]>
Commit | Line | Data |
---|---|---|
244ffee7 | 1 | /* ELF executable support for BFD. |
b9d5cdf0 | 2 | Copyright 1991, 1992, 1993, 1994 Free Software Foundation, Inc. |
244ffee7 JK |
3 | |
4 | Written by Fred Fish @ Cygnus Support, from information published | |
5 | in "UNIX System V Release 4, Programmers Guide: ANSI C and | |
6 | Programming Support Tools". Sufficient support for gdb. | |
7 | ||
8 | Rewritten by Mark Eichin @ Cygnus Support, from information | |
9 | published in "System V Application Binary Interface", chapters 4 | |
10 | and 5, as well as the various "Processor Supplement" documents | |
11 | derived from it. Added support for assembler and other object file | |
12 | utilities. Further work done by Ken Raeburn (Cygnus Support), Michael | |
13 | Meissner (Open Software Foundation), and Peter Hoogenboom (University | |
14 | of Utah) to finish and extend this. | |
15 | ||
16 | This file is part of BFD, the Binary File Descriptor library. | |
17 | ||
18 | This program is free software; you can redistribute it and/or modify | |
19 | it under the terms of the GNU General Public License as published by | |
20 | the Free Software Foundation; either version 2 of the License, or | |
21 | (at your option) any later version. | |
22 | ||
23 | This program is distributed in the hope that it will be useful, | |
24 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
25 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
26 | GNU General Public License for more details. | |
27 | ||
28 | You should have received a copy of the GNU General Public License | |
29 | along with this program; if not, write to the Free Software | |
30 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
31 | ||
244ffee7 JK |
32 | /* Problems and other issues to resolve. |
33 | ||
34 | (1) BFD expects there to be some fixed number of "sections" in | |
35 | the object file. I.E. there is a "section_count" variable in the | |
36 | bfd structure which contains the number of sections. However, ELF | |
37 | supports multiple "views" of a file. In particular, with current | |
38 | implementations, executable files typically have two tables, a | |
39 | program header table and a section header table, both of which | |
40 | partition the executable. | |
41 | ||
42 | In ELF-speak, the "linking view" of the file uses the section header | |
43 | table to access "sections" within the file, and the "execution view" | |
44 | uses the program header table to access "segments" within the file. | |
45 | "Segments" typically may contain all the data from one or more | |
46 | "sections". | |
47 | ||
48 | Note that the section header table is optional in ELF executables, | |
49 | but it is this information that is most useful to gdb. If the | |
50 | section header table is missing, then gdb should probably try | |
51 | to make do with the program header table. (FIXME) | |
52 | ||
6a3eb9b6 KR |
53 | (2) The code in this file is compiled twice, once in 32-bit mode and |
54 | once in 64-bit mode. More of it should be made size-independent | |
55 | and moved into elf.c. | |
56 | ||
d24928c0 KR |
57 | (3) ELF section symbols are handled rather sloppily now. This should |
58 | be cleaned up, and ELF section symbols reconciled with BFD section | |
59 | symbols. | |
5546cc7e KR |
60 | |
61 | (4) We need a published spec for 64-bit ELF. We've got some stuff here | |
62 | that we're using for SPARC V9 64-bit chips, but don't assume that | |
63 | it's cast in stone. | |
d24928c0 | 64 | */ |
244ffee7 JK |
65 | |
66 | #include <string.h> /* For strrchr and friends */ | |
67 | #include "bfd.h" | |
68 | #include "sysdep.h" | |
6ec3bb6a | 69 | #include "bfdlink.h" |
244ffee7 JK |
70 | #include "libbfd.h" |
71 | #include "libelf.h" | |
72 | ||
32090b8e | 73 | /* Renaming structures, typedefs, macros and functions to be size-specific. */ |
244ffee7 | 74 | #define Elf_External_Ehdr NAME(Elf,External_Ehdr) |
244ffee7 | 75 | #define Elf_External_Sym NAME(Elf,External_Sym) |
244ffee7 | 76 | #define Elf_External_Shdr NAME(Elf,External_Shdr) |
244ffee7 | 77 | #define Elf_External_Phdr NAME(Elf,External_Phdr) |
244ffee7 JK |
78 | #define Elf_External_Rel NAME(Elf,External_Rel) |
79 | #define Elf_External_Rela NAME(Elf,External_Rela) | |
013dec1a | 80 | #define Elf_External_Dyn NAME(Elf,External_Dyn) |
244ffee7 | 81 | |
244ffee7 JK |
82 | #define elf_core_file_failing_command NAME(bfd_elf,core_file_failing_command) |
83 | #define elf_core_file_failing_signal NAME(bfd_elf,core_file_failing_signal) | |
cb71adf1 PS |
84 | #define elf_core_file_matches_executable_p \ |
85 | NAME(bfd_elf,core_file_matches_executable_p) | |
244ffee7 JK |
86 | #define elf_object_p NAME(bfd_elf,object_p) |
87 | #define elf_core_file_p NAME(bfd_elf,core_file_p) | |
244ffee7 | 88 | #define elf_get_symtab_upper_bound NAME(bfd_elf,get_symtab_upper_bound) |
cb71adf1 PS |
89 | #define elf_get_dynamic_symtab_upper_bound \ |
90 | NAME(bfd_elf,get_dynamic_symtab_upper_bound) | |
013dec1a ILT |
91 | #define elf_swap_reloc_in NAME(bfd_elf,swap_reloc_in) |
92 | #define elf_swap_reloca_in NAME(bfd_elf,swap_reloca_in) | |
93 | #define elf_swap_reloc_out NAME(bfd_elf,swap_reloc_out) | |
94 | #define elf_swap_reloca_out NAME(bfd_elf,swap_reloca_out) | |
71edd06d ILT |
95 | #define elf_swap_symbol_in NAME(bfd_elf,swap_symbol_in) |
96 | #define elf_swap_symbol_out NAME(bfd_elf,swap_symbol_out) | |
013dec1a ILT |
97 | #define elf_swap_dyn_in NAME(bfd_elf,swap_dyn_in) |
98 | #define elf_swap_dyn_out NAME(bfd_elf,swap_dyn_out) | |
244ffee7 JK |
99 | #define elf_get_reloc_upper_bound NAME(bfd_elf,get_reloc_upper_bound) |
100 | #define elf_canonicalize_reloc NAME(bfd_elf,canonicalize_reloc) | |
101 | #define elf_get_symtab NAME(bfd_elf,get_symtab) | |
cb71adf1 PS |
102 | #define elf_canonicalize_dynamic_symtab \ |
103 | NAME(bfd_elf,canonicalize_dynamic_symtab) | |
244ffee7 JK |
104 | #define elf_make_empty_symbol NAME(bfd_elf,make_empty_symbol) |
105 | #define elf_get_symbol_info NAME(bfd_elf,get_symbol_info) | |
106 | #define elf_print_symbol NAME(bfd_elf,print_symbol) | |
107 | #define elf_get_lineno NAME(bfd_elf,get_lineno) | |
108 | #define elf_set_arch_mach NAME(bfd_elf,set_arch_mach) | |
109 | #define elf_find_nearest_line NAME(bfd_elf,find_nearest_line) | |
110 | #define elf_sizeof_headers NAME(bfd_elf,sizeof_headers) | |
111 | #define elf_set_section_contents NAME(bfd_elf,set_section_contents) | |
112 | #define elf_no_info_to_howto NAME(bfd_elf,no_info_to_howto) | |
113 | #define elf_no_info_to_howto_rel NAME(bfd_elf,no_info_to_howto_rel) | |
fce36137 | 114 | #define elf_new_section_hook NAME(bfd_elf,new_section_hook) |
32090b8e | 115 | #define write_relocs NAME(bfd_elf,_write_relocs) |
f035cc47 | 116 | #define elf_find_section NAME(bfd_elf,find_section) |
6ec3bb6a | 117 | #define elf_bfd_link_add_symbols NAME(bfd_elf,bfd_link_add_symbols) |
013dec1a | 118 | #define elf_add_dynamic_entry NAME(bfd_elf,add_dynamic_entry) |
374d2ef9 ILT |
119 | #define elf_link_create_dynamic_sections \ |
120 | NAME(bfd_elf,link_create_dynamic_sections) | |
121 | #define elf_link_record_dynamic_symbol \ | |
122 | NAME(bfd_elf,link_record_dynamic_symbol) | |
6ec3bb6a | 123 | #define elf_bfd_final_link NAME(bfd_elf,bfd_final_link) |
244ffee7 | 124 | |
6a3eb9b6 KR |
125 | #if ARCH_SIZE == 64 |
126 | #define ELF_R_INFO(X,Y) ELF64_R_INFO(X,Y) | |
127 | #define ELF_R_SYM(X) ELF64_R_SYM(X) | |
6ec3bb6a | 128 | #define ELF_R_TYPE(X) ELF64_R_TYPE(X) |
32090b8e | 129 | #define ELFCLASS ELFCLASS64 |
f035cc47 | 130 | #define FILE_ALIGN 8 |
013dec1a | 131 | #define LOG_FILE_ALIGN 3 |
6a3eb9b6 KR |
132 | #endif |
133 | #if ARCH_SIZE == 32 | |
134 | #define ELF_R_INFO(X,Y) ELF32_R_INFO(X,Y) | |
135 | #define ELF_R_SYM(X) ELF32_R_SYM(X) | |
6ec3bb6a | 136 | #define ELF_R_TYPE(X) ELF32_R_TYPE(X) |
32090b8e | 137 | #define ELFCLASS ELFCLASS32 |
f035cc47 | 138 | #define FILE_ALIGN 4 |
013dec1a | 139 | #define LOG_FILE_ALIGN 2 |
244ffee7 JK |
140 | #endif |
141 | ||
244ffee7 JK |
142 | /* Forward declarations of static functions */ |
143 | ||
6ec3bb6a ILT |
144 | static unsigned long bfd_add_to_strtab |
145 | PARAMS ((bfd *, struct strtab *, const char *)); | |
2e03ce18 | 146 | static asection *section_from_elf_index PARAMS ((bfd *, unsigned int)); |
244ffee7 JK |
147 | |
148 | static int elf_section_from_bfd_section PARAMS ((bfd *, struct sec *)); | |
149 | ||
cb71adf1 | 150 | static long elf_slurp_symbol_table PARAMS ((bfd *, asymbol **, boolean)); |
244ffee7 | 151 | |
ea617174 ILT |
152 | static boolean elf_slurp_reloc_table PARAMS ((bfd *, asection *, asymbol **)); |
153 | ||
244ffee7 | 154 | static int elf_symbol_from_bfd_symbol PARAMS ((bfd *, |
1c6042ee | 155 | struct symbol_cache_entry **)); |
244ffee7 | 156 | |
6ec3bb6a ILT |
157 | static boolean elf_compute_section_file_positions |
158 | PARAMS ((bfd *, struct bfd_link_info *)); | |
159 | static boolean prep_headers PARAMS ((bfd *)); | |
fa15568a | 160 | static void elf_fake_sections PARAMS ((bfd *, asection *, PTR)); |
6ec3bb6a | 161 | static boolean assign_section_numbers PARAMS ((bfd *)); |
013dec1a ILT |
162 | static file_ptr align_file_position PARAMS ((file_ptr)); |
163 | static file_ptr assign_file_position_for_section | |
164 | PARAMS ((Elf_Internal_Shdr *, file_ptr, boolean)); | |
6ec3bb6a | 165 | static boolean assign_file_positions_except_relocs PARAMS ((bfd *, boolean)); |
013dec1a ILT |
166 | static void assign_file_positions_for_relocs PARAMS ((bfd *)); |
167 | static bfd_size_type get_program_header_size PARAMS ((bfd *)); | |
168 | static file_ptr map_program_segments | |
169 | PARAMS ((bfd *, file_ptr, Elf_Internal_Shdr *, bfd_size_type)); | |
6ec3bb6a | 170 | |
9783e04a | 171 | static boolean elf_map_symbols PARAMS ((bfd *)); |
b9d5cdf0 | 172 | static boolean swap_out_syms PARAMS ((bfd *)); |
244ffee7 | 173 | |
2e03ce18 ILT |
174 | static boolean bfd_section_from_shdr PARAMS ((bfd *, unsigned int shindex)); |
175 | ||
6a3eb9b6 KR |
176 | #ifdef DEBUG |
177 | static void elf_debug_section PARAMS ((char *, int, Elf_Internal_Shdr *)); | |
178 | static void elf_debug_file PARAMS ((Elf_Internal_Ehdr *)); | |
179 | #endif | |
238ac6ec | 180 | |
32090b8e KR |
181 | #define elf_string_from_elf_strtab(abfd,strindex) \ |
182 | elf_string_from_elf_section(abfd,elf_elfheader(abfd)->e_shstrndx,strindex) | |
32090b8e | 183 | \f |
1c6042ee | 184 | |
32090b8e KR |
185 | /* Structure swapping routines */ |
186 | ||
6a3eb9b6 KR |
187 | /* Should perhaps use put_offset, put_word, etc. For now, the two versions |
188 | can be handled by explicitly specifying 32 bits or "the long type". */ | |
238ac6ec KR |
189 | #if ARCH_SIZE == 64 |
190 | #define put_word bfd_h_put_64 | |
191 | #define get_word bfd_h_get_64 | |
192 | #endif | |
193 | #if ARCH_SIZE == 32 | |
194 | #define put_word bfd_h_put_32 | |
195 | #define get_word bfd_h_get_32 | |
196 | #endif | |
197 | ||
244ffee7 JK |
198 | /* Translate an ELF symbol in external format into an ELF symbol in internal |
199 | format. */ | |
200 | ||
71edd06d | 201 | void |
1c6042ee ILT |
202 | elf_swap_symbol_in (abfd, src, dst) |
203 | bfd *abfd; | |
204 | Elf_External_Sym *src; | |
205 | Elf_Internal_Sym *dst; | |
244ffee7 JK |
206 | { |
207 | dst->st_name = bfd_h_get_32 (abfd, (bfd_byte *) src->st_name); | |
238ac6ec KR |
208 | dst->st_value = get_word (abfd, (bfd_byte *) src->st_value); |
209 | dst->st_size = get_word (abfd, (bfd_byte *) src->st_size); | |
244ffee7 JK |
210 | dst->st_info = bfd_h_get_8 (abfd, (bfd_byte *) src->st_info); |
211 | dst->st_other = bfd_h_get_8 (abfd, (bfd_byte *) src->st_other); | |
212 | dst->st_shndx = bfd_h_get_16 (abfd, (bfd_byte *) src->st_shndx); | |
213 | } | |
214 | ||
215 | /* Translate an ELF symbol in internal format into an ELF symbol in external | |
216 | format. */ | |
217 | ||
71edd06d | 218 | void |
1c6042ee ILT |
219 | elf_swap_symbol_out (abfd, src, dst) |
220 | bfd *abfd; | |
221 | Elf_Internal_Sym *src; | |
222 | Elf_External_Sym *dst; | |
244ffee7 JK |
223 | { |
224 | bfd_h_put_32 (abfd, src->st_name, dst->st_name); | |
238ac6ec KR |
225 | put_word (abfd, src->st_value, dst->st_value); |
226 | put_word (abfd, src->st_size, dst->st_size); | |
244ffee7 JK |
227 | bfd_h_put_8 (abfd, src->st_info, dst->st_info); |
228 | bfd_h_put_8 (abfd, src->st_other, dst->st_other); | |
229 | bfd_h_put_16 (abfd, src->st_shndx, dst->st_shndx); | |
230 | } | |
231 | ||
232 | ||
233 | /* Translate an ELF file header in external format into an ELF file header in | |
234 | internal format. */ | |
235 | ||
236 | static void | |
1c6042ee ILT |
237 | elf_swap_ehdr_in (abfd, src, dst) |
238 | bfd *abfd; | |
239 | Elf_External_Ehdr *src; | |
240 | Elf_Internal_Ehdr *dst; | |
244ffee7 JK |
241 | { |
242 | memcpy (dst->e_ident, src->e_ident, EI_NIDENT); | |
243 | dst->e_type = bfd_h_get_16 (abfd, (bfd_byte *) src->e_type); | |
244 | dst->e_machine = bfd_h_get_16 (abfd, (bfd_byte *) src->e_machine); | |
245 | dst->e_version = bfd_h_get_32 (abfd, (bfd_byte *) src->e_version); | |
238ac6ec KR |
246 | dst->e_entry = get_word (abfd, (bfd_byte *) src->e_entry); |
247 | dst->e_phoff = get_word (abfd, (bfd_byte *) src->e_phoff); | |
248 | dst->e_shoff = get_word (abfd, (bfd_byte *) src->e_shoff); | |
244ffee7 JK |
249 | dst->e_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->e_flags); |
250 | dst->e_ehsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_ehsize); | |
251 | dst->e_phentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phentsize); | |
252 | dst->e_phnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phnum); | |
253 | dst->e_shentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shentsize); | |
254 | dst->e_shnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shnum); | |
255 | dst->e_shstrndx = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shstrndx); | |
256 | } | |
257 | ||
258 | /* Translate an ELF file header in internal format into an ELF file header in | |
259 | external format. */ | |
260 | ||
261 | static void | |
1c6042ee ILT |
262 | elf_swap_ehdr_out (abfd, src, dst) |
263 | bfd *abfd; | |
264 | Elf_Internal_Ehdr *src; | |
265 | Elf_External_Ehdr *dst; | |
244ffee7 JK |
266 | { |
267 | memcpy (dst->e_ident, src->e_ident, EI_NIDENT); | |
268 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
269 | bfd_h_put_16 (abfd, src->e_type, dst->e_type); | |
270 | bfd_h_put_16 (abfd, src->e_machine, dst->e_machine); | |
271 | bfd_h_put_32 (abfd, src->e_version, dst->e_version); | |
238ac6ec KR |
272 | put_word (abfd, src->e_entry, dst->e_entry); |
273 | put_word (abfd, src->e_phoff, dst->e_phoff); | |
274 | put_word (abfd, src->e_shoff, dst->e_shoff); | |
244ffee7 JK |
275 | bfd_h_put_32 (abfd, src->e_flags, dst->e_flags); |
276 | bfd_h_put_16 (abfd, src->e_ehsize, dst->e_ehsize); | |
277 | bfd_h_put_16 (abfd, src->e_phentsize, dst->e_phentsize); | |
278 | bfd_h_put_16 (abfd, src->e_phnum, dst->e_phnum); | |
279 | bfd_h_put_16 (abfd, src->e_shentsize, dst->e_shentsize); | |
280 | bfd_h_put_16 (abfd, src->e_shnum, dst->e_shnum); | |
281 | bfd_h_put_16 (abfd, src->e_shstrndx, dst->e_shstrndx); | |
282 | } | |
283 | ||
284 | ||
285 | /* Translate an ELF section header table entry in external format into an | |
286 | ELF section header table entry in internal format. */ | |
287 | ||
288 | static void | |
1c6042ee ILT |
289 | elf_swap_shdr_in (abfd, src, dst) |
290 | bfd *abfd; | |
291 | Elf_External_Shdr *src; | |
292 | Elf_Internal_Shdr *dst; | |
244ffee7 JK |
293 | { |
294 | dst->sh_name = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_name); | |
295 | dst->sh_type = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_type); | |
238ac6ec KR |
296 | dst->sh_flags = get_word (abfd, (bfd_byte *) src->sh_flags); |
297 | dst->sh_addr = get_word (abfd, (bfd_byte *) src->sh_addr); | |
298 | dst->sh_offset = get_word (abfd, (bfd_byte *) src->sh_offset); | |
299 | dst->sh_size = get_word (abfd, (bfd_byte *) src->sh_size); | |
244ffee7 JK |
300 | dst->sh_link = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_link); |
301 | dst->sh_info = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_info); | |
238ac6ec KR |
302 | dst->sh_addralign = get_word (abfd, (bfd_byte *) src->sh_addralign); |
303 | dst->sh_entsize = get_word (abfd, (bfd_byte *) src->sh_entsize); | |
244ffee7 JK |
304 | /* we haven't done any processing on it yet, so... */ |
305 | dst->rawdata = (void *) 0; | |
306 | } | |
307 | ||
308 | /* Translate an ELF section header table entry in internal format into an | |
309 | ELF section header table entry in external format. */ | |
310 | ||
311 | static void | |
1c6042ee ILT |
312 | elf_swap_shdr_out (abfd, src, dst) |
313 | bfd *abfd; | |
314 | Elf_Internal_Shdr *src; | |
315 | Elf_External_Shdr *dst; | |
244ffee7 JK |
316 | { |
317 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
318 | bfd_h_put_32 (abfd, src->sh_name, dst->sh_name); | |
319 | bfd_h_put_32 (abfd, src->sh_type, dst->sh_type); | |
238ac6ec KR |
320 | put_word (abfd, src->sh_flags, dst->sh_flags); |
321 | put_word (abfd, src->sh_addr, dst->sh_addr); | |
322 | put_word (abfd, src->sh_offset, dst->sh_offset); | |
323 | put_word (abfd, src->sh_size, dst->sh_size); | |
244ffee7 JK |
324 | bfd_h_put_32 (abfd, src->sh_link, dst->sh_link); |
325 | bfd_h_put_32 (abfd, src->sh_info, dst->sh_info); | |
238ac6ec KR |
326 | put_word (abfd, src->sh_addralign, dst->sh_addralign); |
327 | put_word (abfd, src->sh_entsize, dst->sh_entsize); | |
244ffee7 JK |
328 | } |
329 | ||
330 | ||
331 | /* Translate an ELF program header table entry in external format into an | |
332 | ELF program header table entry in internal format. */ | |
333 | ||
334 | static void | |
1c6042ee ILT |
335 | elf_swap_phdr_in (abfd, src, dst) |
336 | bfd *abfd; | |
337 | Elf_External_Phdr *src; | |
338 | Elf_Internal_Phdr *dst; | |
244ffee7 JK |
339 | { |
340 | dst->p_type = bfd_h_get_32 (abfd, (bfd_byte *) src->p_type); | |
244ffee7 | 341 | dst->p_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->p_flags); |
238ac6ec KR |
342 | dst->p_offset = get_word (abfd, (bfd_byte *) src->p_offset); |
343 | dst->p_vaddr = get_word (abfd, (bfd_byte *) src->p_vaddr); | |
344 | dst->p_paddr = get_word (abfd, (bfd_byte *) src->p_paddr); | |
345 | dst->p_filesz = get_word (abfd, (bfd_byte *) src->p_filesz); | |
346 | dst->p_memsz = get_word (abfd, (bfd_byte *) src->p_memsz); | |
347 | dst->p_align = get_word (abfd, (bfd_byte *) src->p_align); | |
244ffee7 JK |
348 | } |
349 | ||
244ffee7 | 350 | static void |
1c6042ee ILT |
351 | elf_swap_phdr_out (abfd, src, dst) |
352 | bfd *abfd; | |
353 | Elf_Internal_Phdr *src; | |
354 | Elf_External_Phdr *dst; | |
244ffee7 JK |
355 | { |
356 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
357 | bfd_h_put_32 (abfd, src->p_type, dst->p_type); | |
94dbb655 KR |
358 | put_word (abfd, src->p_offset, dst->p_offset); |
359 | put_word (abfd, src->p_vaddr, dst->p_vaddr); | |
360 | put_word (abfd, src->p_paddr, dst->p_paddr); | |
361 | put_word (abfd, src->p_filesz, dst->p_filesz); | |
362 | put_word (abfd, src->p_memsz, dst->p_memsz); | |
244ffee7 | 363 | bfd_h_put_32 (abfd, src->p_flags, dst->p_flags); |
94dbb655 | 364 | put_word (abfd, src->p_align, dst->p_align); |
244ffee7 JK |
365 | } |
366 | ||
367 | /* Translate an ELF reloc from external format to internal format. */ | |
013dec1a | 368 | INLINE void |
1c6042ee ILT |
369 | elf_swap_reloc_in (abfd, src, dst) |
370 | bfd *abfd; | |
371 | Elf_External_Rel *src; | |
372 | Elf_Internal_Rel *dst; | |
244ffee7 | 373 | { |
94dbb655 KR |
374 | dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset); |
375 | dst->r_info = get_word (abfd, (bfd_byte *) src->r_info); | |
244ffee7 JK |
376 | } |
377 | ||
013dec1a | 378 | INLINE void |
1c6042ee ILT |
379 | elf_swap_reloca_in (abfd, src, dst) |
380 | bfd *abfd; | |
381 | Elf_External_Rela *src; | |
382 | Elf_Internal_Rela *dst; | |
244ffee7 | 383 | { |
94dbb655 KR |
384 | dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset); |
385 | dst->r_info = get_word (abfd, (bfd_byte *) src->r_info); | |
386 | dst->r_addend = get_word (abfd, (bfd_byte *) src->r_addend); | |
244ffee7 JK |
387 | } |
388 | ||
389 | /* Translate an ELF reloc from internal format to external format. */ | |
013dec1a | 390 | INLINE void |
1c6042ee ILT |
391 | elf_swap_reloc_out (abfd, src, dst) |
392 | bfd *abfd; | |
393 | Elf_Internal_Rel *src; | |
394 | Elf_External_Rel *dst; | |
244ffee7 | 395 | { |
94dbb655 KR |
396 | put_word (abfd, src->r_offset, dst->r_offset); |
397 | put_word (abfd, src->r_info, dst->r_info); | |
244ffee7 JK |
398 | } |
399 | ||
013dec1a | 400 | INLINE void |
1c6042ee ILT |
401 | elf_swap_reloca_out (abfd, src, dst) |
402 | bfd *abfd; | |
403 | Elf_Internal_Rela *src; | |
404 | Elf_External_Rela *dst; | |
244ffee7 | 405 | { |
94dbb655 KR |
406 | put_word (abfd, src->r_offset, dst->r_offset); |
407 | put_word (abfd, src->r_info, dst->r_info); | |
408 | put_word (abfd, src->r_addend, dst->r_addend); | |
244ffee7 | 409 | } |
32090b8e | 410 | |
013dec1a ILT |
411 | INLINE void |
412 | elf_swap_dyn_in (abfd, src, dst) | |
413 | bfd *abfd; | |
414 | const Elf_External_Dyn *src; | |
415 | Elf_Internal_Dyn *dst; | |
416 | { | |
417 | dst->d_tag = get_word (abfd, src->d_tag); | |
418 | dst->d_un.d_val = get_word (abfd, src->d_un.d_val); | |
419 | } | |
1c6042ee | 420 | |
013dec1a ILT |
421 | INLINE void |
422 | elf_swap_dyn_out (abfd, src, dst) | |
423 | bfd *abfd; | |
424 | const Elf_Internal_Dyn *src; | |
425 | Elf_External_Dyn *dst; | |
426 | { | |
427 | put_word (abfd, src->d_tag, dst->d_tag); | |
428 | put_word (abfd, src->d_un.d_val, dst->d_un.d_val); | |
429 | } | |
430 | \f | |
32090b8e KR |
431 | /* String table creation/manipulation routines */ |
432 | ||
433 | static struct strtab * | |
1c6042ee ILT |
434 | bfd_new_strtab (abfd) |
435 | bfd *abfd; | |
32090b8e KR |
436 | { |
437 | struct strtab *ss; | |
438 | ||
b9d5cdf0 DM |
439 | ss = (struct strtab *) malloc (sizeof (struct strtab)); |
440 | if (!ss) | |
441 | { | |
d1ad85a6 | 442 | bfd_set_error (bfd_error_no_memory); |
b9d5cdf0 DM |
443 | return NULL; |
444 | } | |
445 | ss->tab = malloc (1); | |
446 | if (!ss->tab) | |
447 | { | |
d1ad85a6 | 448 | bfd_set_error (bfd_error_no_memory); |
b9d5cdf0 DM |
449 | return NULL; |
450 | } | |
32090b8e KR |
451 | *ss->tab = 0; |
452 | ss->nentries = 0; | |
453 | ss->length = 1; | |
244ffee7 | 454 | |
32090b8e KR |
455 | return ss; |
456 | } | |
457 | ||
6ec3bb6a | 458 | static unsigned long |
1c6042ee ILT |
459 | bfd_add_to_strtab (abfd, ss, str) |
460 | bfd *abfd; | |
461 | struct strtab *ss; | |
6ec3bb6a | 462 | const char *str; |
32090b8e KR |
463 | { |
464 | /* should search first, but for now: */ | |
465 | /* include the trailing NUL */ | |
466 | int ln = strlen (str) + 1; | |
467 | ||
6ec3bb6a ILT |
468 | /* FIXME: This is slow. Also, we could combine this with the a.out |
469 | string table building and use a hash table, although it might not | |
470 | be worth it since ELF symbols don't include debugging information | |
471 | and thus have much less overlap. */ | |
32090b8e | 472 | ss->tab = realloc (ss->tab, ss->length + ln); |
6ec3bb6a ILT |
473 | if (ss->tab == NULL) |
474 | { | |
475 | bfd_set_error (bfd_error_no_memory); | |
476 | return (unsigned long) -1; | |
477 | } | |
32090b8e | 478 | |
32090b8e KR |
479 | strcpy (ss->tab + ss->length, str); |
480 | ss->nentries++; | |
481 | ss->length += ln; | |
482 | ||
483 | return ss->length - ln; | |
484 | } | |
485 | ||
486 | static int | |
1c6042ee ILT |
487 | bfd_add_2_to_strtab (abfd, ss, str, str2) |
488 | bfd *abfd; | |
489 | struct strtab *ss; | |
490 | char *str; | |
491 | CONST char *str2; | |
244ffee7 | 492 | { |
32090b8e KR |
493 | /* should search first, but for now: */ |
494 | /* include the trailing NUL */ | |
495 | int ln = strlen (str) + strlen (str2) + 1; | |
496 | ||
497 | /* should this be using obstacks? */ | |
498 | if (ss->length) | |
499 | ss->tab = realloc (ss->tab, ss->length + ln); | |
500 | else | |
b9d5cdf0 | 501 | ss->tab = malloc (ln); |
32090b8e | 502 | |
9783e04a | 503 | BFD_ASSERT (ss->tab != 0); /* FIXME */ |
32090b8e KR |
504 | strcpy (ss->tab + ss->length, str); |
505 | strcpy (ss->tab + ss->length + strlen (str), str2); | |
506 | ss->nentries++; | |
507 | ss->length += ln; | |
508 | ||
509 | return ss->length - ln; | |
244ffee7 | 510 | } |
32090b8e KR |
511 | \f |
512 | /* ELF .o/exec file reading */ | |
513 | ||
514 | /* Create a new bfd section from an ELF section header. */ | |
515 | ||
244ffee7 | 516 | static boolean |
1c6042ee ILT |
517 | bfd_section_from_shdr (abfd, shindex) |
518 | bfd *abfd; | |
519 | unsigned int shindex; | |
244ffee7 | 520 | { |
32090b8e KR |
521 | Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex]; |
522 | Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); | |
244ffee7 JK |
523 | char *name; |
524 | ||
525 | name = elf_string_from_elf_strtab (abfd, hdr->sh_name); | |
526 | ||
527 | switch (hdr->sh_type) | |
528 | { | |
244ffee7 | 529 | case SHT_NULL: |
497c5434 | 530 | /* Inactive section. Throw it away. */ |
244ffee7 JK |
531 | return true; |
532 | ||
497c5434 ILT |
533 | case SHT_PROGBITS: /* Normal section with contents. */ |
534 | case SHT_DYNAMIC: /* Dynamic linking information. */ | |
535 | case SHT_NOBITS: /* .bss section. */ | |
fa15568a | 536 | case SHT_HASH: /* .hash section. */ |
497c5434 | 537 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
244ffee7 JK |
538 | |
539 | case SHT_SYMTAB: /* A symbol table */ | |
32090b8e KR |
540 | if (elf_onesymtab (abfd) == shindex) |
541 | return true; | |
542 | ||
244ffee7 | 543 | BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym)); |
32090b8e | 544 | BFD_ASSERT (elf_onesymtab (abfd) == 0); |
244ffee7 | 545 | elf_onesymtab (abfd) = shindex; |
1c6042ee ILT |
546 | elf_tdata (abfd)->symtab_hdr = *hdr; |
547 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_hdr; | |
244ffee7 JK |
548 | abfd->flags |= HAS_SYMS; |
549 | return true; | |
550 | ||
cb71adf1 PS |
551 | case SHT_DYNSYM: /* A dynamic symbol table */ |
552 | if (elf_dynsymtab (abfd) == shindex) | |
553 | return true; | |
554 | ||
555 | BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym)); | |
556 | BFD_ASSERT (elf_dynsymtab (abfd) == 0); | |
557 | elf_dynsymtab (abfd) = shindex; | |
558 | elf_tdata (abfd)->dynsymtab_hdr = *hdr; | |
559 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->dynsymtab_hdr; | |
560 | abfd->flags |= HAS_SYMS; | |
fa15568a ILT |
561 | |
562 | /* Besides being a symbol table, we also treat this as a regular | |
563 | section, so that objcopy can handle it. */ | |
564 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); | |
cb71adf1 | 565 | |
244ffee7 | 566 | case SHT_STRTAB: /* A string table */ |
497c5434 | 567 | if (hdr->rawdata != NULL) |
fce36137 | 568 | return true; |
32090b8e KR |
569 | if (ehdr->e_shstrndx == shindex) |
570 | { | |
1c6042ee ILT |
571 | elf_tdata (abfd)->shstrtab_hdr = *hdr; |
572 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; | |
573 | hdr->rawdata = (PTR) & elf_tdata (abfd)->shstrtab_hdr; | |
32090b8e KR |
574 | return true; |
575 | } | |
576 | { | |
68241b2b | 577 | unsigned int i; |
fce36137 | 578 | |
32090b8e KR |
579 | for (i = 1; i < ehdr->e_shnum; i++) |
580 | { | |
1c6042ee | 581 | Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
32090b8e KR |
582 | if (hdr2->sh_link == shindex) |
583 | { | |
2e03ce18 ILT |
584 | if (! bfd_section_from_shdr (abfd, i)) |
585 | return false; | |
32090b8e KR |
586 | if (elf_onesymtab (abfd) == i) |
587 | { | |
1c6042ee | 588 | elf_tdata (abfd)->strtab_hdr = *hdr; |
fa15568a ILT |
589 | elf_elfsections (abfd)[shindex] = |
590 | &elf_tdata (abfd)->strtab_hdr; | |
32090b8e KR |
591 | return true; |
592 | } | |
cb71adf1 PS |
593 | if (elf_dynsymtab (abfd) == i) |
594 | { | |
595 | elf_tdata (abfd)->dynstrtab_hdr = *hdr; | |
fa15568a ILT |
596 | elf_elfsections (abfd)[shindex] = |
597 | &elf_tdata (abfd)->dynstrtab_hdr; | |
598 | /* We also treat this as a regular section, so | |
599 | that objcopy can handle it. */ | |
600 | break; | |
cb71adf1 | 601 | } |
2e03ce18 | 602 | #if 0 /* Not handling other string tables specially right now. */ |
1c6042ee | 603 | hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */ |
32090b8e KR |
604 | /* We have a strtab for some random other section. */ |
605 | newsect = (asection *) hdr2->rawdata; | |
606 | if (!newsect) | |
607 | break; | |
608 | hdr->rawdata = (PTR) newsect; | |
609 | hdr2 = &elf_section_data (newsect)->str_hdr; | |
610 | *hdr2 = *hdr; | |
1c6042ee | 611 | elf_elfsections (abfd)[shindex] = hdr2; |
32090b8e KR |
612 | #endif |
613 | } | |
614 | } | |
615 | } | |
616 | ||
497c5434 | 617 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
244ffee7 JK |
618 | |
619 | case SHT_REL: | |
620 | case SHT_RELA: | |
497c5434 | 621 | /* *These* do a lot of work -- but build no sections! */ |
244ffee7 JK |
622 | { |
623 | asection *target_sect; | |
32090b8e | 624 | Elf_Internal_Shdr *hdr2; |
244ffee7 JK |
625 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; |
626 | ||
497c5434 ILT |
627 | /* Get the symbol table. */ |
628 | if (! bfd_section_from_shdr (abfd, hdr->sh_link)) | |
629 | return false; | |
630 | ||
e6667b2b ILT |
631 | /* If this reloc section does not use the main symbol table we |
632 | don't treat it as a reloc section. BFD can't adequately | |
633 | represent such a section, so at least for now, we don't | |
634 | try. We just present it as a normal section. */ | |
635 | if (hdr->sh_link != elf_onesymtab (abfd)) | |
497c5434 ILT |
636 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
637 | ||
244ffee7 JK |
638 | /* Don't allow REL relocations on a machine that uses RELA and |
639 | vice versa. */ | |
640 | /* @@ Actually, the generic ABI does suggest that both might be | |
641 | used in one file. But the four ABI Processor Supplements I | |
642 | have access to right now all specify that only one is used on | |
643 | each of those architectures. It's conceivable that, e.g., a | |
644 | bunch of absolute 32-bit relocs might be more compact in REL | |
645 | form even on a RELA machine... */ | |
497c5434 ILT |
646 | BFD_ASSERT (use_rela_p |
647 | ? (hdr->sh_type == SHT_RELA | |
648 | && hdr->sh_entsize == sizeof (Elf_External_Rela)) | |
649 | : (hdr->sh_type == SHT_REL | |
650 | && hdr->sh_entsize == sizeof (Elf_External_Rel))); | |
651 | ||
652 | if (! bfd_section_from_shdr (abfd, hdr->sh_info)) | |
2e03ce18 | 653 | return false; |
244ffee7 | 654 | target_sect = section_from_elf_index (abfd, hdr->sh_info); |
062189c6 ILT |
655 | if (target_sect == NULL |
656 | || elf_section_data (target_sect) == NULL) | |
244ffee7 JK |
657 | return false; |
658 | ||
32090b8e KR |
659 | hdr2 = &elf_section_data (target_sect)->rel_hdr; |
660 | *hdr2 = *hdr; | |
1c6042ee | 661 | elf_elfsections (abfd)[shindex] = hdr2; |
244ffee7 JK |
662 | target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize; |
663 | target_sect->flags |= SEC_RELOC; | |
497c5434 | 664 | target_sect->relocation = NULL; |
244ffee7 | 665 | target_sect->rel_filepos = hdr->sh_offset; |
32090b8e | 666 | abfd->flags |= HAS_RELOC; |
244ffee7 JK |
667 | return true; |
668 | } | |
669 | break; | |
670 | ||
244ffee7 JK |
671 | case SHT_NOTE: |
672 | #if 0 | |
673 | fprintf (stderr, "Note Sections not yet supported.\n"); | |
674 | BFD_FAIL (); | |
675 | #endif | |
676 | break; | |
677 | ||
678 | case SHT_SHLIB: | |
679 | #if 0 | |
680 | fprintf (stderr, "SHLIB Sections not supported (and non conforming.)\n"); | |
681 | #endif | |
682 | return true; | |
683 | ||
684 | default: | |
e621c5cc ILT |
685 | /* Check for any processor-specific section types. */ |
686 | { | |
687 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
688 | ||
689 | if (bed->elf_backend_section_from_shdr) | |
690 | (*bed->elf_backend_section_from_shdr) (abfd, hdr, name); | |
691 | } | |
244ffee7 JK |
692 | break; |
693 | } | |
694 | ||
695 | return true; | |
696 | } | |
697 | ||
fce36137 | 698 | boolean |
1c6042ee ILT |
699 | elf_new_section_hook (abfd, sec) |
700 | bfd *abfd | |
701 | ; | |
702 | asection *sec; | |
fce36137 | 703 | { |
32090b8e | 704 | struct bfd_elf_section_data *sdata; |
300adb31 KR |
705 | |
706 | sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata)); | |
9783e04a DM |
707 | if (!sdata) |
708 | { | |
d1ad85a6 | 709 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
710 | return false; |
711 | } | |
300adb31 | 712 | sec->used_by_bfd = (PTR) sdata; |
32090b8e | 713 | memset (sdata, 0, sizeof (*sdata)); |
244ffee7 JK |
714 | return true; |
715 | } | |
716 | ||
717 | /* Create a new bfd section from an ELF program header. | |
718 | ||
719 | Since program segments have no names, we generate a synthetic name | |
720 | of the form segment<NUM>, where NUM is generally the index in the | |
721 | program header table. For segments that are split (see below) we | |
722 | generate the names segment<NUM>a and segment<NUM>b. | |
723 | ||
724 | Note that some program segments may have a file size that is different than | |
725 | (less than) the memory size. All this means is that at execution the | |
726 | system must allocate the amount of memory specified by the memory size, | |
727 | but only initialize it with the first "file size" bytes read from the | |
728 | file. This would occur for example, with program segments consisting | |
729 | of combined data+bss. | |
730 | ||
731 | To handle the above situation, this routine generates TWO bfd sections | |
732 | for the single program segment. The first has the length specified by | |
733 | the file size of the segment, and the second has the length specified | |
734 | by the difference between the two sizes. In effect, the segment is split | |
735 | into it's initialized and uninitialized parts. | |
736 | ||
737 | */ | |
738 | ||
739 | static boolean | |
1c6042ee ILT |
740 | bfd_section_from_phdr (abfd, hdr, index) |
741 | bfd *abfd; | |
742 | Elf_Internal_Phdr *hdr; | |
743 | int index; | |
244ffee7 JK |
744 | { |
745 | asection *newsect; | |
746 | char *name; | |
747 | char namebuf[64]; | |
748 | int split; | |
749 | ||
750 | split = ((hdr->p_memsz > 0) && | |
751 | (hdr->p_filesz > 0) && | |
752 | (hdr->p_memsz > hdr->p_filesz)); | |
753 | sprintf (namebuf, split ? "segment%da" : "segment%d", index); | |
754 | name = bfd_alloc (abfd, strlen (namebuf) + 1); | |
9783e04a DM |
755 | if (!name) |
756 | { | |
d1ad85a6 | 757 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
758 | return false; |
759 | } | |
244ffee7 JK |
760 | strcpy (name, namebuf); |
761 | newsect = bfd_make_section (abfd, name); | |
2e03ce18 ILT |
762 | if (newsect == NULL) |
763 | return false; | |
244ffee7 JK |
764 | newsect->vma = hdr->p_vaddr; |
765 | newsect->_raw_size = hdr->p_filesz; | |
766 | newsect->filepos = hdr->p_offset; | |
767 | newsect->flags |= SEC_HAS_CONTENTS; | |
768 | if (hdr->p_type == PT_LOAD) | |
769 | { | |
770 | newsect->flags |= SEC_ALLOC; | |
771 | newsect->flags |= SEC_LOAD; | |
772 | if (hdr->p_flags & PF_X) | |
773 | { | |
774 | /* FIXME: all we known is that it has execute PERMISSION, | |
775 | may be data. */ | |
776 | newsect->flags |= SEC_CODE; | |
777 | } | |
778 | } | |
779 | if (!(hdr->p_flags & PF_W)) | |
780 | { | |
781 | newsect->flags |= SEC_READONLY; | |
782 | } | |
783 | ||
784 | if (split) | |
785 | { | |
786 | sprintf (namebuf, "segment%db", index); | |
787 | name = bfd_alloc (abfd, strlen (namebuf) + 1); | |
9783e04a DM |
788 | if (!name) |
789 | { | |
d1ad85a6 | 790 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
791 | return false; |
792 | } | |
244ffee7 JK |
793 | strcpy (name, namebuf); |
794 | newsect = bfd_make_section (abfd, name); | |
2e03ce18 ILT |
795 | if (newsect == NULL) |
796 | return false; | |
244ffee7 JK |
797 | newsect->vma = hdr->p_vaddr + hdr->p_filesz; |
798 | newsect->_raw_size = hdr->p_memsz - hdr->p_filesz; | |
799 | if (hdr->p_type == PT_LOAD) | |
800 | { | |
801 | newsect->flags |= SEC_ALLOC; | |
802 | if (hdr->p_flags & PF_X) | |
803 | newsect->flags |= SEC_CODE; | |
804 | } | |
805 | if (!(hdr->p_flags & PF_W)) | |
806 | newsect->flags |= SEC_READONLY; | |
807 | } | |
808 | ||
809 | return true; | |
810 | } | |
811 | ||
32090b8e | 812 | /* Begin processing a given object. |
244ffee7 | 813 | |
32090b8e KR |
814 | First we validate the file by reading in the ELF header and checking |
815 | the magic number. */ | |
816 | ||
817 | static INLINE boolean | |
1c6042ee ILT |
818 | elf_file_p (x_ehdrp) |
819 | Elf_External_Ehdr *x_ehdrp; | |
244ffee7 | 820 | { |
32090b8e KR |
821 | return ((x_ehdrp->e_ident[EI_MAG0] == ELFMAG0) |
822 | && (x_ehdrp->e_ident[EI_MAG1] == ELFMAG1) | |
823 | && (x_ehdrp->e_ident[EI_MAG2] == ELFMAG2) | |
824 | && (x_ehdrp->e_ident[EI_MAG3] == ELFMAG3)); | |
825 | } | |
244ffee7 | 826 | |
d24928c0 KR |
827 | /* Check to see if the file associated with ABFD matches the target vector |
828 | that ABFD points to. | |
829 | ||
830 | Note that we may be called several times with the same ABFD, but different | |
831 | target vectors, most of which will not match. We have to avoid leaving | |
832 | any side effects in ABFD, or any data it points to (like tdata), if the | |
6ec3bb6a | 833 | file does not match the target vector. */ |
d24928c0 | 834 | |
2f3508ad | 835 | const bfd_target * |
1c6042ee ILT |
836 | elf_object_p (abfd) |
837 | bfd *abfd; | |
244ffee7 | 838 | { |
32090b8e KR |
839 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
840 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
841 | Elf_External_Shdr x_shdr; /* Section header table entry, external form */ | |
6ec3bb6a | 842 | Elf_Internal_Shdr *i_shdrp = NULL; /* Section header table, internal form */ |
68241b2b | 843 | unsigned int shindex; |
32090b8e | 844 | char *shstrtab; /* Internal copy of section header stringtab */ |
062189c6 | 845 | struct elf_backend_data *ebd; |
d24928c0 | 846 | struct elf_obj_tdata *preserved_tdata = elf_tdata (abfd); |
6ec3bb6a | 847 | struct elf_obj_tdata *new_tdata = NULL; |
244ffee7 | 848 | |
32090b8e KR |
849 | /* Read in the ELF header in external format. */ |
850 | ||
851 | if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr)) | |
25057836 JL |
852 | { |
853 | if (bfd_get_error () != bfd_error_system_call) | |
854 | goto got_wrong_format_error; | |
855 | else | |
856 | goto got_no_match; | |
857 | } | |
244ffee7 | 858 | |
32090b8e KR |
859 | /* Now check to see if we have a valid ELF file, and one that BFD can |
860 | make use of. The magic number must match, the address size ('class') | |
861 | and byte-swapping must match our XVEC entry, and it must have a | |
862 | section header table (FIXME: See comments re sections at top of this | |
863 | file). */ | |
244ffee7 | 864 | |
d24928c0 KR |
865 | if ((elf_file_p (&x_ehdr) == false) || |
866 | (x_ehdr.e_ident[EI_VERSION] != EV_CURRENT) || | |
867 | (x_ehdr.e_ident[EI_CLASS] != ELFCLASS)) | |
868 | goto got_wrong_format_error; | |
244ffee7 | 869 | |
d24928c0 | 870 | /* Check that file's byte order matches xvec's */ |
32090b8e | 871 | switch (x_ehdr.e_ident[EI_DATA]) |
244ffee7 | 872 | { |
32090b8e KR |
873 | case ELFDATA2MSB: /* Big-endian */ |
874 | if (!abfd->xvec->header_byteorder_big_p) | |
d24928c0 | 875 | goto got_wrong_format_error; |
32090b8e KR |
876 | break; |
877 | case ELFDATA2LSB: /* Little-endian */ | |
878 | if (abfd->xvec->header_byteorder_big_p) | |
d24928c0 | 879 | goto got_wrong_format_error; |
32090b8e KR |
880 | break; |
881 | case ELFDATANONE: /* No data encoding specified */ | |
882 | default: /* Unknown data encoding specified */ | |
d24928c0 | 883 | goto got_wrong_format_error; |
244ffee7 | 884 | } |
244ffee7 | 885 | |
32090b8e | 886 | /* Allocate an instance of the elf_obj_tdata structure and hook it up to |
6ec3bb6a | 887 | the tdata pointer in the bfd. */ |
244ffee7 | 888 | |
6ec3bb6a ILT |
889 | new_tdata = ((struct elf_obj_tdata *) |
890 | bfd_zalloc (abfd, sizeof (struct elf_obj_tdata))); | |
891 | if (new_tdata == NULL) | |
d24928c0 | 892 | goto got_no_memory_error; |
6ec3bb6a | 893 | elf_tdata (abfd) = new_tdata; |
244ffee7 | 894 | |
32090b8e KR |
895 | /* Now that we know the byte order, swap in the rest of the header */ |
896 | i_ehdrp = elf_elfheader (abfd); | |
897 | elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp); | |
898 | #if DEBUG & 1 | |
899 | elf_debug_file (i_ehdrp); | |
244ffee7 JK |
900 | #endif |
901 | ||
32090b8e KR |
902 | /* If there is no section header table, we're hosed. */ |
903 | if (i_ehdrp->e_shoff == 0) | |
d24928c0 | 904 | goto got_wrong_format_error; |
244ffee7 | 905 | |
062189c6 ILT |
906 | /* As a simple sanity check, verify that the what BFD thinks is the |
907 | size of each section header table entry actually matches the size | |
908 | recorded in the file. */ | |
909 | if (i_ehdrp->e_shentsize != sizeof (x_shdr)) | |
910 | goto got_wrong_format_error; | |
911 | ||
912 | ebd = get_elf_backend_data (abfd); | |
913 | ||
914 | /* Check that the ELF e_machine field matches what this particular | |
915 | BFD format expects. */ | |
916 | if (ebd->elf_machine_code != i_ehdrp->e_machine) | |
917 | { | |
2f3508ad | 918 | const bfd_target * const *target_ptr; |
062189c6 ILT |
919 | |
920 | if (ebd->elf_machine_code != EM_NONE) | |
921 | goto got_wrong_format_error; | |
922 | ||
923 | /* This is the generic ELF target. Let it match any ELF target | |
924 | for which we do not have a specific backend. */ | |
f4bd7a8f | 925 | for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++) |
062189c6 ILT |
926 | { |
927 | struct elf_backend_data *back; | |
928 | ||
929 | if ((*target_ptr)->flavour != bfd_target_elf_flavour) | |
930 | continue; | |
931 | back = (struct elf_backend_data *) (*target_ptr)->backend_data; | |
932 | if (back->elf_machine_code == i_ehdrp->e_machine) | |
933 | { | |
934 | /* target_ptr is an ELF backend which matches this | |
935 | object file, so reject the generic ELF target. */ | |
936 | goto got_wrong_format_error; | |
937 | } | |
938 | } | |
939 | } | |
940 | ||
7b8106b4 | 941 | if (i_ehdrp->e_type == ET_EXEC) |
32090b8e | 942 | abfd->flags |= EXEC_P; |
7b8106b4 ILT |
943 | else if (i_ehdrp->e_type == ET_DYN) |
944 | abfd->flags |= DYNAMIC; | |
244ffee7 | 945 | |
fa15568a ILT |
946 | if (i_ehdrp->e_phnum > 0) |
947 | abfd->flags |= D_PAGED; | |
948 | ||
6ec3bb6a ILT |
949 | if (! bfd_default_set_arch_mach (abfd, ebd->arch, 0)) |
950 | goto got_no_match; | |
32090b8e | 951 | |
062189c6 ILT |
952 | /* Remember the entry point specified in the ELF file header. */ |
953 | bfd_get_start_address (abfd) = i_ehdrp->e_entry; | |
32090b8e KR |
954 | |
955 | /* Allocate space for a copy of the section header table in | |
956 | internal form, seek to the section header table in the file, | |
062189c6 | 957 | read it in, and convert it to internal form. */ |
6ec3bb6a ILT |
958 | i_shdrp = ((Elf_Internal_Shdr *) |
959 | bfd_alloc (abfd, sizeof (*i_shdrp) * i_ehdrp->e_shnum)); | |
960 | elf_elfsections (abfd) = ((Elf_Internal_Shdr **) | |
961 | bfd_alloc (abfd, | |
962 | sizeof (i_shdrp) * i_ehdrp->e_shnum)); | |
1c6042ee | 963 | if (!i_shdrp || !elf_elfsections (abfd)) |
d24928c0 | 964 | goto got_no_memory_error; |
6ec3bb6a | 965 | if (bfd_seek (abfd, i_ehdrp->e_shoff, SEEK_SET) != 0) |
25057836 | 966 | goto got_no_match; |
32090b8e | 967 | for (shindex = 0; shindex < i_ehdrp->e_shnum; shindex++) |
244ffee7 | 968 | { |
d24928c0 | 969 | if (bfd_read ((PTR) & x_shdr, sizeof x_shdr, 1, abfd) != sizeof (x_shdr)) |
25057836 | 970 | goto got_no_match; |
32090b8e | 971 | elf_swap_shdr_in (abfd, &x_shdr, i_shdrp + shindex); |
1c6042ee | 972 | elf_elfsections (abfd)[shindex] = i_shdrp + shindex; |
244ffee7 | 973 | } |
32090b8e | 974 | if (i_ehdrp->e_shstrndx) |
244ffee7 | 975 | { |
2e03ce18 ILT |
976 | if (! bfd_section_from_shdr (abfd, i_ehdrp->e_shstrndx)) |
977 | goto got_no_match; | |
244ffee7 JK |
978 | } |
979 | ||
32090b8e KR |
980 | /* Read in the string table containing the names of the sections. We |
981 | will need the base pointer to this table later. */ | |
982 | /* We read this inline now, so that we don't have to go through | |
983 | bfd_section_from_shdr with it (since this particular strtab is | |
984 | used to find all of the ELF section names.) */ | |
244ffee7 | 985 | |
32090b8e KR |
986 | shstrtab = elf_get_str_section (abfd, i_ehdrp->e_shstrndx); |
987 | if (!shstrtab) | |
6ec3bb6a | 988 | goto got_no_match; |
244ffee7 | 989 | |
32090b8e KR |
990 | /* Once all of the section headers have been read and converted, we |
991 | can start processing them. Note that the first section header is | |
6ec3bb6a | 992 | a dummy placeholder entry, so we ignore it. */ |
244ffee7 | 993 | |
32090b8e KR |
994 | for (shindex = 1; shindex < i_ehdrp->e_shnum; shindex++) |
995 | { | |
2e03ce18 ILT |
996 | if (! bfd_section_from_shdr (abfd, shindex)) |
997 | goto got_no_match; | |
32090b8e | 998 | } |
244ffee7 | 999 | |
5315c428 ILT |
1000 | /* Let the backend double check the format and override global |
1001 | information. */ | |
1002 | if (ebd->elf_backend_object_p) | |
1003 | { | |
1004 | if ((*ebd->elf_backend_object_p) (abfd) == false) | |
1005 | goto got_wrong_format_error; | |
1006 | } | |
1007 | ||
d24928c0 KR |
1008 | return (abfd->xvec); |
1009 | ||
1c6042ee | 1010 | got_wrong_format_error: |
d1ad85a6 | 1011 | bfd_set_error (bfd_error_wrong_format); |
d24928c0 | 1012 | goto got_no_match; |
1c6042ee | 1013 | got_no_memory_error: |
d1ad85a6 | 1014 | bfd_set_error (bfd_error_no_memory); |
d24928c0 | 1015 | goto got_no_match; |
1c6042ee | 1016 | got_no_match: |
6ec3bb6a ILT |
1017 | if (new_tdata != NULL |
1018 | && new_tdata->elf_sect_ptr != NULL) | |
1019 | bfd_release (abfd, new_tdata->elf_sect_ptr); | |
1020 | if (i_shdrp != NULL) | |
1021 | bfd_release (abfd, i_shdrp); | |
1022 | if (new_tdata != NULL) | |
1023 | bfd_release (abfd, new_tdata); | |
d24928c0 KR |
1024 | elf_tdata (abfd) = preserved_tdata; |
1025 | return (NULL); | |
32090b8e | 1026 | } |
32090b8e | 1027 | \f |
1c6042ee | 1028 | |
32090b8e KR |
1029 | /* ELF .o/exec file writing */ |
1030 | ||
d24928c0 KR |
1031 | /* Takes a bfd and a symbol, returns a pointer to the elf specific area |
1032 | of the symbol if there is one. */ | |
32090b8e | 1033 | static INLINE elf_symbol_type * |
1c6042ee ILT |
1034 | elf_symbol_from (ignore_abfd, symbol) |
1035 | bfd *ignore_abfd; | |
1036 | asymbol *symbol; | |
244ffee7 | 1037 | { |
32090b8e KR |
1038 | if (symbol->the_bfd->xvec->flavour != bfd_target_elf_flavour) |
1039 | return 0; | |
1040 | ||
1041 | if (symbol->the_bfd->tdata.elf_obj_data == (struct elf_obj_tdata *) NULL) | |
1042 | return 0; | |
1043 | ||
1044 | return (elf_symbol_type *) symbol; | |
244ffee7 JK |
1045 | } |
1046 | ||
32090b8e KR |
1047 | void |
1048 | write_relocs (abfd, sec, xxx) | |
1049 | bfd *abfd; | |
1050 | asection *sec; | |
1051 | PTR xxx; | |
1052 | { | |
1053 | Elf_Internal_Shdr *rela_hdr; | |
1054 | Elf_External_Rela *outbound_relocas; | |
1055 | Elf_External_Rel *outbound_relocs; | |
1056 | int idx; | |
1057 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; | |
300adb31 | 1058 | asymbol *last_sym = 0; |
38a5f510 | 1059 | int last_sym_idx = 9999999; /* should always be written before use */ |
244ffee7 | 1060 | |
32090b8e KR |
1061 | if ((sec->flags & SEC_RELOC) == 0) |
1062 | return; | |
6ec3bb6a ILT |
1063 | |
1064 | /* The linker backend writes the relocs out itself, and sets the | |
1065 | reloc_count field to zero to inhibit writing them here. Also, | |
1066 | sometimes the SEC_RELOC flag gets set even when there aren't any | |
1067 | relocs. */ | |
32090b8e KR |
1068 | if (sec->reloc_count == 0) |
1069 | return; | |
244ffee7 | 1070 | |
32090b8e | 1071 | rela_hdr = &elf_section_data (sec)->rel_hdr; |
244ffee7 | 1072 | |
32090b8e KR |
1073 | rela_hdr->sh_size = rela_hdr->sh_entsize * sec->reloc_count; |
1074 | rela_hdr->contents = (void *) bfd_alloc (abfd, rela_hdr->sh_size); | |
9783e04a DM |
1075 | if (!rela_hdr->contents) |
1076 | { | |
d1ad85a6 | 1077 | bfd_set_error (bfd_error_no_memory); |
1c6042ee | 1078 | abort (); /* FIXME */ |
9783e04a | 1079 | } |
244ffee7 | 1080 | |
32090b8e | 1081 | /* orelocation has the data, reloc_count has the count... */ |
300adb31 KR |
1082 | if (use_rela_p) |
1083 | { | |
1084 | outbound_relocas = (Elf_External_Rela *) rela_hdr->contents; | |
1085 | ||
1086 | for (idx = 0; idx < sec->reloc_count; idx++) | |
32090b8e | 1087 | { |
300adb31 KR |
1088 | Elf_Internal_Rela dst_rela; |
1089 | Elf_External_Rela *src_rela; | |
1090 | arelent *ptr; | |
1091 | asymbol *sym; | |
1092 | int n; | |
1093 | ||
1094 | ptr = sec->orelocation[idx]; | |
1095 | src_rela = outbound_relocas + idx; | |
1096 | if (!(abfd->flags & EXEC_P)) | |
1097 | dst_rela.r_offset = ptr->address - sec->vma; | |
1098 | else | |
1099 | dst_rela.r_offset = ptr->address; | |
6a3eb9b6 | 1100 | |
300adb31 KR |
1101 | sym = *ptr->sym_ptr_ptr; |
1102 | if (sym == last_sym) | |
1103 | n = last_sym_idx; | |
1104 | else | |
32090b8e | 1105 | { |
300adb31 KR |
1106 | last_sym = sym; |
1107 | last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym); | |
32090b8e | 1108 | } |
300adb31 KR |
1109 | dst_rela.r_info = ELF_R_INFO (n, ptr->howto->type); |
1110 | ||
1111 | dst_rela.r_addend = ptr->addend; | |
1112 | elf_swap_reloca_out (abfd, &dst_rela, src_rela); | |
244ffee7 | 1113 | } |
300adb31 KR |
1114 | } |
1115 | else | |
1116 | /* REL relocations */ | |
1117 | { | |
1118 | outbound_relocs = (Elf_External_Rel *) rela_hdr->contents; | |
1119 | ||
1120 | for (idx = 0; idx < sec->reloc_count; idx++) | |
32090b8e | 1121 | { |
300adb31 KR |
1122 | Elf_Internal_Rel dst_rel; |
1123 | Elf_External_Rel *src_rel; | |
1124 | arelent *ptr; | |
1125 | int n; | |
1126 | asymbol *sym; | |
1127 | ||
1128 | ptr = sec->orelocation[idx]; | |
1129 | sym = *ptr->sym_ptr_ptr; | |
1130 | src_rel = outbound_relocs + idx; | |
1131 | if (!(abfd->flags & EXEC_P)) | |
1132 | dst_rel.r_offset = ptr->address - sec->vma; | |
1133 | else | |
1134 | dst_rel.r_offset = ptr->address; | |
244ffee7 | 1135 | |
300adb31 KR |
1136 | if (sym == last_sym) |
1137 | n = last_sym_idx; | |
1138 | else | |
32090b8e | 1139 | { |
300adb31 KR |
1140 | last_sym = sym; |
1141 | last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym); | |
32090b8e | 1142 | } |
300adb31 KR |
1143 | dst_rel.r_info = ELF_R_INFO (n, ptr->howto->type); |
1144 | ||
1145 | elf_swap_reloc_out (abfd, &dst_rel, src_rel); | |
32090b8e | 1146 | } |
300adb31 | 1147 | } |
32090b8e | 1148 | } |
244ffee7 | 1149 | |
fa15568a | 1150 | /* Set up an ELF internal section header for a section. */ |
244ffee7 | 1151 | |
fa15568a | 1152 | /*ARGSUSED*/ |
32090b8e | 1153 | static void |
fa15568a | 1154 | elf_fake_sections (abfd, asect, ignore) |
1c6042ee ILT |
1155 | bfd *abfd; |
1156 | asection *asect; | |
fa15568a | 1157 | PTR ignore; |
32090b8e | 1158 | { |
32090b8e | 1159 | Elf_Internal_Shdr *this_hdr; |
fa15568a | 1160 | |
32090b8e | 1161 | this_hdr = &elf_section_data (asect)->this_hdr; |
fa15568a ILT |
1162 | |
1163 | this_hdr->sh_name = bfd_add_to_strtab (abfd, elf_shstrtab (abfd), | |
1164 | asect->name); | |
6ec3bb6a ILT |
1165 | if (this_hdr->sh_name == (unsigned long) -1) |
1166 | abort (); /* FIXME */ | |
fa15568a ILT |
1167 | |
1168 | this_hdr->sh_flags = 0; | |
1169 | if ((asect->flags & SEC_ALLOC) != 0) | |
1170 | this_hdr->sh_addr = asect->vma; | |
1171 | else | |
1172 | this_hdr->sh_addr = 0; | |
1173 | this_hdr->sh_offset = 0; | |
1174 | this_hdr->sh_size = asect->_raw_size; | |
1175 | this_hdr->sh_link = 0; | |
1176 | this_hdr->sh_info = 0; | |
32090b8e | 1177 | this_hdr->sh_addralign = 1 << asect->alignment_power; |
fa15568a ILT |
1178 | this_hdr->sh_entsize = 0; |
1179 | ||
1180 | this_hdr->rawdata = (PTR) asect; | |
1181 | this_hdr->contents = NULL; | |
1182 | this_hdr->size = 0; | |
013dec1a ILT |
1183 | |
1184 | /* FIXME: This should not be based on section names. */ | |
1185 | if (strcmp (asect->name, ".dynstr") == 0) | |
1186 | this_hdr->sh_type = SHT_STRTAB; | |
1187 | else if (strcmp (asect->name, ".hash") == 0) | |
fa15568a ILT |
1188 | { |
1189 | this_hdr->sh_type = SHT_HASH; | |
1190 | this_hdr->sh_entsize = ARCH_SIZE / 8; | |
1191 | } | |
013dec1a | 1192 | else if (strcmp (asect->name, ".dynsym") == 0) |
fa15568a ILT |
1193 | { |
1194 | this_hdr->sh_type = SHT_DYNSYM; | |
1195 | this_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
1196 | } | |
013dec1a | 1197 | else if (strcmp (asect->name, ".dynamic") == 0) |
fa15568a ILT |
1198 | { |
1199 | this_hdr->sh_type = SHT_DYNAMIC; | |
1200 | this_hdr->sh_entsize = sizeof (Elf_External_Dyn); | |
1201 | } | |
013dec1a | 1202 | else if (strncmp (asect->name, ".rel.", 5) == 0) |
fa15568a ILT |
1203 | { |
1204 | this_hdr->sh_type = SHT_REL; | |
1205 | this_hdr->sh_entsize = sizeof (Elf_External_Rel); | |
1206 | } | |
013dec1a | 1207 | else if (strncmp (asect->name, ".rela.", 6) == 0) |
fa15568a ILT |
1208 | { |
1209 | this_hdr->sh_type = SHT_RELA; | |
1210 | this_hdr->sh_entsize = sizeof (Elf_External_Rela); | |
1211 | } | |
1212 | else if (strcmp (asect->name, ".note") == 0) | |
1213 | this_hdr->sh_type = SHT_NOTE; | |
1214 | else if (strncmp (asect->name, ".stab", 5) == 0 | |
1215 | && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0) | |
1216 | this_hdr->sh_type = SHT_STRTAB; | |
1217 | else if ((asect->flags & SEC_ALLOC) != 0 | |
1218 | && (asect->flags & SEC_LOAD) != 0) | |
32090b8e | 1219 | this_hdr->sh_type = SHT_PROGBITS; |
fa15568a ILT |
1220 | else if ((asect->flags & SEC_ALLOC) != 0 |
1221 | && ((asect->flags & SEC_LOAD) == 0)) | |
e621c5cc | 1222 | { |
6c35a16d ILT |
1223 | BFD_ASSERT (strcmp (asect->name, ".bss") == 0 |
1224 | || strcmp (asect->name, ".sbss") == 0); | |
e621c5cc ILT |
1225 | this_hdr->sh_type = SHT_NOBITS; |
1226 | } | |
32090b8e | 1227 | else |
fa15568a ILT |
1228 | { |
1229 | /* Who knows? */ | |
1230 | this_hdr->sh_type = SHT_PROGBITS; | |
1231 | } | |
32090b8e | 1232 | |
fa15568a ILT |
1233 | if ((asect->flags & SEC_ALLOC) != 0) |
1234 | this_hdr->sh_flags |= SHF_ALLOC; | |
1235 | if ((asect->flags & SEC_READONLY) == 0) | |
1236 | this_hdr->sh_flags |= SHF_WRITE; | |
1237 | if ((asect->flags & SEC_CODE) != 0) | |
1238 | this_hdr->sh_flags |= SHF_EXECINSTR; | |
244ffee7 | 1239 | |
fa15568a | 1240 | /* Check for processor-specific section types. */ |
f035cc47 ILT |
1241 | { |
1242 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1243 | ||
1244 | if (bed->elf_backend_fake_sections) | |
1245 | (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect); | |
1246 | } | |
1247 | ||
fa15568a ILT |
1248 | /* If the section has relocs, set up a section header for the |
1249 | SHT_REL[A] section. */ | |
1250 | if ((asect->flags & SEC_RELOC) != 0) | |
1251 | { | |
1252 | Elf_Internal_Shdr *rela_hdr; | |
1253 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; | |
244ffee7 | 1254 | |
fa15568a ILT |
1255 | rela_hdr = &elf_section_data (asect)->rel_hdr; |
1256 | rela_hdr->sh_name = | |
1257 | bfd_add_2_to_strtab (abfd, elf_shstrtab (abfd), | |
1258 | use_rela_p ? ".rela" : ".rel", | |
1259 | asect->name); | |
1260 | rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; | |
1261 | rela_hdr->sh_entsize = (use_rela_p | |
1262 | ? sizeof (Elf_External_Rela) | |
1263 | : sizeof (Elf_External_Rel)); | |
1264 | rela_hdr->sh_addralign = FILE_ALIGN; | |
1265 | rela_hdr->sh_flags = 0; | |
1266 | rela_hdr->sh_addr = 0; | |
1267 | rela_hdr->sh_size = 0; | |
1268 | rela_hdr->sh_offset = 0; | |
1269 | rela_hdr->size = 0; | |
1270 | } | |
1271 | } | |
244ffee7 | 1272 | |
fa15568a ILT |
1273 | /* Assign all ELF section numbers. The dummy first section is handled here |
1274 | too. The link/info pointers for the standard section types are filled | |
e6667b2b | 1275 | in here too, while we're at it. */ |
244ffee7 | 1276 | |
fa15568a ILT |
1277 | static boolean |
1278 | assign_section_numbers (abfd) | |
1279 | bfd *abfd; | |
1280 | { | |
1281 | struct elf_obj_tdata *t = elf_tdata (abfd); | |
1282 | asection *sec; | |
1283 | unsigned int section_number; | |
1284 | Elf_Internal_Shdr **i_shdrp; | |
1285 | ||
1286 | section_number = 1; | |
1287 | ||
fa15568a ILT |
1288 | for (sec = abfd->sections; sec; sec = sec->next) |
1289 | { | |
1290 | struct bfd_elf_section_data *d = elf_section_data (sec); | |
1291 | ||
1292 | d->this_idx = section_number++; | |
1293 | if ((sec->flags & SEC_RELOC) == 0) | |
1294 | d->rel_idx = 0; | |
1295 | else | |
1296 | d->rel_idx = section_number++; | |
1297 | } | |
1298 | ||
7c726b66 ILT |
1299 | t->shstrtab_section = section_number++; |
1300 | elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; | |
1301 | t->shstrtab_hdr.sh_size = elf_shstrtab (abfd)->length; | |
1302 | t->shstrtab_hdr.contents = (PTR) elf_shstrtab (abfd)->tab; | |
1303 | ||
1304 | if (abfd->symcount > 0) | |
1305 | { | |
1306 | t->symtab_section = section_number++; | |
1307 | t->strtab_section = section_number++; | |
1308 | } | |
1309 | ||
fa15568a ILT |
1310 | elf_elfheader (abfd)->e_shnum = section_number; |
1311 | ||
1312 | /* Set up the list of section header pointers, in agreement with the | |
1313 | indices. */ | |
1314 | i_shdrp = ((Elf_Internal_Shdr **) | |
1315 | bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *))); | |
1316 | if (i_shdrp == NULL) | |
1317 | { | |
1318 | bfd_set_error (bfd_error_no_memory); | |
1319 | return false; | |
1320 | } | |
1321 | ||
1322 | i_shdrp[0] = ((Elf_Internal_Shdr *) | |
1323 | bfd_alloc (abfd, sizeof (Elf_Internal_Shdr))); | |
1324 | if (i_shdrp[0] == NULL) | |
1325 | { | |
1326 | bfd_release (abfd, i_shdrp); | |
1327 | bfd_set_error (bfd_error_no_memory); | |
1328 | return false; | |
1329 | } | |
1330 | memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr)); | |
1331 | ||
1332 | elf_elfsections (abfd) = i_shdrp; | |
1333 | ||
1334 | i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; | |
1335 | if (abfd->symcount > 0) | |
1336 | { | |
1337 | i_shdrp[t->symtab_section] = &t->symtab_hdr; | |
1338 | i_shdrp[t->strtab_section] = &t->strtab_hdr; | |
1339 | t->symtab_hdr.sh_link = t->strtab_section; | |
1340 | } | |
1341 | for (sec = abfd->sections; sec; sec = sec->next) | |
32090b8e | 1342 | { |
fa15568a ILT |
1343 | struct bfd_elf_section_data *d = elf_section_data (sec); |
1344 | asection *s; | |
1345 | const char *name; | |
1346 | ||
1347 | i_shdrp[d->this_idx] = &d->this_hdr; | |
1348 | if (d->rel_idx != 0) | |
1349 | i_shdrp[d->rel_idx] = &d->rel_hdr; | |
1350 | ||
1351 | /* Fill in the sh_link and sh_info fields while we're at it. */ | |
1352 | ||
1353 | /* sh_link of a reloc section is the section index of the symbol | |
1354 | table. sh_info is the section index of the section to which | |
1355 | the relocation entries apply. */ | |
1356 | if (d->rel_idx != 0) | |
1357 | { | |
1358 | d->rel_hdr.sh_link = t->symtab_section; | |
1359 | d->rel_hdr.sh_info = d->this_idx; | |
1360 | } | |
1361 | ||
1362 | switch (d->this_hdr.sh_type) | |
32090b8e | 1363 | { |
fa15568a ILT |
1364 | case SHT_REL: |
1365 | case SHT_RELA: | |
1366 | /* A reloc section which we are treating as a normal BFD | |
1367 | section. sh_link is the section index of the symbol | |
1368 | table. sh_info is the section index of the section to | |
1369 | which the relocation entries apply. We assume that an | |
1370 | allocated reloc section uses the dynamic symbol table. | |
1371 | FIXME: How can we be sure? */ | |
1372 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1373 | if (s != NULL) | |
1374 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1375 | ||
1376 | /* We look up the section the relocs apply to by name. */ | |
1377 | name = sec->name; | |
1378 | if (d->this_hdr.sh_type == SHT_REL) | |
1379 | name += 4; | |
1380 | else | |
1381 | name += 5; | |
1382 | s = bfd_get_section_by_name (abfd, name); | |
1383 | if (s != NULL) | |
1384 | d->this_hdr.sh_info = elf_section_data (s)->this_idx; | |
1385 | break; | |
1386 | ||
1387 | case SHT_STRTAB: | |
1388 | /* We assume that a section named .stab*str is a stabs | |
1389 | string section. We look for a section with the same name | |
1390 | but without the trailing ``str'', and set its sh_link | |
1391 | field to point to this section. */ | |
1392 | if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0 | |
1393 | && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) | |
1394 | { | |
1395 | size_t len; | |
1396 | char *alc; | |
1397 | ||
1398 | len = strlen (sec->name); | |
1399 | alc = (char *) malloc (len - 2); | |
1400 | if (alc == NULL) | |
1401 | { | |
1402 | bfd_set_error (bfd_error_no_memory); | |
1403 | return false; | |
1404 | } | |
1405 | strncpy (alc, sec->name, len - 3); | |
1406 | alc[len - 3] = '\0'; | |
1407 | s = bfd_get_section_by_name (abfd, alc); | |
1408 | free (alc); | |
1409 | if (s != NULL) | |
1410 | { | |
1411 | elf_section_data (s)->this_hdr.sh_link = d->this_idx; | |
1412 | ||
1413 | /* This is a .stab section. */ | |
1414 | elf_section_data (s)->this_hdr.sh_entsize = | |
1415 | 4 + 2 * (ARCH_SIZE / 8); | |
1416 | } | |
1417 | } | |
1418 | break; | |
1419 | ||
1420 | case SHT_DYNAMIC: | |
1421 | case SHT_DYNSYM: | |
1422 | /* sh_link is the section header index of the string table | |
1423 | used for the dynamic entries or symbol table. */ | |
1424 | s = bfd_get_section_by_name (abfd, ".dynstr"); | |
1425 | if (s != NULL) | |
1426 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1427 | break; | |
1428 | ||
1429 | case SHT_HASH: | |
1430 | /* sh_link is the section header index of the symbol table | |
1431 | this hash table is for. */ | |
1432 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1433 | if (s != NULL) | |
1434 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1435 | break; | |
32090b8e KR |
1436 | } |
1437 | } | |
fa15568a ILT |
1438 | |
1439 | return true; | |
244ffee7 JK |
1440 | } |
1441 | ||
32090b8e KR |
1442 | /* Map symbol from it's internal number to the external number, moving |
1443 | all local symbols to be at the head of the list. */ | |
244ffee7 | 1444 | |
32090b8e | 1445 | static INLINE int |
062189c6 ILT |
1446 | sym_is_global (abfd, sym) |
1447 | bfd *abfd; | |
32090b8e KR |
1448 | asymbol *sym; |
1449 | { | |
062189c6 ILT |
1450 | /* If the backend has a special mapping, use it. */ |
1451 | if (get_elf_backend_data (abfd)->elf_backend_sym_is_global) | |
1452 | return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global) | |
1453 | (abfd, sym)); | |
1454 | ||
d24928c0 | 1455 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK)) |
244ffee7 | 1456 | { |
32090b8e KR |
1457 | if (sym->flags & BSF_LOCAL) |
1458 | abort (); | |
1459 | return 1; | |
244ffee7 | 1460 | } |
d24928c0 KR |
1461 | if (sym->section == 0) |
1462 | { | |
1463 | /* Is this valid? */ | |
1464 | abort (); | |
1465 | ||
1466 | return 1; | |
1467 | } | |
badd23e3 | 1468 | if (bfd_is_und_section (sym->section)) |
32090b8e KR |
1469 | return 1; |
1470 | if (bfd_is_com_section (sym->section)) | |
1471 | return 1; | |
1472 | if (sym->flags & (BSF_LOCAL | BSF_SECTION_SYM | BSF_FILE)) | |
1473 | return 0; | |
1474 | return 0; | |
1475 | } | |
244ffee7 | 1476 | |
9783e04a | 1477 | static boolean |
1c6042ee ILT |
1478 | elf_map_symbols (abfd) |
1479 | bfd *abfd; | |
32090b8e KR |
1480 | { |
1481 | int symcount = bfd_get_symcount (abfd); | |
1482 | asymbol **syms = bfd_get_outsymbols (abfd); | |
d24928c0 | 1483 | asymbol **sect_syms; |
32090b8e KR |
1484 | int num_locals = 0; |
1485 | int num_globals = 0; | |
1486 | int num_locals2 = 0; | |
1487 | int num_globals2 = 0; | |
d24928c0 | 1488 | int max_index = 0; |
32090b8e | 1489 | int num_sections = 0; |
d24928c0 | 1490 | Elf_Sym_Extra *sym_extra; |
32090b8e KR |
1491 | int idx; |
1492 | asection *asect; | |
6a3eb9b6 | 1493 | |
32090b8e KR |
1494 | #ifdef DEBUG |
1495 | fprintf (stderr, "elf_map_symbols\n"); | |
1496 | fflush (stderr); | |
1497 | #endif | |
244ffee7 | 1498 | |
e621c5cc ILT |
1499 | /* Add local symbols for each section for which there are relocs. |
1500 | FIXME: How can we tell which sections have relocs at this point? | |
1501 | Will reloc_count always be accurate? Actually, I think most ELF | |
1502 | targets create section symbols for all sections anyhow. */ | |
32090b8e | 1503 | for (asect = abfd->sections; asect; asect = asect->next) |
244ffee7 | 1504 | { |
d24928c0 KR |
1505 | if (max_index < asect->index) |
1506 | max_index = asect->index; | |
244ffee7 JK |
1507 | } |
1508 | ||
d24928c0 KR |
1509 | max_index++; |
1510 | elf_num_section_syms (abfd) = max_index; | |
1511 | sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *)); | |
1512 | elf_section_syms (abfd) = sect_syms; | |
1513 | ||
5e829a34 | 1514 | if (sect_syms == 0) |
9783e04a | 1515 | { |
d1ad85a6 | 1516 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
1517 | return false; |
1518 | } | |
d24928c0 KR |
1519 | |
1520 | for (asect = abfd->sections; asect; asect = asect->next) | |
e621c5cc ILT |
1521 | { |
1522 | asymbol *sym = bfd_make_empty_symbol (abfd); | |
9783e04a DM |
1523 | if (!sym) |
1524 | { | |
d1ad85a6 | 1525 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
1526 | return false; |
1527 | } | |
e621c5cc ILT |
1528 | sym->the_bfd = abfd; |
1529 | sym->name = asect->name; | |
1530 | sym->value = asect->vma; | |
1531 | sym->flags = BSF_SECTION_SYM; | |
1532 | sym->section = asect; | |
1533 | sect_syms[asect->index] = sym; | |
1534 | num_sections++; | |
d24928c0 | 1535 | #ifdef DEBUG |
e621c5cc ILT |
1536 | fprintf (stderr, |
1537 | "creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n", | |
1538 | asect->name, (long) asect->vma, asect->index, (long) asect); | |
d24928c0 | 1539 | #endif |
e621c5cc | 1540 | } |
d24928c0 | 1541 | |
32090b8e | 1542 | if (num_sections) |
244ffee7 | 1543 | { |
32090b8e KR |
1544 | if (syms) |
1545 | syms = (asymbol **) bfd_realloc (abfd, syms, | |
1546 | ((symcount + num_sections + 1) | |
1547 | * sizeof (asymbol *))); | |
1548 | else | |
1549 | syms = (asymbol **) bfd_alloc (abfd, | |
1c6042ee | 1550 | (num_sections + 1) * sizeof (asymbol *)); |
9783e04a DM |
1551 | if (!syms) |
1552 | { | |
d1ad85a6 | 1553 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
1554 | return false; |
1555 | } | |
244ffee7 | 1556 | |
32090b8e KR |
1557 | for (asect = abfd->sections; asect; asect = asect->next) |
1558 | { | |
d24928c0 KR |
1559 | if (sect_syms[asect->index]) |
1560 | syms[symcount++] = sect_syms[asect->index]; | |
32090b8e | 1561 | } |
244ffee7 | 1562 | |
32090b8e KR |
1563 | syms[symcount] = (asymbol *) 0; |
1564 | bfd_set_symtab (abfd, syms, symcount); | |
1565 | } | |
244ffee7 | 1566 | |
d24928c0 KR |
1567 | elf_sym_extra (abfd) = sym_extra |
1568 | = (Elf_Sym_Extra *) bfd_alloc (abfd, symcount * sizeof (Elf_Sym_Extra)); | |
9783e04a DM |
1569 | if (!sym_extra) |
1570 | { | |
d1ad85a6 | 1571 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
1572 | return false; |
1573 | } | |
244ffee7 | 1574 | |
32090b8e KR |
1575 | /* Identify and classify all of the symbols. */ |
1576 | for (idx = 0; idx < symcount; idx++) | |
244ffee7 | 1577 | { |
062189c6 | 1578 | if (!sym_is_global (abfd, syms[idx])) |
32090b8e KR |
1579 | num_locals++; |
1580 | else | |
1581 | num_globals++; | |
244ffee7 | 1582 | } |
32090b8e KR |
1583 | |
1584 | /* Now provide mapping information. Add +1 for skipping over the | |
1585 | dummy symbol. */ | |
1586 | for (idx = 0; idx < symcount; idx++) | |
244ffee7 | 1587 | { |
1c6042ee | 1588 | syms[idx]->udata = (PTR) & sym_extra[idx]; |
062189c6 | 1589 | if (!sym_is_global (abfd, syms[idx])) |
d24928c0 | 1590 | sym_extra[idx].elf_sym_num = 1 + num_locals2++; |
32090b8e | 1591 | else |
d24928c0 | 1592 | sym_extra[idx].elf_sym_num = 1 + num_locals + num_globals2++; |
244ffee7 JK |
1593 | } |
1594 | ||
32090b8e KR |
1595 | elf_num_locals (abfd) = num_locals; |
1596 | elf_num_globals (abfd) = num_globals; | |
9783e04a | 1597 | return true; |
32090b8e | 1598 | } |
244ffee7 | 1599 | |
6ec3bb6a ILT |
1600 | /* Compute the file positions we are going to put the sections at, and |
1601 | otherwise prepare to begin writing out the ELF file. If LINK_INFO | |
1602 | is not NULL, this is being called by the ELF backend linker. */ | |
244ffee7 | 1603 | |
32090b8e | 1604 | static boolean |
6ec3bb6a | 1605 | elf_compute_section_file_positions (abfd, link_info) |
1c6042ee | 1606 | bfd *abfd; |
6ec3bb6a | 1607 | struct bfd_link_info *link_info; |
32090b8e | 1608 | { |
6ec3bb6a ILT |
1609 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
1610 | Elf_Internal_Shdr *shstrtab_hdr; | |
1611 | ||
1612 | if (abfd->output_has_begun) | |
1613 | return true; | |
1614 | ||
1615 | /* Do any elf backend specific processing first. */ | |
1616 | if (bed->elf_backend_begin_write_processing) | |
71edd06d | 1617 | (*bed->elf_backend_begin_write_processing) (abfd, link_info); |
6ec3bb6a ILT |
1618 | |
1619 | if (! prep_headers (abfd)) | |
1620 | return false; | |
1621 | ||
32090b8e | 1622 | bfd_map_over_sections (abfd, elf_fake_sections, 0); |
244ffee7 | 1623 | |
9783e04a DM |
1624 | if (!assign_section_numbers (abfd)) |
1625 | return false; | |
244ffee7 | 1626 | |
6ec3bb6a ILT |
1627 | /* The backend linker builds symbol table information itself. */ |
1628 | if (link_info == NULL) | |
1629 | { | |
1630 | if (! swap_out_syms (abfd)) | |
1631 | return false; | |
1632 | } | |
244ffee7 | 1633 | |
6ec3bb6a ILT |
1634 | shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; |
1635 | /* sh_name was set in prep_headers. */ | |
1636 | shstrtab_hdr->sh_type = SHT_STRTAB; | |
1637 | shstrtab_hdr->sh_flags = 0; | |
1638 | shstrtab_hdr->sh_addr = 0; | |
1639 | shstrtab_hdr->sh_size = elf_shstrtab (abfd)->length; | |
1640 | shstrtab_hdr->sh_entsize = 0; | |
1641 | shstrtab_hdr->sh_link = 0; | |
1642 | shstrtab_hdr->sh_info = 0; | |
1643 | /* sh_offset is set in assign_file_positions_for_symtabs_and_strtabs. */ | |
1644 | shstrtab_hdr->sh_addralign = 1; | |
1645 | shstrtab_hdr->contents = (PTR) elf_shstrtab (abfd)->tab; | |
1646 | ||
1647 | if (!assign_file_positions_except_relocs (abfd, | |
1648 | link_info == NULL ? true : false)) | |
9783e04a | 1649 | return false; |
32090b8e | 1650 | |
6ec3bb6a ILT |
1651 | abfd->output_has_begun = true; |
1652 | ||
32090b8e KR |
1653 | return true; |
1654 | } | |
1655 | ||
244ffee7 | 1656 | |
013dec1a ILT |
1657 | /* Align to the maximum file alignment that could be required for any |
1658 | ELF data structure. */ | |
1659 | ||
1660 | static INLINE file_ptr | |
1661 | align_file_position (off) | |
1662 | file_ptr off; | |
1663 | { | |
1664 | return (off + FILE_ALIGN - 1) & ~(FILE_ALIGN - 1); | |
1665 | } | |
1666 | ||
1667 | /* Assign a file position to a section, optionally aligning to the | |
1668 | required section alignment. */ | |
1669 | ||
32090b8e | 1670 | static INLINE file_ptr |
013dec1a | 1671 | assign_file_position_for_section (i_shdrp, offset, align) |
32090b8e KR |
1672 | Elf_Internal_Shdr *i_shdrp; |
1673 | file_ptr offset; | |
013dec1a | 1674 | boolean align; |
32090b8e | 1675 | { |
013dec1a ILT |
1676 | if (align) |
1677 | { | |
1678 | unsigned int al; | |
f035cc47 | 1679 | |
013dec1a ILT |
1680 | al = i_shdrp->sh_addralign; |
1681 | if (al > 1) | |
1682 | offset = BFD_ALIGN (offset, al); | |
1683 | } | |
1684 | i_shdrp->sh_offset = offset; | |
7b8106b4 ILT |
1685 | if (i_shdrp->rawdata != NULL) |
1686 | ((asection *) i_shdrp->rawdata)->filepos = offset; | |
300adb31 KR |
1687 | if (i_shdrp->sh_type != SHT_NOBITS) |
1688 | offset += i_shdrp->sh_size; | |
32090b8e | 1689 | return offset; |
244ffee7 JK |
1690 | } |
1691 | ||
013dec1a ILT |
1692 | /* Get the size of the program header. This is called by the linker |
1693 | before any of the section VMA's are set, so it can't calculate the | |
1694 | correct value for a strange memory layout. */ | |
01383fb4 | 1695 | |
013dec1a ILT |
1696 | static bfd_size_type |
1697 | get_program_header_size (abfd) | |
300adb31 | 1698 | bfd *abfd; |
300adb31 | 1699 | { |
013dec1a ILT |
1700 | size_t segs; |
1701 | asection *s; | |
300adb31 | 1702 | |
013dec1a ILT |
1703 | /* Assume we will need exactly two PT_LOAD segments: one for text |
1704 | and one for data. */ | |
1705 | segs = 2; | |
1706 | ||
1707 | s = bfd_get_section_by_name (abfd, ".interp"); | |
1708 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
1709 | { | |
1710 | /* If we have a loadable interpreter section, we need a | |
1711 | PT_INTERP segment. In this case, assume we also need a | |
1712 | PT_PHDR segment, although that may not be true for all | |
1713 | targets. */ | |
1714 | segs += 2; | |
1715 | } | |
1716 | ||
1717 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
1718 | { | |
1719 | /* We need a PT_DYNAMIC segment. */ | |
1720 | ++segs; | |
1721 | } | |
1722 | ||
1723 | return segs * sizeof (Elf_External_Phdr); | |
300adb31 KR |
1724 | } |
1725 | ||
013dec1a ILT |
1726 | /* Create the program header. OFF is the file offset where the |
1727 | program header should be written. FIRST is the first loadable ELF | |
1728 | section. PHDR_SIZE is the size of the program header as returned | |
1729 | by get_program_header_size. */ | |
300adb31 | 1730 | |
013dec1a ILT |
1731 | static file_ptr |
1732 | map_program_segments (abfd, off, first, phdr_size) | |
300adb31 | 1733 | bfd *abfd; |
013dec1a ILT |
1734 | file_ptr off; |
1735 | Elf_Internal_Shdr *first; | |
1736 | bfd_size_type phdr_size; | |
300adb31 | 1737 | { |
6731b89c | 1738 | Elf_Internal_Phdr phdrs[10]; |
013dec1a | 1739 | unsigned int phdr_count; |
300adb31 | 1740 | Elf_Internal_Phdr *phdr; |
013dec1a ILT |
1741 | int phdr_size_adjust; |
1742 | unsigned int i; | |
1743 | Elf_Internal_Shdr **hdrpp; | |
1744 | asection *sinterp, *sdyn; | |
1745 | unsigned int last_type; | |
1746 | Elf_Internal_Ehdr *i_ehdrp; | |
1747 | ||
df9e066f | 1748 | BFD_ASSERT ((abfd->flags & (EXEC_P | DYNAMIC)) != 0); |
6731b89c ILT |
1749 | BFD_ASSERT (phdr_size / sizeof (Elf_Internal_Phdr) |
1750 | <= sizeof phdrs / sizeof (phdrs[0])); | |
013dec1a ILT |
1751 | |
1752 | phdr_count = 0; | |
1753 | phdr = phdrs; | |
1754 | ||
1755 | phdr_size_adjust = 0; | |
300adb31 | 1756 | |
013dec1a ILT |
1757 | /* If we have a loadable .interp section, we must create a PT_INTERP |
1758 | segment which must precede all PT_LOAD segments. We assume that | |
1759 | we must also create a PT_PHDR segment, although that may not be | |
1760 | true for all targets. */ | |
1761 | sinterp = bfd_get_section_by_name (abfd, ".interp"); | |
1762 | if (sinterp != NULL && (sinterp->flags & SEC_LOAD) != 0) | |
80425e6c | 1763 | { |
013dec1a ILT |
1764 | BFD_ASSERT (first != NULL); |
1765 | ||
1766 | phdr->p_type = PT_PHDR; | |
1767 | ||
1768 | phdr->p_offset = off; | |
1769 | ||
1770 | /* Account for any adjustment made because of the alignment of | |
1771 | the first loadable section. */ | |
1772 | phdr_size_adjust = (first->sh_offset - phdr_size) - off; | |
1773 | BFD_ASSERT (phdr_size_adjust >= 0 && phdr_size_adjust < 128); | |
1774 | ||
1775 | /* The program header precedes all loadable sections. This lets | |
1776 | us compute its loadable address. This depends on the linker | |
1777 | script. */ | |
1778 | phdr->p_vaddr = first->sh_addr - (phdr_size + phdr_size_adjust); | |
1779 | ||
1780 | phdr->p_paddr = 0; | |
1781 | phdr->p_filesz = phdr_size; | |
1782 | phdr->p_memsz = phdr_size; | |
1783 | ||
1784 | /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ | |
1785 | phdr->p_flags = PF_R | PF_X; | |
1786 | ||
1787 | phdr->p_align = FILE_ALIGN; | |
1788 | BFD_ASSERT ((phdr->p_vaddr - phdr->p_offset) % FILE_ALIGN == 0); | |
1789 | ||
1790 | /* Include the ELF header in the first loadable segment. */ | |
1791 | phdr_size_adjust += off; | |
1792 | ||
1793 | ++phdr_count; | |
1794 | ++phdr; | |
1795 | ||
1796 | phdr->p_type = PT_INTERP; | |
1797 | phdr->p_offset = sinterp->filepos; | |
1798 | phdr->p_vaddr = sinterp->vma; | |
1799 | phdr->p_paddr = 0; | |
1800 | phdr->p_filesz = sinterp->_raw_size; | |
1801 | phdr->p_memsz = sinterp->_raw_size; | |
1802 | phdr->p_flags = PF_R; | |
1803 | phdr->p_align = 1 << bfd_get_section_alignment (abfd, sinterp); | |
1804 | ||
1805 | ++phdr_count; | |
1806 | ++phdr; | |
80425e6c | 1807 | } |
013dec1a ILT |
1808 | |
1809 | /* Look through the sections to see how they will be divided into | |
1810 | program segments. The sections must be arranged in order by | |
1811 | sh_addr for this to work correctly. */ | |
1812 | phdr->p_type = PT_NULL; | |
1813 | last_type = SHT_PROGBITS; | |
1814 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
1815 | i < elf_elfheader (abfd)->e_shnum; | |
1816 | i++, hdrpp++) | |
300adb31 | 1817 | { |
013dec1a ILT |
1818 | Elf_Internal_Shdr *hdr; |
1819 | ||
1820 | hdr = *hdrpp; | |
1821 | ||
1822 | /* Ignore any section which will not be part of the process | |
1823 | image. */ | |
1824 | if ((hdr->sh_flags & SHF_ALLOC) == 0) | |
1825 | continue; | |
1826 | ||
1827 | /* If this section fits in the segment we are constructing, add | |
1828 | it in. */ | |
1829 | if (phdr->p_type != PT_NULL | |
1830 | && (hdr->sh_offset - (phdr->p_offset + phdr->p_memsz) | |
1831 | == hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz)) | |
1832 | && (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS)) | |
300adb31 | 1833 | { |
013dec1a ILT |
1834 | bfd_size_type adjust; |
1835 | ||
1836 | adjust = hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz); | |
1837 | phdr->p_memsz += hdr->sh_size + adjust; | |
1838 | if (hdr->sh_type != SHT_NOBITS) | |
1839 | phdr->p_filesz += hdr->sh_size + adjust; | |
1840 | if ((hdr->sh_flags & SHF_WRITE) != 0) | |
1841 | phdr->p_flags |= PF_W; | |
1842 | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) | |
1843 | phdr->p_flags |= PF_X; | |
1844 | last_type = hdr->sh_type; | |
300adb31 KR |
1845 | continue; |
1846 | } | |
300adb31 | 1847 | |
013dec1a ILT |
1848 | /* If we have a segment, move to the next one. */ |
1849 | if (phdr->p_type != PT_NULL) | |
300adb31 | 1850 | { |
013dec1a ILT |
1851 | ++phdr; |
1852 | ++phdr_count; | |
300adb31 | 1853 | } |
013dec1a ILT |
1854 | |
1855 | /* Start a new segment. */ | |
1856 | phdr->p_type = PT_LOAD; | |
1857 | phdr->p_offset = hdr->sh_offset; | |
1858 | phdr->p_vaddr = hdr->sh_addr; | |
1859 | phdr->p_paddr = 0; | |
1860 | if (hdr->sh_type == SHT_NOBITS) | |
1861 | phdr->p_filesz = 0; | |
1862 | else | |
1863 | phdr->p_filesz = hdr->sh_size; | |
1864 | phdr->p_memsz = hdr->sh_size; | |
1865 | phdr->p_flags = PF_R; | |
1866 | if ((hdr->sh_flags & SHF_WRITE) != 0) | |
1867 | phdr->p_flags |= PF_W; | |
1868 | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) | |
1869 | phdr->p_flags |= PF_X; | |
1870 | phdr->p_align = get_elf_backend_data (abfd)->maxpagesize; | |
1871 | ||
1872 | if (hdr == first | |
1873 | && sinterp != NULL | |
1874 | && (sinterp->flags & SEC_LOAD) != 0) | |
2f3189e7 | 1875 | { |
013dec1a ILT |
1876 | phdr->p_offset -= phdr_size + phdr_size_adjust; |
1877 | phdr->p_vaddr -= phdr_size + phdr_size_adjust; | |
1878 | phdr->p_filesz += phdr_size + phdr_size_adjust; | |
1879 | phdr->p_memsz += phdr_size + phdr_size_adjust; | |
2f3189e7 | 1880 | } |
300adb31 | 1881 | |
013dec1a | 1882 | last_type = hdr->sh_type; |
300adb31 | 1883 | } |
300adb31 | 1884 | |
013dec1a ILT |
1885 | if (phdr->p_type != PT_NULL) |
1886 | { | |
1887 | ++phdr; | |
1888 | ++phdr_count; | |
1889 | } | |
1890 | ||
1891 | /* If we have a .dynamic section, create a PT_DYNAMIC segment. */ | |
1892 | sdyn = bfd_get_section_by_name (abfd, ".dynamic"); | |
1893 | if (sdyn != NULL && (sdyn->flags & SEC_LOAD) != 0) | |
1894 | { | |
1895 | phdr->p_type = PT_DYNAMIC; | |
1896 | phdr->p_offset = sdyn->filepos; | |
1897 | phdr->p_vaddr = sdyn->vma; | |
1898 | phdr->p_paddr = 0; | |
1899 | phdr->p_filesz = sdyn->_raw_size; | |
1900 | phdr->p_memsz = sdyn->_raw_size; | |
1901 | phdr->p_flags = PF_R; | |
1902 | if ((sdyn->flags & SEC_READONLY) == 0) | |
1903 | phdr->p_flags |= PF_W; | |
1904 | if ((sdyn->flags & SEC_CODE) != 0) | |
1905 | phdr->p_flags |= PF_X; | |
1906 | phdr->p_align = 1 << bfd_get_section_alignment (abfd, sdyn); | |
1907 | ||
1908 | ++phdr; | |
1909 | ++phdr_count; | |
1910 | } | |
1911 | ||
013dec1a ILT |
1912 | /* Make sure the return value from get_program_header_size matches |
1913 | what we computed here. */ | |
5315c428 | 1914 | if (phdr_count != phdr_size / sizeof (Elf_External_Phdr)) |
013dec1a ILT |
1915 | abort (); |
1916 | ||
1917 | /* Set up program header information. */ | |
1918 | i_ehdrp = elf_elfheader (abfd); | |
1919 | i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); | |
1920 | i_ehdrp->e_phoff = off; | |
1921 | i_ehdrp->e_phnum = phdr_count; | |
1922 | ||
1923 | /* Save the program headers away. I don't think anybody uses this | |
1924 | information right now. */ | |
1925 | elf_tdata (abfd)->phdr = ((Elf_Internal_Phdr *) | |
1926 | bfd_alloc (abfd, | |
1927 | (phdr_count | |
1928 | * sizeof (Elf_Internal_Phdr)))); | |
1929 | if (elf_tdata (abfd)->phdr == NULL && phdr_count != 0) | |
1930 | { | |
1931 | bfd_set_error (bfd_error_no_memory); | |
1932 | return (file_ptr) -1; | |
1933 | } | |
1934 | memcpy (elf_tdata (abfd)->phdr, phdrs, | |
1935 | phdr_count * sizeof (Elf_Internal_Phdr)); | |
1936 | ||
1937 | /* Write out the program headers. */ | |
1938 | if (bfd_seek (abfd, off, SEEK_SET) != 0) | |
1939 | return (file_ptr) -1; | |
1940 | ||
1941 | for (i = 0, phdr = phdrs; i < phdr_count; i++, phdr++) | |
1942 | { | |
1943 | Elf_External_Phdr extphdr; | |
1944 | ||
1945 | elf_swap_phdr_out (abfd, phdr, &extphdr); | |
1946 | if (bfd_write (&extphdr, sizeof (Elf_External_Phdr), 1, abfd) | |
1947 | != sizeof (Elf_External_Phdr)) | |
1948 | return (file_ptr) -1; | |
1949 | } | |
1950 | ||
1951 | return off + phdr_count * sizeof (Elf_External_Phdr); | |
300adb31 KR |
1952 | } |
1953 | ||
013dec1a ILT |
1954 | /* Work out the file positions of all the sections. This is called by |
1955 | elf_compute_section_file_positions. All the section sizes and VMAs | |
1956 | must be known before this is called. | |
1957 | ||
1958 | We do not consider reloc sections at this point, unless they form | |
1959 | part of the loadable image. Reloc sections are assigned file | |
1960 | positions in assign_file_positions_for_relocs, which is called by | |
1961 | write_object_contents and final_link. | |
1962 | ||
1963 | If DOSYMS is false, we do not assign file positions for the symbol | |
1964 | table or the string table. */ | |
1965 | ||
9783e04a | 1966 | static boolean |
6ec3bb6a | 1967 | assign_file_positions_except_relocs (abfd, dosyms) |
32090b8e | 1968 | bfd *abfd; |
6ec3bb6a | 1969 | boolean dosyms; |
244ffee7 | 1970 | { |
013dec1a ILT |
1971 | struct elf_obj_tdata * const tdata = elf_tdata (abfd); |
1972 | Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd); | |
1973 | Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); | |
32090b8e | 1974 | file_ptr off; |
32090b8e | 1975 | |
013dec1a | 1976 | /* Start after the ELF header. */ |
32090b8e | 1977 | off = i_ehdrp->e_ehsize; |
300adb31 | 1978 | |
df9e066f | 1979 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) |
300adb31 | 1980 | { |
013dec1a ILT |
1981 | Elf_Internal_Shdr **hdrpp; |
1982 | unsigned int i; | |
062189c6 | 1983 | |
013dec1a ILT |
1984 | /* We are not creating an executable, which means that we are |
1985 | not creating a program header, and that the actual order of | |
1986 | the sections in the file is unimportant. */ | |
1987 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
244ffee7 | 1988 | { |
013dec1a ILT |
1989 | Elf_Internal_Shdr *hdr; |
1990 | ||
1991 | hdr = *hdrpp; | |
1992 | if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) | |
300adb31 | 1993 | { |
013dec1a | 1994 | hdr->sh_offset = -1; |
300adb31 KR |
1995 | continue; |
1996 | } | |
013dec1a ILT |
1997 | if (! dosyms |
1998 | && (i == tdata->symtab_section | |
1999 | || i == tdata->strtab_section)) | |
300adb31 | 2000 | { |
013dec1a ILT |
2001 | hdr->sh_offset = -1; |
2002 | continue; | |
300adb31 | 2003 | } |
013dec1a ILT |
2004 | |
2005 | off = assign_file_position_for_section (hdr, off, true); | |
300adb31 | 2006 | } |
300adb31 | 2007 | } |
013dec1a | 2008 | else |
300adb31 | 2009 | { |
013dec1a ILT |
2010 | file_ptr phdr_off; |
2011 | bfd_size_type phdr_size; | |
2012 | bfd_vma maxpagesize; | |
2013 | Elf_Internal_Shdr **hdrpp; | |
2014 | unsigned int i; | |
2015 | Elf_Internal_Shdr *first; | |
2016 | file_ptr phdr_map; | |
2017 | ||
2018 | /* We are creating an executable. We must create a program | |
2019 | header. We can't actually create the program header until we | |
2020 | have set the file positions for the sections, but we can | |
2021 | figure out how big it is going to be. */ | |
2022 | off = align_file_position (off); | |
2023 | phdr_size = get_program_header_size (abfd); | |
2024 | if (phdr_size == (file_ptr) -1) | |
9783e04a | 2025 | return false; |
013dec1a ILT |
2026 | phdr_off = off; |
2027 | off += phdr_size; | |
2028 | ||
2029 | maxpagesize = get_elf_backend_data (abfd)->maxpagesize; | |
2030 | if (maxpagesize == 0) | |
2031 | maxpagesize = 1; | |
2032 | ||
2033 | /* FIXME: We might want to sort the sections on the sh_addr | |
2034 | field here. For now, we just assume that the linker will | |
2035 | create the sections in an appropriate order. */ | |
2036 | ||
2037 | /* Assign file positions in two passes. In the first pass, we | |
2038 | assign a file position to every section which forms part of | |
2039 | the executable image. */ | |
2040 | first = NULL; | |
2041 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
2042 | { | |
2043 | Elf_Internal_Shdr *hdr; | |
300adb31 | 2044 | |
013dec1a ILT |
2045 | hdr = *hdrpp; |
2046 | if ((hdr->sh_flags & SHF_ALLOC) == 0) | |
2047 | continue; | |
2048 | ||
2049 | if (first == NULL) | |
2050 | first = hdr; | |
2051 | ||
2052 | if ((abfd->flags & D_PAGED) != 0) | |
2053 | { | |
2054 | /* The section VMA must equal the file position modulo | |
2055 | the page size. This is required by the program | |
2056 | header. */ | |
2057 | off += (hdr->sh_addr - off) % maxpagesize; | |
2058 | } | |
300adb31 | 2059 | |
013dec1a ILT |
2060 | off = assign_file_position_for_section (hdr, off, false); |
2061 | } | |
300adb31 | 2062 | |
013dec1a ILT |
2063 | /* Assign file positions to all the sections which do not form |
2064 | part of the loadable image, except for the relocs. */ | |
2065 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
300adb31 | 2066 | { |
013dec1a ILT |
2067 | Elf_Internal_Shdr *hdr; |
2068 | ||
2069 | hdr = *hdrpp; | |
2070 | if ((hdr->sh_flags & SHF_ALLOC) != 0) | |
2071 | continue; | |
2072 | if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) | |
2073 | { | |
2074 | hdr->sh_offset = -1; | |
2075 | continue; | |
2076 | } | |
2077 | if (! dosyms | |
2078 | && (i == tdata->symtab_section | |
2079 | || i == tdata->strtab_section)) | |
2080 | { | |
2081 | hdr->sh_offset = -1; | |
2082 | continue; | |
2083 | } | |
2084 | ||
2085 | off = assign_file_position_for_section (hdr, off, true); | |
300adb31 | 2086 | } |
013dec1a ILT |
2087 | |
2088 | phdr_map = map_program_segments (abfd, phdr_off, first, phdr_size); | |
2089 | if (phdr_map == (file_ptr) -1) | |
2090 | return false; | |
2091 | BFD_ASSERT (phdr_map == phdr_off + phdr_size); | |
244ffee7 | 2092 | } |
013dec1a ILT |
2093 | |
2094 | /* Place the section headers. */ | |
2095 | off = align_file_position (off); | |
2096 | i_ehdrp->e_shoff = off; | |
2097 | off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; | |
2098 | ||
32090b8e | 2099 | elf_tdata (abfd)->next_file_pos = off; |
013dec1a | 2100 | |
9783e04a | 2101 | return true; |
244ffee7 JK |
2102 | } |
2103 | ||
32090b8e KR |
2104 | static boolean |
2105 | prep_headers (abfd) | |
2106 | bfd *abfd; | |
2107 | { | |
32090b8e | 2108 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ |
1c6042ee | 2109 | Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ |
32090b8e | 2110 | Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ |
32090b8e | 2111 | int count; |
32090b8e | 2112 | struct strtab *shstrtab; |
244ffee7 | 2113 | |
32090b8e KR |
2114 | i_ehdrp = elf_elfheader (abfd); |
2115 | i_shdrp = elf_elfsections (abfd); | |
244ffee7 | 2116 | |
32090b8e | 2117 | shstrtab = bfd_new_strtab (abfd); |
b9d5cdf0 DM |
2118 | if (!shstrtab) |
2119 | return false; | |
1c6042ee | 2120 | |
32090b8e | 2121 | elf_shstrtab (abfd) = shstrtab; |
244ffee7 | 2122 | |
32090b8e KR |
2123 | i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; |
2124 | i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; | |
2125 | i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; | |
2126 | i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; | |
244ffee7 | 2127 | |
32090b8e KR |
2128 | i_ehdrp->e_ident[EI_CLASS] = ELFCLASS; |
2129 | i_ehdrp->e_ident[EI_DATA] = | |
2130 | abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB; | |
2131 | i_ehdrp->e_ident[EI_VERSION] = EV_CURRENT; | |
244ffee7 | 2132 | |
32090b8e KR |
2133 | for (count = EI_PAD; count < EI_NIDENT; count++) |
2134 | i_ehdrp->e_ident[count] = 0; | |
244ffee7 | 2135 | |
8af74670 ILT |
2136 | if ((abfd->flags & DYNAMIC) != 0) |
2137 | i_ehdrp->e_type = ET_DYN; | |
2138 | else if ((abfd->flags & EXEC_P) != 0) | |
2139 | i_ehdrp->e_type = ET_EXEC; | |
2140 | else | |
2141 | i_ehdrp->e_type = ET_REL; | |
2142 | ||
32090b8e | 2143 | switch (bfd_get_arch (abfd)) |
fce36137 | 2144 | { |
32090b8e KR |
2145 | case bfd_arch_unknown: |
2146 | i_ehdrp->e_machine = EM_NONE; | |
2147 | break; | |
2148 | case bfd_arch_sparc: | |
32090b8e KR |
2149 | #if ARCH_SIZE == 64 |
2150 | i_ehdrp->e_machine = EM_SPARC64; | |
5546cc7e KR |
2151 | #else |
2152 | i_ehdrp->e_machine = EM_SPARC; | |
32090b8e | 2153 | #endif |
32090b8e KR |
2154 | break; |
2155 | case bfd_arch_i386: | |
2156 | i_ehdrp->e_machine = EM_386; | |
2157 | break; | |
2158 | case bfd_arch_m68k: | |
2159 | i_ehdrp->e_machine = EM_68K; | |
2160 | break; | |
2161 | case bfd_arch_m88k: | |
2162 | i_ehdrp->e_machine = EM_88K; | |
2163 | break; | |
2164 | case bfd_arch_i860: | |
2165 | i_ehdrp->e_machine = EM_860; | |
2166 | break; | |
2167 | case bfd_arch_mips: /* MIPS Rxxxx */ | |
2168 | i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */ | |
2169 | break; | |
2170 | case bfd_arch_hppa: | |
459ae909 | 2171 | i_ehdrp->e_machine = EM_PARISC; |
32090b8e | 2172 | break; |
99ec1f66 ILT |
2173 | case bfd_arch_powerpc: |
2174 | i_ehdrp->e_machine = EM_CYGNUS_POWERPC; | |
2175 | break; | |
32090b8e KR |
2176 | /* also note that EM_M32, AT&T WE32100 is unknown to bfd */ |
2177 | default: | |
2178 | i_ehdrp->e_machine = EM_NONE; | |
fce36137 | 2179 | } |
32090b8e KR |
2180 | i_ehdrp->e_version = EV_CURRENT; |
2181 | i_ehdrp->e_ehsize = sizeof (Elf_External_Ehdr); | |
244ffee7 | 2182 | |
32090b8e KR |
2183 | /* no program header, for now. */ |
2184 | i_ehdrp->e_phoff = 0; | |
2185 | i_ehdrp->e_phentsize = 0; | |
2186 | i_ehdrp->e_phnum = 0; | |
244ffee7 | 2187 | |
32090b8e KR |
2188 | /* each bfd section is section header entry */ |
2189 | i_ehdrp->e_entry = bfd_get_start_address (abfd); | |
2190 | i_ehdrp->e_shentsize = sizeof (Elf_External_Shdr); | |
244ffee7 | 2191 | |
32090b8e KR |
2192 | /* if we're building an executable, we'll need a program header table */ |
2193 | if (abfd->flags & EXEC_P) | |
244ffee7 | 2194 | { |
300adb31 | 2195 | /* it all happens later */ |
32090b8e KR |
2196 | #if 0 |
2197 | i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); | |
244ffee7 | 2198 | |
32090b8e KR |
2199 | /* elf_build_phdrs() returns a (NULL-terminated) array of |
2200 | Elf_Internal_Phdrs */ | |
2201 | i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum); | |
2202 | i_ehdrp->e_phoff = outbase; | |
2203 | outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum; | |
2204 | #endif | |
244ffee7 | 2205 | } |
32090b8e | 2206 | else |
244ffee7 | 2207 | { |
32090b8e KR |
2208 | i_ehdrp->e_phentsize = 0; |
2209 | i_phdrp = 0; | |
2210 | i_ehdrp->e_phoff = 0; | |
244ffee7 JK |
2211 | } |
2212 | ||
32090b8e KR |
2213 | elf_tdata (abfd)->symtab_hdr.sh_name = bfd_add_to_strtab (abfd, shstrtab, |
2214 | ".symtab"); | |
2215 | elf_tdata (abfd)->strtab_hdr.sh_name = bfd_add_to_strtab (abfd, shstrtab, | |
2216 | ".strtab"); | |
2217 | elf_tdata (abfd)->shstrtab_hdr.sh_name = bfd_add_to_strtab (abfd, shstrtab, | |
2218 | ".shstrtab"); | |
6ec3bb6a ILT |
2219 | if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 |
2220 | || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 | |
2221 | || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) | |
2222 | return false; | |
2223 | ||
f035cc47 | 2224 | return true; |
244ffee7 JK |
2225 | } |
2226 | ||
b9d5cdf0 | 2227 | static boolean |
32090b8e KR |
2228 | swap_out_syms (abfd) |
2229 | bfd *abfd; | |
244ffee7 | 2230 | { |
9783e04a DM |
2231 | if (!elf_map_symbols (abfd)) |
2232 | return false; | |
244ffee7 | 2233 | |
32090b8e KR |
2234 | /* Dump out the symtabs. */ |
2235 | { | |
2236 | int symcount = bfd_get_symcount (abfd); | |
2237 | asymbol **syms = bfd_get_outsymbols (abfd); | |
2238 | struct strtab *stt = bfd_new_strtab (abfd); | |
2239 | Elf_Internal_Shdr *symtab_hdr; | |
2240 | Elf_Internal_Shdr *symstrtab_hdr; | |
2241 | Elf_External_Sym *outbound_syms; | |
2242 | int idx; | |
244ffee7 | 2243 | |
b9d5cdf0 DM |
2244 | if (!stt) |
2245 | return false; | |
32090b8e KR |
2246 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
2247 | symtab_hdr->sh_type = SHT_SYMTAB; | |
2248 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
2249 | symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); | |
2250 | symtab_hdr->sh_info = elf_num_locals (abfd) + 1; | |
fa15568a | 2251 | symtab_hdr->sh_addralign = FILE_ALIGN; |
244ffee7 | 2252 | |
32090b8e KR |
2253 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
2254 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
244ffee7 | 2255 | |
32090b8e KR |
2256 | outbound_syms = (Elf_External_Sym *) |
2257 | bfd_alloc (abfd, (1 + symcount) * sizeof (Elf_External_Sym)); | |
9783e04a DM |
2258 | if (!outbound_syms) |
2259 | { | |
d1ad85a6 | 2260 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
2261 | return false; |
2262 | } | |
32090b8e KR |
2263 | /* now generate the data (for "contents") */ |
2264 | { | |
2265 | /* Fill in zeroth symbol and swap it out. */ | |
2266 | Elf_Internal_Sym sym; | |
2267 | sym.st_name = 0; | |
2268 | sym.st_value = 0; | |
2269 | sym.st_size = 0; | |
2270 | sym.st_info = 0; | |
2271 | sym.st_other = 0; | |
2272 | sym.st_shndx = SHN_UNDEF; | |
2273 | elf_swap_symbol_out (abfd, &sym, outbound_syms); | |
244ffee7 | 2274 | } |
32090b8e KR |
2275 | for (idx = 0; idx < symcount; idx++) |
2276 | { | |
2277 | Elf_Internal_Sym sym; | |
2278 | bfd_vma value = syms[idx]->value; | |
71edd06d | 2279 | elf_symbol_type *type_ptr; |
244ffee7 | 2280 | |
32090b8e KR |
2281 | if (syms[idx]->flags & BSF_SECTION_SYM) |
2282 | /* Section symbols have no names. */ | |
2283 | sym.st_name = 0; | |
2284 | else | |
6ec3bb6a ILT |
2285 | { |
2286 | sym.st_name = bfd_add_to_strtab (abfd, stt, syms[idx]->name); | |
2287 | if (sym.st_name == (unsigned long) -1) | |
2288 | return false; | |
2289 | } | |
244ffee7 | 2290 | |
71edd06d ILT |
2291 | type_ptr = elf_symbol_from (abfd, syms[idx]); |
2292 | ||
32090b8e | 2293 | if (bfd_is_com_section (syms[idx]->section)) |
244ffee7 | 2294 | { |
32090b8e KR |
2295 | /* ELF common symbols put the alignment into the `value' field, |
2296 | and the size into the `size' field. This is backwards from | |
2297 | how BFD handles it, so reverse it here. */ | |
2298 | sym.st_size = value; | |
71edd06d | 2299 | sym.st_value = type_ptr ? type_ptr->internal_elf_sym.st_value : 16; |
d4fb8fce ILT |
2300 | sym.st_shndx = elf_section_from_bfd_section (abfd, |
2301 | syms[idx]->section); | |
244ffee7 JK |
2302 | } |
2303 | else | |
2304 | { | |
32090b8e KR |
2305 | asection *sec = syms[idx]->section; |
2306 | int shndx; | |
244ffee7 | 2307 | |
32090b8e KR |
2308 | if (sec->output_section) |
2309 | { | |
2310 | value += sec->output_offset; | |
2311 | sec = sec->output_section; | |
2312 | } | |
2313 | value += sec->vma; | |
2314 | sym.st_value = value; | |
e74034d8 | 2315 | sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; |
32090b8e KR |
2316 | sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec); |
2317 | if (shndx == -1) | |
2318 | { | |
2319 | asection *sec2; | |
2320 | /* Writing this would be a hell of a lot easier if we had | |
2321 | some decent documentation on bfd, and knew what to expect | |
2322 | of the library, and what to demand of applications. For | |
2323 | example, it appears that `objcopy' might not set the | |
2324 | section of a symbol to be a section that is actually in | |
2325 | the output file. */ | |
2326 | sec2 = bfd_get_section_by_name (abfd, sec->name); | |
850584ad | 2327 | BFD_ASSERT (sec2 != 0); |
32090b8e | 2328 | sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec2); |
850584ad | 2329 | BFD_ASSERT (shndx != -1); |
32090b8e KR |
2330 | } |
2331 | } | |
244ffee7 | 2332 | |
32090b8e | 2333 | if (bfd_is_com_section (syms[idx]->section)) |
38a5f510 | 2334 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_OBJECT); |
badd23e3 | 2335 | else if (bfd_is_und_section (syms[idx]->section)) |
32090b8e | 2336 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_NOTYPE); |
32090b8e KR |
2337 | else if (syms[idx]->flags & BSF_SECTION_SYM) |
2338 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
2339 | else if (syms[idx]->flags & BSF_FILE) | |
2340 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
d24928c0 | 2341 | else |
32090b8e | 2342 | { |
d24928c0 KR |
2343 | int bind = STB_LOCAL; |
2344 | int type = STT_OBJECT; | |
2345 | unsigned int flags = syms[idx]->flags; | |
2346 | ||
2347 | if (flags & BSF_LOCAL) | |
2348 | bind = STB_LOCAL; | |
2349 | else if (flags & BSF_WEAK) | |
2350 | bind = STB_WEAK; | |
2351 | else if (flags & BSF_GLOBAL) | |
2352 | bind = STB_GLOBAL; | |
2353 | ||
2354 | if (flags & BSF_FUNCTION) | |
2355 | type = STT_FUNC; | |
2356 | ||
2357 | sym.st_info = ELF_ST_INFO (bind, type); | |
32090b8e | 2358 | } |
244ffee7 | 2359 | |
32090b8e KR |
2360 | sym.st_other = 0; |
2361 | elf_swap_symbol_out (abfd, &sym, | |
d24928c0 KR |
2362 | (outbound_syms |
2363 | + elf_sym_extra (abfd)[idx].elf_sym_num)); | |
32090b8e KR |
2364 | } |
2365 | ||
2366 | symtab_hdr->contents = (PTR) outbound_syms; | |
2367 | symstrtab_hdr->contents = (PTR) stt->tab; | |
2368 | symstrtab_hdr->sh_size = stt->length; | |
2369 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
2370 | ||
2371 | symstrtab_hdr->sh_flags = 0; | |
2372 | symstrtab_hdr->sh_addr = 0; | |
2373 | symstrtab_hdr->sh_entsize = 0; | |
2374 | symstrtab_hdr->sh_link = 0; | |
2375 | symstrtab_hdr->sh_info = 0; | |
062189c6 | 2376 | symstrtab_hdr->sh_addralign = 1; |
32090b8e KR |
2377 | symstrtab_hdr->size = 0; |
2378 | } | |
2379 | ||
b9d5cdf0 | 2380 | return true; |
244ffee7 JK |
2381 | } |
2382 | ||
32090b8e KR |
2383 | static boolean |
2384 | write_shdrs_and_ehdr (abfd) | |
2385 | bfd *abfd; | |
244ffee7 | 2386 | { |
32090b8e KR |
2387 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
2388 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
32090b8e KR |
2389 | Elf_External_Shdr *x_shdrp; /* Section header table, external form */ |
2390 | Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ | |
68241b2b | 2391 | unsigned int count; |
32090b8e | 2392 | struct strtab *shstrtab; |
244ffee7 | 2393 | |
32090b8e KR |
2394 | i_ehdrp = elf_elfheader (abfd); |
2395 | i_shdrp = elf_elfsections (abfd); | |
2396 | shstrtab = elf_shstrtab (abfd); | |
2397 | ||
2398 | /* swap the header before spitting it out... */ | |
2399 | ||
2400 | #if DEBUG & 1 | |
2401 | elf_debug_file (i_ehdrp); | |
244ffee7 | 2402 | #endif |
32090b8e | 2403 | elf_swap_ehdr_out (abfd, i_ehdrp, &x_ehdr); |
4002f18a ILT |
2404 | if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0 |
2405 | || (bfd_write ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) | |
2406 | != sizeof (x_ehdr))) | |
2407 | return false; | |
244ffee7 | 2408 | |
32090b8e KR |
2409 | /* at this point we've concocted all the ELF sections... */ |
2410 | x_shdrp = (Elf_External_Shdr *) | |
2411 | bfd_alloc (abfd, sizeof (*x_shdrp) * (i_ehdrp->e_shnum)); | |
2412 | if (!x_shdrp) | |
2413 | { | |
d1ad85a6 | 2414 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
2415 | return false; |
2416 | } | |
2417 | ||
2418 | for (count = 0; count < i_ehdrp->e_shnum; count++) | |
2419 | { | |
2420 | #if DEBUG & 2 | |
2421 | elf_debug_section (shstrtab->tab + i_shdrp[count]->sh_name, count, | |
2422 | i_shdrp[count]); | |
244ffee7 | 2423 | #endif |
32090b8e KR |
2424 | elf_swap_shdr_out (abfd, i_shdrp[count], x_shdrp + count); |
2425 | } | |
4002f18a ILT |
2426 | if (bfd_seek (abfd, (file_ptr) i_ehdrp->e_shoff, SEEK_SET) != 0 |
2427 | || (bfd_write ((PTR) x_shdrp, sizeof (*x_shdrp), i_ehdrp->e_shnum, abfd) | |
d909628b | 2428 | != sizeof (*x_shdrp) * i_ehdrp->e_shnum)) |
4002f18a ILT |
2429 | return false; |
2430 | ||
32090b8e | 2431 | /* need to dump the string table too... */ |
244ffee7 | 2432 | |
32090b8e KR |
2433 | return true; |
2434 | } | |
244ffee7 | 2435 | |
013dec1a ILT |
2436 | /* Assign file positions for all the reloc sections which are not part |
2437 | of the loadable file image. */ | |
2438 | ||
32090b8e KR |
2439 | static void |
2440 | assign_file_positions_for_relocs (abfd) | |
2441 | bfd *abfd; | |
2442 | { | |
013dec1a | 2443 | file_ptr off; |
68241b2b | 2444 | unsigned int i; |
013dec1a ILT |
2445 | Elf_Internal_Shdr **shdrpp; |
2446 | ||
2447 | off = elf_tdata (abfd)->next_file_pos; | |
2448 | ||
2449 | for (i = 1, shdrpp = elf_elfsections (abfd) + 1; | |
2450 | i < elf_elfheader (abfd)->e_shnum; | |
2451 | i++, shdrpp++) | |
32090b8e | 2452 | { |
013dec1a ILT |
2453 | Elf_Internal_Shdr *shdrp; |
2454 | ||
2455 | shdrp = *shdrpp; | |
2456 | if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) | |
2457 | && shdrp->sh_offset == -1) | |
2458 | off = assign_file_position_for_section (shdrp, off, true); | |
32090b8e | 2459 | } |
013dec1a | 2460 | |
1c6042ee | 2461 | elf_tdata (abfd)->next_file_pos = off; |
32090b8e | 2462 | } |
244ffee7 | 2463 | |
32090b8e | 2464 | boolean |
1c6042ee ILT |
2465 | NAME(bfd_elf,write_object_contents) (abfd) |
2466 | bfd *abfd; | |
32090b8e | 2467 | { |
062189c6 | 2468 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
32090b8e KR |
2469 | Elf_Internal_Ehdr *i_ehdrp; |
2470 | Elf_Internal_Shdr **i_shdrp; | |
68241b2b | 2471 | unsigned int count; |
244ffee7 | 2472 | |
6ec3bb6a ILT |
2473 | if (! abfd->output_has_begun |
2474 | && ! elf_compute_section_file_positions (abfd, | |
2475 | (struct bfd_link_info *) NULL)) | |
2476 | return false; | |
244ffee7 | 2477 | |
32090b8e KR |
2478 | i_shdrp = elf_elfsections (abfd); |
2479 | i_ehdrp = elf_elfheader (abfd); | |
244ffee7 | 2480 | |
32090b8e | 2481 | bfd_map_over_sections (abfd, write_relocs, (PTR) 0); |
32090b8e | 2482 | assign_file_positions_for_relocs (abfd); |
244ffee7 | 2483 | |
32090b8e | 2484 | /* After writing the headers, we need to write the sections too... */ |
062189c6 | 2485 | for (count = 1; count < i_ehdrp->e_shnum; count++) |
e621c5cc | 2486 | { |
e621c5cc ILT |
2487 | if (bed->elf_backend_section_processing) |
2488 | (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); | |
2489 | if (i_shdrp[count]->contents) | |
2490 | { | |
4002f18a ILT |
2491 | if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 |
2492 | || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size, | |
2493 | 1, abfd) | |
2494 | != i_shdrp[count]->sh_size)) | |
2495 | return false; | |
e621c5cc ILT |
2496 | } |
2497 | } | |
062189c6 ILT |
2498 | |
2499 | if (bed->elf_backend_final_write_processing) | |
71edd06d | 2500 | (*bed->elf_backend_final_write_processing) (abfd, NULL); |
062189c6 | 2501 | |
32090b8e KR |
2502 | return write_shdrs_and_ehdr (abfd); |
2503 | } | |
244ffee7 | 2504 | |
32090b8e KR |
2505 | /* Given an index of a section, retrieve a pointer to it. Note |
2506 | that for our purposes, sections are indexed by {1, 2, ...} with | |
2507 | 0 being an illegal index. */ | |
244ffee7 | 2508 | |
32090b8e KR |
2509 | /* In the original, each ELF section went into exactly one BFD |
2510 | section. This doesn't really make sense, so we need a real mapping. | |
2511 | The mapping has to hide in the Elf_Internal_Shdr since asection | |
2512 | doesn't have anything like a tdata field... */ | |
244ffee7 | 2513 | |
2e03ce18 | 2514 | static asection * |
1c6042ee ILT |
2515 | section_from_elf_index (abfd, index) |
2516 | bfd *abfd; | |
2517 | unsigned int index; | |
32090b8e | 2518 | { |
badd23e3 | 2519 | /* @@ Is bfd_com_section_ptr really correct in all the places it could |
32090b8e | 2520 | be returned from this routine? */ |
244ffee7 | 2521 | |
32090b8e | 2522 | if (index == SHN_ABS) |
badd23e3 | 2523 | return bfd_com_section_ptr; /* not abs? */ |
32090b8e | 2524 | if (index == SHN_COMMON) |
badd23e3 | 2525 | return bfd_com_section_ptr; |
244ffee7 | 2526 | |
32090b8e | 2527 | if (index > elf_elfheader (abfd)->e_shnum) |
2e03ce18 | 2528 | return NULL; |
244ffee7 JK |
2529 | |
2530 | { | |
32090b8e | 2531 | Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[index]; |
244ffee7 | 2532 | |
32090b8e | 2533 | switch (hdr->sh_type) |
244ffee7 | 2534 | { |
32090b8e KR |
2535 | /* ELF sections that map to BFD sections */ |
2536 | case SHT_PROGBITS: | |
2537 | case SHT_NOBITS: | |
013dec1a ILT |
2538 | case SHT_HASH: |
2539 | case SHT_DYNAMIC: | |
2e03ce18 ILT |
2540 | if (hdr->rawdata == NULL) |
2541 | { | |
2542 | if (! bfd_section_from_shdr (abfd, index)) | |
2543 | return NULL; | |
2544 | } | |
32090b8e | 2545 | return (struct sec *) hdr->rawdata; |
244ffee7 | 2546 | |
32090b8e | 2547 | default: |
badd23e3 | 2548 | return bfd_abs_section_ptr; |
244ffee7 | 2549 | } |
244ffee7 | 2550 | } |
32090b8e | 2551 | } |
244ffee7 | 2552 | |
32090b8e KR |
2553 | /* given a section, search the header to find them... */ |
2554 | static int | |
1c6042ee ILT |
2555 | elf_section_from_bfd_section (abfd, asect) |
2556 | bfd *abfd; | |
2557 | struct sec *asect; | |
32090b8e KR |
2558 | { |
2559 | Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd); | |
2560 | int index; | |
2561 | Elf_Internal_Shdr *hdr; | |
2562 | int maxindex = elf_elfheader (abfd)->e_shnum; | |
244ffee7 | 2563 | |
badd23e3 ILT |
2564 | if (asect->owner == NULL) |
2565 | { | |
2566 | if (bfd_is_abs_section (asect)) | |
2567 | return SHN_ABS; | |
2568 | if (bfd_is_com_section (asect)) | |
2569 | return SHN_COMMON; | |
2570 | if (bfd_is_und_section (asect)) | |
2571 | return SHN_UNDEF; | |
2572 | return -1; | |
2573 | } | |
2574 | ||
2575 | BFD_ASSERT (asect->owner == abfd); | |
244ffee7 | 2576 | |
32090b8e KR |
2577 | for (index = 0; index < maxindex; index++) |
2578 | { | |
2579 | hdr = i_shdrp[index]; | |
2580 | switch (hdr->sh_type) | |
2581 | { | |
2582 | /* ELF sections that map to BFD sections */ | |
2583 | case SHT_PROGBITS: | |
2584 | case SHT_NOBITS: | |
e621c5cc | 2585 | case SHT_NOTE: |
013dec1a ILT |
2586 | case SHT_HASH: |
2587 | case SHT_DYNAMIC: | |
fa15568a | 2588 | case SHT_DYNSYM: |
32090b8e KR |
2589 | if (hdr->rawdata) |
2590 | { | |
2591 | if (((struct sec *) (hdr->rawdata)) == asect) | |
2592 | return index; | |
2593 | } | |
2594 | break; | |
01383fb4 | 2595 | |
fa15568a ILT |
2596 | case SHT_REL: |
2597 | case SHT_RELA: | |
2598 | /* We sometimes map a reloc section to a BFD section. */ | |
e6667b2b | 2599 | if (hdr->sh_link != elf_onesymtab (abfd) |
fa15568a ILT |
2600 | && (asection *) hdr->rawdata == asect) |
2601 | return index; | |
2602 | break; | |
2603 | ||
01383fb4 | 2604 | case SHT_STRTAB: |
fa15568a ILT |
2605 | /* We map most string tables to BFD sections. */ |
2606 | if (index != elf_elfheader (abfd)->e_shstrndx | |
2607 | && index != elf_onesymtab (abfd) | |
2608 | && (asection *) hdr->rawdata == asect) | |
2609 | return index; | |
2610 | ||
01383fb4 | 2611 | /* FALL THROUGH */ |
32090b8e | 2612 | default: |
e621c5cc ILT |
2613 | { |
2614 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
2615 | ||
2616 | if (bed->elf_backend_section_from_bfd_section) | |
f035cc47 ILT |
2617 | { |
2618 | int retval; | |
2619 | ||
2620 | retval = index; | |
2621 | if ((*bed->elf_backend_section_from_bfd_section) | |
2622 | (abfd, hdr, asect, &retval)) | |
2623 | return retval; | |
2624 | } | |
e621c5cc | 2625 | } |
32090b8e KR |
2626 | break; |
2627 | } | |
2628 | } | |
2629 | return -1; | |
2630 | } | |
244ffee7 | 2631 | |
32090b8e KR |
2632 | /* given a symbol, return the bfd index for that symbol. */ |
2633 | static int | |
1c6042ee ILT |
2634 | elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr) |
2635 | bfd *abfd; | |
2636 | struct symbol_cache_entry **asym_ptr_ptr; | |
32090b8e KR |
2637 | { |
2638 | struct symbol_cache_entry *asym_ptr = *asym_ptr_ptr; | |
32090b8e | 2639 | int idx; |
d24928c0 | 2640 | flagword flags = asym_ptr->flags; |
32090b8e | 2641 | |
d24928c0 KR |
2642 | /* When gas creates relocations against local labels, it creates its |
2643 | own symbol for the section, but does put the symbol into the | |
e621c5cc ILT |
2644 | symbol chain, so udata is 0. When the linker is generating |
2645 | relocatable output, this section symbol may be for one of the | |
2646 | input sections rather than the output section. */ | |
d24928c0 KR |
2647 | if (asym_ptr->udata == (PTR) 0 |
2648 | && (flags & BSF_SECTION_SYM) | |
e621c5cc ILT |
2649 | && asym_ptr->section) |
2650 | { | |
2651 | int indx; | |
2652 | ||
2653 | if (asym_ptr->section->output_section != NULL) | |
2654 | indx = asym_ptr->section->output_section->index; | |
2655 | else | |
2656 | indx = asym_ptr->section->index; | |
2657 | if (elf_section_syms (abfd)[indx]) | |
2658 | asym_ptr->udata = elf_section_syms (abfd)[indx]->udata; | |
01383fb4 | 2659 | } |
e621c5cc | 2660 | |
d24928c0 | 2661 | if (asym_ptr->udata) |
1c6042ee | 2662 | idx = ((Elf_Sym_Extra *) asym_ptr->udata)->elf_sym_num; |
d24928c0 | 2663 | else |
32090b8e | 2664 | { |
32090b8e KR |
2665 | abort (); |
2666 | } | |
244ffee7 | 2667 | |
32090b8e | 2668 | #if DEBUG & 4 |
244ffee7 | 2669 | { |
244ffee7 | 2670 | |
32090b8e | 2671 | fprintf (stderr, |
d24928c0 | 2672 | "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx %s\n", |
1c6042ee | 2673 | (long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags)); |
32090b8e KR |
2674 | fflush (stderr); |
2675 | } | |
2676 | #endif | |
2677 | ||
2678 | return idx; | |
2679 | } | |
2680 | ||
cb71adf1 PS |
2681 | static long |
2682 | elf_slurp_symbol_table (abfd, symptrs, dynamic) | |
1c6042ee ILT |
2683 | bfd *abfd; |
2684 | asymbol **symptrs; /* Buffer for generated bfd symbols */ | |
cb71adf1 | 2685 | boolean dynamic; |
32090b8e | 2686 | { |
cb71adf1 | 2687 | Elf_Internal_Shdr *hdr; |
7d8aaf36 | 2688 | long symcount; /* Number of external ELF symbols */ |
32090b8e KR |
2689 | elf_symbol_type *sym; /* Pointer to current bfd symbol */ |
2690 | elf_symbol_type *symbase; /* Buffer for generated bfd symbols */ | |
2691 | Elf_Internal_Sym i_sym; | |
80425e6c | 2692 | Elf_External_Sym *x_symp = NULL; |
32090b8e | 2693 | |
32090b8e KR |
2694 | /* Read each raw ELF symbol, converting from external ELF form to |
2695 | internal ELF form, and then using the information to create a | |
2696 | canonical bfd symbol table entry. | |
244ffee7 | 2697 | |
32090b8e KR |
2698 | Note that we allocate the initial bfd canonical symbol buffer |
2699 | based on a one-to-one mapping of the ELF symbols to canonical | |
2700 | symbols. We actually use all the ELF symbols, so there will be no | |
2701 | space left over at the end. When we have all the symbols, we | |
2702 | build the caller's pointer vector. */ | |
244ffee7 | 2703 | |
cb71adf1 PS |
2704 | if (dynamic) |
2705 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
2706 | else | |
2707 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
32090b8e | 2708 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1) |
cb71adf1 | 2709 | return -1; |
244ffee7 | 2710 | |
32090b8e | 2711 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
244ffee7 | 2712 | |
7d8aaf36 ILT |
2713 | if (symcount == 0) |
2714 | sym = symbase = NULL; | |
2715 | else | |
244ffee7 | 2716 | { |
7d8aaf36 | 2717 | long i; |
244ffee7 | 2718 | |
7d8aaf36 | 2719 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1) |
cb71adf1 | 2720 | return -1; |
7d8aaf36 ILT |
2721 | |
2722 | symbase = ((elf_symbol_type *) | |
2723 | bfd_zalloc (abfd, symcount * sizeof (elf_symbol_type))); | |
2724 | if (symbase == (elf_symbol_type *) NULL) | |
32090b8e | 2725 | { |
7d8aaf36 | 2726 | bfd_set_error (bfd_error_no_memory); |
cb71adf1 | 2727 | return -1; |
32090b8e | 2728 | } |
7d8aaf36 ILT |
2729 | sym = symbase; |
2730 | ||
2731 | /* Temporarily allocate room for the raw ELF symbols. */ | |
2732 | x_symp = ((Elf_External_Sym *) | |
80425e6c | 2733 | malloc (symcount * sizeof (Elf_External_Sym))); |
25057836 | 2734 | if (x_symp == NULL && symcount != 0) |
80425e6c JK |
2735 | { |
2736 | bfd_set_error (bfd_error_no_memory); | |
2737 | goto error_return; | |
2738 | } | |
7d8aaf36 ILT |
2739 | |
2740 | if (bfd_read ((PTR) x_symp, sizeof (Elf_External_Sym), symcount, abfd) | |
2741 | != symcount * sizeof (Elf_External_Sym)) | |
25057836 | 2742 | goto error_return; |
7d8aaf36 ILT |
2743 | /* Skip first symbol, which is a null dummy. */ |
2744 | for (i = 1; i < symcount; i++) | |
32090b8e | 2745 | { |
7d8aaf36 ILT |
2746 | elf_swap_symbol_in (abfd, x_symp + i, &i_sym); |
2747 | memcpy (&sym->internal_elf_sym, &i_sym, sizeof (Elf_Internal_Sym)); | |
2748 | #ifdef ELF_KEEP_EXTSYM | |
2749 | memcpy (&sym->native_elf_sym, x_symp + i, sizeof (Elf_External_Sym)); | |
2750 | #endif | |
2751 | sym->symbol.the_bfd = abfd; | |
244ffee7 | 2752 | |
7d8aaf36 ILT |
2753 | sym->symbol.name = elf_string_from_elf_section (abfd, hdr->sh_link, |
2754 | i_sym.st_name); | |
244ffee7 | 2755 | |
7d8aaf36 | 2756 | sym->symbol.value = i_sym.st_value; |
244ffee7 | 2757 | |
6ec3bb6a | 2758 | if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERVE) |
7d8aaf36 ILT |
2759 | { |
2760 | sym->symbol.section = section_from_elf_index (abfd, | |
2761 | i_sym.st_shndx); | |
2e03ce18 | 2762 | if (sym->symbol.section == NULL) |
013dec1a ILT |
2763 | { |
2764 | /* This symbol is in a section for which we did not | |
2765 | create a BFD section. Just use bfd_abs_section, | |
2766 | although it is wrong. FIXME. */ | |
badd23e3 | 2767 | sym->symbol.section = bfd_abs_section_ptr; |
013dec1a | 2768 | } |
7d8aaf36 ILT |
2769 | } |
2770 | else if (i_sym.st_shndx == SHN_ABS) | |
2771 | { | |
badd23e3 | 2772 | sym->symbol.section = bfd_abs_section_ptr; |
7d8aaf36 ILT |
2773 | } |
2774 | else if (i_sym.st_shndx == SHN_COMMON) | |
2775 | { | |
badd23e3 | 2776 | sym->symbol.section = bfd_com_section_ptr; |
7d8aaf36 ILT |
2777 | /* Elf puts the alignment into the `value' field, and |
2778 | the size into the `size' field. BFD wants to see the | |
2779 | size in the value field, and doesn't care (at the | |
2780 | moment) about the alignment. */ | |
2781 | sym->symbol.value = i_sym.st_size; | |
2782 | } | |
2783 | else if (i_sym.st_shndx == SHN_UNDEF) | |
2784 | { | |
badd23e3 | 2785 | sym->symbol.section = bfd_und_section_ptr; |
7d8aaf36 ILT |
2786 | } |
2787 | else | |
badd23e3 | 2788 | sym->symbol.section = bfd_abs_section_ptr; |
300adb31 | 2789 | |
7d8aaf36 | 2790 | sym->symbol.value -= sym->symbol.section->vma; |
244ffee7 | 2791 | |
7d8aaf36 ILT |
2792 | switch (ELF_ST_BIND (i_sym.st_info)) |
2793 | { | |
2794 | case STB_LOCAL: | |
2795 | sym->symbol.flags |= BSF_LOCAL; | |
2796 | break; | |
2797 | case STB_GLOBAL: | |
2798 | sym->symbol.flags |= BSF_GLOBAL; | |
2799 | break; | |
2800 | case STB_WEAK: | |
2801 | sym->symbol.flags |= BSF_WEAK; | |
2802 | break; | |
2803 | } | |
2804 | ||
2805 | switch (ELF_ST_TYPE (i_sym.st_info)) | |
2806 | { | |
2807 | case STT_SECTION: | |
2808 | sym->symbol.flags |= BSF_SECTION_SYM | BSF_DEBUGGING; | |
2809 | break; | |
2810 | case STT_FILE: | |
2811 | sym->symbol.flags |= BSF_FILE | BSF_DEBUGGING; | |
2812 | break; | |
2813 | case STT_FUNC: | |
2814 | sym->symbol.flags |= BSF_FUNCTION; | |
2815 | break; | |
2816 | } | |
2817 | ||
cb71adf1 PS |
2818 | if (dynamic) |
2819 | sym->symbol.flags |= BSF_DYNAMIC; | |
2820 | ||
7d8aaf36 ILT |
2821 | /* Do some backend-specific processing on this symbol. */ |
2822 | { | |
2823 | struct elf_backend_data *ebd = get_elf_backend_data (abfd); | |
2824 | if (ebd->elf_backend_symbol_processing) | |
2825 | (*ebd->elf_backend_symbol_processing) (abfd, &sym->symbol); | |
2826 | } | |
2827 | ||
2828 | sym++; | |
2829 | } | |
244ffee7 JK |
2830 | } |
2831 | ||
e621c5cc ILT |
2832 | /* Do some backend-specific processing on this symbol table. */ |
2833 | { | |
2834 | struct elf_backend_data *ebd = get_elf_backend_data (abfd); | |
2835 | if (ebd->elf_backend_symbol_table_processing) | |
2836 | (*ebd->elf_backend_symbol_table_processing) (abfd, symbase, symcount); | |
2837 | } | |
244ffee7 | 2838 | |
e621c5cc | 2839 | /* We rely on the zalloc to clear out the final symbol entry. */ |
244ffee7 | 2840 | |
cb71adf1 | 2841 | symcount = sym - symbase; |
32090b8e KR |
2842 | |
2843 | /* Fill in the user's symbol pointer vector if needed. */ | |
2844 | if (symptrs) | |
244ffee7 | 2845 | { |
cb71adf1 PS |
2846 | long l = symcount; |
2847 | ||
32090b8e | 2848 | sym = symbase; |
cb71adf1 | 2849 | while (l-- > 0) |
244ffee7 | 2850 | { |
32090b8e KR |
2851 | *symptrs++ = &sym->symbol; |
2852 | sym++; | |
244ffee7 | 2853 | } |
32090b8e | 2854 | *symptrs = 0; /* Final null pointer */ |
244ffee7 JK |
2855 | } |
2856 | ||
80425e6c JK |
2857 | if (x_symp != NULL) |
2858 | free (x_symp); | |
cb71adf1 | 2859 | return symcount; |
1c6042ee | 2860 | error_return: |
80425e6c JK |
2861 | if (x_symp != NULL) |
2862 | free (x_symp); | |
cb71adf1 | 2863 | return -1; |
244ffee7 JK |
2864 | } |
2865 | ||
32090b8e | 2866 | /* Return the number of bytes required to hold the symtab vector. |
244ffee7 | 2867 | |
32090b8e KR |
2868 | Note that we base it on the count plus 1, since we will null terminate |
2869 | the vector allocated based on this size. However, the ELF symbol table | |
2870 | always has a dummy entry as symbol #0, so it ends up even. */ | |
244ffee7 | 2871 | |
326e32d7 | 2872 | long |
1c6042ee ILT |
2873 | elf_get_symtab_upper_bound (abfd) |
2874 | bfd *abfd; | |
244ffee7 | 2875 | { |
326e32d7 ILT |
2876 | long symcount; |
2877 | long symtab_size; | |
1c6042ee | 2878 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; |
326e32d7 | 2879 | |
32090b8e | 2880 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
d6439785 | 2881 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); |
244ffee7 | 2882 | |
32090b8e KR |
2883 | return symtab_size; |
2884 | } | |
244ffee7 | 2885 | |
cb71adf1 PS |
2886 | long |
2887 | elf_get_dynamic_symtab_upper_bound (abfd) | |
2888 | bfd *abfd; | |
2889 | { | |
2890 | long symcount; | |
2891 | long symtab_size; | |
2892 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
2893 | ||
f9779aad ILT |
2894 | if (elf_dynsymtab (abfd) == 0) |
2895 | { | |
2896 | bfd_set_error (bfd_error_invalid_operation); | |
2897 | return -1; | |
2898 | } | |
2899 | ||
cb71adf1 PS |
2900 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
2901 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); | |
2902 | ||
2903 | return symtab_size; | |
2904 | } | |
2905 | ||
326e32d7 | 2906 | long |
32090b8e KR |
2907 | elf_get_reloc_upper_bound (abfd, asect) |
2908 | bfd *abfd; | |
2909 | sec_ptr asect; | |
2910 | { | |
51fc377b | 2911 | return (asect->reloc_count + 1) * sizeof (arelent *); |
244ffee7 JK |
2912 | } |
2913 | ||
ea617174 ILT |
2914 | /* Read in and swap the external relocs. */ |
2915 | ||
32090b8e | 2916 | static boolean |
ea617174 | 2917 | elf_slurp_reloc_table (abfd, asect, symbols) |
1c6042ee | 2918 | bfd *abfd; |
ea617174 | 2919 | asection *asect; |
1c6042ee | 2920 | asymbol **symbols; |
244ffee7 | 2921 | { |
ea617174 ILT |
2922 | struct elf_backend_data * const ebd = get_elf_backend_data (abfd); |
2923 | struct bfd_elf_section_data * const d = elf_section_data (asect); | |
2924 | PTR allocated = NULL; | |
2925 | bfd_byte *native_relocs; | |
2926 | arelent *relents; | |
2927 | arelent *relent; | |
2928 | unsigned int i; | |
2929 | int entsize; | |
244ffee7 | 2930 | |
d510fd89 ILT |
2931 | if (asect->relocation != NULL |
2932 | || (asect->flags & SEC_RELOC) == 0 | |
2933 | || asect->reloc_count == 0) | |
32090b8e | 2934 | return true; |
244ffee7 | 2935 | |
ea617174 ILT |
2936 | BFD_ASSERT (asect->rel_filepos == d->rel_hdr.sh_offset |
2937 | && (asect->reloc_count | |
2938 | == d->rel_hdr.sh_size / d->rel_hdr.sh_entsize)); | |
2939 | ||
374d2ef9 ILT |
2940 | allocated = (PTR) malloc (d->rel_hdr.sh_size); |
2941 | if (allocated == NULL) | |
9783e04a | 2942 | { |
374d2ef9 ILT |
2943 | bfd_set_error (bfd_error_no_memory); |
2944 | goto error_return; | |
2945 | } | |
ea617174 | 2946 | |
374d2ef9 ILT |
2947 | if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0 |
2948 | || (bfd_read (allocated, 1, d->rel_hdr.sh_size, abfd) | |
2949 | != d->rel_hdr.sh_size)) | |
2950 | goto error_return; | |
244ffee7 | 2951 | |
374d2ef9 | 2952 | native_relocs = (bfd_byte *) allocated; |
32090b8e | 2953 | |
ea617174 ILT |
2954 | relents = ((arelent *) |
2955 | bfd_alloc (abfd, asect->reloc_count * sizeof (arelent))); | |
2956 | if (relents == NULL) | |
6a3eb9b6 | 2957 | { |
d1ad85a6 | 2958 | bfd_set_error (bfd_error_no_memory); |
ea617174 | 2959 | goto error_return; |
6a3eb9b6 | 2960 | } |
244ffee7 | 2961 | |
ea617174 ILT |
2962 | entsize = d->rel_hdr.sh_entsize; |
2963 | BFD_ASSERT (entsize == sizeof (Elf_External_Rel) | |
2964 | || entsize == sizeof (Elf_External_Rela)); | |
244ffee7 | 2965 | |
ea617174 ILT |
2966 | for (i = 0, relent = relents; |
2967 | i < asect->reloc_count; | |
2968 | i++, relent++, native_relocs += entsize) | |
2969 | { | |
2970 | Elf_Internal_Rela rela; | |
2971 | Elf_Internal_Rel rel; | |
244ffee7 | 2972 | |
ea617174 ILT |
2973 | if (entsize == sizeof (Elf_External_Rela)) |
2974 | elf_swap_reloca_in (abfd, (Elf_External_Rela *) native_relocs, &rela); | |
32090b8e KR |
2975 | else |
2976 | { | |
ea617174 ILT |
2977 | elf_swap_reloc_in (abfd, (Elf_External_Rel *) native_relocs, &rel); |
2978 | rela.r_offset = rel.r_offset; | |
2979 | rela.r_info = rel.r_info; | |
2980 | rela.r_addend = 0; | |
32090b8e | 2981 | } |
7b8106b4 | 2982 | |
ea617174 ILT |
2983 | /* The address of an ELF reloc is section relative for an object |
2984 | file, and absolute for an executable file or shared library. | |
2985 | The address of a BFD reloc is always section relative. */ | |
2986 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) | |
2987 | relent->address = rela.r_offset; | |
2988 | else | |
2989 | relent->address = rela.r_offset - asect->vma; | |
2990 | ||
2991 | if (ELF_R_SYM (rela.r_info) == 0) | |
2992 | relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; | |
7b8106b4 ILT |
2993 | else |
2994 | { | |
ea617174 | 2995 | asymbol **ps, *s; |
7b8106b4 | 2996 | |
ea617174 ILT |
2997 | ps = symbols + ELF_R_SYM (rela.r_info) - 1; |
2998 | s = *ps; | |
7b8106b4 | 2999 | |
ea617174 ILT |
3000 | /* Canonicalize ELF section symbols. FIXME: Why? */ |
3001 | if ((s->flags & BSF_SECTION_SYM) == 0) | |
3002 | relent->sym_ptr_ptr = ps; | |
3003 | else | |
3004 | relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; | |
7b8106b4 | 3005 | } |
244ffee7 | 3006 | |
ea617174 ILT |
3007 | relent->addend = rela.r_addend; |
3008 | ||
3009 | if (entsize == sizeof (Elf_External_Rela)) | |
3010 | (*ebd->elf_info_to_howto) (abfd, relent, &rela); | |
3011 | else | |
3012 | (*ebd->elf_info_to_howto_rel) (abfd, relent, &rel); | |
32090b8e | 3013 | } |
244ffee7 | 3014 | |
ea617174 ILT |
3015 | asect->relocation = relents; |
3016 | ||
3017 | if (allocated != NULL) | |
3018 | free (allocated); | |
3019 | ||
32090b8e | 3020 | return true; |
ea617174 ILT |
3021 | |
3022 | error_return: | |
3023 | if (allocated != NULL) | |
3024 | free (allocated); | |
3025 | return false; | |
32090b8e | 3026 | } |
238ac6ec | 3027 | |
32090b8e KR |
3028 | #ifdef DEBUG |
3029 | static void | |
3030 | elf_debug_section (str, num, hdr) | |
3031 | char *str; | |
3032 | int num; | |
3033 | Elf_Internal_Shdr *hdr; | |
3034 | { | |
3035 | fprintf (stderr, "\nSection#%d '%s' 0x%.8lx\n", num, str, (long) hdr); | |
3036 | fprintf (stderr, | |
3037 | "sh_name = %ld\tsh_type = %ld\tsh_flags = %ld\n", | |
3038 | (long) hdr->sh_name, | |
3039 | (long) hdr->sh_type, | |
3040 | (long) hdr->sh_flags); | |
3041 | fprintf (stderr, | |
3042 | "sh_addr = %ld\tsh_offset = %ld\tsh_size = %ld\n", | |
3043 | (long) hdr->sh_addr, | |
3044 | (long) hdr->sh_offset, | |
3045 | (long) hdr->sh_size); | |
3046 | fprintf (stderr, | |
3047 | "sh_link = %ld\tsh_info = %ld\tsh_addralign = %ld\n", | |
3048 | (long) hdr->sh_link, | |
3049 | (long) hdr->sh_info, | |
3050 | (long) hdr->sh_addralign); | |
3051 | fprintf (stderr, "sh_entsize = %ld\n", | |
3052 | (long) hdr->sh_entsize); | |
3053 | fprintf (stderr, "rawdata = 0x%.8lx\n", (long) hdr->rawdata); | |
3054 | fprintf (stderr, "contents = 0x%.8lx\n", (long) hdr->contents); | |
3055 | fprintf (stderr, "size = %ld\n", (long) hdr->size); | |
3056 | fflush (stderr); | |
3057 | } | |
244ffee7 | 3058 | |
32090b8e KR |
3059 | static void |
3060 | elf_debug_file (ehdrp) | |
3061 | Elf_Internal_Ehdr *ehdrp; | |
3062 | { | |
3063 | fprintf (stderr, "e_entry = 0x%.8lx\n", (long) ehdrp->e_entry); | |
3064 | fprintf (stderr, "e_phoff = %ld\n", (long) ehdrp->e_phoff); | |
3065 | fprintf (stderr, "e_phnum = %ld\n", (long) ehdrp->e_phnum); | |
3066 | fprintf (stderr, "e_phentsize = %ld\n", (long) ehdrp->e_phentsize); | |
3067 | fprintf (stderr, "e_shoff = %ld\n", (long) ehdrp->e_shoff); | |
3068 | fprintf (stderr, "e_shnum = %ld\n", (long) ehdrp->e_shnum); | |
3069 | fprintf (stderr, "e_shentsize = %ld\n", (long) ehdrp->e_shentsize); | |
244ffee7 | 3070 | } |
32090b8e | 3071 | #endif |
244ffee7 | 3072 | |
ea617174 | 3073 | /* Canonicalize the relocs. */ |
244ffee7 | 3074 | |
326e32d7 | 3075 | long |
32090b8e KR |
3076 | elf_canonicalize_reloc (abfd, section, relptr, symbols) |
3077 | bfd *abfd; | |
3078 | sec_ptr section; | |
3079 | arelent **relptr; | |
3080 | asymbol **symbols; | |
3081 | { | |
ea617174 ILT |
3082 | arelent *tblptr; |
3083 | unsigned int i; | |
32090b8e | 3084 | |
ea617174 ILT |
3085 | if (! elf_slurp_reloc_table (abfd, section, symbols)) |
3086 | return -1; | |
32090b8e KR |
3087 | |
3088 | tblptr = section->relocation; | |
ea617174 | 3089 | for (i = 0; i < section->reloc_count; i++) |
32090b8e KR |
3090 | *relptr++ = tblptr++; |
3091 | ||
ea617174 ILT |
3092 | *relptr = NULL; |
3093 | ||
32090b8e KR |
3094 | return section->reloc_count; |
3095 | } | |
3096 | ||
326e32d7 | 3097 | long |
1c6042ee ILT |
3098 | elf_get_symtab (abfd, alocation) |
3099 | bfd *abfd; | |
3100 | asymbol **alocation; | |
32090b8e | 3101 | { |
cb71adf1 PS |
3102 | long symcount = elf_slurp_symbol_table (abfd, alocation, false); |
3103 | ||
3104 | if (symcount >= 0) | |
3105 | bfd_get_symcount (abfd) = symcount; | |
3106 | return symcount; | |
3107 | } | |
326e32d7 | 3108 | |
cb71adf1 PS |
3109 | long |
3110 | elf_canonicalize_dynamic_symtab (abfd, alocation) | |
3111 | bfd *abfd; | |
3112 | asymbol **alocation; | |
3113 | { | |
3114 | return elf_slurp_symbol_table (abfd, alocation, true); | |
32090b8e KR |
3115 | } |
3116 | ||
3117 | asymbol * | |
1c6042ee ILT |
3118 | elf_make_empty_symbol (abfd) |
3119 | bfd *abfd; | |
32090b8e KR |
3120 | { |
3121 | elf_symbol_type *newsym; | |
3122 | ||
3123 | newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type)); | |
3124 | if (!newsym) | |
3125 | { | |
d1ad85a6 | 3126 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
3127 | return NULL; |
3128 | } | |
3129 | else | |
3130 | { | |
3131 | newsym->symbol.the_bfd = abfd; | |
3132 | return &newsym->symbol; | |
244ffee7 | 3133 | } |
32090b8e | 3134 | } |
244ffee7 | 3135 | |
32090b8e | 3136 | void |
1c6042ee ILT |
3137 | elf_get_symbol_info (ignore_abfd, symbol, ret) |
3138 | bfd *ignore_abfd; | |
3139 | asymbol *symbol; | |
3140 | symbol_info *ret; | |
32090b8e KR |
3141 | { |
3142 | bfd_symbol_info (symbol, ret); | |
3143 | } | |
244ffee7 | 3144 | |
32090b8e | 3145 | void |
1c6042ee ILT |
3146 | elf_print_symbol (ignore_abfd, filep, symbol, how) |
3147 | bfd *ignore_abfd; | |
3148 | PTR filep; | |
3149 | asymbol *symbol; | |
3150 | bfd_print_symbol_type how; | |
32090b8e KR |
3151 | { |
3152 | FILE *file = (FILE *) filep; | |
3153 | switch (how) | |
3154 | { | |
3155 | case bfd_print_symbol_name: | |
3156 | fprintf (file, "%s", symbol->name); | |
3157 | break; | |
3158 | case bfd_print_symbol_more: | |
3159 | fprintf (file, "elf "); | |
3160 | fprintf_vma (file, symbol->value); | |
3161 | fprintf (file, " %lx", (long) symbol->flags); | |
3162 | break; | |
3163 | case bfd_print_symbol_all: | |
3164 | { | |
3165 | CONST char *section_name; | |
3166 | section_name = symbol->section ? symbol->section->name : "(*none*)"; | |
3167 | bfd_print_symbol_vandf ((PTR) file, symbol); | |
3168 | fprintf (file, " %s\t%s", | |
3169 | section_name, | |
3170 | symbol->name); | |
3171 | } | |
3172 | break; | |
3173 | } | |
244ffee7 | 3174 | |
32090b8e | 3175 | } |
244ffee7 | 3176 | |
32090b8e | 3177 | alent * |
1c6042ee ILT |
3178 | elf_get_lineno (ignore_abfd, symbol) |
3179 | bfd *ignore_abfd; | |
3180 | asymbol *symbol; | |
32090b8e KR |
3181 | { |
3182 | fprintf (stderr, "elf_get_lineno unimplemented\n"); | |
3183 | fflush (stderr); | |
3184 | BFD_FAIL (); | |
3185 | return NULL; | |
3186 | } | |
3187 | ||
3188 | boolean | |
1c6042ee ILT |
3189 | elf_set_arch_mach (abfd, arch, machine) |
3190 | bfd *abfd; | |
3191 | enum bfd_architecture arch; | |
3192 | unsigned long machine; | |
32090b8e | 3193 | { |
80a903c9 ILT |
3194 | /* If this isn't the right architecture for this backend, and this |
3195 | isn't the generic backend, fail. */ | |
3196 | if (arch != get_elf_backend_data (abfd)->arch | |
3197 | && arch != bfd_arch_unknown | |
3198 | && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) | |
3199 | return false; | |
3200 | ||
3201 | return bfd_default_set_arch_mach (abfd, arch, machine); | |
32090b8e | 3202 | } |
244ffee7 | 3203 | |
32090b8e | 3204 | boolean |
1c6042ee ILT |
3205 | elf_find_nearest_line (abfd, |
3206 | section, | |
3207 | symbols, | |
3208 | offset, | |
3209 | filename_ptr, | |
3210 | functionname_ptr, | |
3211 | line_ptr) | |
3212 | bfd *abfd; | |
3213 | asection *section; | |
3214 | asymbol **symbols; | |
3215 | bfd_vma offset; | |
3216 | CONST char **filename_ptr; | |
3217 | CONST char **functionname_ptr; | |
3218 | unsigned int *line_ptr; | |
32090b8e KR |
3219 | { |
3220 | return false; | |
244ffee7 JK |
3221 | } |
3222 | ||
32090b8e | 3223 | int |
1c6042ee ILT |
3224 | elf_sizeof_headers (abfd, reloc) |
3225 | bfd *abfd; | |
3226 | boolean reloc; | |
32090b8e | 3227 | { |
013dec1a ILT |
3228 | int ret; |
3229 | ||
3230 | ret = sizeof (Elf_External_Ehdr); | |
3231 | if (! reloc) | |
3232 | ret += get_program_header_size (abfd); | |
3233 | return ret; | |
32090b8e | 3234 | } |
244ffee7 | 3235 | |
32090b8e | 3236 | boolean |
1c6042ee ILT |
3237 | elf_set_section_contents (abfd, section, location, offset, count) |
3238 | bfd *abfd; | |
3239 | sec_ptr section; | |
3240 | PTR location; | |
3241 | file_ptr offset; | |
3242 | bfd_size_type count; | |
244ffee7 | 3243 | { |
244ffee7 JK |
3244 | Elf_Internal_Shdr *hdr; |
3245 | ||
6ec3bb6a ILT |
3246 | if (! abfd->output_has_begun |
3247 | && ! elf_compute_section_file_positions (abfd, | |
3248 | (struct bfd_link_info *) NULL)) | |
3249 | return false; | |
244ffee7 | 3250 | |
1c6042ee | 3251 | hdr = &elf_section_data (section)->this_hdr; |
244ffee7 | 3252 | |
32090b8e KR |
3253 | if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1) |
3254 | return false; | |
3255 | if (bfd_write (location, 1, count, abfd) != count) | |
3256 | return false; | |
3257 | ||
3258 | return true; | |
3259 | } | |
3260 | ||
3261 | void | |
1c6042ee ILT |
3262 | elf_no_info_to_howto (abfd, cache_ptr, dst) |
3263 | bfd *abfd; | |
3264 | arelent *cache_ptr; | |
3265 | Elf_Internal_Rela *dst; | |
244ffee7 | 3266 | { |
32090b8e KR |
3267 | fprintf (stderr, "elf RELA relocation support for target machine unimplemented\n"); |
3268 | fflush (stderr); | |
3269 | BFD_FAIL (); | |
244ffee7 JK |
3270 | } |
3271 | ||
32090b8e | 3272 | void |
1c6042ee ILT |
3273 | elf_no_info_to_howto_rel (abfd, cache_ptr, dst) |
3274 | bfd *abfd; | |
3275 | arelent *cache_ptr; | |
3276 | Elf_Internal_Rel *dst; | |
244ffee7 | 3277 | { |
32090b8e KR |
3278 | fprintf (stderr, "elf REL relocation support for target machine unimplemented\n"); |
3279 | fflush (stderr); | |
3280 | BFD_FAIL (); | |
3281 | } | |
32090b8e | 3282 | \f |
1c6042ee | 3283 | |
32090b8e | 3284 | /* Core file support */ |
244ffee7 | 3285 | |
32090b8e KR |
3286 | #ifdef HAVE_PROCFS /* Some core file support requires host /proc files */ |
3287 | #include <sys/procfs.h> | |
3288 | #else | |
2e03ce18 ILT |
3289 | #define bfd_prstatus(abfd, descdata, descsz, filepos) true |
3290 | #define bfd_fpregset(abfd, descdata, descsz, filepos) true | |
3291 | #define bfd_prpsinfo(abfd, descdata, descsz, filepos) true | |
32090b8e | 3292 | #endif |
244ffee7 | 3293 | |
32090b8e | 3294 | #ifdef HAVE_PROCFS |
244ffee7 | 3295 | |
2e03ce18 | 3296 | static boolean |
1c6042ee ILT |
3297 | bfd_prstatus (abfd, descdata, descsz, filepos) |
3298 | bfd *abfd; | |
3299 | char *descdata; | |
3300 | int descsz; | |
3301 | long filepos; | |
32090b8e KR |
3302 | { |
3303 | asection *newsect; | |
3304 | prstatus_t *status = (prstatus_t *) 0; | |
244ffee7 | 3305 | |
32090b8e | 3306 | if (descsz == sizeof (prstatus_t)) |
244ffee7 | 3307 | { |
32090b8e | 3308 | newsect = bfd_make_section (abfd, ".reg"); |
2e03ce18 ILT |
3309 | if (newsect == NULL) |
3310 | return false; | |
32090b8e KR |
3311 | newsect->_raw_size = sizeof (status->pr_reg); |
3312 | newsect->filepos = filepos + (long) &status->pr_reg; | |
57a814a9 | 3313 | newsect->flags = SEC_HAS_CONTENTS; |
32090b8e KR |
3314 | newsect->alignment_power = 2; |
3315 | if ((core_prstatus (abfd) = bfd_alloc (abfd, descsz)) != NULL) | |
3316 | { | |
3317 | memcpy (core_prstatus (abfd), descdata, descsz); | |
3318 | } | |
244ffee7 | 3319 | } |
2e03ce18 | 3320 | return true; |
32090b8e | 3321 | } |
244ffee7 | 3322 | |
32090b8e | 3323 | /* Stash a copy of the prpsinfo structure away for future use. */ |
244ffee7 | 3324 | |
2e03ce18 | 3325 | static boolean |
1c6042ee ILT |
3326 | bfd_prpsinfo (abfd, descdata, descsz, filepos) |
3327 | bfd *abfd; | |
3328 | char *descdata; | |
3329 | int descsz; | |
3330 | long filepos; | |
32090b8e | 3331 | { |
32090b8e KR |
3332 | if (descsz == sizeof (prpsinfo_t)) |
3333 | { | |
2e03ce18 | 3334 | if ((core_prpsinfo (abfd) = bfd_alloc (abfd, descsz)) == NULL) |
244ffee7 | 3335 | { |
2e03ce18 ILT |
3336 | bfd_set_error (bfd_error_no_memory); |
3337 | return false; | |
244ffee7 | 3338 | } |
2e03ce18 | 3339 | memcpy (core_prpsinfo (abfd), descdata, descsz); |
244ffee7 | 3340 | } |
2e03ce18 | 3341 | return true; |
244ffee7 JK |
3342 | } |
3343 | ||
2e03ce18 | 3344 | static boolean |
1c6042ee ILT |
3345 | bfd_fpregset (abfd, descdata, descsz, filepos) |
3346 | bfd *abfd; | |
3347 | char *descdata; | |
3348 | int descsz; | |
3349 | long filepos; | |
244ffee7 | 3350 | { |
32090b8e | 3351 | asection *newsect; |
244ffee7 | 3352 | |
32090b8e | 3353 | newsect = bfd_make_section (abfd, ".reg2"); |
2e03ce18 ILT |
3354 | if (newsect == NULL) |
3355 | return false; | |
32090b8e KR |
3356 | newsect->_raw_size = descsz; |
3357 | newsect->filepos = filepos; | |
57a814a9 | 3358 | newsect->flags = SEC_HAS_CONTENTS; |
32090b8e | 3359 | newsect->alignment_power = 2; |
2e03ce18 | 3360 | return true; |
6a3eb9b6 | 3361 | } |
244ffee7 | 3362 | |
32090b8e KR |
3363 | #endif /* HAVE_PROCFS */ |
3364 | ||
3365 | /* Return a pointer to the args (including the command name) that were | |
3366 | seen by the program that generated the core dump. Note that for | |
3367 | some reason, a spurious space is tacked onto the end of the args | |
3368 | in some (at least one anyway) implementations, so strip it off if | |
3369 | it exists. */ | |
3370 | ||
3371 | char * | |
1c6042ee ILT |
3372 | elf_core_file_failing_command (abfd) |
3373 | bfd *abfd; | |
244ffee7 | 3374 | { |
32090b8e KR |
3375 | #ifdef HAVE_PROCFS |
3376 | if (core_prpsinfo (abfd)) | |
3377 | { | |
3378 | prpsinfo_t *p = core_prpsinfo (abfd); | |
3379 | char *scan = p->pr_psargs; | |
3380 | while (*scan++) | |
3381 | {; | |
3382 | } | |
3383 | scan -= 2; | |
3384 | if ((scan > p->pr_psargs) && (*scan == ' ')) | |
3385 | { | |
3386 | *scan = '\000'; | |
3387 | } | |
3388 | return p->pr_psargs; | |
3389 | } | |
3390 | #endif | |
3391 | return NULL; | |
3392 | } | |
244ffee7 | 3393 | |
32090b8e KR |
3394 | /* Return the number of the signal that caused the core dump. Presumably, |
3395 | since we have a core file, we got a signal of some kind, so don't bother | |
3396 | checking the other process status fields, just return the signal number. | |
3397 | */ | |
244ffee7 | 3398 | |
32090b8e | 3399 | int |
1c6042ee ILT |
3400 | elf_core_file_failing_signal (abfd) |
3401 | bfd *abfd; | |
32090b8e KR |
3402 | { |
3403 | #ifdef HAVE_PROCFS | |
3404 | if (core_prstatus (abfd)) | |
3405 | { | |
3406 | return ((prstatus_t *) (core_prstatus (abfd)))->pr_cursig; | |
3407 | } | |
3408 | #endif | |
3409 | return -1; | |
3410 | } | |
244ffee7 | 3411 | |
32090b8e KR |
3412 | /* Check to see if the core file could reasonably be expected to have |
3413 | come for the current executable file. Note that by default we return | |
3414 | true unless we find something that indicates that there might be a | |
3415 | problem. | |
3416 | */ | |
244ffee7 | 3417 | |
32090b8e | 3418 | boolean |
1c6042ee ILT |
3419 | elf_core_file_matches_executable_p (core_bfd, exec_bfd) |
3420 | bfd *core_bfd; | |
3421 | bfd *exec_bfd; | |
32090b8e KR |
3422 | { |
3423 | #ifdef HAVE_PROCFS | |
3424 | char *corename; | |
3425 | char *execname; | |
3426 | #endif | |
244ffee7 | 3427 | |
32090b8e KR |
3428 | /* First, xvecs must match since both are ELF files for the same target. */ |
3429 | ||
3430 | if (core_bfd->xvec != exec_bfd->xvec) | |
244ffee7 | 3431 | { |
d1ad85a6 | 3432 | bfd_set_error (bfd_error_system_call); |
244ffee7 JK |
3433 | return false; |
3434 | } | |
3435 | ||
32090b8e | 3436 | #ifdef HAVE_PROCFS |
244ffee7 | 3437 | |
32090b8e KR |
3438 | /* If no prpsinfo, just return true. Otherwise, grab the last component |
3439 | of the exec'd pathname from the prpsinfo. */ | |
244ffee7 | 3440 | |
32090b8e | 3441 | if (core_prpsinfo (core_bfd)) |
244ffee7 | 3442 | { |
32090b8e KR |
3443 | corename = (((struct prpsinfo *) core_prpsinfo (core_bfd))->pr_fname); |
3444 | } | |
3445 | else | |
3446 | { | |
3447 | return true; | |
3448 | } | |
244ffee7 | 3449 | |
32090b8e | 3450 | /* Find the last component of the executable pathname. */ |
244ffee7 | 3451 | |
32090b8e KR |
3452 | if ((execname = strrchr (exec_bfd->filename, '/')) != NULL) |
3453 | { | |
3454 | execname++; | |
3455 | } | |
3456 | else | |
3457 | { | |
3458 | execname = (char *) exec_bfd->filename; | |
3459 | } | |
244ffee7 | 3460 | |
32090b8e | 3461 | /* See if they match */ |
244ffee7 | 3462 | |
32090b8e | 3463 | return strcmp (execname, corename) ? false : true; |
244ffee7 | 3464 | |
32090b8e | 3465 | #else |
244ffee7 | 3466 | |
244ffee7 | 3467 | return true; |
244ffee7 | 3468 | |
32090b8e KR |
3469 | #endif /* HAVE_PROCFS */ |
3470 | } | |
244ffee7 | 3471 | |
32090b8e KR |
3472 | /* ELF core files contain a segment of type PT_NOTE, that holds much of |
3473 | the information that would normally be available from the /proc interface | |
3474 | for the process, at the time the process dumped core. Currently this | |
3475 | includes copies of the prstatus, prpsinfo, and fpregset structures. | |
244ffee7 | 3476 | |
32090b8e KR |
3477 | Since these structures are potentially machine dependent in size and |
3478 | ordering, bfd provides two levels of support for them. The first level, | |
3479 | available on all machines since it does not require that the host | |
3480 | have /proc support or the relevant include files, is to create a bfd | |
3481 | section for each of the prstatus, prpsinfo, and fpregset structures, | |
3482 | without any interpretation of their contents. With just this support, | |
3483 | the bfd client will have to interpret the structures itself. Even with | |
3484 | /proc support, it might want these full structures for it's own reasons. | |
244ffee7 | 3485 | |
32090b8e KR |
3486 | In the second level of support, where HAVE_PROCFS is defined, bfd will |
3487 | pick apart the structures to gather some additional information that | |
3488 | clients may want, such as the general register set, the name of the | |
3489 | exec'ed file and its arguments, the signal (if any) that caused the | |
3490 | core dump, etc. | |
244ffee7 | 3491 | |
32090b8e | 3492 | */ |
244ffee7 | 3493 | |
32090b8e | 3494 | static boolean |
1c6042ee ILT |
3495 | elf_corefile_note (abfd, hdr) |
3496 | bfd *abfd; | |
3497 | Elf_Internal_Phdr *hdr; | |
244ffee7 | 3498 | { |
32090b8e KR |
3499 | Elf_External_Note *x_note_p; /* Elf note, external form */ |
3500 | Elf_Internal_Note i_note; /* Elf note, internal form */ | |
3501 | char *buf = NULL; /* Entire note segment contents */ | |
3502 | char *namedata; /* Name portion of the note */ | |
3503 | char *descdata; /* Descriptor portion of the note */ | |
3504 | char *sectname; /* Name to use for new section */ | |
3505 | long filepos; /* File offset to descriptor data */ | |
3506 | asection *newsect; | |
3507 | ||
3508 | if (hdr->p_filesz > 0 | |
b9d5cdf0 | 3509 | && (buf = (char *) malloc (hdr->p_filesz)) != NULL |
32090b8e KR |
3510 | && bfd_seek (abfd, hdr->p_offset, SEEK_SET) != -1 |
3511 | && bfd_read ((PTR) buf, hdr->p_filesz, 1, abfd) == hdr->p_filesz) | |
3512 | { | |
3513 | x_note_p = (Elf_External_Note *) buf; | |
3514 | while ((char *) x_note_p < (buf + hdr->p_filesz)) | |
3515 | { | |
3516 | i_note.namesz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->namesz); | |
3517 | i_note.descsz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->descsz); | |
3518 | i_note.type = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->type); | |
3519 | namedata = x_note_p->name; | |
3520 | descdata = namedata + BFD_ALIGN (i_note.namesz, 4); | |
3521 | filepos = hdr->p_offset + (descdata - buf); | |
3522 | switch (i_note.type) | |
3523 | { | |
3524 | case NT_PRSTATUS: | |
3525 | /* process descdata as prstatus info */ | |
2e03ce18 ILT |
3526 | if (! bfd_prstatus (abfd, descdata, i_note.descsz, filepos)) |
3527 | return false; | |
32090b8e KR |
3528 | sectname = ".prstatus"; |
3529 | break; | |
3530 | case NT_FPREGSET: | |
3531 | /* process descdata as fpregset info */ | |
2e03ce18 ILT |
3532 | if (! bfd_fpregset (abfd, descdata, i_note.descsz, filepos)) |
3533 | return false; | |
32090b8e KR |
3534 | sectname = ".fpregset"; |
3535 | break; | |
3536 | case NT_PRPSINFO: | |
3537 | /* process descdata as prpsinfo */ | |
2e03ce18 ILT |
3538 | if (! bfd_prpsinfo (abfd, descdata, i_note.descsz, filepos)) |
3539 | return false; | |
32090b8e KR |
3540 | sectname = ".prpsinfo"; |
3541 | break; | |
3542 | default: | |
3543 | /* Unknown descriptor, just ignore it. */ | |
3544 | sectname = NULL; | |
3545 | break; | |
3546 | } | |
3547 | if (sectname != NULL) | |
3548 | { | |
3549 | newsect = bfd_make_section (abfd, sectname); | |
2e03ce18 ILT |
3550 | if (newsect == NULL) |
3551 | return false; | |
32090b8e KR |
3552 | newsect->_raw_size = i_note.descsz; |
3553 | newsect->filepos = filepos; | |
3554 | newsect->flags = SEC_ALLOC | SEC_HAS_CONTENTS; | |
3555 | newsect->alignment_power = 2; | |
3556 | } | |
3557 | x_note_p = (Elf_External_Note *) | |
3558 | (descdata + BFD_ALIGN (i_note.descsz, 4)); | |
3559 | } | |
3560 | } | |
3561 | if (buf != NULL) | |
3562 | { | |
3563 | free (buf); | |
3564 | } | |
b9d5cdf0 DM |
3565 | else if (hdr->p_filesz > 0) |
3566 | { | |
d1ad85a6 | 3567 | bfd_set_error (bfd_error_no_memory); |
b9d5cdf0 DM |
3568 | return false; |
3569 | } | |
32090b8e | 3570 | return true; |
244ffee7 | 3571 | |
244ffee7 JK |
3572 | } |
3573 | ||
32090b8e KR |
3574 | /* Core files are simply standard ELF formatted files that partition |
3575 | the file using the execution view of the file (program header table) | |
3576 | rather than the linking view. In fact, there is no section header | |
3577 | table in a core file. | |
3578 | ||
3579 | The process status information (including the contents of the general | |
3580 | register set) and the floating point register set are stored in a | |
3581 | segment of type PT_NOTE. We handcraft a couple of extra bfd sections | |
3582 | that allow standard bfd access to the general registers (.reg) and the | |
3583 | floating point registers (.reg2). | |
3584 | ||
3585 | */ | |
3586 | ||
2f3508ad | 3587 | const bfd_target * |
1c6042ee ILT |
3588 | elf_core_file_p (abfd) |
3589 | bfd *abfd; | |
244ffee7 | 3590 | { |
32090b8e KR |
3591 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
3592 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
3593 | Elf_External_Phdr x_phdr; /* Program header table entry, external form */ | |
3594 | Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */ | |
3595 | unsigned int phindex; | |
d6439785 | 3596 | struct elf_backend_data *ebd; |
244ffee7 | 3597 | |
32090b8e KR |
3598 | /* Read in the ELF header in external format. */ |
3599 | ||
3600 | if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr)) | |
244ffee7 | 3601 | { |
25057836 JL |
3602 | if (bfd_get_error () != bfd_error_system_call) |
3603 | bfd_set_error (bfd_error_wrong_format); | |
244ffee7 JK |
3604 | return NULL; |
3605 | } | |
32090b8e KR |
3606 | |
3607 | /* Now check to see if we have a valid ELF file, and one that BFD can | |
3608 | make use of. The magic number must match, the address size ('class') | |
3609 | and byte-swapping must match our XVEC entry, and it must have a | |
3610 | program header table (FIXME: See comments re segments at top of this | |
3611 | file). */ | |
3612 | ||
3613 | if (elf_file_p (&x_ehdr) == false) | |
244ffee7 | 3614 | { |
32090b8e | 3615 | wrong: |
d1ad85a6 | 3616 | bfd_set_error (bfd_error_wrong_format); |
32090b8e | 3617 | return NULL; |
244ffee7 | 3618 | } |
244ffee7 | 3619 | |
32090b8e | 3620 | /* FIXME, Check EI_VERSION here ! */ |
244ffee7 | 3621 | |
32090b8e KR |
3622 | { |
3623 | #if ARCH_SIZE == 32 | |
3624 | int desired_address_size = ELFCLASS32; | |
3625 | #endif | |
3626 | #if ARCH_SIZE == 64 | |
3627 | int desired_address_size = ELFCLASS64; | |
3628 | #endif | |
3629 | ||
3630 | if (x_ehdr.e_ident[EI_CLASS] != desired_address_size) | |
3631 | goto wrong; | |
3632 | } | |
3633 | ||
3634 | /* Switch xvec to match the specified byte order. */ | |
3635 | switch (x_ehdr.e_ident[EI_DATA]) | |
244ffee7 | 3636 | { |
32090b8e KR |
3637 | case ELFDATA2MSB: /* Big-endian */ |
3638 | if (abfd->xvec->byteorder_big_p == false) | |
3639 | goto wrong; | |
244ffee7 | 3640 | break; |
32090b8e KR |
3641 | case ELFDATA2LSB: /* Little-endian */ |
3642 | if (abfd->xvec->byteorder_big_p == true) | |
3643 | goto wrong; | |
244ffee7 | 3644 | break; |
32090b8e KR |
3645 | case ELFDATANONE: /* No data encoding specified */ |
3646 | default: /* Unknown data encoding specified */ | |
3647 | goto wrong; | |
244ffee7 JK |
3648 | } |
3649 | ||
32090b8e KR |
3650 | /* Allocate an instance of the elf_obj_tdata structure and hook it up to |
3651 | the tdata pointer in the bfd. */ | |
244ffee7 | 3652 | |
32090b8e KR |
3653 | elf_tdata (abfd) = |
3654 | (struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)); | |
3655 | if (elf_tdata (abfd) == NULL) | |
244ffee7 | 3656 | { |
d1ad85a6 | 3657 | bfd_set_error (bfd_error_no_memory); |
32090b8e | 3658 | return NULL; |
244ffee7 | 3659 | } |
244ffee7 | 3660 | |
32090b8e | 3661 | /* FIXME, `wrong' returns from this point onward, leak memory. */ |
244ffee7 | 3662 | |
32090b8e KR |
3663 | /* Now that we know the byte order, swap in the rest of the header */ |
3664 | i_ehdrp = elf_elfheader (abfd); | |
3665 | elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp); | |
3666 | #if DEBUG & 1 | |
3667 | elf_debug_file (i_ehdrp); | |
3668 | #endif | |
244ffee7 | 3669 | |
d6439785 JL |
3670 | ebd = get_elf_backend_data (abfd); |
3671 | ||
3672 | /* Check that the ELF e_machine field matches what this particular | |
3673 | BFD format expects. */ | |
3674 | if (ebd->elf_machine_code != i_ehdrp->e_machine) | |
3675 | { | |
2f3508ad | 3676 | const bfd_target * const *target_ptr; |
d6439785 JL |
3677 | |
3678 | if (ebd->elf_machine_code != EM_NONE) | |
3679 | goto wrong; | |
3680 | ||
3681 | /* This is the generic ELF target. Let it match any ELF target | |
3682 | for which we do not have a specific backend. */ | |
3683 | for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++) | |
3684 | { | |
3685 | struct elf_backend_data *back; | |
3686 | ||
3687 | if ((*target_ptr)->flavour != bfd_target_elf_flavour) | |
3688 | continue; | |
3689 | back = (struct elf_backend_data *) (*target_ptr)->backend_data; | |
3690 | if (back->elf_machine_code == i_ehdrp->e_machine) | |
3691 | { | |
3692 | /* target_ptr is an ELF backend which matches this | |
3693 | object file, so reject the generic ELF target. */ | |
3694 | goto wrong; | |
3695 | } | |
3696 | } | |
3697 | } | |
3698 | ||
32090b8e KR |
3699 | /* If there is no program header, or the type is not a core file, then |
3700 | we are hosed. */ | |
3701 | if (i_ehdrp->e_phoff == 0 || i_ehdrp->e_type != ET_CORE) | |
3702 | goto wrong; | |
244ffee7 | 3703 | |
32090b8e KR |
3704 | /* Allocate space for a copy of the program header table in |
3705 | internal form, seek to the program header table in the file, | |
3706 | read it in, and convert it to internal form. As a simple sanity | |
3707 | check, verify that the what BFD thinks is the size of each program | |
3708 | header table entry actually matches the size recorded in the file. */ | |
3709 | ||
3710 | if (i_ehdrp->e_phentsize != sizeof (x_phdr)) | |
3711 | goto wrong; | |
3712 | i_phdrp = (Elf_Internal_Phdr *) | |
3713 | bfd_alloc (abfd, sizeof (*i_phdrp) * i_ehdrp->e_phnum); | |
3714 | if (!i_phdrp) | |
244ffee7 | 3715 | { |
d1ad85a6 | 3716 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
3717 | return NULL; |
3718 | } | |
3719 | if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) == -1) | |
25057836 | 3720 | return NULL; |
32090b8e KR |
3721 | for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++) |
3722 | { | |
3723 | if (bfd_read ((PTR) & x_phdr, sizeof (x_phdr), 1, abfd) | |
3724 | != sizeof (x_phdr)) | |
25057836 | 3725 | return NULL; |
32090b8e | 3726 | elf_swap_phdr_in (abfd, &x_phdr, i_phdrp + phindex); |
244ffee7 JK |
3727 | } |
3728 | ||
32090b8e KR |
3729 | /* Once all of the program headers have been read and converted, we |
3730 | can start processing them. */ | |
244ffee7 | 3731 | |
32090b8e KR |
3732 | for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++) |
3733 | { | |
3734 | bfd_section_from_phdr (abfd, i_phdrp + phindex, phindex); | |
3735 | if ((i_phdrp + phindex)->p_type == PT_NOTE) | |
3736 | { | |
2e03ce18 ILT |
3737 | if (! elf_corefile_note (abfd, i_phdrp + phindex)) |
3738 | return NULL; | |
32090b8e KR |
3739 | } |
3740 | } | |
244ffee7 | 3741 | |
32090b8e | 3742 | /* Remember the entry point specified in the ELF file header. */ |
244ffee7 | 3743 | |
32090b8e | 3744 | bfd_get_start_address (abfd) = i_ehdrp->e_entry; |
244ffee7 | 3745 | |
32090b8e | 3746 | return abfd->xvec; |
244ffee7 | 3747 | } |
6ec3bb6a ILT |
3748 | \f |
3749 | /* ELF linker code. */ | |
3750 | ||
3751 | static boolean elf_link_add_object_symbols | |
3752 | PARAMS ((bfd *, struct bfd_link_info *)); | |
3753 | static boolean elf_link_add_archive_symbols | |
3754 | PARAMS ((bfd *, struct bfd_link_info *)); | |
374d2ef9 ILT |
3755 | static Elf_Internal_Rela *elf_link_read_relocs |
3756 | PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean)); | |
013dec1a ILT |
3757 | static boolean elf_adjust_dynamic_symbol |
3758 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
6ec3bb6a ILT |
3759 | |
3760 | /* Given an ELF BFD, add symbols to the global hash table as | |
3761 | appropriate. */ | |
3762 | ||
3763 | boolean | |
3764 | elf_bfd_link_add_symbols (abfd, info) | |
3765 | bfd *abfd; | |
3766 | struct bfd_link_info *info; | |
3767 | { | |
3768 | switch (bfd_get_format (abfd)) | |
3769 | { | |
3770 | case bfd_object: | |
3771 | return elf_link_add_object_symbols (abfd, info); | |
3772 | case bfd_archive: | |
3773 | return elf_link_add_archive_symbols (abfd, info); | |
3774 | default: | |
3775 | bfd_set_error (bfd_error_wrong_format); | |
3776 | return false; | |
3777 | } | |
3778 | } | |
3779 | ||
3780 | /* Add symbols from an ELF archive file to the linker hash table. We | |
3781 | don't use _bfd_generic_link_add_archive_symbols because of a | |
3782 | problem which arises on UnixWare. The UnixWare libc.so is an | |
3783 | archive which includes an entry libc.so.1 which defines a bunch of | |
3784 | symbols. The libc.so archive also includes a number of other | |
3785 | object files, which also define symbols, some of which are the same | |
3786 | as those defined in libc.so.1. Correct linking requires that we | |
3787 | consider each object file in turn, and include it if it defines any | |
3788 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
3789 | this; it looks through the list of undefined symbols, and includes | |
3790 | any object file which defines them. When this algorithm is used on | |
3791 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
3792 | bunch of symbols. This means that some of the other objects in the | |
3793 | archive are not included in the link, which is incorrect since they | |
3794 | precede libc.so.1 in the archive. | |
3795 | ||
3796 | Fortunately, ELF archive handling is simpler than that done by | |
3797 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
3798 | oddities. In ELF, if we find a symbol in the archive map, and the | |
3799 | symbol is currently undefined, we know that we must pull in that | |
3800 | object file. | |
3801 | ||
3802 | Unfortunately, we do have to make multiple passes over the symbol | |
3803 | table until nothing further is resolved. */ | |
3804 | ||
3805 | static boolean | |
3806 | elf_link_add_archive_symbols (abfd, info) | |
3807 | bfd *abfd; | |
3808 | struct bfd_link_info *info; | |
3809 | { | |
3810 | symindex c; | |
3811 | boolean *defined = NULL; | |
3812 | boolean *included = NULL; | |
3813 | carsym *symdefs; | |
3814 | boolean loop; | |
3815 | ||
3816 | if (! bfd_has_map (abfd)) | |
3817 | { | |
3818 | bfd_set_error (bfd_error_no_symbols); | |
3819 | return false; | |
3820 | } | |
3821 | ||
3822 | /* Keep track of all symbols we know to be already defined, and all | |
3823 | files we know to be already included. This is to speed up the | |
3824 | second and subsequent passes. */ | |
3825 | c = bfd_ardata (abfd)->symdef_count; | |
3826 | if (c == 0) | |
3827 | return true; | |
3828 | defined = (boolean *) malloc (c * sizeof (boolean)); | |
3829 | included = (boolean *) malloc (c * sizeof (boolean)); | |
3830 | if (defined == (boolean *) NULL || included == (boolean *) NULL) | |
3831 | { | |
3832 | bfd_set_error (bfd_error_no_memory); | |
3833 | goto error_return; | |
3834 | } | |
3835 | memset (defined, 0, c * sizeof (boolean)); | |
3836 | memset (included, 0, c * sizeof (boolean)); | |
3837 | ||
3838 | symdefs = bfd_ardata (abfd)->symdefs; | |
3839 | ||
3840 | do | |
3841 | { | |
3842 | file_ptr last; | |
3843 | symindex i; | |
3844 | carsym *symdef; | |
3845 | carsym *symdefend; | |
3846 | ||
3847 | loop = false; | |
3848 | last = -1; | |
3849 | ||
3850 | symdef = symdefs; | |
3851 | symdefend = symdef + c; | |
3852 | for (i = 0; symdef < symdefend; symdef++, i++) | |
3853 | { | |
3854 | struct elf_link_hash_entry *h; | |
3855 | bfd *element; | |
3856 | struct bfd_link_hash_entry *undefs_tail; | |
3857 | symindex mark; | |
3858 | ||
3859 | if (defined[i] || included[i]) | |
3860 | continue; | |
3861 | if (symdef->file_offset == last) | |
3862 | { | |
3863 | included[i] = true; | |
3864 | continue; | |
3865 | } | |
3866 | ||
3867 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
3868 | false, false, false); | |
3869 | if (h == (struct elf_link_hash_entry *) NULL) | |
3870 | continue; | |
3871 | if (h->root.type != bfd_link_hash_undefined) | |
3872 | { | |
3873 | defined[i] = true; | |
3874 | continue; | |
3875 | } | |
3876 | ||
3877 | /* We need to include this archive member. */ | |
3878 | ||
3879 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
3880 | if (element == (bfd *) NULL) | |
3881 | goto error_return; | |
3882 | ||
3883 | if (! bfd_check_format (element, bfd_object)) | |
3884 | goto error_return; | |
3885 | ||
3886 | /* Doublecheck that we have not included this object | |
3887 | already--it should be impossible, but there may be | |
3888 | something wrong with the archive. */ | |
3889 | if (element->archive_pass != 0) | |
3890 | { | |
3891 | bfd_set_error (bfd_error_bad_value); | |
3892 | goto error_return; | |
3893 | } | |
3894 | element->archive_pass = 1; | |
3895 | ||
3896 | undefs_tail = info->hash->undefs_tail; | |
3897 | ||
3898 | if (! (*info->callbacks->add_archive_element) (info, element, | |
3899 | symdef->name)) | |
3900 | goto error_return; | |
3901 | if (! elf_link_add_object_symbols (element, info)) | |
3902 | goto error_return; | |
3903 | ||
3904 | /* If there are any new undefined symbols, we need to make | |
3905 | another pass through the archive in order to see whether | |
3906 | they can be defined. FIXME: This isn't perfect, because | |
3907 | common symbols wind up on undefs_tail and because an | |
3908 | undefined symbol which is defined later on in this pass | |
3909 | does not require another pass. This isn't a bug, but it | |
3910 | does make the code less efficient than it could be. */ | |
3911 | if (undefs_tail != info->hash->undefs_tail) | |
3912 | loop = true; | |
3913 | ||
3914 | /* Look backward to mark all symbols from this object file | |
3915 | which we have already seen in this pass. */ | |
3916 | mark = i; | |
3917 | do | |
3918 | { | |
3919 | included[mark] = true; | |
3920 | if (mark == 0) | |
3921 | break; | |
3922 | --mark; | |
3923 | } | |
3924 | while (symdefs[mark].file_offset == symdef->file_offset); | |
3925 | ||
3926 | /* We mark subsequent symbols from this object file as we go | |
3927 | on through the loop. */ | |
3928 | last = symdef->file_offset; | |
3929 | } | |
3930 | } | |
3931 | while (loop); | |
3932 | ||
3933 | free (defined); | |
3934 | free (included); | |
3935 | ||
3936 | return true; | |
3937 | ||
3938 | error_return: | |
3939 | if (defined != (boolean *) NULL) | |
3940 | free (defined); | |
3941 | if (included != (boolean *) NULL) | |
3942 | free (included); | |
3943 | return false; | |
3944 | } | |
3945 | ||
013dec1a ILT |
3946 | /* Record a new dynamic symbol. We record the dynamic symbols as we |
3947 | read the input files, since we need to have a list of all of them | |
3948 | before we can determine the final sizes of the output sections. */ | |
3949 | ||
374d2ef9 | 3950 | INLINE boolean |
013dec1a ILT |
3951 | elf_link_record_dynamic_symbol (info, h) |
3952 | struct bfd_link_info *info; | |
3953 | struct elf_link_hash_entry *h; | |
3954 | { | |
3955 | if (h->dynindx == -1) | |
3956 | { | |
3957 | h->dynindx = elf_hash_table (info)->dynsymcount; | |
3958 | ++elf_hash_table (info)->dynsymcount; | |
3959 | h->dynstr_index = bfd_add_to_strtab (elf_hash_table (info)->dynobj, | |
3960 | elf_hash_table (info)->dynstr, | |
3961 | h->root.root.string); | |
3962 | if (h->dynstr_index == (unsigned long) -1) | |
3963 | return false; | |
3964 | } | |
3965 | ||
3966 | return true; | |
3967 | } | |
3968 | ||
6ec3bb6a ILT |
3969 | /* Add symbols from an ELF object file to the linker hash table. */ |
3970 | ||
3971 | static boolean | |
3972 | elf_link_add_object_symbols (abfd, info) | |
3973 | bfd *abfd; | |
3974 | struct bfd_link_info *info; | |
3975 | { | |
3976 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
3977 | const Elf_Internal_Sym *, | |
3978 | const char **, flagword *, | |
3979 | asection **, bfd_vma *)); | |
374d2ef9 ILT |
3980 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, |
3981 | asection *, const Elf_Internal_Rela *)); | |
6ec3bb6a ILT |
3982 | boolean collect; |
3983 | Elf_Internal_Shdr *hdr; | |
3984 | size_t symcount; | |
3985 | size_t extsymcount; | |
5315c428 | 3986 | size_t extsymoff; |
6ec3bb6a ILT |
3987 | Elf_External_Sym *buf = NULL; |
3988 | struct elf_link_hash_entry **sym_hash; | |
013dec1a ILT |
3989 | boolean dynamic; |
3990 | Elf_External_Dyn *dynbuf = NULL; | |
3991 | struct elf_link_hash_entry *weaks; | |
6ec3bb6a ILT |
3992 | Elf_External_Sym *esym; |
3993 | Elf_External_Sym *esymend; | |
3994 | ||
3995 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
3996 | collect = get_elf_backend_data (abfd)->collect; | |
3997 | ||
3998 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
3999 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
4000 | ||
4001 | /* The sh_info field of the symtab header tells us where the | |
4002 | external symbols start. We don't care about the local symbols at | |
4003 | this point. */ | |
5315c428 ILT |
4004 | if (elf_bad_symtab (abfd)) |
4005 | { | |
4006 | extsymcount = symcount; | |
4007 | extsymoff = 0; | |
4008 | } | |
4009 | else | |
4010 | { | |
4011 | extsymcount = symcount - hdr->sh_info; | |
4012 | extsymoff = hdr->sh_info; | |
4013 | } | |
6ec3bb6a ILT |
4014 | |
4015 | buf = (Elf_External_Sym *) malloc (extsymcount * sizeof (Elf_External_Sym)); | |
4016 | if (buf == NULL && extsymcount != 0) | |
4017 | { | |
4018 | bfd_set_error (bfd_error_no_memory); | |
4019 | goto error_return; | |
4020 | } | |
4021 | ||
013dec1a ILT |
4022 | /* We store a pointer to the hash table entry for each external |
4023 | symbol. */ | |
6ec3bb6a ILT |
4024 | sym_hash = ((struct elf_link_hash_entry **) |
4025 | bfd_alloc (abfd, | |
4026 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
4027 | if (sym_hash == NULL) | |
4028 | { | |
4029 | bfd_set_error (bfd_error_no_memory); | |
4030 | goto error_return; | |
4031 | } | |
4032 | elf_sym_hashes (abfd) = sym_hash; | |
4033 | ||
013dec1a | 4034 | if (elf_elfheader (abfd)->e_type != ET_DYN) |
8af74670 ILT |
4035 | { |
4036 | dynamic = false; | |
4037 | ||
4038 | /* If we are creating a shared library, create all the dynamic | |
4039 | sections immediately. We need to attach them to something, | |
4040 | so we attach them to this BFD, provided it is the right | |
4041 | format. FIXME: If there are no input BFD's of the same | |
4042 | format as the output, we can't make a shared library. */ | |
4043 | if (info->shared | |
4044 | && elf_hash_table (info)->dynobj == NULL | |
4045 | && abfd->xvec == info->hash->creator) | |
4046 | { | |
4047 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
4048 | goto error_return; | |
4049 | elf_hash_table (info)->dynobj = abfd; | |
4050 | } | |
4051 | } | |
013dec1a ILT |
4052 | else |
4053 | { | |
4054 | asection *s; | |
4055 | const char *name; | |
4056 | unsigned long strindex; | |
4057 | ||
4058 | dynamic = true; | |
4059 | ||
374d2ef9 ILT |
4060 | /* You can't use -r against a dynamic object. Also, there's no |
4061 | hope of using a dynamic object which does not exactly match | |
4062 | the format of the output file. */ | |
013dec1a ILT |
4063 | if (info->relocateable |
4064 | || info->hash->creator != abfd->xvec) | |
4065 | { | |
4066 | bfd_set_error (bfd_error_invalid_operation); | |
4067 | goto error_return; | |
4068 | } | |
4069 | ||
4070 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
4071 | object. If the object has a DT_SONAME entry, we use it. | |
c1f84521 ILT |
4072 | Otherwise, if the generic linker stuck something in |
4073 | elf_dt_needed_name, we use that. Otherwise, we just use the | |
4074 | file name. */ | |
013dec1a | 4075 | name = bfd_get_filename (abfd); |
c1f84521 ILT |
4076 | if (elf_dt_needed_name (abfd) != NULL) |
4077 | name = elf_dt_needed_name (abfd); | |
013dec1a ILT |
4078 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
4079 | if (s != NULL) | |
4080 | { | |
4081 | Elf_External_Dyn *extdyn; | |
4082 | Elf_External_Dyn *extdynend; | |
4083 | ||
4084 | dynbuf = (Elf_External_Dyn *) malloc (s->_raw_size); | |
4085 | if (dynbuf == NULL) | |
4086 | { | |
4087 | bfd_set_error (bfd_error_no_memory); | |
4088 | goto error_return; | |
4089 | } | |
4090 | ||
4091 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
4092 | (file_ptr) 0, s->_raw_size)) | |
4093 | goto error_return; | |
4094 | ||
4095 | extdyn = dynbuf; | |
4096 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
4097 | for (; extdyn < extdynend; extdyn++) | |
4098 | { | |
4099 | Elf_Internal_Dyn dyn; | |
4100 | ||
4101 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
4102 | if (dyn.d_tag == DT_SONAME) | |
4103 | { | |
4104 | int elfsec; | |
4105 | unsigned long link; | |
4106 | ||
4107 | elfsec = elf_section_from_bfd_section (abfd, s); | |
4108 | if (elfsec == -1) | |
4109 | goto error_return; | |
4110 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
4111 | name = elf_string_from_elf_section (abfd, link, | |
4112 | dyn.d_un.d_val); | |
4113 | if (name == NULL) | |
4114 | goto error_return; | |
4115 | ||
4116 | break; | |
4117 | } | |
4118 | } | |
4119 | ||
4120 | free (dynbuf); | |
4121 | dynbuf = NULL; | |
4122 | } | |
4123 | ||
4124 | /* We do not want to include any of the sections in a dynamic | |
4125 | object in the output file. We hack by simply clobbering the | |
4126 | list of sections in the BFD. This could be handled more | |
4127 | cleanly by, say, a new section flag; the existing | |
4128 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
4129 | still implies that the section takes up space in the output | |
4130 | file. */ | |
4131 | abfd->sections = NULL; | |
4132 | ||
4133 | /* If this is the first dynamic object found in the link, create | |
4134 | the special sections required for dynamic linking. We need | |
4135 | to put them somewhere, and attaching them to the first | |
4136 | dynamic object is as good place as any. */ | |
4137 | if (elf_hash_table (info)->dynobj == NULL) | |
4138 | { | |
4139 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
4140 | goto error_return; | |
4141 | elf_hash_table (info)->dynobj = abfd; | |
4142 | } | |
4143 | ||
4144 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
4145 | strindex = bfd_add_to_strtab (abfd, | |
4146 | elf_hash_table (info)->dynstr, | |
4147 | name); | |
013dec1a ILT |
4148 | if (strindex == (unsigned long) -1) |
4149 | goto error_return; | |
4150 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
4151 | goto error_return; | |
4152 | } | |
4153 | ||
6ec3bb6a | 4154 | if (bfd_seek (abfd, |
5315c428 | 4155 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), |
6ec3bb6a ILT |
4156 | SEEK_SET) != 0 |
4157 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
4158 | != extsymcount * sizeof (Elf_External_Sym))) | |
4159 | goto error_return; | |
4160 | ||
013dec1a ILT |
4161 | weaks = NULL; |
4162 | ||
6ec3bb6a ILT |
4163 | esymend = buf + extsymcount; |
4164 | for (esym = buf; esym < esymend; esym++, sym_hash++) | |
4165 | { | |
4166 | Elf_Internal_Sym sym; | |
4167 | int bind; | |
4168 | bfd_vma value; | |
4169 | asection *sec; | |
4170 | flagword flags; | |
4171 | const char *name; | |
013dec1a ILT |
4172 | struct elf_link_hash_entry *h = NULL; |
4173 | boolean definition; | |
6ec3bb6a ILT |
4174 | |
4175 | elf_swap_symbol_in (abfd, esym, &sym); | |
4176 | ||
4177 | flags = BSF_NO_FLAGS; | |
4178 | sec = NULL; | |
4179 | value = sym.st_value; | |
4180 | *sym_hash = NULL; | |
4181 | ||
4182 | bind = ELF_ST_BIND (sym.st_info); | |
4183 | if (bind == STB_LOCAL) | |
4184 | { | |
4185 | /* This should be impossible, since ELF requires that all | |
4186 | global symbols follow all local symbols, and that sh_info | |
5315c428 ILT |
4187 | point to the first global symbol. Unfortunatealy, Irix 5 |
4188 | screws this up. */ | |
4189 | continue; | |
6ec3bb6a ILT |
4190 | } |
4191 | else if (bind == STB_GLOBAL) | |
4192 | flags = BSF_GLOBAL; | |
4193 | else if (bind == STB_WEAK) | |
4194 | flags = BSF_WEAK; | |
4195 | else | |
4196 | { | |
4197 | /* Leave it up to the processor backend. */ | |
4198 | } | |
4199 | ||
4200 | if (sym.st_shndx == SHN_UNDEF) | |
badd23e3 | 4201 | sec = bfd_und_section_ptr; |
6ec3bb6a ILT |
4202 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) |
4203 | { | |
4204 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
4205 | if (sec == NULL) | |
4206 | goto error_return; | |
4207 | value -= sec->vma; | |
4208 | } | |
4209 | else if (sym.st_shndx == SHN_ABS) | |
badd23e3 | 4210 | sec = bfd_abs_section_ptr; |
6ec3bb6a ILT |
4211 | else if (sym.st_shndx == SHN_COMMON) |
4212 | { | |
badd23e3 | 4213 | sec = bfd_com_section_ptr; |
6ec3bb6a ILT |
4214 | /* What ELF calls the size we call the value. What ELF |
4215 | calls the value we call the alignment. */ | |
4216 | value = sym.st_size; | |
4217 | } | |
4218 | else | |
4219 | { | |
4220 | /* Leave it up to the processor backend. */ | |
4221 | } | |
4222 | ||
4223 | name = elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
4224 | if (name == (const char *) NULL) | |
4225 | goto error_return; | |
4226 | ||
4227 | if (add_symbol_hook) | |
4228 | { | |
4229 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
4230 | &value)) | |
4231 | goto error_return; | |
4232 | ||
4233 | /* The hook function sets the name to NULL if this symbol | |
4234 | should be skipped for some reason. */ | |
4235 | if (name == (const char *) NULL) | |
4236 | continue; | |
4237 | } | |
4238 | ||
4239 | /* Sanity check that all possibilities were handled. */ | |
4240 | if (flags == BSF_NO_FLAGS || sec == (asection *) NULL) | |
4241 | { | |
4242 | bfd_set_error (bfd_error_bad_value); | |
4243 | goto error_return; | |
4244 | } | |
4245 | ||
badd23e3 | 4246 | if (bfd_is_und_section (sec) |
013dec1a ILT |
4247 | || bfd_is_com_section (sec)) |
4248 | definition = false; | |
4249 | else | |
4250 | definition = true; | |
4251 | ||
4252 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
4253 | { | |
4254 | /* We need to look up the symbol now in order to get some of | |
4255 | the dynamic object handling right. We pass the hash | |
4256 | table entry in to _bfd_generic_link_add_one_symbol so | |
4257 | that it does not have to look it up again. */ | |
4258 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
4259 | true, false, false); | |
4260 | if (h == NULL) | |
4261 | goto error_return; | |
4262 | *sym_hash = h; | |
4263 | ||
4264 | /* If we are looking at a dynamic object, and this is a | |
4265 | definition, we need to see if it has already been defined | |
4266 | by some other object. If it has, we want to use the | |
4267 | existing definition, and we do not want to report a | |
4268 | multiple symbol definition error; we do this by | |
badd23e3 | 4269 | clobbering sec to be bfd_und_section_ptr. */ |
013dec1a ILT |
4270 | if (dynamic && definition) |
4271 | { | |
4272 | if (h->root.type == bfd_link_hash_defined) | |
badd23e3 | 4273 | sec = bfd_und_section_ptr; |
013dec1a ILT |
4274 | } |
4275 | ||
4276 | /* Similarly, if we are not looking at a dynamic object, and | |
4277 | we have a definition, we want to override any definition | |
4278 | we may have from a dynamic object. Symbols from regular | |
4279 | files always take precedence over symbols from dynamic | |
4280 | objects, even if they are defined after the dynamic | |
4281 | object in the link. */ | |
4282 | if (! dynamic | |
4283 | && definition | |
4284 | && h->root.type == bfd_link_hash_defined | |
4285 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
4286 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
4287 | == bfd_target_elf_flavour) | |
4288 | && (elf_elfheader (h->root.u.def.section->owner)->e_type | |
4289 | == ET_DYN)) | |
4290 | { | |
4291 | /* Change the hash table entry to undefined, and let | |
4292 | _bfd_generic_link_add_one_symbol do the right thing | |
4293 | with the new definition. */ | |
4294 | h->root.type = bfd_link_hash_undefined; | |
4295 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
bf73e4f3 | 4296 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEFINED_WEAK; |
013dec1a | 4297 | } |
bf73e4f3 ILT |
4298 | |
4299 | /* If this is a weak definition which we are going to use, | |
4300 | and the symbol is currently undefined, record that the | |
4301 | definition is weak. */ | |
4302 | if (definition | |
4303 | && (flags & BSF_WEAK) != 0 | |
4304 | && ! bfd_is_und_section (sec) | |
4305 | && (h->root.type == bfd_link_hash_new | |
4306 | || h->root.type == bfd_link_hash_undefined | |
4307 | || h->root.type == bfd_link_hash_weak)) | |
4308 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEFINED_WEAK; | |
013dec1a ILT |
4309 | } |
4310 | ||
4311 | if (! (_bfd_generic_link_add_one_symbol | |
4312 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
4313 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
6ec3bb6a ILT |
4314 | goto error_return; |
4315 | ||
013dec1a ILT |
4316 | if (dynamic |
4317 | && definition | |
4318 | && (flags & BSF_WEAK) != 0 | |
4319 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
4320 | && (*sym_hash)->weakdef == NULL) | |
4321 | { | |
4322 | /* Keep a list of all weak defined non function symbols from | |
4323 | a dynamic object, using the weakdef field. Later in this | |
4324 | function we will set the weakdef field to the correct | |
4325 | value. We only put non-function symbols from dynamic | |
4326 | objects on this list, because that happens to be the only | |
4327 | time we need to know the normal symbol corresponding to a | |
4328 | weak symbol, and the information is time consuming to | |
4329 | figure out. If the weakdef field is not already NULL, | |
4330 | then this symbol was already defined by some previous | |
4331 | dynamic object, and we will be using that previous | |
4332 | definition anyhow. */ | |
4333 | ||
4334 | (*sym_hash)->weakdef = weaks; | |
4335 | weaks = *sym_hash; | |
4336 | } | |
4337 | ||
374d2ef9 | 4338 | /* Get the alignment of a common symbol. */ |
7c6da9ca ILT |
4339 | if (sym.st_shndx == SHN_COMMON |
4340 | && h->root.type == bfd_link_hash_common) | |
4341 | h->root.u.c.alignment_power = bfd_log2 (sym.st_value); | |
4342 | ||
6ec3bb6a ILT |
4343 | if (info->hash->creator->flavour == bfd_target_elf_flavour) |
4344 | { | |
013dec1a ILT |
4345 | int old_flags; |
4346 | boolean dynsym; | |
4347 | int new_flag; | |
4348 | ||
374d2ef9 | 4349 | /* Remember the symbol size and type. */ |
6ec3bb6a ILT |
4350 | if (sym.st_size != 0) |
4351 | { | |
4352 | /* FIXME: We should probably somehow give a warning if | |
4353 | the symbol size changes. */ | |
013dec1a | 4354 | h->size = sym.st_size; |
6ec3bb6a | 4355 | } |
6ec3bb6a ILT |
4356 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE) |
4357 | { | |
4358 | /* FIXME: We should probably somehow give a warning if | |
4359 | the symbol type changes. */ | |
013dec1a ILT |
4360 | h->type = ELF_ST_TYPE (sym.st_info); |
4361 | } | |
4362 | ||
4363 | /* Set a flag in the hash table entry indicating the type of | |
4364 | reference or definition we just found. Keep a count of | |
4365 | the number of dynamic symbols we find. A dynamic symbol | |
4366 | is one which is referenced or defined by both a regular | |
4367 | object and a shared object, or one which is referenced or | |
4368 | defined by more than one shared object. */ | |
4369 | old_flags = h->elf_link_hash_flags; | |
4370 | dynsym = false; | |
4371 | if (! dynamic) | |
4372 | { | |
4373 | if (! definition) | |
4374 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
4375 | else | |
4376 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
374d2ef9 ILT |
4377 | if (info->shared |
4378 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
4379 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
013dec1a ILT |
4380 | dynsym = true; |
4381 | } | |
4382 | else | |
4383 | { | |
4384 | if (! definition) | |
4385 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
4386 | else | |
4387 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
374d2ef9 ILT |
4388 | if ((old_flags & new_flag) != 0 |
4389 | || (old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
4390 | | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
4391 | dynsym = true; | |
013dec1a ILT |
4392 | } |
4393 | ||
4394 | h->elf_link_hash_flags |= new_flag; | |
4395 | if (dynsym && h->dynindx == -1) | |
4396 | { | |
4397 | if (! elf_link_record_dynamic_symbol (info, h)) | |
4398 | goto error_return; | |
4399 | } | |
4400 | } | |
4401 | } | |
4402 | ||
4403 | /* Now set the weakdefs field correctly for all the weak defined | |
4404 | symbols we found. The only way to do this is to search all the | |
4405 | symbols. Since we only need the information for non functions in | |
4406 | dynamic objects, that's the only time we actually put anything on | |
4407 | the list WEAKS. We need this information so that if a regular | |
4408 | object refers to a symbol defined weakly in a dynamic object, the | |
4409 | real symbol in the dynamic object is also put in the dynamic | |
4410 | symbols; we also must arrange for both symbols to point to the | |
4411 | same memory location. We could handle the general case of symbol | |
4412 | aliasing, but a general symbol alias can only be generated in | |
4413 | assembler code, handling it correctly would be very time | |
4414 | consuming, and other ELF linkers don't handle general aliasing | |
4415 | either. */ | |
4416 | while (weaks != NULL) | |
4417 | { | |
4418 | struct elf_link_hash_entry *hlook; | |
4419 | asection *slook; | |
4420 | bfd_vma vlook; | |
4421 | struct elf_link_hash_entry **hpp; | |
4422 | struct elf_link_hash_entry **hppend; | |
4423 | ||
4424 | hlook = weaks; | |
4425 | weaks = hlook->weakdef; | |
4426 | hlook->weakdef = NULL; | |
4427 | ||
4428 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined); | |
4429 | slook = hlook->root.u.def.section; | |
4430 | vlook = hlook->root.u.def.value; | |
4431 | ||
4432 | hpp = elf_sym_hashes (abfd); | |
4433 | hppend = hpp + extsymcount; | |
4434 | for (; hpp < hppend; hpp++) | |
4435 | { | |
4436 | struct elf_link_hash_entry *h; | |
4437 | ||
4438 | h = *hpp; | |
4439 | if (h != hlook | |
4440 | && h->root.type == bfd_link_hash_defined | |
4441 | && h->root.u.def.section == slook | |
4442 | && h->root.u.def.value == vlook) | |
4443 | { | |
4444 | hlook->weakdef = h; | |
4445 | ||
4446 | /* If the weak definition is in the list of dynamic | |
4447 | symbols, make sure the real definition is put there | |
4448 | as well. */ | |
4449 | if (hlook->dynindx != -1 | |
4450 | && h->dynindx == -1) | |
4451 | { | |
4452 | if (! elf_link_record_dynamic_symbol (info, h)) | |
4453 | goto error_return; | |
4454 | } | |
4455 | ||
4456 | break; | |
6ec3bb6a ILT |
4457 | } |
4458 | } | |
4459 | } | |
4460 | ||
4461 | if (buf != NULL) | |
374d2ef9 ILT |
4462 | { |
4463 | free (buf); | |
4464 | buf = NULL; | |
4465 | } | |
4466 | ||
4467 | /* If this object is the same format as the output object, and it is | |
4468 | not a shared library, then let the backend look through the | |
4469 | relocs. | |
4470 | ||
4471 | This is required to build global offset table entries and to | |
4472 | arrange for dynamic relocs. It is not required for the | |
4473 | particular common case of linking non PIC code, even when linking | |
4474 | against shared libraries, but unfortunately there is no way of | |
4475 | knowing whether an object file has been compiled PIC or not. | |
4476 | Looking through the relocs is not particularly time consuming. | |
4477 | The problem is that we must either (1) keep the relocs in memory, | |
4478 | which causes the linker to require additional runtime memory or | |
4479 | (2) read the relocs twice from the input file, which wastes time. | |
4480 | This would be a good case for using mmap. | |
4481 | ||
4482 | I have no idea how to handle linking PIC code into a file of a | |
4483 | different format. It probably can't be done. */ | |
4484 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
4485 | if (! dynamic | |
4486 | && abfd->xvec == info->hash->creator | |
4487 | && check_relocs != NULL) | |
4488 | { | |
4489 | asection *o; | |
4490 | ||
4491 | for (o = abfd->sections; o != NULL; o = o->next) | |
4492 | { | |
4493 | Elf_Internal_Rela *internal_relocs; | |
4494 | boolean ok; | |
4495 | ||
4496 | if ((o->flags & SEC_RELOC) == 0 | |
4497 | || o->reloc_count == 0) | |
4498 | continue; | |
4499 | ||
4500 | /* I believe we can ignore the relocs for any section which | |
4501 | does not form part of the final process image, such as a | |
4502 | debugging section. */ | |
4503 | if ((o->flags & SEC_ALLOC) == 0) | |
4504 | continue; | |
4505 | ||
4506 | internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL, | |
4507 | (Elf_Internal_Rela *) NULL, | |
4508 | info->keep_memory); | |
4509 | if (internal_relocs == NULL) | |
4510 | goto error_return; | |
4511 | ||
4512 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
4513 | ||
4514 | if (! info->keep_memory) | |
4515 | free (internal_relocs); | |
4516 | ||
4517 | if (! ok) | |
4518 | goto error_return; | |
4519 | } | |
4520 | } | |
6ec3bb6a ILT |
4521 | |
4522 | return true; | |
4523 | ||
4524 | error_return: | |
4525 | if (buf != NULL) | |
4526 | free (buf); | |
013dec1a ILT |
4527 | if (dynbuf != NULL) |
4528 | free (dynbuf); | |
6ec3bb6a ILT |
4529 | return false; |
4530 | } | |
013dec1a ILT |
4531 | |
4532 | /* Create some sections which will be filled in with dynamic linking | |
4533 | information. The ABFD argument is an input file which is a dynamic | |
4534 | object. The dynamic sections take up virtual memory space when the | |
4535 | final executable is run, so we need to create them before addresses | |
4536 | are assigned to the output sections. We work out the actual | |
4537 | contents and size of these sections later. */ | |
4538 | ||
374d2ef9 | 4539 | boolean |
013dec1a ILT |
4540 | elf_link_create_dynamic_sections (abfd, info) |
4541 | bfd *abfd; | |
4542 | struct bfd_link_info *info; | |
4543 | { | |
4544 | flagword flags; | |
4545 | register asection *s; | |
4546 | struct elf_link_hash_entry *h; | |
4547 | struct elf_backend_data *bed; | |
4548 | ||
4549 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
4550 | sections. */ | |
4551 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; | |
4552 | ||
8af74670 ILT |
4553 | /* A dynamically linked executable has a .interp section, but a |
4554 | shared library does not. */ | |
4555 | if (! info->shared) | |
4556 | { | |
4557 | s = bfd_make_section (abfd, ".interp"); | |
4558 | if (s == NULL | |
4559 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
4560 | return false; | |
4561 | } | |
013dec1a | 4562 | |
374d2ef9 ILT |
4563 | s = bfd_make_section (abfd, ".dynsym"); |
4564 | if (s == NULL | |
4565 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
4566 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4567 | return false; | |
4568 | ||
4569 | /* The first .dynsym symbol is a dummy. */ | |
4570 | elf_hash_table (info)->dynsymcount = 1; | |
4571 | ||
4572 | s = bfd_make_section (abfd, ".dynstr"); | |
4573 | if (s == NULL | |
4574 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
4575 | return false; | |
4576 | ||
4577 | /* Create a strtab to hold the dynamic symbol names. */ | |
4578 | elf_hash_table (info)->dynstr = bfd_new_strtab (abfd); | |
4579 | if (elf_hash_table (info)->dynstr == NULL) | |
4580 | return false; | |
4581 | ||
013dec1a ILT |
4582 | s = bfd_make_section (abfd, ".dynamic"); |
4583 | if (s == NULL | |
4584 | || ! bfd_set_section_flags (abfd, s, flags) | |
4585 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4586 | return false; | |
4587 | ||
4588 | /* The special symbol _DYNAMIC is always set to the start of the | |
4589 | .dynamic section. This call occurs before we have processed the | |
4590 | symbols for any dynamic object, so we don't have to worry about | |
4591 | overriding a dynamic definition. We could set _DYNAMIC in a | |
4592 | linker script, but we only want to define it if we are, in fact, | |
4593 | creating a .dynamic section. We don't want to define it if there | |
4594 | is no .dynamic section, since on some ELF platforms the start up | |
4595 | code examines it to decide how to initialize the process. */ | |
4596 | h = NULL; | |
4597 | if (! (_bfd_generic_link_add_one_symbol | |
4598 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
4599 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
4600 | (struct bfd_link_hash_entry **) &h))) | |
4601 | return false; | |
4602 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
99dd7754 JMD |
4603 | h->type = STT_OBJECT; |
4604 | ||
374d2ef9 ILT |
4605 | if (info->shared |
4606 | && ! elf_link_record_dynamic_symbol (info, h)) | |
013dec1a ILT |
4607 | return false; |
4608 | ||
4609 | s = bfd_make_section (abfd, ".hash"); | |
4610 | if (s == NULL | |
4611 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
4612 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4613 | return false; | |
4614 | ||
4615 | /* Let the backend create the rest of the sections. This lets the | |
4616 | backend set the right flags. The backend will normally create | |
4617 | the .got and .plt sections. */ | |
4618 | bed = get_elf_backend_data (abfd); | |
4619 | return (*bed->elf_backend_create_dynamic_sections) (abfd, info); | |
4620 | } | |
4621 | ||
4622 | /* Add an entry to the .dynamic table. */ | |
4623 | ||
4624 | boolean | |
4625 | elf_add_dynamic_entry (info, tag, val) | |
4626 | struct bfd_link_info *info; | |
4627 | bfd_vma tag; | |
4628 | bfd_vma val; | |
4629 | { | |
4630 | Elf_Internal_Dyn dyn; | |
4631 | bfd *dynobj; | |
4632 | asection *s; | |
4633 | size_t newsize; | |
4634 | bfd_byte *newcontents; | |
4635 | ||
4636 | dynobj = elf_hash_table (info)->dynobj; | |
4637 | ||
4638 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
4639 | BFD_ASSERT (s != NULL); | |
4640 | ||
4641 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
4642 | if (s->contents == NULL) | |
4643 | newcontents = (bfd_byte *) malloc (newsize); | |
4644 | else | |
4645 | newcontents = (bfd_byte *) realloc (s->contents, newsize); | |
4646 | if (newcontents == NULL) | |
4647 | { | |
4648 | bfd_set_error (bfd_error_no_memory); | |
4649 | return false; | |
4650 | } | |
4651 | ||
4652 | dyn.d_tag = tag; | |
4653 | dyn.d_un.d_val = val; | |
4654 | elf_swap_dyn_out (dynobj, &dyn, | |
4655 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
4656 | ||
4657 | s->_raw_size = newsize; | |
4658 | s->contents = newcontents; | |
4659 | ||
4660 | return true; | |
4661 | } | |
4662 | ||
374d2ef9 ILT |
4663 | /* Read and swap the relocs for a section. They may have been cached. |
4664 | If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL, | |
4665 | they are used as buffers to read into. They are known to be large | |
4666 | enough. If the INTERNAL_RELOCS relocs argument is NULL, the return | |
4667 | value is allocated using either malloc or bfd_alloc, according to | |
4668 | the KEEP_MEMORY argument. */ | |
4669 | ||
4670 | static Elf_Internal_Rela * | |
4671 | elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory) | |
4672 | bfd *abfd; | |
4673 | asection *o; | |
4674 | PTR external_relocs; | |
4675 | Elf_Internal_Rela *internal_relocs; | |
4676 | boolean keep_memory; | |
4677 | { | |
4678 | Elf_Internal_Shdr *rel_hdr; | |
4679 | PTR alloc1 = NULL; | |
4680 | Elf_Internal_Rela *alloc2 = NULL; | |
4681 | ||
4682 | if (elf_section_data (o)->relocs != NULL) | |
4683 | return elf_section_data (o)->relocs; | |
4684 | ||
4685 | if (o->reloc_count == 0) | |
4686 | return NULL; | |
4687 | ||
4688 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
4689 | ||
4690 | if (internal_relocs == NULL) | |
4691 | { | |
4692 | size_t size; | |
4693 | ||
4694 | size = o->reloc_count * sizeof (Elf_Internal_Rela); | |
4695 | if (keep_memory) | |
4696 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
4697 | else | |
4698 | internal_relocs = alloc2 = (Elf_Internal_Rela *) malloc (size); | |
4699 | if (internal_relocs == NULL) | |
4700 | { | |
4701 | bfd_set_error (bfd_error_no_memory); | |
4702 | goto error_return; | |
4703 | } | |
4704 | } | |
4705 | ||
4706 | if (external_relocs == NULL) | |
4707 | { | |
4708 | alloc1 = (PTR) malloc (rel_hdr->sh_size); | |
4709 | if (alloc1 == NULL) | |
4710 | { | |
4711 | bfd_set_error (bfd_error_no_memory); | |
4712 | goto error_return; | |
4713 | } | |
4714 | external_relocs = alloc1; | |
4715 | } | |
4716 | ||
4717 | if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0) | |
4718 | || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd) | |
4719 | != rel_hdr->sh_size)) | |
4720 | goto error_return; | |
4721 | ||
4722 | /* Swap in the relocs. For convenience, we always produce an | |
4723 | Elf_Internal_Rela array; if the relocs are Rel, we set the addend | |
4724 | to 0. */ | |
4725 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
4726 | { | |
4727 | Elf_External_Rel *erel; | |
4728 | Elf_External_Rel *erelend; | |
4729 | Elf_Internal_Rela *irela; | |
4730 | ||
4731 | erel = (Elf_External_Rel *) external_relocs; | |
4732 | erelend = erel + o->reloc_count; | |
4733 | irela = internal_relocs; | |
4734 | for (; erel < erelend; erel++, irela++) | |
4735 | { | |
4736 | Elf_Internal_Rel irel; | |
4737 | ||
4738 | elf_swap_reloc_in (abfd, erel, &irel); | |
4739 | irela->r_offset = irel.r_offset; | |
4740 | irela->r_info = irel.r_info; | |
4741 | irela->r_addend = 0; | |
4742 | } | |
4743 | } | |
4744 | else | |
4745 | { | |
4746 | Elf_External_Rela *erela; | |
4747 | Elf_External_Rela *erelaend; | |
4748 | Elf_Internal_Rela *irela; | |
4749 | ||
4750 | BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); | |
4751 | ||
4752 | erela = (Elf_External_Rela *) external_relocs; | |
4753 | erelaend = erela + o->reloc_count; | |
4754 | irela = internal_relocs; | |
4755 | for (; erela < erelaend; erela++, irela++) | |
4756 | elf_swap_reloca_in (abfd, erela, irela); | |
4757 | } | |
4758 | ||
4759 | /* Cache the results for next time, if we can. */ | |
4760 | if (keep_memory) | |
4761 | elf_section_data (o)->relocs = internal_relocs; | |
4762 | ||
4763 | if (alloc1 != NULL) | |
4764 | free (alloc1); | |
4765 | ||
4766 | /* Don't free alloc2, since if it was allocated we are passing it | |
4767 | back (under the name of internal_relocs). */ | |
4768 | ||
4769 | return internal_relocs; | |
4770 | ||
4771 | error_return: | |
4772 | if (alloc1 != NULL) | |
4773 | free (alloc1); | |
4774 | if (alloc2 != NULL) | |
4775 | free (alloc2); | |
4776 | return NULL; | |
4777 | } | |
4778 | ||
013dec1a ILT |
4779 | /* Record an assignment to a symbol made by a linker script. We need |
4780 | this in case some dynamic object refers to this symbol. */ | |
4781 | ||
4782 | /*ARGSUSED*/ | |
4783 | boolean | |
4784 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name) | |
4785 | bfd *output_bfd; | |
4786 | struct bfd_link_info *info; | |
4787 | const char *name; | |
4788 | { | |
4789 | struct elf_link_hash_entry *h; | |
4790 | ||
99dd7754 | 4791 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); |
013dec1a | 4792 | if (h == NULL) |
99dd7754 | 4793 | return false; |
013dec1a ILT |
4794 | |
4795 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
99dd7754 | 4796 | h->type = STT_OBJECT; |
013dec1a | 4797 | |
374d2ef9 ILT |
4798 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC |
4799 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
4800 | || info->shared) | |
013dec1a ILT |
4801 | && h->dynindx == -1) |
4802 | { | |
4803 | if (! elf_link_record_dynamic_symbol (info, h)) | |
4804 | return false; | |
4805 | ||
4806 | /* If this is a weak defined symbol, and we know a corresponding | |
4807 | real symbol from the same dynamic object, make sure the real | |
4808 | symbol is also made into a dynamic symbol. */ | |
4809 | if (h->weakdef != NULL | |
4810 | && h->weakdef->dynindx == -1) | |
4811 | { | |
4812 | if (! elf_link_record_dynamic_symbol (info, h->weakdef)) | |
4813 | return false; | |
4814 | } | |
4815 | } | |
4816 | ||
4817 | return true; | |
4818 | } | |
4819 | ||
4820 | /* Array used to determine the number of hash table buckets to use | |
4821 | based on the number of symbols there are. If there are fewer than | |
4822 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
4823 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
4824 | than 521 buckets. */ | |
4825 | ||
4826 | static const size_t elf_buckets[] = | |
4827 | { | |
4828 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0 | |
4829 | }; | |
4830 | ||
4831 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
4832 | called by the ELF linker emulation before_allocation routine. We | |
4833 | must set the sizes of the sections before the linker sets the | |
4834 | addresses of the various sections. */ | |
4835 | ||
4836 | boolean | |
f9779aad | 4837 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, rpath, info, sinterpptr) |
013dec1a | 4838 | bfd *output_bfd; |
f9779aad | 4839 | const char *rpath; |
013dec1a | 4840 | struct bfd_link_info *info; |
7c726b66 | 4841 | asection **sinterpptr; |
013dec1a ILT |
4842 | { |
4843 | bfd *dynobj; | |
4844 | size_t dynsymcount; | |
4845 | asection *s; | |
4846 | Elf_Internal_Sym isym; | |
4847 | size_t i; | |
4848 | size_t bucketcount; | |
4849 | struct elf_backend_data *bed; | |
4850 | ||
7c726b66 ILT |
4851 | *sinterpptr = NULL; |
4852 | ||
013dec1a ILT |
4853 | dynobj = elf_hash_table (info)->dynobj; |
4854 | dynsymcount = elf_hash_table (info)->dynsymcount; | |
4855 | ||
4856 | /* If there were no dynamic objects in the link, there is nothing to | |
4857 | do here. */ | |
4858 | if (dynobj == NULL) | |
4859 | return true; | |
4860 | ||
7c726b66 | 4861 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); |
8af74670 | 4862 | BFD_ASSERT (*sinterpptr != NULL || info->shared); |
7c726b66 | 4863 | |
013dec1a ILT |
4864 | /* Set the size of the .dynsym and .hash sections. We counted the |
4865 | number of dynamic symbols in elf_link_add_object_symbols. We | |
4866 | will build the contents of .dynsym and .hash when we build the | |
4867 | final symbol table, because until then we do not know the correct | |
4868 | value to give the symbols. We built the .dynstr section as we | |
4869 | went along in elf_link_add_object_symbols. */ | |
4870 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
4871 | BFD_ASSERT (s != NULL); | |
4872 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
4873 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
4874 | if (s->contents == NULL && s->_raw_size != 0) | |
4875 | { | |
4876 | bfd_set_error (bfd_error_no_memory); | |
4877 | return false; | |
4878 | } | |
4879 | ||
4880 | /* The first entry in .dynsym is a dummy symbol. */ | |
4881 | isym.st_value = 0; | |
4882 | isym.st_size = 0; | |
4883 | isym.st_name = 0; | |
4884 | isym.st_info = 0; | |
4885 | isym.st_other = 0; | |
4886 | isym.st_shndx = 0; | |
4887 | elf_swap_symbol_out (output_bfd, &isym, | |
4888 | (Elf_External_Sym *) s->contents); | |
4889 | ||
4890 | for (i = 0; elf_buckets[i] != 0; i++) | |
4891 | { | |
4892 | bucketcount = elf_buckets[i]; | |
4893 | if (dynsymcount < elf_buckets[i + 1]) | |
4894 | break; | |
4895 | } | |
4896 | ||
4897 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
4898 | BFD_ASSERT (s != NULL); | |
4899 | s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8); | |
4900 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
4901 | if (s->contents == NULL) | |
4902 | { | |
4903 | bfd_set_error (bfd_error_no_memory); | |
4904 | return false; | |
4905 | } | |
4906 | memset (s->contents, 0, s->_raw_size); | |
4907 | ||
4908 | put_word (output_bfd, bucketcount, s->contents); | |
4909 | put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8)); | |
4910 | ||
4911 | elf_hash_table (info)->bucketcount = bucketcount; | |
4912 | ||
f9779aad ILT |
4913 | if (rpath != NULL) |
4914 | { | |
4915 | unsigned long indx; | |
4916 | ||
4917 | indx = bfd_add_to_strtab (dynobj, elf_hash_table (info)->dynstr, rpath); | |
4918 | if (indx == (unsigned long) -1 | |
4919 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
4920 | return false; | |
4921 | } | |
4922 | ||
013dec1a ILT |
4923 | s = bfd_get_section_by_name (dynobj, ".dynstr"); |
4924 | BFD_ASSERT (s != NULL); | |
4925 | s->_raw_size = elf_hash_table (info)->dynstr->length; | |
4926 | s->contents = (unsigned char *) elf_hash_table (info)->dynstr->tab; | |
4927 | ||
4928 | /* Find all symbols which were defined in a dynamic object and make | |
4929 | the backend pick a reasonable value for them. */ | |
4930 | elf_link_hash_traverse (elf_hash_table (info), | |
4931 | elf_adjust_dynamic_symbol, | |
4932 | (PTR) info); | |
4933 | ||
4934 | /* Add some entries to the .dynamic section. We fill in some of the | |
4935 | values later, in elf_bfd_final_link, but we must add the entries | |
4936 | now so that we know the final size of the .dynamic section. */ | |
4937 | if (bfd_get_section_by_name (output_bfd, ".init") != NULL) | |
4938 | { | |
4939 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
4940 | return false; | |
4941 | } | |
4942 | if (bfd_get_section_by_name (output_bfd, ".fini") != NULL) | |
4943 | { | |
4944 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
4945 | return false; | |
4946 | } | |
4947 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
4948 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
4949 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
4950 | || ! elf_add_dynamic_entry (info, DT_STRSZ, | |
4951 | elf_hash_table (info)->dynstr->length) | |
4952 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
4953 | sizeof (Elf_External_Sym))) | |
4954 | return false; | |
4955 | ||
4956 | /* The backend must work out the sizes of all the other dynamic | |
4957 | sections. */ | |
4958 | bed = get_elf_backend_data (output_bfd); | |
4959 | if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
4960 | return false; | |
4961 | ||
4962 | return elf_add_dynamic_entry (info, DT_NULL, 0); | |
4963 | } | |
4964 | ||
4965 | /* Make the backend pick a good value for a dynamic symbol. This is | |
4966 | called via elf_link_hash_traverse, and also calls itself | |
4967 | recursively. */ | |
4968 | ||
4969 | static boolean | |
4970 | elf_adjust_dynamic_symbol (h, data) | |
4971 | struct elf_link_hash_entry *h; | |
4972 | PTR data; | |
4973 | { | |
4974 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
4975 | bfd *dynobj; | |
4976 | struct elf_backend_data *bed; | |
4977 | ||
4978 | /* If this symbol is not defined by a dynamic object, or is not | |
4979 | referenced by a regular object, ignore it. FIXME: Do we need to | |
4980 | worry about symbols which are defined by one dynamic object and | |
4981 | referenced by another one? */ | |
4982 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
4983 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
4984 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
4985 | return true; | |
4986 | ||
4987 | /* If we've already adjusted this symbol, don't do it again. This | |
4988 | can happen via a recursive call. */ | |
4989 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
4990 | return true; | |
4991 | ||
4992 | /* Don't look at this symbol again. Note that we must set this | |
4993 | after checking the above conditions, because we may look at a | |
4994 | symbol once, decide not to do anything, and then get called | |
4995 | recursively later after REF_REGULAR is set below. */ | |
4996 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
4997 | ||
4998 | /* If this is a weak definition, and we know a real definition, and | |
4999 | the real symbol is not itself defined by a regular object file, | |
5000 | then get a good value for the real definition. We handle the | |
5001 | real symbol first, for the convenience of the backend routine. | |
5002 | ||
5003 | Note that there is a confusing case here. If the real definition | |
5004 | is defined by a regular object file, we don't get the real symbol | |
5005 | from the dynamic object, but we do get the weak symbol. If the | |
5006 | processor backend uses a COPY reloc, then if some routine in the | |
5007 | dynamic object changes the real symbol, we will not see that | |
5008 | change in the corresponding weak symbol. This is the way other | |
5009 | ELF linkers work as well, and seems to be a result of the shared | |
5010 | library model. | |
5011 | ||
5012 | I will clarify this issue. Most SVR4 shared libraries define the | |
5013 | variable _timezone and define timezone as a weak synonym. The | |
5014 | tzset call changes _timezone. If you write | |
5015 | extern int timezone; | |
5016 | int _timezone = 5; | |
5017 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
5018 | you might expect that, since timezone is a synonym for _timezone, | |
5019 | the same number will print both times. However, if the processor | |
5020 | backend uses a COPY reloc, then actually timezone will be copied | |
5021 | into your process image, and, since you define _timezone | |
5022 | yourself, _timezone will not. Thus timezone and _timezone will | |
5023 | wind up at different memory locations. The tzset call will set | |
5024 | _timezone, leaving timezone unchanged. */ | |
5025 | ||
5026 | if (h->weakdef != NULL) | |
5027 | { | |
5028 | struct elf_link_hash_entry *weakdef; | |
5029 | ||
5030 | BFD_ASSERT (h->root.type == bfd_link_hash_defined); | |
5031 | weakdef = h->weakdef; | |
5032 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined); | |
5033 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
30e5ad97 | 5034 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
013dec1a | 5035 | { |
30e5ad97 ILT |
5036 | /* This symbol is defined by a regular object file, so we |
5037 | will not do anything special. Clear weakdef for the | |
5038 | convenience of the processor backend. */ | |
013dec1a ILT |
5039 | h->weakdef = NULL; |
5040 | } | |
5041 | else | |
5042 | { | |
5043 | /* There is an implicit reference by a regular object file | |
5044 | via the weak symbol. */ | |
5045 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
5046 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) info)) | |
5047 | return false; | |
5048 | } | |
5049 | } | |
5050 | ||
5051 | dynobj = elf_hash_table (info)->dynobj; | |
5052 | bed = get_elf_backend_data (dynobj); | |
5053 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (info, h)) | |
5054 | { | |
5055 | /* FIXME: No way to return error. */ | |
5056 | abort (); | |
5057 | } | |
5058 | ||
5059 | return true; | |
5060 | } | |
6ec3bb6a ILT |
5061 | \f |
5062 | /* Final phase of ELF linker. */ | |
5063 | ||
5064 | /* A structure we use to avoid passing large numbers of arguments. */ | |
5065 | ||
5066 | struct elf_final_link_info | |
5067 | { | |
5068 | /* General link information. */ | |
5069 | struct bfd_link_info *info; | |
5070 | /* Output BFD. */ | |
5071 | bfd *output_bfd; | |
5072 | /* Symbol string table. */ | |
5073 | struct strtab *symstrtab; | |
013dec1a ILT |
5074 | /* .dynsym section. */ |
5075 | asection *dynsym_sec; | |
5076 | /* .hash section. */ | |
5077 | asection *hash_sec; | |
6ec3bb6a ILT |
5078 | /* Buffer large enough to hold contents of any section. */ |
5079 | bfd_byte *contents; | |
5080 | /* Buffer large enough to hold external relocs of any section. */ | |
5081 | PTR external_relocs; | |
5082 | /* Buffer large enough to hold internal relocs of any section. */ | |
5083 | Elf_Internal_Rela *internal_relocs; | |
5084 | /* Buffer large enough to hold external local symbols of any input | |
5085 | BFD. */ | |
5086 | Elf_External_Sym *external_syms; | |
5087 | /* Buffer large enough to hold internal local symbols of any input | |
5088 | BFD. */ | |
5089 | Elf_Internal_Sym *internal_syms; | |
5090 | /* Array large enough to hold a symbol index for each local symbol | |
5091 | of any input BFD. */ | |
5092 | long *indices; | |
5093 | /* Array large enough to hold a section pointer for each local | |
5094 | symbol of any input BFD. */ | |
5095 | asection **sections; | |
5096 | /* Buffer to hold swapped out symbols. */ | |
5097 | Elf_External_Sym *symbuf; | |
5098 | /* Number of swapped out symbols in buffer. */ | |
5099 | size_t symbuf_count; | |
5100 | /* Number of symbols which fit in symbuf. */ | |
5101 | size_t symbuf_size; | |
5102 | }; | |
5103 | ||
5104 | static boolean elf_link_output_sym | |
71edd06d ILT |
5105 | PARAMS ((struct elf_final_link_info *, const char *, |
5106 | Elf_Internal_Sym *, asection *)); | |
6ec3bb6a ILT |
5107 | static boolean elf_link_flush_output_syms |
5108 | PARAMS ((struct elf_final_link_info *)); | |
5109 | static boolean elf_link_output_extsym | |
5110 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
5111 | static boolean elf_link_input_bfd | |
5112 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
5113 | static boolean elf_reloc_link_order | |
5114 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
5115 | struct bfd_link_order *)); | |
5116 | ||
5117 | /* Do the final step of an ELF link. */ | |
5118 | ||
5119 | boolean | |
5120 | elf_bfd_final_link (abfd, info) | |
5121 | bfd *abfd; | |
5122 | struct bfd_link_info *info; | |
5123 | { | |
013dec1a | 5124 | bfd *dynobj; |
6ec3bb6a ILT |
5125 | struct elf_final_link_info finfo; |
5126 | register asection *o; | |
5127 | register struct bfd_link_order *p; | |
5128 | register bfd *sub; | |
5129 | size_t max_contents_size; | |
5130 | size_t max_external_reloc_size; | |
5131 | size_t max_internal_reloc_count; | |
5132 | size_t max_sym_count; | |
5133 | file_ptr off; | |
5134 | Elf_Internal_Sym elfsym; | |
013dec1a | 5135 | unsigned int i; |
6ec3bb6a ILT |
5136 | Elf_Internal_Shdr *symtab_hdr; |
5137 | Elf_Internal_Shdr *symstrtab_hdr; | |
71edd06d | 5138 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
6ec3bb6a | 5139 | |
0ff5d3a6 | 5140 | if (info->shared) |
374d2ef9 | 5141 | abfd->flags |= DYNAMIC; |
0ff5d3a6 | 5142 | |
013dec1a ILT |
5143 | dynobj = elf_hash_table (info)->dynobj; |
5144 | ||
6ec3bb6a ILT |
5145 | finfo.info = info; |
5146 | finfo.output_bfd = abfd; | |
5147 | finfo.symstrtab = bfd_new_strtab (abfd); | |
5148 | if (finfo.symstrtab == NULL) | |
5149 | return false; | |
013dec1a ILT |
5150 | if (dynobj == NULL) |
5151 | { | |
5152 | finfo.dynsym_sec = NULL; | |
5153 | finfo.hash_sec = NULL; | |
5154 | } | |
5155 | else | |
5156 | { | |
5157 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
5158 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
5159 | if (finfo.dynsym_sec == NULL | |
5160 | || finfo.hash_sec == NULL) | |
5161 | abort (); | |
5162 | } | |
6ec3bb6a ILT |
5163 | finfo.contents = NULL; |
5164 | finfo.external_relocs = NULL; | |
5165 | finfo.internal_relocs = NULL; | |
5166 | finfo.external_syms = NULL; | |
5167 | finfo.internal_syms = NULL; | |
5168 | finfo.indices = NULL; | |
5169 | finfo.sections = NULL; | |
5170 | finfo.symbuf = NULL; | |
5171 | finfo.symbuf_count = 0; | |
5172 | ||
5173 | /* Count up the number of relocations we will output for each output | |
5174 | section, so that we know the sizes of the reloc sections. We | |
5175 | also figure out some maximum sizes. */ | |
5176 | max_contents_size = 0; | |
5177 | max_external_reloc_size = 0; | |
5178 | max_internal_reloc_count = 0; | |
5179 | max_sym_count = 0; | |
5180 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
5181 | { | |
5182 | o->reloc_count = 0; | |
5183 | ||
5184 | for (p = o->link_order_head; p != NULL; p = p->next) | |
5185 | { | |
5186 | if (p->type == bfd_section_reloc_link_order | |
5187 | || p->type == bfd_symbol_reloc_link_order) | |
5188 | ++o->reloc_count; | |
5189 | else if (p->type == bfd_indirect_link_order) | |
5190 | { | |
5191 | asection *sec; | |
5192 | ||
5193 | sec = p->u.indirect.section; | |
5194 | ||
5195 | if (info->relocateable) | |
5196 | o->reloc_count += sec->reloc_count; | |
5197 | ||
5198 | if (sec->_raw_size > max_contents_size) | |
5199 | max_contents_size = sec->_raw_size; | |
5200 | if (sec->_cooked_size > max_contents_size) | |
5201 | max_contents_size = sec->_cooked_size; | |
5202 | ||
5203 | /* We are interested in just local symbols, not all | |
5204 | symbols. */ | |
5315c428 ILT |
5205 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour) |
5206 | { | |
5207 | size_t sym_count; | |
5208 | ||
5209 | if (elf_bad_symtab (sec->owner)) | |
5210 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
5211 | / sizeof (Elf_External_Sym)); | |
5212 | else | |
5213 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
5214 | ||
5215 | if (sym_count > max_sym_count) | |
5216 | max_sym_count = sym_count; | |
6ec3bb6a | 5217 | |
6c8fa8e6 ILT |
5218 | if ((sec->flags & SEC_RELOC) != 0) |
5219 | { | |
5220 | size_t ext_size; | |
6ec3bb6a | 5221 | |
6c8fa8e6 ILT |
5222 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; |
5223 | if (ext_size > max_external_reloc_size) | |
5224 | max_external_reloc_size = ext_size; | |
5225 | if (sec->reloc_count > max_internal_reloc_count) | |
5226 | max_internal_reloc_count = sec->reloc_count; | |
5227 | } | |
6ec3bb6a ILT |
5228 | } |
5229 | } | |
5230 | } | |
5231 | ||
5232 | if (o->reloc_count > 0) | |
5233 | o->flags |= SEC_RELOC; | |
5234 | else | |
5235 | { | |
5236 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
5237 | set it (this is probably a bug) and if it is set | |
5238 | assign_section_numbers will create a reloc section. */ | |
5239 | o->flags &=~ SEC_RELOC; | |
5240 | } | |
5241 | } | |
5242 | ||
5243 | /* Figure out the file positions for everything but the symbol table | |
5244 | and the relocs. We set symcount to force assign_section_numbers | |
5245 | to create a symbol table. */ | |
5246 | abfd->symcount = info->strip == strip_all ? 0 : 1; | |
5247 | BFD_ASSERT (! abfd->output_has_begun); | |
5248 | if (! elf_compute_section_file_positions (abfd, info)) | |
5249 | goto error_return; | |
5250 | ||
5251 | /* That created the reloc sections. Set their sizes, and assign | |
5252 | them file positions, and allocate some buffers. */ | |
5253 | for (o = abfd->sections; o != NULL; o = o->next) | |
5254 | { | |
5255 | if ((o->flags & SEC_RELOC) != 0) | |
5256 | { | |
5257 | Elf_Internal_Shdr *rel_hdr; | |
5258 | register struct elf_link_hash_entry **p, **pend; | |
5259 | ||
5260 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
5261 | ||
5262 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
5263 | ||
5264 | /* The contents field must last into write_object_contents, | |
5265 | so we allocate it with bfd_alloc rather than malloc. */ | |
5266 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
5267 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
5268 | { | |
5269 | bfd_set_error (bfd_error_no_memory); | |
5270 | goto error_return; | |
5271 | } | |
5272 | ||
5273 | p = ((struct elf_link_hash_entry **) | |
5274 | malloc (o->reloc_count | |
5275 | * sizeof (struct elf_link_hash_entry *))); | |
5276 | if (p == NULL && o->reloc_count != 0) | |
5277 | { | |
5278 | bfd_set_error (bfd_error_no_memory); | |
5279 | goto error_return; | |
5280 | } | |
5281 | elf_section_data (o)->rel_hashes = p; | |
5282 | pend = p + o->reloc_count; | |
5283 | for (; p < pend; p++) | |
5284 | *p = NULL; | |
5285 | ||
5286 | /* Use the reloc_count field as an index when outputting the | |
5287 | relocs. */ | |
5288 | o->reloc_count = 0; | |
5289 | } | |
5290 | } | |
5291 | ||
5292 | assign_file_positions_for_relocs (abfd); | |
5293 | ||
5294 | /* We have now assigned file positions for all the sections except | |
5295 | .symtab and .strtab. We start the .symtab section at the current | |
5296 | file position, and write directly to it. We build the .strtab | |
5297 | section in memory. When we add .dynsym support, we will build | |
5298 | that in memory as well (.dynsym is smaller than .symtab). */ | |
5299 | abfd->symcount = 0; | |
5300 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5301 | /* sh_name is set in prep_headers. */ | |
5302 | symtab_hdr->sh_type = SHT_SYMTAB; | |
5303 | symtab_hdr->sh_flags = 0; | |
5304 | symtab_hdr->sh_addr = 0; | |
5305 | symtab_hdr->sh_size = 0; | |
5306 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
5307 | /* sh_link is set in assign_section_numbers. */ | |
5308 | /* sh_info is set below. */ | |
5309 | /* sh_offset is set just below. */ | |
5310 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
5311 | ||
5312 | off = elf_tdata (abfd)->next_file_pos; | |
013dec1a | 5313 | off = assign_file_position_for_section (symtab_hdr, off, true); |
6ec3bb6a ILT |
5314 | |
5315 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
5316 | incorrect. We do not yet know the size of the .symtab section. | |
5317 | We correct next_file_pos below, after we do know the size. */ | |
5318 | ||
5319 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
5320 | continuously seeking to the right position in the file. */ | |
5321 | if (! info->keep_memory || max_sym_count < 20) | |
5322 | finfo.symbuf_size = 20; | |
5323 | else | |
5324 | finfo.symbuf_size = max_sym_count; | |
5325 | finfo.symbuf = ((Elf_External_Sym *) | |
5326 | malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); | |
5327 | if (finfo.symbuf == NULL) | |
5328 | { | |
5329 | bfd_set_error (bfd_error_no_memory); | |
5330 | goto error_return; | |
5331 | } | |
5332 | ||
5333 | /* Start writing out the symbol table. The first symbol is always a | |
5334 | dummy symbol. */ | |
5335 | elfsym.st_value = 0; | |
5336 | elfsym.st_size = 0; | |
5337 | elfsym.st_info = 0; | |
5338 | elfsym.st_other = 0; | |
5339 | elfsym.st_shndx = SHN_UNDEF; | |
71edd06d ILT |
5340 | if (! elf_link_output_sym (&finfo, (const char *) NULL, |
5341 | &elfsym, bfd_und_section_ptr)) | |
6ec3bb6a ILT |
5342 | goto error_return; |
5343 | ||
5344 | #if 0 | |
5345 | /* Some standard ELF linkers do this, but we don't because it causes | |
5346 | bootstrap comparison failures. */ | |
5347 | /* Output a file symbol for the output file as the second symbol. | |
5348 | We output this even if we are discarding local symbols, although | |
5349 | I'm not sure if this is correct. */ | |
5350 | elfsym.st_value = 0; | |
5351 | elfsym.st_size = 0; | |
5352 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
5353 | elfsym.st_other = 0; | |
5354 | elfsym.st_shndx = SHN_ABS; | |
71edd06d ILT |
5355 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), |
5356 | &elfsym, bfd_abs_section_ptr)) | |
6ec3bb6a ILT |
5357 | goto error_return; |
5358 | #endif | |
5359 | ||
5360 | /* Output a symbol for each section. We output these even if we are | |
5361 | discarding local symbols, since they are used for relocs. These | |
5362 | symbols have no names. We store the index of each one in the | |
5363 | index field of the section, so that we can find it again when | |
5364 | outputting relocs. */ | |
5365 | elfsym.st_value = 0; | |
5366 | elfsym.st_size = 0; | |
5367 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
5368 | elfsym.st_other = 0; | |
013dec1a | 5369 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) |
6ec3bb6a | 5370 | { |
013dec1a | 5371 | o = section_from_elf_index (abfd, i); |
badd23e3 | 5372 | if (! bfd_is_abs_section (o)) |
013dec1a ILT |
5373 | o->target_index = abfd->symcount; |
5374 | elfsym.st_shndx = i; | |
71edd06d ILT |
5375 | if (! elf_link_output_sym (&finfo, (const char *) NULL, |
5376 | &elfsym, o)) | |
6ec3bb6a ILT |
5377 | goto error_return; |
5378 | } | |
5379 | ||
5380 | /* Allocate some memory to hold information read in from the input | |
5381 | files. */ | |
5382 | finfo.contents = (bfd_byte *) malloc (max_contents_size); | |
5383 | finfo.external_relocs = (PTR) malloc (max_external_reloc_size); | |
5384 | finfo.internal_relocs = ((Elf_Internal_Rela *) | |
5385 | malloc (max_internal_reloc_count | |
5386 | * sizeof (Elf_Internal_Rela))); | |
5387 | finfo.external_syms = ((Elf_External_Sym *) | |
5388 | malloc (max_sym_count * sizeof (Elf_External_Sym))); | |
5389 | finfo.internal_syms = ((Elf_Internal_Sym *) | |
5390 | malloc (max_sym_count * sizeof (Elf_Internal_Sym))); | |
5391 | finfo.indices = (long *) malloc (max_sym_count * sizeof (long)); | |
5392 | finfo.sections = (asection **) malloc (max_sym_count * sizeof (asection *)); | |
5393 | if ((finfo.contents == NULL && max_contents_size != 0) | |
5394 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
5395 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
5396 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
5397 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
5398 | || (finfo.indices == NULL && max_sym_count != 0) | |
5399 | || (finfo.sections == NULL && max_sym_count != 0)) | |
5400 | { | |
5401 | bfd_set_error (bfd_error_no_memory); | |
5402 | goto error_return; | |
5403 | } | |
5404 | ||
5405 | /* Since ELF permits relocations to be against local symbols, we | |
5406 | must have the local symbols available when we do the relocations. | |
5407 | Since we would rather only read the local symbols once, and we | |
5408 | would rather not keep them in memory, we handle all the | |
5409 | relocations for a single input file at the same time. | |
5410 | ||
5411 | Unfortunately, there is no way to know the total number of local | |
5412 | symbols until we have seen all of them, and the local symbol | |
5413 | indices precede the global symbol indices. This means that when | |
5414 | we are generating relocateable output, and we see a reloc against | |
5415 | a global symbol, we can not know the symbol index until we have | |
5416 | finished examining all the local symbols to see which ones we are | |
5417 | going to output. To deal with this, we keep the relocations in | |
5418 | memory, and don't output them until the end of the link. This is | |
5419 | an unfortunate waste of memory, but I don't see a good way around | |
5420 | it. Fortunately, it only happens when performing a relocateable | |
5421 | link, which is not the common case. FIXME: If keep_memory is set | |
5422 | we could write the relocs out and then read them again; I don't | |
5423 | know how bad the memory loss will be. */ | |
5424 | ||
5425 | for (sub = info->input_bfds; sub != NULL; sub = sub->next) | |
5426 | sub->output_has_begun = false; | |
5427 | for (o = abfd->sections; o != NULL; o = o->next) | |
5428 | { | |
5429 | for (p = o->link_order_head; p != NULL; p = p->next) | |
5430 | { | |
5431 | if (p->type == bfd_indirect_link_order | |
5432 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
5433 | == bfd_target_elf_flavour)) | |
5434 | { | |
5435 | sub = p->u.indirect.section->owner; | |
5436 | if (! sub->output_has_begun) | |
5437 | { | |
5438 | if (! elf_link_input_bfd (&finfo, sub)) | |
5439 | goto error_return; | |
5440 | sub->output_has_begun = true; | |
5441 | } | |
5442 | } | |
5443 | else if (p->type == bfd_section_reloc_link_order | |
5444 | || p->type == bfd_symbol_reloc_link_order) | |
5445 | { | |
5446 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
5447 | goto error_return; | |
5448 | } | |
5449 | else | |
5450 | { | |
5451 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
5452 | goto error_return; | |
5453 | } | |
5454 | } | |
5455 | } | |
5456 | ||
5457 | /* That wrote out all the local symbols. Finish up the symbol table | |
5458 | with the global symbols. */ | |
5459 | ||
5460 | /* The sh_info field records the index of the first non local | |
5461 | symbol. */ | |
5462 | symtab_hdr->sh_info = abfd->symcount; | |
013dec1a ILT |
5463 | if (dynobj != NULL) |
5464 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1; | |
6ec3bb6a ILT |
5465 | |
5466 | /* We get the global symbols from the hash table. */ | |
013dec1a ILT |
5467 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, |
5468 | (PTR) &finfo); | |
6ec3bb6a ILT |
5469 | |
5470 | /* Flush all symbols to the file. */ | |
5471 | if (! elf_link_flush_output_syms (&finfo)) | |
5472 | return false; | |
5473 | ||
5474 | /* Now we know the size of the symtab section. */ | |
5475 | off += symtab_hdr->sh_size; | |
5476 | ||
5477 | /* Finish up the symbol string table (.strtab) section. */ | |
5478 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
5479 | /* sh_name was set in prep_headers. */ | |
5480 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
5481 | symstrtab_hdr->sh_flags = 0; | |
5482 | symstrtab_hdr->sh_addr = 0; | |
5483 | symstrtab_hdr->sh_size = finfo.symstrtab->length; | |
5484 | symstrtab_hdr->sh_entsize = 0; | |
5485 | symstrtab_hdr->sh_link = 0; | |
5486 | symstrtab_hdr->sh_info = 0; | |
5487 | /* sh_offset is set just below. */ | |
5488 | symstrtab_hdr->sh_addralign = 1; | |
5489 | symstrtab_hdr->contents = (PTR) finfo.symstrtab->tab; | |
5490 | ||
013dec1a | 5491 | off = assign_file_position_for_section (symstrtab_hdr, off, true); |
6ec3bb6a ILT |
5492 | elf_tdata (abfd)->next_file_pos = off; |
5493 | ||
5494 | /* Adjust the relocs to have the correct symbol indices. */ | |
5495 | for (o = abfd->sections; o != NULL; o = o->next) | |
5496 | { | |
5497 | struct elf_link_hash_entry **rel_hash; | |
5498 | Elf_Internal_Shdr *rel_hdr; | |
6ec3bb6a ILT |
5499 | |
5500 | if ((o->flags & SEC_RELOC) == 0) | |
5501 | continue; | |
5502 | ||
5503 | rel_hash = elf_section_data (o)->rel_hashes; | |
5504 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
5505 | for (i = 0; i < o->reloc_count; i++, rel_hash++) | |
5506 | { | |
5507 | if (*rel_hash == NULL) | |
5508 | continue; | |
5509 | ||
5510 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
5511 | ||
5512 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
5513 | { | |
5514 | Elf_External_Rel *erel; | |
5515 | Elf_Internal_Rel irel; | |
5516 | ||
5517 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
5518 | elf_swap_reloc_in (abfd, erel, &irel); | |
5519 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
5520 | ELF_R_TYPE (irel.r_info)); | |
5521 | elf_swap_reloc_out (abfd, &irel, erel); | |
5522 | } | |
5523 | else | |
5524 | { | |
5525 | Elf_External_Rela *erela; | |
5526 | Elf_Internal_Rela irela; | |
5527 | ||
5528 | BFD_ASSERT (rel_hdr->sh_entsize | |
5529 | == sizeof (Elf_External_Rela)); | |
5530 | ||
5531 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
5532 | elf_swap_reloca_in (abfd, erela, &irela); | |
5533 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
5534 | ELF_R_TYPE (irela.r_info)); | |
5535 | elf_swap_reloca_out (abfd, &irela, erela); | |
5536 | } | |
5537 | } | |
5538 | ||
5539 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
5540 | trying to swap the relocs out itself. */ | |
5541 | o->reloc_count = 0; | |
5542 | } | |
5543 | ||
013dec1a ILT |
5544 | /* If we are linking against a dynamic object, finish up the dynamic |
5545 | linking information. */ | |
5546 | if (dynobj != NULL) | |
5547 | { | |
5548 | Elf_External_Dyn *dyncon, *dynconend; | |
013dec1a ILT |
5549 | |
5550 | /* Fix up .dynamic entries. */ | |
5551 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
5552 | BFD_ASSERT (o != NULL); | |
5553 | ||
5554 | dyncon = (Elf_External_Dyn *) o->contents; | |
5555 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
5556 | for (; dyncon < dynconend; dyncon++) | |
5557 | { | |
5558 | Elf_Internal_Dyn dyn; | |
5559 | const char *name; | |
5560 | unsigned int type; | |
5561 | ||
5562 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
5563 | ||
5564 | switch (dyn.d_tag) | |
5565 | { | |
5566 | default: | |
5567 | break; | |
5568 | ||
5569 | case DT_INIT: | |
5570 | name = ".init"; | |
5571 | goto get_vma; | |
5572 | case DT_FINI: | |
5573 | name = ".fini"; | |
5574 | goto get_vma; | |
5575 | case DT_HASH: | |
5576 | name = ".hash"; | |
5577 | goto get_vma; | |
5578 | case DT_STRTAB: | |
5579 | name = ".dynstr"; | |
5580 | goto get_vma; | |
5581 | case DT_SYMTAB: | |
5582 | name = ".dynsym"; | |
5583 | get_vma: | |
5584 | o = bfd_get_section_by_name (abfd, name); | |
5585 | BFD_ASSERT (o != NULL); | |
5586 | dyn.d_un.d_ptr = o->vma; | |
5587 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5588 | break; | |
5589 | ||
5590 | case DT_REL: | |
5591 | case DT_RELA: | |
5592 | case DT_RELSZ: | |
5593 | case DT_RELASZ: | |
5594 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
5595 | type = SHT_REL; | |
5596 | else | |
5597 | type = SHT_RELA; | |
5598 | dyn.d_un.d_val = 0; | |
5599 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
5600 | { | |
5601 | Elf_Internal_Shdr *hdr; | |
5602 | ||
5603 | hdr = elf_elfsections (abfd)[i]; | |
5604 | if (hdr->sh_type == type | |
5605 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
5606 | { | |
5607 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
5608 | dyn.d_un.d_val += hdr->sh_size; | |
5609 | else | |
5610 | { | |
5611 | if (dyn.d_un.d_val == 0 | |
5612 | || hdr->sh_addr < dyn.d_un.d_val) | |
5613 | dyn.d_un.d_val = hdr->sh_addr; | |
5614 | } | |
5615 | } | |
5616 | } | |
5617 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5618 | break; | |
5619 | } | |
5620 | } | |
5621 | ||
013dec1a ILT |
5622 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) |
5623 | goto error_return; | |
5624 | ||
5625 | for (o = dynobj->sections; o != NULL; o = o->next) | |
5626 | { | |
013dec1a ILT |
5627 | if ((o->flags & SEC_HAS_CONTENTS) == 0) |
5628 | continue; | |
8af74670 ILT |
5629 | if ((o->flags & SEC_IN_MEMORY) == 0) |
5630 | { | |
5631 | BFD_ASSERT (info->shared); | |
5632 | continue; | |
5633 | } | |
013dec1a ILT |
5634 | if (! bfd_set_section_contents (abfd, o->output_section, |
5635 | o->contents, o->output_offset, | |
5636 | o->_raw_size)) | |
5637 | goto error_return; | |
013dec1a ILT |
5638 | } |
5639 | } | |
5640 | ||
71edd06d ILT |
5641 | /* Now backend stuff. */ |
5642 | if (bed->elf_backend_final_write_processing) | |
5643 | (*bed->elf_backend_final_write_processing) (abfd, NULL); | |
5644 | ||
6ec3bb6a ILT |
5645 | if (finfo.contents != NULL) |
5646 | free (finfo.contents); | |
5647 | if (finfo.external_relocs != NULL) | |
5648 | free (finfo.external_relocs); | |
5649 | if (finfo.internal_relocs != NULL) | |
5650 | free (finfo.internal_relocs); | |
5651 | if (finfo.external_syms != NULL) | |
5652 | free (finfo.external_syms); | |
5653 | if (finfo.internal_syms != NULL) | |
5654 | free (finfo.internal_syms); | |
5655 | if (finfo.indices != NULL) | |
5656 | free (finfo.indices); | |
5657 | if (finfo.sections != NULL) | |
5658 | free (finfo.sections); | |
5659 | if (finfo.symbuf != NULL) | |
5660 | free (finfo.symbuf); | |
5661 | for (o = abfd->sections; o != NULL; o = o->next) | |
5662 | { | |
5663 | if ((o->flags & SEC_RELOC) != 0 | |
5664 | && elf_section_data (o)->rel_hashes != NULL) | |
5665 | free (elf_section_data (o)->rel_hashes); | |
5666 | } | |
5667 | ||
5668 | return true; | |
5669 | ||
5670 | error_return: | |
5671 | if (finfo.contents != NULL) | |
5672 | free (finfo.contents); | |
5673 | if (finfo.external_relocs != NULL) | |
5674 | free (finfo.external_relocs); | |
5675 | if (finfo.internal_relocs != NULL) | |
5676 | free (finfo.internal_relocs); | |
5677 | if (finfo.external_syms != NULL) | |
5678 | free (finfo.external_syms); | |
5679 | if (finfo.internal_syms != NULL) | |
5680 | free (finfo.internal_syms); | |
5681 | if (finfo.indices != NULL) | |
5682 | free (finfo.indices); | |
5683 | if (finfo.sections != NULL) | |
5684 | free (finfo.sections); | |
5685 | if (finfo.symbuf != NULL) | |
5686 | free (finfo.symbuf); | |
5687 | for (o = abfd->sections; o != NULL; o = o->next) | |
5688 | { | |
5689 | if ((o->flags & SEC_RELOC) != 0 | |
5690 | && elf_section_data (o)->rel_hashes != NULL) | |
5691 | free (elf_section_data (o)->rel_hashes); | |
5692 | } | |
5693 | ||
5694 | return false; | |
5695 | } | |
5696 | ||
5697 | /* Add a symbol to the output symbol table. */ | |
5698 | ||
5699 | static boolean | |
71edd06d | 5700 | elf_link_output_sym (finfo, name, elfsym, input_sec) |
6ec3bb6a ILT |
5701 | struct elf_final_link_info *finfo; |
5702 | const char *name; | |
5703 | Elf_Internal_Sym *elfsym; | |
71edd06d | 5704 | asection *input_sec; |
6ec3bb6a | 5705 | { |
71edd06d ILT |
5706 | boolean (*output_symbol_hook) PARAMS ((bfd *, |
5707 | struct bfd_link_info *info, | |
5708 | const char *, | |
5709 | Elf_Internal_Sym *, | |
5710 | asection *)); | |
5711 | ||
5712 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
5713 | elf_backend_link_output_symbol_hook; | |
57a814a9 PS |
5714 | if (output_symbol_hook != NULL) |
5715 | { | |
5716 | if (! ((*output_symbol_hook) | |
5717 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
5718 | return false; | |
5719 | } | |
71edd06d | 5720 | |
6ec3bb6a ILT |
5721 | if (name == (const char *) NULL || *name == '\0') |
5722 | elfsym->st_name = 0; | |
5723 | else | |
5724 | { | |
5725 | elfsym->st_name = bfd_add_to_strtab (finfo->output_bfd, | |
5726 | finfo->symstrtab, name); | |
5727 | if (elfsym->st_name == (unsigned long) -1) | |
5728 | return false; | |
5729 | } | |
5730 | ||
5731 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
5732 | { | |
5733 | if (! elf_link_flush_output_syms (finfo)) | |
5734 | return false; | |
5735 | } | |
5736 | ||
5737 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
5738 | finfo->symbuf + finfo->symbuf_count); | |
5739 | ++finfo->symbuf_count; | |
5740 | ||
5741 | ++finfo->output_bfd->symcount; | |
5742 | ||
5743 | return true; | |
5744 | } | |
5745 | ||
5746 | /* Flush the output symbols to the file. */ | |
5747 | ||
5748 | static boolean | |
5749 | elf_link_flush_output_syms (finfo) | |
5750 | struct elf_final_link_info *finfo; | |
5751 | { | |
5752 | Elf_Internal_Shdr *symtab; | |
5753 | ||
5754 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
5755 | ||
5756 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, | |
5757 | SEEK_SET) != 0 | |
5758 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
5759 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
5760 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
5761 | return false; | |
5762 | ||
5763 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); | |
5764 | ||
5765 | finfo->symbuf_count = 0; | |
5766 | ||
5767 | return true; | |
5768 | } | |
5769 | ||
5770 | /* Add an external symbol to the symbol table. This is called from | |
5771 | the hash table traversal routine. */ | |
5772 | ||
5773 | static boolean | |
5774 | elf_link_output_extsym (h, data) | |
5775 | struct elf_link_hash_entry *h; | |
5776 | PTR data; | |
5777 | { | |
5778 | struct elf_final_link_info *finfo = (struct elf_final_link_info *) data; | |
013dec1a | 5779 | boolean strip; |
6ec3bb6a | 5780 | Elf_Internal_Sym sym; |
71edd06d | 5781 | asection *input_sec; |
6ec3bb6a | 5782 | |
013dec1a ILT |
5783 | /* We don't want to output symbols that have never been mentioned by |
5784 | a regular file, or that we have been told to strip. However, if | |
5785 | h->indx is set to -2, the symbol is used by a reloc and we must | |
5786 | output it. */ | |
5787 | if (h->indx == -2) | |
5788 | strip = false; | |
5315c428 ILT |
5789 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
5790 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
5791 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
013dec1a ILT |
5792 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) |
5793 | strip = true; | |
5794 | else if (finfo->info->strip == strip_all | |
5795 | || (finfo->info->strip == strip_some | |
5796 | && bfd_hash_lookup (finfo->info->keep_hash, | |
5797 | h->root.root.string, | |
5798 | false, false) == NULL)) | |
5799 | strip = true; | |
5800 | else | |
5801 | strip = false; | |
5802 | ||
5803 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
5804 | nothing else to do. */ | |
5805 | if (strip && h->dynindx == -1) | |
6ec3bb6a ILT |
5806 | return true; |
5807 | ||
5808 | sym.st_value = 0; | |
5809 | sym.st_size = h->size; | |
6ec3bb6a | 5810 | sym.st_other = 0; |
bf73e4f3 | 5811 | if (h->root.type == bfd_link_hash_weak |
99dd7754 JMD |
5812 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEFINED_WEAK) != 0 |
5813 | && ((h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
5814 | | ELF_LINK_HASH_REF_DYNAMIC)) | |
5815 | == 0))) | |
bf73e4f3 ILT |
5816 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); |
5817 | else | |
5818 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
6ec3bb6a ILT |
5819 | |
5820 | switch (h->root.type) | |
5821 | { | |
5822 | default: | |
5823 | case bfd_link_hash_new: | |
5824 | abort (); | |
5825 | return false; | |
5826 | ||
5827 | case bfd_link_hash_undefined: | |
71edd06d | 5828 | input_sec = bfd_und_section_ptr; |
6ec3bb6a ILT |
5829 | sym.st_shndx = SHN_UNDEF; |
5830 | break; | |
5831 | ||
5832 | case bfd_link_hash_weak: | |
71edd06d | 5833 | input_sec = bfd_und_section_ptr; |
6ec3bb6a | 5834 | sym.st_shndx = SHN_UNDEF; |
6ec3bb6a ILT |
5835 | break; |
5836 | ||
5837 | case bfd_link_hash_defined: | |
5838 | { | |
6ec3bb6a | 5839 | |
71edd06d ILT |
5840 | input_sec = h->root.u.def.section; |
5841 | if (input_sec->output_section != NULL) | |
6ec3bb6a | 5842 | { |
013dec1a | 5843 | sym.st_shndx = elf_section_from_bfd_section (finfo->output_bfd, |
71edd06d | 5844 | input_sec->output_section); |
013dec1a ILT |
5845 | if (sym.st_shndx == (unsigned short) -1) |
5846 | { | |
5847 | /* FIXME: No way to handle errors. */ | |
5848 | abort (); | |
5849 | } | |
6ec3bb6a | 5850 | |
013dec1a ILT |
5851 | /* ELF symbols in relocateable files are section relative, |
5852 | but in nonrelocateable files they are virtual | |
5853 | addresses. */ | |
71edd06d | 5854 | sym.st_value = h->root.u.def.value + input_sec->output_offset; |
013dec1a | 5855 | if (! finfo->info->relocateable) |
71edd06d | 5856 | sym.st_value += input_sec->output_section->vma; |
013dec1a ILT |
5857 | } |
5858 | else | |
5859 | { | |
71edd06d ILT |
5860 | BFD_ASSERT (bfd_get_flavour (input_sec->owner) |
5861 | == bfd_target_elf_flavour | |
5862 | && elf_elfheader (input_sec->owner)->e_type == ET_DYN); | |
013dec1a | 5863 | sym.st_shndx = SHN_UNDEF; |
71edd06d | 5864 | input_sec = bfd_und_section_ptr; |
013dec1a | 5865 | } |
6ec3bb6a ILT |
5866 | } |
5867 | break; | |
5868 | ||
5869 | case bfd_link_hash_common: | |
71edd06d | 5870 | input_sec = bfd_com_section_ptr; |
6ec3bb6a | 5871 | sym.st_shndx = SHN_COMMON; |
7c6da9ca | 5872 | sym.st_value = 1 << h->root.u.c.alignment_power; |
6ec3bb6a ILT |
5873 | break; |
5874 | ||
5875 | case bfd_link_hash_indirect: | |
5876 | case bfd_link_hash_warning: | |
5877 | /* I have no idea how these should be handled. */ | |
5878 | return true; | |
5879 | } | |
5880 | ||
013dec1a ILT |
5881 | /* If this symbol should be put in the .dynsym section, then put it |
5882 | there now. We have already know the symbol index. We also fill | |
5883 | in the entry in the .hash section. */ | |
5884 | if (h->dynindx != -1) | |
5885 | { | |
5886 | struct elf_backend_data *bed; | |
5887 | size_t bucketcount; | |
5888 | size_t bucket; | |
5889 | bfd_byte *bucketpos; | |
5890 | bfd_vma chain; | |
5891 | ||
5892 | sym.st_name = h->dynstr_index; | |
5893 | ||
5894 | /* Give the processor backend a chance to tweak the symbol | |
5895 | value, and also to finish up anything that needs to be done | |
5896 | for this symbol. */ | |
5897 | bed = get_elf_backend_data (finfo->output_bfd); | |
5898 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
5899 | (finfo->output_bfd, finfo->info, h, &sym))) | |
5900 | { | |
5901 | /* FIXME: No way to return error. */ | |
5902 | abort (); | |
5903 | } | |
5904 | ||
5905 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
5906 | ((Elf_External_Sym *) finfo->dynsym_sec->contents | |
5907 | + h->dynindx)); | |
5908 | ||
5909 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
5910 | bucket = bfd_elf_hash (h->root.root.string) % bucketcount; | |
5911 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents | |
5912 | + (bucket + 2) * (ARCH_SIZE / 8)); | |
5913 | chain = get_word (finfo->output_bfd, bucketpos); | |
5914 | put_word (finfo->output_bfd, h->dynindx, bucketpos); | |
5915 | put_word (finfo->output_bfd, chain, | |
5916 | ((bfd_byte *) finfo->hash_sec->contents | |
5917 | + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8))); | |
5918 | } | |
5919 | ||
5920 | /* If we're stripping it, then it was just a dynamic symbol, and | |
5921 | there's nothing else to do. */ | |
5922 | if (strip) | |
5923 | return true; | |
5924 | ||
6ec3bb6a ILT |
5925 | h->indx = finfo->output_bfd->symcount; |
5926 | ||
71edd06d | 5927 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) |
6ec3bb6a ILT |
5928 | { |
5929 | /* FIXME: No way to return error. */ | |
5930 | abort (); | |
5931 | } | |
5932 | ||
5933 | return true; | |
5934 | } | |
5935 | ||
5936 | /* Link an input file into the linker output file. This function | |
5937 | handles all the sections and relocations of the input file at once. | |
5938 | This is so that we only have to read the local symbols once, and | |
5939 | don't have to keep them in memory. */ | |
5940 | ||
5941 | static boolean | |
5942 | elf_link_input_bfd (finfo, input_bfd) | |
5943 | struct elf_final_link_info *finfo; | |
5944 | bfd *input_bfd; | |
5945 | { | |
5946 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
5947 | bfd *, asection *, bfd_byte *, | |
5948 | Elf_Internal_Rela *, | |
5949 | Elf_Internal_Sym *, | |
71edd06d | 5950 | asection **, char *)); |
6ec3bb6a ILT |
5951 | bfd *output_bfd; |
5952 | Elf_Internal_Shdr *symtab_hdr; | |
5315c428 ILT |
5953 | size_t locsymcount; |
5954 | size_t extsymoff; | |
6ec3bb6a ILT |
5955 | Elf_External_Sym *esym; |
5956 | Elf_External_Sym *esymend; | |
5957 | Elf_Internal_Sym *isym; | |
5958 | long *pindex; | |
5959 | asection **ppsection; | |
5960 | asection *o; | |
5961 | ||
5962 | output_bfd = finfo->output_bfd; | |
5963 | relocate_section = | |
5964 | get_elf_backend_data (output_bfd)->elf_backend_relocate_section; | |
5965 | ||
013dec1a ILT |
5966 | /* If this is a dynamic object, we don't want to do anything here: |
5967 | we don't want the local symbols, and we don't want the section | |
5968 | contents. */ | |
5969 | if (elf_elfheader (input_bfd)->e_type == ET_DYN) | |
5970 | return true; | |
5971 | ||
6ec3bb6a | 5972 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
5315c428 ILT |
5973 | if (elf_bad_symtab (input_bfd)) |
5974 | { | |
5975 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
5976 | extsymoff = 0; | |
5977 | } | |
5978 | else | |
5979 | { | |
5980 | locsymcount = symtab_hdr->sh_info; | |
5981 | extsymoff = symtab_hdr->sh_info; | |
5982 | } | |
5983 | ||
5984 | /* Read the local symbols. */ | |
c46b8ed7 JL |
5985 | if (locsymcount > 0 |
5986 | && (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
5987 | || (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym), | |
5988 | locsymcount, input_bfd) | |
5989 | != locsymcount * sizeof (Elf_External_Sym)))) | |
6ec3bb6a ILT |
5990 | return false; |
5991 | ||
5992 | /* Swap in the local symbols and write out the ones which we know | |
5993 | are going into the output file. */ | |
5994 | esym = finfo->external_syms; | |
5315c428 | 5995 | esymend = esym + locsymcount; |
6ec3bb6a ILT |
5996 | isym = finfo->internal_syms; |
5997 | pindex = finfo->indices; | |
5998 | ppsection = finfo->sections; | |
5999 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
6000 | { | |
6001 | asection *isec; | |
6002 | const char *name; | |
6003 | bfd_vma oldval; | |
6004 | ||
6005 | elf_swap_symbol_in (input_bfd, esym, isym); | |
6006 | *pindex = -1; | |
6007 | ||
5315c428 ILT |
6008 | if (elf_bad_symtab (input_bfd)) |
6009 | { | |
6010 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
6011 | { | |
6012 | *ppsection = NULL; | |
6013 | continue; | |
6014 | } | |
6015 | } | |
6016 | ||
6ec3bb6a | 6017 | if (isym->st_shndx == SHN_UNDEF) |
badd23e3 | 6018 | isec = bfd_und_section_ptr; |
6ec3bb6a ILT |
6019 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) |
6020 | { | |
6021 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
6022 | if (isec == NULL) | |
6023 | return false; | |
6024 | } | |
6025 | else if (isym->st_shndx == SHN_ABS) | |
badd23e3 | 6026 | isec = bfd_abs_section_ptr; |
6ec3bb6a | 6027 | else if (isym->st_shndx == SHN_COMMON) |
badd23e3 | 6028 | isec = bfd_com_section_ptr; |
6ec3bb6a ILT |
6029 | else |
6030 | { | |
6031 | /* Who knows? */ | |
6032 | isec = NULL; | |
6033 | } | |
6034 | ||
6035 | *ppsection = isec; | |
6036 | ||
6037 | /* Don't output the first, undefined, symbol. */ | |
6038 | if (esym == finfo->external_syms) | |
6039 | continue; | |
6040 | ||
6041 | /* If we are stripping all symbols, we don't want to output this | |
6042 | one. */ | |
6043 | if (finfo->info->strip == strip_all) | |
6044 | continue; | |
6045 | ||
6046 | /* We never output section symbols. Instead, we use the section | |
6047 | symbol of the corresponding section in the output file. */ | |
6048 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
6049 | continue; | |
6050 | ||
6051 | /* If we are discarding all local symbols, we don't want to | |
6052 | output this one. If we are generating a relocateable output | |
6053 | file, then some of the local symbols may be required by | |
6054 | relocs; we output them below as we discover that they are | |
6055 | needed. */ | |
6056 | if (finfo->info->discard == discard_all) | |
6057 | continue; | |
6058 | ||
6059 | /* Get the name of the symbol. */ | |
6060 | name = elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
6061 | isym->st_name); | |
6062 | if (name == NULL) | |
6063 | return false; | |
6064 | ||
6065 | /* See if we are discarding symbols with this name. */ | |
6066 | if ((finfo->info->strip == strip_some | |
6067 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
6068 | == NULL)) | |
6069 | || (finfo->info->discard == discard_l | |
6070 | && strncmp (name, finfo->info->lprefix, | |
6071 | finfo->info->lprefix_len) == 0)) | |
6072 | continue; | |
6073 | ||
6074 | /* If we get here, we are going to output this symbol. */ | |
6075 | ||
6076 | /* Adjust the section index for the output file. */ | |
6077 | isym->st_shndx = elf_section_from_bfd_section (output_bfd, | |
6078 | isec->output_section); | |
013dec1a | 6079 | if (isym->st_shndx == (unsigned short) -1) |
6ec3bb6a ILT |
6080 | return false; |
6081 | ||
6082 | *pindex = output_bfd->symcount; | |
6083 | ||
6084 | /* ELF symbols in relocateable files are section relative, but | |
6085 | in executable files they are virtual addresses. Note that | |
6086 | this code assumes that all ELF sections have an associated | |
6087 | BFD section with a reasonable value for output_offset; below | |
6088 | we assume that they also have a reasonable value for | |
6089 | output_section. Any special sections must be set up to meet | |
6090 | these requirements. */ | |
6091 | oldval = isym->st_value; | |
6092 | isym->st_value += isec->output_offset; | |
6093 | if (! finfo->info->relocateable) | |
6094 | isym->st_value += isec->output_section->vma; | |
6095 | ||
71edd06d | 6096 | if (! elf_link_output_sym (finfo, name, isym, isec)) |
6ec3bb6a ILT |
6097 | return false; |
6098 | ||
6099 | /* Restore the old value for reloc handling. */ | |
6100 | isym->st_value = oldval; | |
6101 | } | |
6102 | ||
6103 | /* Relocate the contents of each section. */ | |
6104 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
6105 | { | |
6ec3bb6a ILT |
6106 | if ((o->flags & SEC_HAS_CONTENTS) == 0) |
6107 | continue; | |
6108 | ||
8af74670 ILT |
6109 | if ((o->flags & SEC_IN_MEMORY) != 0 |
6110 | && input_bfd == elf_hash_table (finfo->info)->dynobj) | |
6111 | { | |
6112 | /* Section was created by elf_link_create_dynamic_sections. | |
6113 | FIXME: This test is fragile. */ | |
6114 | continue; | |
6115 | } | |
6116 | ||
6ec3bb6a ILT |
6117 | /* Read the contents of the section. */ |
6118 | if (! bfd_get_section_contents (input_bfd, o, finfo->contents, | |
6119 | (file_ptr) 0, o->_raw_size)) | |
6120 | return false; | |
6121 | ||
6122 | if ((o->flags & SEC_RELOC) != 0) | |
6123 | { | |
374d2ef9 ILT |
6124 | Elf_Internal_Rela *internal_relocs; |
6125 | ||
6126 | /* Get the swapped relocs. */ | |
6127 | internal_relocs = elf_link_read_relocs (input_bfd, o, | |
6128 | finfo->external_relocs, | |
6129 | finfo->internal_relocs, | |
6130 | false); | |
6131 | if (internal_relocs == NULL | |
6132 | && o->reloc_count > 0) | |
6133 | return false; | |
6ec3bb6a ILT |
6134 | |
6135 | /* Relocate the section by invoking a back end routine. | |
6136 | ||
6137 | The back end routine is responsible for adjusting the | |
6138 | section contents as necessary, and (if using Rela relocs | |
6139 | and generating a relocateable output file) adjusting the | |
6140 | reloc addend as necessary. | |
6141 | ||
6142 | The back end routine does not have to worry about setting | |
6143 | the reloc address or the reloc symbol index. | |
6144 | ||
6145 | The back end routine is given a pointer to the swapped in | |
6146 | internal symbols, and can access the hash table entries | |
6147 | for the external symbols via elf_sym_hashes (input_bfd). | |
6148 | ||
6149 | When generating relocateable output, the back end routine | |
6150 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
6151 | output symbol is going to be a section symbol | |
6152 | corresponding to the output section, which will require | |
6153 | the addend to be adjusted. */ | |
6154 | ||
6155 | if (! (*relocate_section) (output_bfd, finfo->info, | |
6156 | input_bfd, o, | |
6157 | finfo->contents, | |
374d2ef9 | 6158 | internal_relocs, |
6ec3bb6a | 6159 | finfo->internal_syms, |
71edd06d ILT |
6160 | finfo->sections, |
6161 | finfo->symstrtab->tab)) | |
6ec3bb6a ILT |
6162 | return false; |
6163 | ||
6164 | if (finfo->info->relocateable) | |
6165 | { | |
6166 | Elf_Internal_Rela *irela; | |
6167 | Elf_Internal_Rela *irelaend; | |
6168 | struct elf_link_hash_entry **rel_hash; | |
374d2ef9 | 6169 | Elf_Internal_Shdr *input_rel_hdr; |
6ec3bb6a ILT |
6170 | Elf_Internal_Shdr *output_rel_hdr; |
6171 | ||
6172 | /* Adjust the reloc addresses and symbol indices. */ | |
6173 | ||
374d2ef9 | 6174 | irela = internal_relocs; |
6ec3bb6a ILT |
6175 | irelaend = irela + o->reloc_count; |
6176 | rel_hash = (elf_section_data (o->output_section)->rel_hashes | |
6177 | + o->output_section->reloc_count); | |
6178 | for (; irela < irelaend; irela++, rel_hash++) | |
6179 | { | |
6180 | long r_symndx; | |
6181 | Elf_Internal_Sym *isym; | |
6182 | asection *sec; | |
6183 | ||
6184 | irela->r_offset += o->output_offset; | |
6185 | ||
6186 | r_symndx = ELF_R_SYM (irela->r_info); | |
6187 | ||
6188 | if (r_symndx == 0) | |
6189 | continue; | |
6190 | ||
5315c428 ILT |
6191 | if (r_symndx >= locsymcount |
6192 | || (elf_bad_symtab (input_bfd) | |
6193 | && finfo->sections[r_symndx] == NULL)) | |
6ec3bb6a ILT |
6194 | { |
6195 | long indx; | |
6196 | ||
6197 | /* This is a reloc against a global symbol. We | |
6198 | have not yet output all the local symbols, so | |
6199 | we do not know the symbol index of any global | |
6200 | symbol. We set the rel_hash entry for this | |
6201 | reloc to point to the global hash table entry | |
6202 | for this symbol. The symbol index is then | |
6203 | set at the end of elf_bfd_final_link. */ | |
5315c428 | 6204 | indx = r_symndx - extsymoff; |
6ec3bb6a ILT |
6205 | *rel_hash = elf_sym_hashes (input_bfd)[indx]; |
6206 | ||
6207 | /* Setting the index to -2 tells | |
6208 | elf_link_output_extsym that this symbol is | |
6209 | used by a reloc. */ | |
6210 | BFD_ASSERT ((*rel_hash)->indx < 0); | |
6211 | (*rel_hash)->indx = -2; | |
6212 | ||
6213 | continue; | |
6214 | } | |
6215 | ||
6216 | /* This is a reloc against a local symbol. */ | |
6217 | ||
6218 | *rel_hash = NULL; | |
6219 | isym = finfo->internal_syms + r_symndx; | |
6220 | sec = finfo->sections[r_symndx]; | |
6221 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
6222 | { | |
6223 | /* I suppose the backend ought to fill in the | |
6224 | section of any STT_SECTION symbol against a | |
6225 | processor specific section. */ | |
badd23e3 ILT |
6226 | if (sec != NULL && bfd_is_abs_section (sec)) |
6227 | r_symndx = 0; | |
6228 | else if (sec == NULL || sec->owner == NULL) | |
6ec3bb6a ILT |
6229 | { |
6230 | bfd_set_error (bfd_error_bad_value); | |
6231 | return false; | |
6232 | } | |
6ec3bb6a | 6233 | else |
013dec1a ILT |
6234 | { |
6235 | r_symndx = sec->output_section->target_index; | |
6236 | if (r_symndx == 0) | |
6237 | abort (); | |
6238 | } | |
6ec3bb6a ILT |
6239 | } |
6240 | else | |
6241 | { | |
6242 | if (finfo->indices[r_symndx] == -1) | |
6243 | { | |
6244 | unsigned long link; | |
6245 | const char *name; | |
6246 | asection *osec; | |
6247 | ||
6248 | if (finfo->info->strip == strip_all) | |
6249 | { | |
6250 | /* You can't do ld -r -s. */ | |
6251 | bfd_set_error (bfd_error_invalid_operation); | |
6252 | return false; | |
6253 | } | |
6254 | ||
6255 | /* This symbol was skipped earlier, but | |
6256 | since it is needed by a reloc, we | |
6257 | must output it now. */ | |
6258 | link = symtab_hdr->sh_link; | |
6259 | name = elf_string_from_elf_section (input_bfd, | |
6260 | link, | |
6261 | isym->st_name); | |
6262 | if (name == NULL) | |
6263 | return false; | |
6264 | ||
6265 | osec = sec->output_section; | |
6266 | isym->st_shndx = | |
6267 | elf_section_from_bfd_section (output_bfd, | |
6268 | osec); | |
013dec1a | 6269 | if (isym->st_shndx == (unsigned short) -1) |
6ec3bb6a ILT |
6270 | return false; |
6271 | ||
6272 | isym->st_value += sec->output_offset; | |
6273 | if (! finfo->info->relocateable) | |
6274 | isym->st_value += osec->vma; | |
6275 | ||
6276 | finfo->indices[r_symndx] = output_bfd->symcount; | |
6277 | ||
71edd06d | 6278 | if (! elf_link_output_sym (finfo, name, isym, sec)) |
6ec3bb6a ILT |
6279 | return false; |
6280 | } | |
6281 | ||
6282 | r_symndx = finfo->indices[r_symndx]; | |
6283 | } | |
6284 | ||
6285 | irela->r_info = ELF_R_INFO (r_symndx, | |
6286 | ELF_R_TYPE (irela->r_info)); | |
6287 | } | |
6288 | ||
6289 | /* Swap out the relocs. */ | |
374d2ef9 | 6290 | input_rel_hdr = &elf_section_data (o)->rel_hdr; |
6ec3bb6a ILT |
6291 | output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr; |
6292 | BFD_ASSERT (output_rel_hdr->sh_entsize | |
6293 | == input_rel_hdr->sh_entsize); | |
374d2ef9 | 6294 | irela = internal_relocs; |
6ec3bb6a ILT |
6295 | irelaend = irela + o->reloc_count; |
6296 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
6297 | { | |
6298 | Elf_External_Rel *erel; | |
6299 | ||
6300 | erel = ((Elf_External_Rel *) output_rel_hdr->contents | |
6301 | + o->output_section->reloc_count); | |
6302 | for (; irela < irelaend; irela++, erel++) | |
6303 | { | |
6304 | Elf_Internal_Rel irel; | |
6305 | ||
6306 | irel.r_offset = irela->r_offset; | |
6307 | irel.r_info = irela->r_info; | |
6308 | BFD_ASSERT (irela->r_addend == 0); | |
6309 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
6310 | } | |
6311 | } | |
6312 | else | |
6313 | { | |
6314 | Elf_External_Rela *erela; | |
6315 | ||
6316 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
6317 | == sizeof (Elf_External_Rela)); | |
6318 | erela = ((Elf_External_Rela *) output_rel_hdr->contents | |
6319 | + o->output_section->reloc_count); | |
6320 | for (; irela < irelaend; irela++, erela++) | |
6321 | elf_swap_reloca_out (output_bfd, irela, erela); | |
6322 | } | |
6323 | ||
6324 | o->output_section->reloc_count += o->reloc_count; | |
6325 | } | |
6326 | } | |
6327 | ||
6328 | /* Write out the modified section contents. */ | |
6329 | if (! bfd_set_section_contents (output_bfd, o->output_section, | |
6330 | finfo->contents, o->output_offset, | |
6331 | (o->_cooked_size != 0 | |
6332 | ? o->_cooked_size | |
6333 | : o->_raw_size))) | |
6334 | return false; | |
6335 | } | |
6336 | ||
6337 | return true; | |
6338 | } | |
6339 | ||
6340 | /* Generate a reloc when linking an ELF file. This is a reloc | |
6341 | requested by the linker, and does come from any input file. This | |
6342 | is used to build constructor and destructor tables when linking | |
6343 | with -Ur. */ | |
6344 | ||
6345 | static boolean | |
6346 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
6347 | bfd *output_bfd; | |
6348 | struct bfd_link_info *info; | |
6349 | asection *output_section; | |
6350 | struct bfd_link_order *link_order; | |
6351 | { | |
6352 | const reloc_howto_type *howto; | |
6353 | long indx; | |
6354 | bfd_vma offset; | |
6355 | struct elf_link_hash_entry **rel_hash_ptr; | |
6356 | Elf_Internal_Shdr *rel_hdr; | |
6357 | ||
6358 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
6359 | if (howto == NULL) | |
6360 | { | |
6361 | bfd_set_error (bfd_error_bad_value); | |
6362 | return false; | |
6363 | } | |
6364 | ||
6365 | /* If this is an inplace reloc, we must write the addend into the | |
6366 | object file. */ | |
6367 | if (howto->partial_inplace | |
6368 | && link_order->u.reloc.p->addend != 0) | |
6369 | { | |
6370 | bfd_size_type size; | |
6371 | bfd_reloc_status_type rstat; | |
6372 | bfd_byte *buf; | |
6373 | boolean ok; | |
6374 | ||
6375 | size = bfd_get_reloc_size (howto); | |
6376 | buf = (bfd_byte *) bfd_zmalloc (size); | |
6377 | if (buf == (bfd_byte *) NULL) | |
6378 | { | |
6379 | bfd_set_error (bfd_error_no_memory); | |
6380 | return false; | |
6381 | } | |
6382 | rstat = _bfd_relocate_contents (howto, output_bfd, | |
6383 | link_order->u.reloc.p->addend, buf); | |
6384 | switch (rstat) | |
6385 | { | |
6386 | case bfd_reloc_ok: | |
6387 | break; | |
6388 | default: | |
6389 | case bfd_reloc_outofrange: | |
6390 | abort (); | |
6391 | case bfd_reloc_overflow: | |
6392 | if (! ((*info->callbacks->reloc_overflow) | |
6393 | (info, | |
6394 | (link_order->type == bfd_section_reloc_link_order | |
6395 | ? bfd_section_name (output_bfd, | |
6396 | link_order->u.reloc.p->u.section) | |
6397 | : link_order->u.reloc.p->u.name), | |
6398 | howto->name, link_order->u.reloc.p->addend, | |
6399 | (bfd *) NULL, (asection *) NULL, (bfd_vma) 0))) | |
6400 | { | |
6401 | free (buf); | |
6402 | return false; | |
6403 | } | |
6404 | break; | |
6405 | } | |
6406 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
6407 | (file_ptr) link_order->offset, size); | |
6408 | free (buf); | |
6409 | if (! ok) | |
6410 | return false; | |
6411 | } | |
6412 | ||
6413 | /* Figure out the symbol index. */ | |
6414 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
6415 | + output_section->reloc_count); | |
6416 | if (link_order->type == bfd_section_reloc_link_order) | |
6417 | { | |
013dec1a ILT |
6418 | indx = link_order->u.reloc.p->u.section->target_index; |
6419 | if (indx == 0) | |
6420 | abort (); | |
6ec3bb6a ILT |
6421 | *rel_hash_ptr = NULL; |
6422 | } | |
6423 | else | |
6424 | { | |
6425 | struct elf_link_hash_entry *h; | |
6426 | ||
6427 | h = elf_link_hash_lookup (elf_hash_table (info), | |
6428 | link_order->u.reloc.p->u.name, | |
6429 | false, false, true); | |
6430 | if (h != NULL) | |
6431 | { | |
6432 | /* Setting the index to -2 tells elf_link_output_extsym that | |
6433 | this symbol is used by a reloc. */ | |
6434 | h->indx = -2; | |
6435 | *rel_hash_ptr = h; | |
6436 | indx = 0; | |
6437 | } | |
6438 | else | |
6439 | { | |
6440 | if (! ((*info->callbacks->unattached_reloc) | |
6441 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
6442 | (asection *) NULL, (bfd_vma) 0))) | |
6443 | return false; | |
6444 | indx = 0; | |
6445 | } | |
6446 | } | |
6447 | ||
6448 | /* The address of a reloc is relative to the section in a | |
6449 | relocateable file, and is a virtual address in an executable | |
6450 | file. */ | |
6451 | offset = link_order->offset; | |
6452 | if (! info->relocateable) | |
6453 | offset += output_section->vma; | |
6454 | ||
6455 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
6456 | ||
6457 | if (rel_hdr->sh_type == SHT_REL) | |
6458 | { | |
6459 | Elf_Internal_Rel irel; | |
6460 | Elf_External_Rel *erel; | |
6461 | ||
6462 | irel.r_offset = offset; | |
6463 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
6464 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
6465 | + output_section->reloc_count); | |
6466 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
6467 | } | |
6468 | else | |
6469 | { | |
6470 | Elf_Internal_Rela irela; | |
6471 | Elf_External_Rela *erela; | |
6472 | ||
6473 | irela.r_offset = offset; | |
6474 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
6475 | irela.r_addend = link_order->u.reloc.p->addend; | |
6476 | erela = ((Elf_External_Rela *) rel_hdr->contents | |
6477 | + output_section->reloc_count); | |
6478 | elf_swap_reloca_out (output_bfd, &irela, erela); | |
6479 | } | |
6480 | ||
6481 | ++output_section->reloc_count; | |
6482 | ||
6483 | return true; | |
6484 | } |