | continue; | |
622 | } | |
623 | ||
29e8a844 DJ |
624 | /* Otherwise, this symbol must be as good as we're going |
625 | to get. */ | |
626 | break; | |
627 | } | |
628 | ||
629 | /* If HI has a zero size, and best_zero_sized is set, | |
630 | then we had two or more zero-sized symbols; prefer | |
631 | the first one we found (which may have a higher | |
632 | address). Also, if we ran off the end, be sure | |
633 | to back up. */ | |
634 | if (best_zero_sized != -1 | |
635 | && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0)) | |
636 | hi = best_zero_sized; | |
637 | ||
638 | /* If the minimal symbol has a non-zero size, and this | |
639 | PC appears to be outside the symbol's contents, then | |
640 | refuse to use this symbol. If we found a zero-sized | |
641 | symbol with an address greater than this symbol's, | |
642 | use that instead. We assume that if symbols have | |
643 | specified sizes, they do not overlap. */ | |
644 | ||
645 | if (hi >= 0 | |
646 | && MSYMBOL_SIZE (&msymbol[hi]) != 0 | |
647 | && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) | |
648 | + MSYMBOL_SIZE (&msymbol[hi]))) | |
649 | { | |
650 | if (best_zero_sized != -1) | |
651 | hi = best_zero_sized; | |
652 | else | |
653 | /* Go on to the next object file. */ | |
654 | continue; | |
655 | } | |
656 | ||
c906108c | 657 | /* The minimal symbol indexed by hi now is the best one in this |
c5aa993b JM |
658 | objfile's minimal symbol table. See if it is the best one |
659 | overall. */ | |
c906108c | 660 | |
c906108c SS |
661 | if (hi >= 0 |
662 | && ((best_symbol == NULL) || | |
c5aa993b | 663 | (SYMBOL_VALUE_ADDRESS (best_symbol) < |
c906108c SS |
664 | SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) |
665 | { | |
666 | best_symbol = &msymbol[hi]; | |
667 | } | |
668 | } | |
669 | } | |
670 | } | |
671 | return (best_symbol); | |
672 | } | |
673 | ||
2eaf8d2a | 674 | struct minimal_symbol * |
714835d5 | 675 | lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section) |
2eaf8d2a | 676 | { |
00878c6e PP |
677 | if (section == NULL) |
678 | { | |
679 | /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to | |
680 | force the section but that (well unless you're doing overlay | |
681 | debugging) always returns NULL making the call somewhat useless. */ | |
682 | section = find_pc_section (pc); | |
683 | if (section == NULL) | |
684 | return NULL; | |
685 | } | |
2eaf8d2a DJ |
686 | return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0); |
687 | } | |
688 | ||
c906108c SS |
689 | /* Backward compatibility: search through the minimal symbol table |
690 | for a matching PC (no section given) */ | |
691 | ||
692 | struct minimal_symbol * | |
fba45db2 | 693 | lookup_minimal_symbol_by_pc (CORE_ADDR pc) |
c906108c | 694 | { |
00878c6e | 695 | return lookup_minimal_symbol_by_pc_section (pc, NULL); |
c906108c | 696 | } |
c906108c | 697 | \f |
c5aa993b | 698 | |
c906108c SS |
699 | /* Return leading symbol character for a BFD. If BFD is NULL, |
700 | return the leading symbol character from the main objfile. */ | |
701 | ||
a14ed312 | 702 | static int get_symbol_leading_char (bfd *); |
c906108c SS |
703 | |
704 | static int | |
fba45db2 | 705 | get_symbol_leading_char (bfd *abfd) |
c906108c SS |
706 | { |
707 | if (abfd != NULL) | |
708 | return bfd_get_symbol_leading_char (abfd); | |
709 | if (symfile_objfile != NULL && symfile_objfile->obfd != NULL) | |
710 | return bfd_get_symbol_leading_char (symfile_objfile->obfd); | |
711 | return 0; | |
712 | } | |
713 | ||
714 | /* Prepare to start collecting minimal symbols. Note that presetting | |
715 | msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal | |
716 | symbol to allocate the memory for the first bunch. */ | |
717 | ||
718 | void | |
fba45db2 | 719 | init_minimal_symbol_collection (void) |
c906108c SS |
720 | { |
721 | msym_count = 0; | |
722 | msym_bunch = NULL; | |
723 | msym_bunch_index = BUNCH_SIZE; | |
724 | } | |
725 | ||
726 | void | |
fba45db2 KB |
727 | prim_record_minimal_symbol (const char *name, CORE_ADDR address, |
728 | enum minimal_symbol_type ms_type, | |
729 | struct objfile *objfile) | |
c906108c SS |
730 | { |
731 | int section; | |
732 | ||
733 | switch (ms_type) | |
734 | { | |
735 | case mst_text: | |
736 | case mst_file_text: | |
737 | case mst_solib_trampoline: | |
b8fbeb18 | 738 | section = SECT_OFF_TEXT (objfile); |
c906108c SS |
739 | break; |
740 | case mst_data: | |
741 | case mst_file_data: | |
b8fbeb18 | 742 | section = SECT_OFF_DATA (objfile); |
c906108c SS |
743 | break; |
744 | case mst_bss: | |
745 | case mst_file_bss: | |
b8fbeb18 | 746 | section = SECT_OFF_BSS (objfile); |
c906108c SS |
747 | break; |
748 | default: | |
749 | section = -1; | |
750 | } | |
751 | ||
752 | prim_record_minimal_symbol_and_info (name, address, ms_type, | |
b887350f | 753 | section, NULL, objfile); |
c906108c SS |
754 | } |
755 | ||
756 | /* Record a minimal symbol in the msym bunches. Returns the symbol | |
757 | newly created. */ | |
758 | ||
759 | struct minimal_symbol * | |
04a679b8 TT |
760 | prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name, |
761 | CORE_ADDR address, | |
762 | enum minimal_symbol_type ms_type, | |
763 | int section, | |
764 | asection *bfd_section, | |
765 | struct objfile *objfile) | |
c906108c | 766 | { |
714835d5 | 767 | struct obj_section *obj_section; |
52f0bd74 AC |
768 | struct msym_bunch *new; |
769 | struct minimal_symbol *msymbol; | |
c906108c | 770 | |
66337bb1 CV |
771 | /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into |
772 | the minimal symbols, because if there is also another symbol | |
773 | at the same address (e.g. the first function of the file), | |
774 | lookup_minimal_symbol_by_pc would have no way of getting the | |
775 | right one. */ | |
776 | if (ms_type == mst_file_text && name[0] == 'g' | |
777 | && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 | |
778 | || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) | |
779 | return (NULL); | |
780 | ||
781 | /* It's safe to strip the leading char here once, since the name | |
782 | is also stored stripped in the minimal symbol table. */ | |
783 | if (name[0] == get_symbol_leading_char (objfile->obfd)) | |
04a679b8 TT |
784 | { |
785 | ++name; | |
786 | --name_len; | |
787 | } | |
66337bb1 CV |
788 | |
789 | if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0) | |
790 | return (NULL); | |
c906108c SS |
791 | |
792 | if (msym_bunch_index == BUNCH_SIZE) | |
793 | { | |
edb3359d | 794 | new = XCALLOC (1, struct msym_bunch); |
c906108c | 795 | msym_bunch_index = 0; |
c5aa993b | 796 | new->next = msym_bunch; |
c906108c SS |
797 | msym_bunch = new; |
798 | } | |
c5aa993b | 799 | msymbol = &msym_bunch->contents[msym_bunch_index]; |
c906108c | 800 | SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); |
2de7ced7 | 801 | SYMBOL_LANGUAGE (msymbol) = language_auto; |
04a679b8 | 802 | SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile); |
2de7ced7 | 803 | |
c906108c SS |
804 | SYMBOL_VALUE_ADDRESS (msymbol) = address; |
805 | SYMBOL_SECTION (msymbol) = section; | |
714835d5 UW |
806 | SYMBOL_OBJ_SECTION (msymbol) = NULL; |
807 | ||
808 | /* Find obj_section corresponding to bfd_section. */ | |
809 | if (bfd_section) | |
810 | ALL_OBJFILE_OSECTIONS (objfile, obj_section) | |
811 | { | |
812 | if (obj_section->the_bfd_section == bfd_section) | |
813 | { | |
814 | SYMBOL_OBJ_SECTION (msymbol) = obj_section; | |
815 | break; | |
816 | } | |
817 | } | |
c906108c SS |
818 | |
819 | MSYMBOL_TYPE (msymbol) = ms_type; | |
b887350f TT |
820 | MSYMBOL_TARGET_FLAG_1 (msymbol) = 0; |
821 | MSYMBOL_TARGET_FLAG_2 (msymbol) = 0; | |
f594e5e9 | 822 | MSYMBOL_SIZE (msymbol) = 0; |
9227b5eb | 823 | |
a79dea61 | 824 | /* The hash pointers must be cleared! If they're not, |
72a0cf8f | 825 | add_minsym_to_hash_table will NOT add this msymbol to the hash table. */ |
9227b5eb JB |
826 | msymbol->hash_next = NULL; |
827 | msymbol->demangled_hash_next = NULL; | |
828 | ||
c906108c SS |
829 | msym_bunch_index++; |
830 | msym_count++; | |
831 | OBJSTAT (objfile, n_minsyms++); | |
832 | return msymbol; | |
833 | } | |
834 | ||
04a679b8 TT |
835 | /* Record a minimal symbol in the msym bunches. Returns the symbol |
836 | newly created. */ | |
837 | ||
838 | struct minimal_symbol * | |
839 | prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address, | |
840 | enum minimal_symbol_type ms_type, | |
841 | int section, | |
842 | asection *bfd_section, | |
843 | struct objfile *objfile) | |
844 | { | |
845 | return prim_record_minimal_symbol_full (name, strlen (name), 1, | |
846 | address, ms_type, section, | |
847 | bfd_section, objfile); | |
848 | } | |
849 | ||
c906108c SS |
850 | /* Compare two minimal symbols by address and return a signed result based |
851 | on unsigned comparisons, so that we sort into unsigned numeric order. | |
852 | Within groups with the same address, sort by name. */ | |
853 | ||
854 | static int | |
12b9c64f | 855 | compare_minimal_symbols (const void *fn1p, const void *fn2p) |
c906108c | 856 | { |
52f0bd74 AC |
857 | const struct minimal_symbol *fn1; |
858 | const struct minimal_symbol *fn2; | |
c906108c SS |
859 | |
860 | fn1 = (const struct minimal_symbol *) fn1p; | |
861 | fn2 = (const struct minimal_symbol *) fn2p; | |
862 | ||
863 | if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) | |
864 | { | |
c5aa993b | 865 | return (-1); /* addr 1 is less than addr 2 */ |
c906108c SS |
866 | } |
867 | else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) | |
868 | { | |
c5aa993b | 869 | return (1); /* addr 1 is greater than addr 2 */ |
c906108c | 870 | } |
c5aa993b JM |
871 | else |
872 | /* addrs are equal: sort by name */ | |
c906108c | 873 | { |
f56f77c1 DC |
874 | char *name1 = SYMBOL_LINKAGE_NAME (fn1); |
875 | char *name2 = SYMBOL_LINKAGE_NAME (fn2); | |
c906108c SS |
876 | |
877 | if (name1 && name2) /* both have names */ | |
878 | return strcmp (name1, name2); | |
879 | else if (name2) | |
c5aa993b JM |
880 | return 1; /* fn1 has no name, so it is "less" */ |
881 | else if (name1) /* fn2 has no name, so it is "less" */ | |
c906108c SS |
882 | return -1; |
883 | else | |
c5aa993b | 884 | return (0); /* neither has a name, so they're equal. */ |
c906108c SS |
885 | } |
886 | } | |
887 | ||
888 | /* Discard the currently collected minimal symbols, if any. If we wish | |
889 | to save them for later use, we must have already copied them somewhere | |
890 | else before calling this function. | |
891 | ||
892 | FIXME: We could allocate the minimal symbol bunches on their own | |
893 | obstack and then simply blow the obstack away when we are done with | |
894 | it. Is it worth the extra trouble though? */ | |
895 | ||
56e290f4 AC |
896 | static void |
897 | do_discard_minimal_symbols_cleanup (void *arg) | |
c906108c | 898 | { |
52f0bd74 | 899 | struct msym_bunch *next; |
c906108c SS |
900 | |
901 | while (msym_bunch != NULL) | |
902 | { | |
c5aa993b | 903 | next = msym_bunch->next; |
b8c9b27d | 904 | xfree (msym_bunch); |
c906108c SS |
905 | msym_bunch = next; |
906 | } | |
907 | } | |
908 | ||
56e290f4 AC |
909 | struct cleanup * |
910 | make_cleanup_discard_minimal_symbols (void) | |
911 | { | |
912 | return make_cleanup (do_discard_minimal_symbols_cleanup, 0); | |
913 | } | |
914 | ||
915 | ||
9227b5eb | 916 | |
c906108c SS |
917 | /* Compact duplicate entries out of a minimal symbol table by walking |
918 | through the table and compacting out entries with duplicate addresses | |
919 | and matching names. Return the number of entries remaining. | |
920 | ||
921 | On entry, the table resides between msymbol[0] and msymbol[mcount]. | |
922 | On exit, it resides between msymbol[0] and msymbol[result_count]. | |
923 | ||
924 | When files contain multiple sources of symbol information, it is | |
925 | possible for the minimal symbol table to contain many duplicate entries. | |
926 | As an example, SVR4 systems use ELF formatted object files, which | |
927 | usually contain at least two different types of symbol tables (a | |
928 | standard ELF one and a smaller dynamic linking table), as well as | |
929 | DWARF debugging information for files compiled with -g. | |
930 | ||
931 | Without compacting, the minimal symbol table for gdb itself contains | |
932 | over a 1000 duplicates, about a third of the total table size. Aside | |
933 | from the potential trap of not noticing that two successive entries | |
934 | identify the same location, this duplication impacts the time required | |
935 | to linearly scan the table, which is done in a number of places. So we | |
936 | just do one linear scan here and toss out the duplicates. | |
937 | ||
938 | Note that we are not concerned here about recovering the space that | |
939 | is potentially freed up, because the strings themselves are allocated | |
4a146b47 | 940 | on the objfile_obstack, and will get automatically freed when the symbol |
c906108c SS |
941 | table is freed. The caller can free up the unused minimal symbols at |
942 | the end of the compacted region if their allocation strategy allows it. | |
943 | ||
944 | Also note we only go up to the next to last entry within the loop | |
945 | and then copy the last entry explicitly after the loop terminates. | |
946 | ||
947 | Since the different sources of information for each symbol may | |
948 | have different levels of "completeness", we may have duplicates | |
949 | that have one entry with type "mst_unknown" and the other with a | |
950 | known type. So if the one we are leaving alone has type mst_unknown, | |
951 | overwrite its type with the type from the one we are compacting out. */ | |
952 | ||
953 | static int | |
fba45db2 KB |
954 | compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount, |
955 | struct objfile *objfile) | |
c906108c SS |
956 | { |
957 | struct minimal_symbol *copyfrom; | |
958 | struct minimal_symbol *copyto; | |
959 | ||
960 | if (mcount > 0) | |
961 | { | |
962 | copyfrom = copyto = msymbol; | |
963 | while (copyfrom < msymbol + mcount - 1) | |
964 | { | |
6314a349 AC |
965 | if (SYMBOL_VALUE_ADDRESS (copyfrom) |
966 | == SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) | |
967 | && strcmp (SYMBOL_LINKAGE_NAME (copyfrom), | |
968 | SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0) | |
c906108c | 969 | { |
c5aa993b | 970 | if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown) |
c906108c SS |
971 | { |
972 | MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); | |
973 | } | |
974 | copyfrom++; | |
975 | } | |
976 | else | |
afbb8d7a | 977 | *copyto++ = *copyfrom++; |
c906108c SS |
978 | } |
979 | *copyto++ = *copyfrom++; | |
980 | mcount = copyto - msymbol; | |
981 | } | |
982 | return (mcount); | |
983 | } | |
984 | ||
afbb8d7a KB |
985 | /* Build (or rebuild) the minimal symbol hash tables. This is necessary |
986 | after compacting or sorting the table since the entries move around | |
987 | thus causing the internal minimal_symbol pointers to become jumbled. */ | |
988 | ||
989 | static void | |
990 | build_minimal_symbol_hash_tables (struct objfile *objfile) | |
991 | { | |
992 | int i; | |
993 | struct minimal_symbol *msym; | |
994 | ||
995 | /* Clear the hash tables. */ | |
996 | for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++) | |
997 | { | |
998 | objfile->msymbol_hash[i] = 0; | |
999 | objfile->msymbol_demangled_hash[i] = 0; | |
1000 | } | |
1001 | ||
1002 | /* Now, (re)insert the actual entries. */ | |
1003 | for (i = objfile->minimal_symbol_count, msym = objfile->msymbols; | |
1004 | i > 0; | |
1005 | i--, msym++) | |
1006 | { | |
1007 | msym->hash_next = 0; | |
1008 | add_minsym_to_hash_table (msym, objfile->msymbol_hash); | |
1009 | ||
1010 | msym->demangled_hash_next = 0; | |
4725b721 | 1011 | if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym)) |
afbb8d7a KB |
1012 | add_minsym_to_demangled_hash_table (msym, |
1013 | objfile->msymbol_demangled_hash); | |
1014 | } | |
1015 | } | |
1016 | ||
c906108c SS |
1017 | /* Add the minimal symbols in the existing bunches to the objfile's official |
1018 | minimal symbol table. In most cases there is no minimal symbol table yet | |
1019 | for this objfile, and the existing bunches are used to create one. Once | |
1020 | in a while (for shared libraries for example), we add symbols (e.g. common | |
1021 | symbols) to an existing objfile. | |
1022 | ||
1023 | Because of the way minimal symbols are collected, we generally have no way | |
1024 | of knowing what source language applies to any particular minimal symbol. | |
1025 | Specifically, we have no way of knowing if the minimal symbol comes from a | |
1026 | C++ compilation unit or not. So for the sake of supporting cached | |
1027 | demangled C++ names, we have no choice but to try and demangle each new one | |
1028 | that comes in. If the demangling succeeds, then we assume it is a C++ | |
1029 | symbol and set the symbol's language and demangled name fields | |
1030 | appropriately. Note that in order to avoid unnecessary demanglings, and | |
1031 | allocating obstack space that subsequently can't be freed for the demangled | |
1032 | names, we mark all newly added symbols with language_auto. After | |
1033 | compaction of the minimal symbols, we go back and scan the entire minimal | |
1034 | symbol table looking for these new symbols. For each new symbol we attempt | |
1035 | to demangle it, and if successful, record it as a language_cplus symbol | |
1036 | and cache the demangled form on the symbol obstack. Symbols which don't | |
1037 | demangle are marked as language_unknown symbols, which inhibits future | |
1038 | attempts to demangle them if we later add more minimal symbols. */ | |
1039 | ||
1040 | void | |
fba45db2 | 1041 | install_minimal_symbols (struct objfile *objfile) |
c906108c | 1042 | { |
52f0bd74 AC |
1043 | int bindex; |
1044 | int mcount; | |
1045 | struct msym_bunch *bunch; | |
1046 | struct minimal_symbol *msymbols; | |
c906108c | 1047 | int alloc_count; |
c906108c SS |
1048 | |
1049 | if (msym_count > 0) | |
1050 | { | |
1051 | /* Allocate enough space in the obstack, into which we will gather the | |
c5aa993b JM |
1052 | bunches of new and existing minimal symbols, sort them, and then |
1053 | compact out the duplicate entries. Once we have a final table, | |
1054 | we will give back the excess space. */ | |
c906108c SS |
1055 | |
1056 | alloc_count = msym_count + objfile->minimal_symbol_count + 1; | |
4a146b47 | 1057 | obstack_blank (&objfile->objfile_obstack, |
c906108c SS |
1058 | alloc_count * sizeof (struct minimal_symbol)); |
1059 | msymbols = (struct minimal_symbol *) | |
4a146b47 | 1060 | obstack_base (&objfile->objfile_obstack); |
c906108c SS |
1061 | |
1062 | /* Copy in the existing minimal symbols, if there are any. */ | |
1063 | ||
1064 | if (objfile->minimal_symbol_count) | |
c5aa993b JM |
1065 | memcpy ((char *) msymbols, (char *) objfile->msymbols, |
1066 | objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); | |
c906108c SS |
1067 | |
1068 | /* Walk through the list of minimal symbol bunches, adding each symbol | |
c5aa993b JM |
1069 | to the new contiguous array of symbols. Note that we start with the |
1070 | current, possibly partially filled bunch (thus we use the current | |
1071 | msym_bunch_index for the first bunch we copy over), and thereafter | |
1072 | each bunch is full. */ | |
1073 | ||
c906108c | 1074 | mcount = objfile->minimal_symbol_count; |
c5aa993b JM |
1075 | |
1076 | for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next) | |
c906108c SS |
1077 | { |
1078 | for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) | |
66337bb1 | 1079 | msymbols[mcount] = bunch->contents[bindex]; |
c906108c SS |
1080 | msym_bunch_index = BUNCH_SIZE; |
1081 | } | |
1082 | ||
1083 | /* Sort the minimal symbols by address. */ | |
c5aa993b | 1084 | |
c906108c SS |
1085 | qsort (msymbols, mcount, sizeof (struct minimal_symbol), |
1086 | compare_minimal_symbols); | |
c5aa993b | 1087 | |
c906108c | 1088 | /* Compact out any duplicates, and free up whatever space we are |
c5aa993b JM |
1089 | no longer using. */ |
1090 | ||
9227b5eb | 1091 | mcount = compact_minimal_symbols (msymbols, mcount, objfile); |
c906108c | 1092 | |
4a146b47 | 1093 | obstack_blank (&objfile->objfile_obstack, |
c5aa993b | 1094 | (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); |
c906108c | 1095 | msymbols = (struct minimal_symbol *) |
4a146b47 | 1096 | obstack_finish (&objfile->objfile_obstack); |
c906108c SS |
1097 | |
1098 | /* We also terminate the minimal symbol table with a "null symbol", | |
c5aa993b JM |
1099 | which is *not* included in the size of the table. This makes it |
1100 | easier to find the end of the table when we are handed a pointer | |
1101 | to some symbol in the middle of it. Zero out the fields in the | |
1102 | "null symbol" allocated at the end of the array. Note that the | |
1103 | symbol count does *not* include this null symbol, which is why it | |
1104 | is indexed by mcount and not mcount-1. */ | |
c906108c | 1105 | |
f56f77c1 | 1106 | SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL; |
c906108c | 1107 | SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; |
b887350f TT |
1108 | MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0; |
1109 | MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0; | |
f594e5e9 | 1110 | MSYMBOL_SIZE (&msymbols[mcount]) = 0; |
c906108c SS |
1111 | MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; |
1112 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); | |
1113 | ||
1114 | /* Attach the minimal symbol table to the specified objfile. | |
4a146b47 | 1115 | The strings themselves are also located in the objfile_obstack |
c5aa993b | 1116 | of this objfile. */ |
c906108c | 1117 | |
c5aa993b JM |
1118 | objfile->minimal_symbol_count = mcount; |
1119 | objfile->msymbols = msymbols; | |
c906108c | 1120 | |
7ed49443 JB |
1121 | /* Try to guess the appropriate C++ ABI by looking at the names |
1122 | of the minimal symbols in the table. */ | |
1123 | { | |
1124 | int i; | |
1125 | ||
1126 | for (i = 0; i < mcount; i++) | |
1127 | { | |
6aca59a3 DJ |
1128 | /* If a symbol's name starts with _Z and was successfully |
1129 | demangled, then we can assume we've found a GNU v3 symbol. | |
1130 | For now we set the C++ ABI globally; if the user is | |
1131 | mixing ABIs then the user will need to "set cp-abi" | |
1132 | manually. */ | |
f56f77c1 | 1133 | const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]); |
6aca59a3 DJ |
1134 | if (name[0] == '_' && name[1] == 'Z' |
1135 | && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL) | |
7ed49443 | 1136 | { |
fe1f4a5e | 1137 | set_cp_abi_as_auto_default ("gnu-v3"); |
7ed49443 JB |
1138 | break; |
1139 | } | |
1140 | } | |
1141 | } | |
afbb8d7a KB |
1142 | |
1143 | /* Now build the hash tables; we can't do this incrementally | |
1144 | at an earlier point since we weren't finished with the obstack | |
1145 | yet. (And if the msymbol obstack gets moved, all the internal | |
1146 | pointers to other msymbols need to be adjusted.) */ | |
1147 | build_minimal_symbol_hash_tables (objfile); | |
c906108c SS |
1148 | } |
1149 | } | |
1150 | ||
1151 | /* Sort all the minimal symbols in OBJFILE. */ | |
1152 | ||
1153 | void | |
fba45db2 | 1154 | msymbols_sort (struct objfile *objfile) |
c906108c SS |
1155 | { |
1156 | qsort (objfile->msymbols, objfile->minimal_symbol_count, | |
1157 | sizeof (struct minimal_symbol), compare_minimal_symbols); | |
afbb8d7a | 1158 | build_minimal_symbol_hash_tables (objfile); |
c906108c SS |
1159 | } |
1160 | ||
1161 | /* Check if PC is in a shared library trampoline code stub. | |
1162 | Return minimal symbol for the trampoline entry or NULL if PC is not | |
1163 | in a trampoline code stub. */ | |
1164 | ||
1165 | struct minimal_symbol * | |
fba45db2 | 1166 | lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc) |
c906108c | 1167 | { |
2eaf8d2a DJ |
1168 | struct obj_section *section = find_pc_section (pc); |
1169 | struct minimal_symbol *msymbol; | |
1170 | ||
1171 | if (section == NULL) | |
1172 | return NULL; | |
714835d5 | 1173 | msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1); |
c906108c SS |
1174 | |
1175 | if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) | |
1176 | return msymbol; | |
1177 | return NULL; | |
1178 | } | |
1179 | ||
1180 | /* If PC is in a shared library trampoline code stub, return the | |
1181 | address of the `real' function belonging to the stub. | |
1182 | Return 0 if PC is not in a trampoline code stub or if the real | |
1183 | function is not found in the minimal symbol table. | |
1184 | ||
1185 | We may fail to find the right function if a function with the | |
1186 | same name is defined in more than one shared library, but this | |
1187 | is considered bad programming style. We could return 0 if we find | |
1188 | a duplicate function in case this matters someday. */ | |
1189 | ||
1190 | CORE_ADDR | |
52f729a7 | 1191 | find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc) |
c906108c SS |
1192 | { |
1193 | struct objfile *objfile; | |
1194 | struct minimal_symbol *msymbol; | |
1195 | struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc); | |
1196 | ||
1197 | if (tsymbol != NULL) | |
1198 | { | |
1199 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
1200 | { |
1201 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
6314a349 AC |
1202 | && strcmp (SYMBOL_LINKAGE_NAME (msymbol), |
1203 | SYMBOL_LINKAGE_NAME (tsymbol)) == 0) | |
c5aa993b | 1204 | return SYMBOL_VALUE_ADDRESS (msymbol); |
42848c96 UW |
1205 | |
1206 | /* Also handle minimal symbols pointing to function descriptors. */ | |
1207 | if (MSYMBOL_TYPE (msymbol) == mst_data | |
1208 | && strcmp (SYMBOL_LINKAGE_NAME (msymbol), | |
1209 | SYMBOL_LINKAGE_NAME (tsymbol)) == 0) | |
1210 | { | |
1211 | CORE_ADDR func; | |
1212 | func = gdbarch_convert_from_func_ptr_addr | |
1213 | (get_objfile_arch (objfile), | |
1214 | SYMBOL_VALUE_ADDRESS (msymbol), | |
1215 | ¤t_target); | |
1216 | ||
1217 | /* Ignore data symbols that are not function descriptors. */ | |
1218 | if (func != SYMBOL_VALUE_ADDRESS (msymbol)) | |
1219 | return func; | |
1220 | } | |
c5aa993b | 1221 | } |
c906108c SS |
1222 | } |
1223 | return 0; | |
1224 | } |