]>
Commit | Line | Data |
---|---|---|
244ffee7 | 1 | /* ELF executable support for BFD. |
51fbf454 | 2 | Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. |
244ffee7 JK |
3 | |
4 | Written by Fred Fish @ Cygnus Support, from information published | |
5 | in "UNIX System V Release 4, Programmers Guide: ANSI C and | |
6 | Programming Support Tools". Sufficient support for gdb. | |
7 | ||
8 | Rewritten by Mark Eichin @ Cygnus Support, from information | |
9 | published in "System V Application Binary Interface", chapters 4 | |
10 | and 5, as well as the various "Processor Supplement" documents | |
11 | derived from it. Added support for assembler and other object file | |
12 | utilities. Further work done by Ken Raeburn (Cygnus Support), Michael | |
13 | Meissner (Open Software Foundation), and Peter Hoogenboom (University | |
14 | of Utah) to finish and extend this. | |
15 | ||
16 | This file is part of BFD, the Binary File Descriptor library. | |
17 | ||
18 | This program is free software; you can redistribute it and/or modify | |
19 | it under the terms of the GNU General Public License as published by | |
20 | the Free Software Foundation; either version 2 of the License, or | |
21 | (at your option) any later version. | |
22 | ||
23 | This program is distributed in the hope that it will be useful, | |
24 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
25 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
26 | GNU General Public License for more details. | |
27 | ||
28 | You should have received a copy of the GNU General Public License | |
29 | along with this program; if not, write to the Free Software | |
30 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
31 | ||
244ffee7 JK |
32 | /* Problems and other issues to resolve. |
33 | ||
34 | (1) BFD expects there to be some fixed number of "sections" in | |
35 | the object file. I.E. there is a "section_count" variable in the | |
36 | bfd structure which contains the number of sections. However, ELF | |
37 | supports multiple "views" of a file. In particular, with current | |
38 | implementations, executable files typically have two tables, a | |
39 | program header table and a section header table, both of which | |
40 | partition the executable. | |
41 | ||
42 | In ELF-speak, the "linking view" of the file uses the section header | |
43 | table to access "sections" within the file, and the "execution view" | |
44 | uses the program header table to access "segments" within the file. | |
45 | "Segments" typically may contain all the data from one or more | |
46 | "sections". | |
47 | ||
48 | Note that the section header table is optional in ELF executables, | |
49 | but it is this information that is most useful to gdb. If the | |
50 | section header table is missing, then gdb should probably try | |
51 | to make do with the program header table. (FIXME) | |
52 | ||
6a3eb9b6 KR |
53 | (2) The code in this file is compiled twice, once in 32-bit mode and |
54 | once in 64-bit mode. More of it should be made size-independent | |
55 | and moved into elf.c. | |
56 | ||
d24928c0 KR |
57 | (3) ELF section symbols are handled rather sloppily now. This should |
58 | be cleaned up, and ELF section symbols reconciled with BFD section | |
59 | symbols. | |
5546cc7e KR |
60 | |
61 | (4) We need a published spec for 64-bit ELF. We've got some stuff here | |
62 | that we're using for SPARC V9 64-bit chips, but don't assume that | |
63 | it's cast in stone. | |
d24928c0 | 64 | */ |
244ffee7 JK |
65 | |
66 | #include <string.h> /* For strrchr and friends */ | |
67 | #include "bfd.h" | |
68 | #include "sysdep.h" | |
6ec3bb6a | 69 | #include "bfdlink.h" |
244ffee7 JK |
70 | #include "libbfd.h" |
71 | #include "libelf.h" | |
72 | ||
32090b8e | 73 | /* Renaming structures, typedefs, macros and functions to be size-specific. */ |
244ffee7 | 74 | #define Elf_External_Ehdr NAME(Elf,External_Ehdr) |
244ffee7 | 75 | #define Elf_External_Sym NAME(Elf,External_Sym) |
244ffee7 | 76 | #define Elf_External_Shdr NAME(Elf,External_Shdr) |
244ffee7 | 77 | #define Elf_External_Phdr NAME(Elf,External_Phdr) |
244ffee7 JK |
78 | #define Elf_External_Rel NAME(Elf,External_Rel) |
79 | #define Elf_External_Rela NAME(Elf,External_Rela) | |
013dec1a | 80 | #define Elf_External_Dyn NAME(Elf,External_Dyn) |
244ffee7 | 81 | |
244ffee7 JK |
82 | #define elf_core_file_failing_command NAME(bfd_elf,core_file_failing_command) |
83 | #define elf_core_file_failing_signal NAME(bfd_elf,core_file_failing_signal) | |
cb71adf1 PS |
84 | #define elf_core_file_matches_executable_p \ |
85 | NAME(bfd_elf,core_file_matches_executable_p) | |
244ffee7 JK |
86 | #define elf_object_p NAME(bfd_elf,object_p) |
87 | #define elf_core_file_p NAME(bfd_elf,core_file_p) | |
244ffee7 | 88 | #define elf_get_symtab_upper_bound NAME(bfd_elf,get_symtab_upper_bound) |
cb71adf1 PS |
89 | #define elf_get_dynamic_symtab_upper_bound \ |
90 | NAME(bfd_elf,get_dynamic_symtab_upper_bound) | |
013dec1a ILT |
91 | #define elf_swap_reloc_in NAME(bfd_elf,swap_reloc_in) |
92 | #define elf_swap_reloca_in NAME(bfd_elf,swap_reloca_in) | |
93 | #define elf_swap_reloc_out NAME(bfd_elf,swap_reloc_out) | |
94 | #define elf_swap_reloca_out NAME(bfd_elf,swap_reloca_out) | |
71edd06d ILT |
95 | #define elf_swap_symbol_in NAME(bfd_elf,swap_symbol_in) |
96 | #define elf_swap_symbol_out NAME(bfd_elf,swap_symbol_out) | |
013dec1a ILT |
97 | #define elf_swap_dyn_in NAME(bfd_elf,swap_dyn_in) |
98 | #define elf_swap_dyn_out NAME(bfd_elf,swap_dyn_out) | |
244ffee7 JK |
99 | #define elf_get_reloc_upper_bound NAME(bfd_elf,get_reloc_upper_bound) |
100 | #define elf_canonicalize_reloc NAME(bfd_elf,canonicalize_reloc) | |
101 | #define elf_get_symtab NAME(bfd_elf,get_symtab) | |
cb71adf1 PS |
102 | #define elf_canonicalize_dynamic_symtab \ |
103 | NAME(bfd_elf,canonicalize_dynamic_symtab) | |
244ffee7 JK |
104 | #define elf_make_empty_symbol NAME(bfd_elf,make_empty_symbol) |
105 | #define elf_get_symbol_info NAME(bfd_elf,get_symbol_info) | |
244ffee7 JK |
106 | #define elf_get_lineno NAME(bfd_elf,get_lineno) |
107 | #define elf_set_arch_mach NAME(bfd_elf,set_arch_mach) | |
108 | #define elf_find_nearest_line NAME(bfd_elf,find_nearest_line) | |
109 | #define elf_sizeof_headers NAME(bfd_elf,sizeof_headers) | |
110 | #define elf_set_section_contents NAME(bfd_elf,set_section_contents) | |
111 | #define elf_no_info_to_howto NAME(bfd_elf,no_info_to_howto) | |
112 | #define elf_no_info_to_howto_rel NAME(bfd_elf,no_info_to_howto_rel) | |
fce36137 | 113 | #define elf_new_section_hook NAME(bfd_elf,new_section_hook) |
f035cc47 | 114 | #define elf_find_section NAME(bfd_elf,find_section) |
6ec3bb6a | 115 | #define elf_bfd_link_add_symbols NAME(bfd_elf,bfd_link_add_symbols) |
013dec1a | 116 | #define elf_add_dynamic_entry NAME(bfd_elf,add_dynamic_entry) |
374d2ef9 ILT |
117 | #define elf_link_create_dynamic_sections \ |
118 | NAME(bfd_elf,link_create_dynamic_sections) | |
119 | #define elf_link_record_dynamic_symbol \ | |
120 | NAME(bfd_elf,link_record_dynamic_symbol) | |
6ec3bb6a | 121 | #define elf_bfd_final_link NAME(bfd_elf,bfd_final_link) |
244ffee7 | 122 | |
6a3eb9b6 KR |
123 | #if ARCH_SIZE == 64 |
124 | #define ELF_R_INFO(X,Y) ELF64_R_INFO(X,Y) | |
125 | #define ELF_R_SYM(X) ELF64_R_SYM(X) | |
6ec3bb6a | 126 | #define ELF_R_TYPE(X) ELF64_R_TYPE(X) |
32090b8e | 127 | #define ELFCLASS ELFCLASS64 |
f035cc47 | 128 | #define FILE_ALIGN 8 |
013dec1a | 129 | #define LOG_FILE_ALIGN 3 |
6a3eb9b6 KR |
130 | #endif |
131 | #if ARCH_SIZE == 32 | |
132 | #define ELF_R_INFO(X,Y) ELF32_R_INFO(X,Y) | |
133 | #define ELF_R_SYM(X) ELF32_R_SYM(X) | |
6ec3bb6a | 134 | #define ELF_R_TYPE(X) ELF32_R_TYPE(X) |
32090b8e | 135 | #define ELFCLASS ELFCLASS32 |
f035cc47 | 136 | #define FILE_ALIGN 4 |
013dec1a | 137 | #define LOG_FILE_ALIGN 2 |
244ffee7 JK |
138 | #endif |
139 | ||
244ffee7 JK |
140 | /* Forward declarations of static functions */ |
141 | ||
eb4267a3 | 142 | static struct bfd_strtab_hash *elf_stringtab_init PARAMS ((void)); |
2e03ce18 | 143 | static asection *section_from_elf_index PARAMS ((bfd *, unsigned int)); |
244ffee7 JK |
144 | |
145 | static int elf_section_from_bfd_section PARAMS ((bfd *, struct sec *)); | |
146 | ||
cb71adf1 | 147 | static long elf_slurp_symbol_table PARAMS ((bfd *, asymbol **, boolean)); |
244ffee7 | 148 | |
ea617174 ILT |
149 | static boolean elf_slurp_reloc_table PARAMS ((bfd *, asection *, asymbol **)); |
150 | ||
244ffee7 | 151 | static int elf_symbol_from_bfd_symbol PARAMS ((bfd *, |
1c6042ee | 152 | struct symbol_cache_entry **)); |
244ffee7 | 153 | |
6ec3bb6a ILT |
154 | static boolean elf_compute_section_file_positions |
155 | PARAMS ((bfd *, struct bfd_link_info *)); | |
156 | static boolean prep_headers PARAMS ((bfd *)); | |
0ef449df | 157 | static void write_relocs PARAMS ((bfd *, asection *, PTR)); |
fa15568a | 158 | static void elf_fake_sections PARAMS ((bfd *, asection *, PTR)); |
6ec3bb6a | 159 | static boolean assign_section_numbers PARAMS ((bfd *)); |
013dec1a ILT |
160 | static file_ptr align_file_position PARAMS ((file_ptr)); |
161 | static file_ptr assign_file_position_for_section | |
162 | PARAMS ((Elf_Internal_Shdr *, file_ptr, boolean)); | |
6ec3bb6a | 163 | static boolean assign_file_positions_except_relocs PARAMS ((bfd *, boolean)); |
11bb5591 | 164 | static int elf_sort_hdrs PARAMS ((const PTR, const PTR)); |
013dec1a | 165 | static void assign_file_positions_for_relocs PARAMS ((bfd *)); |
6c97aedf ILT |
166 | static bfd_size_type get_program_header_size PARAMS ((bfd *, |
167 | Elf_Internal_Shdr **, | |
168 | unsigned int, | |
169 | bfd_vma)); | |
013dec1a | 170 | static file_ptr map_program_segments |
5945db29 ILT |
171 | PARAMS ((bfd *, file_ptr, Elf_Internal_Shdr *, Elf_Internal_Shdr **, |
172 | bfd_size_type)); | |
6ec3bb6a | 173 | |
9783e04a | 174 | static boolean elf_map_symbols PARAMS ((bfd *)); |
eb4267a3 | 175 | static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **)); |
244ffee7 | 176 | |
2e03ce18 ILT |
177 | static boolean bfd_section_from_shdr PARAMS ((bfd *, unsigned int shindex)); |
178 | ||
6a3eb9b6 | 179 | #ifdef DEBUG |
eb4267a3 | 180 | static void elf_debug_section PARAMS ((int, Elf_Internal_Shdr *)); |
6a3eb9b6 | 181 | static void elf_debug_file PARAMS ((Elf_Internal_Ehdr *)); |
0ef449df | 182 | static char *elf_symbol_flags PARAMS ((flagword)); |
6a3eb9b6 | 183 | #endif |
238ac6ec | 184 | |
32090b8e KR |
185 | #define elf_string_from_elf_strtab(abfd,strindex) \ |
186 | elf_string_from_elf_section(abfd,elf_elfheader(abfd)->e_shstrndx,strindex) | |
32090b8e KR |
187 | \f |
188 | /* Structure swapping routines */ | |
189 | ||
6a3eb9b6 KR |
190 | /* Should perhaps use put_offset, put_word, etc. For now, the two versions |
191 | can be handled by explicitly specifying 32 bits or "the long type". */ | |
238ac6ec KR |
192 | #if ARCH_SIZE == 64 |
193 | #define put_word bfd_h_put_64 | |
194 | #define get_word bfd_h_get_64 | |
195 | #endif | |
196 | #if ARCH_SIZE == 32 | |
197 | #define put_word bfd_h_put_32 | |
198 | #define get_word bfd_h_get_32 | |
199 | #endif | |
200 | ||
244ffee7 JK |
201 | /* Translate an ELF symbol in external format into an ELF symbol in internal |
202 | format. */ | |
203 | ||
71edd06d | 204 | void |
1c6042ee ILT |
205 | elf_swap_symbol_in (abfd, src, dst) |
206 | bfd *abfd; | |
207 | Elf_External_Sym *src; | |
208 | Elf_Internal_Sym *dst; | |
244ffee7 JK |
209 | { |
210 | dst->st_name = bfd_h_get_32 (abfd, (bfd_byte *) src->st_name); | |
238ac6ec KR |
211 | dst->st_value = get_word (abfd, (bfd_byte *) src->st_value); |
212 | dst->st_size = get_word (abfd, (bfd_byte *) src->st_size); | |
244ffee7 JK |
213 | dst->st_info = bfd_h_get_8 (abfd, (bfd_byte *) src->st_info); |
214 | dst->st_other = bfd_h_get_8 (abfd, (bfd_byte *) src->st_other); | |
215 | dst->st_shndx = bfd_h_get_16 (abfd, (bfd_byte *) src->st_shndx); | |
216 | } | |
217 | ||
218 | /* Translate an ELF symbol in internal format into an ELF symbol in external | |
219 | format. */ | |
220 | ||
71edd06d | 221 | void |
1c6042ee ILT |
222 | elf_swap_symbol_out (abfd, src, dst) |
223 | bfd *abfd; | |
224 | Elf_Internal_Sym *src; | |
225 | Elf_External_Sym *dst; | |
244ffee7 JK |
226 | { |
227 | bfd_h_put_32 (abfd, src->st_name, dst->st_name); | |
238ac6ec KR |
228 | put_word (abfd, src->st_value, dst->st_value); |
229 | put_word (abfd, src->st_size, dst->st_size); | |
244ffee7 JK |
230 | bfd_h_put_8 (abfd, src->st_info, dst->st_info); |
231 | bfd_h_put_8 (abfd, src->st_other, dst->st_other); | |
232 | bfd_h_put_16 (abfd, src->st_shndx, dst->st_shndx); | |
233 | } | |
234 | ||
235 | ||
236 | /* Translate an ELF file header in external format into an ELF file header in | |
237 | internal format. */ | |
238 | ||
239 | static void | |
1c6042ee ILT |
240 | elf_swap_ehdr_in (abfd, src, dst) |
241 | bfd *abfd; | |
242 | Elf_External_Ehdr *src; | |
243 | Elf_Internal_Ehdr *dst; | |
244ffee7 JK |
244 | { |
245 | memcpy (dst->e_ident, src->e_ident, EI_NIDENT); | |
246 | dst->e_type = bfd_h_get_16 (abfd, (bfd_byte *) src->e_type); | |
247 | dst->e_machine = bfd_h_get_16 (abfd, (bfd_byte *) src->e_machine); | |
248 | dst->e_version = bfd_h_get_32 (abfd, (bfd_byte *) src->e_version); | |
238ac6ec KR |
249 | dst->e_entry = get_word (abfd, (bfd_byte *) src->e_entry); |
250 | dst->e_phoff = get_word (abfd, (bfd_byte *) src->e_phoff); | |
251 | dst->e_shoff = get_word (abfd, (bfd_byte *) src->e_shoff); | |
244ffee7 JK |
252 | dst->e_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->e_flags); |
253 | dst->e_ehsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_ehsize); | |
254 | dst->e_phentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phentsize); | |
255 | dst->e_phnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phnum); | |
256 | dst->e_shentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shentsize); | |
257 | dst->e_shnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shnum); | |
258 | dst->e_shstrndx = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shstrndx); | |
259 | } | |
260 | ||
261 | /* Translate an ELF file header in internal format into an ELF file header in | |
262 | external format. */ | |
263 | ||
264 | static void | |
1c6042ee ILT |
265 | elf_swap_ehdr_out (abfd, src, dst) |
266 | bfd *abfd; | |
267 | Elf_Internal_Ehdr *src; | |
268 | Elf_External_Ehdr *dst; | |
244ffee7 JK |
269 | { |
270 | memcpy (dst->e_ident, src->e_ident, EI_NIDENT); | |
271 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
272 | bfd_h_put_16 (abfd, src->e_type, dst->e_type); | |
273 | bfd_h_put_16 (abfd, src->e_machine, dst->e_machine); | |
274 | bfd_h_put_32 (abfd, src->e_version, dst->e_version); | |
238ac6ec KR |
275 | put_word (abfd, src->e_entry, dst->e_entry); |
276 | put_word (abfd, src->e_phoff, dst->e_phoff); | |
277 | put_word (abfd, src->e_shoff, dst->e_shoff); | |
244ffee7 JK |
278 | bfd_h_put_32 (abfd, src->e_flags, dst->e_flags); |
279 | bfd_h_put_16 (abfd, src->e_ehsize, dst->e_ehsize); | |
280 | bfd_h_put_16 (abfd, src->e_phentsize, dst->e_phentsize); | |
281 | bfd_h_put_16 (abfd, src->e_phnum, dst->e_phnum); | |
282 | bfd_h_put_16 (abfd, src->e_shentsize, dst->e_shentsize); | |
283 | bfd_h_put_16 (abfd, src->e_shnum, dst->e_shnum); | |
284 | bfd_h_put_16 (abfd, src->e_shstrndx, dst->e_shstrndx); | |
285 | } | |
286 | ||
287 | ||
288 | /* Translate an ELF section header table entry in external format into an | |
289 | ELF section header table entry in internal format. */ | |
290 | ||
291 | static void | |
1c6042ee ILT |
292 | elf_swap_shdr_in (abfd, src, dst) |
293 | bfd *abfd; | |
294 | Elf_External_Shdr *src; | |
295 | Elf_Internal_Shdr *dst; | |
244ffee7 JK |
296 | { |
297 | dst->sh_name = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_name); | |
298 | dst->sh_type = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_type); | |
238ac6ec KR |
299 | dst->sh_flags = get_word (abfd, (bfd_byte *) src->sh_flags); |
300 | dst->sh_addr = get_word (abfd, (bfd_byte *) src->sh_addr); | |
301 | dst->sh_offset = get_word (abfd, (bfd_byte *) src->sh_offset); | |
302 | dst->sh_size = get_word (abfd, (bfd_byte *) src->sh_size); | |
244ffee7 JK |
303 | dst->sh_link = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_link); |
304 | dst->sh_info = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_info); | |
238ac6ec KR |
305 | dst->sh_addralign = get_word (abfd, (bfd_byte *) src->sh_addralign); |
306 | dst->sh_entsize = get_word (abfd, (bfd_byte *) src->sh_entsize); | |
24f13b03 ILT |
307 | dst->bfd_section = NULL; |
308 | dst->contents = NULL; | |
244ffee7 JK |
309 | } |
310 | ||
311 | /* Translate an ELF section header table entry in internal format into an | |
312 | ELF section header table entry in external format. */ | |
313 | ||
314 | static void | |
1c6042ee ILT |
315 | elf_swap_shdr_out (abfd, src, dst) |
316 | bfd *abfd; | |
317 | Elf_Internal_Shdr *src; | |
318 | Elf_External_Shdr *dst; | |
244ffee7 JK |
319 | { |
320 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
321 | bfd_h_put_32 (abfd, src->sh_name, dst->sh_name); | |
322 | bfd_h_put_32 (abfd, src->sh_type, dst->sh_type); | |
238ac6ec KR |
323 | put_word (abfd, src->sh_flags, dst->sh_flags); |
324 | put_word (abfd, src->sh_addr, dst->sh_addr); | |
325 | put_word (abfd, src->sh_offset, dst->sh_offset); | |
326 | put_word (abfd, src->sh_size, dst->sh_size); | |
244ffee7 JK |
327 | bfd_h_put_32 (abfd, src->sh_link, dst->sh_link); |
328 | bfd_h_put_32 (abfd, src->sh_info, dst->sh_info); | |
238ac6ec KR |
329 | put_word (abfd, src->sh_addralign, dst->sh_addralign); |
330 | put_word (abfd, src->sh_entsize, dst->sh_entsize); | |
244ffee7 JK |
331 | } |
332 | ||
333 | ||
334 | /* Translate an ELF program header table entry in external format into an | |
335 | ELF program header table entry in internal format. */ | |
336 | ||
337 | static void | |
1c6042ee ILT |
338 | elf_swap_phdr_in (abfd, src, dst) |
339 | bfd *abfd; | |
340 | Elf_External_Phdr *src; | |
341 | Elf_Internal_Phdr *dst; | |
244ffee7 JK |
342 | { |
343 | dst->p_type = bfd_h_get_32 (abfd, (bfd_byte *) src->p_type); | |
244ffee7 | 344 | dst->p_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->p_flags); |
238ac6ec KR |
345 | dst->p_offset = get_word (abfd, (bfd_byte *) src->p_offset); |
346 | dst->p_vaddr = get_word (abfd, (bfd_byte *) src->p_vaddr); | |
347 | dst->p_paddr = get_word (abfd, (bfd_byte *) src->p_paddr); | |
348 | dst->p_filesz = get_word (abfd, (bfd_byte *) src->p_filesz); | |
349 | dst->p_memsz = get_word (abfd, (bfd_byte *) src->p_memsz); | |
350 | dst->p_align = get_word (abfd, (bfd_byte *) src->p_align); | |
244ffee7 JK |
351 | } |
352 | ||
244ffee7 | 353 | static void |
1c6042ee ILT |
354 | elf_swap_phdr_out (abfd, src, dst) |
355 | bfd *abfd; | |
356 | Elf_Internal_Phdr *src; | |
357 | Elf_External_Phdr *dst; | |
244ffee7 JK |
358 | { |
359 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
360 | bfd_h_put_32 (abfd, src->p_type, dst->p_type); | |
94dbb655 KR |
361 | put_word (abfd, src->p_offset, dst->p_offset); |
362 | put_word (abfd, src->p_vaddr, dst->p_vaddr); | |
363 | put_word (abfd, src->p_paddr, dst->p_paddr); | |
364 | put_word (abfd, src->p_filesz, dst->p_filesz); | |
365 | put_word (abfd, src->p_memsz, dst->p_memsz); | |
244ffee7 | 366 | bfd_h_put_32 (abfd, src->p_flags, dst->p_flags); |
94dbb655 | 367 | put_word (abfd, src->p_align, dst->p_align); |
244ffee7 JK |
368 | } |
369 | ||
370 | /* Translate an ELF reloc from external format to internal format. */ | |
013dec1a | 371 | INLINE void |
1c6042ee ILT |
372 | elf_swap_reloc_in (abfd, src, dst) |
373 | bfd *abfd; | |
374 | Elf_External_Rel *src; | |
375 | Elf_Internal_Rel *dst; | |
244ffee7 | 376 | { |
94dbb655 KR |
377 | dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset); |
378 | dst->r_info = get_word (abfd, (bfd_byte *) src->r_info); | |
244ffee7 JK |
379 | } |
380 | ||
013dec1a | 381 | INLINE void |
1c6042ee ILT |
382 | elf_swap_reloca_in (abfd, src, dst) |
383 | bfd *abfd; | |
384 | Elf_External_Rela *src; | |
385 | Elf_Internal_Rela *dst; | |
244ffee7 | 386 | { |
94dbb655 KR |
387 | dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset); |
388 | dst->r_info = get_word (abfd, (bfd_byte *) src->r_info); | |
389 | dst->r_addend = get_word (abfd, (bfd_byte *) src->r_addend); | |
244ffee7 JK |
390 | } |
391 | ||
392 | /* Translate an ELF reloc from internal format to external format. */ | |
013dec1a | 393 | INLINE void |
1c6042ee ILT |
394 | elf_swap_reloc_out (abfd, src, dst) |
395 | bfd *abfd; | |
396 | Elf_Internal_Rel *src; | |
397 | Elf_External_Rel *dst; | |
244ffee7 | 398 | { |
94dbb655 KR |
399 | put_word (abfd, src->r_offset, dst->r_offset); |
400 | put_word (abfd, src->r_info, dst->r_info); | |
244ffee7 JK |
401 | } |
402 | ||
013dec1a | 403 | INLINE void |
1c6042ee ILT |
404 | elf_swap_reloca_out (abfd, src, dst) |
405 | bfd *abfd; | |
406 | Elf_Internal_Rela *src; | |
407 | Elf_External_Rela *dst; | |
244ffee7 | 408 | { |
94dbb655 KR |
409 | put_word (abfd, src->r_offset, dst->r_offset); |
410 | put_word (abfd, src->r_info, dst->r_info); | |
411 | put_word (abfd, src->r_addend, dst->r_addend); | |
244ffee7 | 412 | } |
32090b8e | 413 | |
013dec1a ILT |
414 | INLINE void |
415 | elf_swap_dyn_in (abfd, src, dst) | |
416 | bfd *abfd; | |
417 | const Elf_External_Dyn *src; | |
418 | Elf_Internal_Dyn *dst; | |
419 | { | |
420 | dst->d_tag = get_word (abfd, src->d_tag); | |
421 | dst->d_un.d_val = get_word (abfd, src->d_un.d_val); | |
422 | } | |
1c6042ee | 423 | |
013dec1a ILT |
424 | INLINE void |
425 | elf_swap_dyn_out (abfd, src, dst) | |
426 | bfd *abfd; | |
427 | const Elf_Internal_Dyn *src; | |
428 | Elf_External_Dyn *dst; | |
429 | { | |
430 | put_word (abfd, src->d_tag, dst->d_tag); | |
431 | put_word (abfd, src->d_un.d_val, dst->d_un.d_val); | |
432 | } | |
433 | \f | |
eb4267a3 | 434 | /* Allocate an ELF string table--force the first byte to be zero. */ |
32090b8e | 435 | |
eb4267a3 ILT |
436 | static struct bfd_strtab_hash * |
437 | elf_stringtab_init () | |
32090b8e | 438 | { |
eb4267a3 | 439 | struct bfd_strtab_hash *ret; |
32090b8e | 440 | |
eb4267a3 ILT |
441 | ret = _bfd_stringtab_init (); |
442 | if (ret != NULL) | |
b9d5cdf0 | 443 | { |
eb4267a3 | 444 | bfd_size_type loc; |
244ffee7 | 445 | |
eb4267a3 ILT |
446 | loc = _bfd_stringtab_add (ret, "", true, false); |
447 | BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); | |
448 | if (loc == (bfd_size_type) -1) | |
449 | { | |
450 | _bfd_stringtab_free (ret); | |
451 | ret = NULL; | |
452 | } | |
6ec3bb6a | 453 | } |
eb4267a3 | 454 | return ret; |
244ffee7 | 455 | } |
32090b8e KR |
456 | \f |
457 | /* ELF .o/exec file reading */ | |
458 | ||
459 | /* Create a new bfd section from an ELF section header. */ | |
460 | ||
244ffee7 | 461 | static boolean |
1c6042ee ILT |
462 | bfd_section_from_shdr (abfd, shindex) |
463 | bfd *abfd; | |
464 | unsigned int shindex; | |
244ffee7 | 465 | { |
32090b8e KR |
466 | Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex]; |
467 | Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); | |
244ffee7 JK |
468 | char *name; |
469 | ||
470 | name = elf_string_from_elf_strtab (abfd, hdr->sh_name); | |
471 | ||
472 | switch (hdr->sh_type) | |
473 | { | |
244ffee7 | 474 | case SHT_NULL: |
497c5434 | 475 | /* Inactive section. Throw it away. */ |
244ffee7 JK |
476 | return true; |
477 | ||
497c5434 ILT |
478 | case SHT_PROGBITS: /* Normal section with contents. */ |
479 | case SHT_DYNAMIC: /* Dynamic linking information. */ | |
480 | case SHT_NOBITS: /* .bss section. */ | |
fa15568a | 481 | case SHT_HASH: /* .hash section. */ |
497c5434 | 482 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
244ffee7 JK |
483 | |
484 | case SHT_SYMTAB: /* A symbol table */ | |
32090b8e KR |
485 | if (elf_onesymtab (abfd) == shindex) |
486 | return true; | |
487 | ||
244ffee7 | 488 | BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym)); |
32090b8e | 489 | BFD_ASSERT (elf_onesymtab (abfd) == 0); |
244ffee7 | 490 | elf_onesymtab (abfd) = shindex; |
1c6042ee ILT |
491 | elf_tdata (abfd)->symtab_hdr = *hdr; |
492 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_hdr; | |
244ffee7 | 493 | abfd->flags |= HAS_SYMS; |
823609fe ILT |
494 | |
495 | /* Sometimes a shared object will map in the symbol table. If | |
496 | SHF_ALLOC is set, and this is a shared object, then we also | |
497 | treat this section as a BFD section. We can not base the | |
498 | decision purely on SHF_ALLOC, because that flag is sometimes | |
499 | set in a relocateable object file, which would confuse the | |
500 | linker. */ | |
501 | if ((hdr->sh_flags & SHF_ALLOC) != 0 | |
502 | && (abfd->flags & DYNAMIC) != 0 | |
503 | && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
504 | return false; | |
505 | ||
244ffee7 JK |
506 | return true; |
507 | ||
cb71adf1 PS |
508 | case SHT_DYNSYM: /* A dynamic symbol table */ |
509 | if (elf_dynsymtab (abfd) == shindex) | |
510 | return true; | |
511 | ||
512 | BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym)); | |
513 | BFD_ASSERT (elf_dynsymtab (abfd) == 0); | |
514 | elf_dynsymtab (abfd) = shindex; | |
515 | elf_tdata (abfd)->dynsymtab_hdr = *hdr; | |
516 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->dynsymtab_hdr; | |
517 | abfd->flags |= HAS_SYMS; | |
fa15568a ILT |
518 | |
519 | /* Besides being a symbol table, we also treat this as a regular | |
520 | section, so that objcopy can handle it. */ | |
521 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); | |
cb71adf1 | 522 | |
244ffee7 | 523 | case SHT_STRTAB: /* A string table */ |
24f13b03 | 524 | if (hdr->bfd_section != NULL) |
fce36137 | 525 | return true; |
32090b8e KR |
526 | if (ehdr->e_shstrndx == shindex) |
527 | { | |
1c6042ee ILT |
528 | elf_tdata (abfd)->shstrtab_hdr = *hdr; |
529 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; | |
32090b8e KR |
530 | return true; |
531 | } | |
532 | { | |
68241b2b | 533 | unsigned int i; |
fce36137 | 534 | |
32090b8e KR |
535 | for (i = 1; i < ehdr->e_shnum; i++) |
536 | { | |
1c6042ee | 537 | Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
32090b8e KR |
538 | if (hdr2->sh_link == shindex) |
539 | { | |
2e03ce18 ILT |
540 | if (! bfd_section_from_shdr (abfd, i)) |
541 | return false; | |
32090b8e KR |
542 | if (elf_onesymtab (abfd) == i) |
543 | { | |
1c6042ee | 544 | elf_tdata (abfd)->strtab_hdr = *hdr; |
fa15568a ILT |
545 | elf_elfsections (abfd)[shindex] = |
546 | &elf_tdata (abfd)->strtab_hdr; | |
32090b8e KR |
547 | return true; |
548 | } | |
cb71adf1 PS |
549 | if (elf_dynsymtab (abfd) == i) |
550 | { | |
551 | elf_tdata (abfd)->dynstrtab_hdr = *hdr; | |
fa15568a ILT |
552 | elf_elfsections (abfd)[shindex] = |
553 | &elf_tdata (abfd)->dynstrtab_hdr; | |
554 | /* We also treat this as a regular section, so | |
555 | that objcopy can handle it. */ | |
556 | break; | |
cb71adf1 | 557 | } |
2e03ce18 | 558 | #if 0 /* Not handling other string tables specially right now. */ |
1c6042ee | 559 | hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */ |
32090b8e | 560 | /* We have a strtab for some random other section. */ |
24f13b03 | 561 | newsect = (asection *) hdr2->bfd_section; |
32090b8e KR |
562 | if (!newsect) |
563 | break; | |
24f13b03 | 564 | hdr->bfd_section = newsect; |
32090b8e KR |
565 | hdr2 = &elf_section_data (newsect)->str_hdr; |
566 | *hdr2 = *hdr; | |
1c6042ee | 567 | elf_elfsections (abfd)[shindex] = hdr2; |
32090b8e KR |
568 | #endif |
569 | } | |
570 | } | |
571 | } | |
572 | ||
497c5434 | 573 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
244ffee7 JK |
574 | |
575 | case SHT_REL: | |
576 | case SHT_RELA: | |
497c5434 | 577 | /* *These* do a lot of work -- but build no sections! */ |
244ffee7 JK |
578 | { |
579 | asection *target_sect; | |
32090b8e | 580 | Elf_Internal_Shdr *hdr2; |
244ffee7 JK |
581 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; |
582 | ||
497c5434 ILT |
583 | /* Get the symbol table. */ |
584 | if (! bfd_section_from_shdr (abfd, hdr->sh_link)) | |
585 | return false; | |
586 | ||
e6667b2b ILT |
587 | /* If this reloc section does not use the main symbol table we |
588 | don't treat it as a reloc section. BFD can't adequately | |
589 | represent such a section, so at least for now, we don't | |
590 | try. We just present it as a normal section. */ | |
591 | if (hdr->sh_link != elf_onesymtab (abfd)) | |
497c5434 ILT |
592 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
593 | ||
244ffee7 JK |
594 | /* Don't allow REL relocations on a machine that uses RELA and |
595 | vice versa. */ | |
596 | /* @@ Actually, the generic ABI does suggest that both might be | |
597 | used in one file. But the four ABI Processor Supplements I | |
598 | have access to right now all specify that only one is used on | |
599 | each of those architectures. It's conceivable that, e.g., a | |
600 | bunch of absolute 32-bit relocs might be more compact in REL | |
601 | form even on a RELA machine... */ | |
497c5434 ILT |
602 | BFD_ASSERT (use_rela_p |
603 | ? (hdr->sh_type == SHT_RELA | |
604 | && hdr->sh_entsize == sizeof (Elf_External_Rela)) | |
605 | : (hdr->sh_type == SHT_REL | |
606 | && hdr->sh_entsize == sizeof (Elf_External_Rel))); | |
607 | ||
608 | if (! bfd_section_from_shdr (abfd, hdr->sh_info)) | |
2e03ce18 | 609 | return false; |
244ffee7 | 610 | target_sect = section_from_elf_index (abfd, hdr->sh_info); |
24f13b03 | 611 | if (target_sect == NULL) |
244ffee7 JK |
612 | return false; |
613 | ||
32090b8e KR |
614 | hdr2 = &elf_section_data (target_sect)->rel_hdr; |
615 | *hdr2 = *hdr; | |
1c6042ee | 616 | elf_elfsections (abfd)[shindex] = hdr2; |
244ffee7 JK |
617 | target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize; |
618 | target_sect->flags |= SEC_RELOC; | |
497c5434 | 619 | target_sect->relocation = NULL; |
244ffee7 | 620 | target_sect->rel_filepos = hdr->sh_offset; |
32090b8e | 621 | abfd->flags |= HAS_RELOC; |
244ffee7 JK |
622 | return true; |
623 | } | |
624 | break; | |
625 | ||
244ffee7 JK |
626 | case SHT_NOTE: |
627 | #if 0 | |
628 | fprintf (stderr, "Note Sections not yet supported.\n"); | |
629 | BFD_FAIL (); | |
630 | #endif | |
631 | break; | |
632 | ||
633 | case SHT_SHLIB: | |
634 | #if 0 | |
635 | fprintf (stderr, "SHLIB Sections not supported (and non conforming.)\n"); | |
636 | #endif | |
637 | return true; | |
638 | ||
639 | default: | |
e621c5cc ILT |
640 | /* Check for any processor-specific section types. */ |
641 | { | |
642 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
643 | ||
644 | if (bed->elf_backend_section_from_shdr) | |
645 | (*bed->elf_backend_section_from_shdr) (abfd, hdr, name); | |
646 | } | |
244ffee7 JK |
647 | break; |
648 | } | |
649 | ||
650 | return true; | |
651 | } | |
652 | ||
fce36137 | 653 | boolean |
1c6042ee ILT |
654 | elf_new_section_hook (abfd, sec) |
655 | bfd *abfd | |
656 | ; | |
657 | asection *sec; | |
fce36137 | 658 | { |
32090b8e | 659 | struct bfd_elf_section_data *sdata; |
300adb31 KR |
660 | |
661 | sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata)); | |
9783e04a DM |
662 | if (!sdata) |
663 | { | |
d1ad85a6 | 664 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
665 | return false; |
666 | } | |
300adb31 | 667 | sec->used_by_bfd = (PTR) sdata; |
32090b8e | 668 | memset (sdata, 0, sizeof (*sdata)); |
244ffee7 JK |
669 | return true; |
670 | } | |
671 | ||
672 | /* Create a new bfd section from an ELF program header. | |
673 | ||
674 | Since program segments have no names, we generate a synthetic name | |
675 | of the form segment<NUM>, where NUM is generally the index in the | |
676 | program header table. For segments that are split (see below) we | |
677 | generate the names segment<NUM>a and segment<NUM>b. | |
678 | ||
679 | Note that some program segments may have a file size that is different than | |
680 | (less than) the memory size. All this means is that at execution the | |
681 | system must allocate the amount of memory specified by the memory size, | |
682 | but only initialize it with the first "file size" bytes read from the | |
683 | file. This would occur for example, with program segments consisting | |
684 | of combined data+bss. | |
685 | ||
686 | To handle the above situation, this routine generates TWO bfd sections | |
687 | for the single program segment. The first has the length specified by | |
688 | the file size of the segment, and the second has the length specified | |
689 | by the difference between the two sizes. In effect, the segment is split | |
690 | into it's initialized and uninitialized parts. | |
691 | ||
692 | */ | |
693 | ||
694 | static boolean | |
1c6042ee ILT |
695 | bfd_section_from_phdr (abfd, hdr, index) |
696 | bfd *abfd; | |
697 | Elf_Internal_Phdr *hdr; | |
698 | int index; | |
244ffee7 JK |
699 | { |
700 | asection *newsect; | |
701 | char *name; | |
702 | char namebuf[64]; | |
703 | int split; | |
704 | ||
705 | split = ((hdr->p_memsz > 0) && | |
706 | (hdr->p_filesz > 0) && | |
707 | (hdr->p_memsz > hdr->p_filesz)); | |
708 | sprintf (namebuf, split ? "segment%da" : "segment%d", index); | |
709 | name = bfd_alloc (abfd, strlen (namebuf) + 1); | |
9783e04a DM |
710 | if (!name) |
711 | { | |
d1ad85a6 | 712 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
713 | return false; |
714 | } | |
244ffee7 JK |
715 | strcpy (name, namebuf); |
716 | newsect = bfd_make_section (abfd, name); | |
2e03ce18 ILT |
717 | if (newsect == NULL) |
718 | return false; | |
244ffee7 JK |
719 | newsect->vma = hdr->p_vaddr; |
720 | newsect->_raw_size = hdr->p_filesz; | |
721 | newsect->filepos = hdr->p_offset; | |
722 | newsect->flags |= SEC_HAS_CONTENTS; | |
723 | if (hdr->p_type == PT_LOAD) | |
724 | { | |
725 | newsect->flags |= SEC_ALLOC; | |
726 | newsect->flags |= SEC_LOAD; | |
727 | if (hdr->p_flags & PF_X) | |
728 | { | |
729 | /* FIXME: all we known is that it has execute PERMISSION, | |
730 | may be data. */ | |
731 | newsect->flags |= SEC_CODE; | |
732 | } | |
733 | } | |
734 | if (!(hdr->p_flags & PF_W)) | |
735 | { | |
736 | newsect->flags |= SEC_READONLY; | |
737 | } | |
738 | ||
739 | if (split) | |
740 | { | |
741 | sprintf (namebuf, "segment%db", index); | |
742 | name = bfd_alloc (abfd, strlen (namebuf) + 1); | |
9783e04a DM |
743 | if (!name) |
744 | { | |
d1ad85a6 | 745 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
746 | return false; |
747 | } | |
244ffee7 JK |
748 | strcpy (name, namebuf); |
749 | newsect = bfd_make_section (abfd, name); | |
2e03ce18 ILT |
750 | if (newsect == NULL) |
751 | return false; | |
244ffee7 JK |
752 | newsect->vma = hdr->p_vaddr + hdr->p_filesz; |
753 | newsect->_raw_size = hdr->p_memsz - hdr->p_filesz; | |
754 | if (hdr->p_type == PT_LOAD) | |
755 | { | |
756 | newsect->flags |= SEC_ALLOC; | |
757 | if (hdr->p_flags & PF_X) | |
758 | newsect->flags |= SEC_CODE; | |
759 | } | |
760 | if (!(hdr->p_flags & PF_W)) | |
761 | newsect->flags |= SEC_READONLY; | |
762 | } | |
763 | ||
764 | return true; | |
765 | } | |
766 | ||
32090b8e | 767 | /* Begin processing a given object. |
244ffee7 | 768 | |
32090b8e KR |
769 | First we validate the file by reading in the ELF header and checking |
770 | the magic number. */ | |
771 | ||
772 | static INLINE boolean | |
1c6042ee ILT |
773 | elf_file_p (x_ehdrp) |
774 | Elf_External_Ehdr *x_ehdrp; | |
244ffee7 | 775 | { |
32090b8e KR |
776 | return ((x_ehdrp->e_ident[EI_MAG0] == ELFMAG0) |
777 | && (x_ehdrp->e_ident[EI_MAG1] == ELFMAG1) | |
778 | && (x_ehdrp->e_ident[EI_MAG2] == ELFMAG2) | |
779 | && (x_ehdrp->e_ident[EI_MAG3] == ELFMAG3)); | |
780 | } | |
244ffee7 | 781 | |
d24928c0 KR |
782 | /* Check to see if the file associated with ABFD matches the target vector |
783 | that ABFD points to. | |
784 | ||
785 | Note that we may be called several times with the same ABFD, but different | |
786 | target vectors, most of which will not match. We have to avoid leaving | |
787 | any side effects in ABFD, or any data it points to (like tdata), if the | |
6ec3bb6a | 788 | file does not match the target vector. */ |
d24928c0 | 789 | |
2f3508ad | 790 | const bfd_target * |
1c6042ee ILT |
791 | elf_object_p (abfd) |
792 | bfd *abfd; | |
244ffee7 | 793 | { |
32090b8e KR |
794 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
795 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
796 | Elf_External_Shdr x_shdr; /* Section header table entry, external form */ | |
6ec3bb6a | 797 | Elf_Internal_Shdr *i_shdrp = NULL; /* Section header table, internal form */ |
68241b2b | 798 | unsigned int shindex; |
32090b8e | 799 | char *shstrtab; /* Internal copy of section header stringtab */ |
062189c6 | 800 | struct elf_backend_data *ebd; |
d24928c0 | 801 | struct elf_obj_tdata *preserved_tdata = elf_tdata (abfd); |
6ec3bb6a | 802 | struct elf_obj_tdata *new_tdata = NULL; |
244ffee7 | 803 | |
32090b8e KR |
804 | /* Read in the ELF header in external format. */ |
805 | ||
806 | if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr)) | |
25057836 JL |
807 | { |
808 | if (bfd_get_error () != bfd_error_system_call) | |
809 | goto got_wrong_format_error; | |
810 | else | |
811 | goto got_no_match; | |
812 | } | |
244ffee7 | 813 | |
32090b8e KR |
814 | /* Now check to see if we have a valid ELF file, and one that BFD can |
815 | make use of. The magic number must match, the address size ('class') | |
816 | and byte-swapping must match our XVEC entry, and it must have a | |
817 | section header table (FIXME: See comments re sections at top of this | |
818 | file). */ | |
244ffee7 | 819 | |
d24928c0 KR |
820 | if ((elf_file_p (&x_ehdr) == false) || |
821 | (x_ehdr.e_ident[EI_VERSION] != EV_CURRENT) || | |
822 | (x_ehdr.e_ident[EI_CLASS] != ELFCLASS)) | |
823 | goto got_wrong_format_error; | |
244ffee7 | 824 | |
d24928c0 | 825 | /* Check that file's byte order matches xvec's */ |
32090b8e | 826 | switch (x_ehdr.e_ident[EI_DATA]) |
244ffee7 | 827 | { |
32090b8e KR |
828 | case ELFDATA2MSB: /* Big-endian */ |
829 | if (!abfd->xvec->header_byteorder_big_p) | |
d24928c0 | 830 | goto got_wrong_format_error; |
32090b8e KR |
831 | break; |
832 | case ELFDATA2LSB: /* Little-endian */ | |
833 | if (abfd->xvec->header_byteorder_big_p) | |
d24928c0 | 834 | goto got_wrong_format_error; |
32090b8e KR |
835 | break; |
836 | case ELFDATANONE: /* No data encoding specified */ | |
837 | default: /* Unknown data encoding specified */ | |
d24928c0 | 838 | goto got_wrong_format_error; |
244ffee7 | 839 | } |
244ffee7 | 840 | |
32090b8e | 841 | /* Allocate an instance of the elf_obj_tdata structure and hook it up to |
6ec3bb6a | 842 | the tdata pointer in the bfd. */ |
244ffee7 | 843 | |
6ec3bb6a ILT |
844 | new_tdata = ((struct elf_obj_tdata *) |
845 | bfd_zalloc (abfd, sizeof (struct elf_obj_tdata))); | |
846 | if (new_tdata == NULL) | |
d24928c0 | 847 | goto got_no_memory_error; |
6ec3bb6a | 848 | elf_tdata (abfd) = new_tdata; |
244ffee7 | 849 | |
32090b8e KR |
850 | /* Now that we know the byte order, swap in the rest of the header */ |
851 | i_ehdrp = elf_elfheader (abfd); | |
852 | elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp); | |
853 | #if DEBUG & 1 | |
854 | elf_debug_file (i_ehdrp); | |
244ffee7 JK |
855 | #endif |
856 | ||
32090b8e KR |
857 | /* If there is no section header table, we're hosed. */ |
858 | if (i_ehdrp->e_shoff == 0) | |
d24928c0 | 859 | goto got_wrong_format_error; |
244ffee7 | 860 | |
062189c6 ILT |
861 | /* As a simple sanity check, verify that the what BFD thinks is the |
862 | size of each section header table entry actually matches the size | |
863 | recorded in the file. */ | |
864 | if (i_ehdrp->e_shentsize != sizeof (x_shdr)) | |
865 | goto got_wrong_format_error; | |
866 | ||
867 | ebd = get_elf_backend_data (abfd); | |
868 | ||
869 | /* Check that the ELF e_machine field matches what this particular | |
870 | BFD format expects. */ | |
df168c35 DE |
871 | if (ebd->elf_machine_code != i_ehdrp->e_machine |
872 | && (ebd->elf_machine_alt1 == 0 || i_ehdrp->e_machine != ebd->elf_machine_alt1) | |
873 | && (ebd->elf_machine_alt2 == 0 || i_ehdrp->e_machine != ebd->elf_machine_alt2)) | |
062189c6 | 874 | { |
2f3508ad | 875 | const bfd_target * const *target_ptr; |
062189c6 ILT |
876 | |
877 | if (ebd->elf_machine_code != EM_NONE) | |
878 | goto got_wrong_format_error; | |
879 | ||
880 | /* This is the generic ELF target. Let it match any ELF target | |
881 | for which we do not have a specific backend. */ | |
f4bd7a8f | 882 | for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++) |
062189c6 ILT |
883 | { |
884 | struct elf_backend_data *back; | |
885 | ||
886 | if ((*target_ptr)->flavour != bfd_target_elf_flavour) | |
887 | continue; | |
888 | back = (struct elf_backend_data *) (*target_ptr)->backend_data; | |
889 | if (back->elf_machine_code == i_ehdrp->e_machine) | |
890 | { | |
891 | /* target_ptr is an ELF backend which matches this | |
892 | object file, so reject the generic ELF target. */ | |
893 | goto got_wrong_format_error; | |
894 | } | |
895 | } | |
896 | } | |
897 | ||
7b8106b4 | 898 | if (i_ehdrp->e_type == ET_EXEC) |
32090b8e | 899 | abfd->flags |= EXEC_P; |
7b8106b4 ILT |
900 | else if (i_ehdrp->e_type == ET_DYN) |
901 | abfd->flags |= DYNAMIC; | |
244ffee7 | 902 | |
fa15568a ILT |
903 | if (i_ehdrp->e_phnum > 0) |
904 | abfd->flags |= D_PAGED; | |
905 | ||
6ec3bb6a ILT |
906 | if (! bfd_default_set_arch_mach (abfd, ebd->arch, 0)) |
907 | goto got_no_match; | |
32090b8e | 908 | |
062189c6 ILT |
909 | /* Remember the entry point specified in the ELF file header. */ |
910 | bfd_get_start_address (abfd) = i_ehdrp->e_entry; | |
32090b8e KR |
911 | |
912 | /* Allocate space for a copy of the section header table in | |
913 | internal form, seek to the section header table in the file, | |
062189c6 | 914 | read it in, and convert it to internal form. */ |
6ec3bb6a ILT |
915 | i_shdrp = ((Elf_Internal_Shdr *) |
916 | bfd_alloc (abfd, sizeof (*i_shdrp) * i_ehdrp->e_shnum)); | |
917 | elf_elfsections (abfd) = ((Elf_Internal_Shdr **) | |
918 | bfd_alloc (abfd, | |
919 | sizeof (i_shdrp) * i_ehdrp->e_shnum)); | |
1c6042ee | 920 | if (!i_shdrp || !elf_elfsections (abfd)) |
d24928c0 | 921 | goto got_no_memory_error; |
6ec3bb6a | 922 | if (bfd_seek (abfd, i_ehdrp->e_shoff, SEEK_SET) != 0) |
25057836 | 923 | goto got_no_match; |
32090b8e | 924 | for (shindex = 0; shindex < i_ehdrp->e_shnum; shindex++) |
244ffee7 | 925 | { |
d24928c0 | 926 | if (bfd_read ((PTR) & x_shdr, sizeof x_shdr, 1, abfd) != sizeof (x_shdr)) |
25057836 | 927 | goto got_no_match; |
32090b8e | 928 | elf_swap_shdr_in (abfd, &x_shdr, i_shdrp + shindex); |
1c6042ee | 929 | elf_elfsections (abfd)[shindex] = i_shdrp + shindex; |
244ffee7 | 930 | } |
32090b8e | 931 | if (i_ehdrp->e_shstrndx) |
244ffee7 | 932 | { |
2e03ce18 ILT |
933 | if (! bfd_section_from_shdr (abfd, i_ehdrp->e_shstrndx)) |
934 | goto got_no_match; | |
244ffee7 JK |
935 | } |
936 | ||
32090b8e KR |
937 | /* Read in the string table containing the names of the sections. We |
938 | will need the base pointer to this table later. */ | |
939 | /* We read this inline now, so that we don't have to go through | |
940 | bfd_section_from_shdr with it (since this particular strtab is | |
941 | used to find all of the ELF section names.) */ | |
244ffee7 | 942 | |
32090b8e KR |
943 | shstrtab = elf_get_str_section (abfd, i_ehdrp->e_shstrndx); |
944 | if (!shstrtab) | |
6ec3bb6a | 945 | goto got_no_match; |
244ffee7 | 946 | |
32090b8e KR |
947 | /* Once all of the section headers have been read and converted, we |
948 | can start processing them. Note that the first section header is | |
6ec3bb6a | 949 | a dummy placeholder entry, so we ignore it. */ |
244ffee7 | 950 | |
32090b8e KR |
951 | for (shindex = 1; shindex < i_ehdrp->e_shnum; shindex++) |
952 | { | |
2e03ce18 ILT |
953 | if (! bfd_section_from_shdr (abfd, shindex)) |
954 | goto got_no_match; | |
32090b8e | 955 | } |
244ffee7 | 956 | |
5315c428 ILT |
957 | /* Let the backend double check the format and override global |
958 | information. */ | |
959 | if (ebd->elf_backend_object_p) | |
960 | { | |
961 | if ((*ebd->elf_backend_object_p) (abfd) == false) | |
962 | goto got_wrong_format_error; | |
963 | } | |
964 | ||
d24928c0 KR |
965 | return (abfd->xvec); |
966 | ||
1c6042ee | 967 | got_wrong_format_error: |
d1ad85a6 | 968 | bfd_set_error (bfd_error_wrong_format); |
d24928c0 | 969 | goto got_no_match; |
1c6042ee | 970 | got_no_memory_error: |
d1ad85a6 | 971 | bfd_set_error (bfd_error_no_memory); |
d24928c0 | 972 | goto got_no_match; |
1c6042ee | 973 | got_no_match: |
6ec3bb6a ILT |
974 | if (new_tdata != NULL |
975 | && new_tdata->elf_sect_ptr != NULL) | |
976 | bfd_release (abfd, new_tdata->elf_sect_ptr); | |
977 | if (i_shdrp != NULL) | |
978 | bfd_release (abfd, i_shdrp); | |
979 | if (new_tdata != NULL) | |
980 | bfd_release (abfd, new_tdata); | |
d24928c0 KR |
981 | elf_tdata (abfd) = preserved_tdata; |
982 | return (NULL); | |
32090b8e | 983 | } |
32090b8e | 984 | \f |
1c6042ee | 985 | |
32090b8e KR |
986 | /* ELF .o/exec file writing */ |
987 | ||
d24928c0 KR |
988 | /* Takes a bfd and a symbol, returns a pointer to the elf specific area |
989 | of the symbol if there is one. */ | |
32090b8e | 990 | static INLINE elf_symbol_type * |
1c6042ee ILT |
991 | elf_symbol_from (ignore_abfd, symbol) |
992 | bfd *ignore_abfd; | |
993 | asymbol *symbol; | |
244ffee7 | 994 | { |
32090b8e KR |
995 | if (symbol->the_bfd->xvec->flavour != bfd_target_elf_flavour) |
996 | return 0; | |
997 | ||
998 | if (symbol->the_bfd->tdata.elf_obj_data == (struct elf_obj_tdata *) NULL) | |
999 | return 0; | |
1000 | ||
1001 | return (elf_symbol_type *) symbol; | |
244ffee7 JK |
1002 | } |
1003 | ||
0ef449df KR |
1004 | static void |
1005 | write_relocs (abfd, sec, data) | |
32090b8e KR |
1006 | bfd *abfd; |
1007 | asection *sec; | |
0ef449df | 1008 | PTR data; |
32090b8e | 1009 | { |
0ef449df | 1010 | boolean *failedp = (boolean *) data; |
32090b8e KR |
1011 | Elf_Internal_Shdr *rela_hdr; |
1012 | Elf_External_Rela *outbound_relocas; | |
1013 | Elf_External_Rel *outbound_relocs; | |
1014 | int idx; | |
1015 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; | |
300adb31 | 1016 | asymbol *last_sym = 0; |
38a5f510 | 1017 | int last_sym_idx = 9999999; /* should always be written before use */ |
244ffee7 | 1018 | |
0ef449df KR |
1019 | /* If we have already failed, don't do anything. */ |
1020 | if (*failedp) | |
1021 | return; | |
1022 | ||
32090b8e KR |
1023 | if ((sec->flags & SEC_RELOC) == 0) |
1024 | return; | |
6ec3bb6a ILT |
1025 | |
1026 | /* The linker backend writes the relocs out itself, and sets the | |
1027 | reloc_count field to zero to inhibit writing them here. Also, | |
1028 | sometimes the SEC_RELOC flag gets set even when there aren't any | |
1029 | relocs. */ | |
32090b8e KR |
1030 | if (sec->reloc_count == 0) |
1031 | return; | |
244ffee7 | 1032 | |
32090b8e | 1033 | rela_hdr = &elf_section_data (sec)->rel_hdr; |
244ffee7 | 1034 | |
32090b8e | 1035 | rela_hdr->sh_size = rela_hdr->sh_entsize * sec->reloc_count; |
0ef449df KR |
1036 | rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size); |
1037 | if (rela_hdr->contents == NULL) | |
9783e04a | 1038 | { |
d1ad85a6 | 1039 | bfd_set_error (bfd_error_no_memory); |
0ef449df KR |
1040 | *failedp = true; |
1041 | return; | |
9783e04a | 1042 | } |
244ffee7 | 1043 | |
32090b8e | 1044 | /* orelocation has the data, reloc_count has the count... */ |
300adb31 KR |
1045 | if (use_rela_p) |
1046 | { | |
1047 | outbound_relocas = (Elf_External_Rela *) rela_hdr->contents; | |
1048 | ||
1049 | for (idx = 0; idx < sec->reloc_count; idx++) | |
32090b8e | 1050 | { |
300adb31 KR |
1051 | Elf_Internal_Rela dst_rela; |
1052 | Elf_External_Rela *src_rela; | |
1053 | arelent *ptr; | |
1054 | asymbol *sym; | |
1055 | int n; | |
1056 | ||
1057 | ptr = sec->orelocation[idx]; | |
1058 | src_rela = outbound_relocas + idx; | |
4c124191 ILT |
1059 | |
1060 | /* The address of an ELF reloc is section relative for an object | |
1061 | file, and absolute for an executable file or shared library. | |
1062 | The address of a BFD reloc is always section relative. */ | |
1063 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) | |
300adb31 | 1064 | dst_rela.r_offset = ptr->address; |
4c124191 ILT |
1065 | else |
1066 | dst_rela.r_offset = ptr->address + sec->vma; | |
6a3eb9b6 | 1067 | |
300adb31 KR |
1068 | sym = *ptr->sym_ptr_ptr; |
1069 | if (sym == last_sym) | |
1070 | n = last_sym_idx; | |
1071 | else | |
32090b8e | 1072 | { |
300adb31 KR |
1073 | last_sym = sym; |
1074 | last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym); | |
32090b8e | 1075 | } |
300adb31 KR |
1076 | dst_rela.r_info = ELF_R_INFO (n, ptr->howto->type); |
1077 | ||
1078 | dst_rela.r_addend = ptr->addend; | |
1079 | elf_swap_reloca_out (abfd, &dst_rela, src_rela); | |
244ffee7 | 1080 | } |
300adb31 KR |
1081 | } |
1082 | else | |
1083 | /* REL relocations */ | |
1084 | { | |
1085 | outbound_relocs = (Elf_External_Rel *) rela_hdr->contents; | |
1086 | ||
1087 | for (idx = 0; idx < sec->reloc_count; idx++) | |
32090b8e | 1088 | { |
300adb31 KR |
1089 | Elf_Internal_Rel dst_rel; |
1090 | Elf_External_Rel *src_rel; | |
1091 | arelent *ptr; | |
1092 | int n; | |
1093 | asymbol *sym; | |
1094 | ||
1095 | ptr = sec->orelocation[idx]; | |
1096 | sym = *ptr->sym_ptr_ptr; | |
1097 | src_rel = outbound_relocs + idx; | |
4c124191 ILT |
1098 | |
1099 | /* The address of an ELF reloc is section relative for an object | |
1100 | file, and absolute for an executable file or shared library. | |
1101 | The address of a BFD reloc is always section relative. */ | |
1102 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) | |
300adb31 | 1103 | dst_rel.r_offset = ptr->address; |
4c124191 ILT |
1104 | else |
1105 | dst_rel.r_offset = ptr->address + sec->vma; | |
244ffee7 | 1106 | |
300adb31 KR |
1107 | if (sym == last_sym) |
1108 | n = last_sym_idx; | |
1109 | else | |
32090b8e | 1110 | { |
300adb31 KR |
1111 | last_sym = sym; |
1112 | last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym); | |
32090b8e | 1113 | } |
300adb31 KR |
1114 | dst_rel.r_info = ELF_R_INFO (n, ptr->howto->type); |
1115 | ||
1116 | elf_swap_reloc_out (abfd, &dst_rel, src_rel); | |
32090b8e | 1117 | } |
300adb31 | 1118 | } |
32090b8e | 1119 | } |
244ffee7 | 1120 | |
fa15568a | 1121 | /* Set up an ELF internal section header for a section. */ |
244ffee7 | 1122 | |
fa15568a | 1123 | /*ARGSUSED*/ |
32090b8e | 1124 | static void |
eb4267a3 | 1125 | elf_fake_sections (abfd, asect, failedptrarg) |
1c6042ee ILT |
1126 | bfd *abfd; |
1127 | asection *asect; | |
eb4267a3 | 1128 | PTR failedptrarg; |
32090b8e | 1129 | { |
eb4267a3 | 1130 | boolean *failedptr = (boolean *) failedptrarg; |
32090b8e | 1131 | Elf_Internal_Shdr *this_hdr; |
fa15568a | 1132 | |
eb4267a3 ILT |
1133 | if (*failedptr) |
1134 | { | |
1135 | /* We already failed; just get out of the bfd_map_over_sections | |
1136 | loop. */ | |
1137 | return; | |
1138 | } | |
1139 | ||
32090b8e | 1140 | this_hdr = &elf_section_data (asect)->this_hdr; |
fa15568a | 1141 | |
eb4267a3 ILT |
1142 | this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd), |
1143 | asect->name, | |
1144 | true, false); | |
6ec3bb6a | 1145 | if (this_hdr->sh_name == (unsigned long) -1) |
eb4267a3 ILT |
1146 | { |
1147 | *failedptr = true; | |
1148 | return; | |
1149 | } | |
fa15568a ILT |
1150 | |
1151 | this_hdr->sh_flags = 0; | |
1152 | if ((asect->flags & SEC_ALLOC) != 0) | |
1153 | this_hdr->sh_addr = asect->vma; | |
1154 | else | |
1155 | this_hdr->sh_addr = 0; | |
1156 | this_hdr->sh_offset = 0; | |
1157 | this_hdr->sh_size = asect->_raw_size; | |
1158 | this_hdr->sh_link = 0; | |
1159 | this_hdr->sh_info = 0; | |
32090b8e | 1160 | this_hdr->sh_addralign = 1 << asect->alignment_power; |
fa15568a ILT |
1161 | this_hdr->sh_entsize = 0; |
1162 | ||
24f13b03 | 1163 | this_hdr->bfd_section = asect; |
fa15568a | 1164 | this_hdr->contents = NULL; |
013dec1a ILT |
1165 | |
1166 | /* FIXME: This should not be based on section names. */ | |
1167 | if (strcmp (asect->name, ".dynstr") == 0) | |
1168 | this_hdr->sh_type = SHT_STRTAB; | |
1169 | else if (strcmp (asect->name, ".hash") == 0) | |
fa15568a ILT |
1170 | { |
1171 | this_hdr->sh_type = SHT_HASH; | |
1172 | this_hdr->sh_entsize = ARCH_SIZE / 8; | |
1173 | } | |
013dec1a | 1174 | else if (strcmp (asect->name, ".dynsym") == 0) |
fa15568a ILT |
1175 | { |
1176 | this_hdr->sh_type = SHT_DYNSYM; | |
1177 | this_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
1178 | } | |
013dec1a | 1179 | else if (strcmp (asect->name, ".dynamic") == 0) |
fa15568a ILT |
1180 | { |
1181 | this_hdr->sh_type = SHT_DYNAMIC; | |
1182 | this_hdr->sh_entsize = sizeof (Elf_External_Dyn); | |
1183 | } | |
0822b56d ILT |
1184 | else if (strncmp (asect->name, ".rela", 5) == 0 |
1185 | && get_elf_backend_data (abfd)->use_rela_p) | |
fa15568a ILT |
1186 | { |
1187 | this_hdr->sh_type = SHT_RELA; | |
1188 | this_hdr->sh_entsize = sizeof (Elf_External_Rela); | |
1189 | } | |
0822b56d ILT |
1190 | else if (strncmp (asect->name, ".rel", 4) == 0 |
1191 | && ! get_elf_backend_data (abfd)->use_rela_p) | |
1192 | { | |
1193 | this_hdr->sh_type = SHT_REL; | |
1194 | this_hdr->sh_entsize = sizeof (Elf_External_Rel); | |
1195 | } | |
fa15568a ILT |
1196 | else if (strcmp (asect->name, ".note") == 0) |
1197 | this_hdr->sh_type = SHT_NOTE; | |
1198 | else if (strncmp (asect->name, ".stab", 5) == 0 | |
1199 | && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0) | |
1200 | this_hdr->sh_type = SHT_STRTAB; | |
1201 | else if ((asect->flags & SEC_ALLOC) != 0 | |
1202 | && (asect->flags & SEC_LOAD) != 0) | |
32090b8e | 1203 | this_hdr->sh_type = SHT_PROGBITS; |
fa15568a ILT |
1204 | else if ((asect->flags & SEC_ALLOC) != 0 |
1205 | && ((asect->flags & SEC_LOAD) == 0)) | |
e621c5cc | 1206 | { |
6c35a16d | 1207 | BFD_ASSERT (strcmp (asect->name, ".bss") == 0 |
0ef449df KR |
1208 | || strcmp (asect->name, ".sbss") == 0 |
1209 | || strcmp (asect->name, ".scommon") == 0 | |
1210 | || strcmp (asect->name, "COMMON") == 0); | |
e621c5cc ILT |
1211 | this_hdr->sh_type = SHT_NOBITS; |
1212 | } | |
32090b8e | 1213 | else |
fa15568a ILT |
1214 | { |
1215 | /* Who knows? */ | |
1216 | this_hdr->sh_type = SHT_PROGBITS; | |
1217 | } | |
32090b8e | 1218 | |
fa15568a ILT |
1219 | if ((asect->flags & SEC_ALLOC) != 0) |
1220 | this_hdr->sh_flags |= SHF_ALLOC; | |
1221 | if ((asect->flags & SEC_READONLY) == 0) | |
1222 | this_hdr->sh_flags |= SHF_WRITE; | |
1223 | if ((asect->flags & SEC_CODE) != 0) | |
1224 | this_hdr->sh_flags |= SHF_EXECINSTR; | |
244ffee7 | 1225 | |
fa15568a | 1226 | /* Check for processor-specific section types. */ |
f035cc47 ILT |
1227 | { |
1228 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1229 | ||
1230 | if (bed->elf_backend_fake_sections) | |
1231 | (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect); | |
1232 | } | |
1233 | ||
fa15568a ILT |
1234 | /* If the section has relocs, set up a section header for the |
1235 | SHT_REL[A] section. */ | |
1236 | if ((asect->flags & SEC_RELOC) != 0) | |
1237 | { | |
1238 | Elf_Internal_Shdr *rela_hdr; | |
1239 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; | |
eb4267a3 | 1240 | char *name; |
244ffee7 | 1241 | |
fa15568a | 1242 | rela_hdr = &elf_section_data (asect)->rel_hdr; |
eb4267a3 ILT |
1243 | name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name)); |
1244 | if (name == NULL) | |
1245 | { | |
1246 | bfd_set_error (bfd_error_no_memory); | |
1247 | *failedptr = true; | |
1248 | return; | |
1249 | } | |
1250 | sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); | |
fa15568a | 1251 | rela_hdr->sh_name = |
eb4267a3 ILT |
1252 | (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name, |
1253 | true, false); | |
1254 | if (rela_hdr->sh_name == (unsigned int) -1) | |
1255 | { | |
1256 | *failedptr = true; | |
1257 | return; | |
1258 | } | |
fa15568a ILT |
1259 | rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; |
1260 | rela_hdr->sh_entsize = (use_rela_p | |
1261 | ? sizeof (Elf_External_Rela) | |
1262 | : sizeof (Elf_External_Rel)); | |
1263 | rela_hdr->sh_addralign = FILE_ALIGN; | |
1264 | rela_hdr->sh_flags = 0; | |
1265 | rela_hdr->sh_addr = 0; | |
1266 | rela_hdr->sh_size = 0; | |
1267 | rela_hdr->sh_offset = 0; | |
fa15568a ILT |
1268 | } |
1269 | } | |
244ffee7 | 1270 | |
fa15568a ILT |
1271 | /* Assign all ELF section numbers. The dummy first section is handled here |
1272 | too. The link/info pointers for the standard section types are filled | |
e6667b2b | 1273 | in here too, while we're at it. */ |
244ffee7 | 1274 | |
fa15568a ILT |
1275 | static boolean |
1276 | assign_section_numbers (abfd) | |
1277 | bfd *abfd; | |
1278 | { | |
1279 | struct elf_obj_tdata *t = elf_tdata (abfd); | |
1280 | asection *sec; | |
1281 | unsigned int section_number; | |
1282 | Elf_Internal_Shdr **i_shdrp; | |
1283 | ||
1284 | section_number = 1; | |
1285 | ||
fa15568a ILT |
1286 | for (sec = abfd->sections; sec; sec = sec->next) |
1287 | { | |
1288 | struct bfd_elf_section_data *d = elf_section_data (sec); | |
1289 | ||
1290 | d->this_idx = section_number++; | |
1291 | if ((sec->flags & SEC_RELOC) == 0) | |
1292 | d->rel_idx = 0; | |
1293 | else | |
1294 | d->rel_idx = section_number++; | |
1295 | } | |
1296 | ||
7c726b66 ILT |
1297 | t->shstrtab_section = section_number++; |
1298 | elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; | |
eb4267a3 | 1299 | t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); |
7c726b66 ILT |
1300 | |
1301 | if (abfd->symcount > 0) | |
1302 | { | |
1303 | t->symtab_section = section_number++; | |
1304 | t->strtab_section = section_number++; | |
1305 | } | |
1306 | ||
fa15568a ILT |
1307 | elf_elfheader (abfd)->e_shnum = section_number; |
1308 | ||
1309 | /* Set up the list of section header pointers, in agreement with the | |
1310 | indices. */ | |
1311 | i_shdrp = ((Elf_Internal_Shdr **) | |
1312 | bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *))); | |
1313 | if (i_shdrp == NULL) | |
1314 | { | |
1315 | bfd_set_error (bfd_error_no_memory); | |
1316 | return false; | |
1317 | } | |
1318 | ||
1319 | i_shdrp[0] = ((Elf_Internal_Shdr *) | |
1320 | bfd_alloc (abfd, sizeof (Elf_Internal_Shdr))); | |
1321 | if (i_shdrp[0] == NULL) | |
1322 | { | |
1323 | bfd_release (abfd, i_shdrp); | |
1324 | bfd_set_error (bfd_error_no_memory); | |
1325 | return false; | |
1326 | } | |
1327 | memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr)); | |
1328 | ||
1329 | elf_elfsections (abfd) = i_shdrp; | |
1330 | ||
1331 | i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; | |
1332 | if (abfd->symcount > 0) | |
1333 | { | |
1334 | i_shdrp[t->symtab_section] = &t->symtab_hdr; | |
1335 | i_shdrp[t->strtab_section] = &t->strtab_hdr; | |
1336 | t->symtab_hdr.sh_link = t->strtab_section; | |
1337 | } | |
1338 | for (sec = abfd->sections; sec; sec = sec->next) | |
32090b8e | 1339 | { |
fa15568a ILT |
1340 | struct bfd_elf_section_data *d = elf_section_data (sec); |
1341 | asection *s; | |
1342 | const char *name; | |
1343 | ||
1344 | i_shdrp[d->this_idx] = &d->this_hdr; | |
1345 | if (d->rel_idx != 0) | |
1346 | i_shdrp[d->rel_idx] = &d->rel_hdr; | |
1347 | ||
1348 | /* Fill in the sh_link and sh_info fields while we're at it. */ | |
1349 | ||
1350 | /* sh_link of a reloc section is the section index of the symbol | |
1351 | table. sh_info is the section index of the section to which | |
1352 | the relocation entries apply. */ | |
1353 | if (d->rel_idx != 0) | |
1354 | { | |
1355 | d->rel_hdr.sh_link = t->symtab_section; | |
1356 | d->rel_hdr.sh_info = d->this_idx; | |
1357 | } | |
1358 | ||
1359 | switch (d->this_hdr.sh_type) | |
32090b8e | 1360 | { |
fa15568a ILT |
1361 | case SHT_REL: |
1362 | case SHT_RELA: | |
1363 | /* A reloc section which we are treating as a normal BFD | |
1364 | section. sh_link is the section index of the symbol | |
1365 | table. sh_info is the section index of the section to | |
1366 | which the relocation entries apply. We assume that an | |
1367 | allocated reloc section uses the dynamic symbol table. | |
1368 | FIXME: How can we be sure? */ | |
1369 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1370 | if (s != NULL) | |
1371 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1372 | ||
1373 | /* We look up the section the relocs apply to by name. */ | |
1374 | name = sec->name; | |
1375 | if (d->this_hdr.sh_type == SHT_REL) | |
1376 | name += 4; | |
1377 | else | |
1378 | name += 5; | |
1379 | s = bfd_get_section_by_name (abfd, name); | |
1380 | if (s != NULL) | |
1381 | d->this_hdr.sh_info = elf_section_data (s)->this_idx; | |
1382 | break; | |
1383 | ||
1384 | case SHT_STRTAB: | |
1385 | /* We assume that a section named .stab*str is a stabs | |
1386 | string section. We look for a section with the same name | |
1387 | but without the trailing ``str'', and set its sh_link | |
1388 | field to point to this section. */ | |
1389 | if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0 | |
1390 | && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) | |
1391 | { | |
1392 | size_t len; | |
1393 | char *alc; | |
1394 | ||
1395 | len = strlen (sec->name); | |
1396 | alc = (char *) malloc (len - 2); | |
1397 | if (alc == NULL) | |
1398 | { | |
1399 | bfd_set_error (bfd_error_no_memory); | |
1400 | return false; | |
1401 | } | |
1402 | strncpy (alc, sec->name, len - 3); | |
1403 | alc[len - 3] = '\0'; | |
1404 | s = bfd_get_section_by_name (abfd, alc); | |
1405 | free (alc); | |
1406 | if (s != NULL) | |
1407 | { | |
1408 | elf_section_data (s)->this_hdr.sh_link = d->this_idx; | |
1409 | ||
1410 | /* This is a .stab section. */ | |
1411 | elf_section_data (s)->this_hdr.sh_entsize = | |
1412 | 4 + 2 * (ARCH_SIZE / 8); | |
1413 | } | |
1414 | } | |
1415 | break; | |
1416 | ||
1417 | case SHT_DYNAMIC: | |
1418 | case SHT_DYNSYM: | |
1419 | /* sh_link is the section header index of the string table | |
1420 | used for the dynamic entries or symbol table. */ | |
1421 | s = bfd_get_section_by_name (abfd, ".dynstr"); | |
1422 | if (s != NULL) | |
1423 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1424 | break; | |
1425 | ||
1426 | case SHT_HASH: | |
1427 | /* sh_link is the section header index of the symbol table | |
1428 | this hash table is for. */ | |
1429 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1430 | if (s != NULL) | |
1431 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1432 | break; | |
32090b8e KR |
1433 | } |
1434 | } | |
fa15568a ILT |
1435 | |
1436 | return true; | |
244ffee7 JK |
1437 | } |
1438 | ||
32090b8e KR |
1439 | /* Map symbol from it's internal number to the external number, moving |
1440 | all local symbols to be at the head of the list. */ | |
244ffee7 | 1441 | |
32090b8e | 1442 | static INLINE int |
062189c6 ILT |
1443 | sym_is_global (abfd, sym) |
1444 | bfd *abfd; | |
32090b8e KR |
1445 | asymbol *sym; |
1446 | { | |
062189c6 ILT |
1447 | /* If the backend has a special mapping, use it. */ |
1448 | if (get_elf_backend_data (abfd)->elf_backend_sym_is_global) | |
1449 | return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global) | |
1450 | (abfd, sym)); | |
1451 | ||
0ef449df KR |
1452 | return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 |
1453 | || bfd_is_und_section (bfd_get_section (sym)) | |
1454 | || bfd_is_com_section (bfd_get_section (sym))); | |
32090b8e | 1455 | } |
244ffee7 | 1456 | |
9783e04a | 1457 | static boolean |
1c6042ee ILT |
1458 | elf_map_symbols (abfd) |
1459 | bfd *abfd; | |
32090b8e KR |
1460 | { |
1461 | int symcount = bfd_get_symcount (abfd); | |
1462 | asymbol **syms = bfd_get_outsymbols (abfd); | |
d24928c0 | 1463 | asymbol **sect_syms; |
32090b8e KR |
1464 | int num_locals = 0; |
1465 | int num_globals = 0; | |
1466 | int num_locals2 = 0; | |
1467 | int num_globals2 = 0; | |
d24928c0 | 1468 | int max_index = 0; |
32090b8e | 1469 | int num_sections = 0; |
32090b8e KR |
1470 | int idx; |
1471 | asection *asect; | |
e4a4da62 | 1472 | asymbol **new_syms; |
6a3eb9b6 | 1473 | |
32090b8e KR |
1474 | #ifdef DEBUG |
1475 | fprintf (stderr, "elf_map_symbols\n"); | |
1476 | fflush (stderr); | |
1477 | #endif | |
244ffee7 | 1478 | |
e4a4da62 ILT |
1479 | /* Add a section symbol for each BFD section. FIXME: Is this really |
1480 | necessary? */ | |
32090b8e | 1481 | for (asect = abfd->sections; asect; asect = asect->next) |
244ffee7 | 1482 | { |
d24928c0 KR |
1483 | if (max_index < asect->index) |
1484 | max_index = asect->index; | |
244ffee7 JK |
1485 | } |
1486 | ||
d24928c0 | 1487 | max_index++; |
d24928c0 | 1488 | sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *)); |
e4a4da62 | 1489 | if (sect_syms == NULL) |
9783e04a | 1490 | { |
d1ad85a6 | 1491 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
1492 | return false; |
1493 | } | |
e4a4da62 | 1494 | elf_section_syms (abfd) = sect_syms; |
d24928c0 | 1495 | |
24f13b03 | 1496 | for (idx = 0; idx < symcount; idx++) |
e621c5cc | 1497 | { |
f5202354 | 1498 | if ((syms[idx]->flags & BSF_SECTION_SYM) != 0 |
85200ebc | 1499 | && syms[idx]->value == 0) |
9783e04a | 1500 | { |
24f13b03 ILT |
1501 | asection *sec; |
1502 | ||
1503 | sec = syms[idx]->section; | |
e4a4da62 | 1504 | if (sec->owner != NULL) |
24f13b03 ILT |
1505 | { |
1506 | if (sec->owner != abfd) | |
1507 | { | |
85200ebc KR |
1508 | if (sec->output_offset != 0) |
1509 | continue; | |
24f13b03 ILT |
1510 | sec = sec->output_section; |
1511 | BFD_ASSERT (sec->owner == abfd); | |
1512 | } | |
1513 | sect_syms[sec->index] = syms[idx]; | |
1514 | } | |
9783e04a | 1515 | } |
24f13b03 ILT |
1516 | } |
1517 | ||
1518 | for (asect = abfd->sections; asect; asect = asect->next) | |
1519 | { | |
1520 | asymbol *sym; | |
1521 | ||
1522 | if (sect_syms[asect->index] != NULL) | |
1523 | continue; | |
1524 | ||
1525 | sym = bfd_make_empty_symbol (abfd); | |
1526 | if (sym == NULL) | |
1527 | return false; | |
e621c5cc ILT |
1528 | sym->the_bfd = abfd; |
1529 | sym->name = asect->name; | |
85200ebc | 1530 | sym->value = 0; |
24f13b03 ILT |
1531 | /* Set the flags to 0 to indicate that this one was newly added. */ |
1532 | sym->flags = 0; | |
e621c5cc ILT |
1533 | sym->section = asect; |
1534 | sect_syms[asect->index] = sym; | |
1535 | num_sections++; | |
d24928c0 | 1536 | #ifdef DEBUG |
e621c5cc ILT |
1537 | fprintf (stderr, |
1538 | "creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n", | |
1539 | asect->name, (long) asect->vma, asect->index, (long) asect); | |
d24928c0 | 1540 | #endif |
e621c5cc | 1541 | } |
d24928c0 | 1542 | |
e4a4da62 ILT |
1543 | /* Classify all of the symbols. */ |
1544 | for (idx = 0; idx < symcount; idx++) | |
244ffee7 | 1545 | { |
e4a4da62 ILT |
1546 | if (!sym_is_global (abfd, syms[idx])) |
1547 | num_locals++; | |
32090b8e | 1548 | else |
e4a4da62 ILT |
1549 | num_globals++; |
1550 | } | |
1551 | for (asect = abfd->sections; asect; asect = asect->next) | |
1552 | { | |
1553 | if (sect_syms[asect->index] != NULL | |
1554 | && sect_syms[asect->index]->flags == 0) | |
32090b8e | 1555 | { |
e4a4da62 ILT |
1556 | sect_syms[asect->index]->flags = BSF_SECTION_SYM; |
1557 | if (!sym_is_global (abfd, sect_syms[asect->index])) | |
1558 | num_locals++; | |
1559 | else | |
1560 | num_globals++; | |
1561 | sect_syms[asect->index]->flags = 0; | |
32090b8e | 1562 | } |
32090b8e | 1563 | } |
244ffee7 | 1564 | |
e4a4da62 ILT |
1565 | /* Now sort the symbols so the local symbols are first. */ |
1566 | new_syms = ((asymbol **) | |
1567 | bfd_alloc (abfd, | |
1568 | (num_locals + num_globals) * sizeof (asymbol *))); | |
1569 | if (new_syms == NULL) | |
9783e04a | 1570 | { |
d1ad85a6 | 1571 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
1572 | return false; |
1573 | } | |
244ffee7 | 1574 | |
32090b8e | 1575 | for (idx = 0; idx < symcount; idx++) |
244ffee7 | 1576 | { |
e4a4da62 ILT |
1577 | asymbol *sym = syms[idx]; |
1578 | int i; | |
1579 | ||
1580 | if (!sym_is_global (abfd, sym)) | |
1581 | i = num_locals2++; | |
32090b8e | 1582 | else |
e4a4da62 ILT |
1583 | i = num_locals + num_globals2++; |
1584 | new_syms[i] = sym; | |
1585 | sym->udata.i = i + 1; | |
244ffee7 | 1586 | } |
e4a4da62 | 1587 | for (asect = abfd->sections; asect; asect = asect->next) |
244ffee7 | 1588 | { |
e4a4da62 ILT |
1589 | if (sect_syms[asect->index] != NULL |
1590 | && sect_syms[asect->index]->flags == 0) | |
1591 | { | |
1592 | asymbol *sym = sect_syms[asect->index]; | |
1593 | int i; | |
1594 | ||
1595 | sym->flags = BSF_SECTION_SYM; | |
1596 | if (!sym_is_global (abfd, sym)) | |
1597 | i = num_locals2++; | |
1598 | else | |
1599 | i = num_locals + num_globals2++; | |
1600 | new_syms[i] = sym; | |
1601 | sym->udata.i = i + 1; | |
1602 | } | |
244ffee7 JK |
1603 | } |
1604 | ||
e4a4da62 ILT |
1605 | bfd_set_symtab (abfd, new_syms, num_locals + num_globals); |
1606 | ||
32090b8e KR |
1607 | elf_num_locals (abfd) = num_locals; |
1608 | elf_num_globals (abfd) = num_globals; | |
9783e04a | 1609 | return true; |
32090b8e | 1610 | } |
244ffee7 | 1611 | |
6ec3bb6a ILT |
1612 | /* Compute the file positions we are going to put the sections at, and |
1613 | otherwise prepare to begin writing out the ELF file. If LINK_INFO | |
1614 | is not NULL, this is being called by the ELF backend linker. */ | |
244ffee7 | 1615 | |
32090b8e | 1616 | static boolean |
6ec3bb6a | 1617 | elf_compute_section_file_positions (abfd, link_info) |
1c6042ee | 1618 | bfd *abfd; |
6ec3bb6a | 1619 | struct bfd_link_info *link_info; |
32090b8e | 1620 | { |
6ec3bb6a | 1621 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
eb4267a3 ILT |
1622 | boolean failed; |
1623 | struct bfd_strtab_hash *strtab; | |
6ec3bb6a ILT |
1624 | Elf_Internal_Shdr *shstrtab_hdr; |
1625 | ||
1626 | if (abfd->output_has_begun) | |
1627 | return true; | |
1628 | ||
1629 | /* Do any elf backend specific processing first. */ | |
1630 | if (bed->elf_backend_begin_write_processing) | |
71edd06d | 1631 | (*bed->elf_backend_begin_write_processing) (abfd, link_info); |
6ec3bb6a ILT |
1632 | |
1633 | if (! prep_headers (abfd)) | |
1634 | return false; | |
1635 | ||
eb4267a3 ILT |
1636 | failed = false; |
1637 | bfd_map_over_sections (abfd, elf_fake_sections, &failed); | |
1638 | if (failed) | |
1639 | return false; | |
244ffee7 | 1640 | |
9783e04a DM |
1641 | if (!assign_section_numbers (abfd)) |
1642 | return false; | |
244ffee7 | 1643 | |
6ec3bb6a ILT |
1644 | /* The backend linker builds symbol table information itself. */ |
1645 | if (link_info == NULL) | |
1646 | { | |
eb4267a3 | 1647 | if (! swap_out_syms (abfd, &strtab)) |
6ec3bb6a ILT |
1648 | return false; |
1649 | } | |
244ffee7 | 1650 | |
6ec3bb6a ILT |
1651 | shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; |
1652 | /* sh_name was set in prep_headers. */ | |
1653 | shstrtab_hdr->sh_type = SHT_STRTAB; | |
1654 | shstrtab_hdr->sh_flags = 0; | |
1655 | shstrtab_hdr->sh_addr = 0; | |
eb4267a3 | 1656 | shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); |
6ec3bb6a ILT |
1657 | shstrtab_hdr->sh_entsize = 0; |
1658 | shstrtab_hdr->sh_link = 0; | |
1659 | shstrtab_hdr->sh_info = 0; | |
1660 | /* sh_offset is set in assign_file_positions_for_symtabs_and_strtabs. */ | |
1661 | shstrtab_hdr->sh_addralign = 1; | |
6ec3bb6a ILT |
1662 | |
1663 | if (!assign_file_positions_except_relocs (abfd, | |
1664 | link_info == NULL ? true : false)) | |
9783e04a | 1665 | return false; |
32090b8e | 1666 | |
eb4267a3 ILT |
1667 | if (link_info == NULL) |
1668 | { | |
1669 | /* Now that we know where the .strtab section goes, write it | |
1670 | out. */ | |
1671 | if ((bfd_seek (abfd, elf_tdata (abfd)->strtab_hdr.sh_offset, SEEK_SET) | |
1672 | != 0) | |
1673 | || ! _bfd_stringtab_emit (abfd, strtab)) | |
1674 | return false; | |
1675 | _bfd_stringtab_free (strtab); | |
1676 | } | |
1677 | ||
6ec3bb6a ILT |
1678 | abfd->output_has_begun = true; |
1679 | ||
32090b8e KR |
1680 | return true; |
1681 | } | |
1682 | ||
244ffee7 | 1683 | |
013dec1a ILT |
1684 | /* Align to the maximum file alignment that could be required for any |
1685 | ELF data structure. */ | |
1686 | ||
1687 | static INLINE file_ptr | |
1688 | align_file_position (off) | |
1689 | file_ptr off; | |
1690 | { | |
1691 | return (off + FILE_ALIGN - 1) & ~(FILE_ALIGN - 1); | |
1692 | } | |
1693 | ||
1694 | /* Assign a file position to a section, optionally aligning to the | |
1695 | required section alignment. */ | |
1696 | ||
32090b8e | 1697 | static INLINE file_ptr |
013dec1a | 1698 | assign_file_position_for_section (i_shdrp, offset, align) |
32090b8e KR |
1699 | Elf_Internal_Shdr *i_shdrp; |
1700 | file_ptr offset; | |
013dec1a | 1701 | boolean align; |
32090b8e | 1702 | { |
013dec1a ILT |
1703 | if (align) |
1704 | { | |
1705 | unsigned int al; | |
f035cc47 | 1706 | |
013dec1a ILT |
1707 | al = i_shdrp->sh_addralign; |
1708 | if (al > 1) | |
1709 | offset = BFD_ALIGN (offset, al); | |
1710 | } | |
1711 | i_shdrp->sh_offset = offset; | |
24f13b03 ILT |
1712 | if (i_shdrp->bfd_section != NULL) |
1713 | i_shdrp->bfd_section->filepos = offset; | |
300adb31 KR |
1714 | if (i_shdrp->sh_type != SHT_NOBITS) |
1715 | offset += i_shdrp->sh_size; | |
32090b8e | 1716 | return offset; |
244ffee7 JK |
1717 | } |
1718 | ||
6c97aedf ILT |
1719 | /* Get the size of the program header. |
1720 | ||
1721 | SORTED_HDRS, if non-NULL, is an array of COUNT pointers to headers sorted | |
1722 | by VMA. Non-allocated sections (!SHF_ALLOC) must appear last. All | |
1723 | section VMAs and sizes are known so we can compute the correct value. | |
1724 | (??? This may not be perfectly true. What cases do we miss?) | |
1725 | ||
1726 | If SORTED_HDRS is NULL we assume there are two segments: text and data | |
1727 | (exclusive of .interp and .dynamic). | |
1728 | ||
1729 | If this is called by the linker before any of the section VMA's are set, it | |
1730 | can't calculate the correct value for a strange memory layout. This only | |
1731 | happens when SIZEOF_HEADERS is used in a linker script. In this case, | |
1732 | SORTED_HDRS is NULL and we assume the normal scenario of one text and one | |
1733 | data segment (exclusive of .interp and .dynamic). | |
1734 | ||
1735 | ??? User written scripts must either not use SIZEOF_HEADERS, or assume there | |
1736 | will be two segments. */ | |
01383fb4 | 1737 | |
013dec1a | 1738 | static bfd_size_type |
6c97aedf | 1739 | get_program_header_size (abfd, sorted_hdrs, count, maxpagesize) |
300adb31 | 1740 | bfd *abfd; |
6c97aedf ILT |
1741 | Elf_Internal_Shdr **sorted_hdrs; |
1742 | unsigned int count; | |
1743 | bfd_vma maxpagesize; | |
300adb31 | 1744 | { |
013dec1a ILT |
1745 | size_t segs; |
1746 | asection *s; | |
300adb31 | 1747 | |
6c97aedf ILT |
1748 | /* We can't return a different result each time we're called. */ |
1749 | if (elf_tdata (abfd)->program_header_size != 0) | |
1750 | return elf_tdata (abfd)->program_header_size; | |
1751 | ||
1752 | if (sorted_hdrs != NULL) | |
1753 | { | |
1754 | unsigned int i; | |
1755 | unsigned int last_type; | |
1756 | Elf_Internal_Shdr **hdrpp; | |
1757 | /* What we think the current segment's offset is. */ | |
1758 | bfd_vma p_offset; | |
1759 | /* What we think the current segment's address is. */ | |
1760 | bfd_vma p_vaddr; | |
1761 | /* How big we think the current segment is. */ | |
1762 | bfd_vma p_memsz; | |
1763 | /* What we think the current file offset is. */ | |
1764 | bfd_vma file_offset; | |
1765 | bfd_vma next_offset; | |
1766 | ||
1767 | /* Scan the headers and compute the number of segments required. This | |
1768 | code is intentionally similar to the code in map_program_segments. | |
1769 | ||
1770 | The `sh_offset' field isn't valid at this point, so we keep our own | |
1771 | running total in `file_offset'. | |
1772 | ||
1773 | This works because section VMAs are already known. */ | |
1774 | ||
1775 | segs = 1; | |
1776 | /* Make sure the first section goes in the first segment. */ | |
1777 | file_offset = p_offset = sorted_hdrs[0]->sh_addr % maxpagesize; | |
1778 | p_vaddr = sorted_hdrs[0]->sh_addr; | |
1779 | p_memsz = 0; | |
1780 | last_type = SHT_PROGBITS; | |
1781 | ||
1782 | for (i = 0, hdrpp = sorted_hdrs; i < count; i++, hdrpp++) | |
1783 | { | |
1784 | Elf_Internal_Shdr *hdr; | |
1785 | ||
1786 | hdr = *hdrpp; | |
1787 | ||
1788 | /* Ignore any section which will not be part of the process | |
1789 | image. */ | |
1790 | if ((hdr->sh_flags & SHF_ALLOC) == 0) | |
1791 | continue; | |
1792 | ||
1793 | /* Keep track of where this and the next sections go. | |
1794 | The section VMA must equal the file position modulo | |
1795 | the page size. */ | |
1796 | file_offset += (hdr->sh_addr - file_offset) % maxpagesize; | |
1797 | next_offset = file_offset; | |
1798 | if (hdr->sh_type != SHT_NOBITS) | |
1799 | next_offset = file_offset + hdr->sh_size; | |
1800 | ||
1801 | /* If this section fits in the segment we are constructing, add | |
1802 | it in. */ | |
1803 | if ((file_offset - (p_offset + p_memsz) | |
1804 | == hdr->sh_addr - (p_vaddr + p_memsz)) | |
1805 | && (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS)) | |
1806 | { | |
1807 | bfd_size_type adjust; | |
1808 | ||
1809 | adjust = hdr->sh_addr - (p_vaddr + p_memsz); | |
1810 | p_memsz += hdr->sh_size + adjust; | |
1811 | file_offset = next_offset; | |
1812 | last_type = hdr->sh_type; | |
1813 | continue; | |
1814 | } | |
1815 | ||
1816 | /* The section won't fit, start a new segment. */ | |
1817 | ++segs; | |
1818 | ||
1819 | /* Initialize the segment. */ | |
1820 | p_vaddr = hdr->sh_addr; | |
1821 | p_memsz = hdr->sh_size; | |
1822 | p_offset = file_offset; | |
1823 | file_offset = next_offset; | |
1824 | ||
1825 | last_type = hdr->sh_type; | |
1826 | } | |
1827 | } | |
1828 | else | |
1829 | { | |
1830 | /* Assume we will need exactly two PT_LOAD segments: one for text | |
1831 | and one for data. */ | |
1832 | segs = 2; | |
1833 | } | |
013dec1a ILT |
1834 | |
1835 | s = bfd_get_section_by_name (abfd, ".interp"); | |
1836 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
1837 | { | |
1838 | /* If we have a loadable interpreter section, we need a | |
1839 | PT_INTERP segment. In this case, assume we also need a | |
1840 | PT_PHDR segment, although that may not be true for all | |
1841 | targets. */ | |
1842 | segs += 2; | |
1843 | } | |
1844 | ||
1845 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
1846 | { | |
1847 | /* We need a PT_DYNAMIC segment. */ | |
1848 | ++segs; | |
1849 | } | |
1850 | ||
6c97aedf ILT |
1851 | elf_tdata (abfd)->program_header_size = segs * sizeof (Elf_External_Phdr); |
1852 | return elf_tdata (abfd)->program_header_size; | |
300adb31 KR |
1853 | } |
1854 | ||
013dec1a ILT |
1855 | /* Create the program header. OFF is the file offset where the |
1856 | program header should be written. FIRST is the first loadable ELF | |
5945db29 ILT |
1857 | section. SORTED_HDRS is the ELF sections sorted by section |
1858 | address. PHDR_SIZE is the size of the program header as returned | |
013dec1a | 1859 | by get_program_header_size. */ |
300adb31 | 1860 | |
013dec1a | 1861 | static file_ptr |
5945db29 | 1862 | map_program_segments (abfd, off, first, sorted_hdrs, phdr_size) |
300adb31 | 1863 | bfd *abfd; |
013dec1a ILT |
1864 | file_ptr off; |
1865 | Elf_Internal_Shdr *first; | |
5945db29 | 1866 | Elf_Internal_Shdr **sorted_hdrs; |
013dec1a | 1867 | bfd_size_type phdr_size; |
300adb31 | 1868 | { |
6731b89c | 1869 | Elf_Internal_Phdr phdrs[10]; |
013dec1a | 1870 | unsigned int phdr_count; |
300adb31 | 1871 | Elf_Internal_Phdr *phdr; |
013dec1a ILT |
1872 | int phdr_size_adjust; |
1873 | unsigned int i; | |
1874 | Elf_Internal_Shdr **hdrpp; | |
1875 | asection *sinterp, *sdyn; | |
1876 | unsigned int last_type; | |
1877 | Elf_Internal_Ehdr *i_ehdrp; | |
1878 | ||
df9e066f | 1879 | BFD_ASSERT ((abfd->flags & (EXEC_P | DYNAMIC)) != 0); |
6731b89c ILT |
1880 | BFD_ASSERT (phdr_size / sizeof (Elf_Internal_Phdr) |
1881 | <= sizeof phdrs / sizeof (phdrs[0])); | |
013dec1a ILT |
1882 | |
1883 | phdr_count = 0; | |
1884 | phdr = phdrs; | |
1885 | ||
1886 | phdr_size_adjust = 0; | |
300adb31 | 1887 | |
013dec1a ILT |
1888 | /* If we have a loadable .interp section, we must create a PT_INTERP |
1889 | segment which must precede all PT_LOAD segments. We assume that | |
1890 | we must also create a PT_PHDR segment, although that may not be | |
1891 | true for all targets. */ | |
1892 | sinterp = bfd_get_section_by_name (abfd, ".interp"); | |
1893 | if (sinterp != NULL && (sinterp->flags & SEC_LOAD) != 0) | |
80425e6c | 1894 | { |
013dec1a ILT |
1895 | BFD_ASSERT (first != NULL); |
1896 | ||
1897 | phdr->p_type = PT_PHDR; | |
1898 | ||
1899 | phdr->p_offset = off; | |
1900 | ||
1901 | /* Account for any adjustment made because of the alignment of | |
1902 | the first loadable section. */ | |
1903 | phdr_size_adjust = (first->sh_offset - phdr_size) - off; | |
1904 | BFD_ASSERT (phdr_size_adjust >= 0 && phdr_size_adjust < 128); | |
1905 | ||
1906 | /* The program header precedes all loadable sections. This lets | |
1907 | us compute its loadable address. This depends on the linker | |
1908 | script. */ | |
1909 | phdr->p_vaddr = first->sh_addr - (phdr_size + phdr_size_adjust); | |
1910 | ||
1911 | phdr->p_paddr = 0; | |
1912 | phdr->p_filesz = phdr_size; | |
1913 | phdr->p_memsz = phdr_size; | |
1914 | ||
1915 | /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ | |
1916 | phdr->p_flags = PF_R | PF_X; | |
1917 | ||
1918 | phdr->p_align = FILE_ALIGN; | |
1919 | BFD_ASSERT ((phdr->p_vaddr - phdr->p_offset) % FILE_ALIGN == 0); | |
1920 | ||
1921 | /* Include the ELF header in the first loadable segment. */ | |
1922 | phdr_size_adjust += off; | |
1923 | ||
1924 | ++phdr_count; | |
1925 | ++phdr; | |
1926 | ||
1927 | phdr->p_type = PT_INTERP; | |
1928 | phdr->p_offset = sinterp->filepos; | |
1929 | phdr->p_vaddr = sinterp->vma; | |
1930 | phdr->p_paddr = 0; | |
1931 | phdr->p_filesz = sinterp->_raw_size; | |
1932 | phdr->p_memsz = sinterp->_raw_size; | |
1933 | phdr->p_flags = PF_R; | |
1934 | phdr->p_align = 1 << bfd_get_section_alignment (abfd, sinterp); | |
1935 | ||
1936 | ++phdr_count; | |
1937 | ++phdr; | |
80425e6c | 1938 | } |
013dec1a ILT |
1939 | |
1940 | /* Look through the sections to see how they will be divided into | |
1941 | program segments. The sections must be arranged in order by | |
1942 | sh_addr for this to work correctly. */ | |
1943 | phdr->p_type = PT_NULL; | |
1944 | last_type = SHT_PROGBITS; | |
5945db29 | 1945 | for (i = 1, hdrpp = sorted_hdrs; |
013dec1a ILT |
1946 | i < elf_elfheader (abfd)->e_shnum; |
1947 | i++, hdrpp++) | |
300adb31 | 1948 | { |
013dec1a ILT |
1949 | Elf_Internal_Shdr *hdr; |
1950 | ||
1951 | hdr = *hdrpp; | |
1952 | ||
1953 | /* Ignore any section which will not be part of the process | |
1954 | image. */ | |
1955 | if ((hdr->sh_flags & SHF_ALLOC) == 0) | |
1956 | continue; | |
1957 | ||
1958 | /* If this section fits in the segment we are constructing, add | |
1959 | it in. */ | |
1960 | if (phdr->p_type != PT_NULL | |
1961 | && (hdr->sh_offset - (phdr->p_offset + phdr->p_memsz) | |
1962 | == hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz)) | |
1963 | && (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS)) | |
300adb31 | 1964 | { |
013dec1a ILT |
1965 | bfd_size_type adjust; |
1966 | ||
1967 | adjust = hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz); | |
1968 | phdr->p_memsz += hdr->sh_size + adjust; | |
1969 | if (hdr->sh_type != SHT_NOBITS) | |
1970 | phdr->p_filesz += hdr->sh_size + adjust; | |
1971 | if ((hdr->sh_flags & SHF_WRITE) != 0) | |
1972 | phdr->p_flags |= PF_W; | |
1973 | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) | |
1974 | phdr->p_flags |= PF_X; | |
1975 | last_type = hdr->sh_type; | |
300adb31 KR |
1976 | continue; |
1977 | } | |
300adb31 | 1978 | |
6c97aedf ILT |
1979 | /* The section won't fit, start a new segment. If we're already in one, |
1980 | move to the next one. */ | |
013dec1a | 1981 | if (phdr->p_type != PT_NULL) |
300adb31 | 1982 | { |
013dec1a ILT |
1983 | ++phdr; |
1984 | ++phdr_count; | |
300adb31 | 1985 | } |
013dec1a | 1986 | |
6c97aedf | 1987 | /* Initialize the segment. */ |
013dec1a ILT |
1988 | phdr->p_type = PT_LOAD; |
1989 | phdr->p_offset = hdr->sh_offset; | |
1990 | phdr->p_vaddr = hdr->sh_addr; | |
1991 | phdr->p_paddr = 0; | |
1992 | if (hdr->sh_type == SHT_NOBITS) | |
1993 | phdr->p_filesz = 0; | |
1994 | else | |
1995 | phdr->p_filesz = hdr->sh_size; | |
1996 | phdr->p_memsz = hdr->sh_size; | |
1997 | phdr->p_flags = PF_R; | |
1998 | if ((hdr->sh_flags & SHF_WRITE) != 0) | |
1999 | phdr->p_flags |= PF_W; | |
2000 | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) | |
2001 | phdr->p_flags |= PF_X; | |
2002 | phdr->p_align = get_elf_backend_data (abfd)->maxpagesize; | |
2003 | ||
2004 | if (hdr == first | |
2005 | && sinterp != NULL | |
2006 | && (sinterp->flags & SEC_LOAD) != 0) | |
2f3189e7 | 2007 | { |
013dec1a ILT |
2008 | phdr->p_offset -= phdr_size + phdr_size_adjust; |
2009 | phdr->p_vaddr -= phdr_size + phdr_size_adjust; | |
2010 | phdr->p_filesz += phdr_size + phdr_size_adjust; | |
2011 | phdr->p_memsz += phdr_size + phdr_size_adjust; | |
2f3189e7 | 2012 | } |
300adb31 | 2013 | |
013dec1a | 2014 | last_type = hdr->sh_type; |
300adb31 | 2015 | } |
300adb31 | 2016 | |
013dec1a ILT |
2017 | if (phdr->p_type != PT_NULL) |
2018 | { | |
2019 | ++phdr; | |
2020 | ++phdr_count; | |
2021 | } | |
2022 | ||
2023 | /* If we have a .dynamic section, create a PT_DYNAMIC segment. */ | |
2024 | sdyn = bfd_get_section_by_name (abfd, ".dynamic"); | |
2025 | if (sdyn != NULL && (sdyn->flags & SEC_LOAD) != 0) | |
2026 | { | |
2027 | phdr->p_type = PT_DYNAMIC; | |
2028 | phdr->p_offset = sdyn->filepos; | |
2029 | phdr->p_vaddr = sdyn->vma; | |
2030 | phdr->p_paddr = 0; | |
2031 | phdr->p_filesz = sdyn->_raw_size; | |
2032 | phdr->p_memsz = sdyn->_raw_size; | |
2033 | phdr->p_flags = PF_R; | |
2034 | if ((sdyn->flags & SEC_READONLY) == 0) | |
2035 | phdr->p_flags |= PF_W; | |
2036 | if ((sdyn->flags & SEC_CODE) != 0) | |
2037 | phdr->p_flags |= PF_X; | |
2038 | phdr->p_align = 1 << bfd_get_section_alignment (abfd, sdyn); | |
2039 | ||
2040 | ++phdr; | |
2041 | ++phdr_count; | |
2042 | } | |
2043 | ||
013dec1a | 2044 | /* Make sure the return value from get_program_header_size matches |
57b40081 ILT |
2045 | what we computed here. Actually, it's OK if we allocated too |
2046 | much space in the program header. */ | |
2047 | if (phdr_count > phdr_size / sizeof (Elf_External_Phdr)) | |
0ef449df KR |
2048 | { |
2049 | ((*_bfd_error_handler) | |
2050 | ("%s: Not enough room for program headers (allocated %lu, need %u)", | |
2051 | bfd_get_filename (abfd), | |
2052 | (unsigned long) (phdr_size / sizeof (Elf_External_Phdr)), | |
2053 | phdr_count)); | |
2054 | bfd_set_error (bfd_error_bad_value); | |
2055 | return (file_ptr) -1; | |
2056 | } | |
013dec1a ILT |
2057 | |
2058 | /* Set up program header information. */ | |
2059 | i_ehdrp = elf_elfheader (abfd); | |
2060 | i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); | |
2061 | i_ehdrp->e_phoff = off; | |
2062 | i_ehdrp->e_phnum = phdr_count; | |
2063 | ||
2064 | /* Save the program headers away. I don't think anybody uses this | |
2065 | information right now. */ | |
2066 | elf_tdata (abfd)->phdr = ((Elf_Internal_Phdr *) | |
2067 | bfd_alloc (abfd, | |
2068 | (phdr_count | |
2069 | * sizeof (Elf_Internal_Phdr)))); | |
2070 | if (elf_tdata (abfd)->phdr == NULL && phdr_count != 0) | |
2071 | { | |
2072 | bfd_set_error (bfd_error_no_memory); | |
2073 | return (file_ptr) -1; | |
2074 | } | |
2075 | memcpy (elf_tdata (abfd)->phdr, phdrs, | |
2076 | phdr_count * sizeof (Elf_Internal_Phdr)); | |
2077 | ||
2078 | /* Write out the program headers. */ | |
2079 | if (bfd_seek (abfd, off, SEEK_SET) != 0) | |
2080 | return (file_ptr) -1; | |
2081 | ||
2082 | for (i = 0, phdr = phdrs; i < phdr_count; i++, phdr++) | |
2083 | { | |
2084 | Elf_External_Phdr extphdr; | |
2085 | ||
2086 | elf_swap_phdr_out (abfd, phdr, &extphdr); | |
2087 | if (bfd_write (&extphdr, sizeof (Elf_External_Phdr), 1, abfd) | |
2088 | != sizeof (Elf_External_Phdr)) | |
2089 | return (file_ptr) -1; | |
2090 | } | |
2091 | ||
2092 | return off + phdr_count * sizeof (Elf_External_Phdr); | |
300adb31 KR |
2093 | } |
2094 | ||
013dec1a ILT |
2095 | /* Work out the file positions of all the sections. This is called by |
2096 | elf_compute_section_file_positions. All the section sizes and VMAs | |
2097 | must be known before this is called. | |
2098 | ||
2099 | We do not consider reloc sections at this point, unless they form | |
2100 | part of the loadable image. Reloc sections are assigned file | |
2101 | positions in assign_file_positions_for_relocs, which is called by | |
2102 | write_object_contents and final_link. | |
2103 | ||
2104 | If DOSYMS is false, we do not assign file positions for the symbol | |
2105 | table or the string table. */ | |
2106 | ||
9783e04a | 2107 | static boolean |
6ec3bb6a | 2108 | assign_file_positions_except_relocs (abfd, dosyms) |
32090b8e | 2109 | bfd *abfd; |
6ec3bb6a | 2110 | boolean dosyms; |
244ffee7 | 2111 | { |
013dec1a ILT |
2112 | struct elf_obj_tdata * const tdata = elf_tdata (abfd); |
2113 | Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd); | |
2114 | Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); | |
32090b8e | 2115 | file_ptr off; |
32090b8e | 2116 | |
013dec1a | 2117 | /* Start after the ELF header. */ |
32090b8e | 2118 | off = i_ehdrp->e_ehsize; |
300adb31 | 2119 | |
df9e066f | 2120 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) |
300adb31 | 2121 | { |
013dec1a ILT |
2122 | Elf_Internal_Shdr **hdrpp; |
2123 | unsigned int i; | |
062189c6 | 2124 | |
013dec1a ILT |
2125 | /* We are not creating an executable, which means that we are |
2126 | not creating a program header, and that the actual order of | |
2127 | the sections in the file is unimportant. */ | |
2128 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
244ffee7 | 2129 | { |
013dec1a ILT |
2130 | Elf_Internal_Shdr *hdr; |
2131 | ||
2132 | hdr = *hdrpp; | |
2133 | if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) | |
300adb31 | 2134 | { |
013dec1a | 2135 | hdr->sh_offset = -1; |
300adb31 KR |
2136 | continue; |
2137 | } | |
013dec1a ILT |
2138 | if (! dosyms |
2139 | && (i == tdata->symtab_section | |
2140 | || i == tdata->strtab_section)) | |
300adb31 | 2141 | { |
013dec1a ILT |
2142 | hdr->sh_offset = -1; |
2143 | continue; | |
300adb31 | 2144 | } |
013dec1a ILT |
2145 | |
2146 | off = assign_file_position_for_section (hdr, off, true); | |
300adb31 | 2147 | } |
300adb31 | 2148 | } |
013dec1a | 2149 | else |
300adb31 | 2150 | { |
013dec1a ILT |
2151 | file_ptr phdr_off; |
2152 | bfd_size_type phdr_size; | |
2153 | bfd_vma maxpagesize; | |
11bb5591 ILT |
2154 | size_t hdrppsize; |
2155 | Elf_Internal_Shdr **sorted_hdrs; | |
013dec1a ILT |
2156 | Elf_Internal_Shdr **hdrpp; |
2157 | unsigned int i; | |
2158 | Elf_Internal_Shdr *first; | |
2159 | file_ptr phdr_map; | |
2160 | ||
6c97aedf | 2161 | /* We are creating an executable. */ |
013dec1a ILT |
2162 | |
2163 | maxpagesize = get_elf_backend_data (abfd)->maxpagesize; | |
2164 | if (maxpagesize == 0) | |
2165 | maxpagesize = 1; | |
2166 | ||
11bb5591 ILT |
2167 | /* We must sort the sections. The GNU linker will always create |
2168 | the sections in an appropriate order, but the Irix 5 linker | |
2169 | will not. We don't include the dummy first section in the | |
2170 | sort. We sort sections which are not SHF_ALLOC to the end. */ | |
2171 | hdrppsize = (i_ehdrp->e_shnum - 1) * sizeof (Elf_Internal_Shdr *); | |
2172 | sorted_hdrs = (Elf_Internal_Shdr **) malloc (hdrppsize); | |
2173 | if (sorted_hdrs == NULL) | |
013dec1a | 2174 | { |
11bb5591 ILT |
2175 | bfd_set_error (bfd_error_no_memory); |
2176 | return false; | |
013dec1a | 2177 | } |
300adb31 | 2178 | |
11bb5591 ILT |
2179 | memcpy (sorted_hdrs, i_shdrpp + 1, hdrppsize); |
2180 | qsort (sorted_hdrs, i_ehdrp->e_shnum - 1, sizeof (Elf_Internal_Shdr *), | |
2181 | elf_sort_hdrs); | |
2182 | ||
6c97aedf ILT |
2183 | /* We can't actually create the program header until we have set the |
2184 | file positions for the sections, and we can't do that until we know | |
2185 | how big the header is going to be. */ | |
2186 | off = align_file_position (off); | |
2187 | phdr_size = get_program_header_size (abfd, | |
2188 | sorted_hdrs, i_ehdrp->e_shnum - 1, | |
2189 | maxpagesize); | |
2190 | if (phdr_size == (file_ptr) -1) | |
2191 | return false; | |
2192 | ||
2193 | /* Compute the file offsets of each section. */ | |
2194 | phdr_off = off; | |
2195 | off += phdr_size; | |
11bb5591 ILT |
2196 | first = NULL; |
2197 | for (i = 1, hdrpp = sorted_hdrs; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
300adb31 | 2198 | { |
013dec1a ILT |
2199 | Elf_Internal_Shdr *hdr; |
2200 | ||
2201 | hdr = *hdrpp; | |
11bb5591 | 2202 | if ((hdr->sh_flags & SHF_ALLOC) == 0) |
013dec1a | 2203 | { |
11bb5591 ILT |
2204 | if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) |
2205 | { | |
2206 | hdr->sh_offset = -1; | |
2207 | continue; | |
2208 | } | |
2209 | if (! dosyms | |
2210 | && (hdr == i_shdrpp[tdata->symtab_section] | |
2211 | || hdr == i_shdrpp[tdata->strtab_section])) | |
2212 | { | |
2213 | hdr->sh_offset = -1; | |
2214 | continue; | |
2215 | } | |
013dec1a | 2216 | } |
11bb5591 | 2217 | else |
013dec1a | 2218 | { |
11bb5591 ILT |
2219 | if (first == NULL) |
2220 | first = hdr; | |
2221 | ||
2222 | /* The section VMA must equal the file position modulo | |
2223 | the page size. This is required by the program | |
2224 | header. */ | |
2225 | off += (hdr->sh_addr - off) % maxpagesize; | |
013dec1a ILT |
2226 | } |
2227 | ||
11bb5591 | 2228 | off = assign_file_position_for_section (hdr, off, false); |
300adb31 | 2229 | } |
013dec1a | 2230 | |
6c97aedf | 2231 | /* Create the program header. */ |
5945db29 ILT |
2232 | phdr_map = map_program_segments (abfd, phdr_off, first, sorted_hdrs, |
2233 | phdr_size); | |
013dec1a ILT |
2234 | if (phdr_map == (file_ptr) -1) |
2235 | return false; | |
85200ebc | 2236 | BFD_ASSERT ((bfd_size_type) phdr_map <= (bfd_size_type) phdr_off + phdr_size); |
6977046f ILT |
2237 | |
2238 | free (sorted_hdrs); | |
244ffee7 | 2239 | } |
013dec1a ILT |
2240 | |
2241 | /* Place the section headers. */ | |
2242 | off = align_file_position (off); | |
2243 | i_ehdrp->e_shoff = off; | |
2244 | off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; | |
2245 | ||
32090b8e | 2246 | elf_tdata (abfd)->next_file_pos = off; |
013dec1a | 2247 | |
9783e04a | 2248 | return true; |
244ffee7 JK |
2249 | } |
2250 | ||
11bb5591 ILT |
2251 | /* Sort the ELF headers by VMA. We sort headers which are not |
2252 | SHF_ALLOC to the end. */ | |
2253 | ||
d1ec549d | 2254 | |
11bb5591 ILT |
2255 | static int |
2256 | elf_sort_hdrs (arg1, arg2) | |
2257 | const PTR arg1; | |
2258 | const PTR arg2; | |
2259 | { | |
d1ec549d | 2260 | int ret; |
11bb5591 ILT |
2261 | const Elf_Internal_Shdr *hdr1 = *(const Elf_Internal_Shdr **) arg1; |
2262 | const Elf_Internal_Shdr *hdr2 = *(const Elf_Internal_Shdr **) arg2; | |
2263 | ||
d1ec549d SC |
2264 | #define TOEND(x) (((x)->sh_flags & SHF_ALLOC)==0) |
2265 | ||
2266 | if (TOEND(hdr1)) | |
2267 | if (TOEND(hdr2)) | |
2268 | return 0; | |
2269 | else | |
2270 | return 1; | |
d2117860 | 2271 | |
d1ec549d | 2272 | if (TOEND(hdr2)) |
11bb5591 | 2273 | return -1; |
d1ec549d | 2274 | |
11bb5591 ILT |
2275 | if (hdr1->sh_addr < hdr2->sh_addr) |
2276 | return -1; | |
2277 | else if (hdr1->sh_addr > hdr2->sh_addr) | |
2278 | return 1; | |
d2117860 ILT |
2279 | /* Put !SHT_NOBITS sections before SHT_NOBITS ones. |
2280 | The main loop in map_program_segments requires this. */ | |
2281 | ret = (hdr1->sh_type == SHT_NOBITS) - (hdr2->sh_type == SHT_NOBITS); | |
2282 | if (ret != 0) | |
2283 | return ret; | |
d1ec549d | 2284 | if (hdr1->sh_size < hdr2->sh_size) |
d2117860 | 2285 | return -1; |
d1ec549d | 2286 | if (hdr1->sh_size > hdr2->sh_size) |
df168c35 | 2287 | return 1; |
d2117860 | 2288 | return 0; |
11bb5591 | 2289 | } |
d1ec549d SC |
2290 | |
2291 | ||
11bb5591 | 2292 | |
32090b8e KR |
2293 | static boolean |
2294 | prep_headers (abfd) | |
2295 | bfd *abfd; | |
2296 | { | |
32090b8e | 2297 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ |
1c6042ee | 2298 | Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ |
32090b8e | 2299 | Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ |
32090b8e | 2300 | int count; |
eb4267a3 | 2301 | struct bfd_strtab_hash *shstrtab; |
244ffee7 | 2302 | |
32090b8e KR |
2303 | i_ehdrp = elf_elfheader (abfd); |
2304 | i_shdrp = elf_elfsections (abfd); | |
244ffee7 | 2305 | |
eb4267a3 ILT |
2306 | shstrtab = elf_stringtab_init (); |
2307 | if (shstrtab == NULL) | |
b9d5cdf0 | 2308 | return false; |
1c6042ee | 2309 | |
32090b8e | 2310 | elf_shstrtab (abfd) = shstrtab; |
244ffee7 | 2311 | |
32090b8e KR |
2312 | i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; |
2313 | i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; | |
2314 | i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; | |
2315 | i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; | |
244ffee7 | 2316 | |
32090b8e KR |
2317 | i_ehdrp->e_ident[EI_CLASS] = ELFCLASS; |
2318 | i_ehdrp->e_ident[EI_DATA] = | |
2319 | abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB; | |
2320 | i_ehdrp->e_ident[EI_VERSION] = EV_CURRENT; | |
244ffee7 | 2321 | |
32090b8e KR |
2322 | for (count = EI_PAD; count < EI_NIDENT; count++) |
2323 | i_ehdrp->e_ident[count] = 0; | |
244ffee7 | 2324 | |
8af74670 ILT |
2325 | if ((abfd->flags & DYNAMIC) != 0) |
2326 | i_ehdrp->e_type = ET_DYN; | |
2327 | else if ((abfd->flags & EXEC_P) != 0) | |
2328 | i_ehdrp->e_type = ET_EXEC; | |
2329 | else | |
2330 | i_ehdrp->e_type = ET_REL; | |
2331 | ||
32090b8e | 2332 | switch (bfd_get_arch (abfd)) |
fce36137 | 2333 | { |
32090b8e KR |
2334 | case bfd_arch_unknown: |
2335 | i_ehdrp->e_machine = EM_NONE; | |
2336 | break; | |
2337 | case bfd_arch_sparc: | |
32090b8e KR |
2338 | #if ARCH_SIZE == 64 |
2339 | i_ehdrp->e_machine = EM_SPARC64; | |
5546cc7e KR |
2340 | #else |
2341 | i_ehdrp->e_machine = EM_SPARC; | |
32090b8e | 2342 | #endif |
32090b8e KR |
2343 | break; |
2344 | case bfd_arch_i386: | |
2345 | i_ehdrp->e_machine = EM_386; | |
2346 | break; | |
2347 | case bfd_arch_m68k: | |
2348 | i_ehdrp->e_machine = EM_68K; | |
2349 | break; | |
2350 | case bfd_arch_m88k: | |
2351 | i_ehdrp->e_machine = EM_88K; | |
2352 | break; | |
2353 | case bfd_arch_i860: | |
2354 | i_ehdrp->e_machine = EM_860; | |
2355 | break; | |
2356 | case bfd_arch_mips: /* MIPS Rxxxx */ | |
2357 | i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */ | |
2358 | break; | |
2359 | case bfd_arch_hppa: | |
459ae909 | 2360 | i_ehdrp->e_machine = EM_PARISC; |
32090b8e | 2361 | break; |
99ec1f66 | 2362 | case bfd_arch_powerpc: |
c6d729b3 | 2363 | i_ehdrp->e_machine = EM_PPC; |
99ec1f66 | 2364 | break; |
4c124191 ILT |
2365 | /* start-sanitize-arc */ |
2366 | case bfd_arch_arc: | |
2367 | i_ehdrp->e_machine = EM_CYGNUS_ARC; | |
2368 | break; | |
2369 | /* end-sanitize-arc */ | |
32090b8e KR |
2370 | /* also note that EM_M32, AT&T WE32100 is unknown to bfd */ |
2371 | default: | |
2372 | i_ehdrp->e_machine = EM_NONE; | |
fce36137 | 2373 | } |
32090b8e KR |
2374 | i_ehdrp->e_version = EV_CURRENT; |
2375 | i_ehdrp->e_ehsize = sizeof (Elf_External_Ehdr); | |
244ffee7 | 2376 | |
32090b8e KR |
2377 | /* no program header, for now. */ |
2378 | i_ehdrp->e_phoff = 0; | |
2379 | i_ehdrp->e_phentsize = 0; | |
2380 | i_ehdrp->e_phnum = 0; | |
244ffee7 | 2381 | |
32090b8e KR |
2382 | /* each bfd section is section header entry */ |
2383 | i_ehdrp->e_entry = bfd_get_start_address (abfd); | |
2384 | i_ehdrp->e_shentsize = sizeof (Elf_External_Shdr); | |
244ffee7 | 2385 | |
32090b8e KR |
2386 | /* if we're building an executable, we'll need a program header table */ |
2387 | if (abfd->flags & EXEC_P) | |
244ffee7 | 2388 | { |
300adb31 | 2389 | /* it all happens later */ |
32090b8e KR |
2390 | #if 0 |
2391 | i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); | |
244ffee7 | 2392 | |
32090b8e KR |
2393 | /* elf_build_phdrs() returns a (NULL-terminated) array of |
2394 | Elf_Internal_Phdrs */ | |
2395 | i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum); | |
2396 | i_ehdrp->e_phoff = outbase; | |
2397 | outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum; | |
2398 | #endif | |
244ffee7 | 2399 | } |
32090b8e | 2400 | else |
244ffee7 | 2401 | { |
32090b8e KR |
2402 | i_ehdrp->e_phentsize = 0; |
2403 | i_phdrp = 0; | |
2404 | i_ehdrp->e_phoff = 0; | |
244ffee7 JK |
2405 | } |
2406 | ||
eb4267a3 ILT |
2407 | elf_tdata (abfd)->symtab_hdr.sh_name = |
2408 | (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false); | |
2409 | elf_tdata (abfd)->strtab_hdr.sh_name = | |
2410 | (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false); | |
2411 | elf_tdata (abfd)->shstrtab_hdr.sh_name = | |
2412 | (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false); | |
6ec3bb6a ILT |
2413 | if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 |
2414 | || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 | |
2415 | || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) | |
2416 | return false; | |
2417 | ||
f035cc47 | 2418 | return true; |
244ffee7 JK |
2419 | } |
2420 | ||
b9d5cdf0 | 2421 | static boolean |
eb4267a3 | 2422 | swap_out_syms (abfd, sttp) |
32090b8e | 2423 | bfd *abfd; |
eb4267a3 | 2424 | struct bfd_strtab_hash **sttp; |
244ffee7 | 2425 | { |
9783e04a DM |
2426 | if (!elf_map_symbols (abfd)) |
2427 | return false; | |
244ffee7 | 2428 | |
32090b8e KR |
2429 | /* Dump out the symtabs. */ |
2430 | { | |
2431 | int symcount = bfd_get_symcount (abfd); | |
2432 | asymbol **syms = bfd_get_outsymbols (abfd); | |
eb4267a3 | 2433 | struct bfd_strtab_hash *stt; |
32090b8e KR |
2434 | Elf_Internal_Shdr *symtab_hdr; |
2435 | Elf_Internal_Shdr *symstrtab_hdr; | |
2436 | Elf_External_Sym *outbound_syms; | |
2437 | int idx; | |
244ffee7 | 2438 | |
eb4267a3 ILT |
2439 | stt = elf_stringtab_init (); |
2440 | if (stt == NULL) | |
b9d5cdf0 | 2441 | return false; |
eb4267a3 | 2442 | |
32090b8e KR |
2443 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
2444 | symtab_hdr->sh_type = SHT_SYMTAB; | |
2445 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
2446 | symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); | |
2447 | symtab_hdr->sh_info = elf_num_locals (abfd) + 1; | |
fa15568a | 2448 | symtab_hdr->sh_addralign = FILE_ALIGN; |
244ffee7 | 2449 | |
32090b8e KR |
2450 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
2451 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
244ffee7 | 2452 | |
e4a4da62 ILT |
2453 | outbound_syms = ((Elf_External_Sym *) |
2454 | bfd_alloc (abfd, | |
2455 | (1 + symcount) * sizeof (Elf_External_Sym))); | |
2456 | if (outbound_syms == NULL) | |
9783e04a | 2457 | { |
d1ad85a6 | 2458 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
2459 | return false; |
2460 | } | |
e4a4da62 ILT |
2461 | symtab_hdr->contents = (PTR) outbound_syms; |
2462 | ||
32090b8e KR |
2463 | /* now generate the data (for "contents") */ |
2464 | { | |
2465 | /* Fill in zeroth symbol and swap it out. */ | |
2466 | Elf_Internal_Sym sym; | |
2467 | sym.st_name = 0; | |
2468 | sym.st_value = 0; | |
2469 | sym.st_size = 0; | |
2470 | sym.st_info = 0; | |
2471 | sym.st_other = 0; | |
2472 | sym.st_shndx = SHN_UNDEF; | |
2473 | elf_swap_symbol_out (abfd, &sym, outbound_syms); | |
e4a4da62 | 2474 | ++outbound_syms; |
244ffee7 | 2475 | } |
32090b8e KR |
2476 | for (idx = 0; idx < symcount; idx++) |
2477 | { | |
2478 | Elf_Internal_Sym sym; | |
2479 | bfd_vma value = syms[idx]->value; | |
71edd06d | 2480 | elf_symbol_type *type_ptr; |
0ef449df | 2481 | flagword flags = syms[idx]->flags; |
244ffee7 | 2482 | |
0ef449df | 2483 | if (flags & BSF_SECTION_SYM) |
32090b8e KR |
2484 | /* Section symbols have no names. */ |
2485 | sym.st_name = 0; | |
2486 | else | |
6ec3bb6a | 2487 | { |
eb4267a3 ILT |
2488 | sym.st_name = (unsigned long) _bfd_stringtab_add (stt, |
2489 | syms[idx]->name, | |
2490 | true, false); | |
6ec3bb6a ILT |
2491 | if (sym.st_name == (unsigned long) -1) |
2492 | return false; | |
2493 | } | |
244ffee7 | 2494 | |
71edd06d ILT |
2495 | type_ptr = elf_symbol_from (abfd, syms[idx]); |
2496 | ||
32090b8e | 2497 | if (bfd_is_com_section (syms[idx]->section)) |
244ffee7 | 2498 | { |
32090b8e KR |
2499 | /* ELF common symbols put the alignment into the `value' field, |
2500 | and the size into the `size' field. This is backwards from | |
2501 | how BFD handles it, so reverse it here. */ | |
2502 | sym.st_size = value; | |
4c032270 KR |
2503 | if (type_ptr == NULL |
2504 | || type_ptr->internal_elf_sym.st_value == 0) | |
2505 | sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); | |
2506 | else | |
2507 | sym.st_value = type_ptr->internal_elf_sym.st_value; | |
d4fb8fce ILT |
2508 | sym.st_shndx = elf_section_from_bfd_section (abfd, |
2509 | syms[idx]->section); | |
244ffee7 JK |
2510 | } |
2511 | else | |
2512 | { | |
32090b8e KR |
2513 | asection *sec = syms[idx]->section; |
2514 | int shndx; | |
244ffee7 | 2515 | |
32090b8e KR |
2516 | if (sec->output_section) |
2517 | { | |
2518 | value += sec->output_offset; | |
2519 | sec = sec->output_section; | |
2520 | } | |
2521 | value += sec->vma; | |
2522 | sym.st_value = value; | |
e74034d8 | 2523 | sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; |
32090b8e KR |
2524 | sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec); |
2525 | if (shndx == -1) | |
2526 | { | |
2527 | asection *sec2; | |
2528 | /* Writing this would be a hell of a lot easier if we had | |
2529 | some decent documentation on bfd, and knew what to expect | |
2530 | of the library, and what to demand of applications. For | |
2531 | example, it appears that `objcopy' might not set the | |
2532 | section of a symbol to be a section that is actually in | |
2533 | the output file. */ | |
2534 | sec2 = bfd_get_section_by_name (abfd, sec->name); | |
850584ad | 2535 | BFD_ASSERT (sec2 != 0); |
32090b8e | 2536 | sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec2); |
850584ad | 2537 | BFD_ASSERT (shndx != -1); |
32090b8e KR |
2538 | } |
2539 | } | |
244ffee7 | 2540 | |
32090b8e | 2541 | if (bfd_is_com_section (syms[idx]->section)) |
38a5f510 | 2542 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_OBJECT); |
badd23e3 | 2543 | else if (bfd_is_und_section (syms[idx]->section)) |
0ef449df KR |
2544 | sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) |
2545 | ? STB_WEAK | |
2546 | : STB_GLOBAL), | |
2547 | ((flags & BSF_FUNCTION) | |
3c9832f8 ILT |
2548 | ? STT_FUNC |
2549 | : STT_NOTYPE)); | |
0ef449df | 2550 | else if (flags & BSF_SECTION_SYM) |
32090b8e | 2551 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
0ef449df | 2552 | else if (flags & BSF_FILE) |
32090b8e | 2553 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); |
d24928c0 | 2554 | else |
32090b8e | 2555 | { |
d24928c0 KR |
2556 | int bind = STB_LOCAL; |
2557 | int type = STT_OBJECT; | |
d24928c0 KR |
2558 | |
2559 | if (flags & BSF_LOCAL) | |
2560 | bind = STB_LOCAL; | |
2561 | else if (flags & BSF_WEAK) | |
2562 | bind = STB_WEAK; | |
2563 | else if (flags & BSF_GLOBAL) | |
2564 | bind = STB_GLOBAL; | |
2565 | ||
2566 | if (flags & BSF_FUNCTION) | |
2567 | type = STT_FUNC; | |
2568 | ||
2569 | sym.st_info = ELF_ST_INFO (bind, type); | |
32090b8e | 2570 | } |
244ffee7 | 2571 | |
32090b8e | 2572 | sym.st_other = 0; |
e4a4da62 ILT |
2573 | elf_swap_symbol_out (abfd, &sym, outbound_syms); |
2574 | ++outbound_syms; | |
32090b8e KR |
2575 | } |
2576 | ||
eb4267a3 ILT |
2577 | *sttp = stt; |
2578 | symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); | |
32090b8e KR |
2579 | symstrtab_hdr->sh_type = SHT_STRTAB; |
2580 | ||
2581 | symstrtab_hdr->sh_flags = 0; | |
2582 | symstrtab_hdr->sh_addr = 0; | |
2583 | symstrtab_hdr->sh_entsize = 0; | |
2584 | symstrtab_hdr->sh_link = 0; | |
2585 | symstrtab_hdr->sh_info = 0; | |
062189c6 | 2586 | symstrtab_hdr->sh_addralign = 1; |
32090b8e KR |
2587 | } |
2588 | ||
b9d5cdf0 | 2589 | return true; |
244ffee7 JK |
2590 | } |
2591 | ||
32090b8e KR |
2592 | static boolean |
2593 | write_shdrs_and_ehdr (abfd) | |
2594 | bfd *abfd; | |
244ffee7 | 2595 | { |
32090b8e KR |
2596 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
2597 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
32090b8e KR |
2598 | Elf_External_Shdr *x_shdrp; /* Section header table, external form */ |
2599 | Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ | |
68241b2b | 2600 | unsigned int count; |
244ffee7 | 2601 | |
32090b8e KR |
2602 | i_ehdrp = elf_elfheader (abfd); |
2603 | i_shdrp = elf_elfsections (abfd); | |
32090b8e KR |
2604 | |
2605 | /* swap the header before spitting it out... */ | |
2606 | ||
2607 | #if DEBUG & 1 | |
2608 | elf_debug_file (i_ehdrp); | |
244ffee7 | 2609 | #endif |
32090b8e | 2610 | elf_swap_ehdr_out (abfd, i_ehdrp, &x_ehdr); |
4002f18a ILT |
2611 | if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0 |
2612 | || (bfd_write ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) | |
2613 | != sizeof (x_ehdr))) | |
2614 | return false; | |
244ffee7 | 2615 | |
32090b8e KR |
2616 | /* at this point we've concocted all the ELF sections... */ |
2617 | x_shdrp = (Elf_External_Shdr *) | |
2618 | bfd_alloc (abfd, sizeof (*x_shdrp) * (i_ehdrp->e_shnum)); | |
2619 | if (!x_shdrp) | |
2620 | { | |
d1ad85a6 | 2621 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
2622 | return false; |
2623 | } | |
2624 | ||
2625 | for (count = 0; count < i_ehdrp->e_shnum; count++) | |
2626 | { | |
2627 | #if DEBUG & 2 | |
eb4267a3 | 2628 | elf_debug_section (count, i_shdrp[count]); |
244ffee7 | 2629 | #endif |
32090b8e KR |
2630 | elf_swap_shdr_out (abfd, i_shdrp[count], x_shdrp + count); |
2631 | } | |
4002f18a ILT |
2632 | if (bfd_seek (abfd, (file_ptr) i_ehdrp->e_shoff, SEEK_SET) != 0 |
2633 | || (bfd_write ((PTR) x_shdrp, sizeof (*x_shdrp), i_ehdrp->e_shnum, abfd) | |
d909628b | 2634 | != sizeof (*x_shdrp) * i_ehdrp->e_shnum)) |
4002f18a ILT |
2635 | return false; |
2636 | ||
32090b8e | 2637 | /* need to dump the string table too... */ |
244ffee7 | 2638 | |
32090b8e KR |
2639 | return true; |
2640 | } | |
244ffee7 | 2641 | |
013dec1a ILT |
2642 | /* Assign file positions for all the reloc sections which are not part |
2643 | of the loadable file image. */ | |
2644 | ||
32090b8e KR |
2645 | static void |
2646 | assign_file_positions_for_relocs (abfd) | |
2647 | bfd *abfd; | |
2648 | { | |
013dec1a | 2649 | file_ptr off; |
68241b2b | 2650 | unsigned int i; |
013dec1a ILT |
2651 | Elf_Internal_Shdr **shdrpp; |
2652 | ||
2653 | off = elf_tdata (abfd)->next_file_pos; | |
2654 | ||
2655 | for (i = 1, shdrpp = elf_elfsections (abfd) + 1; | |
2656 | i < elf_elfheader (abfd)->e_shnum; | |
2657 | i++, shdrpp++) | |
32090b8e | 2658 | { |
013dec1a ILT |
2659 | Elf_Internal_Shdr *shdrp; |
2660 | ||
2661 | shdrp = *shdrpp; | |
2662 | if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) | |
2663 | && shdrp->sh_offset == -1) | |
2664 | off = assign_file_position_for_section (shdrp, off, true); | |
32090b8e | 2665 | } |
013dec1a | 2666 | |
1c6042ee | 2667 | elf_tdata (abfd)->next_file_pos = off; |
32090b8e | 2668 | } |
244ffee7 | 2669 | |
32090b8e | 2670 | boolean |
1c6042ee ILT |
2671 | NAME(bfd_elf,write_object_contents) (abfd) |
2672 | bfd *abfd; | |
32090b8e | 2673 | { |
062189c6 | 2674 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
32090b8e KR |
2675 | Elf_Internal_Ehdr *i_ehdrp; |
2676 | Elf_Internal_Shdr **i_shdrp; | |
0ef449df | 2677 | boolean failed; |
68241b2b | 2678 | unsigned int count; |
244ffee7 | 2679 | |
6ec3bb6a ILT |
2680 | if (! abfd->output_has_begun |
2681 | && ! elf_compute_section_file_positions (abfd, | |
2682 | (struct bfd_link_info *) NULL)) | |
2683 | return false; | |
244ffee7 | 2684 | |
32090b8e KR |
2685 | i_shdrp = elf_elfsections (abfd); |
2686 | i_ehdrp = elf_elfheader (abfd); | |
244ffee7 | 2687 | |
0ef449df KR |
2688 | failed = false; |
2689 | bfd_map_over_sections (abfd, write_relocs, &failed); | |
2690 | if (failed) | |
2691 | return false; | |
32090b8e | 2692 | assign_file_positions_for_relocs (abfd); |
244ffee7 | 2693 | |
32090b8e | 2694 | /* After writing the headers, we need to write the sections too... */ |
062189c6 | 2695 | for (count = 1; count < i_ehdrp->e_shnum; count++) |
e621c5cc | 2696 | { |
e621c5cc ILT |
2697 | if (bed->elf_backend_section_processing) |
2698 | (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); | |
2699 | if (i_shdrp[count]->contents) | |
2700 | { | |
4002f18a ILT |
2701 | if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 |
2702 | || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size, | |
2703 | 1, abfd) | |
2704 | != i_shdrp[count]->sh_size)) | |
2705 | return false; | |
e621c5cc ILT |
2706 | } |
2707 | } | |
062189c6 | 2708 | |
eb4267a3 ILT |
2709 | /* Write out the section header names. */ |
2710 | if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0 | |
2711 | || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd))) | |
2712 | return false; | |
2713 | ||
062189c6 | 2714 | if (bed->elf_backend_final_write_processing) |
3c9832f8 ILT |
2715 | (*bed->elf_backend_final_write_processing) (abfd, |
2716 | elf_tdata (abfd)->linker); | |
062189c6 | 2717 | |
32090b8e KR |
2718 | return write_shdrs_and_ehdr (abfd); |
2719 | } | |
244ffee7 | 2720 | |
24f13b03 ILT |
2721 | /* Given an ELF section number, retrieve the corresponding BFD |
2722 | section. */ | |
244ffee7 | 2723 | |
2e03ce18 | 2724 | static asection * |
1c6042ee ILT |
2725 | section_from_elf_index (abfd, index) |
2726 | bfd *abfd; | |
2727 | unsigned int index; | |
32090b8e | 2728 | { |
24f13b03 | 2729 | BFD_ASSERT (index > 0 && index < SHN_LORESERVE); |
e9227b42 | 2730 | if (index >= elf_elfheader (abfd)->e_shnum) |
2e03ce18 | 2731 | return NULL; |
24f13b03 | 2732 | return elf_elfsections (abfd)[index]->bfd_section; |
32090b8e | 2733 | } |
244ffee7 | 2734 | |
32090b8e KR |
2735 | /* given a section, search the header to find them... */ |
2736 | static int | |
1c6042ee ILT |
2737 | elf_section_from_bfd_section (abfd, asect) |
2738 | bfd *abfd; | |
2739 | struct sec *asect; | |
32090b8e | 2740 | { |
24f13b03 | 2741 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
32090b8e KR |
2742 | Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd); |
2743 | int index; | |
2744 | Elf_Internal_Shdr *hdr; | |
2745 | int maxindex = elf_elfheader (abfd)->e_shnum; | |
244ffee7 | 2746 | |
32090b8e KR |
2747 | for (index = 0; index < maxindex; index++) |
2748 | { | |
2749 | hdr = i_shdrp[index]; | |
24f13b03 ILT |
2750 | if (hdr->bfd_section == asect) |
2751 | return index; | |
e4a4da62 | 2752 | } |
e621c5cc | 2753 | |
e4a4da62 ILT |
2754 | if (bed->elf_backend_section_from_bfd_section) |
2755 | { | |
2756 | for (index = 0; index < maxindex; index++) | |
24f13b03 ILT |
2757 | { |
2758 | int retval; | |
f035cc47 | 2759 | |
e4a4da62 | 2760 | hdr = i_shdrp[index]; |
24f13b03 ILT |
2761 | retval = index; |
2762 | if ((*bed->elf_backend_section_from_bfd_section) | |
2763 | (abfd, hdr, asect, &retval)) | |
2764 | return retval; | |
32090b8e KR |
2765 | } |
2766 | } | |
24f13b03 | 2767 | |
85200ebc KR |
2768 | if (bfd_is_abs_section (asect)) |
2769 | return SHN_ABS; | |
2770 | if (bfd_is_com_section (asect)) | |
2771 | return SHN_COMMON; | |
2772 | if (bfd_is_und_section (asect)) | |
2773 | return SHN_UNDEF; | |
2774 | ||
32090b8e KR |
2775 | return -1; |
2776 | } | |
244ffee7 | 2777 | |
32090b8e KR |
2778 | /* given a symbol, return the bfd index for that symbol. */ |
2779 | static int | |
1c6042ee ILT |
2780 | elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr) |
2781 | bfd *abfd; | |
2782 | struct symbol_cache_entry **asym_ptr_ptr; | |
32090b8e KR |
2783 | { |
2784 | struct symbol_cache_entry *asym_ptr = *asym_ptr_ptr; | |
32090b8e | 2785 | int idx; |
d24928c0 | 2786 | flagword flags = asym_ptr->flags; |
32090b8e | 2787 | |
d24928c0 KR |
2788 | /* When gas creates relocations against local labels, it creates its |
2789 | own symbol for the section, but does put the symbol into the | |
e621c5cc ILT |
2790 | symbol chain, so udata is 0. When the linker is generating |
2791 | relocatable output, this section symbol may be for one of the | |
2792 | input sections rather than the output section. */ | |
e4a4da62 | 2793 | if (asym_ptr->udata.i == 0 |
d24928c0 | 2794 | && (flags & BSF_SECTION_SYM) |
e621c5cc ILT |
2795 | && asym_ptr->section) |
2796 | { | |
2797 | int indx; | |
2798 | ||
2799 | if (asym_ptr->section->output_section != NULL) | |
2800 | indx = asym_ptr->section->output_section->index; | |
2801 | else | |
2802 | indx = asym_ptr->section->index; | |
2803 | if (elf_section_syms (abfd)[indx]) | |
e4a4da62 | 2804 | asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; |
01383fb4 | 2805 | } |
e621c5cc | 2806 | |
e4a4da62 | 2807 | idx = asym_ptr->udata.i; |
0ef449df | 2808 | BFD_ASSERT (idx != 0); |
244ffee7 | 2809 | |
32090b8e | 2810 | #if DEBUG & 4 |
244ffee7 | 2811 | { |
244ffee7 | 2812 | |
32090b8e | 2813 | fprintf (stderr, |
0ef449df | 2814 | "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n", |
1c6042ee | 2815 | (long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags)); |
32090b8e KR |
2816 | fflush (stderr); |
2817 | } | |
2818 | #endif | |
2819 | ||
2820 | return idx; | |
2821 | } | |
2822 | ||
cb71adf1 PS |
2823 | static long |
2824 | elf_slurp_symbol_table (abfd, symptrs, dynamic) | |
1c6042ee ILT |
2825 | bfd *abfd; |
2826 | asymbol **symptrs; /* Buffer for generated bfd symbols */ | |
cb71adf1 | 2827 | boolean dynamic; |
32090b8e | 2828 | { |
cb71adf1 | 2829 | Elf_Internal_Shdr *hdr; |
7d8aaf36 | 2830 | long symcount; /* Number of external ELF symbols */ |
32090b8e KR |
2831 | elf_symbol_type *sym; /* Pointer to current bfd symbol */ |
2832 | elf_symbol_type *symbase; /* Buffer for generated bfd symbols */ | |
2833 | Elf_Internal_Sym i_sym; | |
80425e6c | 2834 | Elf_External_Sym *x_symp = NULL; |
32090b8e | 2835 | |
32090b8e KR |
2836 | /* Read each raw ELF symbol, converting from external ELF form to |
2837 | internal ELF form, and then using the information to create a | |
2838 | canonical bfd symbol table entry. | |
244ffee7 | 2839 | |
32090b8e KR |
2840 | Note that we allocate the initial bfd canonical symbol buffer |
2841 | based on a one-to-one mapping of the ELF symbols to canonical | |
2842 | symbols. We actually use all the ELF symbols, so there will be no | |
2843 | space left over at the end. When we have all the symbols, we | |
2844 | build the caller's pointer vector. */ | |
244ffee7 | 2845 | |
cb71adf1 PS |
2846 | if (dynamic) |
2847 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
2848 | else | |
2849 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
32090b8e | 2850 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1) |
cb71adf1 | 2851 | return -1; |
244ffee7 | 2852 | |
32090b8e | 2853 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
244ffee7 | 2854 | |
7d8aaf36 ILT |
2855 | if (symcount == 0) |
2856 | sym = symbase = NULL; | |
2857 | else | |
244ffee7 | 2858 | { |
7d8aaf36 | 2859 | long i; |
244ffee7 | 2860 | |
7d8aaf36 | 2861 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1) |
cb71adf1 | 2862 | return -1; |
7d8aaf36 ILT |
2863 | |
2864 | symbase = ((elf_symbol_type *) | |
2865 | bfd_zalloc (abfd, symcount * sizeof (elf_symbol_type))); | |
2866 | if (symbase == (elf_symbol_type *) NULL) | |
32090b8e | 2867 | { |
7d8aaf36 | 2868 | bfd_set_error (bfd_error_no_memory); |
cb71adf1 | 2869 | return -1; |
32090b8e | 2870 | } |
7d8aaf36 ILT |
2871 | sym = symbase; |
2872 | ||
2873 | /* Temporarily allocate room for the raw ELF symbols. */ | |
2874 | x_symp = ((Elf_External_Sym *) | |
80425e6c | 2875 | malloc (symcount * sizeof (Elf_External_Sym))); |
25057836 | 2876 | if (x_symp == NULL && symcount != 0) |
80425e6c JK |
2877 | { |
2878 | bfd_set_error (bfd_error_no_memory); | |
2879 | goto error_return; | |
2880 | } | |
7d8aaf36 ILT |
2881 | |
2882 | if (bfd_read ((PTR) x_symp, sizeof (Elf_External_Sym), symcount, abfd) | |
2883 | != symcount * sizeof (Elf_External_Sym)) | |
25057836 | 2884 | goto error_return; |
7d8aaf36 ILT |
2885 | /* Skip first symbol, which is a null dummy. */ |
2886 | for (i = 1; i < symcount; i++) | |
32090b8e | 2887 | { |
7d8aaf36 ILT |
2888 | elf_swap_symbol_in (abfd, x_symp + i, &i_sym); |
2889 | memcpy (&sym->internal_elf_sym, &i_sym, sizeof (Elf_Internal_Sym)); | |
2890 | #ifdef ELF_KEEP_EXTSYM | |
2891 | memcpy (&sym->native_elf_sym, x_symp + i, sizeof (Elf_External_Sym)); | |
2892 | #endif | |
2893 | sym->symbol.the_bfd = abfd; | |
244ffee7 | 2894 | |
7d8aaf36 ILT |
2895 | sym->symbol.name = elf_string_from_elf_section (abfd, hdr->sh_link, |
2896 | i_sym.st_name); | |
244ffee7 | 2897 | |
7d8aaf36 | 2898 | sym->symbol.value = i_sym.st_value; |
244ffee7 | 2899 | |
6ec3bb6a | 2900 | if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERVE) |
7d8aaf36 ILT |
2901 | { |
2902 | sym->symbol.section = section_from_elf_index (abfd, | |
2903 | i_sym.st_shndx); | |
2e03ce18 | 2904 | if (sym->symbol.section == NULL) |
013dec1a ILT |
2905 | { |
2906 | /* This symbol is in a section for which we did not | |
2907 | create a BFD section. Just use bfd_abs_section, | |
2908 | although it is wrong. FIXME. */ | |
badd23e3 | 2909 | sym->symbol.section = bfd_abs_section_ptr; |
013dec1a | 2910 | } |
7d8aaf36 ILT |
2911 | } |
2912 | else if (i_sym.st_shndx == SHN_ABS) | |
2913 | { | |
badd23e3 | 2914 | sym->symbol.section = bfd_abs_section_ptr; |
7d8aaf36 ILT |
2915 | } |
2916 | else if (i_sym.st_shndx == SHN_COMMON) | |
2917 | { | |
badd23e3 | 2918 | sym->symbol.section = bfd_com_section_ptr; |
7d8aaf36 ILT |
2919 | /* Elf puts the alignment into the `value' field, and |
2920 | the size into the `size' field. BFD wants to see the | |
2921 | size in the value field, and doesn't care (at the | |
2922 | moment) about the alignment. */ | |
2923 | sym->symbol.value = i_sym.st_size; | |
2924 | } | |
2925 | else if (i_sym.st_shndx == SHN_UNDEF) | |
2926 | { | |
badd23e3 | 2927 | sym->symbol.section = bfd_und_section_ptr; |
7d8aaf36 ILT |
2928 | } |
2929 | else | |
badd23e3 | 2930 | sym->symbol.section = bfd_abs_section_ptr; |
300adb31 | 2931 | |
7d8aaf36 | 2932 | sym->symbol.value -= sym->symbol.section->vma; |
244ffee7 | 2933 | |
7d8aaf36 ILT |
2934 | switch (ELF_ST_BIND (i_sym.st_info)) |
2935 | { | |
2936 | case STB_LOCAL: | |
2937 | sym->symbol.flags |= BSF_LOCAL; | |
2938 | break; | |
2939 | case STB_GLOBAL: | |
42cf6d79 ILT |
2940 | if (i_sym.st_shndx != SHN_UNDEF |
2941 | && i_sym.st_shndx != SHN_COMMON) | |
2942 | sym->symbol.flags |= BSF_GLOBAL; | |
7d8aaf36 ILT |
2943 | break; |
2944 | case STB_WEAK: | |
2945 | sym->symbol.flags |= BSF_WEAK; | |
2946 | break; | |
2947 | } | |
2948 | ||
2949 | switch (ELF_ST_TYPE (i_sym.st_info)) | |
2950 | { | |
2951 | case STT_SECTION: | |
2952 | sym->symbol.flags |= BSF_SECTION_SYM | BSF_DEBUGGING; | |
2953 | break; | |
2954 | case STT_FILE: | |
2955 | sym->symbol.flags |= BSF_FILE | BSF_DEBUGGING; | |
2956 | break; | |
2957 | case STT_FUNC: | |
2958 | sym->symbol.flags |= BSF_FUNCTION; | |
2959 | break; | |
2960 | } | |
2961 | ||
cb71adf1 PS |
2962 | if (dynamic) |
2963 | sym->symbol.flags |= BSF_DYNAMIC; | |
2964 | ||
7d8aaf36 ILT |
2965 | /* Do some backend-specific processing on this symbol. */ |
2966 | { | |
2967 | struct elf_backend_data *ebd = get_elf_backend_data (abfd); | |
2968 | if (ebd->elf_backend_symbol_processing) | |
2969 | (*ebd->elf_backend_symbol_processing) (abfd, &sym->symbol); | |
2970 | } | |
2971 | ||
2972 | sym++; | |
2973 | } | |
244ffee7 JK |
2974 | } |
2975 | ||
e621c5cc ILT |
2976 | /* Do some backend-specific processing on this symbol table. */ |
2977 | { | |
2978 | struct elf_backend_data *ebd = get_elf_backend_data (abfd); | |
2979 | if (ebd->elf_backend_symbol_table_processing) | |
2980 | (*ebd->elf_backend_symbol_table_processing) (abfd, symbase, symcount); | |
2981 | } | |
244ffee7 | 2982 | |
e621c5cc | 2983 | /* We rely on the zalloc to clear out the final symbol entry. */ |
244ffee7 | 2984 | |
cb71adf1 | 2985 | symcount = sym - symbase; |
32090b8e KR |
2986 | |
2987 | /* Fill in the user's symbol pointer vector if needed. */ | |
2988 | if (symptrs) | |
244ffee7 | 2989 | { |
cb71adf1 PS |
2990 | long l = symcount; |
2991 | ||
32090b8e | 2992 | sym = symbase; |
cb71adf1 | 2993 | while (l-- > 0) |
244ffee7 | 2994 | { |
32090b8e KR |
2995 | *symptrs++ = &sym->symbol; |
2996 | sym++; | |
244ffee7 | 2997 | } |
32090b8e | 2998 | *symptrs = 0; /* Final null pointer */ |
244ffee7 JK |
2999 | } |
3000 | ||
80425e6c JK |
3001 | if (x_symp != NULL) |
3002 | free (x_symp); | |
cb71adf1 | 3003 | return symcount; |
1c6042ee | 3004 | error_return: |
80425e6c JK |
3005 | if (x_symp != NULL) |
3006 | free (x_symp); | |
cb71adf1 | 3007 | return -1; |
244ffee7 JK |
3008 | } |
3009 | ||
32090b8e | 3010 | /* Return the number of bytes required to hold the symtab vector. |
244ffee7 | 3011 | |
32090b8e KR |
3012 | Note that we base it on the count plus 1, since we will null terminate |
3013 | the vector allocated based on this size. However, the ELF symbol table | |
3014 | always has a dummy entry as symbol #0, so it ends up even. */ | |
244ffee7 | 3015 | |
326e32d7 | 3016 | long |
1c6042ee ILT |
3017 | elf_get_symtab_upper_bound (abfd) |
3018 | bfd *abfd; | |
244ffee7 | 3019 | { |
326e32d7 ILT |
3020 | long symcount; |
3021 | long symtab_size; | |
1c6042ee | 3022 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; |
326e32d7 | 3023 | |
32090b8e | 3024 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
d6439785 | 3025 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); |
244ffee7 | 3026 | |
32090b8e KR |
3027 | return symtab_size; |
3028 | } | |
244ffee7 | 3029 | |
cb71adf1 PS |
3030 | long |
3031 | elf_get_dynamic_symtab_upper_bound (abfd) | |
3032 | bfd *abfd; | |
3033 | { | |
3034 | long symcount; | |
3035 | long symtab_size; | |
3036 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
3037 | ||
f9779aad ILT |
3038 | if (elf_dynsymtab (abfd) == 0) |
3039 | { | |
3040 | bfd_set_error (bfd_error_invalid_operation); | |
3041 | return -1; | |
3042 | } | |
3043 | ||
cb71adf1 PS |
3044 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
3045 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); | |
3046 | ||
3047 | return symtab_size; | |
3048 | } | |
3049 | ||
326e32d7 | 3050 | long |
32090b8e KR |
3051 | elf_get_reloc_upper_bound (abfd, asect) |
3052 | bfd *abfd; | |
3053 | sec_ptr asect; | |
3054 | { | |
51fc377b | 3055 | return (asect->reloc_count + 1) * sizeof (arelent *); |
244ffee7 JK |
3056 | } |
3057 | ||
ea617174 ILT |
3058 | /* Read in and swap the external relocs. */ |
3059 | ||
32090b8e | 3060 | static boolean |
ea617174 | 3061 | elf_slurp_reloc_table (abfd, asect, symbols) |
1c6042ee | 3062 | bfd *abfd; |
ea617174 | 3063 | asection *asect; |
1c6042ee | 3064 | asymbol **symbols; |
244ffee7 | 3065 | { |
ea617174 ILT |
3066 | struct elf_backend_data * const ebd = get_elf_backend_data (abfd); |
3067 | struct bfd_elf_section_data * const d = elf_section_data (asect); | |
3068 | PTR allocated = NULL; | |
3069 | bfd_byte *native_relocs; | |
3070 | arelent *relents; | |
3071 | arelent *relent; | |
3072 | unsigned int i; | |
3073 | int entsize; | |
244ffee7 | 3074 | |
d510fd89 ILT |
3075 | if (asect->relocation != NULL |
3076 | || (asect->flags & SEC_RELOC) == 0 | |
3077 | || asect->reloc_count == 0) | |
32090b8e | 3078 | return true; |
244ffee7 | 3079 | |
ea617174 ILT |
3080 | BFD_ASSERT (asect->rel_filepos == d->rel_hdr.sh_offset |
3081 | && (asect->reloc_count | |
3082 | == d->rel_hdr.sh_size / d->rel_hdr.sh_entsize)); | |
3083 | ||
374d2ef9 ILT |
3084 | allocated = (PTR) malloc (d->rel_hdr.sh_size); |
3085 | if (allocated == NULL) | |
9783e04a | 3086 | { |
374d2ef9 ILT |
3087 | bfd_set_error (bfd_error_no_memory); |
3088 | goto error_return; | |
3089 | } | |
ea617174 | 3090 | |
374d2ef9 ILT |
3091 | if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0 |
3092 | || (bfd_read (allocated, 1, d->rel_hdr.sh_size, abfd) | |
3093 | != d->rel_hdr.sh_size)) | |
3094 | goto error_return; | |
244ffee7 | 3095 | |
374d2ef9 | 3096 | native_relocs = (bfd_byte *) allocated; |
32090b8e | 3097 | |
ea617174 ILT |
3098 | relents = ((arelent *) |
3099 | bfd_alloc (abfd, asect->reloc_count * sizeof (arelent))); | |
3100 | if (relents == NULL) | |
6a3eb9b6 | 3101 | { |
d1ad85a6 | 3102 | bfd_set_error (bfd_error_no_memory); |
ea617174 | 3103 | goto error_return; |
6a3eb9b6 | 3104 | } |
244ffee7 | 3105 | |
ea617174 ILT |
3106 | entsize = d->rel_hdr.sh_entsize; |
3107 | BFD_ASSERT (entsize == sizeof (Elf_External_Rel) | |
3108 | || entsize == sizeof (Elf_External_Rela)); | |
244ffee7 | 3109 | |
ea617174 ILT |
3110 | for (i = 0, relent = relents; |
3111 | i < asect->reloc_count; | |
3112 | i++, relent++, native_relocs += entsize) | |
3113 | { | |
3114 | Elf_Internal_Rela rela; | |
3115 | Elf_Internal_Rel rel; | |
244ffee7 | 3116 | |
ea617174 ILT |
3117 | if (entsize == sizeof (Elf_External_Rela)) |
3118 | elf_swap_reloca_in (abfd, (Elf_External_Rela *) native_relocs, &rela); | |
32090b8e KR |
3119 | else |
3120 | { | |
ea617174 ILT |
3121 | elf_swap_reloc_in (abfd, (Elf_External_Rel *) native_relocs, &rel); |
3122 | rela.r_offset = rel.r_offset; | |
3123 | rela.r_info = rel.r_info; | |
3124 | rela.r_addend = 0; | |
32090b8e | 3125 | } |
7b8106b4 | 3126 | |
ea617174 ILT |
3127 | /* The address of an ELF reloc is section relative for an object |
3128 | file, and absolute for an executable file or shared library. | |
3129 | The address of a BFD reloc is always section relative. */ | |
3130 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) | |
3131 | relent->address = rela.r_offset; | |
3132 | else | |
3133 | relent->address = rela.r_offset - asect->vma; | |
3134 | ||
3135 | if (ELF_R_SYM (rela.r_info) == 0) | |
3136 | relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; | |
7b8106b4 ILT |
3137 | else |
3138 | { | |
ea617174 | 3139 | asymbol **ps, *s; |
7b8106b4 | 3140 | |
ea617174 ILT |
3141 | ps = symbols + ELF_R_SYM (rela.r_info) - 1; |
3142 | s = *ps; | |
7b8106b4 | 3143 | |
ea617174 ILT |
3144 | /* Canonicalize ELF section symbols. FIXME: Why? */ |
3145 | if ((s->flags & BSF_SECTION_SYM) == 0) | |
3146 | relent->sym_ptr_ptr = ps; | |
3147 | else | |
3148 | relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; | |
7b8106b4 | 3149 | } |
244ffee7 | 3150 | |
ea617174 ILT |
3151 | relent->addend = rela.r_addend; |
3152 | ||
3153 | if (entsize == sizeof (Elf_External_Rela)) | |
3154 | (*ebd->elf_info_to_howto) (abfd, relent, &rela); | |
3155 | else | |
3156 | (*ebd->elf_info_to_howto_rel) (abfd, relent, &rel); | |
32090b8e | 3157 | } |
244ffee7 | 3158 | |
ea617174 ILT |
3159 | asect->relocation = relents; |
3160 | ||
3161 | if (allocated != NULL) | |
3162 | free (allocated); | |
3163 | ||
32090b8e | 3164 | return true; |
ea617174 ILT |
3165 | |
3166 | error_return: | |
3167 | if (allocated != NULL) | |
3168 | free (allocated); | |
3169 | return false; | |
32090b8e | 3170 | } |
238ac6ec | 3171 | |
32090b8e KR |
3172 | #ifdef DEBUG |
3173 | static void | |
eb4267a3 | 3174 | elf_debug_section (num, hdr) |
32090b8e KR |
3175 | int num; |
3176 | Elf_Internal_Shdr *hdr; | |
3177 | { | |
eb4267a3 | 3178 | fprintf (stderr, "\nSection#%d '%s' 0x%.8lx\n", num, |
0ef449df | 3179 | hdr->bfd_section != NULL ? hdr->bfd_section->name : "", |
eb4267a3 | 3180 | (long) hdr); |
32090b8e KR |
3181 | fprintf (stderr, |
3182 | "sh_name = %ld\tsh_type = %ld\tsh_flags = %ld\n", | |
3183 | (long) hdr->sh_name, | |
3184 | (long) hdr->sh_type, | |
3185 | (long) hdr->sh_flags); | |
3186 | fprintf (stderr, | |
3187 | "sh_addr = %ld\tsh_offset = %ld\tsh_size = %ld\n", | |
3188 | (long) hdr->sh_addr, | |
3189 | (long) hdr->sh_offset, | |
3190 | (long) hdr->sh_size); | |
3191 | fprintf (stderr, | |
3192 | "sh_link = %ld\tsh_info = %ld\tsh_addralign = %ld\n", | |
3193 | (long) hdr->sh_link, | |
3194 | (long) hdr->sh_info, | |
3195 | (long) hdr->sh_addralign); | |
3196 | fprintf (stderr, "sh_entsize = %ld\n", | |
3197 | (long) hdr->sh_entsize); | |
32090b8e KR |
3198 | fflush (stderr); |
3199 | } | |
244ffee7 | 3200 | |
32090b8e KR |
3201 | static void |
3202 | elf_debug_file (ehdrp) | |
3203 | Elf_Internal_Ehdr *ehdrp; | |
3204 | { | |
3205 | fprintf (stderr, "e_entry = 0x%.8lx\n", (long) ehdrp->e_entry); | |
3206 | fprintf (stderr, "e_phoff = %ld\n", (long) ehdrp->e_phoff); | |
3207 | fprintf (stderr, "e_phnum = %ld\n", (long) ehdrp->e_phnum); | |
3208 | fprintf (stderr, "e_phentsize = %ld\n", (long) ehdrp->e_phentsize); | |
3209 | fprintf (stderr, "e_shoff = %ld\n", (long) ehdrp->e_shoff); | |
3210 | fprintf (stderr, "e_shnum = %ld\n", (long) ehdrp->e_shnum); | |
3211 | fprintf (stderr, "e_shentsize = %ld\n", (long) ehdrp->e_shentsize); | |
244ffee7 | 3212 | } |
0ef449df KR |
3213 | |
3214 | static char * | |
3215 | elf_symbol_flags (flags) | |
3216 | flagword flags; | |
3217 | { | |
3218 | static char buffer[1024]; | |
3219 | ||
3220 | buffer[0] = '\0'; | |
3221 | if (flags & BSF_LOCAL) | |
3222 | strcat (buffer, " local"); | |
3223 | ||
3224 | if (flags & BSF_GLOBAL) | |
3225 | strcat (buffer, " global"); | |
3226 | ||
3227 | if (flags & BSF_DEBUGGING) | |
3228 | strcat (buffer, " debug"); | |
3229 | ||
3230 | if (flags & BSF_FUNCTION) | |
3231 | strcat (buffer, " function"); | |
3232 | ||
3233 | if (flags & BSF_KEEP) | |
3234 | strcat (buffer, " keep"); | |
3235 | ||
3236 | if (flags & BSF_KEEP_G) | |
3237 | strcat (buffer, " keep_g"); | |
3238 | ||
3239 | if (flags & BSF_WEAK) | |
3240 | strcat (buffer, " weak"); | |
3241 | ||
3242 | if (flags & BSF_SECTION_SYM) | |
3243 | strcat (buffer, " section-sym"); | |
3244 | ||
3245 | if (flags & BSF_OLD_COMMON) | |
3246 | strcat (buffer, " old-common"); | |
3247 | ||
3248 | if (flags & BSF_NOT_AT_END) | |
3249 | strcat (buffer, " not-at-end"); | |
3250 | ||
3251 | if (flags & BSF_CONSTRUCTOR) | |
3252 | strcat (buffer, " constructor"); | |
3253 | ||
3254 | if (flags & BSF_WARNING) | |
3255 | strcat (buffer, " warning"); | |
3256 | ||
3257 | if (flags & BSF_INDIRECT) | |
3258 | strcat (buffer, " indirect"); | |
3259 | ||
3260 | if (flags & BSF_FILE) | |
3261 | strcat (buffer, " file"); | |
3262 | ||
3263 | if (flags & DYNAMIC) | |
3264 | strcat (buffer, " dynamic"); | |
3265 | ||
3266 | if (flags & ~(BSF_LOCAL | |
3267 | | BSF_GLOBAL | |
3268 | | BSF_DEBUGGING | |
3269 | | BSF_FUNCTION | |
3270 | | BSF_KEEP | |
3271 | | BSF_KEEP_G | |
3272 | | BSF_WEAK | |
3273 | | BSF_SECTION_SYM | |
3274 | | BSF_OLD_COMMON | |
3275 | | BSF_NOT_AT_END | |
3276 | | BSF_CONSTRUCTOR | |
3277 | | BSF_WARNING | |
3278 | | BSF_INDIRECT | |
3279 | | BSF_FILE | |
3280 | | BSF_DYNAMIC)) | |
3281 | strcat (buffer, " unknown-bits"); | |
3282 | ||
3283 | return buffer; | |
3284 | } | |
32090b8e | 3285 | #endif |
244ffee7 | 3286 | |
ea617174 | 3287 | /* Canonicalize the relocs. */ |
244ffee7 | 3288 | |
326e32d7 | 3289 | long |
32090b8e KR |
3290 | elf_canonicalize_reloc (abfd, section, relptr, symbols) |
3291 | bfd *abfd; | |
3292 | sec_ptr section; | |
3293 | arelent **relptr; | |
3294 | asymbol **symbols; | |
3295 | { | |
ea617174 ILT |
3296 | arelent *tblptr; |
3297 | unsigned int i; | |
32090b8e | 3298 | |
ea617174 ILT |
3299 | if (! elf_slurp_reloc_table (abfd, section, symbols)) |
3300 | return -1; | |
32090b8e KR |
3301 | |
3302 | tblptr = section->relocation; | |
ea617174 | 3303 | for (i = 0; i < section->reloc_count; i++) |
32090b8e KR |
3304 | *relptr++ = tblptr++; |
3305 | ||
ea617174 ILT |
3306 | *relptr = NULL; |
3307 | ||
32090b8e KR |
3308 | return section->reloc_count; |
3309 | } | |
3310 | ||
326e32d7 | 3311 | long |
1c6042ee ILT |
3312 | elf_get_symtab (abfd, alocation) |
3313 | bfd *abfd; | |
3314 | asymbol **alocation; | |
32090b8e | 3315 | { |
cb71adf1 PS |
3316 | long symcount = elf_slurp_symbol_table (abfd, alocation, false); |
3317 | ||
3318 | if (symcount >= 0) | |
3319 | bfd_get_symcount (abfd) = symcount; | |
3320 | return symcount; | |
3321 | } | |
326e32d7 | 3322 | |
cb71adf1 PS |
3323 | long |
3324 | elf_canonicalize_dynamic_symtab (abfd, alocation) | |
3325 | bfd *abfd; | |
3326 | asymbol **alocation; | |
3327 | { | |
3328 | return elf_slurp_symbol_table (abfd, alocation, true); | |
32090b8e KR |
3329 | } |
3330 | ||
3331 | asymbol * | |
1c6042ee ILT |
3332 | elf_make_empty_symbol (abfd) |
3333 | bfd *abfd; | |
32090b8e KR |
3334 | { |
3335 | elf_symbol_type *newsym; | |
3336 | ||
3337 | newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type)); | |
3338 | if (!newsym) | |
3339 | { | |
d1ad85a6 | 3340 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
3341 | return NULL; |
3342 | } | |
3343 | else | |
3344 | { | |
3345 | newsym->symbol.the_bfd = abfd; | |
3346 | return &newsym->symbol; | |
244ffee7 | 3347 | } |
32090b8e | 3348 | } |
244ffee7 | 3349 | |
32090b8e | 3350 | void |
1c6042ee ILT |
3351 | elf_get_symbol_info (ignore_abfd, symbol, ret) |
3352 | bfd *ignore_abfd; | |
3353 | asymbol *symbol; | |
3354 | symbol_info *ret; | |
32090b8e KR |
3355 | { |
3356 | bfd_symbol_info (symbol, ret); | |
3357 | } | |
244ffee7 | 3358 | |
32090b8e | 3359 | alent * |
1c6042ee ILT |
3360 | elf_get_lineno (ignore_abfd, symbol) |
3361 | bfd *ignore_abfd; | |
3362 | asymbol *symbol; | |
32090b8e KR |
3363 | { |
3364 | fprintf (stderr, "elf_get_lineno unimplemented\n"); | |
3365 | fflush (stderr); | |
3366 | BFD_FAIL (); | |
3367 | return NULL; | |
3368 | } | |
3369 | ||
3370 | boolean | |
1c6042ee ILT |
3371 | elf_set_arch_mach (abfd, arch, machine) |
3372 | bfd *abfd; | |
3373 | enum bfd_architecture arch; | |
3374 | unsigned long machine; | |
32090b8e | 3375 | { |
80a903c9 ILT |
3376 | /* If this isn't the right architecture for this backend, and this |
3377 | isn't the generic backend, fail. */ | |
3378 | if (arch != get_elf_backend_data (abfd)->arch | |
3379 | && arch != bfd_arch_unknown | |
3380 | && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) | |
3381 | return false; | |
3382 | ||
3383 | return bfd_default_set_arch_mach (abfd, arch, machine); | |
32090b8e | 3384 | } |
244ffee7 | 3385 | |
32090b8e | 3386 | boolean |
1c6042ee ILT |
3387 | elf_find_nearest_line (abfd, |
3388 | section, | |
3389 | symbols, | |
3390 | offset, | |
3391 | filename_ptr, | |
3392 | functionname_ptr, | |
3393 | line_ptr) | |
3394 | bfd *abfd; | |
3395 | asection *section; | |
3396 | asymbol **symbols; | |
3397 | bfd_vma offset; | |
3398 | CONST char **filename_ptr; | |
3399 | CONST char **functionname_ptr; | |
3400 | unsigned int *line_ptr; | |
32090b8e KR |
3401 | { |
3402 | return false; | |
244ffee7 JK |
3403 | } |
3404 | ||
32090b8e | 3405 | int |
1c6042ee ILT |
3406 | elf_sizeof_headers (abfd, reloc) |
3407 | bfd *abfd; | |
3408 | boolean reloc; | |
32090b8e | 3409 | { |
013dec1a ILT |
3410 | int ret; |
3411 | ||
3412 | ret = sizeof (Elf_External_Ehdr); | |
3413 | if (! reloc) | |
6c97aedf ILT |
3414 | ret += get_program_header_size (abfd, (Elf_Internal_Shdr **) NULL, 0, |
3415 | (bfd_vma) 0); | |
013dec1a | 3416 | return ret; |
32090b8e | 3417 | } |
244ffee7 | 3418 | |
32090b8e | 3419 | boolean |
1c6042ee ILT |
3420 | elf_set_section_contents (abfd, section, location, offset, count) |
3421 | bfd *abfd; | |
3422 | sec_ptr section; | |
3423 | PTR location; | |
3424 | file_ptr offset; | |
3425 | bfd_size_type count; | |
244ffee7 | 3426 | { |
244ffee7 JK |
3427 | Elf_Internal_Shdr *hdr; |
3428 | ||
6ec3bb6a ILT |
3429 | if (! abfd->output_has_begun |
3430 | && ! elf_compute_section_file_positions (abfd, | |
3431 | (struct bfd_link_info *) NULL)) | |
3432 | return false; | |
244ffee7 | 3433 | |
1c6042ee | 3434 | hdr = &elf_section_data (section)->this_hdr; |
244ffee7 | 3435 | |
32090b8e KR |
3436 | if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1) |
3437 | return false; | |
3438 | if (bfd_write (location, 1, count, abfd) != count) | |
3439 | return false; | |
3440 | ||
3441 | return true; | |
3442 | } | |
3443 | ||
3444 | void | |
1c6042ee ILT |
3445 | elf_no_info_to_howto (abfd, cache_ptr, dst) |
3446 | bfd *abfd; | |
3447 | arelent *cache_ptr; | |
3448 | Elf_Internal_Rela *dst; | |
244ffee7 | 3449 | { |
32090b8e KR |
3450 | fprintf (stderr, "elf RELA relocation support for target machine unimplemented\n"); |
3451 | fflush (stderr); | |
3452 | BFD_FAIL (); | |
244ffee7 JK |
3453 | } |
3454 | ||
32090b8e | 3455 | void |
1c6042ee ILT |
3456 | elf_no_info_to_howto_rel (abfd, cache_ptr, dst) |
3457 | bfd *abfd; | |
3458 | arelent *cache_ptr; | |
3459 | Elf_Internal_Rel *dst; | |
244ffee7 | 3460 | { |
32090b8e KR |
3461 | fprintf (stderr, "elf REL relocation support for target machine unimplemented\n"); |
3462 | fflush (stderr); | |
3463 | BFD_FAIL (); | |
3464 | } | |
32090b8e | 3465 | \f |
1c6042ee | 3466 | |
32090b8e | 3467 | /* Core file support */ |
244ffee7 | 3468 | |
32090b8e KR |
3469 | #ifdef HAVE_PROCFS /* Some core file support requires host /proc files */ |
3470 | #include <sys/procfs.h> | |
3471 | #else | |
2e03ce18 ILT |
3472 | #define bfd_prstatus(abfd, descdata, descsz, filepos) true |
3473 | #define bfd_fpregset(abfd, descdata, descsz, filepos) true | |
3474 | #define bfd_prpsinfo(abfd, descdata, descsz, filepos) true | |
32090b8e | 3475 | #endif |
244ffee7 | 3476 | |
32090b8e | 3477 | #ifdef HAVE_PROCFS |
244ffee7 | 3478 | |
2e03ce18 | 3479 | static boolean |
1c6042ee ILT |
3480 | bfd_prstatus (abfd, descdata, descsz, filepos) |
3481 | bfd *abfd; | |
3482 | char *descdata; | |
3483 | int descsz; | |
3484 | long filepos; | |
32090b8e KR |
3485 | { |
3486 | asection *newsect; | |
3487 | prstatus_t *status = (prstatus_t *) 0; | |
244ffee7 | 3488 | |
32090b8e | 3489 | if (descsz == sizeof (prstatus_t)) |
244ffee7 | 3490 | { |
32090b8e | 3491 | newsect = bfd_make_section (abfd, ".reg"); |
2e03ce18 ILT |
3492 | if (newsect == NULL) |
3493 | return false; | |
32090b8e KR |
3494 | newsect->_raw_size = sizeof (status->pr_reg); |
3495 | newsect->filepos = filepos + (long) &status->pr_reg; | |
57a814a9 | 3496 | newsect->flags = SEC_HAS_CONTENTS; |
32090b8e KR |
3497 | newsect->alignment_power = 2; |
3498 | if ((core_prstatus (abfd) = bfd_alloc (abfd, descsz)) != NULL) | |
3499 | { | |
3500 | memcpy (core_prstatus (abfd), descdata, descsz); | |
3501 | } | |
244ffee7 | 3502 | } |
2e03ce18 | 3503 | return true; |
32090b8e | 3504 | } |
244ffee7 | 3505 | |
32090b8e | 3506 | /* Stash a copy of the prpsinfo structure away for future use. */ |
244ffee7 | 3507 | |
2e03ce18 | 3508 | static boolean |
1c6042ee ILT |
3509 | bfd_prpsinfo (abfd, descdata, descsz, filepos) |
3510 | bfd *abfd; | |
3511 | char *descdata; | |
3512 | int descsz; | |
3513 | long filepos; | |
32090b8e | 3514 | { |
32090b8e KR |
3515 | if (descsz == sizeof (prpsinfo_t)) |
3516 | { | |
2e03ce18 | 3517 | if ((core_prpsinfo (abfd) = bfd_alloc (abfd, descsz)) == NULL) |
244ffee7 | 3518 | { |
2e03ce18 ILT |
3519 | bfd_set_error (bfd_error_no_memory); |
3520 | return false; | |
244ffee7 | 3521 | } |
2e03ce18 | 3522 | memcpy (core_prpsinfo (abfd), descdata, descsz); |
244ffee7 | 3523 | } |
2e03ce18 | 3524 | return true; |
244ffee7 JK |
3525 | } |
3526 | ||
2e03ce18 | 3527 | static boolean |
1c6042ee ILT |
3528 | bfd_fpregset (abfd, descdata, descsz, filepos) |
3529 | bfd *abfd; | |
3530 | char *descdata; | |
3531 | int descsz; | |
3532 | long filepos; | |
244ffee7 | 3533 | { |
32090b8e | 3534 | asection *newsect; |
244ffee7 | 3535 | |
32090b8e | 3536 | newsect = bfd_make_section (abfd, ".reg2"); |
2e03ce18 ILT |
3537 | if (newsect == NULL) |
3538 | return false; | |
32090b8e KR |
3539 | newsect->_raw_size = descsz; |
3540 | newsect->filepos = filepos; | |
57a814a9 | 3541 | newsect->flags = SEC_HAS_CONTENTS; |
32090b8e | 3542 | newsect->alignment_power = 2; |
2e03ce18 | 3543 | return true; |
6a3eb9b6 | 3544 | } |
244ffee7 | 3545 | |
32090b8e KR |
3546 | #endif /* HAVE_PROCFS */ |
3547 | ||
3548 | /* Return a pointer to the args (including the command name) that were | |
3549 | seen by the program that generated the core dump. Note that for | |
3550 | some reason, a spurious space is tacked onto the end of the args | |
3551 | in some (at least one anyway) implementations, so strip it off if | |
3552 | it exists. */ | |
3553 | ||
3554 | char * | |
1c6042ee ILT |
3555 | elf_core_file_failing_command (abfd) |
3556 | bfd *abfd; | |
244ffee7 | 3557 | { |
32090b8e KR |
3558 | #ifdef HAVE_PROCFS |
3559 | if (core_prpsinfo (abfd)) | |
3560 | { | |
3561 | prpsinfo_t *p = core_prpsinfo (abfd); | |
3562 | char *scan = p->pr_psargs; | |
3563 | while (*scan++) | |
3564 | {; | |
3565 | } | |
3566 | scan -= 2; | |
3567 | if ((scan > p->pr_psargs) && (*scan == ' ')) | |
3568 | { | |
3569 | *scan = '\000'; | |
3570 | } | |
3571 | return p->pr_psargs; | |
3572 | } | |
3573 | #endif | |
3574 | return NULL; | |
3575 | } | |
244ffee7 | 3576 | |
32090b8e KR |
3577 | /* Return the number of the signal that caused the core dump. Presumably, |
3578 | since we have a core file, we got a signal of some kind, so don't bother | |
3579 | checking the other process status fields, just return the signal number. | |
3580 | */ | |
244ffee7 | 3581 | |
32090b8e | 3582 | int |
1c6042ee ILT |
3583 | elf_core_file_failing_signal (abfd) |
3584 | bfd *abfd; | |
32090b8e KR |
3585 | { |
3586 | #ifdef HAVE_PROCFS | |
3587 | if (core_prstatus (abfd)) | |
3588 | { | |
3589 | return ((prstatus_t *) (core_prstatus (abfd)))->pr_cursig; | |
3590 | } | |
3591 | #endif | |
3592 | return -1; | |
3593 | } | |
244ffee7 | 3594 | |
32090b8e KR |
3595 | /* Check to see if the core file could reasonably be expected to have |
3596 | come for the current executable file. Note that by default we return | |
3597 | true unless we find something that indicates that there might be a | |
3598 | problem. | |
3599 | */ | |
244ffee7 | 3600 | |
32090b8e | 3601 | boolean |
1c6042ee ILT |
3602 | elf_core_file_matches_executable_p (core_bfd, exec_bfd) |
3603 | bfd *core_bfd; | |
3604 | bfd *exec_bfd; | |
32090b8e KR |
3605 | { |
3606 | #ifdef HAVE_PROCFS | |
3607 | char *corename; | |
3608 | char *execname; | |
3609 | #endif | |
244ffee7 | 3610 | |
32090b8e KR |
3611 | /* First, xvecs must match since both are ELF files for the same target. */ |
3612 | ||
3613 | if (core_bfd->xvec != exec_bfd->xvec) | |
244ffee7 | 3614 | { |
d1ad85a6 | 3615 | bfd_set_error (bfd_error_system_call); |
244ffee7 JK |
3616 | return false; |
3617 | } | |
3618 | ||
32090b8e | 3619 | #ifdef HAVE_PROCFS |
244ffee7 | 3620 | |
32090b8e KR |
3621 | /* If no prpsinfo, just return true. Otherwise, grab the last component |
3622 | of the exec'd pathname from the prpsinfo. */ | |
244ffee7 | 3623 | |
32090b8e | 3624 | if (core_prpsinfo (core_bfd)) |
244ffee7 | 3625 | { |
0ef449df | 3626 | corename = (((prpsinfo_t *) core_prpsinfo (core_bfd))->pr_fname); |
32090b8e KR |
3627 | } |
3628 | else | |
3629 | { | |
3630 | return true; | |
3631 | } | |
244ffee7 | 3632 | |
32090b8e | 3633 | /* Find the last component of the executable pathname. */ |
244ffee7 | 3634 | |
32090b8e KR |
3635 | if ((execname = strrchr (exec_bfd->filename, '/')) != NULL) |
3636 | { | |
3637 | execname++; | |
3638 | } | |
3639 | else | |
3640 | { | |
3641 | execname = (char *) exec_bfd->filename; | |
3642 | } | |
244ffee7 | 3643 | |
32090b8e | 3644 | /* See if they match */ |
244ffee7 | 3645 | |
32090b8e | 3646 | return strcmp (execname, corename) ? false : true; |
244ffee7 | 3647 | |
32090b8e | 3648 | #else |
244ffee7 | 3649 | |
244ffee7 | 3650 | return true; |
244ffee7 | 3651 | |
32090b8e KR |
3652 | #endif /* HAVE_PROCFS */ |
3653 | } | |
244ffee7 | 3654 | |
32090b8e KR |
3655 | /* ELF core files contain a segment of type PT_NOTE, that holds much of |
3656 | the information that would normally be available from the /proc interface | |
3657 | for the process, at the time the process dumped core. Currently this | |
3658 | includes copies of the prstatus, prpsinfo, and fpregset structures. | |
244ffee7 | 3659 | |
32090b8e KR |
3660 | Since these structures are potentially machine dependent in size and |
3661 | ordering, bfd provides two levels of support for them. The first level, | |
3662 | available on all machines since it does not require that the host | |
3663 | have /proc support or the relevant include files, is to create a bfd | |
3664 | section for each of the prstatus, prpsinfo, and fpregset structures, | |
3665 | without any interpretation of their contents. With just this support, | |
3666 | the bfd client will have to interpret the structures itself. Even with | |
3667 | /proc support, it might want these full structures for it's own reasons. | |
244ffee7 | 3668 | |
32090b8e KR |
3669 | In the second level of support, where HAVE_PROCFS is defined, bfd will |
3670 | pick apart the structures to gather some additional information that | |
3671 | clients may want, such as the general register set, the name of the | |
3672 | exec'ed file and its arguments, the signal (if any) that caused the | |
3673 | core dump, etc. | |
244ffee7 | 3674 | |
32090b8e | 3675 | */ |
244ffee7 | 3676 | |
32090b8e | 3677 | static boolean |
1c6042ee ILT |
3678 | elf_corefile_note (abfd, hdr) |
3679 | bfd *abfd; | |
3680 | Elf_Internal_Phdr *hdr; | |
244ffee7 | 3681 | { |
32090b8e KR |
3682 | Elf_External_Note *x_note_p; /* Elf note, external form */ |
3683 | Elf_Internal_Note i_note; /* Elf note, internal form */ | |
3684 | char *buf = NULL; /* Entire note segment contents */ | |
3685 | char *namedata; /* Name portion of the note */ | |
3686 | char *descdata; /* Descriptor portion of the note */ | |
3687 | char *sectname; /* Name to use for new section */ | |
3688 | long filepos; /* File offset to descriptor data */ | |
3689 | asection *newsect; | |
3690 | ||
3691 | if (hdr->p_filesz > 0 | |
b9d5cdf0 | 3692 | && (buf = (char *) malloc (hdr->p_filesz)) != NULL |
32090b8e KR |
3693 | && bfd_seek (abfd, hdr->p_offset, SEEK_SET) != -1 |
3694 | && bfd_read ((PTR) buf, hdr->p_filesz, 1, abfd) == hdr->p_filesz) | |
3695 | { | |
3696 | x_note_p = (Elf_External_Note *) buf; | |
3697 | while ((char *) x_note_p < (buf + hdr->p_filesz)) | |
3698 | { | |
3699 | i_note.namesz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->namesz); | |
3700 | i_note.descsz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->descsz); | |
3701 | i_note.type = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->type); | |
3702 | namedata = x_note_p->name; | |
3703 | descdata = namedata + BFD_ALIGN (i_note.namesz, 4); | |
3704 | filepos = hdr->p_offset + (descdata - buf); | |
3705 | switch (i_note.type) | |
3706 | { | |
3707 | case NT_PRSTATUS: | |
3708 | /* process descdata as prstatus info */ | |
2e03ce18 ILT |
3709 | if (! bfd_prstatus (abfd, descdata, i_note.descsz, filepos)) |
3710 | return false; | |
32090b8e KR |
3711 | sectname = ".prstatus"; |
3712 | break; | |
3713 | case NT_FPREGSET: | |
3714 | /* process descdata as fpregset info */ | |
2e03ce18 ILT |
3715 | if (! bfd_fpregset (abfd, descdata, i_note.descsz, filepos)) |
3716 | return false; | |
32090b8e KR |
3717 | sectname = ".fpregset"; |
3718 | break; | |
3719 | case NT_PRPSINFO: | |
3720 | /* process descdata as prpsinfo */ | |
2e03ce18 ILT |
3721 | if (! bfd_prpsinfo (abfd, descdata, i_note.descsz, filepos)) |
3722 | return false; | |
32090b8e KR |
3723 | sectname = ".prpsinfo"; |
3724 | break; | |
3725 | default: | |
3726 | /* Unknown descriptor, just ignore it. */ | |
3727 | sectname = NULL; | |
3728 | break; | |
3729 | } | |
3730 | if (sectname != NULL) | |
3731 | { | |
3732 | newsect = bfd_make_section (abfd, sectname); | |
2e03ce18 ILT |
3733 | if (newsect == NULL) |
3734 | return false; | |
32090b8e KR |
3735 | newsect->_raw_size = i_note.descsz; |
3736 | newsect->filepos = filepos; | |
3737 | newsect->flags = SEC_ALLOC | SEC_HAS_CONTENTS; | |
3738 | newsect->alignment_power = 2; | |
3739 | } | |
3740 | x_note_p = (Elf_External_Note *) | |
3741 | (descdata + BFD_ALIGN (i_note.descsz, 4)); | |
3742 | } | |
3743 | } | |
3744 | if (buf != NULL) | |
3745 | { | |
3746 | free (buf); | |
3747 | } | |
b9d5cdf0 DM |
3748 | else if (hdr->p_filesz > 0) |
3749 | { | |
d1ad85a6 | 3750 | bfd_set_error (bfd_error_no_memory); |
b9d5cdf0 DM |
3751 | return false; |
3752 | } | |
32090b8e | 3753 | return true; |
244ffee7 | 3754 | |
244ffee7 JK |
3755 | } |
3756 | ||
32090b8e KR |
3757 | /* Core files are simply standard ELF formatted files that partition |
3758 | the file using the execution view of the file (program header table) | |
3759 | rather than the linking view. In fact, there is no section header | |
3760 | table in a core file. | |
3761 | ||
3762 | The process status information (including the contents of the general | |
3763 | register set) and the floating point register set are stored in a | |
3764 | segment of type PT_NOTE. We handcraft a couple of extra bfd sections | |
3765 | that allow standard bfd access to the general registers (.reg) and the | |
3766 | floating point registers (.reg2). | |
3767 | ||
3768 | */ | |
3769 | ||
2f3508ad | 3770 | const bfd_target * |
1c6042ee ILT |
3771 | elf_core_file_p (abfd) |
3772 | bfd *abfd; | |
244ffee7 | 3773 | { |
32090b8e KR |
3774 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
3775 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
3776 | Elf_External_Phdr x_phdr; /* Program header table entry, external form */ | |
3777 | Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */ | |
3778 | unsigned int phindex; | |
d6439785 | 3779 | struct elf_backend_data *ebd; |
244ffee7 | 3780 | |
32090b8e KR |
3781 | /* Read in the ELF header in external format. */ |
3782 | ||
3783 | if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr)) | |
244ffee7 | 3784 | { |
25057836 JL |
3785 | if (bfd_get_error () != bfd_error_system_call) |
3786 | bfd_set_error (bfd_error_wrong_format); | |
244ffee7 JK |
3787 | return NULL; |
3788 | } | |
32090b8e KR |
3789 | |
3790 | /* Now check to see if we have a valid ELF file, and one that BFD can | |
3791 | make use of. The magic number must match, the address size ('class') | |
3792 | and byte-swapping must match our XVEC entry, and it must have a | |
3793 | program header table (FIXME: See comments re segments at top of this | |
3794 | file). */ | |
3795 | ||
3796 | if (elf_file_p (&x_ehdr) == false) | |
244ffee7 | 3797 | { |
32090b8e | 3798 | wrong: |
d1ad85a6 | 3799 | bfd_set_error (bfd_error_wrong_format); |
32090b8e | 3800 | return NULL; |
244ffee7 | 3801 | } |
244ffee7 | 3802 | |
32090b8e | 3803 | /* FIXME, Check EI_VERSION here ! */ |
244ffee7 | 3804 | |
32090b8e KR |
3805 | { |
3806 | #if ARCH_SIZE == 32 | |
3807 | int desired_address_size = ELFCLASS32; | |
3808 | #endif | |
3809 | #if ARCH_SIZE == 64 | |
3810 | int desired_address_size = ELFCLASS64; | |
3811 | #endif | |
3812 | ||
3813 | if (x_ehdr.e_ident[EI_CLASS] != desired_address_size) | |
3814 | goto wrong; | |
3815 | } | |
3816 | ||
3817 | /* Switch xvec to match the specified byte order. */ | |
3818 | switch (x_ehdr.e_ident[EI_DATA]) | |
244ffee7 | 3819 | { |
32090b8e KR |
3820 | case ELFDATA2MSB: /* Big-endian */ |
3821 | if (abfd->xvec->byteorder_big_p == false) | |
3822 | goto wrong; | |
244ffee7 | 3823 | break; |
32090b8e KR |
3824 | case ELFDATA2LSB: /* Little-endian */ |
3825 | if (abfd->xvec->byteorder_big_p == true) | |
3826 | goto wrong; | |
244ffee7 | 3827 | break; |
32090b8e KR |
3828 | case ELFDATANONE: /* No data encoding specified */ |
3829 | default: /* Unknown data encoding specified */ | |
3830 | goto wrong; | |
244ffee7 JK |
3831 | } |
3832 | ||
32090b8e KR |
3833 | /* Allocate an instance of the elf_obj_tdata structure and hook it up to |
3834 | the tdata pointer in the bfd. */ | |
244ffee7 | 3835 | |
32090b8e KR |
3836 | elf_tdata (abfd) = |
3837 | (struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)); | |
3838 | if (elf_tdata (abfd) == NULL) | |
244ffee7 | 3839 | { |
d1ad85a6 | 3840 | bfd_set_error (bfd_error_no_memory); |
32090b8e | 3841 | return NULL; |
244ffee7 | 3842 | } |
244ffee7 | 3843 | |
32090b8e | 3844 | /* FIXME, `wrong' returns from this point onward, leak memory. */ |
244ffee7 | 3845 | |
32090b8e KR |
3846 | /* Now that we know the byte order, swap in the rest of the header */ |
3847 | i_ehdrp = elf_elfheader (abfd); | |
3848 | elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp); | |
3849 | #if DEBUG & 1 | |
3850 | elf_debug_file (i_ehdrp); | |
3851 | #endif | |
244ffee7 | 3852 | |
d6439785 JL |
3853 | ebd = get_elf_backend_data (abfd); |
3854 | ||
3855 | /* Check that the ELF e_machine field matches what this particular | |
3856 | BFD format expects. */ | |
df168c35 DE |
3857 | if (ebd->elf_machine_code != i_ehdrp->e_machine |
3858 | && (ebd->elf_machine_alt1 == 0 || i_ehdrp->e_machine != ebd->elf_machine_alt1) | |
3859 | && (ebd->elf_machine_alt2 == 0 || i_ehdrp->e_machine != ebd->elf_machine_alt2)) | |
d6439785 | 3860 | { |
2f3508ad | 3861 | const bfd_target * const *target_ptr; |
d6439785 JL |
3862 | |
3863 | if (ebd->elf_machine_code != EM_NONE) | |
3864 | goto wrong; | |
3865 | ||
3866 | /* This is the generic ELF target. Let it match any ELF target | |
3867 | for which we do not have a specific backend. */ | |
3868 | for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++) | |
3869 | { | |
3870 | struct elf_backend_data *back; | |
3871 | ||
3872 | if ((*target_ptr)->flavour != bfd_target_elf_flavour) | |
3873 | continue; | |
3874 | back = (struct elf_backend_data *) (*target_ptr)->backend_data; | |
3875 | if (back->elf_machine_code == i_ehdrp->e_machine) | |
3876 | { | |
3877 | /* target_ptr is an ELF backend which matches this | |
3878 | object file, so reject the generic ELF target. */ | |
3879 | goto wrong; | |
3880 | } | |
3881 | } | |
3882 | } | |
3883 | ||
32090b8e KR |
3884 | /* If there is no program header, or the type is not a core file, then |
3885 | we are hosed. */ | |
3886 | if (i_ehdrp->e_phoff == 0 || i_ehdrp->e_type != ET_CORE) | |
3887 | goto wrong; | |
244ffee7 | 3888 | |
32090b8e KR |
3889 | /* Allocate space for a copy of the program header table in |
3890 | internal form, seek to the program header table in the file, | |
3891 | read it in, and convert it to internal form. As a simple sanity | |
3892 | check, verify that the what BFD thinks is the size of each program | |
3893 | header table entry actually matches the size recorded in the file. */ | |
3894 | ||
3895 | if (i_ehdrp->e_phentsize != sizeof (x_phdr)) | |
3896 | goto wrong; | |
3897 | i_phdrp = (Elf_Internal_Phdr *) | |
3898 | bfd_alloc (abfd, sizeof (*i_phdrp) * i_ehdrp->e_phnum); | |
3899 | if (!i_phdrp) | |
244ffee7 | 3900 | { |
d1ad85a6 | 3901 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
3902 | return NULL; |
3903 | } | |
3904 | if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) == -1) | |
25057836 | 3905 | return NULL; |
32090b8e KR |
3906 | for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++) |
3907 | { | |
3908 | if (bfd_read ((PTR) & x_phdr, sizeof (x_phdr), 1, abfd) | |
3909 | != sizeof (x_phdr)) | |
25057836 | 3910 | return NULL; |
32090b8e | 3911 | elf_swap_phdr_in (abfd, &x_phdr, i_phdrp + phindex); |
244ffee7 JK |
3912 | } |
3913 | ||
32090b8e KR |
3914 | /* Once all of the program headers have been read and converted, we |
3915 | can start processing them. */ | |
244ffee7 | 3916 | |
32090b8e KR |
3917 | for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++) |
3918 | { | |
3919 | bfd_section_from_phdr (abfd, i_phdrp + phindex, phindex); | |
3920 | if ((i_phdrp + phindex)->p_type == PT_NOTE) | |
3921 | { | |
2e03ce18 ILT |
3922 | if (! elf_corefile_note (abfd, i_phdrp + phindex)) |
3923 | return NULL; | |
32090b8e KR |
3924 | } |
3925 | } | |
244ffee7 | 3926 | |
32090b8e | 3927 | /* Remember the entry point specified in the ELF file header. */ |
244ffee7 | 3928 | |
32090b8e | 3929 | bfd_get_start_address (abfd) = i_ehdrp->e_entry; |
244ffee7 | 3930 | |
32090b8e | 3931 | return abfd->xvec; |
244ffee7 | 3932 | } |
6ec3bb6a ILT |
3933 | \f |
3934 | /* ELF linker code. */ | |
3935 | ||
3936 | static boolean elf_link_add_object_symbols | |
3937 | PARAMS ((bfd *, struct bfd_link_info *)); | |
3938 | static boolean elf_link_add_archive_symbols | |
3939 | PARAMS ((bfd *, struct bfd_link_info *)); | |
374d2ef9 ILT |
3940 | static Elf_Internal_Rela *elf_link_read_relocs |
3941 | PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean)); | |
11bb5591 ILT |
3942 | static boolean elf_export_symbol |
3943 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
013dec1a ILT |
3944 | static boolean elf_adjust_dynamic_symbol |
3945 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
6ec3bb6a | 3946 | |
0ef449df KR |
3947 | /* This struct is used to pass information to routines called via |
3948 | elf_link_hash_traverse which must return failure. */ | |
3949 | ||
3950 | struct elf_info_failed | |
3951 | { | |
3952 | boolean failed; | |
3953 | struct bfd_link_info *info; | |
3954 | }; | |
3955 | ||
6ec3bb6a ILT |
3956 | /* Given an ELF BFD, add symbols to the global hash table as |
3957 | appropriate. */ | |
3958 | ||
3959 | boolean | |
3960 | elf_bfd_link_add_symbols (abfd, info) | |
3961 | bfd *abfd; | |
3962 | struct bfd_link_info *info; | |
3963 | { | |
4c124191 ILT |
3964 | bfd *first; |
3965 | ||
6ec3bb6a ILT |
3966 | switch (bfd_get_format (abfd)) |
3967 | { | |
3968 | case bfd_object: | |
3969 | return elf_link_add_object_symbols (abfd, info); | |
3970 | case bfd_archive: | |
4c124191 ILT |
3971 | first = bfd_openr_next_archived_file (abfd, (bfd *) NULL); |
3972 | if (first == NULL) | |
0ef449df KR |
3973 | { |
3974 | /* It's OK to have an empty archive. */ | |
3975 | return true; | |
3976 | } | |
4c124191 ILT |
3977 | if (! bfd_check_format (first, bfd_object)) |
3978 | return false; | |
3979 | if (bfd_get_flavour (first) != bfd_target_elf_flavour) | |
3980 | { | |
3981 | /* On Linux, we may have an a.out archive which got | |
3982 | recognized as an ELF archive. Therefore, we treat all | |
3983 | archives as though they were actually of the flavour of | |
3984 | their first element. */ | |
3985 | return (*first->xvec->_bfd_link_add_symbols) (abfd, info); | |
3986 | } | |
6ec3bb6a ILT |
3987 | return elf_link_add_archive_symbols (abfd, info); |
3988 | default: | |
3989 | bfd_set_error (bfd_error_wrong_format); | |
3990 | return false; | |
3991 | } | |
3992 | } | |
3993 | ||
3994 | /* Add symbols from an ELF archive file to the linker hash table. We | |
3995 | don't use _bfd_generic_link_add_archive_symbols because of a | |
3996 | problem which arises on UnixWare. The UnixWare libc.so is an | |
3997 | archive which includes an entry libc.so.1 which defines a bunch of | |
3998 | symbols. The libc.so archive also includes a number of other | |
3999 | object files, which also define symbols, some of which are the same | |
4000 | as those defined in libc.so.1. Correct linking requires that we | |
4001 | consider each object file in turn, and include it if it defines any | |
4002 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
4003 | this; it looks through the list of undefined symbols, and includes | |
4004 | any object file which defines them. When this algorithm is used on | |
4005 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
4006 | bunch of symbols. This means that some of the other objects in the | |
4007 | archive are not included in the link, which is incorrect since they | |
4008 | precede libc.so.1 in the archive. | |
4009 | ||
4010 | Fortunately, ELF archive handling is simpler than that done by | |
4011 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
4012 | oddities. In ELF, if we find a symbol in the archive map, and the | |
4013 | symbol is currently undefined, we know that we must pull in that | |
4014 | object file. | |
4015 | ||
4016 | Unfortunately, we do have to make multiple passes over the symbol | |
4017 | table until nothing further is resolved. */ | |
4018 | ||
4019 | static boolean | |
4020 | elf_link_add_archive_symbols (abfd, info) | |
4021 | bfd *abfd; | |
4022 | struct bfd_link_info *info; | |
4023 | { | |
4024 | symindex c; | |
4025 | boolean *defined = NULL; | |
4026 | boolean *included = NULL; | |
4027 | carsym *symdefs; | |
4028 | boolean loop; | |
4029 | ||
4030 | if (! bfd_has_map (abfd)) | |
4031 | { | |
54f16fc4 ILT |
4032 | /* An empty archive is a special case. */ |
4033 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
4034 | return true; | |
6ec3bb6a ILT |
4035 | bfd_set_error (bfd_error_no_symbols); |
4036 | return false; | |
4037 | } | |
4038 | ||
4039 | /* Keep track of all symbols we know to be already defined, and all | |
4040 | files we know to be already included. This is to speed up the | |
4041 | second and subsequent passes. */ | |
4042 | c = bfd_ardata (abfd)->symdef_count; | |
4043 | if (c == 0) | |
4044 | return true; | |
4045 | defined = (boolean *) malloc (c * sizeof (boolean)); | |
4046 | included = (boolean *) malloc (c * sizeof (boolean)); | |
4047 | if (defined == (boolean *) NULL || included == (boolean *) NULL) | |
4048 | { | |
4049 | bfd_set_error (bfd_error_no_memory); | |
4050 | goto error_return; | |
4051 | } | |
4052 | memset (defined, 0, c * sizeof (boolean)); | |
4053 | memset (included, 0, c * sizeof (boolean)); | |
4054 | ||
4055 | symdefs = bfd_ardata (abfd)->symdefs; | |
4056 | ||
4057 | do | |
4058 | { | |
4059 | file_ptr last; | |
4060 | symindex i; | |
4061 | carsym *symdef; | |
4062 | carsym *symdefend; | |
4063 | ||
4064 | loop = false; | |
4065 | last = -1; | |
4066 | ||
4067 | symdef = symdefs; | |
4068 | symdefend = symdef + c; | |
4069 | for (i = 0; symdef < symdefend; symdef++, i++) | |
4070 | { | |
4071 | struct elf_link_hash_entry *h; | |
4072 | bfd *element; | |
4073 | struct bfd_link_hash_entry *undefs_tail; | |
4074 | symindex mark; | |
4075 | ||
4076 | if (defined[i] || included[i]) | |
4077 | continue; | |
4078 | if (symdef->file_offset == last) | |
4079 | { | |
4080 | included[i] = true; | |
4081 | continue; | |
4082 | } | |
4083 | ||
4084 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
4085 | false, false, false); | |
4086 | if (h == (struct elf_link_hash_entry *) NULL) | |
4087 | continue; | |
4088 | if (h->root.type != bfd_link_hash_undefined) | |
4089 | { | |
4090 | defined[i] = true; | |
4091 | continue; | |
4092 | } | |
4093 | ||
4094 | /* We need to include this archive member. */ | |
4095 | ||
4096 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
4097 | if (element == (bfd *) NULL) | |
4098 | goto error_return; | |
4099 | ||
4100 | if (! bfd_check_format (element, bfd_object)) | |
4101 | goto error_return; | |
4102 | ||
4103 | /* Doublecheck that we have not included this object | |
4104 | already--it should be impossible, but there may be | |
4105 | something wrong with the archive. */ | |
4106 | if (element->archive_pass != 0) | |
4107 | { | |
4108 | bfd_set_error (bfd_error_bad_value); | |
4109 | goto error_return; | |
4110 | } | |
4111 | element->archive_pass = 1; | |
4112 | ||
4113 | undefs_tail = info->hash->undefs_tail; | |
4114 | ||
4115 | if (! (*info->callbacks->add_archive_element) (info, element, | |
4116 | symdef->name)) | |
4117 | goto error_return; | |
4118 | if (! elf_link_add_object_symbols (element, info)) | |
4119 | goto error_return; | |
4120 | ||
4121 | /* If there are any new undefined symbols, we need to make | |
4122 | another pass through the archive in order to see whether | |
4123 | they can be defined. FIXME: This isn't perfect, because | |
4124 | common symbols wind up on undefs_tail and because an | |
4125 | undefined symbol which is defined later on in this pass | |
4126 | does not require another pass. This isn't a bug, but it | |
4127 | does make the code less efficient than it could be. */ | |
4128 | if (undefs_tail != info->hash->undefs_tail) | |
4129 | loop = true; | |
4130 | ||
4131 | /* Look backward to mark all symbols from this object file | |
4132 | which we have already seen in this pass. */ | |
4133 | mark = i; | |
4134 | do | |
4135 | { | |
4136 | included[mark] = true; | |
4137 | if (mark == 0) | |
4138 | break; | |
4139 | --mark; | |
4140 | } | |
4141 | while (symdefs[mark].file_offset == symdef->file_offset); | |
4142 | ||
4143 | /* We mark subsequent symbols from this object file as we go | |
4144 | on through the loop. */ | |
4145 | last = symdef->file_offset; | |
4146 | } | |
4147 | } | |
4148 | while (loop); | |
4149 | ||
4150 | free (defined); | |
4151 | free (included); | |
4152 | ||
4153 | return true; | |
4154 | ||
4155 | error_return: | |
4156 | if (defined != (boolean *) NULL) | |
4157 | free (defined); | |
4158 | if (included != (boolean *) NULL) | |
4159 | free (included); | |
4160 | return false; | |
4161 | } | |
4162 | ||
013dec1a ILT |
4163 | /* Record a new dynamic symbol. We record the dynamic symbols as we |
4164 | read the input files, since we need to have a list of all of them | |
12662be4 ILT |
4165 | before we can determine the final sizes of the output sections. |
4166 | Note that we may actually call this function even though we are not | |
4167 | going to output any dynamic symbols; in some cases we know that a | |
4168 | symbol should be in the dynamic symbol table, but only if there is | |
4169 | one. */ | |
013dec1a | 4170 | |
12662be4 | 4171 | boolean |
013dec1a ILT |
4172 | elf_link_record_dynamic_symbol (info, h) |
4173 | struct bfd_link_info *info; | |
4174 | struct elf_link_hash_entry *h; | |
4175 | { | |
4176 | if (h->dynindx == -1) | |
4177 | { | |
12662be4 ILT |
4178 | struct bfd_strtab_hash *dynstr; |
4179 | ||
013dec1a ILT |
4180 | h->dynindx = elf_hash_table (info)->dynsymcount; |
4181 | ++elf_hash_table (info)->dynsymcount; | |
12662be4 ILT |
4182 | |
4183 | dynstr = elf_hash_table (info)->dynstr; | |
4184 | if (dynstr == NULL) | |
4185 | { | |
4186 | /* Create a strtab to hold the dynamic symbol names. */ | |
4187 | elf_hash_table (info)->dynstr = dynstr = elf_stringtab_init (); | |
4188 | if (dynstr == NULL) | |
4189 | return false; | |
4190 | } | |
4191 | ||
4192 | h->dynstr_index = ((unsigned long) | |
4193 | _bfd_stringtab_add (dynstr, h->root.root.string, | |
4194 | true, false)); | |
013dec1a ILT |
4195 | if (h->dynstr_index == (unsigned long) -1) |
4196 | return false; | |
4197 | } | |
4198 | ||
4199 | return true; | |
4200 | } | |
4201 | ||
6ec3bb6a ILT |
4202 | /* Add symbols from an ELF object file to the linker hash table. */ |
4203 | ||
4204 | static boolean | |
4205 | elf_link_add_object_symbols (abfd, info) | |
4206 | bfd *abfd; | |
4207 | struct bfd_link_info *info; | |
4208 | { | |
4209 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
4210 | const Elf_Internal_Sym *, | |
4211 | const char **, flagword *, | |
4212 | asection **, bfd_vma *)); | |
374d2ef9 ILT |
4213 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, |
4214 | asection *, const Elf_Internal_Rela *)); | |
6ec3bb6a ILT |
4215 | boolean collect; |
4216 | Elf_Internal_Shdr *hdr; | |
4217 | size_t symcount; | |
4218 | size_t extsymcount; | |
5315c428 | 4219 | size_t extsymoff; |
6ec3bb6a ILT |
4220 | Elf_External_Sym *buf = NULL; |
4221 | struct elf_link_hash_entry **sym_hash; | |
013dec1a ILT |
4222 | boolean dynamic; |
4223 | Elf_External_Dyn *dynbuf = NULL; | |
4224 | struct elf_link_hash_entry *weaks; | |
6ec3bb6a ILT |
4225 | Elf_External_Sym *esym; |
4226 | Elf_External_Sym *esymend; | |
4227 | ||
4228 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
4229 | collect = get_elf_backend_data (abfd)->collect; | |
4230 | ||
1c640609 ILT |
4231 | /* A stripped shared library might only have a dynamic symbol table, |
4232 | not a regular symbol table. In that case we can still go ahead | |
4233 | and link using the dynamic symbol table. */ | |
4234 | if (elf_onesymtab (abfd) == 0 | |
4235 | && elf_dynsymtab (abfd) != 0) | |
4236 | { | |
4237 | elf_onesymtab (abfd) = elf_dynsymtab (abfd); | |
4238 | elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr; | |
4239 | } | |
4240 | ||
6ec3bb6a ILT |
4241 | hdr = &elf_tdata (abfd)->symtab_hdr; |
4242 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
4243 | ||
4244 | /* The sh_info field of the symtab header tells us where the | |
4245 | external symbols start. We don't care about the local symbols at | |
4246 | this point. */ | |
5315c428 ILT |
4247 | if (elf_bad_symtab (abfd)) |
4248 | { | |
4249 | extsymcount = symcount; | |
4250 | extsymoff = 0; | |
4251 | } | |
4252 | else | |
4253 | { | |
4254 | extsymcount = symcount - hdr->sh_info; | |
4255 | extsymoff = hdr->sh_info; | |
4256 | } | |
6ec3bb6a ILT |
4257 | |
4258 | buf = (Elf_External_Sym *) malloc (extsymcount * sizeof (Elf_External_Sym)); | |
4259 | if (buf == NULL && extsymcount != 0) | |
4260 | { | |
4261 | bfd_set_error (bfd_error_no_memory); | |
4262 | goto error_return; | |
4263 | } | |
4264 | ||
013dec1a ILT |
4265 | /* We store a pointer to the hash table entry for each external |
4266 | symbol. */ | |
6ec3bb6a ILT |
4267 | sym_hash = ((struct elf_link_hash_entry **) |
4268 | bfd_alloc (abfd, | |
4269 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
4270 | if (sym_hash == NULL) | |
4271 | { | |
4272 | bfd_set_error (bfd_error_no_memory); | |
4273 | goto error_return; | |
4274 | } | |
4275 | elf_sym_hashes (abfd) = sym_hash; | |
4276 | ||
013dec1a | 4277 | if (elf_elfheader (abfd)->e_type != ET_DYN) |
8af74670 ILT |
4278 | { |
4279 | dynamic = false; | |
4280 | ||
4281 | /* If we are creating a shared library, create all the dynamic | |
4282 | sections immediately. We need to attach them to something, | |
4283 | so we attach them to this BFD, provided it is the right | |
4284 | format. FIXME: If there are no input BFD's of the same | |
4285 | format as the output, we can't make a shared library. */ | |
4286 | if (info->shared | |
12662be4 | 4287 | && ! elf_hash_table (info)->dynamic_sections_created |
8af74670 ILT |
4288 | && abfd->xvec == info->hash->creator) |
4289 | { | |
4290 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
4291 | goto error_return; | |
8af74670 ILT |
4292 | } |
4293 | } | |
013dec1a ILT |
4294 | else |
4295 | { | |
4296 | asection *s; | |
4297 | const char *name; | |
0ef449df | 4298 | bfd_size_type oldsize; |
eb4267a3 | 4299 | bfd_size_type strindex; |
013dec1a ILT |
4300 | |
4301 | dynamic = true; | |
4302 | ||
374d2ef9 ILT |
4303 | /* You can't use -r against a dynamic object. Also, there's no |
4304 | hope of using a dynamic object which does not exactly match | |
4305 | the format of the output file. */ | |
013dec1a ILT |
4306 | if (info->relocateable |
4307 | || info->hash->creator != abfd->xvec) | |
4308 | { | |
4309 | bfd_set_error (bfd_error_invalid_operation); | |
4310 | goto error_return; | |
4311 | } | |
4312 | ||
4313 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
4314 | object. If the object has a DT_SONAME entry, we use it. | |
c1f84521 ILT |
4315 | Otherwise, if the generic linker stuck something in |
4316 | elf_dt_needed_name, we use that. Otherwise, we just use the | |
4317 | file name. */ | |
013dec1a | 4318 | name = bfd_get_filename (abfd); |
c1f84521 ILT |
4319 | if (elf_dt_needed_name (abfd) != NULL) |
4320 | name = elf_dt_needed_name (abfd); | |
013dec1a ILT |
4321 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
4322 | if (s != NULL) | |
4323 | { | |
4324 | Elf_External_Dyn *extdyn; | |
4325 | Elf_External_Dyn *extdynend; | |
4326 | ||
4327 | dynbuf = (Elf_External_Dyn *) malloc (s->_raw_size); | |
4328 | if (dynbuf == NULL) | |
4329 | { | |
4330 | bfd_set_error (bfd_error_no_memory); | |
4331 | goto error_return; | |
4332 | } | |
4333 | ||
4334 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
4335 | (file_ptr) 0, s->_raw_size)) | |
4336 | goto error_return; | |
4337 | ||
4338 | extdyn = dynbuf; | |
4339 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
4340 | for (; extdyn < extdynend; extdyn++) | |
4341 | { | |
4342 | Elf_Internal_Dyn dyn; | |
4343 | ||
4344 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
4345 | if (dyn.d_tag == DT_SONAME) | |
4346 | { | |
4347 | int elfsec; | |
4348 | unsigned long link; | |
4349 | ||
4350 | elfsec = elf_section_from_bfd_section (abfd, s); | |
4351 | if (elfsec == -1) | |
4352 | goto error_return; | |
4353 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
4354 | name = elf_string_from_elf_section (abfd, link, | |
4355 | dyn.d_un.d_val); | |
4356 | if (name == NULL) | |
4357 | goto error_return; | |
013dec1a | 4358 | } |
59474174 ILT |
4359 | if (dyn.d_tag == DT_NEEDED) |
4360 | elf_hash_table (info)->saw_needed = true; | |
013dec1a ILT |
4361 | } |
4362 | ||
4363 | free (dynbuf); | |
4364 | dynbuf = NULL; | |
4365 | } | |
4366 | ||
4367 | /* We do not want to include any of the sections in a dynamic | |
4368 | object in the output file. We hack by simply clobbering the | |
4369 | list of sections in the BFD. This could be handled more | |
4370 | cleanly by, say, a new section flag; the existing | |
4371 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
4372 | still implies that the section takes up space in the output | |
4373 | file. */ | |
4374 | abfd->sections = NULL; | |
4375 | ||
4376 | /* If this is the first dynamic object found in the link, create | |
12662be4 ILT |
4377 | the special sections required for dynamic linking. */ |
4378 | if (! elf_hash_table (info)->dynamic_sections_created) | |
013dec1a ILT |
4379 | { |
4380 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
4381 | goto error_return; | |
013dec1a ILT |
4382 | } |
4383 | ||
4384 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
0ef449df | 4385 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); |
eb4267a3 ILT |
4386 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, |
4387 | true, false); | |
4388 | if (strindex == (bfd_size_type) -1) | |
013dec1a | 4389 | goto error_return; |
0ef449df KR |
4390 | |
4391 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
4392 | { | |
4393 | asection *sdyn; | |
4394 | Elf_External_Dyn *dyncon, *dynconend; | |
4395 | ||
4396 | /* The hash table size did not change, which means that the | |
4397 | dynamic object name was already entered. If we have | |
4398 | already included this dynamic object in the link, just | |
4399 | ignore it. There is no reason to include a particular | |
4400 | dynamic object more than once. */ | |
4401 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
4402 | ".dynamic"); | |
4403 | BFD_ASSERT (sdyn != NULL); | |
4404 | ||
4405 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
4406 | dynconend = (Elf_External_Dyn *) (sdyn->contents + sdyn->_raw_size); | |
4407 | for (; dyncon < dynconend; dyncon++) | |
4408 | { | |
4409 | Elf_Internal_Dyn dyn; | |
4410 | ||
4411 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, &dyn); | |
4412 | if (dyn.d_tag == DT_NEEDED | |
4413 | && dyn.d_un.d_val == strindex) | |
4414 | { | |
4415 | if (buf != NULL) | |
4416 | free (buf); | |
4417 | return true; | |
4418 | } | |
4419 | } | |
4420 | } | |
4421 | ||
013dec1a ILT |
4422 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) |
4423 | goto error_return; | |
4424 | } | |
4425 | ||
6ec3bb6a | 4426 | if (bfd_seek (abfd, |
5315c428 | 4427 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), |
6ec3bb6a ILT |
4428 | SEEK_SET) != 0 |
4429 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
4430 | != extsymcount * sizeof (Elf_External_Sym))) | |
4431 | goto error_return; | |
4432 | ||
013dec1a ILT |
4433 | weaks = NULL; |
4434 | ||
6ec3bb6a ILT |
4435 | esymend = buf + extsymcount; |
4436 | for (esym = buf; esym < esymend; esym++, sym_hash++) | |
4437 | { | |
4438 | Elf_Internal_Sym sym; | |
4439 | int bind; | |
4440 | bfd_vma value; | |
4441 | asection *sec; | |
4442 | flagword flags; | |
4443 | const char *name; | |
013dec1a ILT |
4444 | struct elf_link_hash_entry *h = NULL; |
4445 | boolean definition; | |
6ec3bb6a ILT |
4446 | |
4447 | elf_swap_symbol_in (abfd, esym, &sym); | |
4448 | ||
4449 | flags = BSF_NO_FLAGS; | |
4450 | sec = NULL; | |
4451 | value = sym.st_value; | |
4452 | *sym_hash = NULL; | |
4453 | ||
4454 | bind = ELF_ST_BIND (sym.st_info); | |
4455 | if (bind == STB_LOCAL) | |
4456 | { | |
4457 | /* This should be impossible, since ELF requires that all | |
4458 | global symbols follow all local symbols, and that sh_info | |
5315c428 ILT |
4459 | point to the first global symbol. Unfortunatealy, Irix 5 |
4460 | screws this up. */ | |
4461 | continue; | |
6ec3bb6a ILT |
4462 | } |
4463 | else if (bind == STB_GLOBAL) | |
42cf6d79 ILT |
4464 | { |
4465 | if (sym.st_shndx != SHN_UNDEF | |
4466 | && sym.st_shndx != SHN_COMMON) | |
4467 | flags = BSF_GLOBAL; | |
4468 | else | |
4469 | flags = 0; | |
4470 | } | |
6ec3bb6a ILT |
4471 | else if (bind == STB_WEAK) |
4472 | flags = BSF_WEAK; | |
4473 | else | |
4474 | { | |
4475 | /* Leave it up to the processor backend. */ | |
4476 | } | |
4477 | ||
4478 | if (sym.st_shndx == SHN_UNDEF) | |
badd23e3 | 4479 | sec = bfd_und_section_ptr; |
6ec3bb6a ILT |
4480 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) |
4481 | { | |
4482 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
24f13b03 ILT |
4483 | if (sec != NULL) |
4484 | value -= sec->vma; | |
4485 | else | |
4486 | sec = bfd_abs_section_ptr; | |
6ec3bb6a ILT |
4487 | } |
4488 | else if (sym.st_shndx == SHN_ABS) | |
badd23e3 | 4489 | sec = bfd_abs_section_ptr; |
6ec3bb6a ILT |
4490 | else if (sym.st_shndx == SHN_COMMON) |
4491 | { | |
badd23e3 | 4492 | sec = bfd_com_section_ptr; |
6ec3bb6a ILT |
4493 | /* What ELF calls the size we call the value. What ELF |
4494 | calls the value we call the alignment. */ | |
4495 | value = sym.st_size; | |
4496 | } | |
4497 | else | |
4498 | { | |
4499 | /* Leave it up to the processor backend. */ | |
4500 | } | |
4501 | ||
4502 | name = elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
4503 | if (name == (const char *) NULL) | |
4504 | goto error_return; | |
4505 | ||
4506 | if (add_symbol_hook) | |
4507 | { | |
4508 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
4509 | &value)) | |
4510 | goto error_return; | |
4511 | ||
4512 | /* The hook function sets the name to NULL if this symbol | |
4513 | should be skipped for some reason. */ | |
4514 | if (name == (const char *) NULL) | |
4515 | continue; | |
4516 | } | |
4517 | ||
4518 | /* Sanity check that all possibilities were handled. */ | |
f78b3963 | 4519 | if (sec == (asection *) NULL) |
6ec3bb6a ILT |
4520 | { |
4521 | bfd_set_error (bfd_error_bad_value); | |
4522 | goto error_return; | |
4523 | } | |
4524 | ||
badd23e3 | 4525 | if (bfd_is_und_section (sec) |
013dec1a ILT |
4526 | || bfd_is_com_section (sec)) |
4527 | definition = false; | |
4528 | else | |
4529 | definition = true; | |
4530 | ||
4531 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
4532 | { | |
4533 | /* We need to look up the symbol now in order to get some of | |
4534 | the dynamic object handling right. We pass the hash | |
4535 | table entry in to _bfd_generic_link_add_one_symbol so | |
4536 | that it does not have to look it up again. */ | |
4537 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
4538 | true, false, false); | |
4539 | if (h == NULL) | |
4540 | goto error_return; | |
4541 | *sym_hash = h; | |
4542 | ||
4543 | /* If we are looking at a dynamic object, and this is a | |
4544 | definition, we need to see if it has already been defined | |
4545 | by some other object. If it has, we want to use the | |
4546 | existing definition, and we do not want to report a | |
4547 | multiple symbol definition error; we do this by | |
badd23e3 | 4548 | clobbering sec to be bfd_und_section_ptr. */ |
013dec1a ILT |
4549 | if (dynamic && definition) |
4550 | { | |
6c97aedf ILT |
4551 | if (h->root.type == bfd_link_hash_defined |
4552 | || h->root.type == bfd_link_hash_defweak) | |
badd23e3 | 4553 | sec = bfd_und_section_ptr; |
013dec1a ILT |
4554 | } |
4555 | ||
4556 | /* Similarly, if we are not looking at a dynamic object, and | |
4557 | we have a definition, we want to override any definition | |
4558 | we may have from a dynamic object. Symbols from regular | |
4559 | files always take precedence over symbols from dynamic | |
4560 | objects, even if they are defined after the dynamic | |
4561 | object in the link. */ | |
4562 | if (! dynamic | |
4563 | && definition | |
6c97aedf ILT |
4564 | && (h->root.type == bfd_link_hash_defined |
4565 | || h->root.type == bfd_link_hash_defweak) | |
013dec1a ILT |
4566 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
4567 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
4568 | == bfd_target_elf_flavour) | |
4569 | && (elf_elfheader (h->root.u.def.section->owner)->e_type | |
4570 | == ET_DYN)) | |
4571 | { | |
4572 | /* Change the hash table entry to undefined, and let | |
4573 | _bfd_generic_link_add_one_symbol do the right thing | |
4574 | with the new definition. */ | |
4575 | h->root.type = bfd_link_hash_undefined; | |
4576 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
4577 | } | |
4578 | } | |
4579 | ||
4580 | if (! (_bfd_generic_link_add_one_symbol | |
4581 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
4582 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
6ec3bb6a ILT |
4583 | goto error_return; |
4584 | ||
013dec1a ILT |
4585 | if (dynamic |
4586 | && definition | |
4587 | && (flags & BSF_WEAK) != 0 | |
4588 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
4b412ed1 | 4589 | && info->hash->creator->flavour == bfd_target_elf_flavour |
013dec1a ILT |
4590 | && (*sym_hash)->weakdef == NULL) |
4591 | { | |
4592 | /* Keep a list of all weak defined non function symbols from | |
4593 | a dynamic object, using the weakdef field. Later in this | |
4594 | function we will set the weakdef field to the correct | |
4595 | value. We only put non-function symbols from dynamic | |
4596 | objects on this list, because that happens to be the only | |
4597 | time we need to know the normal symbol corresponding to a | |
4598 | weak symbol, and the information is time consuming to | |
4599 | figure out. If the weakdef field is not already NULL, | |
4600 | then this symbol was already defined by some previous | |
4601 | dynamic object, and we will be using that previous | |
4602 | definition anyhow. */ | |
4603 | ||
4604 | (*sym_hash)->weakdef = weaks; | |
4605 | weaks = *sym_hash; | |
4606 | } | |
4607 | ||
374d2ef9 | 4608 | /* Get the alignment of a common symbol. */ |
7c6da9ca | 4609 | if (sym.st_shndx == SHN_COMMON |
cd9dba7b | 4610 | && (*sym_hash)->root.type == bfd_link_hash_common) |
6581a70a | 4611 | (*sym_hash)->root.u.c.p->alignment_power = bfd_log2 (sym.st_value); |
7c6da9ca | 4612 | |
6ec3bb6a ILT |
4613 | if (info->hash->creator->flavour == bfd_target_elf_flavour) |
4614 | { | |
013dec1a ILT |
4615 | int old_flags; |
4616 | boolean dynsym; | |
4617 | int new_flag; | |
4618 | ||
374d2ef9 | 4619 | /* Remember the symbol size and type. */ |
6ec3bb6a ILT |
4620 | if (sym.st_size != 0) |
4621 | { | |
4622 | /* FIXME: We should probably somehow give a warning if | |
4623 | the symbol size changes. */ | |
013dec1a | 4624 | h->size = sym.st_size; |
6ec3bb6a | 4625 | } |
6ec3bb6a ILT |
4626 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE) |
4627 | { | |
4628 | /* FIXME: We should probably somehow give a warning if | |
4629 | the symbol type changes. */ | |
013dec1a ILT |
4630 | h->type = ELF_ST_TYPE (sym.st_info); |
4631 | } | |
4632 | ||
4633 | /* Set a flag in the hash table entry indicating the type of | |
4634 | reference or definition we just found. Keep a count of | |
4635 | the number of dynamic symbols we find. A dynamic symbol | |
4636 | is one which is referenced or defined by both a regular | |
4637 | object and a shared object, or one which is referenced or | |
4638 | defined by more than one shared object. */ | |
4639 | old_flags = h->elf_link_hash_flags; | |
4640 | dynsym = false; | |
4641 | if (! dynamic) | |
4642 | { | |
4643 | if (! definition) | |
4644 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
4645 | else | |
4646 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
374d2ef9 ILT |
4647 | if (info->shared |
4648 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
4649 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
013dec1a ILT |
4650 | dynsym = true; |
4651 | } | |
4652 | else | |
4653 | { | |
4654 | if (! definition) | |
4655 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
4656 | else | |
4657 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
374d2ef9 ILT |
4658 | if ((old_flags & new_flag) != 0 |
4659 | || (old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
4660 | | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
4661 | dynsym = true; | |
013dec1a ILT |
4662 | } |
4663 | ||
4664 | h->elf_link_hash_flags |= new_flag; | |
4665 | if (dynsym && h->dynindx == -1) | |
4666 | { | |
4667 | if (! elf_link_record_dynamic_symbol (info, h)) | |
4668 | goto error_return; | |
4669 | } | |
4670 | } | |
4671 | } | |
4672 | ||
4673 | /* Now set the weakdefs field correctly for all the weak defined | |
4674 | symbols we found. The only way to do this is to search all the | |
4675 | symbols. Since we only need the information for non functions in | |
4676 | dynamic objects, that's the only time we actually put anything on | |
4677 | the list WEAKS. We need this information so that if a regular | |
4678 | object refers to a symbol defined weakly in a dynamic object, the | |
4679 | real symbol in the dynamic object is also put in the dynamic | |
4680 | symbols; we also must arrange for both symbols to point to the | |
4681 | same memory location. We could handle the general case of symbol | |
4682 | aliasing, but a general symbol alias can only be generated in | |
4683 | assembler code, handling it correctly would be very time | |
4684 | consuming, and other ELF linkers don't handle general aliasing | |
4685 | either. */ | |
4686 | while (weaks != NULL) | |
4687 | { | |
4688 | struct elf_link_hash_entry *hlook; | |
4689 | asection *slook; | |
4690 | bfd_vma vlook; | |
4691 | struct elf_link_hash_entry **hpp; | |
4692 | struct elf_link_hash_entry **hppend; | |
4693 | ||
4694 | hlook = weaks; | |
4695 | weaks = hlook->weakdef; | |
4696 | hlook->weakdef = NULL; | |
4697 | ||
6c97aedf ILT |
4698 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined |
4699 | || hlook->root.type == bfd_link_hash_defweak); | |
013dec1a ILT |
4700 | slook = hlook->root.u.def.section; |
4701 | vlook = hlook->root.u.def.value; | |
4702 | ||
4703 | hpp = elf_sym_hashes (abfd); | |
4704 | hppend = hpp + extsymcount; | |
4705 | for (; hpp < hppend; hpp++) | |
4706 | { | |
4707 | struct elf_link_hash_entry *h; | |
4708 | ||
4709 | h = *hpp; | |
0ef449df | 4710 | if (h != NULL && h != hlook |
6c97aedf ILT |
4711 | && (h->root.type == bfd_link_hash_defined |
4712 | || h->root.type == bfd_link_hash_defweak) | |
013dec1a ILT |
4713 | && h->root.u.def.section == slook |
4714 | && h->root.u.def.value == vlook) | |
4715 | { | |
4716 | hlook->weakdef = h; | |
4717 | ||
4718 | /* If the weak definition is in the list of dynamic | |
4719 | symbols, make sure the real definition is put there | |
4720 | as well. */ | |
4721 | if (hlook->dynindx != -1 | |
4722 | && h->dynindx == -1) | |
4723 | { | |
4724 | if (! elf_link_record_dynamic_symbol (info, h)) | |
4725 | goto error_return; | |
4726 | } | |
4727 | ||
4728 | break; | |
6ec3bb6a ILT |
4729 | } |
4730 | } | |
4731 | } | |
4732 | ||
4733 | if (buf != NULL) | |
374d2ef9 ILT |
4734 | { |
4735 | free (buf); | |
4736 | buf = NULL; | |
4737 | } | |
4738 | ||
4739 | /* If this object is the same format as the output object, and it is | |
4740 | not a shared library, then let the backend look through the | |
4741 | relocs. | |
4742 | ||
4743 | This is required to build global offset table entries and to | |
4744 | arrange for dynamic relocs. It is not required for the | |
4745 | particular common case of linking non PIC code, even when linking | |
4746 | against shared libraries, but unfortunately there is no way of | |
4747 | knowing whether an object file has been compiled PIC or not. | |
4748 | Looking through the relocs is not particularly time consuming. | |
4749 | The problem is that we must either (1) keep the relocs in memory, | |
4750 | which causes the linker to require additional runtime memory or | |
4751 | (2) read the relocs twice from the input file, which wastes time. | |
4752 | This would be a good case for using mmap. | |
4753 | ||
4754 | I have no idea how to handle linking PIC code into a file of a | |
4755 | different format. It probably can't be done. */ | |
4756 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
4757 | if (! dynamic | |
4758 | && abfd->xvec == info->hash->creator | |
4759 | && check_relocs != NULL) | |
4760 | { | |
4761 | asection *o; | |
4762 | ||
4763 | for (o = abfd->sections; o != NULL; o = o->next) | |
4764 | { | |
4765 | Elf_Internal_Rela *internal_relocs; | |
4766 | boolean ok; | |
4767 | ||
4768 | if ((o->flags & SEC_RELOC) == 0 | |
4769 | || o->reloc_count == 0) | |
4770 | continue; | |
4771 | ||
4772 | /* I believe we can ignore the relocs for any section which | |
4773 | does not form part of the final process image, such as a | |
4774 | debugging section. */ | |
4775 | if ((o->flags & SEC_ALLOC) == 0) | |
4776 | continue; | |
4777 | ||
4778 | internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL, | |
4779 | (Elf_Internal_Rela *) NULL, | |
4780 | info->keep_memory); | |
4781 | if (internal_relocs == NULL) | |
4782 | goto error_return; | |
4783 | ||
4784 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
4785 | ||
4786 | if (! info->keep_memory) | |
4787 | free (internal_relocs); | |
4788 | ||
4789 | if (! ok) | |
4790 | goto error_return; | |
4791 | } | |
4792 | } | |
6ec3bb6a ILT |
4793 | |
4794 | return true; | |
4795 | ||
4796 | error_return: | |
4797 | if (buf != NULL) | |
4798 | free (buf); | |
013dec1a ILT |
4799 | if (dynbuf != NULL) |
4800 | free (dynbuf); | |
6ec3bb6a ILT |
4801 | return false; |
4802 | } | |
013dec1a ILT |
4803 | |
4804 | /* Create some sections which will be filled in with dynamic linking | |
12662be4 ILT |
4805 | information. ABFD is an input file which requires dynamic sections |
4806 | to be created. The dynamic sections take up virtual memory space | |
4807 | when the final executable is run, so we need to create them before | |
4808 | addresses are assigned to the output sections. We work out the | |
4809 | actual contents and size of these sections later. */ | |
013dec1a | 4810 | |
374d2ef9 | 4811 | boolean |
013dec1a ILT |
4812 | elf_link_create_dynamic_sections (abfd, info) |
4813 | bfd *abfd; | |
4814 | struct bfd_link_info *info; | |
4815 | { | |
4816 | flagword flags; | |
4817 | register asection *s; | |
4818 | struct elf_link_hash_entry *h; | |
4819 | struct elf_backend_data *bed; | |
4820 | ||
12662be4 ILT |
4821 | if (elf_hash_table (info)->dynamic_sections_created) |
4822 | return true; | |
4823 | ||
4824 | /* Make sure that all dynamic sections use the same input BFD. */ | |
4825 | if (elf_hash_table (info)->dynobj == NULL) | |
4826 | elf_hash_table (info)->dynobj = abfd; | |
4827 | else | |
4828 | abfd = elf_hash_table (info)->dynobj; | |
4829 | ||
013dec1a ILT |
4830 | /* Note that we set the SEC_IN_MEMORY flag for all of these |
4831 | sections. */ | |
4832 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; | |
4833 | ||
8af74670 ILT |
4834 | /* A dynamically linked executable has a .interp section, but a |
4835 | shared library does not. */ | |
4836 | if (! info->shared) | |
4837 | { | |
4838 | s = bfd_make_section (abfd, ".interp"); | |
4839 | if (s == NULL | |
4840 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
4841 | return false; | |
4842 | } | |
013dec1a | 4843 | |
374d2ef9 ILT |
4844 | s = bfd_make_section (abfd, ".dynsym"); |
4845 | if (s == NULL | |
4846 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
4847 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4848 | return false; | |
4849 | ||
374d2ef9 ILT |
4850 | s = bfd_make_section (abfd, ".dynstr"); |
4851 | if (s == NULL | |
4852 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
4853 | return false; | |
4854 | ||
4855 | /* Create a strtab to hold the dynamic symbol names. */ | |
374d2ef9 | 4856 | if (elf_hash_table (info)->dynstr == NULL) |
12662be4 ILT |
4857 | { |
4858 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
4859 | if (elf_hash_table (info)->dynstr == NULL) | |
4860 | return false; | |
4861 | } | |
374d2ef9 | 4862 | |
013dec1a ILT |
4863 | s = bfd_make_section (abfd, ".dynamic"); |
4864 | if (s == NULL | |
4865 | || ! bfd_set_section_flags (abfd, s, flags) | |
4866 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4867 | return false; | |
4868 | ||
4869 | /* The special symbol _DYNAMIC is always set to the start of the | |
4870 | .dynamic section. This call occurs before we have processed the | |
4871 | symbols for any dynamic object, so we don't have to worry about | |
4872 | overriding a dynamic definition. We could set _DYNAMIC in a | |
4873 | linker script, but we only want to define it if we are, in fact, | |
4874 | creating a .dynamic section. We don't want to define it if there | |
4875 | is no .dynamic section, since on some ELF platforms the start up | |
4876 | code examines it to decide how to initialize the process. */ | |
4877 | h = NULL; | |
4878 | if (! (_bfd_generic_link_add_one_symbol | |
4879 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
4880 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
4881 | (struct bfd_link_hash_entry **) &h))) | |
4882 | return false; | |
4883 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
99dd7754 JMD |
4884 | h->type = STT_OBJECT; |
4885 | ||
374d2ef9 ILT |
4886 | if (info->shared |
4887 | && ! elf_link_record_dynamic_symbol (info, h)) | |
013dec1a ILT |
4888 | return false; |
4889 | ||
4890 | s = bfd_make_section (abfd, ".hash"); | |
4891 | if (s == NULL | |
4892 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
4893 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4894 | return false; | |
4895 | ||
4896 | /* Let the backend create the rest of the sections. This lets the | |
4897 | backend set the right flags. The backend will normally create | |
4898 | the .got and .plt sections. */ | |
4899 | bed = get_elf_backend_data (abfd); | |
12662be4 ILT |
4900 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
4901 | return false; | |
4902 | ||
4903 | elf_hash_table (info)->dynamic_sections_created = true; | |
4904 | ||
4905 | return true; | |
013dec1a ILT |
4906 | } |
4907 | ||
4908 | /* Add an entry to the .dynamic table. */ | |
4909 | ||
4910 | boolean | |
4911 | elf_add_dynamic_entry (info, tag, val) | |
4912 | struct bfd_link_info *info; | |
4913 | bfd_vma tag; | |
4914 | bfd_vma val; | |
4915 | { | |
4916 | Elf_Internal_Dyn dyn; | |
4917 | bfd *dynobj; | |
4918 | asection *s; | |
4919 | size_t newsize; | |
4920 | bfd_byte *newcontents; | |
4921 | ||
4922 | dynobj = elf_hash_table (info)->dynobj; | |
4923 | ||
4924 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
4925 | BFD_ASSERT (s != NULL); | |
4926 | ||
4927 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
4928 | if (s->contents == NULL) | |
4929 | newcontents = (bfd_byte *) malloc (newsize); | |
4930 | else | |
4931 | newcontents = (bfd_byte *) realloc (s->contents, newsize); | |
4932 | if (newcontents == NULL) | |
4933 | { | |
4934 | bfd_set_error (bfd_error_no_memory); | |
4935 | return false; | |
4936 | } | |
4937 | ||
4938 | dyn.d_tag = tag; | |
4939 | dyn.d_un.d_val = val; | |
4940 | elf_swap_dyn_out (dynobj, &dyn, | |
4941 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
4942 | ||
4943 | s->_raw_size = newsize; | |
4944 | s->contents = newcontents; | |
4945 | ||
4946 | return true; | |
4947 | } | |
4948 | ||
374d2ef9 ILT |
4949 | /* Read and swap the relocs for a section. They may have been cached. |
4950 | If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL, | |
4951 | they are used as buffers to read into. They are known to be large | |
4952 | enough. If the INTERNAL_RELOCS relocs argument is NULL, the return | |
4953 | value is allocated using either malloc or bfd_alloc, according to | |
4954 | the KEEP_MEMORY argument. */ | |
4955 | ||
4956 | static Elf_Internal_Rela * | |
4957 | elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory) | |
4958 | bfd *abfd; | |
4959 | asection *o; | |
4960 | PTR external_relocs; | |
4961 | Elf_Internal_Rela *internal_relocs; | |
4962 | boolean keep_memory; | |
4963 | { | |
4964 | Elf_Internal_Shdr *rel_hdr; | |
4965 | PTR alloc1 = NULL; | |
4966 | Elf_Internal_Rela *alloc2 = NULL; | |
4967 | ||
4968 | if (elf_section_data (o)->relocs != NULL) | |
4969 | return elf_section_data (o)->relocs; | |
4970 | ||
4971 | if (o->reloc_count == 0) | |
4972 | return NULL; | |
4973 | ||
4974 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
4975 | ||
4976 | if (internal_relocs == NULL) | |
4977 | { | |
4978 | size_t size; | |
4979 | ||
4980 | size = o->reloc_count * sizeof (Elf_Internal_Rela); | |
4981 | if (keep_memory) | |
4982 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
4983 | else | |
4984 | internal_relocs = alloc2 = (Elf_Internal_Rela *) malloc (size); | |
4985 | if (internal_relocs == NULL) | |
4986 | { | |
4987 | bfd_set_error (bfd_error_no_memory); | |
4988 | goto error_return; | |
4989 | } | |
4990 | } | |
4991 | ||
4992 | if (external_relocs == NULL) | |
4993 | { | |
4994 | alloc1 = (PTR) malloc (rel_hdr->sh_size); | |
4995 | if (alloc1 == NULL) | |
4996 | { | |
4997 | bfd_set_error (bfd_error_no_memory); | |
4998 | goto error_return; | |
4999 | } | |
5000 | external_relocs = alloc1; | |
5001 | } | |
5002 | ||
5003 | if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0) | |
5004 | || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd) | |
5005 | != rel_hdr->sh_size)) | |
5006 | goto error_return; | |
5007 | ||
5008 | /* Swap in the relocs. For convenience, we always produce an | |
5009 | Elf_Internal_Rela array; if the relocs are Rel, we set the addend | |
5010 | to 0. */ | |
5011 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
5012 | { | |
5013 | Elf_External_Rel *erel; | |
5014 | Elf_External_Rel *erelend; | |
5015 | Elf_Internal_Rela *irela; | |
5016 | ||
5017 | erel = (Elf_External_Rel *) external_relocs; | |
5018 | erelend = erel + o->reloc_count; | |
5019 | irela = internal_relocs; | |
5020 | for (; erel < erelend; erel++, irela++) | |
5021 | { | |
5022 | Elf_Internal_Rel irel; | |
5023 | ||
5024 | elf_swap_reloc_in (abfd, erel, &irel); | |
5025 | irela->r_offset = irel.r_offset; | |
5026 | irela->r_info = irel.r_info; | |
5027 | irela->r_addend = 0; | |
5028 | } | |
5029 | } | |
5030 | else | |
5031 | { | |
5032 | Elf_External_Rela *erela; | |
5033 | Elf_External_Rela *erelaend; | |
5034 | Elf_Internal_Rela *irela; | |
5035 | ||
5036 | BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); | |
5037 | ||
5038 | erela = (Elf_External_Rela *) external_relocs; | |
5039 | erelaend = erela + o->reloc_count; | |
5040 | irela = internal_relocs; | |
5041 | for (; erela < erelaend; erela++, irela++) | |
5042 | elf_swap_reloca_in (abfd, erela, irela); | |
5043 | } | |
5044 | ||
5045 | /* Cache the results for next time, if we can. */ | |
5046 | if (keep_memory) | |
5047 | elf_section_data (o)->relocs = internal_relocs; | |
5048 | ||
5049 | if (alloc1 != NULL) | |
5050 | free (alloc1); | |
5051 | ||
5052 | /* Don't free alloc2, since if it was allocated we are passing it | |
5053 | back (under the name of internal_relocs). */ | |
5054 | ||
5055 | return internal_relocs; | |
5056 | ||
5057 | error_return: | |
5058 | if (alloc1 != NULL) | |
5059 | free (alloc1); | |
5060 | if (alloc2 != NULL) | |
5061 | free (alloc2); | |
5062 | return NULL; | |
5063 | } | |
5064 | ||
013dec1a ILT |
5065 | /* Record an assignment to a symbol made by a linker script. We need |
5066 | this in case some dynamic object refers to this symbol. */ | |
5067 | ||
5068 | /*ARGSUSED*/ | |
5069 | boolean | |
5070 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name) | |
5071 | bfd *output_bfd; | |
5072 | struct bfd_link_info *info; | |
5073 | const char *name; | |
5074 | { | |
5075 | struct elf_link_hash_entry *h; | |
5076 | ||
5945db29 ILT |
5077 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
5078 | return true; | |
5079 | ||
99dd7754 | 5080 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); |
013dec1a | 5081 | if (h == NULL) |
99dd7754 | 5082 | return false; |
013dec1a ILT |
5083 | |
5084 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
99dd7754 | 5085 | h->type = STT_OBJECT; |
013dec1a | 5086 | |
374d2ef9 ILT |
5087 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC |
5088 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
5089 | || info->shared) | |
013dec1a ILT |
5090 | && h->dynindx == -1) |
5091 | { | |
5092 | if (! elf_link_record_dynamic_symbol (info, h)) | |
5093 | return false; | |
5094 | ||
5095 | /* If this is a weak defined symbol, and we know a corresponding | |
5096 | real symbol from the same dynamic object, make sure the real | |
5097 | symbol is also made into a dynamic symbol. */ | |
5098 | if (h->weakdef != NULL | |
5099 | && h->weakdef->dynindx == -1) | |
5100 | { | |
5101 | if (! elf_link_record_dynamic_symbol (info, h->weakdef)) | |
5102 | return false; | |
5103 | } | |
5104 | } | |
5105 | ||
5106 | return true; | |
5107 | } | |
5108 | ||
5109 | /* Array used to determine the number of hash table buckets to use | |
5110 | based on the number of symbols there are. If there are fewer than | |
5111 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
5112 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
5113 | than 521 buckets. */ | |
5114 | ||
5115 | static const size_t elf_buckets[] = | |
5116 | { | |
5117 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0 | |
5118 | }; | |
5119 | ||
5120 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
5121 | called by the ELF linker emulation before_allocation routine. We | |
5122 | must set the sizes of the sections before the linker sets the | |
5123 | addresses of the various sections. */ | |
5124 | ||
5125 | boolean | |
11bb5591 ILT |
5126 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, |
5127 | export_dynamic, info, sinterpptr) | |
013dec1a | 5128 | bfd *output_bfd; |
0822b56d | 5129 | const char *soname; |
f9779aad | 5130 | const char *rpath; |
11bb5591 | 5131 | boolean export_dynamic; |
013dec1a | 5132 | struct bfd_link_info *info; |
7c726b66 | 5133 | asection **sinterpptr; |
013dec1a ILT |
5134 | { |
5135 | bfd *dynobj; | |
013dec1a ILT |
5136 | struct elf_backend_data *bed; |
5137 | ||
7c726b66 ILT |
5138 | *sinterpptr = NULL; |
5139 | ||
5945db29 ILT |
5140 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
5141 | return true; | |
5142 | ||
013dec1a | 5143 | dynobj = elf_hash_table (info)->dynobj; |
013dec1a ILT |
5144 | |
5145 | /* If there were no dynamic objects in the link, there is nothing to | |
5146 | do here. */ | |
5147 | if (dynobj == NULL) | |
5148 | return true; | |
5149 | ||
11bb5591 ILT |
5150 | /* If we are supposed to export all symbols into the dynamic symbol |
5151 | table (this is not the normal case), then do so. */ | |
5152 | if (export_dynamic) | |
0ef449df KR |
5153 | { |
5154 | struct elf_info_failed eif; | |
5155 | ||
5156 | eif.failed = false; | |
5157 | eif.info = info; | |
5158 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
5159 | (PTR) &eif); | |
5160 | if (eif.failed) | |
5161 | return false; | |
5162 | } | |
11bb5591 | 5163 | |
12662be4 ILT |
5164 | if (elf_hash_table (info)->dynamic_sections_created) |
5165 | { | |
0ef449df | 5166 | struct elf_info_failed eif; |
12662be4 ILT |
5167 | bfd_size_type strsize; |
5168 | ||
5169 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
5170 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
5171 | ||
12662be4 ILT |
5172 | if (soname != NULL) |
5173 | { | |
5174 | bfd_size_type indx; | |
0822b56d | 5175 | |
12662be4 ILT |
5176 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname, |
5177 | true, true); | |
5178 | if (indx == (bfd_size_type) -1 | |
5179 | || ! elf_add_dynamic_entry (info, DT_SONAME, indx)) | |
5180 | return false; | |
5181 | } | |
0822b56d | 5182 | |
12662be4 ILT |
5183 | if (rpath != NULL) |
5184 | { | |
5185 | bfd_size_type indx; | |
f9779aad | 5186 | |
12662be4 ILT |
5187 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, |
5188 | true, true); | |
5189 | if (indx == (bfd_size_type) -1 | |
5190 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
5191 | return false; | |
5192 | } | |
f9779aad | 5193 | |
12662be4 ILT |
5194 | /* Find all symbols which were defined in a dynamic object and make |
5195 | the backend pick a reasonable value for them. */ | |
0ef449df KR |
5196 | eif.failed = false; |
5197 | eif.info = info; | |
12662be4 ILT |
5198 | elf_link_hash_traverse (elf_hash_table (info), |
5199 | elf_adjust_dynamic_symbol, | |
0ef449df KR |
5200 | (PTR) &eif); |
5201 | if (eif.failed) | |
5202 | return false; | |
013dec1a | 5203 | |
12662be4 ILT |
5204 | /* Add some entries to the .dynamic section. We fill in some of the |
5205 | values later, in elf_bfd_final_link, but we must add the entries | |
5206 | now so that we know the final size of the .dynamic section. */ | |
197e30e5 ILT |
5207 | if (elf_link_hash_lookup (elf_hash_table (info), "_init", false, |
5208 | false, false) != NULL) | |
12662be4 ILT |
5209 | { |
5210 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
5211 | return false; | |
5212 | } | |
197e30e5 ILT |
5213 | if (elf_link_hash_lookup (elf_hash_table (info), "_fini", false, |
5214 | false, false) != NULL) | |
12662be4 ILT |
5215 | { |
5216 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
5217 | return false; | |
5218 | } | |
5219 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
5220 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
5221 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
5222 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
5223 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
5224 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
5225 | sizeof (Elf_External_Sym))) | |
013dec1a ILT |
5226 | return false; |
5227 | } | |
013dec1a ILT |
5228 | |
5229 | /* The backend must work out the sizes of all the other dynamic | |
5230 | sections. */ | |
5231 | bed = get_elf_backend_data (output_bfd); | |
5232 | if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
5233 | return false; | |
5234 | ||
12662be4 ILT |
5235 | if (elf_hash_table (info)->dynamic_sections_created) |
5236 | { | |
14cac507 | 5237 | size_t dynsymcount; |
0ef449df KR |
5238 | asection *s; |
5239 | size_t i; | |
5240 | size_t bucketcount; | |
5241 | Elf_Internal_Sym isym; | |
14cac507 ILT |
5242 | |
5243 | /* Set the size of the .dynsym and .hash sections. We counted | |
5244 | the number of dynamic symbols in elf_link_add_object_symbols. | |
5245 | We will build the contents of .dynsym and .hash when we build | |
5246 | the final symbol table, because until then we do not know the | |
5247 | correct value to give the symbols. We built the .dynstr | |
5248 | section as we went along in elf_link_add_object_symbols. */ | |
5249 | dynsymcount = elf_hash_table (info)->dynsymcount; | |
5250 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
5251 | BFD_ASSERT (s != NULL); | |
5252 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
5253 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
5254 | if (s->contents == NULL && s->_raw_size != 0) | |
5255 | { | |
5256 | bfd_set_error (bfd_error_no_memory); | |
5257 | return false; | |
5258 | } | |
5259 | ||
5260 | /* The first entry in .dynsym is a dummy symbol. */ | |
5261 | isym.st_value = 0; | |
5262 | isym.st_size = 0; | |
5263 | isym.st_name = 0; | |
5264 | isym.st_info = 0; | |
5265 | isym.st_other = 0; | |
5266 | isym.st_shndx = 0; | |
5267 | elf_swap_symbol_out (output_bfd, &isym, | |
5268 | (Elf_External_Sym *) s->contents); | |
5269 | ||
5270 | for (i = 0; elf_buckets[i] != 0; i++) | |
5271 | { | |
5272 | bucketcount = elf_buckets[i]; | |
5273 | if (dynsymcount < elf_buckets[i + 1]) | |
5274 | break; | |
5275 | } | |
5276 | ||
5277 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
5278 | BFD_ASSERT (s != NULL); | |
5279 | s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8); | |
5280 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
5281 | if (s->contents == NULL) | |
5282 | { | |
5283 | bfd_set_error (bfd_error_no_memory); | |
5284 | return false; | |
5285 | } | |
5286 | memset (s->contents, 0, s->_raw_size); | |
5287 | ||
5288 | put_word (output_bfd, bucketcount, s->contents); | |
5289 | put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8)); | |
5290 | ||
5291 | elf_hash_table (info)->bucketcount = bucketcount; | |
5292 | ||
5293 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
5294 | BFD_ASSERT (s != NULL); | |
5295 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
5296 | ||
12662be4 ILT |
5297 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) |
5298 | return false; | |
5299 | } | |
5300 | ||
5301 | return true; | |
013dec1a ILT |
5302 | } |
5303 | ||
11bb5591 ILT |
5304 | /* This routine is used to export all defined symbols into the dynamic |
5305 | symbol table. It is called via elf_link_hash_traverse. */ | |
5306 | ||
5307 | static boolean | |
5308 | elf_export_symbol (h, data) | |
5309 | struct elf_link_hash_entry *h; | |
5310 | PTR data; | |
5311 | { | |
0ef449df | 5312 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
11bb5591 ILT |
5313 | |
5314 | if (h->dynindx == -1 | |
e6fb0df7 ILT |
5315 | && (h->elf_link_hash_flags |
5316 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
11bb5591 | 5317 | { |
0ef449df | 5318 | if (! elf_link_record_dynamic_symbol (eif->info, h)) |
11bb5591 | 5319 | { |
0ef449df KR |
5320 | eif->failed = true; |
5321 | return false; | |
11bb5591 ILT |
5322 | } |
5323 | } | |
5324 | ||
5325 | return true; | |
5326 | } | |
5327 | ||
013dec1a ILT |
5328 | /* Make the backend pick a good value for a dynamic symbol. This is |
5329 | called via elf_link_hash_traverse, and also calls itself | |
5330 | recursively. */ | |
5331 | ||
5332 | static boolean | |
5333 | elf_adjust_dynamic_symbol (h, data) | |
5334 | struct elf_link_hash_entry *h; | |
5335 | PTR data; | |
5336 | { | |
0ef449df | 5337 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
013dec1a ILT |
5338 | bfd *dynobj; |
5339 | struct elf_backend_data *bed; | |
5340 | ||
12662be4 ILT |
5341 | /* If this symbol does not require a PLT entry, and it is not |
5342 | defined by a dynamic object, or is not referenced by a regular | |
5343 | object, ignore it. FIXME: Do we need to worry about symbols | |
5344 | which are defined by one dynamic object and referenced by another | |
5345 | one? */ | |
5346 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 | |
5347 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
5348 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
5349 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)) | |
013dec1a ILT |
5350 | return true; |
5351 | ||
5352 | /* If we've already adjusted this symbol, don't do it again. This | |
5353 | can happen via a recursive call. */ | |
5354 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
5355 | return true; | |
5356 | ||
5357 | /* Don't look at this symbol again. Note that we must set this | |
5358 | after checking the above conditions, because we may look at a | |
5359 | symbol once, decide not to do anything, and then get called | |
5360 | recursively later after REF_REGULAR is set below. */ | |
5361 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
5362 | ||
5363 | /* If this is a weak definition, and we know a real definition, and | |
5364 | the real symbol is not itself defined by a regular object file, | |
5365 | then get a good value for the real definition. We handle the | |
5366 | real symbol first, for the convenience of the backend routine. | |
5367 | ||
5368 | Note that there is a confusing case here. If the real definition | |
5369 | is defined by a regular object file, we don't get the real symbol | |
5370 | from the dynamic object, but we do get the weak symbol. If the | |
5371 | processor backend uses a COPY reloc, then if some routine in the | |
5372 | dynamic object changes the real symbol, we will not see that | |
5373 | change in the corresponding weak symbol. This is the way other | |
5374 | ELF linkers work as well, and seems to be a result of the shared | |
5375 | library model. | |
5376 | ||
5377 | I will clarify this issue. Most SVR4 shared libraries define the | |
5378 | variable _timezone and define timezone as a weak synonym. The | |
5379 | tzset call changes _timezone. If you write | |
5380 | extern int timezone; | |
5381 | int _timezone = 5; | |
5382 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
5383 | you might expect that, since timezone is a synonym for _timezone, | |
5384 | the same number will print both times. However, if the processor | |
5385 | backend uses a COPY reloc, then actually timezone will be copied | |
5386 | into your process image, and, since you define _timezone | |
5387 | yourself, _timezone will not. Thus timezone and _timezone will | |
5388 | wind up at different memory locations. The tzset call will set | |
5389 | _timezone, leaving timezone unchanged. */ | |
5390 | ||
5391 | if (h->weakdef != NULL) | |
5392 | { | |
5393 | struct elf_link_hash_entry *weakdef; | |
5394 | ||
6c97aedf ILT |
5395 | BFD_ASSERT (h->root.type == bfd_link_hash_defined |
5396 | || h->root.type == bfd_link_hash_defweak); | |
013dec1a | 5397 | weakdef = h->weakdef; |
6c97aedf ILT |
5398 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined |
5399 | || weakdef->root.type == bfd_link_hash_defweak); | |
013dec1a | 5400 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); |
30e5ad97 | 5401 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
013dec1a | 5402 | { |
30e5ad97 ILT |
5403 | /* This symbol is defined by a regular object file, so we |
5404 | will not do anything special. Clear weakdef for the | |
5405 | convenience of the processor backend. */ | |
013dec1a ILT |
5406 | h->weakdef = NULL; |
5407 | } | |
5408 | else | |
5409 | { | |
5410 | /* There is an implicit reference by a regular object file | |
5411 | via the weak symbol. */ | |
5412 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
0ef449df | 5413 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif)) |
013dec1a ILT |
5414 | return false; |
5415 | } | |
5416 | } | |
5417 | ||
0ef449df | 5418 | dynobj = elf_hash_table (eif->info)->dynobj; |
013dec1a | 5419 | bed = get_elf_backend_data (dynobj); |
0ef449df | 5420 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) |
013dec1a | 5421 | { |
0ef449df KR |
5422 | eif->failed = true; |
5423 | return false; | |
013dec1a ILT |
5424 | } |
5425 | ||
5426 | return true; | |
5427 | } | |
6ec3bb6a ILT |
5428 | \f |
5429 | /* Final phase of ELF linker. */ | |
5430 | ||
5431 | /* A structure we use to avoid passing large numbers of arguments. */ | |
5432 | ||
5433 | struct elf_final_link_info | |
5434 | { | |
5435 | /* General link information. */ | |
5436 | struct bfd_link_info *info; | |
5437 | /* Output BFD. */ | |
5438 | bfd *output_bfd; | |
5439 | /* Symbol string table. */ | |
eb4267a3 | 5440 | struct bfd_strtab_hash *symstrtab; |
013dec1a ILT |
5441 | /* .dynsym section. */ |
5442 | asection *dynsym_sec; | |
5443 | /* .hash section. */ | |
5444 | asection *hash_sec; | |
6ec3bb6a ILT |
5445 | /* Buffer large enough to hold contents of any section. */ |
5446 | bfd_byte *contents; | |
5447 | /* Buffer large enough to hold external relocs of any section. */ | |
5448 | PTR external_relocs; | |
5449 | /* Buffer large enough to hold internal relocs of any section. */ | |
5450 | Elf_Internal_Rela *internal_relocs; | |
5451 | /* Buffer large enough to hold external local symbols of any input | |
5452 | BFD. */ | |
5453 | Elf_External_Sym *external_syms; | |
5454 | /* Buffer large enough to hold internal local symbols of any input | |
5455 | BFD. */ | |
5456 | Elf_Internal_Sym *internal_syms; | |
5457 | /* Array large enough to hold a symbol index for each local symbol | |
5458 | of any input BFD. */ | |
5459 | long *indices; | |
5460 | /* Array large enough to hold a section pointer for each local | |
5461 | symbol of any input BFD. */ | |
5462 | asection **sections; | |
5463 | /* Buffer to hold swapped out symbols. */ | |
5464 | Elf_External_Sym *symbuf; | |
5465 | /* Number of swapped out symbols in buffer. */ | |
5466 | size_t symbuf_count; | |
5467 | /* Number of symbols which fit in symbuf. */ | |
5468 | size_t symbuf_size; | |
5469 | }; | |
5470 | ||
5471 | static boolean elf_link_output_sym | |
71edd06d ILT |
5472 | PARAMS ((struct elf_final_link_info *, const char *, |
5473 | Elf_Internal_Sym *, asection *)); | |
6ec3bb6a ILT |
5474 | static boolean elf_link_flush_output_syms |
5475 | PARAMS ((struct elf_final_link_info *)); | |
5476 | static boolean elf_link_output_extsym | |
5477 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
5478 | static boolean elf_link_input_bfd | |
5479 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
5480 | static boolean elf_reloc_link_order | |
5481 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
5482 | struct bfd_link_order *)); | |
5483 | ||
0ef449df KR |
5484 | /* This struct is used to pass information to routines called via |
5485 | elf_link_hash_traverse which must return failure. */ | |
5486 | ||
5487 | struct elf_finfo_failed | |
5488 | { | |
5489 | boolean failed; | |
5490 | struct elf_final_link_info *finfo; | |
5491 | }; | |
5492 | ||
6ec3bb6a ILT |
5493 | /* Do the final step of an ELF link. */ |
5494 | ||
5495 | boolean | |
5496 | elf_bfd_final_link (abfd, info) | |
5497 | bfd *abfd; | |
5498 | struct bfd_link_info *info; | |
5499 | { | |
12662be4 | 5500 | boolean dynamic; |
013dec1a | 5501 | bfd *dynobj; |
6ec3bb6a ILT |
5502 | struct elf_final_link_info finfo; |
5503 | register asection *o; | |
5504 | register struct bfd_link_order *p; | |
5505 | register bfd *sub; | |
5506 | size_t max_contents_size; | |
5507 | size_t max_external_reloc_size; | |
5508 | size_t max_internal_reloc_count; | |
5509 | size_t max_sym_count; | |
5510 | file_ptr off; | |
5511 | Elf_Internal_Sym elfsym; | |
013dec1a | 5512 | unsigned int i; |
6ec3bb6a ILT |
5513 | Elf_Internal_Shdr *symtab_hdr; |
5514 | Elf_Internal_Shdr *symstrtab_hdr; | |
71edd06d | 5515 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
0ef449df | 5516 | struct elf_finfo_failed eif; |
6ec3bb6a | 5517 | |
0ff5d3a6 | 5518 | if (info->shared) |
374d2ef9 | 5519 | abfd->flags |= DYNAMIC; |
0ff5d3a6 | 5520 | |
12662be4 | 5521 | dynamic = elf_hash_table (info)->dynamic_sections_created; |
013dec1a ILT |
5522 | dynobj = elf_hash_table (info)->dynobj; |
5523 | ||
6ec3bb6a ILT |
5524 | finfo.info = info; |
5525 | finfo.output_bfd = abfd; | |
eb4267a3 | 5526 | finfo.symstrtab = elf_stringtab_init (); |
6ec3bb6a ILT |
5527 | if (finfo.symstrtab == NULL) |
5528 | return false; | |
12662be4 | 5529 | if (! dynamic) |
013dec1a ILT |
5530 | { |
5531 | finfo.dynsym_sec = NULL; | |
5532 | finfo.hash_sec = NULL; | |
5533 | } | |
5534 | else | |
5535 | { | |
5536 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
5537 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
0ef449df | 5538 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); |
013dec1a | 5539 | } |
6ec3bb6a ILT |
5540 | finfo.contents = NULL; |
5541 | finfo.external_relocs = NULL; | |
5542 | finfo.internal_relocs = NULL; | |
5543 | finfo.external_syms = NULL; | |
5544 | finfo.internal_syms = NULL; | |
5545 | finfo.indices = NULL; | |
5546 | finfo.sections = NULL; | |
5547 | finfo.symbuf = NULL; | |
5548 | finfo.symbuf_count = 0; | |
5549 | ||
5550 | /* Count up the number of relocations we will output for each output | |
5551 | section, so that we know the sizes of the reloc sections. We | |
5552 | also figure out some maximum sizes. */ | |
5553 | max_contents_size = 0; | |
5554 | max_external_reloc_size = 0; | |
5555 | max_internal_reloc_count = 0; | |
5556 | max_sym_count = 0; | |
5557 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
5558 | { | |
5559 | o->reloc_count = 0; | |
5560 | ||
5561 | for (p = o->link_order_head; p != NULL; p = p->next) | |
5562 | { | |
5563 | if (p->type == bfd_section_reloc_link_order | |
5564 | || p->type == bfd_symbol_reloc_link_order) | |
5565 | ++o->reloc_count; | |
5566 | else if (p->type == bfd_indirect_link_order) | |
5567 | { | |
5568 | asection *sec; | |
5569 | ||
5570 | sec = p->u.indirect.section; | |
5571 | ||
5572 | if (info->relocateable) | |
5573 | o->reloc_count += sec->reloc_count; | |
5574 | ||
5575 | if (sec->_raw_size > max_contents_size) | |
5576 | max_contents_size = sec->_raw_size; | |
5577 | if (sec->_cooked_size > max_contents_size) | |
5578 | max_contents_size = sec->_cooked_size; | |
5579 | ||
5580 | /* We are interested in just local symbols, not all | |
5581 | symbols. */ | |
5315c428 ILT |
5582 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour) |
5583 | { | |
5584 | size_t sym_count; | |
5585 | ||
5586 | if (elf_bad_symtab (sec->owner)) | |
5587 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
5588 | / sizeof (Elf_External_Sym)); | |
5589 | else | |
5590 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
5591 | ||
5592 | if (sym_count > max_sym_count) | |
5593 | max_sym_count = sym_count; | |
6ec3bb6a | 5594 | |
6c8fa8e6 ILT |
5595 | if ((sec->flags & SEC_RELOC) != 0) |
5596 | { | |
5597 | size_t ext_size; | |
6ec3bb6a | 5598 | |
6c8fa8e6 ILT |
5599 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; |
5600 | if (ext_size > max_external_reloc_size) | |
5601 | max_external_reloc_size = ext_size; | |
5602 | if (sec->reloc_count > max_internal_reloc_count) | |
5603 | max_internal_reloc_count = sec->reloc_count; | |
5604 | } | |
6ec3bb6a ILT |
5605 | } |
5606 | } | |
5607 | } | |
5608 | ||
5609 | if (o->reloc_count > 0) | |
5610 | o->flags |= SEC_RELOC; | |
5611 | else | |
5612 | { | |
5613 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
5614 | set it (this is probably a bug) and if it is set | |
5615 | assign_section_numbers will create a reloc section. */ | |
5616 | o->flags &=~ SEC_RELOC; | |
5617 | } | |
1c640609 ILT |
5618 | |
5619 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
5620 | zero. This is done in elf_fake_sections as well, but forcing | |
5621 | the VMA to 0 here will ensure that relocs against these | |
5622 | sections are handled correctly. */ | |
5623 | if ((o->flags & SEC_ALLOC) == 0) | |
5624 | o->vma = 0; | |
6ec3bb6a ILT |
5625 | } |
5626 | ||
5627 | /* Figure out the file positions for everything but the symbol table | |
5628 | and the relocs. We set symcount to force assign_section_numbers | |
5629 | to create a symbol table. */ | |
5630 | abfd->symcount = info->strip == strip_all ? 0 : 1; | |
5631 | BFD_ASSERT (! abfd->output_has_begun); | |
5632 | if (! elf_compute_section_file_positions (abfd, info)) | |
5633 | goto error_return; | |
5634 | ||
5635 | /* That created the reloc sections. Set their sizes, and assign | |
5636 | them file positions, and allocate some buffers. */ | |
5637 | for (o = abfd->sections; o != NULL; o = o->next) | |
5638 | { | |
5639 | if ((o->flags & SEC_RELOC) != 0) | |
5640 | { | |
5641 | Elf_Internal_Shdr *rel_hdr; | |
5642 | register struct elf_link_hash_entry **p, **pend; | |
5643 | ||
5644 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
5645 | ||
5646 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
5647 | ||
5648 | /* The contents field must last into write_object_contents, | |
5649 | so we allocate it with bfd_alloc rather than malloc. */ | |
5650 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
5651 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
5652 | { | |
5653 | bfd_set_error (bfd_error_no_memory); | |
5654 | goto error_return; | |
5655 | } | |
5656 | ||
5657 | p = ((struct elf_link_hash_entry **) | |
5658 | malloc (o->reloc_count | |
5659 | * sizeof (struct elf_link_hash_entry *))); | |
5660 | if (p == NULL && o->reloc_count != 0) | |
5661 | { | |
5662 | bfd_set_error (bfd_error_no_memory); | |
5663 | goto error_return; | |
5664 | } | |
5665 | elf_section_data (o)->rel_hashes = p; | |
5666 | pend = p + o->reloc_count; | |
5667 | for (; p < pend; p++) | |
5668 | *p = NULL; | |
5669 | ||
5670 | /* Use the reloc_count field as an index when outputting the | |
5671 | relocs. */ | |
5672 | o->reloc_count = 0; | |
5673 | } | |
5674 | } | |
5675 | ||
5676 | assign_file_positions_for_relocs (abfd); | |
5677 | ||
5678 | /* We have now assigned file positions for all the sections except | |
5679 | .symtab and .strtab. We start the .symtab section at the current | |
5680 | file position, and write directly to it. We build the .strtab | |
5681 | section in memory. When we add .dynsym support, we will build | |
5682 | that in memory as well (.dynsym is smaller than .symtab). */ | |
5683 | abfd->symcount = 0; | |
5684 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5685 | /* sh_name is set in prep_headers. */ | |
5686 | symtab_hdr->sh_type = SHT_SYMTAB; | |
5687 | symtab_hdr->sh_flags = 0; | |
5688 | symtab_hdr->sh_addr = 0; | |
5689 | symtab_hdr->sh_size = 0; | |
5690 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
5691 | /* sh_link is set in assign_section_numbers. */ | |
5692 | /* sh_info is set below. */ | |
5693 | /* sh_offset is set just below. */ | |
5694 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
5695 | ||
5696 | off = elf_tdata (abfd)->next_file_pos; | |
013dec1a | 5697 | off = assign_file_position_for_section (symtab_hdr, off, true); |
6ec3bb6a ILT |
5698 | |
5699 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
5700 | incorrect. We do not yet know the size of the .symtab section. | |
5701 | We correct next_file_pos below, after we do know the size. */ | |
5702 | ||
5703 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
5704 | continuously seeking to the right position in the file. */ | |
5705 | if (! info->keep_memory || max_sym_count < 20) | |
5706 | finfo.symbuf_size = 20; | |
5707 | else | |
5708 | finfo.symbuf_size = max_sym_count; | |
5709 | finfo.symbuf = ((Elf_External_Sym *) | |
5710 | malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); | |
5711 | if (finfo.symbuf == NULL) | |
5712 | { | |
5713 | bfd_set_error (bfd_error_no_memory); | |
5714 | goto error_return; | |
5715 | } | |
5716 | ||
5717 | /* Start writing out the symbol table. The first symbol is always a | |
5718 | dummy symbol. */ | |
5719 | elfsym.st_value = 0; | |
5720 | elfsym.st_size = 0; | |
5721 | elfsym.st_info = 0; | |
5722 | elfsym.st_other = 0; | |
5723 | elfsym.st_shndx = SHN_UNDEF; | |
71edd06d ILT |
5724 | if (! elf_link_output_sym (&finfo, (const char *) NULL, |
5725 | &elfsym, bfd_und_section_ptr)) | |
6ec3bb6a ILT |
5726 | goto error_return; |
5727 | ||
5728 | #if 0 | |
5729 | /* Some standard ELF linkers do this, but we don't because it causes | |
5730 | bootstrap comparison failures. */ | |
5731 | /* Output a file symbol for the output file as the second symbol. | |
5732 | We output this even if we are discarding local symbols, although | |
5733 | I'm not sure if this is correct. */ | |
5734 | elfsym.st_value = 0; | |
5735 | elfsym.st_size = 0; | |
5736 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
5737 | elfsym.st_other = 0; | |
5738 | elfsym.st_shndx = SHN_ABS; | |
71edd06d ILT |
5739 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), |
5740 | &elfsym, bfd_abs_section_ptr)) | |
6ec3bb6a ILT |
5741 | goto error_return; |
5742 | #endif | |
5743 | ||
5744 | /* Output a symbol for each section. We output these even if we are | |
5745 | discarding local symbols, since they are used for relocs. These | |
5746 | symbols have no names. We store the index of each one in the | |
5747 | index field of the section, so that we can find it again when | |
5748 | outputting relocs. */ | |
5749 | elfsym.st_value = 0; | |
5750 | elfsym.st_size = 0; | |
5751 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
5752 | elfsym.st_other = 0; | |
013dec1a | 5753 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) |
6ec3bb6a | 5754 | { |
013dec1a | 5755 | o = section_from_elf_index (abfd, i); |
24f13b03 | 5756 | if (o != NULL) |
013dec1a ILT |
5757 | o->target_index = abfd->symcount; |
5758 | elfsym.st_shndx = i; | |
71edd06d ILT |
5759 | if (! elf_link_output_sym (&finfo, (const char *) NULL, |
5760 | &elfsym, o)) | |
6ec3bb6a ILT |
5761 | goto error_return; |
5762 | } | |
5763 | ||
5764 | /* Allocate some memory to hold information read in from the input | |
5765 | files. */ | |
5766 | finfo.contents = (bfd_byte *) malloc (max_contents_size); | |
5767 | finfo.external_relocs = (PTR) malloc (max_external_reloc_size); | |
5768 | finfo.internal_relocs = ((Elf_Internal_Rela *) | |
5769 | malloc (max_internal_reloc_count | |
5770 | * sizeof (Elf_Internal_Rela))); | |
5771 | finfo.external_syms = ((Elf_External_Sym *) | |
5772 | malloc (max_sym_count * sizeof (Elf_External_Sym))); | |
5773 | finfo.internal_syms = ((Elf_Internal_Sym *) | |
5774 | malloc (max_sym_count * sizeof (Elf_Internal_Sym))); | |
5775 | finfo.indices = (long *) malloc (max_sym_count * sizeof (long)); | |
5776 | finfo.sections = (asection **) malloc (max_sym_count * sizeof (asection *)); | |
5777 | if ((finfo.contents == NULL && max_contents_size != 0) | |
5778 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
5779 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
5780 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
5781 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
5782 | || (finfo.indices == NULL && max_sym_count != 0) | |
5783 | || (finfo.sections == NULL && max_sym_count != 0)) | |
5784 | { | |
5785 | bfd_set_error (bfd_error_no_memory); | |
5786 | goto error_return; | |
5787 | } | |
5788 | ||
5789 | /* Since ELF permits relocations to be against local symbols, we | |
5790 | must have the local symbols available when we do the relocations. | |
5791 | Since we would rather only read the local symbols once, and we | |
5792 | would rather not keep them in memory, we handle all the | |
5793 | relocations for a single input file at the same time. | |
5794 | ||
5795 | Unfortunately, there is no way to know the total number of local | |
5796 | symbols until we have seen all of them, and the local symbol | |
5797 | indices precede the global symbol indices. This means that when | |
5798 | we are generating relocateable output, and we see a reloc against | |
5799 | a global symbol, we can not know the symbol index until we have | |
5800 | finished examining all the local symbols to see which ones we are | |
5801 | going to output. To deal with this, we keep the relocations in | |
5802 | memory, and don't output them until the end of the link. This is | |
5803 | an unfortunate waste of memory, but I don't see a good way around | |
5804 | it. Fortunately, it only happens when performing a relocateable | |
5805 | link, which is not the common case. FIXME: If keep_memory is set | |
5806 | we could write the relocs out and then read them again; I don't | |
5807 | know how bad the memory loss will be. */ | |
5808 | ||
5809 | for (sub = info->input_bfds; sub != NULL; sub = sub->next) | |
5810 | sub->output_has_begun = false; | |
5811 | for (o = abfd->sections; o != NULL; o = o->next) | |
5812 | { | |
5813 | for (p = o->link_order_head; p != NULL; p = p->next) | |
5814 | { | |
5815 | if (p->type == bfd_indirect_link_order | |
5816 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
5817 | == bfd_target_elf_flavour)) | |
5818 | { | |
5819 | sub = p->u.indirect.section->owner; | |
5820 | if (! sub->output_has_begun) | |
5821 | { | |
5822 | if (! elf_link_input_bfd (&finfo, sub)) | |
5823 | goto error_return; | |
5824 | sub->output_has_begun = true; | |
5825 | } | |
5826 | } | |
5827 | else if (p->type == bfd_section_reloc_link_order | |
5828 | || p->type == bfd_symbol_reloc_link_order) | |
5829 | { | |
5830 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
5831 | goto error_return; | |
5832 | } | |
5833 | else | |
5834 | { | |
5835 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
5836 | goto error_return; | |
5837 | } | |
5838 | } | |
5839 | } | |
5840 | ||
5841 | /* That wrote out all the local symbols. Finish up the symbol table | |
5842 | with the global symbols. */ | |
5843 | ||
5844 | /* The sh_info field records the index of the first non local | |
5845 | symbol. */ | |
5846 | symtab_hdr->sh_info = abfd->symcount; | |
12662be4 | 5847 | if (dynamic) |
013dec1a | 5848 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1; |
6ec3bb6a ILT |
5849 | |
5850 | /* We get the global symbols from the hash table. */ | |
0ef449df KR |
5851 | eif.failed = false; |
5852 | eif.finfo = &finfo; | |
013dec1a | 5853 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, |
0ef449df KR |
5854 | (PTR) &eif); |
5855 | if (eif.failed) | |
5856 | return false; | |
6ec3bb6a ILT |
5857 | |
5858 | /* Flush all symbols to the file. */ | |
5859 | if (! elf_link_flush_output_syms (&finfo)) | |
5860 | return false; | |
5861 | ||
5862 | /* Now we know the size of the symtab section. */ | |
5863 | off += symtab_hdr->sh_size; | |
5864 | ||
eb4267a3 ILT |
5865 | /* Finish up and write out the symbol string table (.strtab) |
5866 | section. */ | |
6ec3bb6a ILT |
5867 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
5868 | /* sh_name was set in prep_headers. */ | |
5869 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
5870 | symstrtab_hdr->sh_flags = 0; | |
5871 | symstrtab_hdr->sh_addr = 0; | |
eb4267a3 | 5872 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); |
6ec3bb6a ILT |
5873 | symstrtab_hdr->sh_entsize = 0; |
5874 | symstrtab_hdr->sh_link = 0; | |
5875 | symstrtab_hdr->sh_info = 0; | |
5876 | /* sh_offset is set just below. */ | |
5877 | symstrtab_hdr->sh_addralign = 1; | |
6ec3bb6a | 5878 | |
013dec1a | 5879 | off = assign_file_position_for_section (symstrtab_hdr, off, true); |
6ec3bb6a ILT |
5880 | elf_tdata (abfd)->next_file_pos = off; |
5881 | ||
eb4267a3 ILT |
5882 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 |
5883 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
5884 | return false; | |
5885 | ||
6ec3bb6a ILT |
5886 | /* Adjust the relocs to have the correct symbol indices. */ |
5887 | for (o = abfd->sections; o != NULL; o = o->next) | |
5888 | { | |
5889 | struct elf_link_hash_entry **rel_hash; | |
5890 | Elf_Internal_Shdr *rel_hdr; | |
6ec3bb6a ILT |
5891 | |
5892 | if ((o->flags & SEC_RELOC) == 0) | |
5893 | continue; | |
5894 | ||
5895 | rel_hash = elf_section_data (o)->rel_hashes; | |
5896 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
5897 | for (i = 0; i < o->reloc_count; i++, rel_hash++) | |
5898 | { | |
5899 | if (*rel_hash == NULL) | |
5900 | continue; | |
5901 | ||
5902 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
5903 | ||
5904 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
5905 | { | |
5906 | Elf_External_Rel *erel; | |
5907 | Elf_Internal_Rel irel; | |
5908 | ||
5909 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
5910 | elf_swap_reloc_in (abfd, erel, &irel); | |
5911 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
5912 | ELF_R_TYPE (irel.r_info)); | |
5913 | elf_swap_reloc_out (abfd, &irel, erel); | |
5914 | } | |
5915 | else | |
5916 | { | |
5917 | Elf_External_Rela *erela; | |
5918 | Elf_Internal_Rela irela; | |
5919 | ||
5920 | BFD_ASSERT (rel_hdr->sh_entsize | |
5921 | == sizeof (Elf_External_Rela)); | |
5922 | ||
5923 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
5924 | elf_swap_reloca_in (abfd, erela, &irela); | |
5925 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
5926 | ELF_R_TYPE (irela.r_info)); | |
5927 | elf_swap_reloca_out (abfd, &irela, erela); | |
5928 | } | |
5929 | } | |
5930 | ||
5931 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
5932 | trying to swap the relocs out itself. */ | |
5933 | o->reloc_count = 0; | |
5934 | } | |
5935 | ||
12662be4 ILT |
5936 | /* If we are linking against a dynamic object, or generating a |
5937 | shared library, finish up the dynamic linking information. */ | |
5938 | if (dynamic) | |
013dec1a ILT |
5939 | { |
5940 | Elf_External_Dyn *dyncon, *dynconend; | |
013dec1a ILT |
5941 | |
5942 | /* Fix up .dynamic entries. */ | |
5943 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
5944 | BFD_ASSERT (o != NULL); | |
5945 | ||
5946 | dyncon = (Elf_External_Dyn *) o->contents; | |
5947 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
5948 | for (; dyncon < dynconend; dyncon++) | |
5949 | { | |
5950 | Elf_Internal_Dyn dyn; | |
5951 | const char *name; | |
5952 | unsigned int type; | |
5953 | ||
5954 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
5955 | ||
5956 | switch (dyn.d_tag) | |
5957 | { | |
5958 | default: | |
5959 | break; | |
5960 | ||
197e30e5 ILT |
5961 | /* SVR4 linkers seem to set DT_INIT and DT_FINI based on |
5962 | magic _init and _fini symbols. This is pretty ugly, | |
5963 | but we are compatible. */ | |
013dec1a | 5964 | case DT_INIT: |
197e30e5 ILT |
5965 | name = "_init"; |
5966 | goto get_sym; | |
013dec1a | 5967 | case DT_FINI: |
197e30e5 ILT |
5968 | name = "_fini"; |
5969 | get_sym: | |
5970 | { | |
5971 | struct elf_link_hash_entry *h; | |
5972 | ||
5973 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
5974 | false, false, true); | |
5975 | BFD_ASSERT (h != NULL); | |
6c97aedf ILT |
5976 | if (h->root.type == bfd_link_hash_defined |
5977 | || h->root.type == bfd_link_hash_defweak) | |
197e30e5 ILT |
5978 | { |
5979 | dyn.d_un.d_val = h->root.u.def.value; | |
5980 | o = h->root.u.def.section; | |
5981 | if (o->output_section != NULL) | |
5982 | dyn.d_un.d_val += (o->output_section->vma | |
5983 | + o->output_offset); | |
5984 | else | |
0ef449df KR |
5985 | /* The symbol is imported from another shared |
5986 | library and does not apply to this one. */ | |
5987 | dyn.d_un.d_val = 0; | |
197e30e5 ILT |
5988 | } |
5989 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5990 | } | |
5991 | break; | |
5992 | ||
013dec1a ILT |
5993 | case DT_HASH: |
5994 | name = ".hash"; | |
5995 | goto get_vma; | |
5996 | case DT_STRTAB: | |
5997 | name = ".dynstr"; | |
5998 | goto get_vma; | |
5999 | case DT_SYMTAB: | |
6000 | name = ".dynsym"; | |
6001 | get_vma: | |
6002 | o = bfd_get_section_by_name (abfd, name); | |
6003 | BFD_ASSERT (o != NULL); | |
6004 | dyn.d_un.d_ptr = o->vma; | |
6005 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
6006 | break; | |
6007 | ||
6008 | case DT_REL: | |
6009 | case DT_RELA: | |
6010 | case DT_RELSZ: | |
6011 | case DT_RELASZ: | |
6012 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
6013 | type = SHT_REL; | |
6014 | else | |
6015 | type = SHT_RELA; | |
6016 | dyn.d_un.d_val = 0; | |
6017 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
6018 | { | |
6019 | Elf_Internal_Shdr *hdr; | |
6020 | ||
6021 | hdr = elf_elfsections (abfd)[i]; | |
6022 | if (hdr->sh_type == type | |
6023 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
6024 | { | |
6025 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
6026 | dyn.d_un.d_val += hdr->sh_size; | |
6027 | else | |
6028 | { | |
6029 | if (dyn.d_un.d_val == 0 | |
6030 | || hdr->sh_addr < dyn.d_un.d_val) | |
6031 | dyn.d_un.d_val = hdr->sh_addr; | |
6032 | } | |
6033 | } | |
6034 | } | |
6035 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
6036 | break; | |
6037 | } | |
6038 | } | |
12662be4 | 6039 | } |
013dec1a | 6040 | |
12662be4 ILT |
6041 | /* If we have created any dynamic sections, then output them. */ |
6042 | if (dynobj != NULL) | |
6043 | { | |
013dec1a ILT |
6044 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) |
6045 | goto error_return; | |
6046 | ||
6047 | for (o = dynobj->sections; o != NULL; o = o->next) | |
6048 | { | |
12662be4 ILT |
6049 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
6050 | || o->_raw_size == 0) | |
013dec1a | 6051 | continue; |
8af74670 ILT |
6052 | if ((o->flags & SEC_IN_MEMORY) == 0) |
6053 | { | |
fb562be0 ILT |
6054 | /* At this point, we are only interested in sections |
6055 | created by elf_link_create_dynamic_sections. FIXME: | |
6056 | This test is fragile. */ | |
8af74670 ILT |
6057 | continue; |
6058 | } | |
eb4267a3 ILT |
6059 | if ((elf_section_data (o->output_section)->this_hdr.sh_type |
6060 | != SHT_STRTAB) | |
6061 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
6062 | { | |
6063 | if (! bfd_set_section_contents (abfd, o->output_section, | |
6064 | o->contents, o->output_offset, | |
6065 | o->_raw_size)) | |
6066 | goto error_return; | |
6067 | } | |
6068 | else | |
6069 | { | |
6070 | file_ptr off; | |
6071 | ||
6072 | /* The contents of the .dynstr section are actually in a | |
6073 | stringtab. */ | |
6074 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
6075 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
6076 | || ! _bfd_stringtab_emit (abfd, | |
6077 | elf_hash_table (info)->dynstr)) | |
6078 | goto error_return; | |
6079 | } | |
013dec1a ILT |
6080 | } |
6081 | } | |
6082 | ||
eb4267a3 ILT |
6083 | if (finfo.symstrtab != NULL) |
6084 | _bfd_stringtab_free (finfo.symstrtab); | |
6ec3bb6a ILT |
6085 | if (finfo.contents != NULL) |
6086 | free (finfo.contents); | |
6087 | if (finfo.external_relocs != NULL) | |
6088 | free (finfo.external_relocs); | |
6089 | if (finfo.internal_relocs != NULL) | |
6090 | free (finfo.internal_relocs); | |
6091 | if (finfo.external_syms != NULL) | |
6092 | free (finfo.external_syms); | |
6093 | if (finfo.internal_syms != NULL) | |
6094 | free (finfo.internal_syms); | |
6095 | if (finfo.indices != NULL) | |
6096 | free (finfo.indices); | |
6097 | if (finfo.sections != NULL) | |
6098 | free (finfo.sections); | |
6099 | if (finfo.symbuf != NULL) | |
6100 | free (finfo.symbuf); | |
6101 | for (o = abfd->sections; o != NULL; o = o->next) | |
6102 | { | |
6103 | if ((o->flags & SEC_RELOC) != 0 | |
6104 | && elf_section_data (o)->rel_hashes != NULL) | |
6105 | free (elf_section_data (o)->rel_hashes); | |
6106 | } | |
6107 | ||
3c9832f8 ILT |
6108 | elf_tdata (abfd)->linker = true; |
6109 | ||
6ec3bb6a ILT |
6110 | return true; |
6111 | ||
6112 | error_return: | |
eb4267a3 ILT |
6113 | if (finfo.symstrtab != NULL) |
6114 | _bfd_stringtab_free (finfo.symstrtab); | |
6ec3bb6a ILT |
6115 | if (finfo.contents != NULL) |
6116 | free (finfo.contents); | |
6117 | if (finfo.external_relocs != NULL) | |
6118 | free (finfo.external_relocs); | |
6119 | if (finfo.internal_relocs != NULL) | |
6120 | free (finfo.internal_relocs); | |
6121 | if (finfo.external_syms != NULL) | |
6122 | free (finfo.external_syms); | |
6123 | if (finfo.internal_syms != NULL) | |
6124 | free (finfo.internal_syms); | |
6125 | if (finfo.indices != NULL) | |
6126 | free (finfo.indices); | |
6127 | if (finfo.sections != NULL) | |
6128 | free (finfo.sections); | |
6129 | if (finfo.symbuf != NULL) | |
6130 | free (finfo.symbuf); | |
6131 | for (o = abfd->sections; o != NULL; o = o->next) | |
6132 | { | |
6133 | if ((o->flags & SEC_RELOC) != 0 | |
6134 | && elf_section_data (o)->rel_hashes != NULL) | |
6135 | free (elf_section_data (o)->rel_hashes); | |
6136 | } | |
6137 | ||
6138 | return false; | |
6139 | } | |
6140 | ||
6141 | /* Add a symbol to the output symbol table. */ | |
6142 | ||
6143 | static boolean | |
71edd06d | 6144 | elf_link_output_sym (finfo, name, elfsym, input_sec) |
6ec3bb6a ILT |
6145 | struct elf_final_link_info *finfo; |
6146 | const char *name; | |
6147 | Elf_Internal_Sym *elfsym; | |
71edd06d | 6148 | asection *input_sec; |
6ec3bb6a | 6149 | { |
71edd06d ILT |
6150 | boolean (*output_symbol_hook) PARAMS ((bfd *, |
6151 | struct bfd_link_info *info, | |
6152 | const char *, | |
6153 | Elf_Internal_Sym *, | |
6154 | asection *)); | |
6155 | ||
6156 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
6157 | elf_backend_link_output_symbol_hook; | |
57a814a9 PS |
6158 | if (output_symbol_hook != NULL) |
6159 | { | |
6160 | if (! ((*output_symbol_hook) | |
6161 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
6162 | return false; | |
6163 | } | |
71edd06d | 6164 | |
6ec3bb6a ILT |
6165 | if (name == (const char *) NULL || *name == '\0') |
6166 | elfsym->st_name = 0; | |
6167 | else | |
6168 | { | |
eb4267a3 ILT |
6169 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, |
6170 | name, true, | |
6171 | false); | |
6ec3bb6a ILT |
6172 | if (elfsym->st_name == (unsigned long) -1) |
6173 | return false; | |
6174 | } | |
6175 | ||
6176 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
6177 | { | |
6178 | if (! elf_link_flush_output_syms (finfo)) | |
6179 | return false; | |
6180 | } | |
6181 | ||
6182 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
6183 | finfo->symbuf + finfo->symbuf_count); | |
6184 | ++finfo->symbuf_count; | |
6185 | ||
6186 | ++finfo->output_bfd->symcount; | |
6187 | ||
6188 | return true; | |
6189 | } | |
6190 | ||
6191 | /* Flush the output symbols to the file. */ | |
6192 | ||
6193 | static boolean | |
6194 | elf_link_flush_output_syms (finfo) | |
6195 | struct elf_final_link_info *finfo; | |
6196 | { | |
6197 | Elf_Internal_Shdr *symtab; | |
6198 | ||
6199 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
6200 | ||
6201 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, | |
6202 | SEEK_SET) != 0 | |
6203 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
6204 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
6205 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
6206 | return false; | |
6207 | ||
6208 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); | |
6209 | ||
6210 | finfo->symbuf_count = 0; | |
6211 | ||
6212 | return true; | |
6213 | } | |
6214 | ||
6215 | /* Add an external symbol to the symbol table. This is called from | |
6216 | the hash table traversal routine. */ | |
6217 | ||
6218 | static boolean | |
6219 | elf_link_output_extsym (h, data) | |
6220 | struct elf_link_hash_entry *h; | |
6221 | PTR data; | |
6222 | { | |
0ef449df KR |
6223 | struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data; |
6224 | struct elf_final_link_info *finfo = eif->finfo; | |
013dec1a | 6225 | boolean strip; |
6ec3bb6a | 6226 | Elf_Internal_Sym sym; |
71edd06d | 6227 | asection *input_sec; |
6ec3bb6a | 6228 | |
59474174 ILT |
6229 | /* If we are not creating a shared library, and this symbol is |
6230 | referenced by a shared library but is not defined anywhere, then | |
6231 | warn that it is undefined. If we do not do this, the runtime | |
6232 | linker will complain that the symbol is undefined when the | |
6233 | program is run. We don't have to worry about symbols that are | |
6234 | referenced by regular files, because we will already have issued | |
6235 | warnings for them. | |
6236 | ||
6237 | FIXME: If we are linking against an object which uses DT_NEEDED, | |
6238 | we don't give this warning, because it might be the case that the | |
6239 | needed dynamic object will define the symbols. Unfortunately, | |
6240 | this makes this type of check much less useful, but the only way | |
6241 | to fix it would be to locate the needed object and read its | |
6242 | symbol table. That seems like a real waste of time just to give | |
6243 | better error messages. */ | |
6244 | if (! finfo->info->relocateable | |
6245 | && ! finfo->info->shared | |
6246 | && ! elf_hash_table (finfo->info)->saw_needed | |
6247 | && h->root.type == bfd_link_hash_undefined | |
6248 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
6249 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
6250 | { | |
6251 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
6252 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
6253 | (asection *) NULL, 0))) | |
6254 | { | |
0ef449df KR |
6255 | eif->failed = true; |
6256 | return false; | |
59474174 ILT |
6257 | } |
6258 | } | |
6259 | ||
013dec1a ILT |
6260 | /* We don't want to output symbols that have never been mentioned by |
6261 | a regular file, or that we have been told to strip. However, if | |
6262 | h->indx is set to -2, the symbol is used by a reloc and we must | |
6263 | output it. */ | |
6264 | if (h->indx == -2) | |
6265 | strip = false; | |
5315c428 ILT |
6266 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
6267 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
6268 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
013dec1a ILT |
6269 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) |
6270 | strip = true; | |
6271 | else if (finfo->info->strip == strip_all | |
6272 | || (finfo->info->strip == strip_some | |
6273 | && bfd_hash_lookup (finfo->info->keep_hash, | |
6274 | h->root.root.string, | |
6275 | false, false) == NULL)) | |
6276 | strip = true; | |
6277 | else | |
6278 | strip = false; | |
6279 | ||
6280 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
6281 | nothing else to do. */ | |
6282 | if (strip && h->dynindx == -1) | |
6ec3bb6a ILT |
6283 | return true; |
6284 | ||
6285 | sym.st_value = 0; | |
6286 | sym.st_size = h->size; | |
6ec3bb6a | 6287 | sym.st_other = 0; |
6c97aedf | 6288 | if (h->root.type == bfd_link_hash_undefweak |
0bef7f72 | 6289 | || h->root.type == bfd_link_hash_defweak) |
bf73e4f3 ILT |
6290 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); |
6291 | else | |
6292 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
6ec3bb6a ILT |
6293 | |
6294 | switch (h->root.type) | |
6295 | { | |
6296 | default: | |
6297 | case bfd_link_hash_new: | |
6298 | abort (); | |
6299 | return false; | |
6300 | ||
6301 | case bfd_link_hash_undefined: | |
71edd06d | 6302 | input_sec = bfd_und_section_ptr; |
6ec3bb6a ILT |
6303 | sym.st_shndx = SHN_UNDEF; |
6304 | break; | |
6305 | ||
6c97aedf | 6306 | case bfd_link_hash_undefweak: |
71edd06d | 6307 | input_sec = bfd_und_section_ptr; |
6ec3bb6a | 6308 | sym.st_shndx = SHN_UNDEF; |
6ec3bb6a ILT |
6309 | break; |
6310 | ||
6311 | case bfd_link_hash_defined: | |
6c97aedf | 6312 | case bfd_link_hash_defweak: |
6ec3bb6a | 6313 | { |
71edd06d ILT |
6314 | input_sec = h->root.u.def.section; |
6315 | if (input_sec->output_section != NULL) | |
6ec3bb6a | 6316 | { |
eb4267a3 ILT |
6317 | sym.st_shndx = |
6318 | elf_section_from_bfd_section (finfo->output_bfd, | |
6319 | input_sec->output_section); | |
013dec1a ILT |
6320 | if (sym.st_shndx == (unsigned short) -1) |
6321 | { | |
0ef449df KR |
6322 | eif->failed = true; |
6323 | return false; | |
013dec1a | 6324 | } |
6ec3bb6a | 6325 | |
013dec1a ILT |
6326 | /* ELF symbols in relocateable files are section relative, |
6327 | but in nonrelocateable files they are virtual | |
6328 | addresses. */ | |
71edd06d | 6329 | sym.st_value = h->root.u.def.value + input_sec->output_offset; |
013dec1a | 6330 | if (! finfo->info->relocateable) |
71edd06d | 6331 | sym.st_value += input_sec->output_section->vma; |
013dec1a ILT |
6332 | } |
6333 | else | |
6334 | { | |
197e30e5 ILT |
6335 | BFD_ASSERT ((bfd_get_flavour (input_sec->owner) |
6336 | == bfd_target_elf_flavour) | |
71edd06d | 6337 | && elf_elfheader (input_sec->owner)->e_type == ET_DYN); |
013dec1a | 6338 | sym.st_shndx = SHN_UNDEF; |
71edd06d | 6339 | input_sec = bfd_und_section_ptr; |
013dec1a | 6340 | } |
6ec3bb6a ILT |
6341 | } |
6342 | break; | |
6343 | ||
6344 | case bfd_link_hash_common: | |
71edd06d | 6345 | input_sec = bfd_com_section_ptr; |
6ec3bb6a | 6346 | sym.st_shndx = SHN_COMMON; |
6581a70a | 6347 | sym.st_value = 1 << h->root.u.c.p->alignment_power; |
6ec3bb6a ILT |
6348 | break; |
6349 | ||
6350 | case bfd_link_hash_indirect: | |
6351 | case bfd_link_hash_warning: | |
6352 | /* I have no idea how these should be handled. */ | |
6353 | return true; | |
6354 | } | |
6355 | ||
013dec1a ILT |
6356 | /* If this symbol should be put in the .dynsym section, then put it |
6357 | there now. We have already know the symbol index. We also fill | |
6358 | in the entry in the .hash section. */ | |
12662be4 ILT |
6359 | if (h->dynindx != -1 |
6360 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
013dec1a ILT |
6361 | { |
6362 | struct elf_backend_data *bed; | |
6363 | size_t bucketcount; | |
6364 | size_t bucket; | |
6365 | bfd_byte *bucketpos; | |
6366 | bfd_vma chain; | |
6367 | ||
6368 | sym.st_name = h->dynstr_index; | |
6369 | ||
6370 | /* Give the processor backend a chance to tweak the symbol | |
6371 | value, and also to finish up anything that needs to be done | |
6372 | for this symbol. */ | |
6373 | bed = get_elf_backend_data (finfo->output_bfd); | |
6374 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
6375 | (finfo->output_bfd, finfo->info, h, &sym))) | |
6376 | { | |
0ef449df KR |
6377 | eif->failed = true; |
6378 | return false; | |
013dec1a ILT |
6379 | } |
6380 | ||
6381 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
6382 | ((Elf_External_Sym *) finfo->dynsym_sec->contents | |
6383 | + h->dynindx)); | |
6384 | ||
6385 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
12662be4 ILT |
6386 | bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string) |
6387 | % bucketcount); | |
013dec1a ILT |
6388 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents |
6389 | + (bucket + 2) * (ARCH_SIZE / 8)); | |
6390 | chain = get_word (finfo->output_bfd, bucketpos); | |
6391 | put_word (finfo->output_bfd, h->dynindx, bucketpos); | |
6392 | put_word (finfo->output_bfd, chain, | |
6393 | ((bfd_byte *) finfo->hash_sec->contents | |
6394 | + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8))); | |
6395 | } | |
6396 | ||
6397 | /* If we're stripping it, then it was just a dynamic symbol, and | |
6398 | there's nothing else to do. */ | |
6399 | if (strip) | |
6400 | return true; | |
6401 | ||
6ec3bb6a ILT |
6402 | h->indx = finfo->output_bfd->symcount; |
6403 | ||
71edd06d | 6404 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) |
6ec3bb6a | 6405 | { |
0ef449df KR |
6406 | eif->failed = true; |
6407 | return false; | |
6ec3bb6a ILT |
6408 | } |
6409 | ||
6410 | return true; | |
6411 | } | |
6412 | ||
6413 | /* Link an input file into the linker output file. This function | |
6414 | handles all the sections and relocations of the input file at once. | |
6415 | This is so that we only have to read the local symbols once, and | |
6416 | don't have to keep them in memory. */ | |
6417 | ||
6418 | static boolean | |
6419 | elf_link_input_bfd (finfo, input_bfd) | |
6420 | struct elf_final_link_info *finfo; | |
6421 | bfd *input_bfd; | |
6422 | { | |
6423 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
6424 | bfd *, asection *, bfd_byte *, | |
6425 | Elf_Internal_Rela *, | |
eb4267a3 | 6426 | Elf_Internal_Sym *, asection **)); |
6ec3bb6a ILT |
6427 | bfd *output_bfd; |
6428 | Elf_Internal_Shdr *symtab_hdr; | |
5315c428 ILT |
6429 | size_t locsymcount; |
6430 | size_t extsymoff; | |
6ec3bb6a ILT |
6431 | Elf_External_Sym *esym; |
6432 | Elf_External_Sym *esymend; | |
6433 | Elf_Internal_Sym *isym; | |
6434 | long *pindex; | |
6435 | asection **ppsection; | |
6436 | asection *o; | |
6437 | ||
6438 | output_bfd = finfo->output_bfd; | |
6439 | relocate_section = | |
6440 | get_elf_backend_data (output_bfd)->elf_backend_relocate_section; | |
6441 | ||
013dec1a ILT |
6442 | /* If this is a dynamic object, we don't want to do anything here: |
6443 | we don't want the local symbols, and we don't want the section | |
6444 | contents. */ | |
6445 | if (elf_elfheader (input_bfd)->e_type == ET_DYN) | |
6446 | return true; | |
6447 | ||
6ec3bb6a | 6448 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
5315c428 ILT |
6449 | if (elf_bad_symtab (input_bfd)) |
6450 | { | |
6451 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
6452 | extsymoff = 0; | |
6453 | } | |
6454 | else | |
6455 | { | |
6456 | locsymcount = symtab_hdr->sh_info; | |
6457 | extsymoff = symtab_hdr->sh_info; | |
6458 | } | |
6459 | ||
6460 | /* Read the local symbols. */ | |
c46b8ed7 JL |
6461 | if (locsymcount > 0 |
6462 | && (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
6463 | || (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym), | |
6464 | locsymcount, input_bfd) | |
6465 | != locsymcount * sizeof (Elf_External_Sym)))) | |
6ec3bb6a ILT |
6466 | return false; |
6467 | ||
6468 | /* Swap in the local symbols and write out the ones which we know | |
6469 | are going into the output file. */ | |
6470 | esym = finfo->external_syms; | |
5315c428 | 6471 | esymend = esym + locsymcount; |
6ec3bb6a ILT |
6472 | isym = finfo->internal_syms; |
6473 | pindex = finfo->indices; | |
6474 | ppsection = finfo->sections; | |
6475 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
6476 | { | |
6477 | asection *isec; | |
6478 | const char *name; | |
eb4267a3 | 6479 | Elf_Internal_Sym osym; |
6ec3bb6a ILT |
6480 | |
6481 | elf_swap_symbol_in (input_bfd, esym, isym); | |
6482 | *pindex = -1; | |
6483 | ||
5315c428 ILT |
6484 | if (elf_bad_symtab (input_bfd)) |
6485 | { | |
6486 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
6487 | { | |
6488 | *ppsection = NULL; | |
6489 | continue; | |
6490 | } | |
6491 | } | |
6492 | ||
6ec3bb6a | 6493 | if (isym->st_shndx == SHN_UNDEF) |
badd23e3 | 6494 | isec = bfd_und_section_ptr; |
6ec3bb6a | 6495 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) |
24f13b03 | 6496 | isec = section_from_elf_index (input_bfd, isym->st_shndx); |
6ec3bb6a | 6497 | else if (isym->st_shndx == SHN_ABS) |
badd23e3 | 6498 | isec = bfd_abs_section_ptr; |
6ec3bb6a | 6499 | else if (isym->st_shndx == SHN_COMMON) |
badd23e3 | 6500 | isec = bfd_com_section_ptr; |
6ec3bb6a ILT |
6501 | else |
6502 | { | |
6503 | /* Who knows? */ | |
6504 | isec = NULL; | |
6505 | } | |
6506 | ||
6507 | *ppsection = isec; | |
6508 | ||
6509 | /* Don't output the first, undefined, symbol. */ | |
6510 | if (esym == finfo->external_syms) | |
6511 | continue; | |
6512 | ||
6513 | /* If we are stripping all symbols, we don't want to output this | |
6514 | one. */ | |
6515 | if (finfo->info->strip == strip_all) | |
6516 | continue; | |
6517 | ||
6518 | /* We never output section symbols. Instead, we use the section | |
6519 | symbol of the corresponding section in the output file. */ | |
6520 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
6521 | continue; | |
6522 | ||
6523 | /* If we are discarding all local symbols, we don't want to | |
6524 | output this one. If we are generating a relocateable output | |
6525 | file, then some of the local symbols may be required by | |
6526 | relocs; we output them below as we discover that they are | |
6527 | needed. */ | |
6528 | if (finfo->info->discard == discard_all) | |
6529 | continue; | |
6530 | ||
6531 | /* Get the name of the symbol. */ | |
6532 | name = elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
6533 | isym->st_name); | |
6534 | if (name == NULL) | |
6535 | return false; | |
6536 | ||
6537 | /* See if we are discarding symbols with this name. */ | |
6538 | if ((finfo->info->strip == strip_some | |
6539 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
6540 | == NULL)) | |
6541 | || (finfo->info->discard == discard_l | |
6542 | && strncmp (name, finfo->info->lprefix, | |
6543 | finfo->info->lprefix_len) == 0)) | |
6544 | continue; | |
6545 | ||
6546 | /* If we get here, we are going to output this symbol. */ | |
6547 | ||
eb4267a3 ILT |
6548 | osym = *isym; |
6549 | ||
6ec3bb6a | 6550 | /* Adjust the section index for the output file. */ |
eb4267a3 ILT |
6551 | osym.st_shndx = elf_section_from_bfd_section (output_bfd, |
6552 | isec->output_section); | |
6553 | if (osym.st_shndx == (unsigned short) -1) | |
6ec3bb6a ILT |
6554 | return false; |
6555 | ||
6556 | *pindex = output_bfd->symcount; | |
6557 | ||
6558 | /* ELF symbols in relocateable files are section relative, but | |
6559 | in executable files they are virtual addresses. Note that | |
6560 | this code assumes that all ELF sections have an associated | |
6561 | BFD section with a reasonable value for output_offset; below | |
6562 | we assume that they also have a reasonable value for | |
6563 | output_section. Any special sections must be set up to meet | |
6564 | these requirements. */ | |
eb4267a3 | 6565 | osym.st_value += isec->output_offset; |
6ec3bb6a | 6566 | if (! finfo->info->relocateable) |
eb4267a3 | 6567 | osym.st_value += isec->output_section->vma; |
6ec3bb6a | 6568 | |
eb4267a3 | 6569 | if (! elf_link_output_sym (finfo, name, &osym, isec)) |
6ec3bb6a | 6570 | return false; |
6ec3bb6a ILT |
6571 | } |
6572 | ||
6573 | /* Relocate the contents of each section. */ | |
6574 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
6575 | { | |
6ec3bb6a ILT |
6576 | if ((o->flags & SEC_HAS_CONTENTS) == 0) |
6577 | continue; | |
6578 | ||
8af74670 ILT |
6579 | if ((o->flags & SEC_IN_MEMORY) != 0 |
6580 | && input_bfd == elf_hash_table (finfo->info)->dynobj) | |
6581 | { | |
6582 | /* Section was created by elf_link_create_dynamic_sections. | |
6583 | FIXME: This test is fragile. */ | |
6584 | continue; | |
6585 | } | |
6586 | ||
6ec3bb6a ILT |
6587 | /* Read the contents of the section. */ |
6588 | if (! bfd_get_section_contents (input_bfd, o, finfo->contents, | |
6589 | (file_ptr) 0, o->_raw_size)) | |
6590 | return false; | |
6591 | ||
6592 | if ((o->flags & SEC_RELOC) != 0) | |
6593 | { | |
374d2ef9 ILT |
6594 | Elf_Internal_Rela *internal_relocs; |
6595 | ||
6596 | /* Get the swapped relocs. */ | |
6597 | internal_relocs = elf_link_read_relocs (input_bfd, o, | |
6598 | finfo->external_relocs, | |
6599 | finfo->internal_relocs, | |
6600 | false); | |
6601 | if (internal_relocs == NULL | |
6602 | && o->reloc_count > 0) | |
6603 | return false; | |
6ec3bb6a ILT |
6604 | |
6605 | /* Relocate the section by invoking a back end routine. | |
6606 | ||
6607 | The back end routine is responsible for adjusting the | |
6608 | section contents as necessary, and (if using Rela relocs | |
6609 | and generating a relocateable output file) adjusting the | |
6610 | reloc addend as necessary. | |
6611 | ||
6612 | The back end routine does not have to worry about setting | |
6613 | the reloc address or the reloc symbol index. | |
6614 | ||
6615 | The back end routine is given a pointer to the swapped in | |
6616 | internal symbols, and can access the hash table entries | |
6617 | for the external symbols via elf_sym_hashes (input_bfd). | |
6618 | ||
6619 | When generating relocateable output, the back end routine | |
6620 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
6621 | output symbol is going to be a section symbol | |
6622 | corresponding to the output section, which will require | |
6623 | the addend to be adjusted. */ | |
6624 | ||
6625 | if (! (*relocate_section) (output_bfd, finfo->info, | |
6626 | input_bfd, o, | |
6627 | finfo->contents, | |
374d2ef9 | 6628 | internal_relocs, |
6ec3bb6a | 6629 | finfo->internal_syms, |
eb4267a3 | 6630 | finfo->sections)) |
6ec3bb6a ILT |
6631 | return false; |
6632 | ||
6633 | if (finfo->info->relocateable) | |
6634 | { | |
6635 | Elf_Internal_Rela *irela; | |
6636 | Elf_Internal_Rela *irelaend; | |
6637 | struct elf_link_hash_entry **rel_hash; | |
374d2ef9 | 6638 | Elf_Internal_Shdr *input_rel_hdr; |
6ec3bb6a ILT |
6639 | Elf_Internal_Shdr *output_rel_hdr; |
6640 | ||
6641 | /* Adjust the reloc addresses and symbol indices. */ | |
6642 | ||
374d2ef9 | 6643 | irela = internal_relocs; |
6ec3bb6a ILT |
6644 | irelaend = irela + o->reloc_count; |
6645 | rel_hash = (elf_section_data (o->output_section)->rel_hashes | |
6646 | + o->output_section->reloc_count); | |
6647 | for (; irela < irelaend; irela++, rel_hash++) | |
6648 | { | |
6649 | long r_symndx; | |
6650 | Elf_Internal_Sym *isym; | |
6651 | asection *sec; | |
6652 | ||
6653 | irela->r_offset += o->output_offset; | |
6654 | ||
6655 | r_symndx = ELF_R_SYM (irela->r_info); | |
6656 | ||
6657 | if (r_symndx == 0) | |
6658 | continue; | |
6659 | ||
5315c428 ILT |
6660 | if (r_symndx >= locsymcount |
6661 | || (elf_bad_symtab (input_bfd) | |
6662 | && finfo->sections[r_symndx] == NULL)) | |
6ec3bb6a ILT |
6663 | { |
6664 | long indx; | |
6665 | ||
6666 | /* This is a reloc against a global symbol. We | |
6667 | have not yet output all the local symbols, so | |
6668 | we do not know the symbol index of any global | |
6669 | symbol. We set the rel_hash entry for this | |
6670 | reloc to point to the global hash table entry | |
6671 | for this symbol. The symbol index is then | |
6672 | set at the end of elf_bfd_final_link. */ | |
5315c428 | 6673 | indx = r_symndx - extsymoff; |
6ec3bb6a ILT |
6674 | *rel_hash = elf_sym_hashes (input_bfd)[indx]; |
6675 | ||
6676 | /* Setting the index to -2 tells | |
6677 | elf_link_output_extsym that this symbol is | |
6678 | used by a reloc. */ | |
6679 | BFD_ASSERT ((*rel_hash)->indx < 0); | |
6680 | (*rel_hash)->indx = -2; | |
6681 | ||
6682 | continue; | |
6683 | } | |
6684 | ||
6685 | /* This is a reloc against a local symbol. */ | |
6686 | ||
6687 | *rel_hash = NULL; | |
6688 | isym = finfo->internal_syms + r_symndx; | |
6689 | sec = finfo->sections[r_symndx]; | |
6690 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
6691 | { | |
6692 | /* I suppose the backend ought to fill in the | |
6693 | section of any STT_SECTION symbol against a | |
6694 | processor specific section. */ | |
badd23e3 ILT |
6695 | if (sec != NULL && bfd_is_abs_section (sec)) |
6696 | r_symndx = 0; | |
6697 | else if (sec == NULL || sec->owner == NULL) | |
6ec3bb6a ILT |
6698 | { |
6699 | bfd_set_error (bfd_error_bad_value); | |
6700 | return false; | |
6701 | } | |
6ec3bb6a | 6702 | else |
013dec1a ILT |
6703 | { |
6704 | r_symndx = sec->output_section->target_index; | |
0ef449df | 6705 | BFD_ASSERT (r_symndx != 0); |
013dec1a | 6706 | } |
6ec3bb6a ILT |
6707 | } |
6708 | else | |
6709 | { | |
6710 | if (finfo->indices[r_symndx] == -1) | |
6711 | { | |
6712 | unsigned long link; | |
6713 | const char *name; | |
6714 | asection *osec; | |
6715 | ||
6716 | if (finfo->info->strip == strip_all) | |
6717 | { | |
6718 | /* You can't do ld -r -s. */ | |
6719 | bfd_set_error (bfd_error_invalid_operation); | |
6720 | return false; | |
6721 | } | |
6722 | ||
6723 | /* This symbol was skipped earlier, but | |
6724 | since it is needed by a reloc, we | |
6725 | must output it now. */ | |
6726 | link = symtab_hdr->sh_link; | |
6727 | name = elf_string_from_elf_section (input_bfd, | |
6728 | link, | |
6729 | isym->st_name); | |
6730 | if (name == NULL) | |
6731 | return false; | |
6732 | ||
6733 | osec = sec->output_section; | |
6734 | isym->st_shndx = | |
6735 | elf_section_from_bfd_section (output_bfd, | |
6736 | osec); | |
013dec1a | 6737 | if (isym->st_shndx == (unsigned short) -1) |
6ec3bb6a ILT |
6738 | return false; |
6739 | ||
6740 | isym->st_value += sec->output_offset; | |
6741 | if (! finfo->info->relocateable) | |
6742 | isym->st_value += osec->vma; | |
6743 | ||
6744 | finfo->indices[r_symndx] = output_bfd->symcount; | |
6745 | ||
71edd06d | 6746 | if (! elf_link_output_sym (finfo, name, isym, sec)) |
6ec3bb6a ILT |
6747 | return false; |
6748 | } | |
6749 | ||
6750 | r_symndx = finfo->indices[r_symndx]; | |
6751 | } | |
6752 | ||
6753 | irela->r_info = ELF_R_INFO (r_symndx, | |
6754 | ELF_R_TYPE (irela->r_info)); | |
6755 | } | |
6756 | ||
6757 | /* Swap out the relocs. */ | |
374d2ef9 | 6758 | input_rel_hdr = &elf_section_data (o)->rel_hdr; |
6ec3bb6a ILT |
6759 | output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr; |
6760 | BFD_ASSERT (output_rel_hdr->sh_entsize | |
6761 | == input_rel_hdr->sh_entsize); | |
374d2ef9 | 6762 | irela = internal_relocs; |
6ec3bb6a ILT |
6763 | irelaend = irela + o->reloc_count; |
6764 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
6765 | { | |
6766 | Elf_External_Rel *erel; | |
6767 | ||
6768 | erel = ((Elf_External_Rel *) output_rel_hdr->contents | |
6769 | + o->output_section->reloc_count); | |
6770 | for (; irela < irelaend; irela++, erel++) | |
6771 | { | |
6772 | Elf_Internal_Rel irel; | |
6773 | ||
6774 | irel.r_offset = irela->r_offset; | |
6775 | irel.r_info = irela->r_info; | |
6776 | BFD_ASSERT (irela->r_addend == 0); | |
6777 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
6778 | } | |
6779 | } | |
6780 | else | |
6781 | { | |
6782 | Elf_External_Rela *erela; | |
6783 | ||
6784 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
6785 | == sizeof (Elf_External_Rela)); | |
6786 | erela = ((Elf_External_Rela *) output_rel_hdr->contents | |
6787 | + o->output_section->reloc_count); | |
6788 | for (; irela < irelaend; irela++, erela++) | |
6789 | elf_swap_reloca_out (output_bfd, irela, erela); | |
6790 | } | |
6791 | ||
6792 | o->output_section->reloc_count += o->reloc_count; | |
6793 | } | |
6794 | } | |
6795 | ||
6796 | /* Write out the modified section contents. */ | |
6797 | if (! bfd_set_section_contents (output_bfd, o->output_section, | |
6798 | finfo->contents, o->output_offset, | |
6799 | (o->_cooked_size != 0 | |
6800 | ? o->_cooked_size | |
6801 | : o->_raw_size))) | |
6802 | return false; | |
6803 | } | |
6804 | ||
6805 | return true; | |
6806 | } | |
6807 | ||
6808 | /* Generate a reloc when linking an ELF file. This is a reloc | |
6809 | requested by the linker, and does come from any input file. This | |
6810 | is used to build constructor and destructor tables when linking | |
6811 | with -Ur. */ | |
6812 | ||
6813 | static boolean | |
6814 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
6815 | bfd *output_bfd; | |
6816 | struct bfd_link_info *info; | |
6817 | asection *output_section; | |
6818 | struct bfd_link_order *link_order; | |
6819 | { | |
51fbf454 | 6820 | reloc_howto_type *howto; |
6ec3bb6a ILT |
6821 | long indx; |
6822 | bfd_vma offset; | |
6823 | struct elf_link_hash_entry **rel_hash_ptr; | |
6824 | Elf_Internal_Shdr *rel_hdr; | |
6825 | ||
6826 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
6827 | if (howto == NULL) | |
6828 | { | |
6829 | bfd_set_error (bfd_error_bad_value); | |
6830 | return false; | |
6831 | } | |
6832 | ||
6833 | /* If this is an inplace reloc, we must write the addend into the | |
6834 | object file. */ | |
6835 | if (howto->partial_inplace | |
6836 | && link_order->u.reloc.p->addend != 0) | |
6837 | { | |
6838 | bfd_size_type size; | |
6839 | bfd_reloc_status_type rstat; | |
6840 | bfd_byte *buf; | |
6841 | boolean ok; | |
6842 | ||
6843 | size = bfd_get_reloc_size (howto); | |
6844 | buf = (bfd_byte *) bfd_zmalloc (size); | |
6845 | if (buf == (bfd_byte *) NULL) | |
6846 | { | |
6847 | bfd_set_error (bfd_error_no_memory); | |
6848 | return false; | |
6849 | } | |
6850 | rstat = _bfd_relocate_contents (howto, output_bfd, | |
6851 | link_order->u.reloc.p->addend, buf); | |
6852 | switch (rstat) | |
6853 | { | |
6854 | case bfd_reloc_ok: | |
6855 | break; | |
6856 | default: | |
6857 | case bfd_reloc_outofrange: | |
6858 | abort (); | |
6859 | case bfd_reloc_overflow: | |
6860 | if (! ((*info->callbacks->reloc_overflow) | |
6861 | (info, | |
6862 | (link_order->type == bfd_section_reloc_link_order | |
6863 | ? bfd_section_name (output_bfd, | |
6864 | link_order->u.reloc.p->u.section) | |
6865 | : link_order->u.reloc.p->u.name), | |
6866 | howto->name, link_order->u.reloc.p->addend, | |
6867 | (bfd *) NULL, (asection *) NULL, (bfd_vma) 0))) | |
6868 | { | |
6869 | free (buf); | |
6870 | return false; | |
6871 | } | |
6872 | break; | |
6873 | } | |
6874 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
6875 | (file_ptr) link_order->offset, size); | |
6876 | free (buf); | |
6877 | if (! ok) | |
6878 | return false; | |
6879 | } | |
6880 | ||
6881 | /* Figure out the symbol index. */ | |
6882 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
6883 | + output_section->reloc_count); | |
6884 | if (link_order->type == bfd_section_reloc_link_order) | |
6885 | { | |
013dec1a | 6886 | indx = link_order->u.reloc.p->u.section->target_index; |
0ef449df | 6887 | BFD_ASSERT (indx != 0); |
6ec3bb6a ILT |
6888 | *rel_hash_ptr = NULL; |
6889 | } | |
6890 | else | |
6891 | { | |
6892 | struct elf_link_hash_entry *h; | |
6893 | ||
6894 | h = elf_link_hash_lookup (elf_hash_table (info), | |
6895 | link_order->u.reloc.p->u.name, | |
6896 | false, false, true); | |
6897 | if (h != NULL) | |
6898 | { | |
6899 | /* Setting the index to -2 tells elf_link_output_extsym that | |
6900 | this symbol is used by a reloc. */ | |
6901 | h->indx = -2; | |
6902 | *rel_hash_ptr = h; | |
6903 | indx = 0; | |
6904 | } | |
6905 | else | |
6906 | { | |
6907 | if (! ((*info->callbacks->unattached_reloc) | |
6908 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
6909 | (asection *) NULL, (bfd_vma) 0))) | |
6910 | return false; | |
6911 | indx = 0; | |
6912 | } | |
6913 | } | |
6914 | ||
6915 | /* The address of a reloc is relative to the section in a | |
6916 | relocateable file, and is a virtual address in an executable | |
6917 | file. */ | |
6918 | offset = link_order->offset; | |
6919 | if (! info->relocateable) | |
6920 | offset += output_section->vma; | |
6921 | ||
6922 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
6923 | ||
6924 | if (rel_hdr->sh_type == SHT_REL) | |
6925 | { | |
6926 | Elf_Internal_Rel irel; | |
6927 | Elf_External_Rel *erel; | |
6928 | ||
6929 | irel.r_offset = offset; | |
6930 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
6931 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
6932 | + output_section->reloc_count); | |
6933 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
6934 | } | |
6935 | else | |
6936 | { | |
6937 | Elf_Internal_Rela irela; | |
6938 | Elf_External_Rela *erela; | |
6939 | ||
6940 | irela.r_offset = offset; | |
6941 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
6942 | irela.r_addend = link_order->u.reloc.p->addend; | |
6943 | erela = ((Elf_External_Rela *) rel_hdr->contents | |
6944 | + output_section->reloc_count); | |
6945 | elf_swap_reloca_out (output_bfd, &irela, erela); | |
6946 | } | |
6947 | ||
6948 | ++output_section->reloc_count; | |
6949 | ||
6950 | return true; | |
6951 | } |