]>
Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* ELF linker support. |
7898deda NC |
2 | Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001 |
3 | Free Software Foundation, Inc. | |
252b5132 RH |
4 | |
5 | This file is part of BFD, the Binary File Descriptor library. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | /* ELF linker code. */ | |
22 | ||
23 | /* This struct is used to pass information to routines called via | |
24 | elf_link_hash_traverse which must return failure. */ | |
25 | ||
26 | struct elf_info_failed | |
27 | { | |
28 | boolean failed; | |
29 | struct bfd_link_info *info; | |
bc2b6df7 | 30 | struct bfd_elf_version_tree *verdefs; |
252b5132 RH |
31 | }; |
32 | ||
a7b97311 AM |
33 | static boolean is_global_data_symbol_definition |
34 | PARAMS ((bfd *, Elf_Internal_Sym *)); | |
35 | static boolean elf_link_is_defined_archive_symbol | |
36 | PARAMS ((bfd *, carsym *)); | |
252b5132 RH |
37 | static boolean elf_link_add_object_symbols |
38 | PARAMS ((bfd *, struct bfd_link_info *)); | |
39 | static boolean elf_link_add_archive_symbols | |
40 | PARAMS ((bfd *, struct bfd_link_info *)); | |
41 | static boolean elf_merge_symbol | |
215007a6 L |
42 | PARAMS ((bfd *, struct bfd_link_info *, const char *, |
43 | Elf_Internal_Sym *, asection **, bfd_vma *, | |
44 | struct elf_link_hash_entry **, boolean *, boolean *, | |
45 | boolean *, boolean)); | |
46 | static boolean elf_add_default_symbol | |
47 | PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, | |
48 | const char *, Elf_Internal_Sym *, asection **, bfd_vma *, | |
49 | boolean *, boolean, boolean)); | |
252b5132 RH |
50 | static boolean elf_export_symbol |
51 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
2b0f7ef9 JJ |
52 | static boolean elf_finalize_dynstr |
53 | PARAMS ((bfd *, struct bfd_link_info *)); | |
252b5132 RH |
54 | static boolean elf_fix_symbol_flags |
55 | PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *)); | |
56 | static boolean elf_adjust_dynamic_symbol | |
57 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
58 | static boolean elf_link_find_version_dependencies | |
59 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
60 | static boolean elf_link_find_version_dependencies | |
61 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
62 | static boolean elf_link_assign_sym_version | |
63 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
252b5132 RH |
64 | static boolean elf_collect_hash_codes |
65 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
3e932841 | 66 | static boolean elf_link_read_relocs_from_section |
6b5bd373 | 67 | PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *)); |
a7b97311 AM |
68 | static size_t compute_bucket_count |
69 | PARAMS ((struct bfd_link_info *)); | |
23bc299b MM |
70 | static void elf_link_output_relocs |
71 | PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *)); | |
72 | static boolean elf_link_size_reloc_section | |
73 | PARAMS ((bfd *, Elf_Internal_Shdr *, asection *)); | |
3e932841 KH |
74 | static void elf_link_adjust_relocs |
75 | PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int, | |
31367b81 | 76 | struct elf_link_hash_entry **)); |
db6751f2 JJ |
77 | static int elf_link_sort_cmp1 |
78 | PARAMS ((const void *, const void *)); | |
79 | static int elf_link_sort_cmp2 | |
80 | PARAMS ((const void *, const void *)); | |
81 | static size_t elf_link_sort_relocs | |
82 | PARAMS ((bfd *, struct bfd_link_info *, asection **)); | |
73d074b4 DJ |
83 | static boolean elf_section_ignore_discarded_relocs |
84 | PARAMS ((asection *)); | |
252b5132 RH |
85 | |
86 | /* Given an ELF BFD, add symbols to the global hash table as | |
87 | appropriate. */ | |
88 | ||
89 | boolean | |
90 | elf_bfd_link_add_symbols (abfd, info) | |
91 | bfd *abfd; | |
92 | struct bfd_link_info *info; | |
93 | { | |
94 | switch (bfd_get_format (abfd)) | |
95 | { | |
96 | case bfd_object: | |
97 | return elf_link_add_object_symbols (abfd, info); | |
98 | case bfd_archive: | |
99 | return elf_link_add_archive_symbols (abfd, info); | |
100 | default: | |
101 | bfd_set_error (bfd_error_wrong_format); | |
102 | return false; | |
103 | } | |
104 | } | |
105 | \f | |
7da9d88f | 106 | /* Return true iff this is a non-common, definition of a non-function symbol. */ |
48dfb430 | 107 | static boolean |
7da9d88f | 108 | is_global_data_symbol_definition (abfd, sym) |
86033394 | 109 | bfd * abfd ATTRIBUTE_UNUSED; |
48dfb430 NC |
110 | Elf_Internal_Sym * sym; |
111 | { | |
112 | /* Local symbols do not count, but target specific ones might. */ | |
113 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL | |
114 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) | |
115 | return false; | |
116 | ||
7da9d88f NC |
117 | /* Function symbols do not count. */ |
118 | if (ELF_ST_TYPE (sym->st_info) == STT_FUNC) | |
119 | return false; | |
120 | ||
48dfb430 NC |
121 | /* If the section is undefined, then so is the symbol. */ |
122 | if (sym->st_shndx == SHN_UNDEF) | |
123 | return false; | |
3e932841 | 124 | |
48dfb430 NC |
125 | /* If the symbol is defined in the common section, then |
126 | it is a common definition and so does not count. */ | |
127 | if (sym->st_shndx == SHN_COMMON) | |
128 | return false; | |
129 | ||
130 | /* If the symbol is in a target specific section then we | |
131 | must rely upon the backend to tell us what it is. */ | |
132 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) | |
133 | /* FIXME - this function is not coded yet: | |
3e932841 | 134 | |
48dfb430 | 135 | return _bfd_is_global_symbol_definition (abfd, sym); |
3e932841 | 136 | |
48dfb430 NC |
137 | Instead for now assume that the definition is not global, |
138 | Even if this is wrong, at least the linker will behave | |
139 | in the same way that it used to do. */ | |
140 | return false; | |
3e932841 | 141 | |
48dfb430 NC |
142 | return true; |
143 | } | |
144 | ||
a3a8c91d | 145 | /* Search the symbol table of the archive element of the archive ABFD |
4e8a9624 | 146 | whose archive map contains a mention of SYMDEF, and determine if |
a3a8c91d NC |
147 | the symbol is defined in this element. */ |
148 | static boolean | |
149 | elf_link_is_defined_archive_symbol (abfd, symdef) | |
150 | bfd * abfd; | |
151 | carsym * symdef; | |
152 | { | |
153 | Elf_Internal_Shdr * hdr; | |
9ad5cbcf | 154 | Elf_Internal_Shdr * shndx_hdr; |
a3a8c91d NC |
155 | Elf_External_Sym * esym; |
156 | Elf_External_Sym * esymend; | |
157 | Elf_External_Sym * buf = NULL; | |
9ad5cbcf AM |
158 | Elf_External_Sym_Shndx * shndx_buf = NULL; |
159 | Elf_External_Sym_Shndx * shndx; | |
dc810e39 AM |
160 | bfd_size_type symcount; |
161 | bfd_size_type extsymcount; | |
162 | bfd_size_type extsymoff; | |
a3a8c91d | 163 | boolean result = false; |
dc810e39 AM |
164 | file_ptr pos; |
165 | bfd_size_type amt; | |
3e932841 | 166 | |
a3a8c91d NC |
167 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); |
168 | if (abfd == (bfd *) NULL) | |
169 | return false; | |
170 | ||
171 | if (! bfd_check_format (abfd, bfd_object)) | |
172 | return false; | |
173 | ||
48dfb430 NC |
174 | /* If we have already included the element containing this symbol in the |
175 | link then we do not need to include it again. Just claim that any symbol | |
176 | it contains is not a definition, so that our caller will not decide to | |
177 | (re)include this element. */ | |
178 | if (abfd->archive_pass) | |
179 | return false; | |
3e932841 | 180 | |
a3a8c91d NC |
181 | /* Select the appropriate symbol table. */ |
182 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) | |
9ad5cbcf AM |
183 | { |
184 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
185 | shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; | |
186 | } | |
a3a8c91d | 187 | else |
9ad5cbcf AM |
188 | { |
189 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
190 | shndx_hdr = NULL; | |
191 | } | |
a3a8c91d NC |
192 | |
193 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
194 | ||
195 | /* The sh_info field of the symtab header tells us where the | |
196 | external symbols start. We don't care about the local symbols. */ | |
197 | if (elf_bad_symtab (abfd)) | |
198 | { | |
199 | extsymcount = symcount; | |
200 | extsymoff = 0; | |
201 | } | |
202 | else | |
203 | { | |
204 | extsymcount = symcount - hdr->sh_info; | |
205 | extsymoff = hdr->sh_info; | |
206 | } | |
207 | ||
dc810e39 AM |
208 | amt = extsymcount * sizeof (Elf_External_Sym); |
209 | buf = (Elf_External_Sym *) bfd_malloc (amt); | |
a3a8c91d NC |
210 | if (buf == NULL && extsymcount != 0) |
211 | return false; | |
212 | ||
213 | /* Read in the symbol table. | |
214 | FIXME: This ought to be cached somewhere. */ | |
dc810e39 AM |
215 | pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym); |
216 | if (bfd_seek (abfd, pos, SEEK_SET) != 0 | |
217 | || bfd_bread ((PTR) buf, amt, abfd) != amt) | |
9ad5cbcf AM |
218 | goto error_exit; |
219 | ||
220 | if (shndx_hdr != NULL && shndx_hdr->sh_size != 0) | |
a3a8c91d | 221 | { |
9ad5cbcf AM |
222 | amt = extsymcount * sizeof (Elf_External_Sym_Shndx); |
223 | shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt); | |
224 | if (shndx_buf == NULL && extsymcount != 0) | |
225 | goto error_exit; | |
226 | ||
227 | pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx); | |
228 | if (bfd_seek (abfd, pos, SEEK_SET) != 0 | |
229 | || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt) | |
230 | goto error_exit; | |
a3a8c91d NC |
231 | } |
232 | ||
233 | /* Scan the symbol table looking for SYMDEF. */ | |
234 | esymend = buf + extsymcount; | |
9ad5cbcf | 235 | for (esym = buf, shndx = shndx_buf; |
a3a8c91d | 236 | esym < esymend; |
9ad5cbcf | 237 | esym++, shndx = (shndx != NULL ? shndx + 1 : NULL)) |
a3a8c91d NC |
238 | { |
239 | Elf_Internal_Sym sym; | |
240 | const char * name; | |
241 | ||
9ad5cbcf | 242 | elf_swap_symbol_in (abfd, esym, shndx, &sym); |
a3a8c91d NC |
243 | |
244 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
245 | if (name == (const char *) NULL) | |
246 | break; | |
247 | ||
248 | if (strcmp (name, symdef->name) == 0) | |
249 | { | |
7da9d88f | 250 | result = is_global_data_symbol_definition (abfd, & sym); |
a3a8c91d NC |
251 | break; |
252 | } | |
253 | } | |
254 | ||
9ad5cbcf AM |
255 | error_exit: |
256 | if (shndx_buf != NULL) | |
257 | free (shndx_buf); | |
258 | if (buf != NULL) | |
259 | free (buf); | |
3e932841 | 260 | |
a3a8c91d NC |
261 | return result; |
262 | } | |
263 | \f | |
252b5132 RH |
264 | /* Add symbols from an ELF archive file to the linker hash table. We |
265 | don't use _bfd_generic_link_add_archive_symbols because of a | |
266 | problem which arises on UnixWare. The UnixWare libc.so is an | |
267 | archive which includes an entry libc.so.1 which defines a bunch of | |
268 | symbols. The libc.so archive also includes a number of other | |
269 | object files, which also define symbols, some of which are the same | |
270 | as those defined in libc.so.1. Correct linking requires that we | |
271 | consider each object file in turn, and include it if it defines any | |
272 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
273 | this; it looks through the list of undefined symbols, and includes | |
274 | any object file which defines them. When this algorithm is used on | |
275 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
276 | bunch of symbols. This means that some of the other objects in the | |
277 | archive are not included in the link, which is incorrect since they | |
278 | precede libc.so.1 in the archive. | |
279 | ||
280 | Fortunately, ELF archive handling is simpler than that done by | |
281 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
282 | oddities. In ELF, if we find a symbol in the archive map, and the | |
283 | symbol is currently undefined, we know that we must pull in that | |
284 | object file. | |
285 | ||
286 | Unfortunately, we do have to make multiple passes over the symbol | |
287 | table until nothing further is resolved. */ | |
288 | ||
289 | static boolean | |
290 | elf_link_add_archive_symbols (abfd, info) | |
291 | bfd *abfd; | |
292 | struct bfd_link_info *info; | |
293 | { | |
294 | symindex c; | |
295 | boolean *defined = NULL; | |
296 | boolean *included = NULL; | |
297 | carsym *symdefs; | |
298 | boolean loop; | |
dc810e39 | 299 | bfd_size_type amt; |
252b5132 RH |
300 | |
301 | if (! bfd_has_map (abfd)) | |
302 | { | |
303 | /* An empty archive is a special case. */ | |
304 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
305 | return true; | |
306 | bfd_set_error (bfd_error_no_armap); | |
307 | return false; | |
308 | } | |
309 | ||
310 | /* Keep track of all symbols we know to be already defined, and all | |
311 | files we know to be already included. This is to speed up the | |
312 | second and subsequent passes. */ | |
313 | c = bfd_ardata (abfd)->symdef_count; | |
314 | if (c == 0) | |
315 | return true; | |
dc810e39 AM |
316 | amt = c; |
317 | amt *= sizeof (boolean); | |
318 | defined = (boolean *) bfd_malloc (amt); | |
319 | included = (boolean *) bfd_malloc (amt); | |
252b5132 RH |
320 | if (defined == (boolean *) NULL || included == (boolean *) NULL) |
321 | goto error_return; | |
dc810e39 AM |
322 | memset (defined, 0, (size_t) amt); |
323 | memset (included, 0, (size_t) amt); | |
252b5132 RH |
324 | |
325 | symdefs = bfd_ardata (abfd)->symdefs; | |
326 | ||
327 | do | |
328 | { | |
329 | file_ptr last; | |
330 | symindex i; | |
331 | carsym *symdef; | |
332 | carsym *symdefend; | |
333 | ||
334 | loop = false; | |
335 | last = -1; | |
336 | ||
337 | symdef = symdefs; | |
338 | symdefend = symdef + c; | |
339 | for (i = 0; symdef < symdefend; symdef++, i++) | |
340 | { | |
341 | struct elf_link_hash_entry *h; | |
342 | bfd *element; | |
343 | struct bfd_link_hash_entry *undefs_tail; | |
344 | symindex mark; | |
345 | ||
346 | if (defined[i] || included[i]) | |
347 | continue; | |
348 | if (symdef->file_offset == last) | |
349 | { | |
350 | included[i] = true; | |
351 | continue; | |
352 | } | |
353 | ||
354 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
355 | false, false, false); | |
356 | ||
357 | if (h == NULL) | |
358 | { | |
359 | char *p, *copy; | |
360 | ||
361 | /* If this is a default version (the name contains @@), | |
362 | look up the symbol again without the version. The | |
363 | effect is that references to the symbol without the | |
364 | version will be matched by the default symbol in the | |
365 | archive. */ | |
366 | ||
367 | p = strchr (symdef->name, ELF_VER_CHR); | |
368 | if (p == NULL || p[1] != ELF_VER_CHR) | |
369 | continue; | |
370 | ||
dc810e39 | 371 | copy = bfd_alloc (abfd, (bfd_size_type) (p - symdef->name + 1)); |
252b5132 RH |
372 | if (copy == NULL) |
373 | goto error_return; | |
dc810e39 | 374 | memcpy (copy, symdef->name, (size_t) (p - symdef->name)); |
252b5132 RH |
375 | copy[p - symdef->name] = '\0'; |
376 | ||
377 | h = elf_link_hash_lookup (elf_hash_table (info), copy, | |
378 | false, false, false); | |
379 | ||
380 | bfd_release (abfd, copy); | |
381 | } | |
382 | ||
383 | if (h == NULL) | |
384 | continue; | |
385 | ||
a3a8c91d NC |
386 | if (h->root.type == bfd_link_hash_common) |
387 | { | |
388 | /* We currently have a common symbol. The archive map contains | |
389 | a reference to this symbol, so we may want to include it. We | |
390 | only want to include it however, if this archive element | |
391 | contains a definition of the symbol, not just another common | |
392 | declaration of it. | |
393 | ||
394 | Unfortunately some archivers (including GNU ar) will put | |
395 | declarations of common symbols into their archive maps, as | |
396 | well as real definitions, so we cannot just go by the archive | |
397 | map alone. Instead we must read in the element's symbol | |
398 | table and check that to see what kind of symbol definition | |
399 | this is. */ | |
400 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | |
401 | continue; | |
402 | } | |
403 | else if (h->root.type != bfd_link_hash_undefined) | |
252b5132 RH |
404 | { |
405 | if (h->root.type != bfd_link_hash_undefweak) | |
406 | defined[i] = true; | |
407 | continue; | |
408 | } | |
409 | ||
410 | /* We need to include this archive member. */ | |
252b5132 RH |
411 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); |
412 | if (element == (bfd *) NULL) | |
413 | goto error_return; | |
414 | ||
415 | if (! bfd_check_format (element, bfd_object)) | |
416 | goto error_return; | |
417 | ||
418 | /* Doublecheck that we have not included this object | |
419 | already--it should be impossible, but there may be | |
420 | something wrong with the archive. */ | |
421 | if (element->archive_pass != 0) | |
422 | { | |
423 | bfd_set_error (bfd_error_bad_value); | |
424 | goto error_return; | |
425 | } | |
426 | element->archive_pass = 1; | |
427 | ||
428 | undefs_tail = info->hash->undefs_tail; | |
429 | ||
430 | if (! (*info->callbacks->add_archive_element) (info, element, | |
431 | symdef->name)) | |
432 | goto error_return; | |
433 | if (! elf_link_add_object_symbols (element, info)) | |
434 | goto error_return; | |
435 | ||
436 | /* If there are any new undefined symbols, we need to make | |
437 | another pass through the archive in order to see whether | |
438 | they can be defined. FIXME: This isn't perfect, because | |
439 | common symbols wind up on undefs_tail and because an | |
440 | undefined symbol which is defined later on in this pass | |
441 | does not require another pass. This isn't a bug, but it | |
442 | does make the code less efficient than it could be. */ | |
443 | if (undefs_tail != info->hash->undefs_tail) | |
444 | loop = true; | |
445 | ||
446 | /* Look backward to mark all symbols from this object file | |
447 | which we have already seen in this pass. */ | |
448 | mark = i; | |
449 | do | |
450 | { | |
451 | included[mark] = true; | |
452 | if (mark == 0) | |
453 | break; | |
454 | --mark; | |
455 | } | |
456 | while (symdefs[mark].file_offset == symdef->file_offset); | |
457 | ||
458 | /* We mark subsequent symbols from this object file as we go | |
459 | on through the loop. */ | |
460 | last = symdef->file_offset; | |
461 | } | |
462 | } | |
463 | while (loop); | |
464 | ||
465 | free (defined); | |
466 | free (included); | |
467 | ||
468 | return true; | |
469 | ||
470 | error_return: | |
471 | if (defined != (boolean *) NULL) | |
472 | free (defined); | |
473 | if (included != (boolean *) NULL) | |
474 | free (included); | |
475 | return false; | |
476 | } | |
477 | ||
478 | /* This function is called when we want to define a new symbol. It | |
479 | handles the various cases which arise when we find a definition in | |
480 | a dynamic object, or when there is already a definition in a | |
481 | dynamic object. The new symbol is described by NAME, SYM, PSEC, | |
482 | and PVALUE. We set SYM_HASH to the hash table entry. We set | |
483 | OVERRIDE if the old symbol is overriding a new definition. We set | |
484 | TYPE_CHANGE_OK if it is OK for the type to change. We set | |
485 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to | |
486 | change, we mean that we shouldn't warn if the type or size does | |
456981d7 L |
487 | change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of |
488 | a shared object. */ | |
252b5132 RH |
489 | |
490 | static boolean | |
491 | elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash, | |
456981d7 | 492 | override, type_change_ok, size_change_ok, dt_needed) |
252b5132 RH |
493 | bfd *abfd; |
494 | struct bfd_link_info *info; | |
495 | const char *name; | |
496 | Elf_Internal_Sym *sym; | |
497 | asection **psec; | |
498 | bfd_vma *pvalue; | |
499 | struct elf_link_hash_entry **sym_hash; | |
500 | boolean *override; | |
501 | boolean *type_change_ok; | |
502 | boolean *size_change_ok; | |
456981d7 | 503 | boolean dt_needed; |
252b5132 RH |
504 | { |
505 | asection *sec; | |
506 | struct elf_link_hash_entry *h; | |
507 | int bind; | |
508 | bfd *oldbfd; | |
509 | boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
510 | ||
511 | *override = false; | |
512 | ||
513 | sec = *psec; | |
514 | bind = ELF_ST_BIND (sym->st_info); | |
515 | ||
516 | if (! bfd_is_und_section (sec)) | |
517 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); | |
518 | else | |
519 | h = ((struct elf_link_hash_entry *) | |
520 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); | |
521 | if (h == NULL) | |
522 | return false; | |
523 | *sym_hash = h; | |
524 | ||
525 | /* This code is for coping with dynamic objects, and is only useful | |
526 | if we are doing an ELF link. */ | |
527 | if (info->hash->creator != abfd->xvec) | |
528 | return true; | |
529 | ||
530 | /* For merging, we only care about real symbols. */ | |
531 | ||
532 | while (h->root.type == bfd_link_hash_indirect | |
533 | || h->root.type == bfd_link_hash_warning) | |
534 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
535 | ||
536 | /* If we just created the symbol, mark it as being an ELF symbol. | |
537 | Other than that, there is nothing to do--there is no merge issue | |
538 | with a newly defined symbol--so we just return. */ | |
539 | ||
540 | if (h->root.type == bfd_link_hash_new) | |
541 | { | |
542 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
543 | return true; | |
544 | } | |
545 | ||
546 | /* OLDBFD is a BFD associated with the existing symbol. */ | |
547 | ||
548 | switch (h->root.type) | |
549 | { | |
550 | default: | |
551 | oldbfd = NULL; | |
552 | break; | |
553 | ||
554 | case bfd_link_hash_undefined: | |
555 | case bfd_link_hash_undefweak: | |
556 | oldbfd = h->root.u.undef.abfd; | |
557 | break; | |
558 | ||
559 | case bfd_link_hash_defined: | |
560 | case bfd_link_hash_defweak: | |
561 | oldbfd = h->root.u.def.section->owner; | |
562 | break; | |
563 | ||
564 | case bfd_link_hash_common: | |
565 | oldbfd = h->root.u.c.p->section->owner; | |
566 | break; | |
567 | } | |
568 | ||
b4536acd ILT |
569 | /* In cases involving weak versioned symbols, we may wind up trying |
570 | to merge a symbol with itself. Catch that here, to avoid the | |
571 | confusion that results if we try to override a symbol with | |
accc7f69 ILT |
572 | itself. The additional tests catch cases like |
573 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |
574 | dynamic object, which we do want to handle here. */ | |
575 | if (abfd == oldbfd | |
576 | && ((abfd->flags & DYNAMIC) == 0 | |
577 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
b4536acd ILT |
578 | return true; |
579 | ||
252b5132 RH |
580 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, |
581 | respectively, is from a dynamic object. */ | |
582 | ||
583 | if ((abfd->flags & DYNAMIC) != 0) | |
584 | newdyn = true; | |
585 | else | |
586 | newdyn = false; | |
587 | ||
0035bd7b ILT |
588 | if (oldbfd != NULL) |
589 | olddyn = (oldbfd->flags & DYNAMIC) != 0; | |
252b5132 | 590 | else |
0035bd7b ILT |
591 | { |
592 | asection *hsec; | |
593 | ||
594 | /* This code handles the special SHN_MIPS_{TEXT,DATA} section | |
595 | indices used by MIPS ELF. */ | |
596 | switch (h->root.type) | |
597 | { | |
598 | default: | |
599 | hsec = NULL; | |
600 | break; | |
601 | ||
602 | case bfd_link_hash_defined: | |
603 | case bfd_link_hash_defweak: | |
604 | hsec = h->root.u.def.section; | |
605 | break; | |
606 | ||
607 | case bfd_link_hash_common: | |
608 | hsec = h->root.u.c.p->section; | |
609 | break; | |
610 | } | |
611 | ||
612 | if (hsec == NULL) | |
613 | olddyn = false; | |
614 | else | |
615 | olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0; | |
616 | } | |
252b5132 RH |
617 | |
618 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, | |
619 | respectively, appear to be a definition rather than reference. */ | |
620 | ||
621 | if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) | |
622 | newdef = false; | |
623 | else | |
624 | newdef = true; | |
625 | ||
626 | if (h->root.type == bfd_link_hash_undefined | |
627 | || h->root.type == bfd_link_hash_undefweak | |
628 | || h->root.type == bfd_link_hash_common) | |
629 | olddef = false; | |
630 | else | |
631 | olddef = true; | |
632 | ||
633 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old | |
634 | symbol, respectively, appears to be a common symbol in a dynamic | |
635 | object. If a symbol appears in an uninitialized section, and is | |
636 | not weak, and is not a function, then it may be a common symbol | |
637 | which was resolved when the dynamic object was created. We want | |
638 | to treat such symbols specially, because they raise special | |
639 | considerations when setting the symbol size: if the symbol | |
640 | appears as a common symbol in a regular object, and the size in | |
641 | the regular object is larger, we must make sure that we use the | |
642 | larger size. This problematic case can always be avoided in C, | |
643 | but it must be handled correctly when using Fortran shared | |
644 | libraries. | |
645 | ||
646 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
647 | likewise for OLDDYNCOMMON and OLDDEF. | |
648 | ||
649 | Note that this test is just a heuristic, and that it is quite | |
650 | possible to have an uninitialized symbol in a shared object which | |
651 | is really a definition, rather than a common symbol. This could | |
652 | lead to some minor confusion when the symbol really is a common | |
653 | symbol in some regular object. However, I think it will be | |
654 | harmless. */ | |
655 | ||
656 | if (newdyn | |
657 | && newdef | |
658 | && (sec->flags & SEC_ALLOC) != 0 | |
659 | && (sec->flags & SEC_LOAD) == 0 | |
660 | && sym->st_size > 0 | |
661 | && bind != STB_WEAK | |
662 | && ELF_ST_TYPE (sym->st_info) != STT_FUNC) | |
663 | newdyncommon = true; | |
664 | else | |
665 | newdyncommon = false; | |
666 | ||
667 | if (olddyn | |
668 | && olddef | |
669 | && h->root.type == bfd_link_hash_defined | |
670 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
671 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 | |
672 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
673 | && h->size > 0 | |
674 | && h->type != STT_FUNC) | |
675 | olddyncommon = true; | |
676 | else | |
677 | olddyncommon = false; | |
678 | ||
679 | /* It's OK to change the type if either the existing symbol or the | |
456981d7 L |
680 | new symbol is weak unless it comes from a DT_NEEDED entry of |
681 | a shared object, in which case, the DT_NEEDED entry may not be | |
3e932841 | 682 | required at the run time. */ |
252b5132 | 683 | |
456981d7 | 684 | if ((! dt_needed && h->root.type == bfd_link_hash_defweak) |
252b5132 RH |
685 | || h->root.type == bfd_link_hash_undefweak |
686 | || bind == STB_WEAK) | |
687 | *type_change_ok = true; | |
688 | ||
689 | /* It's OK to change the size if either the existing symbol or the | |
690 | new symbol is weak, or if the old symbol is undefined. */ | |
691 | ||
692 | if (*type_change_ok | |
693 | || h->root.type == bfd_link_hash_undefined) | |
694 | *size_change_ok = true; | |
695 | ||
696 | /* If both the old and the new symbols look like common symbols in a | |
697 | dynamic object, set the size of the symbol to the larger of the | |
698 | two. */ | |
699 | ||
700 | if (olddyncommon | |
701 | && newdyncommon | |
702 | && sym->st_size != h->size) | |
703 | { | |
704 | /* Since we think we have two common symbols, issue a multiple | |
705 | common warning if desired. Note that we only warn if the | |
706 | size is different. If the size is the same, we simply let | |
707 | the old symbol override the new one as normally happens with | |
708 | symbols defined in dynamic objects. */ | |
709 | ||
710 | if (! ((*info->callbacks->multiple_common) | |
711 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
712 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
713 | return false; | |
714 | ||
715 | if (sym->st_size > h->size) | |
716 | h->size = sym->st_size; | |
717 | ||
718 | *size_change_ok = true; | |
719 | } | |
720 | ||
721 | /* If we are looking at a dynamic object, and we have found a | |
722 | definition, we need to see if the symbol was already defined by | |
723 | some other object. If so, we want to use the existing | |
724 | definition, and we do not want to report a multiple symbol | |
725 | definition error; we do this by clobbering *PSEC to be | |
726 | bfd_und_section_ptr. | |
727 | ||
728 | We treat a common symbol as a definition if the symbol in the | |
729 | shared library is a function, since common symbols always | |
730 | represent variables; this can cause confusion in principle, but | |
731 | any such confusion would seem to indicate an erroneous program or | |
732 | shared library. We also permit a common symbol in a regular | |
0525d26e ILT |
733 | object to override a weak symbol in a shared object. |
734 | ||
735 | We prefer a non-weak definition in a shared library to a weak | |
456981d7 L |
736 | definition in the executable unless it comes from a DT_NEEDED |
737 | entry of a shared object, in which case, the DT_NEEDED entry | |
3e932841 | 738 | may not be required at the run time. */ |
252b5132 RH |
739 | |
740 | if (newdyn | |
741 | && newdef | |
742 | && (olddef | |
743 | || (h->root.type == bfd_link_hash_common | |
744 | && (bind == STB_WEAK | |
0525d26e | 745 | || ELF_ST_TYPE (sym->st_info) == STT_FUNC))) |
3e932841 | 746 | && (h->root.type != bfd_link_hash_defweak |
456981d7 | 747 | || dt_needed |
0525d26e | 748 | || bind == STB_WEAK)) |
252b5132 RH |
749 | { |
750 | *override = true; | |
751 | newdef = false; | |
752 | newdyncommon = false; | |
753 | ||
754 | *psec = sec = bfd_und_section_ptr; | |
755 | *size_change_ok = true; | |
756 | ||
757 | /* If we get here when the old symbol is a common symbol, then | |
758 | we are explicitly letting it override a weak symbol or | |
759 | function in a dynamic object, and we don't want to warn about | |
760 | a type change. If the old symbol is a defined symbol, a type | |
761 | change warning may still be appropriate. */ | |
762 | ||
763 | if (h->root.type == bfd_link_hash_common) | |
764 | *type_change_ok = true; | |
765 | } | |
766 | ||
767 | /* Handle the special case of an old common symbol merging with a | |
768 | new symbol which looks like a common symbol in a shared object. | |
769 | We change *PSEC and *PVALUE to make the new symbol look like a | |
770 | common symbol, and let _bfd_generic_link_add_one_symbol will do | |
771 | the right thing. */ | |
772 | ||
773 | if (newdyncommon | |
774 | && h->root.type == bfd_link_hash_common) | |
775 | { | |
776 | *override = true; | |
777 | newdef = false; | |
778 | newdyncommon = false; | |
779 | *pvalue = sym->st_size; | |
780 | *psec = sec = bfd_com_section_ptr; | |
781 | *size_change_ok = true; | |
782 | } | |
783 | ||
784 | /* If the old symbol is from a dynamic object, and the new symbol is | |
785 | a definition which is not from a dynamic object, then the new | |
786 | symbol overrides the old symbol. Symbols from regular files | |
787 | always take precedence over symbols from dynamic objects, even if | |
788 | they are defined after the dynamic object in the link. | |
789 | ||
790 | As above, we again permit a common symbol in a regular object to | |
791 | override a definition in a shared object if the shared object | |
0525d26e ILT |
792 | symbol is a function or is weak. |
793 | ||
794 | As above, we permit a non-weak definition in a shared object to | |
795 | override a weak definition in a regular object. */ | |
252b5132 RH |
796 | |
797 | if (! newdyn | |
798 | && (newdef | |
799 | || (bfd_is_com_section (sec) | |
800 | && (h->root.type == bfd_link_hash_defweak | |
801 | || h->type == STT_FUNC))) | |
802 | && olddyn | |
803 | && olddef | |
0525d26e ILT |
804 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
805 | && (bind != STB_WEAK | |
806 | || h->root.type == bfd_link_hash_defweak)) | |
252b5132 RH |
807 | { |
808 | /* Change the hash table entry to undefined, and let | |
809 | _bfd_generic_link_add_one_symbol do the right thing with the | |
810 | new definition. */ | |
811 | ||
812 | h->root.type = bfd_link_hash_undefined; | |
813 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
814 | *size_change_ok = true; | |
815 | ||
816 | olddef = false; | |
817 | olddyncommon = false; | |
818 | ||
819 | /* We again permit a type change when a common symbol may be | |
820 | overriding a function. */ | |
821 | ||
822 | if (bfd_is_com_section (sec)) | |
823 | *type_change_ok = true; | |
824 | ||
825 | /* This union may have been set to be non-NULL when this symbol | |
826 | was seen in a dynamic object. We must force the union to be | |
827 | NULL, so that it is correct for a regular symbol. */ | |
828 | ||
829 | h->verinfo.vertree = NULL; | |
830 | ||
831 | /* In this special case, if H is the target of an indirection, | |
832 | we want the caller to frob with H rather than with the | |
833 | indirect symbol. That will permit the caller to redefine the | |
834 | target of the indirection, rather than the indirect symbol | |
835 | itself. FIXME: This will break the -y option if we store a | |
836 | symbol with a different name. */ | |
837 | *sym_hash = h; | |
838 | } | |
839 | ||
840 | /* Handle the special case of a new common symbol merging with an | |
841 | old symbol that looks like it might be a common symbol defined in | |
842 | a shared object. Note that we have already handled the case in | |
843 | which a new common symbol should simply override the definition | |
844 | in the shared library. */ | |
845 | ||
846 | if (! newdyn | |
847 | && bfd_is_com_section (sec) | |
848 | && olddyncommon) | |
849 | { | |
850 | /* It would be best if we could set the hash table entry to a | |
851 | common symbol, but we don't know what to use for the section | |
852 | or the alignment. */ | |
853 | if (! ((*info->callbacks->multiple_common) | |
854 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
855 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
856 | return false; | |
857 | ||
858 | /* If the predumed common symbol in the dynamic object is | |
859 | larger, pretend that the new symbol has its size. */ | |
860 | ||
861 | if (h->size > *pvalue) | |
862 | *pvalue = h->size; | |
863 | ||
864 | /* FIXME: We no longer know the alignment required by the symbol | |
865 | in the dynamic object, so we just wind up using the one from | |
866 | the regular object. */ | |
867 | ||
868 | olddef = false; | |
869 | olddyncommon = false; | |
870 | ||
871 | h->root.type = bfd_link_hash_undefined; | |
872 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
873 | ||
874 | *size_change_ok = true; | |
875 | *type_change_ok = true; | |
876 | ||
877 | h->verinfo.vertree = NULL; | |
878 | } | |
879 | ||
0525d26e ILT |
880 | /* Handle the special case of a weak definition in a regular object |
881 | followed by a non-weak definition in a shared object. In this | |
456981d7 L |
882 | case, we prefer the definition in the shared object unless it |
883 | comes from a DT_NEEDED entry of a shared object, in which case, | |
3e932841 | 884 | the DT_NEEDED entry may not be required at the run time. */ |
0525d26e | 885 | if (olddef |
456981d7 | 886 | && ! dt_needed |
0525d26e ILT |
887 | && h->root.type == bfd_link_hash_defweak |
888 | && newdef | |
889 | && newdyn | |
890 | && bind != STB_WEAK) | |
b4536acd ILT |
891 | { |
892 | /* To make this work we have to frob the flags so that the rest | |
893 | of the code does not think we are using the regular | |
894 | definition. */ | |
64df8d0b ILT |
895 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
896 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
897 | else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
898 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
899 | h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR | |
900 | | ELF_LINK_HASH_DEF_DYNAMIC); | |
b4536acd ILT |
901 | |
902 | /* If H is the target of an indirection, we want the caller to | |
903 | use H rather than the indirect symbol. Otherwise if we are | |
904 | defining a new indirect symbol we will wind up attaching it | |
905 | to the entry we are overriding. */ | |
906 | *sym_hash = h; | |
907 | } | |
0525d26e ILT |
908 | |
909 | /* Handle the special case of a non-weak definition in a shared | |
910 | object followed by a weak definition in a regular object. In | |
911 | this case we prefer to definition in the shared object. To make | |
912 | this work we have to tell the caller to not treat the new symbol | |
913 | as a definition. */ | |
914 | if (olddef | |
915 | && olddyn | |
916 | && h->root.type != bfd_link_hash_defweak | |
917 | && newdef | |
918 | && ! newdyn | |
919 | && bind == STB_WEAK) | |
920 | *override = true; | |
921 | ||
252b5132 RH |
922 | return true; |
923 | } | |
924 | ||
215007a6 L |
925 | /* This function is called to create an indirect symbol from the |
926 | default for the symbol with the default version if needed. The | |
927 | symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We | |
928 | set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED | |
929 | indicates if it comes from a DT_NEEDED entry of a shared object. */ | |
930 | ||
931 | static boolean | |
932 | elf_add_default_symbol (abfd, info, h, name, sym, sec, value, | |
933 | dynsym, override, dt_needed) | |
934 | bfd *abfd; | |
935 | struct bfd_link_info *info; | |
936 | struct elf_link_hash_entry *h; | |
937 | const char *name; | |
938 | Elf_Internal_Sym *sym; | |
939 | asection **sec; | |
940 | bfd_vma *value; | |
941 | boolean *dynsym; | |
942 | boolean override; | |
943 | boolean dt_needed; | |
944 | { | |
945 | boolean type_change_ok; | |
946 | boolean size_change_ok; | |
947 | char *shortname; | |
948 | struct elf_link_hash_entry *hi; | |
949 | struct elf_backend_data *bed; | |
950 | boolean collect; | |
951 | boolean dynamic; | |
952 | char *p; | |
953 | ||
954 | /* If this symbol has a version, and it is the default version, we | |
955 | create an indirect symbol from the default name to the fully | |
956 | decorated name. This will cause external references which do not | |
957 | specify a version to be bound to this version of the symbol. */ | |
958 | p = strchr (name, ELF_VER_CHR); | |
959 | if (p == NULL || p[1] != ELF_VER_CHR) | |
960 | return true; | |
961 | ||
962 | if (override) | |
963 | { | |
964 | /* We are overridden by an old defition. We need to check if we | |
965 | need to crreate the indirect symbol from the default name. */ | |
966 | hi = elf_link_hash_lookup (elf_hash_table (info), name, true, | |
967 | false, false); | |
968 | BFD_ASSERT (hi != NULL); | |
969 | if (hi == h) | |
970 | return true; | |
971 | while (hi->root.type == bfd_link_hash_indirect | |
972 | || hi->root.type == bfd_link_hash_warning) | |
973 | { | |
974 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
975 | if (hi == h) | |
976 | return true; | |
977 | } | |
978 | } | |
979 | ||
980 | bed = get_elf_backend_data (abfd); | |
981 | collect = bed->collect; | |
982 | dynamic = (abfd->flags & DYNAMIC) != 0; | |
983 | ||
984 | shortname = bfd_hash_allocate (&info->hash->table, | |
985 | (size_t) (p - name + 1)); | |
986 | if (shortname == NULL) | |
987 | return false; | |
988 | strncpy (shortname, name, (size_t) (p - name)); | |
989 | shortname [p - name] = '\0'; | |
990 | ||
991 | /* We are going to create a new symbol. Merge it with any existing | |
992 | symbol with this name. For the purposes of the merge, act as | |
993 | though we were defining the symbol we just defined, although we | |
994 | actually going to define an indirect symbol. */ | |
995 | type_change_ok = false; | |
996 | size_change_ok = false; | |
997 | if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value, | |
998 | &hi, &override, &type_change_ok, | |
999 | &size_change_ok, dt_needed)) | |
1000 | return false; | |
1001 | ||
1002 | if (! override) | |
1003 | { | |
1004 | if (! (_bfd_generic_link_add_one_symbol | |
1005 | (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr, | |
1006 | (bfd_vma) 0, name, false, collect, | |
1007 | (struct bfd_link_hash_entry **) &hi))) | |
1008 | return false; | |
1009 | } | |
1010 | else | |
1011 | { | |
1012 | /* In this case the symbol named SHORTNAME is overriding the | |
1013 | indirect symbol we want to add. We were planning on making | |
1014 | SHORTNAME an indirect symbol referring to NAME. SHORTNAME | |
1015 | is the name without a version. NAME is the fully versioned | |
1016 | name, and it is the default version. | |
1017 | ||
1018 | Overriding means that we already saw a definition for the | |
1019 | symbol SHORTNAME in a regular object, and it is overriding | |
1020 | the symbol defined in the dynamic object. | |
1021 | ||
1022 | When this happens, we actually want to change NAME, the | |
1023 | symbol we just added, to refer to SHORTNAME. This will cause | |
1024 | references to NAME in the shared object to become references | |
1025 | to SHORTNAME in the regular object. This is what we expect | |
1026 | when we override a function in a shared object: that the | |
1027 | references in the shared object will be mapped to the | |
1028 | definition in the regular object. */ | |
1029 | ||
1030 | while (hi->root.type == bfd_link_hash_indirect | |
1031 | || hi->root.type == bfd_link_hash_warning) | |
1032 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1033 | ||
1034 | h->root.type = bfd_link_hash_indirect; | |
1035 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
1036 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) | |
1037 | { | |
1038 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; | |
1039 | hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1040 | if (hi->elf_link_hash_flags | |
1041 | & (ELF_LINK_HASH_REF_REGULAR | |
1042 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1043 | { | |
1044 | if (! _bfd_elf_link_record_dynamic_symbol (info, hi)) | |
1045 | return false; | |
1046 | } | |
1047 | } | |
1048 | ||
1049 | /* Now set HI to H, so that the following code will set the | |
1050 | other fields correctly. */ | |
1051 | hi = h; | |
1052 | } | |
1053 | ||
1054 | /* If there is a duplicate definition somewhere, then HI may not | |
1055 | point to an indirect symbol. We will have reported an error to | |
1056 | the user in that case. */ | |
1057 | ||
1058 | if (hi->root.type == bfd_link_hash_indirect) | |
1059 | { | |
1060 | struct elf_link_hash_entry *ht; | |
1061 | ||
1062 | /* If the symbol became indirect, then we assume that we have | |
1063 | not seen a definition before. */ | |
1064 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1065 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1066 | | ELF_LINK_HASH_DEF_REGULAR)) == 0); | |
1067 | ||
1068 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1069 | (*bed->elf_backend_copy_indirect_symbol) (ht, hi); | |
1070 | ||
1071 | /* See if the new flags lead us to realize that the symbol must | |
1072 | be dynamic. */ | |
1073 | if (! *dynsym) | |
1074 | { | |
1075 | if (! dynamic) | |
1076 | { | |
1077 | if (info->shared | |
1078 | || ((hi->elf_link_hash_flags | |
1079 | & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
1080 | *dynsym = true; | |
1081 | } | |
1082 | else | |
1083 | { | |
1084 | if ((hi->elf_link_hash_flags | |
1085 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1086 | *dynsym = true; | |
1087 | } | |
1088 | } | |
1089 | } | |
1090 | ||
1091 | /* We also need to define an indirection from the nondefault version | |
1092 | of the symbol. */ | |
1093 | ||
1094 | shortname = bfd_hash_allocate (&info->hash->table, strlen (name)); | |
1095 | if (shortname == NULL) | |
1096 | return false; | |
1097 | strncpy (shortname, name, (size_t) (p - name)); | |
1098 | strcpy (shortname + (p - name), p + 1); | |
1099 | ||
1100 | /* Once again, merge with any existing symbol. */ | |
1101 | type_change_ok = false; | |
1102 | size_change_ok = false; | |
1103 | if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value, | |
1104 | &hi, &override, &type_change_ok, | |
1105 | &size_change_ok, dt_needed)) | |
1106 | return false; | |
1107 | ||
1108 | if (override) | |
1109 | { | |
1110 | /* Here SHORTNAME is a versioned name, so we don't expect to see | |
1111 | the type of override we do in the case above. */ | |
1112 | (*_bfd_error_handler) | |
1113 | (_("%s: warning: unexpected redefinition of `%s'"), | |
1114 | bfd_archive_filename (abfd), shortname); | |
1115 | } | |
1116 | else | |
1117 | { | |
1118 | if (! (_bfd_generic_link_add_one_symbol | |
1119 | (info, abfd, shortname, BSF_INDIRECT, | |
1120 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, | |
1121 | collect, (struct bfd_link_hash_entry **) &hi))) | |
1122 | return false; | |
1123 | ||
1124 | /* If there is a duplicate definition somewhere, then HI may not | |
1125 | point to an indirect symbol. We will have reported an error | |
1126 | to the user in that case. */ | |
1127 | ||
1128 | if (hi->root.type == bfd_link_hash_indirect) | |
1129 | { | |
1130 | /* If the symbol became indirect, then we assume that we have | |
1131 | not seen a definition before. */ | |
1132 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1133 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1134 | | ELF_LINK_HASH_DEF_REGULAR)) == 0); | |
1135 | ||
1136 | (*bed->elf_backend_copy_indirect_symbol) (h, hi); | |
1137 | ||
1138 | /* See if the new flags lead us to realize that the symbol | |
1139 | must be dynamic. */ | |
1140 | if (! *dynsym) | |
1141 | { | |
1142 | if (! dynamic) | |
1143 | { | |
1144 | if (info->shared | |
1145 | || ((hi->elf_link_hash_flags | |
1146 | & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
1147 | *dynsym = true; | |
1148 | } | |
1149 | else | |
1150 | { | |
1151 | if ((hi->elf_link_hash_flags | |
1152 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1153 | *dynsym = true; | |
1154 | } | |
1155 | } | |
1156 | } | |
1157 | } | |
1158 | ||
1159 | return true; | |
1160 | } | |
1161 | ||
252b5132 RH |
1162 | /* Add symbols from an ELF object file to the linker hash table. */ |
1163 | ||
1164 | static boolean | |
1165 | elf_link_add_object_symbols (abfd, info) | |
1166 | bfd *abfd; | |
1167 | struct bfd_link_info *info; | |
1168 | { | |
1169 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
1170 | const Elf_Internal_Sym *, | |
1171 | const char **, flagword *, | |
1172 | asection **, bfd_vma *)); | |
1173 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, | |
1174 | asection *, const Elf_Internal_Rela *)); | |
1175 | boolean collect; | |
1176 | Elf_Internal_Shdr *hdr; | |
9ad5cbcf | 1177 | Elf_Internal_Shdr *shndx_hdr; |
dc810e39 AM |
1178 | bfd_size_type symcount; |
1179 | bfd_size_type extsymcount; | |
1180 | bfd_size_type extsymoff; | |
252b5132 | 1181 | Elf_External_Sym *buf = NULL; |
9ad5cbcf AM |
1182 | Elf_External_Sym_Shndx *shndx_buf = NULL; |
1183 | Elf_External_Sym_Shndx *shndx; | |
252b5132 RH |
1184 | struct elf_link_hash_entry **sym_hash; |
1185 | boolean dynamic; | |
252b5132 RH |
1186 | Elf_External_Versym *extversym = NULL; |
1187 | Elf_External_Versym *ever; | |
1188 | Elf_External_Dyn *dynbuf = NULL; | |
1189 | struct elf_link_hash_entry *weaks; | |
1190 | Elf_External_Sym *esym; | |
1191 | Elf_External_Sym *esymend; | |
c61b8717 | 1192 | struct elf_backend_data *bed; |
74816898 | 1193 | boolean dt_needed; |
8ea2e4bd | 1194 | struct elf_link_hash_table * hash_table; |
dc810e39 AM |
1195 | file_ptr pos; |
1196 | bfd_size_type amt; | |
8ea2e4bd NC |
1197 | |
1198 | hash_table = elf_hash_table (info); | |
252b5132 | 1199 | |
c61b8717 RH |
1200 | bed = get_elf_backend_data (abfd); |
1201 | add_symbol_hook = bed->elf_add_symbol_hook; | |
1202 | collect = bed->collect; | |
252b5132 RH |
1203 | |
1204 | if ((abfd->flags & DYNAMIC) == 0) | |
1205 | dynamic = false; | |
1206 | else | |
1207 | { | |
1208 | dynamic = true; | |
1209 | ||
1210 | /* You can't use -r against a dynamic object. Also, there's no | |
1211 | hope of using a dynamic object which does not exactly match | |
1212 | the format of the output file. */ | |
1213 | if (info->relocateable || info->hash->creator != abfd->xvec) | |
1214 | { | |
1215 | bfd_set_error (bfd_error_invalid_operation); | |
1216 | goto error_return; | |
1217 | } | |
1218 | } | |
1219 | ||
1220 | /* As a GNU extension, any input sections which are named | |
1221 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
1222 | symbol. This differs from .gnu.warning sections, which generate | |
1223 | warnings when they are included in an output file. */ | |
1224 | if (! info->shared) | |
1225 | { | |
1226 | asection *s; | |
1227 | ||
1228 | for (s = abfd->sections; s != NULL; s = s->next) | |
1229 | { | |
1230 | const char *name; | |
1231 | ||
1232 | name = bfd_get_section_name (abfd, s); | |
1233 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
1234 | { | |
1235 | char *msg; | |
1236 | bfd_size_type sz; | |
1237 | ||
1238 | name += sizeof ".gnu.warning." - 1; | |
1239 | ||
1240 | /* If this is a shared object, then look up the symbol | |
1241 | in the hash table. If it is there, and it is already | |
1242 | been defined, then we will not be using the entry | |
1243 | from this shared object, so we don't need to warn. | |
1244 | FIXME: If we see the definition in a regular object | |
1245 | later on, we will warn, but we shouldn't. The only | |
1246 | fix is to keep track of what warnings we are supposed | |
1247 | to emit, and then handle them all at the end of the | |
1248 | link. */ | |
1249 | if (dynamic && abfd->xvec == info->hash->creator) | |
1250 | { | |
1251 | struct elf_link_hash_entry *h; | |
1252 | ||
8ea2e4bd | 1253 | h = elf_link_hash_lookup (hash_table, name, |
252b5132 RH |
1254 | false, false, true); |
1255 | ||
1256 | /* FIXME: What about bfd_link_hash_common? */ | |
1257 | if (h != NULL | |
1258 | && (h->root.type == bfd_link_hash_defined | |
1259 | || h->root.type == bfd_link_hash_defweak)) | |
1260 | { | |
1261 | /* We don't want to issue this warning. Clobber | |
1262 | the section size so that the warning does not | |
1263 | get copied into the output file. */ | |
1264 | s->_raw_size = 0; | |
1265 | continue; | |
1266 | } | |
1267 | } | |
1268 | ||
1269 | sz = bfd_section_size (abfd, s); | |
1270 | msg = (char *) bfd_alloc (abfd, sz + 1); | |
1271 | if (msg == NULL) | |
1272 | goto error_return; | |
1273 | ||
1274 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) | |
1275 | goto error_return; | |
1276 | ||
1277 | msg[sz] = '\0'; | |
1278 | ||
1279 | if (! (_bfd_generic_link_add_one_symbol | |
1280 | (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg, | |
1281 | false, collect, (struct bfd_link_hash_entry **) NULL))) | |
1282 | goto error_return; | |
1283 | ||
1284 | if (! info->relocateable) | |
1285 | { | |
1286 | /* Clobber the section size so that the warning does | |
1287 | not get copied into the output file. */ | |
1288 | s->_raw_size = 0; | |
1289 | } | |
1290 | } | |
1291 | } | |
1292 | } | |
1293 | ||
1294 | /* If this is a dynamic object, we always link against the .dynsym | |
1295 | symbol table, not the .symtab symbol table. The dynamic linker | |
1296 | will only see the .dynsym symbol table, so there is no reason to | |
1297 | look at .symtab for a dynamic object. */ | |
1298 | ||
1299 | if (! dynamic || elf_dynsymtab (abfd) == 0) | |
9ad5cbcf AM |
1300 | { |
1301 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
1302 | shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; | |
1303 | } | |
252b5132 | 1304 | else |
9ad5cbcf AM |
1305 | { |
1306 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
1307 | shndx_hdr = NULL; | |
1308 | } | |
252b5132 RH |
1309 | |
1310 | if (dynamic) | |
1311 | { | |
1312 | /* Read in any version definitions. */ | |
1313 | ||
1314 | if (! _bfd_elf_slurp_version_tables (abfd)) | |
1315 | goto error_return; | |
1316 | ||
1317 | /* Read in the symbol versions, but don't bother to convert them | |
1318 | to internal format. */ | |
1319 | if (elf_dynversym (abfd) != 0) | |
1320 | { | |
1321 | Elf_Internal_Shdr *versymhdr; | |
1322 | ||
1323 | versymhdr = &elf_tdata (abfd)->dynversym_hdr; | |
6e5222be | 1324 | extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); |
252b5132 RH |
1325 | if (extversym == NULL) |
1326 | goto error_return; | |
dc810e39 | 1327 | amt = versymhdr->sh_size; |
252b5132 | 1328 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 |
dc810e39 | 1329 | || bfd_bread ((PTR) extversym, amt, abfd) != amt) |
252b5132 RH |
1330 | goto error_return; |
1331 | } | |
1332 | } | |
1333 | ||
1334 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
1335 | ||
1336 | /* The sh_info field of the symtab header tells us where the | |
1337 | external symbols start. We don't care about the local symbols at | |
1338 | this point. */ | |
1339 | if (elf_bad_symtab (abfd)) | |
1340 | { | |
1341 | extsymcount = symcount; | |
1342 | extsymoff = 0; | |
1343 | } | |
1344 | else | |
1345 | { | |
1346 | extsymcount = symcount - hdr->sh_info; | |
1347 | extsymoff = hdr->sh_info; | |
1348 | } | |
1349 | ||
dc810e39 AM |
1350 | amt = extsymcount * sizeof (Elf_External_Sym); |
1351 | buf = (Elf_External_Sym *) bfd_malloc (amt); | |
252b5132 RH |
1352 | if (buf == NULL && extsymcount != 0) |
1353 | goto error_return; | |
1354 | ||
9ad5cbcf AM |
1355 | if (shndx_hdr != NULL && shndx_hdr->sh_size != 0) |
1356 | { | |
1357 | amt = extsymcount * sizeof (Elf_External_Sym_Shndx); | |
1358 | shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt); | |
1359 | if (shndx_buf == NULL && extsymcount != 0) | |
1360 | goto error_return; | |
1361 | } | |
1362 | ||
252b5132 RH |
1363 | /* We store a pointer to the hash table entry for each external |
1364 | symbol. */ | |
dc810e39 AM |
1365 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); |
1366 | sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt); | |
252b5132 RH |
1367 | if (sym_hash == NULL) |
1368 | goto error_return; | |
1369 | elf_sym_hashes (abfd) = sym_hash; | |
1370 | ||
74816898 L |
1371 | dt_needed = false; |
1372 | ||
252b5132 RH |
1373 | if (! dynamic) |
1374 | { | |
1375 | /* If we are creating a shared library, create all the dynamic | |
1376 | sections immediately. We need to attach them to something, | |
1377 | so we attach them to this BFD, provided it is the right | |
1378 | format. FIXME: If there are no input BFD's of the same | |
1379 | format as the output, we can't make a shared library. */ | |
1380 | if (info->shared | |
8ea2e4bd NC |
1381 | && is_elf_hash_table (info) |
1382 | && ! hash_table->dynamic_sections_created | |
252b5132 RH |
1383 | && abfd->xvec == info->hash->creator) |
1384 | { | |
1385 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
1386 | goto error_return; | |
1387 | } | |
1388 | } | |
8ea2e4bd NC |
1389 | else if (! is_elf_hash_table (info)) |
1390 | goto error_return; | |
252b5132 RH |
1391 | else |
1392 | { | |
1393 | asection *s; | |
1394 | boolean add_needed; | |
1395 | const char *name; | |
1396 | bfd_size_type oldsize; | |
1397 | bfd_size_type strindex; | |
1398 | ||
1399 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
1400 | object. If the object has a DT_SONAME entry, we use it. | |
1401 | Otherwise, if the generic linker stuck something in | |
1402 | elf_dt_name, we use that. Otherwise, we just use the file | |
1403 | name. If the generic linker put a null string into | |
1404 | elf_dt_name, we don't make a DT_NEEDED entry at all, even if | |
1405 | there is a DT_SONAME entry. */ | |
1406 | add_needed = true; | |
7913c838 | 1407 | name = bfd_get_filename (abfd); |
252b5132 RH |
1408 | if (elf_dt_name (abfd) != NULL) |
1409 | { | |
1410 | name = elf_dt_name (abfd); | |
1411 | if (*name == '\0') | |
74816898 L |
1412 | { |
1413 | if (elf_dt_soname (abfd) != NULL) | |
1414 | dt_needed = true; | |
1415 | ||
1416 | add_needed = false; | |
1417 | } | |
252b5132 RH |
1418 | } |
1419 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
1420 | if (s != NULL) | |
1421 | { | |
1422 | Elf_External_Dyn *extdyn; | |
1423 | Elf_External_Dyn *extdynend; | |
1424 | int elfsec; | |
dc810e39 | 1425 | unsigned long shlink; |
a963dc6a L |
1426 | int rpath; |
1427 | int runpath; | |
252b5132 | 1428 | |
dc810e39 | 1429 | dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size); |
252b5132 RH |
1430 | if (dynbuf == NULL) |
1431 | goto error_return; | |
1432 | ||
1433 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
1434 | (file_ptr) 0, s->_raw_size)) | |
1435 | goto error_return; | |
1436 | ||
1437 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
1438 | if (elfsec == -1) | |
1439 | goto error_return; | |
dc810e39 | 1440 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; |
252b5132 | 1441 | |
20e29382 JL |
1442 | { |
1443 | /* The shared libraries distributed with hpux11 have a bogus | |
1444 | sh_link field for the ".dynamic" section. This code detects | |
dc810e39 AM |
1445 | when SHLINK refers to a section that is not a string table |
1446 | and tries to find the string table for the ".dynsym" section | |
20e29382 | 1447 | instead. */ |
dc810e39 AM |
1448 | Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[shlink]; |
1449 | if (shdr->sh_type != SHT_STRTAB) | |
20e29382 | 1450 | { |
dc810e39 AM |
1451 | asection *ds = bfd_get_section_by_name (abfd, ".dynsym"); |
1452 | int elfdsec = _bfd_elf_section_from_bfd_section (abfd, ds); | |
1453 | if (elfdsec == -1) | |
20e29382 | 1454 | goto error_return; |
dc810e39 | 1455 | shlink = elf_elfsections (abfd)[elfdsec]->sh_link; |
20e29382 JL |
1456 | } |
1457 | } | |
1458 | ||
252b5132 RH |
1459 | extdyn = dynbuf; |
1460 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
a963dc6a L |
1461 | rpath = 0; |
1462 | runpath = 0; | |
252b5132 RH |
1463 | for (; extdyn < extdynend; extdyn++) |
1464 | { | |
1465 | Elf_Internal_Dyn dyn; | |
1466 | ||
1467 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
1468 | if (dyn.d_tag == DT_SONAME) | |
1469 | { | |
dc810e39 AM |
1470 | unsigned int tagv = dyn.d_un.d_val; |
1471 | name = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
252b5132 RH |
1472 | if (name == NULL) |
1473 | goto error_return; | |
1474 | } | |
1475 | if (dyn.d_tag == DT_NEEDED) | |
1476 | { | |
1477 | struct bfd_link_needed_list *n, **pn; | |
1478 | char *fnm, *anm; | |
dc810e39 | 1479 | unsigned int tagv = dyn.d_un.d_val; |
252b5132 | 1480 | |
dc810e39 AM |
1481 | amt = sizeof (struct bfd_link_needed_list); |
1482 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | |
1483 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
252b5132 RH |
1484 | if (n == NULL || fnm == NULL) |
1485 | goto error_return; | |
dc810e39 | 1486 | anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1); |
252b5132 RH |
1487 | if (anm == NULL) |
1488 | goto error_return; | |
1489 | strcpy (anm, fnm); | |
1490 | n->name = anm; | |
1491 | n->by = abfd; | |
1492 | n->next = NULL; | |
8ea2e4bd | 1493 | for (pn = & hash_table->needed; |
252b5132 RH |
1494 | *pn != NULL; |
1495 | pn = &(*pn)->next) | |
1496 | ; | |
1497 | *pn = n; | |
1498 | } | |
a963dc6a L |
1499 | if (dyn.d_tag == DT_RUNPATH) |
1500 | { | |
1501 | struct bfd_link_needed_list *n, **pn; | |
1502 | char *fnm, *anm; | |
dc810e39 | 1503 | unsigned int tagv = dyn.d_un.d_val; |
a963dc6a L |
1504 | |
1505 | /* When we see DT_RPATH before DT_RUNPATH, we have | |
512a2384 AM |
1506 | to clear runpath. Do _NOT_ bfd_release, as that |
1507 | frees all more recently bfd_alloc'd blocks as | |
1508 | well. */ | |
8ea2e4bd NC |
1509 | if (rpath && hash_table->runpath) |
1510 | hash_table->runpath = NULL; | |
a963dc6a | 1511 | |
dc810e39 AM |
1512 | amt = sizeof (struct bfd_link_needed_list); |
1513 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | |
1514 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
a963dc6a L |
1515 | if (n == NULL || fnm == NULL) |
1516 | goto error_return; | |
dc810e39 | 1517 | anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1); |
a963dc6a L |
1518 | if (anm == NULL) |
1519 | goto error_return; | |
1520 | strcpy (anm, fnm); | |
1521 | n->name = anm; | |
1522 | n->by = abfd; | |
1523 | n->next = NULL; | |
8ea2e4bd | 1524 | for (pn = & hash_table->runpath; |
a963dc6a L |
1525 | *pn != NULL; |
1526 | pn = &(*pn)->next) | |
1527 | ; | |
1528 | *pn = n; | |
1529 | runpath = 1; | |
1530 | rpath = 0; | |
1531 | } | |
3e932841 | 1532 | /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ |
a963dc6a L |
1533 | if (!runpath && dyn.d_tag == DT_RPATH) |
1534 | { | |
1535 | struct bfd_link_needed_list *n, **pn; | |
1536 | char *fnm, *anm; | |
dc810e39 | 1537 | unsigned int tagv = dyn.d_un.d_val; |
a963dc6a | 1538 | |
dc810e39 AM |
1539 | amt = sizeof (struct bfd_link_needed_list); |
1540 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | |
1541 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
a963dc6a L |
1542 | if (n == NULL || fnm == NULL) |
1543 | goto error_return; | |
dc810e39 | 1544 | anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1); |
a963dc6a L |
1545 | if (anm == NULL) |
1546 | goto error_return; | |
1547 | strcpy (anm, fnm); | |
1548 | n->name = anm; | |
1549 | n->by = abfd; | |
1550 | n->next = NULL; | |
8ea2e4bd | 1551 | for (pn = & hash_table->runpath; |
a963dc6a L |
1552 | *pn != NULL; |
1553 | pn = &(*pn)->next) | |
1554 | ; | |
1555 | *pn = n; | |
1556 | rpath = 1; | |
1557 | } | |
252b5132 RH |
1558 | } |
1559 | ||
1560 | free (dynbuf); | |
1561 | dynbuf = NULL; | |
1562 | } | |
1563 | ||
1564 | /* We do not want to include any of the sections in a dynamic | |
1565 | object in the output file. We hack by simply clobbering the | |
1566 | list of sections in the BFD. This could be handled more | |
1567 | cleanly by, say, a new section flag; the existing | |
1568 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
1569 | still implies that the section takes up space in the output | |
1570 | file. */ | |
c601ffdb | 1571 | bfd_section_list_clear (abfd); |
252b5132 RH |
1572 | |
1573 | /* If this is the first dynamic object found in the link, create | |
1574 | the special sections required for dynamic linking. */ | |
8ea2e4bd NC |
1575 | if (! hash_table->dynamic_sections_created) |
1576 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
1577 | goto error_return; | |
252b5132 RH |
1578 | |
1579 | if (add_needed) | |
1580 | { | |
1581 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
2b0f7ef9 JJ |
1582 | oldsize = _bfd_elf_strtab_size (hash_table->dynstr); |
1583 | strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false); | |
252b5132 RH |
1584 | if (strindex == (bfd_size_type) -1) |
1585 | goto error_return; | |
1586 | ||
2b0f7ef9 | 1587 | if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr)) |
252b5132 RH |
1588 | { |
1589 | asection *sdyn; | |
1590 | Elf_External_Dyn *dyncon, *dynconend; | |
1591 | ||
1592 | /* The hash table size did not change, which means that | |
1593 | the dynamic object name was already entered. If we | |
1594 | have already included this dynamic object in the | |
1595 | link, just ignore it. There is no reason to include | |
1596 | a particular dynamic object more than once. */ | |
8ea2e4bd | 1597 | sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); |
252b5132 RH |
1598 | BFD_ASSERT (sdyn != NULL); |
1599 | ||
1600 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
1601 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
1602 | sdyn->_raw_size); | |
1603 | for (; dyncon < dynconend; dyncon++) | |
1604 | { | |
1605 | Elf_Internal_Dyn dyn; | |
1606 | ||
8ea2e4bd | 1607 | elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn); |
252b5132 RH |
1608 | if (dyn.d_tag == DT_NEEDED |
1609 | && dyn.d_un.d_val == strindex) | |
1610 | { | |
1611 | if (buf != NULL) | |
1612 | free (buf); | |
1613 | if (extversym != NULL) | |
1614 | free (extversym); | |
2b0f7ef9 | 1615 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); |
252b5132 RH |
1616 | return true; |
1617 | } | |
1618 | } | |
1619 | } | |
1620 | ||
dc810e39 | 1621 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex)) |
252b5132 RH |
1622 | goto error_return; |
1623 | } | |
1624 | ||
1625 | /* Save the SONAME, if there is one, because sometimes the | |
1626 | linker emulation code will need to know it. */ | |
1627 | if (*name == '\0') | |
210ba1e8 | 1628 | name = basename (bfd_get_filename (abfd)); |
252b5132 RH |
1629 | elf_dt_name (abfd) = name; |
1630 | } | |
1631 | ||
dc810e39 AM |
1632 | pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym); |
1633 | amt = extsymcount * sizeof (Elf_External_Sym); | |
1634 | if (bfd_seek (abfd, pos, SEEK_SET) != 0 | |
1635 | || bfd_bread ((PTR) buf, amt, abfd) != amt) | |
252b5132 RH |
1636 | goto error_return; |
1637 | ||
9ad5cbcf AM |
1638 | if (shndx_hdr != NULL && shndx_hdr->sh_size != 0) |
1639 | { | |
1640 | amt = extsymcount * sizeof (Elf_External_Sym_Shndx); | |
1641 | pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx); | |
1642 | if (bfd_seek (abfd, pos, SEEK_SET) != 0 | |
1643 | || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt) | |
1644 | goto error_return; | |
1645 | } | |
1646 | ||
252b5132 RH |
1647 | weaks = NULL; |
1648 | ||
1649 | ever = extversym != NULL ? extversym + extsymoff : NULL; | |
1650 | esymend = buf + extsymcount; | |
9ad5cbcf | 1651 | for (esym = buf, shndx = shndx_buf; |
252b5132 | 1652 | esym < esymend; |
9ad5cbcf AM |
1653 | esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL), |
1654 | shndx = (shndx != NULL ? shndx + 1 : NULL)) | |
252b5132 RH |
1655 | { |
1656 | Elf_Internal_Sym sym; | |
1657 | int bind; | |
1658 | bfd_vma value; | |
1659 | asection *sec; | |
1660 | flagword flags; | |
1661 | const char *name; | |
1662 | struct elf_link_hash_entry *h; | |
1663 | boolean definition; | |
1664 | boolean size_change_ok, type_change_ok; | |
1665 | boolean new_weakdef; | |
1666 | unsigned int old_alignment; | |
215007a6 L |
1667 | boolean override; |
1668 | ||
1669 | override = false; | |
252b5132 | 1670 | |
9ad5cbcf | 1671 | elf_swap_symbol_in (abfd, esym, shndx, &sym); |
252b5132 RH |
1672 | |
1673 | flags = BSF_NO_FLAGS; | |
1674 | sec = NULL; | |
1675 | value = sym.st_value; | |
1676 | *sym_hash = NULL; | |
1677 | ||
1678 | bind = ELF_ST_BIND (sym.st_info); | |
1679 | if (bind == STB_LOCAL) | |
1680 | { | |
1681 | /* This should be impossible, since ELF requires that all | |
1682 | global symbols follow all local symbols, and that sh_info | |
1683 | point to the first global symbol. Unfortunatealy, Irix 5 | |
1684 | screws this up. */ | |
1685 | continue; | |
1686 | } | |
1687 | else if (bind == STB_GLOBAL) | |
1688 | { | |
1689 | if (sym.st_shndx != SHN_UNDEF | |
1690 | && sym.st_shndx != SHN_COMMON) | |
1691 | flags = BSF_GLOBAL; | |
252b5132 RH |
1692 | } |
1693 | else if (bind == STB_WEAK) | |
1694 | flags = BSF_WEAK; | |
1695 | else | |
1696 | { | |
1697 | /* Leave it up to the processor backend. */ | |
1698 | } | |
1699 | ||
1700 | if (sym.st_shndx == SHN_UNDEF) | |
1701 | sec = bfd_und_section_ptr; | |
9ad5cbcf | 1702 | else if (sym.st_shndx < SHN_LORESERVE || sym.st_shndx > SHN_HIRESERVE) |
252b5132 RH |
1703 | { |
1704 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
1705 | if (sec == NULL) | |
1706 | sec = bfd_abs_section_ptr; | |
1707 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) | |
1708 | value -= sec->vma; | |
1709 | } | |
1710 | else if (sym.st_shndx == SHN_ABS) | |
1711 | sec = bfd_abs_section_ptr; | |
1712 | else if (sym.st_shndx == SHN_COMMON) | |
1713 | { | |
1714 | sec = bfd_com_section_ptr; | |
1715 | /* What ELF calls the size we call the value. What ELF | |
1716 | calls the value we call the alignment. */ | |
1717 | value = sym.st_size; | |
1718 | } | |
1719 | else | |
1720 | { | |
1721 | /* Leave it up to the processor backend. */ | |
1722 | } | |
1723 | ||
1724 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
1725 | if (name == (const char *) NULL) | |
1726 | goto error_return; | |
1727 | ||
1728 | if (add_symbol_hook) | |
1729 | { | |
1730 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
1731 | &value)) | |
1732 | goto error_return; | |
1733 | ||
1734 | /* The hook function sets the name to NULL if this symbol | |
1735 | should be skipped for some reason. */ | |
1736 | if (name == (const char *) NULL) | |
1737 | continue; | |
1738 | } | |
1739 | ||
1740 | /* Sanity check that all possibilities were handled. */ | |
1741 | if (sec == (asection *) NULL) | |
1742 | { | |
1743 | bfd_set_error (bfd_error_bad_value); | |
1744 | goto error_return; | |
1745 | } | |
1746 | ||
1747 | if (bfd_is_und_section (sec) | |
1748 | || bfd_is_com_section (sec)) | |
1749 | definition = false; | |
1750 | else | |
1751 | definition = true; | |
1752 | ||
1753 | size_change_ok = false; | |
1754 | type_change_ok = get_elf_backend_data (abfd)->type_change_ok; | |
1755 | old_alignment = 0; | |
1756 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
1757 | { | |
1758 | Elf_Internal_Versym iver; | |
1759 | unsigned int vernum = 0; | |
252b5132 RH |
1760 | |
1761 | if (ever != NULL) | |
1762 | { | |
1763 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |
1764 | vernum = iver.vs_vers & VERSYM_VERSION; | |
1765 | ||
1766 | /* If this is a hidden symbol, or if it is not version | |
1767 | 1, we append the version name to the symbol name. | |
1768 | However, we do not modify a non-hidden absolute | |
1769 | symbol, because it might be the version symbol | |
1770 | itself. FIXME: What if it isn't? */ | |
1771 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 | |
1772 | || (vernum > 1 && ! bfd_is_abs_section (sec))) | |
1773 | { | |
1774 | const char *verstr; | |
dc810e39 AM |
1775 | unsigned int namelen; |
1776 | bfd_size_type newlen; | |
252b5132 RH |
1777 | char *newname, *p; |
1778 | ||
1779 | if (sym.st_shndx != SHN_UNDEF) | |
1780 | { | |
1781 | if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info) | |
1782 | { | |
1783 | (*_bfd_error_handler) | |
1784 | (_("%s: %s: invalid version %u (max %d)"), | |
8f615d07 | 1785 | bfd_archive_filename (abfd), name, vernum, |
252b5132 RH |
1786 | elf_tdata (abfd)->dynverdef_hdr.sh_info); |
1787 | bfd_set_error (bfd_error_bad_value); | |
1788 | goto error_return; | |
1789 | } | |
1790 | else if (vernum > 1) | |
1791 | verstr = | |
1792 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | |
1793 | else | |
1794 | verstr = ""; | |
1795 | } | |
1796 | else | |
1797 | { | |
1798 | /* We cannot simply test for the number of | |
1799 | entries in the VERNEED section since the | |
1800 | numbers for the needed versions do not start | |
1801 | at 0. */ | |
1802 | Elf_Internal_Verneed *t; | |
1803 | ||
1804 | verstr = NULL; | |
1805 | for (t = elf_tdata (abfd)->verref; | |
1806 | t != NULL; | |
1807 | t = t->vn_nextref) | |
1808 | { | |
1809 | Elf_Internal_Vernaux *a; | |
1810 | ||
1811 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
1812 | { | |
1813 | if (a->vna_other == vernum) | |
1814 | { | |
1815 | verstr = a->vna_nodename; | |
1816 | break; | |
1817 | } | |
1818 | } | |
1819 | if (a != NULL) | |
1820 | break; | |
1821 | } | |
1822 | if (verstr == NULL) | |
1823 | { | |
1824 | (*_bfd_error_handler) | |
1825 | (_("%s: %s: invalid needed version %d"), | |
8f615d07 | 1826 | bfd_archive_filename (abfd), name, vernum); |
252b5132 RH |
1827 | bfd_set_error (bfd_error_bad_value); |
1828 | goto error_return; | |
1829 | } | |
1830 | } | |
1831 | ||
1832 | namelen = strlen (name); | |
1833 | newlen = namelen + strlen (verstr) + 2; | |
1834 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0) | |
1835 | ++newlen; | |
1836 | ||
1837 | newname = (char *) bfd_alloc (abfd, newlen); | |
1838 | if (newname == NULL) | |
1839 | goto error_return; | |
1840 | strcpy (newname, name); | |
1841 | p = newname + namelen; | |
1842 | *p++ = ELF_VER_CHR; | |
1287d1cc ILT |
1843 | /* If this is a defined non-hidden version symbol, |
1844 | we add another @ to the name. This indicates the | |
1845 | default version of the symbol. */ | |
1846 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
1847 | && sym.st_shndx != SHN_UNDEF) | |
252b5132 RH |
1848 | *p++ = ELF_VER_CHR; |
1849 | strcpy (p, verstr); | |
1850 | ||
1851 | name = newname; | |
1852 | } | |
1853 | } | |
1854 | ||
1855 | if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value, | |
1856 | sym_hash, &override, &type_change_ok, | |
456981d7 | 1857 | &size_change_ok, dt_needed)) |
252b5132 RH |
1858 | goto error_return; |
1859 | ||
1860 | if (override) | |
1861 | definition = false; | |
1862 | ||
1863 | h = *sym_hash; | |
1864 | while (h->root.type == bfd_link_hash_indirect | |
1865 | || h->root.type == bfd_link_hash_warning) | |
1866 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1867 | ||
1868 | /* Remember the old alignment if this is a common symbol, so | |
1869 | that we don't reduce the alignment later on. We can't | |
1870 | check later, because _bfd_generic_link_add_one_symbol | |
1871 | will set a default for the alignment which we want to | |
1872 | override. */ | |
1873 | if (h->root.type == bfd_link_hash_common) | |
1874 | old_alignment = h->root.u.c.p->alignment_power; | |
1875 | ||
1876 | if (elf_tdata (abfd)->verdef != NULL | |
1877 | && ! override | |
1878 | && vernum > 1 | |
1879 | && definition) | |
1880 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | |
1881 | } | |
1882 | ||
1883 | if (! (_bfd_generic_link_add_one_symbol | |
1884 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
1885 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
1886 | goto error_return; | |
1887 | ||
1888 | h = *sym_hash; | |
1889 | while (h->root.type == bfd_link_hash_indirect | |
1890 | || h->root.type == bfd_link_hash_warning) | |
1891 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1892 | *sym_hash = h; | |
1893 | ||
1894 | new_weakdef = false; | |
1895 | if (dynamic | |
1896 | && definition | |
1897 | && (flags & BSF_WEAK) != 0 | |
1898 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
1899 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
1900 | && h->weakdef == NULL) | |
1901 | { | |
1902 | /* Keep a list of all weak defined non function symbols from | |
1903 | a dynamic object, using the weakdef field. Later in this | |
1904 | function we will set the weakdef field to the correct | |
1905 | value. We only put non-function symbols from dynamic | |
1906 | objects on this list, because that happens to be the only | |
1907 | time we need to know the normal symbol corresponding to a | |
1908 | weak symbol, and the information is time consuming to | |
1909 | figure out. If the weakdef field is not already NULL, | |
1910 | then this symbol was already defined by some previous | |
1911 | dynamic object, and we will be using that previous | |
1912 | definition anyhow. */ | |
1913 | ||
1914 | h->weakdef = weaks; | |
1915 | weaks = h; | |
1916 | new_weakdef = true; | |
1917 | } | |
1918 | ||
1919 | /* Set the alignment of a common symbol. */ | |
1920 | if (sym.st_shndx == SHN_COMMON | |
1921 | && h->root.type == bfd_link_hash_common) | |
1922 | { | |
1923 | unsigned int align; | |
1924 | ||
1925 | align = bfd_log2 (sym.st_value); | |
724982f6 NC |
1926 | if (align > old_alignment |
1927 | /* Permit an alignment power of zero if an alignment of one | |
1928 | is specified and no other alignments have been specified. */ | |
1929 | || (sym.st_value == 1 && old_alignment == 0)) | |
252b5132 RH |
1930 | h->root.u.c.p->alignment_power = align; |
1931 | } | |
1932 | ||
1933 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
1934 | { | |
1935 | int old_flags; | |
1936 | boolean dynsym; | |
1937 | int new_flag; | |
1938 | ||
1939 | /* Remember the symbol size and type. */ | |
1940 | if (sym.st_size != 0 | |
1941 | && (definition || h->size == 0)) | |
1942 | { | |
1943 | if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) | |
1944 | (*_bfd_error_handler) | |
1945 | (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"), | |
1946 | name, (unsigned long) h->size, (unsigned long) sym.st_size, | |
8f615d07 | 1947 | bfd_archive_filename (abfd)); |
252b5132 RH |
1948 | |
1949 | h->size = sym.st_size; | |
1950 | } | |
1951 | ||
1952 | /* If this is a common symbol, then we always want H->SIZE | |
1953 | to be the size of the common symbol. The code just above | |
1954 | won't fix the size if a common symbol becomes larger. We | |
1955 | don't warn about a size change here, because that is | |
1956 | covered by --warn-common. */ | |
1957 | if (h->root.type == bfd_link_hash_common) | |
1958 | h->size = h->root.u.c.size; | |
1959 | ||
1960 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE | |
1961 | && (definition || h->type == STT_NOTYPE)) | |
1962 | { | |
1963 | if (h->type != STT_NOTYPE | |
1964 | && h->type != ELF_ST_TYPE (sym.st_info) | |
1965 | && ! type_change_ok) | |
1966 | (*_bfd_error_handler) | |
1967 | (_("Warning: type of symbol `%s' changed from %d to %d in %s"), | |
1968 | name, h->type, ELF_ST_TYPE (sym.st_info), | |
8f615d07 | 1969 | bfd_archive_filename (abfd)); |
252b5132 RH |
1970 | |
1971 | h->type = ELF_ST_TYPE (sym.st_info); | |
1972 | } | |
1973 | ||
7a13edea NC |
1974 | /* If st_other has a processor-specific meaning, specific code |
1975 | might be needed here. */ | |
1976 | if (sym.st_other != 0) | |
1977 | { | |
1978 | /* Combine visibilities, using the most constraining one. */ | |
1979 | unsigned char hvis = ELF_ST_VISIBILITY (h->other); | |
1980 | unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other); | |
3e932841 | 1981 | |
7a13edea | 1982 | if (symvis && (hvis > symvis || hvis == 0)) |
38048eb9 | 1983 | h->other = sym.st_other; |
3e932841 | 1984 | |
7a13edea NC |
1985 | /* If neither has visibility, use the st_other of the |
1986 | definition. This is an arbitrary choice, since the | |
1987 | other bits have no general meaning. */ | |
1988 | if (!symvis && !hvis | |
1989 | && (definition || h->other == 0)) | |
1990 | h->other = sym.st_other; | |
1991 | } | |
252b5132 RH |
1992 | |
1993 | /* Set a flag in the hash table entry indicating the type of | |
1994 | reference or definition we just found. Keep a count of | |
1995 | the number of dynamic symbols we find. A dynamic symbol | |
1996 | is one which is referenced or defined by both a regular | |
1997 | object and a shared object. */ | |
1998 | old_flags = h->elf_link_hash_flags; | |
1999 | dynsym = false; | |
2000 | if (! dynamic) | |
2001 | { | |
2002 | if (! definition) | |
2003 | { | |
2004 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
2005 | if (bind != STB_WEAK) | |
2006 | new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; | |
2007 | } | |
2008 | else | |
2009 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
2010 | if (info->shared | |
2011 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
2012 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
2013 | dynsym = true; | |
2014 | } | |
2015 | else | |
2016 | { | |
2017 | if (! definition) | |
2018 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
2019 | else | |
2020 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
2021 | if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
2022 | | ELF_LINK_HASH_REF_REGULAR)) != 0 | |
2023 | || (h->weakdef != NULL | |
2024 | && ! new_weakdef | |
2025 | && h->weakdef->dynindx != -1)) | |
2026 | dynsym = true; | |
2027 | } | |
2028 | ||
2029 | h->elf_link_hash_flags |= new_flag; | |
2030 | ||
215007a6 L |
2031 | /* Check to see if we need to add an indirect symbol for |
2032 | the default name. */ | |
051b8577 | 2033 | if (definition || h->root.type == bfd_link_hash_common) |
215007a6 L |
2034 | if (! elf_add_default_symbol (abfd, info, h, name, &sym, |
2035 | &sec, &value, &dynsym, | |
2036 | override, dt_needed)) | |
2037 | goto error_return; | |
252b5132 RH |
2038 | |
2039 | if (dynsym && h->dynindx == -1) | |
2040 | { | |
2041 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2042 | goto error_return; | |
2043 | if (h->weakdef != NULL | |
2044 | && ! new_weakdef | |
2045 | && h->weakdef->dynindx == -1) | |
2046 | { | |
a7b97311 | 2047 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) |
252b5132 RH |
2048 | goto error_return; |
2049 | } | |
2050 | } | |
38048eb9 | 2051 | else if (dynsym && h->dynindx != -1) |
0444bdd4 L |
2052 | /* If the symbol already has a dynamic index, but |
2053 | visibility says it should not be visible, turn it into | |
2054 | a local symbol. */ | |
2055 | switch (ELF_ST_VISIBILITY (h->other)) | |
2056 | { | |
2057 | case STV_INTERNAL: | |
3e932841 | 2058 | case STV_HIDDEN: |
e5094212 | 2059 | (*bed->elf_backend_hide_symbol) (info, h, true); |
0444bdd4 L |
2060 | break; |
2061 | } | |
74816898 L |
2062 | |
2063 | if (dt_needed && definition | |
2064 | && (h->elf_link_hash_flags | |
2065 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
2066 | { | |
2067 | bfd_size_type oldsize; | |
2068 | bfd_size_type strindex; | |
2069 | ||
8ea2e4bd NC |
2070 | if (! is_elf_hash_table (info)) |
2071 | goto error_return; | |
2072 | ||
74816898 L |
2073 | /* The symbol from a DT_NEEDED object is referenced from |
2074 | the regular object to create a dynamic executable. We | |
3e932841 | 2075 | have to make sure there is a DT_NEEDED entry for it. */ |
74816898 L |
2076 | |
2077 | dt_needed = false; | |
2b0f7ef9 JJ |
2078 | oldsize = _bfd_elf_strtab_size (hash_table->dynstr); |
2079 | strindex = _bfd_elf_strtab_add (hash_table->dynstr, | |
2080 | elf_dt_soname (abfd), false); | |
74816898 L |
2081 | if (strindex == (bfd_size_type) -1) |
2082 | goto error_return; | |
2083 | ||
2b0f7ef9 | 2084 | if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr)) |
74816898 L |
2085 | { |
2086 | asection *sdyn; | |
2087 | Elf_External_Dyn *dyncon, *dynconend; | |
2088 | ||
8ea2e4bd | 2089 | sdyn = bfd_get_section_by_name (hash_table->dynobj, |
74816898 L |
2090 | ".dynamic"); |
2091 | BFD_ASSERT (sdyn != NULL); | |
2092 | ||
2093 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
2094 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
2095 | sdyn->_raw_size); | |
2096 | for (; dyncon < dynconend; dyncon++) | |
2097 | { | |
2098 | Elf_Internal_Dyn dyn; | |
2099 | ||
8ea2e4bd | 2100 | elf_swap_dyn_in (hash_table->dynobj, |
74816898 L |
2101 | dyncon, &dyn); |
2102 | BFD_ASSERT (dyn.d_tag != DT_NEEDED || | |
2103 | dyn.d_un.d_val != strindex); | |
2104 | } | |
2105 | } | |
2106 | ||
dc810e39 | 2107 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex)) |
74816898 L |
2108 | goto error_return; |
2109 | } | |
252b5132 RH |
2110 | } |
2111 | } | |
2112 | ||
2113 | /* Now set the weakdefs field correctly for all the weak defined | |
2114 | symbols we found. The only way to do this is to search all the | |
2115 | symbols. Since we only need the information for non functions in | |
2116 | dynamic objects, that's the only time we actually put anything on | |
2117 | the list WEAKS. We need this information so that if a regular | |
2118 | object refers to a symbol defined weakly in a dynamic object, the | |
2119 | real symbol in the dynamic object is also put in the dynamic | |
2120 | symbols; we also must arrange for both symbols to point to the | |
2121 | same memory location. We could handle the general case of symbol | |
2122 | aliasing, but a general symbol alias can only be generated in | |
2123 | assembler code, handling it correctly would be very time | |
2124 | consuming, and other ELF linkers don't handle general aliasing | |
2125 | either. */ | |
2126 | while (weaks != NULL) | |
2127 | { | |
2128 | struct elf_link_hash_entry *hlook; | |
2129 | asection *slook; | |
2130 | bfd_vma vlook; | |
2131 | struct elf_link_hash_entry **hpp; | |
2132 | struct elf_link_hash_entry **hppend; | |
2133 | ||
2134 | hlook = weaks; | |
2135 | weaks = hlook->weakdef; | |
2136 | hlook->weakdef = NULL; | |
2137 | ||
2138 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
2139 | || hlook->root.type == bfd_link_hash_defweak | |
2140 | || hlook->root.type == bfd_link_hash_common | |
2141 | || hlook->root.type == bfd_link_hash_indirect); | |
2142 | slook = hlook->root.u.def.section; | |
2143 | vlook = hlook->root.u.def.value; | |
2144 | ||
2145 | hpp = elf_sym_hashes (abfd); | |
2146 | hppend = hpp + extsymcount; | |
2147 | for (; hpp < hppend; hpp++) | |
2148 | { | |
2149 | struct elf_link_hash_entry *h; | |
2150 | ||
2151 | h = *hpp; | |
2152 | if (h != NULL && h != hlook | |
2153 | && h->root.type == bfd_link_hash_defined | |
2154 | && h->root.u.def.section == slook | |
2155 | && h->root.u.def.value == vlook) | |
2156 | { | |
2157 | hlook->weakdef = h; | |
2158 | ||
2159 | /* If the weak definition is in the list of dynamic | |
2160 | symbols, make sure the real definition is put there | |
2161 | as well. */ | |
2162 | if (hlook->dynindx != -1 | |
2163 | && h->dynindx == -1) | |
2164 | { | |
2165 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2166 | goto error_return; | |
2167 | } | |
2168 | ||
2169 | /* If the real definition is in the list of dynamic | |
2170 | symbols, make sure the weak definition is put there | |
2171 | as well. If we don't do this, then the dynamic | |
2172 | loader might not merge the entries for the real | |
2173 | definition and the weak definition. */ | |
2174 | if (h->dynindx != -1 | |
2175 | && hlook->dynindx == -1) | |
2176 | { | |
2177 | if (! _bfd_elf_link_record_dynamic_symbol (info, hlook)) | |
2178 | goto error_return; | |
2179 | } | |
2180 | ||
2181 | break; | |
2182 | } | |
2183 | } | |
2184 | } | |
2185 | ||
2186 | if (buf != NULL) | |
2187 | { | |
2188 | free (buf); | |
2189 | buf = NULL; | |
2190 | } | |
2191 | ||
2192 | if (extversym != NULL) | |
2193 | { | |
2194 | free (extversym); | |
2195 | extversym = NULL; | |
2196 | } | |
2197 | ||
2198 | /* If this object is the same format as the output object, and it is | |
2199 | not a shared library, then let the backend look through the | |
2200 | relocs. | |
2201 | ||
2202 | This is required to build global offset table entries and to | |
2203 | arrange for dynamic relocs. It is not required for the | |
2204 | particular common case of linking non PIC code, even when linking | |
2205 | against shared libraries, but unfortunately there is no way of | |
2206 | knowing whether an object file has been compiled PIC or not. | |
2207 | Looking through the relocs is not particularly time consuming. | |
2208 | The problem is that we must either (1) keep the relocs in memory, | |
2209 | which causes the linker to require additional runtime memory or | |
2210 | (2) read the relocs twice from the input file, which wastes time. | |
2211 | This would be a good case for using mmap. | |
2212 | ||
2213 | I have no idea how to handle linking PIC code into a file of a | |
2214 | different format. It probably can't be done. */ | |
2215 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
2216 | if (! dynamic | |
2217 | && abfd->xvec == info->hash->creator | |
2218 | && check_relocs != NULL) | |
2219 | { | |
2220 | asection *o; | |
2221 | ||
2222 | for (o = abfd->sections; o != NULL; o = o->next) | |
2223 | { | |
2224 | Elf_Internal_Rela *internal_relocs; | |
2225 | boolean ok; | |
2226 | ||
2227 | if ((o->flags & SEC_RELOC) == 0 | |
2228 | || o->reloc_count == 0 | |
2229 | || ((info->strip == strip_all || info->strip == strip_debugger) | |
2230 | && (o->flags & SEC_DEBUGGING) != 0) | |
2231 | || bfd_is_abs_section (o->output_section)) | |
2232 | continue; | |
2233 | ||
2234 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
2235 | (abfd, o, (PTR) NULL, | |
2236 | (Elf_Internal_Rela *) NULL, | |
2237 | info->keep_memory)); | |
2238 | if (internal_relocs == NULL) | |
2239 | goto error_return; | |
2240 | ||
2241 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
2242 | ||
2243 | if (! info->keep_memory) | |
2244 | free (internal_relocs); | |
2245 | ||
2246 | if (! ok) | |
2247 | goto error_return; | |
2248 | } | |
2249 | } | |
2250 | ||
2251 | /* If this is a non-traditional, non-relocateable link, try to | |
2252 | optimize the handling of the .stab/.stabstr sections. */ | |
2253 | if (! dynamic | |
2254 | && ! info->relocateable | |
2255 | && ! info->traditional_format | |
2256 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
8ea2e4bd | 2257 | && is_elf_hash_table (info) |
252b5132 RH |
2258 | && (info->strip != strip_all && info->strip != strip_debugger)) |
2259 | { | |
2260 | asection *stab, *stabstr; | |
2261 | ||
2262 | stab = bfd_get_section_by_name (abfd, ".stab"); | |
65765700 | 2263 | if (stab != NULL && !(stab->flags & SEC_MERGE)) |
252b5132 RH |
2264 | { |
2265 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
2266 | ||
2267 | if (stabstr != NULL) | |
2268 | { | |
2269 | struct bfd_elf_section_data *secdata; | |
2270 | ||
2271 | secdata = elf_section_data (stab); | |
2272 | if (! _bfd_link_section_stabs (abfd, | |
8ea2e4bd | 2273 | & hash_table->stab_info, |
252b5132 | 2274 | stab, stabstr, |
65765700 | 2275 | &secdata->sec_info)) |
252b5132 | 2276 | goto error_return; |
65765700 JJ |
2277 | if (secdata->sec_info) |
2278 | secdata->sec_info_type = ELF_INFO_TYPE_STABS; | |
252b5132 RH |
2279 | } |
2280 | } | |
2281 | } | |
2282 | ||
8ea2e4bd NC |
2283 | if (! info->relocateable && ! dynamic |
2284 | && is_elf_hash_table (info)) | |
f5fa8ca2 JJ |
2285 | { |
2286 | asection *s; | |
2287 | ||
2288 | for (s = abfd->sections; s != NULL; s = s->next) | |
65765700 JJ |
2289 | if (s->flags & SEC_MERGE) |
2290 | { | |
2291 | struct bfd_elf_section_data *secdata; | |
2292 | ||
2293 | secdata = elf_section_data (s); | |
2294 | if (! _bfd_merge_section (abfd, | |
2295 | & hash_table->merge_info, | |
2296 | s, &secdata->sec_info)) | |
2297 | goto error_return; | |
2298 | else if (secdata->sec_info) | |
2299 | secdata->sec_info_type = ELF_INFO_TYPE_MERGE; | |
2300 | } | |
f5fa8ca2 JJ |
2301 | } |
2302 | ||
252b5132 RH |
2303 | return true; |
2304 | ||
2305 | error_return: | |
2306 | if (buf != NULL) | |
2307 | free (buf); | |
2308 | if (dynbuf != NULL) | |
2309 | free (dynbuf); | |
252b5132 RH |
2310 | if (extversym != NULL) |
2311 | free (extversym); | |
2312 | return false; | |
2313 | } | |
2314 | ||
2315 | /* Create some sections which will be filled in with dynamic linking | |
2316 | information. ABFD is an input file which requires dynamic sections | |
2317 | to be created. The dynamic sections take up virtual memory space | |
2318 | when the final executable is run, so we need to create them before | |
2319 | addresses are assigned to the output sections. We work out the | |
2320 | actual contents and size of these sections later. */ | |
2321 | ||
2322 | boolean | |
2323 | elf_link_create_dynamic_sections (abfd, info) | |
2324 | bfd *abfd; | |
2325 | struct bfd_link_info *info; | |
2326 | { | |
2327 | flagword flags; | |
2328 | register asection *s; | |
2329 | struct elf_link_hash_entry *h; | |
2330 | struct elf_backend_data *bed; | |
2331 | ||
8ea2e4bd NC |
2332 | if (! is_elf_hash_table (info)) |
2333 | return false; | |
2334 | ||
252b5132 RH |
2335 | if (elf_hash_table (info)->dynamic_sections_created) |
2336 | return true; | |
2337 | ||
2338 | /* Make sure that all dynamic sections use the same input BFD. */ | |
2339 | if (elf_hash_table (info)->dynobj == NULL) | |
2340 | elf_hash_table (info)->dynobj = abfd; | |
2341 | else | |
2342 | abfd = elf_hash_table (info)->dynobj; | |
2343 | ||
2344 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
2345 | sections. */ | |
2346 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
2347 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
2348 | ||
2349 | /* A dynamically linked executable has a .interp section, but a | |
2350 | shared library does not. */ | |
2351 | if (! info->shared) | |
2352 | { | |
2353 | s = bfd_make_section (abfd, ".interp"); | |
2354 | if (s == NULL | |
2355 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
2356 | return false; | |
2357 | } | |
2358 | ||
65765700 JJ |
2359 | if (! info->traditional_format |
2360 | && info->hash->creator->flavour == bfd_target_elf_flavour) | |
2361 | { | |
2362 | s = bfd_make_section (abfd, ".eh_frame_hdr"); | |
2363 | if (s == NULL | |
2364 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2365 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
2366 | return false; | |
2367 | } | |
2368 | ||
252b5132 RH |
2369 | /* Create sections to hold version informations. These are removed |
2370 | if they are not needed. */ | |
2371 | s = bfd_make_section (abfd, ".gnu.version_d"); | |
2372 | if (s == NULL | |
2373 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2374 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2375 | return false; | |
2376 | ||
2377 | s = bfd_make_section (abfd, ".gnu.version"); | |
2378 | if (s == NULL | |
2379 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2380 | || ! bfd_set_section_alignment (abfd, s, 1)) | |
2381 | return false; | |
2382 | ||
2383 | s = bfd_make_section (abfd, ".gnu.version_r"); | |
2384 | if (s == NULL | |
2385 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2386 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2387 | return false; | |
2388 | ||
2389 | s = bfd_make_section (abfd, ".dynsym"); | |
2390 | if (s == NULL | |
2391 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2392 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2393 | return false; | |
2394 | ||
2395 | s = bfd_make_section (abfd, ".dynstr"); | |
2396 | if (s == NULL | |
2397 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
2398 | return false; | |
2399 | ||
2400 | /* Create a strtab to hold the dynamic symbol names. */ | |
2401 | if (elf_hash_table (info)->dynstr == NULL) | |
2402 | { | |
2b0f7ef9 | 2403 | elf_hash_table (info)->dynstr = _bfd_elf_strtab_init (); |
252b5132 RH |
2404 | if (elf_hash_table (info)->dynstr == NULL) |
2405 | return false; | |
2406 | } | |
2407 | ||
2408 | s = bfd_make_section (abfd, ".dynamic"); | |
2409 | if (s == NULL | |
2410 | || ! bfd_set_section_flags (abfd, s, flags) | |
2411 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2412 | return false; | |
2413 | ||
2414 | /* The special symbol _DYNAMIC is always set to the start of the | |
2415 | .dynamic section. This call occurs before we have processed the | |
2416 | symbols for any dynamic object, so we don't have to worry about | |
2417 | overriding a dynamic definition. We could set _DYNAMIC in a | |
2418 | linker script, but we only want to define it if we are, in fact, | |
2419 | creating a .dynamic section. We don't want to define it if there | |
2420 | is no .dynamic section, since on some ELF platforms the start up | |
2421 | code examines it to decide how to initialize the process. */ | |
2422 | h = NULL; | |
2423 | if (! (_bfd_generic_link_add_one_symbol | |
2424 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
2425 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
2426 | (struct bfd_link_hash_entry **) &h))) | |
2427 | return false; | |
2428 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2429 | h->type = STT_OBJECT; | |
2430 | ||
2431 | if (info->shared | |
2432 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2433 | return false; | |
2434 | ||
c7ac6ff8 MM |
2435 | bed = get_elf_backend_data (abfd); |
2436 | ||
252b5132 RH |
2437 | s = bfd_make_section (abfd, ".hash"); |
2438 | if (s == NULL | |
2439 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2440 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2441 | return false; | |
c7ac6ff8 | 2442 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; |
252b5132 RH |
2443 | |
2444 | /* Let the backend create the rest of the sections. This lets the | |
2445 | backend set the right flags. The backend will normally create | |
2446 | the .got and .plt sections. */ | |
252b5132 RH |
2447 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
2448 | return false; | |
2449 | ||
2450 | elf_hash_table (info)->dynamic_sections_created = true; | |
2451 | ||
2452 | return true; | |
2453 | } | |
2454 | ||
2455 | /* Add an entry to the .dynamic table. */ | |
2456 | ||
2457 | boolean | |
2458 | elf_add_dynamic_entry (info, tag, val) | |
2459 | struct bfd_link_info *info; | |
2460 | bfd_vma tag; | |
2461 | bfd_vma val; | |
2462 | { | |
2463 | Elf_Internal_Dyn dyn; | |
2464 | bfd *dynobj; | |
2465 | asection *s; | |
dc810e39 | 2466 | bfd_size_type newsize; |
252b5132 RH |
2467 | bfd_byte *newcontents; |
2468 | ||
8ea2e4bd NC |
2469 | if (! is_elf_hash_table (info)) |
2470 | return false; | |
2471 | ||
252b5132 RH |
2472 | dynobj = elf_hash_table (info)->dynobj; |
2473 | ||
2474 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2475 | BFD_ASSERT (s != NULL); | |
2476 | ||
2477 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
2478 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); | |
2479 | if (newcontents == NULL) | |
2480 | return false; | |
2481 | ||
2482 | dyn.d_tag = tag; | |
2483 | dyn.d_un.d_val = val; | |
2484 | elf_swap_dyn_out (dynobj, &dyn, | |
2485 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
2486 | ||
2487 | s->_raw_size = newsize; | |
2488 | s->contents = newcontents; | |
2489 | ||
2490 | return true; | |
2491 | } | |
30b30c21 RH |
2492 | |
2493 | /* Record a new local dynamic symbol. */ | |
2494 | ||
2495 | boolean | |
2496 | elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx) | |
2497 | struct bfd_link_info *info; | |
2498 | bfd *input_bfd; | |
2499 | long input_indx; | |
2500 | { | |
2501 | struct elf_link_local_dynamic_entry *entry; | |
2502 | struct elf_link_hash_table *eht; | |
2b0f7ef9 | 2503 | struct elf_strtab_hash *dynstr; |
30b30c21 | 2504 | Elf_External_Sym esym; |
9ad5cbcf AM |
2505 | Elf_External_Sym_Shndx eshndx; |
2506 | Elf_External_Sym_Shndx *shndx; | |
30b30c21 RH |
2507 | unsigned long dynstr_index; |
2508 | char *name; | |
dc810e39 AM |
2509 | file_ptr pos; |
2510 | bfd_size_type amt; | |
30b30c21 | 2511 | |
8ea2e4bd NC |
2512 | if (! is_elf_hash_table (info)) |
2513 | return false; | |
2514 | ||
30b30c21 RH |
2515 | /* See if the entry exists already. */ |
2516 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
2517 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
2518 | return true; | |
2519 | ||
2520 | entry = (struct elf_link_local_dynamic_entry *) | |
dc810e39 | 2521 | bfd_alloc (input_bfd, (bfd_size_type) sizeof (*entry)); |
30b30c21 RH |
2522 | if (entry == NULL) |
2523 | return false; | |
2524 | ||
2525 | /* Go find the symbol, so that we can find it's name. */ | |
dc810e39 AM |
2526 | amt = sizeof (Elf_External_Sym); |
2527 | pos = elf_tdata (input_bfd)->symtab_hdr.sh_offset + input_indx * amt; | |
2528 | if (bfd_seek (input_bfd, pos, SEEK_SET) != 0 | |
9ad5cbcf | 2529 | || bfd_bread ((PTR) &esym, amt, input_bfd) != amt) |
30b30c21 | 2530 | return false; |
9ad5cbcf AM |
2531 | shndx = NULL; |
2532 | if (elf_tdata (input_bfd)->symtab_shndx_hdr.sh_size != 0) | |
2533 | { | |
2534 | amt = sizeof (Elf_External_Sym_Shndx); | |
2535 | pos = elf_tdata (input_bfd)->symtab_shndx_hdr.sh_offset; | |
2536 | pos += input_indx * amt; | |
2537 | shndx = &eshndx; | |
2538 | if (bfd_seek (input_bfd, pos, SEEK_SET) != 0 | |
2539 | || bfd_bread ((PTR) shndx, amt, input_bfd) != amt) | |
2540 | return false; | |
2541 | } | |
2542 | elf_swap_symbol_in (input_bfd, &esym, shndx, &entry->isym); | |
30b30c21 RH |
2543 | |
2544 | name = (bfd_elf_string_from_elf_section | |
2545 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
2546 | entry->isym.st_name)); | |
2547 | ||
2548 | dynstr = elf_hash_table (info)->dynstr; | |
2549 | if (dynstr == NULL) | |
2550 | { | |
2551 | /* Create a strtab to hold the dynamic symbol names. */ | |
2b0f7ef9 | 2552 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
30b30c21 RH |
2553 | if (dynstr == NULL) |
2554 | return false; | |
2555 | } | |
2556 | ||
2b0f7ef9 | 2557 | dynstr_index = _bfd_elf_strtab_add (dynstr, name, false); |
30b30c21 RH |
2558 | if (dynstr_index == (unsigned long) -1) |
2559 | return false; | |
2560 | entry->isym.st_name = dynstr_index; | |
2561 | ||
2562 | eht = elf_hash_table (info); | |
2563 | ||
2564 | entry->next = eht->dynlocal; | |
2565 | eht->dynlocal = entry; | |
2566 | entry->input_bfd = input_bfd; | |
2567 | entry->input_indx = input_indx; | |
2568 | eht->dynsymcount++; | |
2569 | ||
587ff49e RH |
2570 | /* Whatever binding the symbol had before, it's now local. */ |
2571 | entry->isym.st_info | |
2572 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | |
2573 | ||
30b30c21 RH |
2574 | /* The dynindx will be set at the end of size_dynamic_sections. */ |
2575 | ||
2576 | return true; | |
2577 | } | |
252b5132 | 2578 | \f |
6b5bd373 MM |
2579 | /* Read and swap the relocs from the section indicated by SHDR. This |
2580 | may be either a REL or a RELA section. The relocations are | |
2581 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
2582 | which should have already been allocated to contain enough space. | |
2583 | The EXTERNAL_RELOCS are a buffer where the external form of the | |
2584 | relocations should be stored. | |
2585 | ||
2586 | Returns false if something goes wrong. */ | |
2587 | ||
2588 | static boolean | |
2589 | elf_link_read_relocs_from_section (abfd, shdr, external_relocs, | |
2590 | internal_relocs) | |
2591 | bfd *abfd; | |
2592 | Elf_Internal_Shdr *shdr; | |
2593 | PTR external_relocs; | |
2594 | Elf_Internal_Rela *internal_relocs; | |
2595 | { | |
c7ac6ff8 | 2596 | struct elf_backend_data *bed; |
dc810e39 | 2597 | bfd_size_type amt; |
c7ac6ff8 | 2598 | |
6b5bd373 MM |
2599 | /* If there aren't any relocations, that's OK. */ |
2600 | if (!shdr) | |
2601 | return true; | |
2602 | ||
2603 | /* Position ourselves at the start of the section. */ | |
2604 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
2605 | return false; | |
2606 | ||
2607 | /* Read the relocations. */ | |
dc810e39 | 2608 | if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) |
6b5bd373 MM |
2609 | return false; |
2610 | ||
c7ac6ff8 MM |
2611 | bed = get_elf_backend_data (abfd); |
2612 | ||
6b5bd373 MM |
2613 | /* Convert the external relocations to the internal format. */ |
2614 | if (shdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2615 | { | |
2616 | Elf_External_Rel *erel; | |
2617 | Elf_External_Rel *erelend; | |
2618 | Elf_Internal_Rela *irela; | |
c7ac6ff8 | 2619 | Elf_Internal_Rel *irel; |
6b5bd373 MM |
2620 | |
2621 | erel = (Elf_External_Rel *) external_relocs; | |
d9bc7a44 | 2622 | erelend = erel + NUM_SHDR_ENTRIES (shdr); |
6b5bd373 | 2623 | irela = internal_relocs; |
dc810e39 AM |
2624 | amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel); |
2625 | irel = bfd_alloc (abfd, amt); | |
c7ac6ff8 | 2626 | for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel) |
6b5bd373 | 2627 | { |
4e8a9624 | 2628 | unsigned int i; |
c7ac6ff8 MM |
2629 | |
2630 | if (bed->s->swap_reloc_in) | |
2631 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel); | |
2632 | else | |
2633 | elf_swap_reloc_in (abfd, erel, irel); | |
6b5bd373 | 2634 | |
c7ac6ff8 MM |
2635 | for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i) |
2636 | { | |
2637 | irela[i].r_offset = irel[i].r_offset; | |
2638 | irela[i].r_info = irel[i].r_info; | |
2639 | irela[i].r_addend = 0; | |
2640 | } | |
6b5bd373 MM |
2641 | } |
2642 | } | |
2643 | else | |
2644 | { | |
2645 | Elf_External_Rela *erela; | |
2646 | Elf_External_Rela *erelaend; | |
2647 | Elf_Internal_Rela *irela; | |
2648 | ||
2649 | BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela)); | |
2650 | ||
2651 | erela = (Elf_External_Rela *) external_relocs; | |
d9bc7a44 | 2652 | erelaend = erela + NUM_SHDR_ENTRIES (shdr); |
6b5bd373 | 2653 | irela = internal_relocs; |
c7ac6ff8 MM |
2654 | for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel) |
2655 | { | |
2656 | if (bed->s->swap_reloca_in) | |
2657 | (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela); | |
2658 | else | |
2659 | elf_swap_reloca_in (abfd, erela, irela); | |
2660 | } | |
6b5bd373 MM |
2661 | } |
2662 | ||
2663 | return true; | |
2664 | } | |
2665 | ||
23bc299b MM |
2666 | /* Read and swap the relocs for a section O. They may have been |
2667 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
2668 | not NULL, they are used as buffers to read into. They are known to | |
2669 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
2670 | the return value is allocated using either malloc or bfd_alloc, | |
2671 | according to the KEEP_MEMORY argument. If O has two relocation | |
2672 | sections (both REL and RELA relocations), then the REL_HDR | |
2673 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
2674 | REL_HDR2 relocations. */ | |
252b5132 RH |
2675 | |
2676 | Elf_Internal_Rela * | |
2677 | NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs, | |
2678 | keep_memory) | |
2679 | bfd *abfd; | |
2680 | asection *o; | |
2681 | PTR external_relocs; | |
2682 | Elf_Internal_Rela *internal_relocs; | |
2683 | boolean keep_memory; | |
2684 | { | |
2685 | Elf_Internal_Shdr *rel_hdr; | |
2686 | PTR alloc1 = NULL; | |
2687 | Elf_Internal_Rela *alloc2 = NULL; | |
c7ac6ff8 | 2688 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
252b5132 RH |
2689 | |
2690 | if (elf_section_data (o)->relocs != NULL) | |
2691 | return elf_section_data (o)->relocs; | |
2692 | ||
2693 | if (o->reloc_count == 0) | |
2694 | return NULL; | |
2695 | ||
2696 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
2697 | ||
2698 | if (internal_relocs == NULL) | |
2699 | { | |
dc810e39 | 2700 | bfd_size_type size; |
252b5132 | 2701 | |
dc810e39 AM |
2702 | size = o->reloc_count; |
2703 | size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); | |
252b5132 RH |
2704 | if (keep_memory) |
2705 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
2706 | else | |
2707 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); | |
2708 | if (internal_relocs == NULL) | |
2709 | goto error_return; | |
2710 | } | |
2711 | ||
2712 | if (external_relocs == NULL) | |
2713 | { | |
dc810e39 | 2714 | bfd_size_type size = rel_hdr->sh_size; |
6b5bd373 MM |
2715 | |
2716 | if (elf_section_data (o)->rel_hdr2) | |
dc810e39 | 2717 | size += elf_section_data (o)->rel_hdr2->sh_size; |
6b5bd373 | 2718 | alloc1 = (PTR) bfd_malloc (size); |
252b5132 RH |
2719 | if (alloc1 == NULL) |
2720 | goto error_return; | |
2721 | external_relocs = alloc1; | |
2722 | } | |
2723 | ||
6b5bd373 MM |
2724 | if (!elf_link_read_relocs_from_section (abfd, rel_hdr, |
2725 | external_relocs, | |
2726 | internal_relocs)) | |
2727 | goto error_return; | |
3e932841 KH |
2728 | if (!elf_link_read_relocs_from_section |
2729 | (abfd, | |
6b5bd373 | 2730 | elf_section_data (o)->rel_hdr2, |
2f5116e2 | 2731 | ((bfd_byte *) external_relocs) + rel_hdr->sh_size, |
d9bc7a44 | 2732 | internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr) |
c7ac6ff8 | 2733 | * bed->s->int_rels_per_ext_rel))) |
252b5132 | 2734 | goto error_return; |
252b5132 RH |
2735 | |
2736 | /* Cache the results for next time, if we can. */ | |
2737 | if (keep_memory) | |
2738 | elf_section_data (o)->relocs = internal_relocs; | |
2739 | ||
2740 | if (alloc1 != NULL) | |
2741 | free (alloc1); | |
2742 | ||
2743 | /* Don't free alloc2, since if it was allocated we are passing it | |
2744 | back (under the name of internal_relocs). */ | |
2745 | ||
2746 | return internal_relocs; | |
2747 | ||
2748 | error_return: | |
2749 | if (alloc1 != NULL) | |
2750 | free (alloc1); | |
2751 | if (alloc2 != NULL) | |
2752 | free (alloc2); | |
2753 | return NULL; | |
2754 | } | |
2755 | \f | |
252b5132 RH |
2756 | /* Record an assignment to a symbol made by a linker script. We need |
2757 | this in case some dynamic object refers to this symbol. */ | |
2758 | ||
252b5132 RH |
2759 | boolean |
2760 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) | |
7442e600 | 2761 | bfd *output_bfd ATTRIBUTE_UNUSED; |
252b5132 RH |
2762 | struct bfd_link_info *info; |
2763 | const char *name; | |
2764 | boolean provide; | |
2765 | { | |
2766 | struct elf_link_hash_entry *h; | |
2767 | ||
2768 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
2769 | return true; | |
2770 | ||
2771 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); | |
2772 | if (h == NULL) | |
2773 | return false; | |
2774 | ||
2775 | if (h->root.type == bfd_link_hash_new) | |
a7b97311 | 2776 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
252b5132 RH |
2777 | |
2778 | /* If this symbol is being provided by the linker script, and it is | |
2779 | currently defined by a dynamic object, but not by a regular | |
2780 | object, then mark it as undefined so that the generic linker will | |
2781 | force the correct value. */ | |
2782 | if (provide | |
2783 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2784 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2785 | h->root.type = bfd_link_hash_undefined; | |
2786 | ||
2787 | /* If this symbol is not being provided by the linker script, and it is | |
2788 | currently defined by a dynamic object, but not by a regular object, | |
2789 | then clear out any version information because the symbol will not be | |
2790 | associated with the dynamic object any more. */ | |
2791 | if (!provide | |
2792 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2793 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2794 | h->verinfo.verdef = NULL; | |
2795 | ||
2796 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
994819d2 | 2797 | |
a7b97311 | 2798 | /* When possible, keep the original type of the symbol. */ |
994819d2 NC |
2799 | if (h->type == STT_NOTYPE) |
2800 | h->type = STT_OBJECT; | |
252b5132 RH |
2801 | |
2802 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
2803 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
2804 | || info->shared) | |
2805 | && h->dynindx == -1) | |
2806 | { | |
2807 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2808 | return false; | |
2809 | ||
2810 | /* If this is a weak defined symbol, and we know a corresponding | |
2811 | real symbol from the same dynamic object, make sure the real | |
2812 | symbol is also made into a dynamic symbol. */ | |
2813 | if (h->weakdef != NULL | |
2814 | && h->weakdef->dynindx == -1) | |
2815 | { | |
2816 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
2817 | return false; | |
2818 | } | |
2819 | } | |
2820 | ||
2821 | return true; | |
2822 | } | |
2823 | \f | |
2824 | /* This structure is used to pass information to | |
2825 | elf_link_assign_sym_version. */ | |
2826 | ||
2827 | struct elf_assign_sym_version_info | |
2828 | { | |
2829 | /* Output BFD. */ | |
2830 | bfd *output_bfd; | |
2831 | /* General link information. */ | |
2832 | struct bfd_link_info *info; | |
2833 | /* Version tree. */ | |
2834 | struct bfd_elf_version_tree *verdefs; | |
252b5132 RH |
2835 | /* Whether we had a failure. */ |
2836 | boolean failed; | |
2837 | }; | |
2838 | ||
2839 | /* This structure is used to pass information to | |
2840 | elf_link_find_version_dependencies. */ | |
2841 | ||
2842 | struct elf_find_verdep_info | |
2843 | { | |
2844 | /* Output BFD. */ | |
2845 | bfd *output_bfd; | |
2846 | /* General link information. */ | |
2847 | struct bfd_link_info *info; | |
2848 | /* The number of dependencies. */ | |
2849 | unsigned int vers; | |
2850 | /* Whether we had a failure. */ | |
2851 | boolean failed; | |
2852 | }; | |
2853 | ||
2854 | /* Array used to determine the number of hash table buckets to use | |
2855 | based on the number of symbols there are. If there are fewer than | |
2856 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
2857 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
2858 | than 32771 buckets. */ | |
2859 | ||
2860 | static const size_t elf_buckets[] = | |
2861 | { | |
2862 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |
2863 | 16411, 32771, 0 | |
2864 | }; | |
2865 | ||
2866 | /* Compute bucket count for hashing table. We do not use a static set | |
2867 | of possible tables sizes anymore. Instead we determine for all | |
2868 | possible reasonable sizes of the table the outcome (i.e., the | |
2869 | number of collisions etc) and choose the best solution. The | |
2870 | weighting functions are not too simple to allow the table to grow | |
2871 | without bounds. Instead one of the weighting factors is the size. | |
2872 | Therefore the result is always a good payoff between few collisions | |
2873 | (= short chain lengths) and table size. */ | |
2874 | static size_t | |
2875 | compute_bucket_count (info) | |
2876 | struct bfd_link_info *info; | |
2877 | { | |
2878 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; | |
7442e600 | 2879 | size_t best_size = 0; |
252b5132 RH |
2880 | unsigned long int *hashcodes; |
2881 | unsigned long int *hashcodesp; | |
2882 | unsigned long int i; | |
dc810e39 | 2883 | bfd_size_type amt; |
252b5132 RH |
2884 | |
2885 | /* Compute the hash values for all exported symbols. At the same | |
2886 | time store the values in an array so that we could use them for | |
2887 | optimizations. */ | |
dc810e39 AM |
2888 | amt = dynsymcount; |
2889 | amt *= sizeof (unsigned long int); | |
2890 | hashcodes = (unsigned long int *) bfd_malloc (amt); | |
252b5132 RH |
2891 | if (hashcodes == NULL) |
2892 | return 0; | |
2893 | hashcodesp = hashcodes; | |
2894 | ||
2895 | /* Put all hash values in HASHCODES. */ | |
2896 | elf_link_hash_traverse (elf_hash_table (info), | |
2897 | elf_collect_hash_codes, &hashcodesp); | |
2898 | ||
2899 | /* We have a problem here. The following code to optimize the table | |
2900 | size requires an integer type with more the 32 bits. If | |
2901 | BFD_HOST_U_64_BIT is set we know about such a type. */ | |
2902 | #ifdef BFD_HOST_U_64_BIT | |
2903 | if (info->optimize == true) | |
2904 | { | |
2905 | unsigned long int nsyms = hashcodesp - hashcodes; | |
2906 | size_t minsize; | |
2907 | size_t maxsize; | |
2908 | BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); | |
2909 | unsigned long int *counts ; | |
2910 | ||
2911 | /* Possible optimization parameters: if we have NSYMS symbols we say | |
2912 | that the hashing table must at least have NSYMS/4 and at most | |
2913 | 2*NSYMS buckets. */ | |
2914 | minsize = nsyms / 4; | |
2915 | if (minsize == 0) | |
2916 | minsize = 1; | |
2917 | best_size = maxsize = nsyms * 2; | |
2918 | ||
2919 | /* Create array where we count the collisions in. We must use bfd_malloc | |
2920 | since the size could be large. */ | |
dc810e39 AM |
2921 | amt = maxsize; |
2922 | amt *= sizeof (unsigned long int); | |
2923 | counts = (unsigned long int *) bfd_malloc (amt); | |
252b5132 RH |
2924 | if (counts == NULL) |
2925 | { | |
2926 | free (hashcodes); | |
2927 | return 0; | |
2928 | } | |
2929 | ||
2930 | /* Compute the "optimal" size for the hash table. The criteria is a | |
2931 | minimal chain length. The minor criteria is (of course) the size | |
2932 | of the table. */ | |
2933 | for (i = minsize; i < maxsize; ++i) | |
2934 | { | |
2935 | /* Walk through the array of hashcodes and count the collisions. */ | |
2936 | BFD_HOST_U_64_BIT max; | |
2937 | unsigned long int j; | |
2938 | unsigned long int fact; | |
2939 | ||
2940 | memset (counts, '\0', i * sizeof (unsigned long int)); | |
2941 | ||
2942 | /* Determine how often each hash bucket is used. */ | |
2943 | for (j = 0; j < nsyms; ++j) | |
2944 | ++counts[hashcodes[j] % i]; | |
2945 | ||
2946 | /* For the weight function we need some information about the | |
2947 | pagesize on the target. This is information need not be 100% | |
2948 | accurate. Since this information is not available (so far) we | |
2949 | define it here to a reasonable default value. If it is crucial | |
2950 | to have a better value some day simply define this value. */ | |
2951 | # ifndef BFD_TARGET_PAGESIZE | |
2952 | # define BFD_TARGET_PAGESIZE (4096) | |
2953 | # endif | |
2954 | ||
2955 | /* We in any case need 2 + NSYMS entries for the size values and | |
2956 | the chains. */ | |
2957 | max = (2 + nsyms) * (ARCH_SIZE / 8); | |
2958 | ||
2959 | # if 1 | |
2960 | /* Variant 1: optimize for short chains. We add the squares | |
2961 | of all the chain lengths (which favous many small chain | |
2962 | over a few long chains). */ | |
2963 | for (j = 0; j < i; ++j) | |
2964 | max += counts[j] * counts[j]; | |
2965 | ||
2966 | /* This adds penalties for the overall size of the table. */ | |
2967 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; | |
2968 | max *= fact * fact; | |
2969 | # else | |
2970 | /* Variant 2: Optimize a lot more for small table. Here we | |
2971 | also add squares of the size but we also add penalties for | |
2972 | empty slots (the +1 term). */ | |
2973 | for (j = 0; j < i; ++j) | |
2974 | max += (1 + counts[j]) * (1 + counts[j]); | |
2975 | ||
2976 | /* The overall size of the table is considered, but not as | |
2977 | strong as in variant 1, where it is squared. */ | |
2978 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; | |
2979 | max *= fact; | |
2980 | # endif | |
2981 | ||
2982 | /* Compare with current best results. */ | |
2983 | if (max < best_chlen) | |
2984 | { | |
2985 | best_chlen = max; | |
2986 | best_size = i; | |
2987 | } | |
2988 | } | |
2989 | ||
2990 | free (counts); | |
2991 | } | |
2992 | else | |
2993 | #endif /* defined (BFD_HOST_U_64_BIT) */ | |
2994 | { | |
2995 | /* This is the fallback solution if no 64bit type is available or if we | |
2996 | are not supposed to spend much time on optimizations. We select the | |
2997 | bucket count using a fixed set of numbers. */ | |
2998 | for (i = 0; elf_buckets[i] != 0; i++) | |
2999 | { | |
3000 | best_size = elf_buckets[i]; | |
3001 | if (dynsymcount < elf_buckets[i + 1]) | |
3002 | break; | |
3003 | } | |
3004 | } | |
3005 | ||
3006 | /* Free the arrays we needed. */ | |
3007 | free (hashcodes); | |
3008 | ||
3009 | return best_size; | |
3010 | } | |
3011 | ||
3012 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
3013 | called by the ELF linker emulation before_allocation routine. We | |
3014 | must set the sizes of the sections before the linker sets the | |
3015 | addresses of the various sections. */ | |
3016 | ||
3017 | boolean | |
3018 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, | |
99293407 | 3019 | filter_shlib, |
252b5132 RH |
3020 | auxiliary_filters, info, sinterpptr, |
3021 | verdefs) | |
3022 | bfd *output_bfd; | |
3023 | const char *soname; | |
3024 | const char *rpath; | |
252b5132 RH |
3025 | const char *filter_shlib; |
3026 | const char * const *auxiliary_filters; | |
3027 | struct bfd_link_info *info; | |
3028 | asection **sinterpptr; | |
3029 | struct bfd_elf_version_tree *verdefs; | |
3030 | { | |
3031 | bfd_size_type soname_indx; | |
3032 | bfd *dynobj; | |
3033 | struct elf_backend_data *bed; | |
252b5132 RH |
3034 | struct elf_assign_sym_version_info asvinfo; |
3035 | ||
3036 | *sinterpptr = NULL; | |
3037 | ||
3038 | soname_indx = (bfd_size_type) -1; | |
3039 | ||
3040 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
3041 | return true; | |
3042 | ||
8ea2e4bd NC |
3043 | if (! is_elf_hash_table (info)) |
3044 | return false; | |
3045 | ||
51b64d56 AM |
3046 | /* Any syms created from now on start with -1 in |
3047 | got.refcount/offset and plt.refcount/offset. */ | |
3048 | elf_hash_table (info)->init_refcount = -1; | |
3049 | ||
252b5132 RH |
3050 | /* The backend may have to create some sections regardless of whether |
3051 | we're dynamic or not. */ | |
3052 | bed = get_elf_backend_data (output_bfd); | |
3053 | if (bed->elf_backend_always_size_sections | |
3054 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |
3055 | return false; | |
3056 | ||
3057 | dynobj = elf_hash_table (info)->dynobj; | |
3058 | ||
3059 | /* If there were no dynamic objects in the link, there is nothing to | |
3060 | do here. */ | |
3061 | if (dynobj == NULL) | |
3062 | return true; | |
3063 | ||
68f69152 JJ |
3064 | if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) |
3065 | return false; | |
3066 | ||
252b5132 RH |
3067 | if (elf_hash_table (info)->dynamic_sections_created) |
3068 | { | |
3069 | struct elf_info_failed eif; | |
3070 | struct elf_link_hash_entry *h; | |
fc8c40a0 | 3071 | asection *dynstr; |
252b5132 RH |
3072 | |
3073 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
3074 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
3075 | ||
3076 | if (soname != NULL) | |
3077 | { | |
2b0f7ef9 JJ |
3078 | soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
3079 | soname, true); | |
252b5132 | 3080 | if (soname_indx == (bfd_size_type) -1 |
dc810e39 AM |
3081 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME, |
3082 | soname_indx)) | |
252b5132 RH |
3083 | return false; |
3084 | } | |
3085 | ||
3086 | if (info->symbolic) | |
3087 | { | |
dc810e39 AM |
3088 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC, |
3089 | (bfd_vma) 0)) | |
252b5132 | 3090 | return false; |
d6cf2879 | 3091 | info->flags |= DF_SYMBOLIC; |
252b5132 RH |
3092 | } |
3093 | ||
3094 | if (rpath != NULL) | |
3095 | { | |
3096 | bfd_size_type indx; | |
3097 | ||
2b0f7ef9 JJ |
3098 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, |
3099 | true); | |
3100 | if (info->new_dtags) | |
3101 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx); | |
252b5132 | 3102 | if (indx == (bfd_size_type) -1 |
dc810e39 | 3103 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx) |
c25373b7 | 3104 | || (info->new_dtags |
dc810e39 AM |
3105 | && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH, |
3106 | indx))) | |
252b5132 RH |
3107 | return false; |
3108 | } | |
3109 | ||
3110 | if (filter_shlib != NULL) | |
3111 | { | |
3112 | bfd_size_type indx; | |
3113 | ||
2b0f7ef9 JJ |
3114 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
3115 | filter_shlib, true); | |
252b5132 | 3116 | if (indx == (bfd_size_type) -1 |
dc810e39 | 3117 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx)) |
252b5132 RH |
3118 | return false; |
3119 | } | |
3120 | ||
3121 | if (auxiliary_filters != NULL) | |
3122 | { | |
3123 | const char * const *p; | |
3124 | ||
3125 | for (p = auxiliary_filters; *p != NULL; p++) | |
3126 | { | |
3127 | bfd_size_type indx; | |
3128 | ||
2b0f7ef9 JJ |
3129 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
3130 | *p, true); | |
252b5132 | 3131 | if (indx == (bfd_size_type) -1 |
dc810e39 AM |
3132 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY, |
3133 | indx)) | |
252b5132 RH |
3134 | return false; |
3135 | } | |
3136 | } | |
3137 | ||
391a809a | 3138 | eif.info = info; |
bc2b6df7 | 3139 | eif.verdefs = verdefs; |
391a809a AM |
3140 | eif.failed = false; |
3141 | ||
ea44b734 RH |
3142 | /* If we are supposed to export all symbols into the dynamic symbol |
3143 | table (this is not the normal case), then do so. */ | |
99293407 | 3144 | if (info->export_dynamic) |
ea44b734 | 3145 | { |
ea44b734 RH |
3146 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, |
3147 | (PTR) &eif); | |
3148 | if (eif.failed) | |
3149 | return false; | |
3150 | } | |
3151 | ||
252b5132 RH |
3152 | /* Attach all the symbols to their version information. */ |
3153 | asvinfo.output_bfd = output_bfd; | |
3154 | asvinfo.info = info; | |
3155 | asvinfo.verdefs = verdefs; | |
252b5132 RH |
3156 | asvinfo.failed = false; |
3157 | ||
3158 | elf_link_hash_traverse (elf_hash_table (info), | |
3159 | elf_link_assign_sym_version, | |
3160 | (PTR) &asvinfo); | |
3161 | if (asvinfo.failed) | |
3162 | return false; | |
3163 | ||
3164 | /* Find all symbols which were defined in a dynamic object and make | |
3165 | the backend pick a reasonable value for them. */ | |
252b5132 RH |
3166 | elf_link_hash_traverse (elf_hash_table (info), |
3167 | elf_adjust_dynamic_symbol, | |
3168 | (PTR) &eif); | |
3169 | if (eif.failed) | |
3170 | return false; | |
3171 | ||
3172 | /* Add some entries to the .dynamic section. We fill in some of the | |
3173 | values later, in elf_bfd_final_link, but we must add the entries | |
3174 | now so that we know the final size of the .dynamic section. */ | |
f0c2e336 MM |
3175 | |
3176 | /* If there are initialization and/or finalization functions to | |
3177 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |
3178 | h = (info->init_function | |
3e932841 | 3179 | ? elf_link_hash_lookup (elf_hash_table (info), |
f0c2e336 MM |
3180 | info->init_function, false, |
3181 | false, false) | |
3182 | : NULL); | |
252b5132 RH |
3183 | if (h != NULL |
3184 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
3185 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
3186 | { | |
dc810e39 | 3187 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0)) |
252b5132 RH |
3188 | return false; |
3189 | } | |
f0c2e336 | 3190 | h = (info->fini_function |
3e932841 | 3191 | ? elf_link_hash_lookup (elf_hash_table (info), |
f0c2e336 MM |
3192 | info->fini_function, false, |
3193 | false, false) | |
3194 | : NULL); | |
252b5132 RH |
3195 | if (h != NULL |
3196 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
3197 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
3198 | { | |
dc810e39 | 3199 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0)) |
252b5132 RH |
3200 | return false; |
3201 | } | |
f0c2e336 | 3202 | |
fc8c40a0 AM |
3203 | dynstr = bfd_get_section_by_name (dynobj, ".dynstr"); |
3204 | /* If .dynstr is excluded from the link, we don't want any of | |
3205 | these tags. Strictly, we should be checking each section | |
3206 | individually; This quick check covers for the case where | |
3207 | someone does a /DISCARD/ : { *(*) }. */ | |
3208 | if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) | |
3209 | { | |
3210 | bfd_size_type strsize; | |
3211 | ||
2b0f7ef9 | 3212 | strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
dc810e39 AM |
3213 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0) |
3214 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0) | |
3215 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0) | |
3216 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize) | |
3217 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT, | |
3218 | (bfd_vma) sizeof (Elf_External_Sym))) | |
fc8c40a0 AM |
3219 | return false; |
3220 | } | |
252b5132 RH |
3221 | } |
3222 | ||
3223 | /* The backend must work out the sizes of all the other dynamic | |
3224 | sections. */ | |
252b5132 RH |
3225 | if (bed->elf_backend_size_dynamic_sections |
3226 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
3227 | return false; | |
3228 | ||
3229 | if (elf_hash_table (info)->dynamic_sections_created) | |
3230 | { | |
dc810e39 | 3231 | bfd_size_type dynsymcount; |
252b5132 RH |
3232 | asection *s; |
3233 | size_t bucketcount = 0; | |
c7ac6ff8 | 3234 | size_t hash_entry_size; |
db6751f2 | 3235 | unsigned int dtagcount; |
252b5132 RH |
3236 | |
3237 | /* Set up the version definition section. */ | |
3238 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
3239 | BFD_ASSERT (s != NULL); | |
3240 | ||
3241 | /* We may have created additional version definitions if we are | |
3242 | just linking a regular application. */ | |
3243 | verdefs = asvinfo.verdefs; | |
3244 | ||
6b9b879a JJ |
3245 | /* Skip anonymous version tag. */ |
3246 | if (verdefs != NULL && verdefs->vernum == 0) | |
3247 | verdefs = verdefs->next; | |
3248 | ||
252b5132 | 3249 | if (verdefs == NULL) |
7f8d5fc9 | 3250 | _bfd_strip_section_from_output (info, s); |
252b5132 RH |
3251 | else |
3252 | { | |
3253 | unsigned int cdefs; | |
3254 | bfd_size_type size; | |
3255 | struct bfd_elf_version_tree *t; | |
3256 | bfd_byte *p; | |
3257 | Elf_Internal_Verdef def; | |
3258 | Elf_Internal_Verdaux defaux; | |
3259 | ||
252b5132 RH |
3260 | cdefs = 0; |
3261 | size = 0; | |
3262 | ||
3263 | /* Make space for the base version. */ | |
3264 | size += sizeof (Elf_External_Verdef); | |
3265 | size += sizeof (Elf_External_Verdaux); | |
3266 | ++cdefs; | |
3267 | ||
3268 | for (t = verdefs; t != NULL; t = t->next) | |
3269 | { | |
3270 | struct bfd_elf_version_deps *n; | |
3271 | ||
3272 | size += sizeof (Elf_External_Verdef); | |
3273 | size += sizeof (Elf_External_Verdaux); | |
3274 | ++cdefs; | |
3275 | ||
3276 | for (n = t->deps; n != NULL; n = n->next) | |
3277 | size += sizeof (Elf_External_Verdaux); | |
3278 | } | |
3279 | ||
3280 | s->_raw_size = size; | |
3281 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
3282 | if (s->contents == NULL && s->_raw_size != 0) | |
3283 | return false; | |
3284 | ||
3285 | /* Fill in the version definition section. */ | |
3286 | ||
3287 | p = s->contents; | |
3288 | ||
3289 | def.vd_version = VER_DEF_CURRENT; | |
3290 | def.vd_flags = VER_FLG_BASE; | |
3291 | def.vd_ndx = 1; | |
3292 | def.vd_cnt = 1; | |
3293 | def.vd_aux = sizeof (Elf_External_Verdef); | |
3294 | def.vd_next = (sizeof (Elf_External_Verdef) | |
3295 | + sizeof (Elf_External_Verdaux)); | |
3296 | ||
3297 | if (soname_indx != (bfd_size_type) -1) | |
3298 | { | |
2b0f7ef9 JJ |
3299 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, |
3300 | soname_indx); | |
3a99b017 | 3301 | def.vd_hash = bfd_elf_hash (soname); |
252b5132 RH |
3302 | defaux.vda_name = soname_indx; |
3303 | } | |
3304 | else | |
3305 | { | |
3306 | const char *name; | |
3307 | bfd_size_type indx; | |
3308 | ||
96fd004e | 3309 | name = basename (output_bfd->filename); |
3a99b017 | 3310 | def.vd_hash = bfd_elf_hash (name); |
2b0f7ef9 JJ |
3311 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
3312 | name, false); | |
252b5132 RH |
3313 | if (indx == (bfd_size_type) -1) |
3314 | return false; | |
3315 | defaux.vda_name = indx; | |
3316 | } | |
3317 | defaux.vda_next = 0; | |
3318 | ||
3319 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
a7b97311 | 3320 | (Elf_External_Verdef *) p); |
252b5132 RH |
3321 | p += sizeof (Elf_External_Verdef); |
3322 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
3323 | (Elf_External_Verdaux *) p); | |
3324 | p += sizeof (Elf_External_Verdaux); | |
3325 | ||
3326 | for (t = verdefs; t != NULL; t = t->next) | |
3327 | { | |
3328 | unsigned int cdeps; | |
3329 | struct bfd_elf_version_deps *n; | |
3330 | struct elf_link_hash_entry *h; | |
3331 | ||
3332 | cdeps = 0; | |
3333 | for (n = t->deps; n != NULL; n = n->next) | |
3334 | ++cdeps; | |
3335 | ||
3336 | /* Add a symbol representing this version. */ | |
3337 | h = NULL; | |
3338 | if (! (_bfd_generic_link_add_one_symbol | |
3339 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | |
3340 | (bfd_vma) 0, (const char *) NULL, false, | |
3341 | get_elf_backend_data (dynobj)->collect, | |
3342 | (struct bfd_link_hash_entry **) &h))) | |
3343 | return false; | |
3344 | h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF; | |
3345 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3346 | h->type = STT_OBJECT; | |
3347 | h->verinfo.vertree = t; | |
3348 | ||
3349 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
3350 | return false; | |
3351 | ||
3352 | def.vd_version = VER_DEF_CURRENT; | |
3353 | def.vd_flags = 0; | |
3354 | if (t->globals == NULL && t->locals == NULL && ! t->used) | |
3355 | def.vd_flags |= VER_FLG_WEAK; | |
3356 | def.vd_ndx = t->vernum + 1; | |
3357 | def.vd_cnt = cdeps + 1; | |
3a99b017 | 3358 | def.vd_hash = bfd_elf_hash (t->name); |
252b5132 RH |
3359 | def.vd_aux = sizeof (Elf_External_Verdef); |
3360 | if (t->next != NULL) | |
3361 | def.vd_next = (sizeof (Elf_External_Verdef) | |
3362 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |
3363 | else | |
3364 | def.vd_next = 0; | |
3365 | ||
3366 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
3367 | (Elf_External_Verdef *) p); | |
3368 | p += sizeof (Elf_External_Verdef); | |
3369 | ||
3370 | defaux.vda_name = h->dynstr_index; | |
2b0f7ef9 JJ |
3371 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, |
3372 | h->dynstr_index); | |
252b5132 RH |
3373 | if (t->deps == NULL) |
3374 | defaux.vda_next = 0; | |
3375 | else | |
3376 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
3377 | t->name_indx = defaux.vda_name; | |
3378 | ||
3379 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
3380 | (Elf_External_Verdaux *) p); | |
3381 | p += sizeof (Elf_External_Verdaux); | |
3382 | ||
3383 | for (n = t->deps; n != NULL; n = n->next) | |
3384 | { | |
3385 | if (n->version_needed == NULL) | |
3386 | { | |
3387 | /* This can happen if there was an error in the | |
3388 | version script. */ | |
3389 | defaux.vda_name = 0; | |
3390 | } | |
3391 | else | |
2b0f7ef9 JJ |
3392 | { |
3393 | defaux.vda_name = n->version_needed->name_indx; | |
3394 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
3395 | defaux.vda_name); | |
3396 | } | |
252b5132 RH |
3397 | if (n->next == NULL) |
3398 | defaux.vda_next = 0; | |
3399 | else | |
3400 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
3401 | ||
3402 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
3403 | (Elf_External_Verdaux *) p); | |
3404 | p += sizeof (Elf_External_Verdaux); | |
3405 | } | |
3406 | } | |
3407 | ||
dc810e39 AM |
3408 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0) |
3409 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM, | |
3410 | (bfd_vma) cdefs)) | |
252b5132 RH |
3411 | return false; |
3412 | ||
3413 | elf_tdata (output_bfd)->cverdefs = cdefs; | |
3414 | } | |
3415 | ||
c25373b7 | 3416 | if (info->new_dtags && info->flags) |
d6cf2879 | 3417 | { |
dc810e39 | 3418 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags)) |
d6cf2879 L |
3419 | return false; |
3420 | } | |
3421 | ||
4d538889 | 3422 | if (info->flags_1) |
d6cf2879 L |
3423 | { |
3424 | if (! info->shared) | |
3425 | info->flags_1 &= ~ (DF_1_INITFIRST | |
3426 | | DF_1_NODELETE | |
3427 | | DF_1_NOOPEN); | |
dc810e39 AM |
3428 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1, |
3429 | info->flags_1)) | |
d6cf2879 L |
3430 | return false; |
3431 | } | |
3432 | ||
252b5132 RH |
3433 | /* Work out the size of the version reference section. */ |
3434 | ||
3435 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
3436 | BFD_ASSERT (s != NULL); | |
3437 | { | |
3438 | struct elf_find_verdep_info sinfo; | |
3439 | ||
3440 | sinfo.output_bfd = output_bfd; | |
3441 | sinfo.info = info; | |
3442 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; | |
3443 | if (sinfo.vers == 0) | |
3444 | sinfo.vers = 1; | |
3445 | sinfo.failed = false; | |
3446 | ||
3447 | elf_link_hash_traverse (elf_hash_table (info), | |
3448 | elf_link_find_version_dependencies, | |
3449 | (PTR) &sinfo); | |
3450 | ||
3451 | if (elf_tdata (output_bfd)->verref == NULL) | |
7f8d5fc9 | 3452 | _bfd_strip_section_from_output (info, s); |
252b5132 RH |
3453 | else |
3454 | { | |
3455 | Elf_Internal_Verneed *t; | |
3456 | unsigned int size; | |
3457 | unsigned int crefs; | |
3458 | bfd_byte *p; | |
3459 | ||
3460 | /* Build the version definition section. */ | |
3461 | size = 0; | |
3462 | crefs = 0; | |
3463 | for (t = elf_tdata (output_bfd)->verref; | |
3464 | t != NULL; | |
3465 | t = t->vn_nextref) | |
3466 | { | |
3467 | Elf_Internal_Vernaux *a; | |
3468 | ||
3469 | size += sizeof (Elf_External_Verneed); | |
3470 | ++crefs; | |
3471 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3472 | size += sizeof (Elf_External_Vernaux); | |
3473 | } | |
3474 | ||
3475 | s->_raw_size = size; | |
dc810e39 | 3476 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); |
252b5132 RH |
3477 | if (s->contents == NULL) |
3478 | return false; | |
3479 | ||
3480 | p = s->contents; | |
3481 | for (t = elf_tdata (output_bfd)->verref; | |
3482 | t != NULL; | |
3483 | t = t->vn_nextref) | |
3484 | { | |
3485 | unsigned int caux; | |
3486 | Elf_Internal_Vernaux *a; | |
3487 | bfd_size_type indx; | |
3488 | ||
3489 | caux = 0; | |
3490 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3491 | ++caux; | |
3492 | ||
3493 | t->vn_version = VER_NEED_CURRENT; | |
3494 | t->vn_cnt = caux; | |
2b0f7ef9 JJ |
3495 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
3496 | elf_dt_name (t->vn_bfd) != NULL | |
3497 | ? elf_dt_name (t->vn_bfd) | |
3498 | : basename (t->vn_bfd->filename), | |
3499 | false); | |
252b5132 RH |
3500 | if (indx == (bfd_size_type) -1) |
3501 | return false; | |
3502 | t->vn_file = indx; | |
3503 | t->vn_aux = sizeof (Elf_External_Verneed); | |
3504 | if (t->vn_nextref == NULL) | |
3505 | t->vn_next = 0; | |
3506 | else | |
3507 | t->vn_next = (sizeof (Elf_External_Verneed) | |
3508 | + caux * sizeof (Elf_External_Vernaux)); | |
3509 | ||
3510 | _bfd_elf_swap_verneed_out (output_bfd, t, | |
3511 | (Elf_External_Verneed *) p); | |
3512 | p += sizeof (Elf_External_Verneed); | |
3513 | ||
3514 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3515 | { | |
3a99b017 | 3516 | a->vna_hash = bfd_elf_hash (a->vna_nodename); |
2b0f7ef9 JJ |
3517 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
3518 | a->vna_nodename, false); | |
252b5132 RH |
3519 | if (indx == (bfd_size_type) -1) |
3520 | return false; | |
3521 | a->vna_name = indx; | |
3522 | if (a->vna_nextptr == NULL) | |
3523 | a->vna_next = 0; | |
3524 | else | |
3525 | a->vna_next = sizeof (Elf_External_Vernaux); | |
3526 | ||
3527 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |
3528 | (Elf_External_Vernaux *) p); | |
3529 | p += sizeof (Elf_External_Vernaux); | |
3530 | } | |
3531 | } | |
3532 | ||
dc810e39 AM |
3533 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED, |
3534 | (bfd_vma) 0) | |
3535 | || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM, | |
3536 | (bfd_vma) crefs)) | |
252b5132 RH |
3537 | return false; |
3538 | ||
3539 | elf_tdata (output_bfd)->cverrefs = crefs; | |
3540 | } | |
3541 | } | |
3542 | ||
3e932841 | 3543 | /* Assign dynsym indicies. In a shared library we generate a |
30b30c21 RH |
3544 | section symbol for each output section, which come first. |
3545 | Next come all of the back-end allocated local dynamic syms, | |
3546 | followed by the rest of the global symbols. */ | |
3547 | ||
3548 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); | |
252b5132 RH |
3549 | |
3550 | /* Work out the size of the symbol version section. */ | |
3551 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
3552 | BFD_ASSERT (s != NULL); | |
3553 | if (dynsymcount == 0 | |
3554 | || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL)) | |
3555 | { | |
7f8d5fc9 | 3556 | _bfd_strip_section_from_output (info, s); |
42751cf3 MM |
3557 | /* The DYNSYMCOUNT might have changed if we were going to |
3558 | output a dynamic symbol table entry for S. */ | |
30b30c21 | 3559 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); |
252b5132 RH |
3560 | } |
3561 | else | |
3562 | { | |
3563 | s->_raw_size = dynsymcount * sizeof (Elf_External_Versym); | |
3564 | s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size); | |
3565 | if (s->contents == NULL) | |
3566 | return false; | |
3567 | ||
dc810e39 | 3568 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0)) |
252b5132 RH |
3569 | return false; |
3570 | } | |
3571 | ||
3572 | /* Set the size of the .dynsym and .hash sections. We counted | |
3573 | the number of dynamic symbols in elf_link_add_object_symbols. | |
3574 | We will build the contents of .dynsym and .hash when we build | |
3575 | the final symbol table, because until then we do not know the | |
3576 | correct value to give the symbols. We built the .dynstr | |
3577 | section as we went along in elf_link_add_object_symbols. */ | |
3578 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
3579 | BFD_ASSERT (s != NULL); | |
3580 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
3581 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
3582 | if (s->contents == NULL && s->_raw_size != 0) | |
3583 | return false; | |
3584 | ||
fc8c40a0 AM |
3585 | if (dynsymcount != 0) |
3586 | { | |
3587 | Elf_Internal_Sym isym; | |
3588 | ||
3589 | /* The first entry in .dynsym is a dummy symbol. */ | |
3590 | isym.st_value = 0; | |
3591 | isym.st_size = 0; | |
3592 | isym.st_name = 0; | |
3593 | isym.st_info = 0; | |
3594 | isym.st_other = 0; | |
3595 | isym.st_shndx = 0; | |
9ad5cbcf | 3596 | elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0); |
fc8c40a0 | 3597 | } |
252b5132 RH |
3598 | |
3599 | /* Compute the size of the hashing table. As a side effect this | |
3600 | computes the hash values for all the names we export. */ | |
3601 | bucketcount = compute_bucket_count (info); | |
3602 | ||
3603 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
3604 | BFD_ASSERT (s != NULL); | |
c7ac6ff8 MM |
3605 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; |
3606 | s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |
252b5132 RH |
3607 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); |
3608 | if (s->contents == NULL) | |
3609 | return false; | |
3610 | memset (s->contents, 0, (size_t) s->_raw_size); | |
3611 | ||
dc810e39 AM |
3612 | bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount, |
3613 | s->contents); | |
3614 | bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount, | |
c7ac6ff8 | 3615 | s->contents + hash_entry_size); |
252b5132 RH |
3616 | |
3617 | elf_hash_table (info)->bucketcount = bucketcount; | |
3618 | ||
3619 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
3620 | BFD_ASSERT (s != NULL); | |
2b0f7ef9 JJ |
3621 | |
3622 | elf_finalize_dynstr (output_bfd, info); | |
3623 | ||
3624 | s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
252b5132 | 3625 | |
db6751f2 | 3626 | for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) |
dc810e39 | 3627 | if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0)) |
db6751f2 | 3628 | return false; |
252b5132 RH |
3629 | } |
3630 | ||
3631 | return true; | |
3632 | } | |
3633 | \f | |
2b0f7ef9 JJ |
3634 | /* This function is used to adjust offsets into .dynstr for |
3635 | dynamic symbols. This is called via elf_link_hash_traverse. */ | |
3636 | ||
3637 | static boolean elf_adjust_dynstr_offsets | |
3638 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
3639 | ||
3640 | static boolean | |
3641 | elf_adjust_dynstr_offsets (h, data) | |
3642 | struct elf_link_hash_entry *h; | |
3643 | PTR data; | |
3644 | { | |
3645 | struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; | |
3646 | ||
3647 | if (h->dynindx != -1) | |
3648 | h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); | |
3649 | return true; | |
3650 | } | |
3651 | ||
3652 | /* Assign string offsets in .dynstr, update all structures referencing | |
3653 | them. */ | |
3654 | ||
3655 | static boolean | |
3656 | elf_finalize_dynstr (output_bfd, info) | |
3657 | bfd *output_bfd; | |
3658 | struct bfd_link_info *info; | |
3659 | { | |
3660 | struct elf_link_local_dynamic_entry *entry; | |
3661 | struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr; | |
3662 | bfd *dynobj = elf_hash_table (info)->dynobj; | |
3663 | asection *sdyn; | |
3664 | bfd_size_type size; | |
3665 | Elf_External_Dyn *dyncon, *dynconend; | |
3666 | ||
3667 | _bfd_elf_strtab_finalize (dynstr); | |
3668 | size = _bfd_elf_strtab_size (dynstr); | |
3669 | ||
3670 | /* Update all .dynamic entries referencing .dynstr strings. */ | |
3671 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
3672 | BFD_ASSERT (sdyn != NULL); | |
3673 | ||
3674 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
3675 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
3676 | sdyn->_raw_size); | |
3677 | for (; dyncon < dynconend; dyncon++) | |
3678 | { | |
3679 | Elf_Internal_Dyn dyn; | |
3680 | ||
3681 | elf_swap_dyn_in (dynobj, dyncon, & dyn); | |
3682 | switch (dyn.d_tag) | |
3683 | { | |
3684 | case DT_STRSZ: | |
3685 | dyn.d_un.d_val = size; | |
3686 | elf_swap_dyn_out (dynobj, & dyn, dyncon); | |
3687 | break; | |
3688 | case DT_NEEDED: | |
3689 | case DT_SONAME: | |
3690 | case DT_RPATH: | |
3691 | case DT_RUNPATH: | |
3692 | case DT_FILTER: | |
3693 | case DT_AUXILIARY: | |
3694 | dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); | |
3695 | elf_swap_dyn_out (dynobj, & dyn, dyncon); | |
3696 | break; | |
3697 | default: | |
3698 | break; | |
3699 | } | |
3700 | } | |
3701 | ||
3702 | /* Now update local dynamic symbols. */ | |
3703 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
3704 | entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, | |
3705 | entry->isym.st_name); | |
3706 | ||
3707 | /* And the rest of dynamic symbols. */ | |
3708 | elf_link_hash_traverse (elf_hash_table (info), | |
3709 | elf_adjust_dynstr_offsets, dynstr); | |
3710 | ||
3711 | /* Adjust version definitions. */ | |
3712 | if (elf_tdata (output_bfd)->cverdefs) | |
3713 | { | |
3714 | asection *s; | |
3715 | bfd_byte *p; | |
3716 | bfd_size_type i; | |
3717 | Elf_Internal_Verdef def; | |
3718 | Elf_Internal_Verdaux defaux; | |
3719 | ||
3720 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
3721 | p = (bfd_byte *) s->contents; | |
3722 | do | |
3723 | { | |
3724 | _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, | |
3725 | &def); | |
3726 | p += sizeof (Elf_External_Verdef); | |
3727 | for (i = 0; i < def.vd_cnt; ++i) | |
3728 | { | |
3729 | _bfd_elf_swap_verdaux_in (output_bfd, | |
3730 | (Elf_External_Verdaux *) p, &defaux); | |
3731 | defaux.vda_name = _bfd_elf_strtab_offset (dynstr, | |
3732 | defaux.vda_name); | |
3733 | _bfd_elf_swap_verdaux_out (output_bfd, | |
3734 | &defaux, (Elf_External_Verdaux *) p); | |
3735 | p += sizeof (Elf_External_Verdaux); | |
3736 | } | |
3737 | } | |
3738 | while (def.vd_next); | |
3739 | } | |
3740 | ||
3741 | /* Adjust version references. */ | |
3742 | if (elf_tdata (output_bfd)->verref) | |
3743 | { | |
3744 | asection *s; | |
3745 | bfd_byte *p; | |
3746 | bfd_size_type i; | |
3747 | Elf_Internal_Verneed need; | |
3748 | Elf_Internal_Vernaux needaux; | |
3749 | ||
3750 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
3751 | p = (bfd_byte *) s->contents; | |
3752 | do | |
3753 | { | |
3754 | _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, | |
3755 | &need); | |
3756 | need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); | |
3757 | _bfd_elf_swap_verneed_out (output_bfd, &need, | |
3758 | (Elf_External_Verneed *) p); | |
3759 | p += sizeof (Elf_External_Verneed); | |
3760 | for (i = 0; i < need.vn_cnt; ++i) | |
3761 | { | |
3762 | _bfd_elf_swap_vernaux_in (output_bfd, | |
3763 | (Elf_External_Vernaux *) p, &needaux); | |
3764 | needaux.vna_name = _bfd_elf_strtab_offset (dynstr, | |
3765 | needaux.vna_name); | |
3766 | _bfd_elf_swap_vernaux_out (output_bfd, | |
3767 | &needaux, | |
3768 | (Elf_External_Vernaux *) p); | |
3769 | p += sizeof (Elf_External_Vernaux); | |
3770 | } | |
3771 | } | |
3772 | while (need.vn_next); | |
3773 | } | |
3774 | ||
3775 | return true; | |
3776 | } | |
3777 | ||
252b5132 RH |
3778 | /* Fix up the flags for a symbol. This handles various cases which |
3779 | can only be fixed after all the input files are seen. This is | |
3780 | currently called by both adjust_dynamic_symbol and | |
3781 | assign_sym_version, which is unnecessary but perhaps more robust in | |
3782 | the face of future changes. */ | |
3783 | ||
3784 | static boolean | |
3785 | elf_fix_symbol_flags (h, eif) | |
3786 | struct elf_link_hash_entry *h; | |
3787 | struct elf_info_failed *eif; | |
3788 | { | |
3789 | /* If this symbol was mentioned in a non-ELF file, try to set | |
3790 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
3791 | permit a non-ELF file to correctly refer to a symbol defined in | |
3792 | an ELF dynamic object. */ | |
3793 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) | |
3794 | { | |
94b6c40a L |
3795 | while (h->root.type == bfd_link_hash_indirect) |
3796 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3797 | ||
252b5132 RH |
3798 | if (h->root.type != bfd_link_hash_defined |
3799 | && h->root.type != bfd_link_hash_defweak) | |
3800 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
3801 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
3802 | else | |
3803 | { | |
3804 | if (h->root.u.def.section->owner != NULL | |
3805 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
3806 | == bfd_target_elf_flavour)) | |
3807 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
3808 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
3809 | else | |
3810 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3811 | } | |
3812 | ||
3813 | if (h->dynindx == -1 | |
3814 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
3815 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
3816 | { | |
3817 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3818 | { | |
3819 | eif->failed = true; | |
3820 | return false; | |
3821 | } | |
3822 | } | |
3823 | } | |
3824 | else | |
3825 | { | |
3826 | /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol | |
3827 | was first seen in a non-ELF file. Fortunately, if the symbol | |
3828 | was first seen in an ELF file, we're probably OK unless the | |
3829 | symbol was defined in a non-ELF file. Catch that case here. | |
3830 | FIXME: We're still in trouble if the symbol was first seen in | |
3831 | a dynamic object, and then later in a non-ELF regular object. */ | |
3832 | if ((h->root.type == bfd_link_hash_defined | |
3833 | || h->root.type == bfd_link_hash_defweak) | |
3834 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
3835 | && (h->root.u.def.section->owner != NULL | |
3836 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
3837 | != bfd_target_elf_flavour) | |
3838 | : (bfd_is_abs_section (h->root.u.def.section) | |
3839 | && (h->elf_link_hash_flags | |
3840 | & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) | |
3841 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3842 | } | |
3843 | ||
3844 | /* If this is a final link, and the symbol was defined as a common | |
3845 | symbol in a regular object file, and there was no definition in | |
3846 | any dynamic object, then the linker will have allocated space for | |
3847 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR | |
3848 | flag will not have been set. */ | |
3849 | if (h->root.type == bfd_link_hash_defined | |
3850 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
3851 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
3852 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3853 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
3854 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3855 | ||
3856 | /* If -Bsymbolic was used (which means to bind references to global | |
3857 | symbols to the definition within the shared object), and this | |
3858 | symbol was defined in a regular object, then it actually doesn't | |
d954b040 HPN |
3859 | need a PLT entry, and we can accomplish that by forcing it local. |
3860 | Likewise, if the symbol has hidden or internal visibility. | |
3861 | FIXME: It might be that we also do not need a PLT for other | |
3862 | non-hidden visibilities, but we would have to tell that to the | |
3863 | backend specifically; we can't just clear PLT-related data here. */ | |
252b5132 RH |
3864 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 |
3865 | && eif->info->shared | |
8ea2e4bd | 3866 | && is_elf_hash_table (eif->info) |
d954b040 HPN |
3867 | && (eif->info->symbolic |
3868 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL | |
3869 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) | |
252b5132 RH |
3870 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
3871 | { | |
391a809a | 3872 | struct elf_backend_data *bed; |
e5094212 | 3873 | boolean force_local; |
8ea2e4bd | 3874 | |
391a809a | 3875 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); |
e5094212 AM |
3876 | |
3877 | force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL | |
3878 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); | |
3879 | (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); | |
252b5132 RH |
3880 | } |
3881 | ||
fc4cc5bb ILT |
3882 | /* If this is a weak defined symbol in a dynamic object, and we know |
3883 | the real definition in the dynamic object, copy interesting flags | |
3884 | over to the real definition. */ | |
3885 | if (h->weakdef != NULL) | |
3886 | { | |
3887 | struct elf_link_hash_entry *weakdef; | |
3888 | ||
3889 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
3890 | || h->root.type == bfd_link_hash_defweak); | |
3891 | weakdef = h->weakdef; | |
3892 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
3893 | || weakdef->root.type == bfd_link_hash_defweak); | |
3894 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
3895 | ||
3896 | /* If the real definition is defined by a regular object file, | |
3897 | don't do anything special. See the longer description in | |
3898 | elf_adjust_dynamic_symbol, below. */ | |
3899 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
3900 | h->weakdef = NULL; | |
3901 | else | |
0a991dfe AM |
3902 | { |
3903 | struct elf_backend_data *bed; | |
3904 | ||
3905 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); | |
3906 | (*bed->elf_backend_copy_indirect_symbol) (weakdef, h); | |
3907 | } | |
fc4cc5bb ILT |
3908 | } |
3909 | ||
252b5132 RH |
3910 | return true; |
3911 | } | |
3912 | ||
3913 | /* Make the backend pick a good value for a dynamic symbol. This is | |
3914 | called via elf_link_hash_traverse, and also calls itself | |
3915 | recursively. */ | |
3916 | ||
3917 | static boolean | |
3918 | elf_adjust_dynamic_symbol (h, data) | |
3919 | struct elf_link_hash_entry *h; | |
3920 | PTR data; | |
3921 | { | |
3922 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
3923 | bfd *dynobj; | |
3924 | struct elf_backend_data *bed; | |
3925 | ||
3926 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
3927 | if (h->root.type == bfd_link_hash_indirect) | |
3928 | return true; | |
3929 | ||
8ea2e4bd NC |
3930 | if (! is_elf_hash_table (eif->info)) |
3931 | return false; | |
3932 | ||
252b5132 RH |
3933 | /* Fix the symbol flags. */ |
3934 | if (! elf_fix_symbol_flags (h, eif)) | |
3935 | return false; | |
3936 | ||
3937 | /* If this symbol does not require a PLT entry, and it is not | |
3938 | defined by a dynamic object, or is not referenced by a regular | |
3939 | object, ignore it. We do have to handle a weak defined symbol, | |
3940 | even if no regular object refers to it, if we decided to add it | |
3941 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
3942 | about symbols which are defined by one dynamic object and | |
3943 | referenced by another one? */ | |
3944 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 | |
3945 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
3946 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3947 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 | |
3948 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
3949 | { | |
3950 | h->plt.offset = (bfd_vma) -1; | |
3951 | return true; | |
3952 | } | |
3953 | ||
3954 | /* If we've already adjusted this symbol, don't do it again. This | |
3955 | can happen via a recursive call. */ | |
3956 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
3957 | return true; | |
3958 | ||
3959 | /* Don't look at this symbol again. Note that we must set this | |
3960 | after checking the above conditions, because we may look at a | |
3961 | symbol once, decide not to do anything, and then get called | |
3962 | recursively later after REF_REGULAR is set below. */ | |
3963 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
3964 | ||
3965 | /* If this is a weak definition, and we know a real definition, and | |
3966 | the real symbol is not itself defined by a regular object file, | |
3967 | then get a good value for the real definition. We handle the | |
3968 | real symbol first, for the convenience of the backend routine. | |
3969 | ||
3970 | Note that there is a confusing case here. If the real definition | |
3971 | is defined by a regular object file, we don't get the real symbol | |
3972 | from the dynamic object, but we do get the weak symbol. If the | |
3973 | processor backend uses a COPY reloc, then if some routine in the | |
3974 | dynamic object changes the real symbol, we will not see that | |
3975 | change in the corresponding weak symbol. This is the way other | |
3976 | ELF linkers work as well, and seems to be a result of the shared | |
3977 | library model. | |
3978 | ||
3979 | I will clarify this issue. Most SVR4 shared libraries define the | |
3980 | variable _timezone and define timezone as a weak synonym. The | |
3981 | tzset call changes _timezone. If you write | |
3982 | extern int timezone; | |
3983 | int _timezone = 5; | |
3984 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
3985 | you might expect that, since timezone is a synonym for _timezone, | |
3986 | the same number will print both times. However, if the processor | |
3987 | backend uses a COPY reloc, then actually timezone will be copied | |
3988 | into your process image, and, since you define _timezone | |
3989 | yourself, _timezone will not. Thus timezone and _timezone will | |
3990 | wind up at different memory locations. The tzset call will set | |
3991 | _timezone, leaving timezone unchanged. */ | |
3992 | ||
3993 | if (h->weakdef != NULL) | |
3994 | { | |
fc4cc5bb ILT |
3995 | /* If we get to this point, we know there is an implicit |
3996 | reference by a regular object file via the weak symbol H. | |
3997 | FIXME: Is this really true? What if the traversal finds | |
3998 | H->WEAKDEF before it finds H? */ | |
3999 | h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
252b5132 | 4000 | |
fc4cc5bb ILT |
4001 | if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif)) |
4002 | return false; | |
252b5132 RH |
4003 | } |
4004 | ||
4005 | /* If a symbol has no type and no size and does not require a PLT | |
4006 | entry, then we are probably about to do the wrong thing here: we | |
4007 | are probably going to create a COPY reloc for an empty object. | |
4008 | This case can arise when a shared object is built with assembly | |
4009 | code, and the assembly code fails to set the symbol type. */ | |
4010 | if (h->size == 0 | |
4011 | && h->type == STT_NOTYPE | |
4012 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
4013 | (*_bfd_error_handler) | |
4014 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
4015 | h->root.root.string); | |
4016 | ||
4017 | dynobj = elf_hash_table (eif->info)->dynobj; | |
4018 | bed = get_elf_backend_data (dynobj); | |
4019 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
4020 | { | |
4021 | eif->failed = true; | |
4022 | return false; | |
4023 | } | |
4024 | ||
4025 | return true; | |
4026 | } | |
4027 | \f | |
4028 | /* This routine is used to export all defined symbols into the dynamic | |
4029 | symbol table. It is called via elf_link_hash_traverse. */ | |
4030 | ||
4031 | static boolean | |
4032 | elf_export_symbol (h, data) | |
4033 | struct elf_link_hash_entry *h; | |
4034 | PTR data; | |
4035 | { | |
4036 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
4037 | ||
4038 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
4039 | if (h->root.type == bfd_link_hash_indirect) | |
4040 | return true; | |
4041 | ||
4042 | if (h->dynindx == -1 | |
4043 | && (h->elf_link_hash_flags | |
4044 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
4045 | { | |
bc2b6df7 L |
4046 | struct bfd_elf_version_tree *t; |
4047 | struct bfd_elf_version_expr *d; | |
4048 | ||
4049 | for (t = eif->verdefs; t != NULL; t = t->next) | |
252b5132 | 4050 | { |
bc2b6df7 L |
4051 | if (t->globals != NULL) |
4052 | { | |
4053 | for (d = t->globals; d != NULL; d = d->next) | |
4054 | { | |
4055 | if ((*d->match) (d, h->root.root.string)) | |
4056 | goto doit; | |
4057 | } | |
4058 | } | |
4059 | ||
4060 | if (t->locals != NULL) | |
4061 | { | |
4062 | for (d = t->locals ; d != NULL; d = d->next) | |
4063 | { | |
4064 | if ((*d->match) (d, h->root.root.string)) | |
4065 | return true; | |
4066 | } | |
4067 | } | |
252b5132 | 4068 | } |
bc2b6df7 L |
4069 | |
4070 | if (!eif->verdefs) | |
4071 | { | |
4072 | doit: | |
4073 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
4074 | { | |
4075 | eif->failed = true; | |
4076 | return false; | |
4077 | } | |
4078 | } | |
252b5132 RH |
4079 | } |
4080 | ||
4081 | return true; | |
4082 | } | |
4083 | \f | |
4084 | /* Look through the symbols which are defined in other shared | |
4085 | libraries and referenced here. Update the list of version | |
4086 | dependencies. This will be put into the .gnu.version_r section. | |
4087 | This function is called via elf_link_hash_traverse. */ | |
4088 | ||
4089 | static boolean | |
4090 | elf_link_find_version_dependencies (h, data) | |
4091 | struct elf_link_hash_entry *h; | |
4092 | PTR data; | |
4093 | { | |
4094 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; | |
4095 | Elf_Internal_Verneed *t; | |
4096 | Elf_Internal_Vernaux *a; | |
dc810e39 | 4097 | bfd_size_type amt; |
252b5132 RH |
4098 | |
4099 | /* We only care about symbols defined in shared objects with version | |
4100 | information. */ | |
4101 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
4102 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
4103 | || h->dynindx == -1 | |
4104 | || h->verinfo.verdef == NULL) | |
4105 | return true; | |
4106 | ||
4107 | /* See if we already know about this version. */ | |
4108 | for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) | |
4109 | { | |
4110 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
4111 | continue; | |
4112 | ||
4113 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
4114 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
4115 | return true; | |
4116 | ||
4117 | break; | |
4118 | } | |
4119 | ||
4120 | /* This is a new version. Add it to tree we are building. */ | |
4121 | ||
4122 | if (t == NULL) | |
4123 | { | |
dc810e39 AM |
4124 | amt = sizeof *t; |
4125 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt); | |
252b5132 RH |
4126 | if (t == NULL) |
4127 | { | |
4128 | rinfo->failed = true; | |
4129 | return false; | |
4130 | } | |
4131 | ||
4132 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
4133 | t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; | |
4134 | elf_tdata (rinfo->output_bfd)->verref = t; | |
4135 | } | |
4136 | ||
dc810e39 AM |
4137 | amt = sizeof *a; |
4138 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt); | |
252b5132 RH |
4139 | |
4140 | /* Note that we are copying a string pointer here, and testing it | |
4141 | above. If bfd_elf_string_from_elf_section is ever changed to | |
4142 | discard the string data when low in memory, this will have to be | |
4143 | fixed. */ | |
4144 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
4145 | ||
4146 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
4147 | a->vna_nextptr = t->vn_auxptr; | |
4148 | ||
4149 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
4150 | ++rinfo->vers; | |
4151 | ||
4152 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
4153 | ||
4154 | t->vn_auxptr = a; | |
4155 | ||
4156 | return true; | |
4157 | } | |
4158 | ||
4159 | /* Figure out appropriate versions for all the symbols. We may not | |
4160 | have the version number script until we have read all of the input | |
4161 | files, so until that point we don't know which symbols should be | |
4162 | local. This function is called via elf_link_hash_traverse. */ | |
4163 | ||
4164 | static boolean | |
4165 | elf_link_assign_sym_version (h, data) | |
4166 | struct elf_link_hash_entry *h; | |
4167 | PTR data; | |
4168 | { | |
dc810e39 AM |
4169 | struct elf_assign_sym_version_info *sinfo; |
4170 | struct bfd_link_info *info; | |
c61b8717 | 4171 | struct elf_backend_data *bed; |
252b5132 RH |
4172 | struct elf_info_failed eif; |
4173 | char *p; | |
dc810e39 AM |
4174 | bfd_size_type amt; |
4175 | ||
4176 | sinfo = (struct elf_assign_sym_version_info *) data; | |
4177 | info = sinfo->info; | |
252b5132 RH |
4178 | |
4179 | /* Fix the symbol flags. */ | |
4180 | eif.failed = false; | |
4181 | eif.info = info; | |
4182 | if (! elf_fix_symbol_flags (h, &eif)) | |
4183 | { | |
4184 | if (eif.failed) | |
4185 | sinfo->failed = true; | |
4186 | return false; | |
4187 | } | |
4188 | ||
4189 | /* We only need version numbers for symbols defined in regular | |
4190 | objects. */ | |
4191 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
4192 | return true; | |
4193 | ||
c61b8717 | 4194 | bed = get_elf_backend_data (sinfo->output_bfd); |
252b5132 RH |
4195 | p = strchr (h->root.root.string, ELF_VER_CHR); |
4196 | if (p != NULL && h->verinfo.vertree == NULL) | |
4197 | { | |
4198 | struct bfd_elf_version_tree *t; | |
4199 | boolean hidden; | |
4200 | ||
4201 | hidden = true; | |
4202 | ||
4203 | /* There are two consecutive ELF_VER_CHR characters if this is | |
4204 | not a hidden symbol. */ | |
4205 | ++p; | |
4206 | if (*p == ELF_VER_CHR) | |
4207 | { | |
4208 | hidden = false; | |
4209 | ++p; | |
4210 | } | |
4211 | ||
4212 | /* If there is no version string, we can just return out. */ | |
4213 | if (*p == '\0') | |
4214 | { | |
4215 | if (hidden) | |
4216 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
4217 | return true; | |
4218 | } | |
4219 | ||
4220 | /* Look for the version. If we find it, it is no longer weak. */ | |
4221 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
4222 | { | |
4223 | if (strcmp (t->name, p) == 0) | |
4224 | { | |
dc810e39 | 4225 | size_t len; |
252b5132 RH |
4226 | char *alc; |
4227 | struct bfd_elf_version_expr *d; | |
4228 | ||
4229 | len = p - h->root.root.string; | |
e5094212 | 4230 | alc = bfd_malloc ((bfd_size_type) len); |
252b5132 RH |
4231 | if (alc == NULL) |
4232 | return false; | |
4233 | strncpy (alc, h->root.root.string, len - 1); | |
4234 | alc[len - 1] = '\0'; | |
4235 | if (alc[len - 2] == ELF_VER_CHR) | |
4236 | alc[len - 2] = '\0'; | |
4237 | ||
4238 | h->verinfo.vertree = t; | |
4239 | t->used = true; | |
4240 | d = NULL; | |
4241 | ||
4242 | if (t->globals != NULL) | |
4243 | { | |
4244 | for (d = t->globals; d != NULL; d = d->next) | |
4245 | if ((*d->match) (d, alc)) | |
4246 | break; | |
4247 | } | |
4248 | ||
4249 | /* See if there is anything to force this symbol to | |
4250 | local scope. */ | |
4251 | if (d == NULL && t->locals != NULL) | |
4252 | { | |
4253 | for (d = t->locals; d != NULL; d = d->next) | |
4254 | { | |
4255 | if ((*d->match) (d, alc)) | |
4256 | { | |
4257 | if (h->dynindx != -1 | |
4258 | && info->shared | |
99293407 | 4259 | && ! info->export_dynamic) |
252b5132 | 4260 | { |
e5094212 | 4261 | (*bed->elf_backend_hide_symbol) (info, h, true); |
252b5132 RH |
4262 | } |
4263 | ||
4264 | break; | |
4265 | } | |
4266 | } | |
4267 | } | |
4268 | ||
e5094212 | 4269 | free (alc); |
252b5132 RH |
4270 | break; |
4271 | } | |
4272 | } | |
4273 | ||
4274 | /* If we are building an application, we need to create a | |
4275 | version node for this version. */ | |
4276 | if (t == NULL && ! info->shared) | |
4277 | { | |
4278 | struct bfd_elf_version_tree **pp; | |
4279 | int version_index; | |
4280 | ||
4281 | /* If we aren't going to export this symbol, we don't need | |
3e932841 | 4282 | to worry about it. */ |
252b5132 RH |
4283 | if (h->dynindx == -1) |
4284 | return true; | |
4285 | ||
dc810e39 | 4286 | amt = sizeof *t; |
252b5132 | 4287 | t = ((struct bfd_elf_version_tree *) |
dc810e39 | 4288 | bfd_alloc (sinfo->output_bfd, amt)); |
252b5132 RH |
4289 | if (t == NULL) |
4290 | { | |
4291 | sinfo->failed = true; | |
4292 | return false; | |
4293 | } | |
4294 | ||
4295 | t->next = NULL; | |
4296 | t->name = p; | |
4297 | t->globals = NULL; | |
4298 | t->locals = NULL; | |
4299 | t->deps = NULL; | |
4300 | t->name_indx = (unsigned int) -1; | |
4301 | t->used = true; | |
4302 | ||
4303 | version_index = 1; | |
6b9b879a JJ |
4304 | /* Don't count anonymous version tag. */ |
4305 | if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0) | |
4306 | version_index = 0; | |
252b5132 RH |
4307 | for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) |
4308 | ++version_index; | |
4309 | t->vernum = version_index; | |
4310 | ||
4311 | *pp = t; | |
4312 | ||
4313 | h->verinfo.vertree = t; | |
4314 | } | |
4315 | else if (t == NULL) | |
4316 | { | |
4317 | /* We could not find the version for a symbol when | |
4318 | generating a shared archive. Return an error. */ | |
4319 | (*_bfd_error_handler) | |
4320 | (_("%s: undefined versioned symbol name %s"), | |
4321 | bfd_get_filename (sinfo->output_bfd), h->root.root.string); | |
4322 | bfd_set_error (bfd_error_bad_value); | |
4323 | sinfo->failed = true; | |
4324 | return false; | |
4325 | } | |
4326 | ||
4327 | if (hidden) | |
4328 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
4329 | } | |
4330 | ||
4331 | /* If we don't have a version for this symbol, see if we can find | |
4332 | something. */ | |
4333 | if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) | |
4334 | { | |
4335 | struct bfd_elf_version_tree *t; | |
4336 | struct bfd_elf_version_tree *deflt; | |
4337 | struct bfd_elf_version_expr *d; | |
4338 | ||
4339 | /* See if can find what version this symbol is in. If the | |
4340 | symbol is supposed to be local, then don't actually register | |
4341 | it. */ | |
4342 | deflt = NULL; | |
4343 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
4344 | { | |
4345 | if (t->globals != NULL) | |
4346 | { | |
4347 | for (d = t->globals; d != NULL; d = d->next) | |
4348 | { | |
4349 | if ((*d->match) (d, h->root.root.string)) | |
4350 | { | |
4351 | h->verinfo.vertree = t; | |
4352 | break; | |
4353 | } | |
4354 | } | |
4355 | ||
4356 | if (d != NULL) | |
4357 | break; | |
4358 | } | |
4359 | ||
4360 | if (t->locals != NULL) | |
4361 | { | |
4362 | for (d = t->locals; d != NULL; d = d->next) | |
4363 | { | |
4364 | if (d->pattern[0] == '*' && d->pattern[1] == '\0') | |
4365 | deflt = t; | |
4366 | else if ((*d->match) (d, h->root.root.string)) | |
4367 | { | |
4368 | h->verinfo.vertree = t; | |
4369 | if (h->dynindx != -1 | |
4370 | && info->shared | |
99293407 | 4371 | && ! info->export_dynamic) |
252b5132 | 4372 | { |
e5094212 | 4373 | (*bed->elf_backend_hide_symbol) (info, h, true); |
252b5132 RH |
4374 | } |
4375 | break; | |
4376 | } | |
4377 | } | |
4378 | ||
4379 | if (d != NULL) | |
4380 | break; | |
4381 | } | |
4382 | } | |
4383 | ||
4384 | if (deflt != NULL && h->verinfo.vertree == NULL) | |
4385 | { | |
4386 | h->verinfo.vertree = deflt; | |
4387 | if (h->dynindx != -1 | |
4388 | && info->shared | |
99293407 | 4389 | && ! info->export_dynamic) |
252b5132 | 4390 | { |
e5094212 | 4391 | (*bed->elf_backend_hide_symbol) (info, h, true); |
252b5132 RH |
4392 | } |
4393 | } | |
4394 | } | |
4395 | ||
4396 | return true; | |
4397 | } | |
252b5132 RH |
4398 | \f |
4399 | /* Final phase of ELF linker. */ | |
4400 | ||
4401 | /* A structure we use to avoid passing large numbers of arguments. */ | |
4402 | ||
4403 | struct elf_final_link_info | |
4404 | { | |
4405 | /* General link information. */ | |
4406 | struct bfd_link_info *info; | |
4407 | /* Output BFD. */ | |
4408 | bfd *output_bfd; | |
4409 | /* Symbol string table. */ | |
4410 | struct bfd_strtab_hash *symstrtab; | |
4411 | /* .dynsym section. */ | |
4412 | asection *dynsym_sec; | |
4413 | /* .hash section. */ | |
4414 | asection *hash_sec; | |
4415 | /* symbol version section (.gnu.version). */ | |
4416 | asection *symver_sec; | |
4417 | /* Buffer large enough to hold contents of any section. */ | |
4418 | bfd_byte *contents; | |
4419 | /* Buffer large enough to hold external relocs of any section. */ | |
4420 | PTR external_relocs; | |
4421 | /* Buffer large enough to hold internal relocs of any section. */ | |
4422 | Elf_Internal_Rela *internal_relocs; | |
4423 | /* Buffer large enough to hold external local symbols of any input | |
4424 | BFD. */ | |
4425 | Elf_External_Sym *external_syms; | |
9ad5cbcf AM |
4426 | /* And a buffer for symbol section indices. */ |
4427 | Elf_External_Sym_Shndx *locsym_shndx; | |
252b5132 RH |
4428 | /* Buffer large enough to hold internal local symbols of any input |
4429 | BFD. */ | |
4430 | Elf_Internal_Sym *internal_syms; | |
4431 | /* Array large enough to hold a symbol index for each local symbol | |
4432 | of any input BFD. */ | |
4433 | long *indices; | |
4434 | /* Array large enough to hold a section pointer for each local | |
4435 | symbol of any input BFD. */ | |
4436 | asection **sections; | |
4437 | /* Buffer to hold swapped out symbols. */ | |
4438 | Elf_External_Sym *symbuf; | |
9ad5cbcf AM |
4439 | /* And one for symbol section indices. */ |
4440 | Elf_External_Sym_Shndx *symshndxbuf; | |
252b5132 RH |
4441 | /* Number of swapped out symbols in buffer. */ |
4442 | size_t symbuf_count; | |
4443 | /* Number of symbols which fit in symbuf. */ | |
4444 | size_t symbuf_size; | |
4445 | }; | |
4446 | ||
4447 | static boolean elf_link_output_sym | |
4448 | PARAMS ((struct elf_final_link_info *, const char *, | |
4449 | Elf_Internal_Sym *, asection *)); | |
4450 | static boolean elf_link_flush_output_syms | |
4451 | PARAMS ((struct elf_final_link_info *)); | |
4452 | static boolean elf_link_output_extsym | |
4453 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
f5fa8ca2 JJ |
4454 | static boolean elf_link_sec_merge_syms |
4455 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
252b5132 RH |
4456 | static boolean elf_link_input_bfd |
4457 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
4458 | static boolean elf_reloc_link_order | |
4459 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
4460 | struct bfd_link_order *)); | |
4461 | ||
4462 | /* This struct is used to pass information to elf_link_output_extsym. */ | |
4463 | ||
4464 | struct elf_outext_info | |
4465 | { | |
4466 | boolean failed; | |
4467 | boolean localsyms; | |
4468 | struct elf_final_link_info *finfo; | |
4469 | }; | |
4470 | ||
23bc299b MM |
4471 | /* Compute the size of, and allocate space for, REL_HDR which is the |
4472 | section header for a section containing relocations for O. */ | |
4473 | ||
4474 | static boolean | |
4475 | elf_link_size_reloc_section (abfd, rel_hdr, o) | |
4476 | bfd *abfd; | |
4477 | Elf_Internal_Shdr *rel_hdr; | |
4478 | asection *o; | |
4479 | { | |
dc810e39 AM |
4480 | bfd_size_type reloc_count; |
4481 | bfd_size_type num_rel_hashes; | |
23bc299b | 4482 | |
b037af20 MM |
4483 | /* Figure out how many relocations there will be. */ |
4484 | if (rel_hdr == &elf_section_data (o)->rel_hdr) | |
4485 | reloc_count = elf_section_data (o)->rel_count; | |
4486 | else | |
4487 | reloc_count = elf_section_data (o)->rel_count2; | |
4488 | ||
9317eacc CM |
4489 | num_rel_hashes = o->reloc_count; |
4490 | if (num_rel_hashes < reloc_count) | |
4491 | num_rel_hashes = reloc_count; | |
dc810e39 | 4492 | |
b037af20 MM |
4493 | /* That allows us to calculate the size of the section. */ |
4494 | rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count; | |
23bc299b MM |
4495 | |
4496 | /* The contents field must last into write_object_contents, so we | |
755cfd29 NC |
4497 | allocate it with bfd_alloc rather than malloc. Also since we |
4498 | cannot be sure that the contents will actually be filled in, | |
4499 | we zero the allocated space. */ | |
4500 | rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size); | |
23bc299b MM |
4501 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) |
4502 | return false; | |
3e932841 | 4503 | |
b037af20 MM |
4504 | /* We only allocate one set of hash entries, so we only do it the |
4505 | first time we are called. */ | |
9317eacc CM |
4506 | if (elf_section_data (o)->rel_hashes == NULL |
4507 | && num_rel_hashes) | |
b037af20 | 4508 | { |
209f668e NC |
4509 | struct elf_link_hash_entry **p; |
4510 | ||
b037af20 | 4511 | p = ((struct elf_link_hash_entry **) |
9317eacc | 4512 | bfd_zmalloc (num_rel_hashes |
209f668e | 4513 | * sizeof (struct elf_link_hash_entry *))); |
9317eacc | 4514 | if (p == NULL) |
b037af20 | 4515 | return false; |
23bc299b | 4516 | |
b037af20 | 4517 | elf_section_data (o)->rel_hashes = p; |
b037af20 | 4518 | } |
23bc299b MM |
4519 | |
4520 | return true; | |
4521 | } | |
4522 | ||
31367b81 MM |
4523 | /* When performing a relocateable link, the input relocations are |
4524 | preserved. But, if they reference global symbols, the indices | |
4525 | referenced must be updated. Update all the relocations in | |
4526 | REL_HDR (there are COUNT of them), using the data in REL_HASH. */ | |
4527 | ||
4528 | static void | |
4529 | elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash) | |
4530 | bfd *abfd; | |
4531 | Elf_Internal_Shdr *rel_hdr; | |
4532 | unsigned int count; | |
4533 | struct elf_link_hash_entry **rel_hash; | |
4534 | { | |
4535 | unsigned int i; | |
32f0787a | 4536 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
209f668e NC |
4537 | Elf_Internal_Rel *irel; |
4538 | Elf_Internal_Rela *irela; | |
dc810e39 | 4539 | bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel; |
209f668e | 4540 | |
dc810e39 | 4541 | irel = (Elf_Internal_Rel *) bfd_zmalloc (amt); |
209f668e NC |
4542 | if (irel == NULL) |
4543 | { | |
4544 | (*_bfd_error_handler) (_("Error: out of memory")); | |
4545 | abort (); | |
4546 | } | |
4547 | ||
dc810e39 AM |
4548 | amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel; |
4549 | irela = (Elf_Internal_Rela *) bfd_zmalloc (amt); | |
209f668e NC |
4550 | if (irela == NULL) |
4551 | { | |
4552 | (*_bfd_error_handler) (_("Error: out of memory")); | |
4553 | abort (); | |
4554 | } | |
31367b81 MM |
4555 | |
4556 | for (i = 0; i < count; i++, rel_hash++) | |
4557 | { | |
4558 | if (*rel_hash == NULL) | |
4559 | continue; | |
4560 | ||
4561 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
4562 | ||
4563 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
4564 | { | |
4565 | Elf_External_Rel *erel; | |
209f668e | 4566 | unsigned int j; |
3e932841 | 4567 | |
31367b81 | 4568 | erel = (Elf_External_Rel *) rel_hdr->contents + i; |
32f0787a | 4569 | if (bed->s->swap_reloc_in) |
209f668e | 4570 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel); |
32f0787a | 4571 | else |
209f668e NC |
4572 | elf_swap_reloc_in (abfd, erel, irel); |
4573 | ||
4574 | for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) | |
4575 | irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx, | |
4576 | ELF_R_TYPE (irel[j].r_info)); | |
4577 | ||
32f0787a | 4578 | if (bed->s->swap_reloc_out) |
209f668e | 4579 | (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel); |
32f0787a | 4580 | else |
209f668e | 4581 | elf_swap_reloc_out (abfd, irel, erel); |
31367b81 MM |
4582 | } |
4583 | else | |
4584 | { | |
4585 | Elf_External_Rela *erela; | |
209f668e | 4586 | unsigned int j; |
3e932841 | 4587 | |
31367b81 MM |
4588 | BFD_ASSERT (rel_hdr->sh_entsize |
4589 | == sizeof (Elf_External_Rela)); | |
3e932841 | 4590 | |
31367b81 | 4591 | erela = (Elf_External_Rela *) rel_hdr->contents + i; |
32f0787a | 4592 | if (bed->s->swap_reloca_in) |
209f668e | 4593 | (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela); |
32f0787a | 4594 | else |
209f668e NC |
4595 | elf_swap_reloca_in (abfd, erela, irela); |
4596 | ||
4597 | for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) | |
4598 | irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx, | |
4599 | ELF_R_TYPE (irela[j].r_info)); | |
4600 | ||
32f0787a | 4601 | if (bed->s->swap_reloca_out) |
209f668e | 4602 | (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela); |
32f0787a | 4603 | else |
209f668e | 4604 | elf_swap_reloca_out (abfd, irela, erela); |
31367b81 MM |
4605 | } |
4606 | } | |
209f668e NC |
4607 | |
4608 | free (irel); | |
4609 | free (irela); | |
31367b81 MM |
4610 | } |
4611 | ||
db6751f2 JJ |
4612 | struct elf_link_sort_rela { |
4613 | bfd_vma offset; | |
4614 | enum elf_reloc_type_class type; | |
4615 | union { | |
4616 | Elf_Internal_Rel rel; | |
4617 | Elf_Internal_Rela rela; | |
4618 | } u; | |
4619 | }; | |
4620 | ||
4621 | static int | |
4622 | elf_link_sort_cmp1 (A, B) | |
4623 | const PTR A; | |
4624 | const PTR B; | |
4625 | { | |
f51e552e AM |
4626 | struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A; |
4627 | struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B; | |
db6751f2 JJ |
4628 | int relativea, relativeb; |
4629 | ||
4630 | relativea = a->type == reloc_class_relative; | |
4631 | relativeb = b->type == reloc_class_relative; | |
4632 | ||
4633 | if (relativea < relativeb) | |
db6751f2 | 4634 | return 1; |
fcfbdf31 JJ |
4635 | if (relativea > relativeb) |
4636 | return -1; | |
db6751f2 JJ |
4637 | if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info)) |
4638 | return -1; | |
4639 | if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info)) | |
4640 | return 1; | |
4641 | if (a->u.rel.r_offset < b->u.rel.r_offset) | |
4642 | return -1; | |
4643 | if (a->u.rel.r_offset > b->u.rel.r_offset) | |
4644 | return 1; | |
4645 | return 0; | |
4646 | } | |
4647 | ||
4648 | static int | |
4649 | elf_link_sort_cmp2 (A, B) | |
4650 | const PTR A; | |
4651 | const PTR B; | |
4652 | { | |
f51e552e AM |
4653 | struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A; |
4654 | struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B; | |
db6751f2 JJ |
4655 | int copya, copyb; |
4656 | ||
4657 | if (a->offset < b->offset) | |
4658 | return -1; | |
4659 | if (a->offset > b->offset) | |
4660 | return 1; | |
290394d6 JJ |
4661 | copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt); |
4662 | copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt); | |
db6751f2 JJ |
4663 | if (copya < copyb) |
4664 | return -1; | |
4665 | if (copya > copyb) | |
4666 | return 1; | |
4667 | if (a->u.rel.r_offset < b->u.rel.r_offset) | |
4668 | return -1; | |
4669 | if (a->u.rel.r_offset > b->u.rel.r_offset) | |
4670 | return 1; | |
4671 | return 0; | |
4672 | } | |
4673 | ||
4674 | static size_t | |
4675 | elf_link_sort_relocs (abfd, info, psec) | |
4676 | bfd *abfd; | |
4677 | struct bfd_link_info *info; | |
4678 | asection **psec; | |
4679 | { | |
4680 | bfd *dynobj = elf_hash_table (info)->dynobj; | |
4681 | asection *reldyn, *o; | |
4682 | boolean rel = false; | |
f51e552e AM |
4683 | bfd_size_type count, size; |
4684 | size_t i, j, ret; | |
db6751f2 JJ |
4685 | struct elf_link_sort_rela *rela; |
4686 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
4687 | ||
4688 | reldyn = bfd_get_section_by_name (abfd, ".rela.dyn"); | |
4689 | if (reldyn == NULL || reldyn->_raw_size == 0) | |
4690 | { | |
4691 | reldyn = bfd_get_section_by_name (abfd, ".rel.dyn"); | |
4692 | if (reldyn == NULL || reldyn->_raw_size == 0) | |
4693 | return 0; | |
4694 | rel = true; | |
4695 | count = reldyn->_raw_size / sizeof (Elf_External_Rel); | |
4696 | } | |
4697 | else | |
4698 | count = reldyn->_raw_size / sizeof (Elf_External_Rela); | |
4699 | ||
4700 | size = 0; | |
4701 | for (o = dynobj->sections; o != NULL; o = o->next) | |
4702 | if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)) | |
4703 | == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED) | |
4704 | && o->output_section == reldyn) | |
4705 | size += o->_raw_size; | |
4706 | ||
4707 | if (size != reldyn->_raw_size) | |
4708 | return 0; | |
4709 | ||
f51e552e | 4710 | rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count); |
db6751f2 JJ |
4711 | if (rela == NULL) |
4712 | { | |
4713 | (*info->callbacks->warning) | |
dc810e39 AM |
4714 | (info, _("Not enough memory to sort relocations"), 0, abfd, 0, |
4715 | (bfd_vma) 0); | |
db6751f2 JJ |
4716 | return 0; |
4717 | } | |
4718 | ||
4719 | for (o = dynobj->sections; o != NULL; o = o->next) | |
4720 | if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)) | |
4721 | == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED) | |
4722 | && o->output_section == reldyn) | |
4723 | { | |
4724 | if (rel) | |
4725 | { | |
4726 | Elf_External_Rel *erel, *erelend; | |
4727 | struct elf_link_sort_rela *s; | |
4728 | ||
4729 | erel = (Elf_External_Rel *) o->contents; | |
f51e552e | 4730 | erelend = (Elf_External_Rel *) (o->contents + o->_raw_size); |
db6751f2 JJ |
4731 | s = rela + o->output_offset / sizeof (Elf_External_Rel); |
4732 | for (; erel < erelend; erel++, s++) | |
4733 | { | |
4734 | if (bed->s->swap_reloc_in) | |
4735 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel); | |
4736 | else | |
4737 | elf_swap_reloc_in (abfd, erel, &s->u.rel); | |
4738 | ||
f51e552e | 4739 | s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela); |
dc810e39 | 4740 | } |
db6751f2 JJ |
4741 | } |
4742 | else | |
4743 | { | |
4744 | Elf_External_Rela *erela, *erelaend; | |
4745 | struct elf_link_sort_rela *s; | |
4746 | ||
4747 | erela = (Elf_External_Rela *) o->contents; | |
f51e552e | 4748 | erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size); |
db6751f2 JJ |
4749 | s = rela + o->output_offset / sizeof (Elf_External_Rela); |
4750 | for (; erela < erelaend; erela++, s++) | |
4751 | { | |
4752 | if (bed->s->swap_reloca_in) | |
dc810e39 AM |
4753 | (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela, |
4754 | &s->u.rela); | |
db6751f2 JJ |
4755 | else |
4756 | elf_swap_reloca_in (dynobj, erela, &s->u.rela); | |
4757 | ||
f51e552e | 4758 | s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela); |
dc810e39 | 4759 | } |
db6751f2 JJ |
4760 | } |
4761 | } | |
4762 | ||
973ffd63 | 4763 | qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1); |
fcfbdf31 JJ |
4764 | for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++) |
4765 | ; | |
4766 | for (i = ret, j = ret; i < count; i++) | |
db6751f2 JJ |
4767 | { |
4768 | if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info)) | |
4769 | j = i; | |
4770 | rela[i].offset = rela[j].u.rel.r_offset; | |
4771 | } | |
973ffd63 | 4772 | qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2); |
dc810e39 | 4773 | |
db6751f2 JJ |
4774 | for (o = dynobj->sections; o != NULL; o = o->next) |
4775 | if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)) | |
4776 | == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED) | |
4777 | && o->output_section == reldyn) | |
4778 | { | |
4779 | if (rel) | |
4780 | { | |
4781 | Elf_External_Rel *erel, *erelend; | |
4782 | struct elf_link_sort_rela *s; | |
4783 | ||
4784 | erel = (Elf_External_Rel *) o->contents; | |
df22989b | 4785 | erelend = (Elf_External_Rel *) (o->contents + o->_raw_size); |
db6751f2 JJ |
4786 | s = rela + o->output_offset / sizeof (Elf_External_Rel); |
4787 | for (; erel < erelend; erel++, s++) | |
4788 | { | |
4789 | if (bed->s->swap_reloc_out) | |
dc810e39 AM |
4790 | (*bed->s->swap_reloc_out) (abfd, &s->u.rel, |
4791 | (bfd_byte *) erel); | |
db6751f2 JJ |
4792 | else |
4793 | elf_swap_reloc_out (abfd, &s->u.rel, erel); | |
4794 | } | |
4795 | } | |
4796 | else | |
4797 | { | |
4798 | Elf_External_Rela *erela, *erelaend; | |
4799 | struct elf_link_sort_rela *s; | |
4800 | ||
4801 | erela = (Elf_External_Rela *) o->contents; | |
df22989b | 4802 | erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size); |
db6751f2 JJ |
4803 | s = rela + o->output_offset / sizeof (Elf_External_Rela); |
4804 | for (; erela < erelaend; erela++, s++) | |
4805 | { | |
4806 | if (bed->s->swap_reloca_out) | |
dc810e39 AM |
4807 | (*bed->s->swap_reloca_out) (dynobj, &s->u.rela, |
4808 | (bfd_byte *) erela); | |
db6751f2 JJ |
4809 | else |
4810 | elf_swap_reloca_out (dynobj, &s->u.rela, erela); | |
dc810e39 | 4811 | } |
db6751f2 JJ |
4812 | } |
4813 | } | |
4814 | ||
4815 | free (rela); | |
4816 | *psec = reldyn; | |
4817 | return ret; | |
4818 | } | |
4819 | ||
252b5132 RH |
4820 | /* Do the final step of an ELF link. */ |
4821 | ||
4822 | boolean | |
4823 | elf_bfd_final_link (abfd, info) | |
4824 | bfd *abfd; | |
4825 | struct bfd_link_info *info; | |
4826 | { | |
4827 | boolean dynamic; | |
9317eacc | 4828 | boolean emit_relocs; |
252b5132 RH |
4829 | bfd *dynobj; |
4830 | struct elf_final_link_info finfo; | |
4831 | register asection *o; | |
4832 | register struct bfd_link_order *p; | |
4833 | register bfd *sub; | |
dc810e39 AM |
4834 | bfd_size_type max_contents_size; |
4835 | bfd_size_type max_external_reloc_size; | |
4836 | bfd_size_type max_internal_reloc_count; | |
4837 | bfd_size_type max_sym_count; | |
9ad5cbcf | 4838 | bfd_size_type max_sym_shndx_count; |
252b5132 RH |
4839 | file_ptr off; |
4840 | Elf_Internal_Sym elfsym; | |
4841 | unsigned int i; | |
4842 | Elf_Internal_Shdr *symtab_hdr; | |
4843 | Elf_Internal_Shdr *symstrtab_hdr; | |
4844 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
4845 | struct elf_outext_info eoinfo; | |
f5fa8ca2 | 4846 | boolean merged; |
db6751f2 JJ |
4847 | size_t relativecount = 0; |
4848 | asection *reldyn = 0; | |
dc810e39 | 4849 | bfd_size_type amt; |
252b5132 | 4850 | |
8ea2e4bd NC |
4851 | if (! is_elf_hash_table (info)) |
4852 | return false; | |
4853 | ||
252b5132 RH |
4854 | if (info->shared) |
4855 | abfd->flags |= DYNAMIC; | |
4856 | ||
4857 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
4858 | dynobj = elf_hash_table (info)->dynobj; | |
4859 | ||
9317eacc CM |
4860 | emit_relocs = (info->relocateable |
4861 | || info->emitrelocations | |
4862 | || bed->elf_backend_emit_relocs); | |
4863 | ||
252b5132 RH |
4864 | finfo.info = info; |
4865 | finfo.output_bfd = abfd; | |
4866 | finfo.symstrtab = elf_stringtab_init (); | |
4867 | if (finfo.symstrtab == NULL) | |
4868 | return false; | |
4869 | ||
4870 | if (! dynamic) | |
4871 | { | |
4872 | finfo.dynsym_sec = NULL; | |
4873 | finfo.hash_sec = NULL; | |
4874 | finfo.symver_sec = NULL; | |
4875 | } | |
4876 | else | |
4877 | { | |
4878 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
4879 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
4880 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); | |
4881 | finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
4882 | /* Note that it is OK if symver_sec is NULL. */ | |
4883 | } | |
4884 | ||
4885 | finfo.contents = NULL; | |
4886 | finfo.external_relocs = NULL; | |
4887 | finfo.internal_relocs = NULL; | |
4888 | finfo.external_syms = NULL; | |
9ad5cbcf | 4889 | finfo.locsym_shndx = NULL; |
252b5132 RH |
4890 | finfo.internal_syms = NULL; |
4891 | finfo.indices = NULL; | |
4892 | finfo.sections = NULL; | |
4893 | finfo.symbuf = NULL; | |
9ad5cbcf | 4894 | finfo.symshndxbuf = NULL; |
252b5132 RH |
4895 | finfo.symbuf_count = 0; |
4896 | ||
4897 | /* Count up the number of relocations we will output for each output | |
4898 | section, so that we know the sizes of the reloc sections. We | |
4899 | also figure out some maximum sizes. */ | |
4900 | max_contents_size = 0; | |
4901 | max_external_reloc_size = 0; | |
4902 | max_internal_reloc_count = 0; | |
4903 | max_sym_count = 0; | |
9ad5cbcf | 4904 | max_sym_shndx_count = 0; |
f5fa8ca2 | 4905 | merged = false; |
252b5132 RH |
4906 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) |
4907 | { | |
4908 | o->reloc_count = 0; | |
4909 | ||
4910 | for (p = o->link_order_head; p != NULL; p = p->next) | |
4911 | { | |
4912 | if (p->type == bfd_section_reloc_link_order | |
4913 | || p->type == bfd_symbol_reloc_link_order) | |
4914 | ++o->reloc_count; | |
4915 | else if (p->type == bfd_indirect_link_order) | |
4916 | { | |
4917 | asection *sec; | |
4918 | ||
4919 | sec = p->u.indirect.section; | |
4920 | ||
4921 | /* Mark all sections which are to be included in the | |
4922 | link. This will normally be every section. We need | |
4923 | to do this so that we can identify any sections which | |
4924 | the linker has decided to not include. */ | |
4925 | sec->linker_mark = true; | |
4926 | ||
f5fa8ca2 JJ |
4927 | if (sec->flags & SEC_MERGE) |
4928 | merged = true; | |
4929 | ||
a712da20 | 4930 | if (info->relocateable || info->emitrelocations) |
252b5132 | 4931 | o->reloc_count += sec->reloc_count; |
9317eacc CM |
4932 | else if (bed->elf_backend_count_relocs) |
4933 | { | |
4934 | Elf_Internal_Rela * relocs; | |
4935 | ||
4936 | relocs = (NAME(_bfd_elf,link_read_relocs) | |
4937 | (abfd, sec, (PTR) NULL, | |
4938 | (Elf_Internal_Rela *) NULL, info->keep_memory)); | |
4939 | ||
4940 | o->reloc_count += (*bed->elf_backend_count_relocs) | |
4941 | (sec, relocs); | |
4942 | ||
4943 | if (!info->keep_memory) | |
4944 | free (relocs); | |
4945 | } | |
252b5132 RH |
4946 | |
4947 | if (sec->_raw_size > max_contents_size) | |
4948 | max_contents_size = sec->_raw_size; | |
4949 | if (sec->_cooked_size > max_contents_size) | |
4950 | max_contents_size = sec->_cooked_size; | |
4951 | ||
4952 | /* We are interested in just local symbols, not all | |
4953 | symbols. */ | |
4954 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour | |
4955 | && (sec->owner->flags & DYNAMIC) == 0) | |
4956 | { | |
4957 | size_t sym_count; | |
4958 | ||
4959 | if (elf_bad_symtab (sec->owner)) | |
4960 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
4961 | / sizeof (Elf_External_Sym)); | |
4962 | else | |
4963 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
4964 | ||
4965 | if (sym_count > max_sym_count) | |
4966 | max_sym_count = sym_count; | |
4967 | ||
9ad5cbcf AM |
4968 | if (sym_count > max_sym_shndx_count |
4969 | && elf_symtab_shndx (sec->owner) != 0) | |
4970 | max_sym_shndx_count = sym_count; | |
4971 | ||
252b5132 RH |
4972 | if ((sec->flags & SEC_RELOC) != 0) |
4973 | { | |
4974 | size_t ext_size; | |
4975 | ||
4976 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; | |
4977 | if (ext_size > max_external_reloc_size) | |
4978 | max_external_reloc_size = ext_size; | |
4979 | if (sec->reloc_count > max_internal_reloc_count) | |
4980 | max_internal_reloc_count = sec->reloc_count; | |
4981 | } | |
4982 | } | |
4983 | } | |
4984 | } | |
4985 | ||
4986 | if (o->reloc_count > 0) | |
4987 | o->flags |= SEC_RELOC; | |
4988 | else | |
4989 | { | |
4990 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
4991 | set it (this is probably a bug) and if it is set | |
4992 | assign_section_numbers will create a reloc section. */ | |
4993 | o->flags &=~ SEC_RELOC; | |
4994 | } | |
4995 | ||
4996 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
4997 | zero. This is done in elf_fake_sections as well, but forcing | |
4998 | the VMA to 0 here will ensure that relocs against these | |
4999 | sections are handled correctly. */ | |
5000 | if ((o->flags & SEC_ALLOC) == 0 | |
5001 | && ! o->user_set_vma) | |
5002 | o->vma = 0; | |
5003 | } | |
5004 | ||
f5fa8ca2 JJ |
5005 | if (! info->relocateable && merged) |
5006 | elf_link_hash_traverse (elf_hash_table (info), | |
5007 | elf_link_sec_merge_syms, (PTR) abfd); | |
5008 | ||
252b5132 RH |
5009 | /* Figure out the file positions for everything but the symbol table |
5010 | and the relocs. We set symcount to force assign_section_numbers | |
5011 | to create a symbol table. */ | |
5012 | bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; | |
5013 | BFD_ASSERT (! abfd->output_has_begun); | |
5014 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
5015 | goto error_return; | |
5016 | ||
b037af20 MM |
5017 | /* Figure out how many relocations we will have in each section. |
5018 | Just using RELOC_COUNT isn't good enough since that doesn't | |
5019 | maintain a separate value for REL vs. RELA relocations. */ | |
9317eacc | 5020 | if (emit_relocs) |
b037af20 MM |
5021 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) |
5022 | for (o = sub->sections; o != NULL; o = o->next) | |
5023 | { | |
814fe68a | 5024 | asection *output_section; |
b037af20 | 5025 | |
814fe68a ILT |
5026 | if (! o->linker_mark) |
5027 | { | |
5028 | /* This section was omitted from the link. */ | |
5029 | continue; | |
5030 | } | |
5031 | ||
5032 | output_section = o->output_section; | |
5033 | ||
5034 | if (output_section != NULL | |
5035 | && (o->flags & SEC_RELOC) != 0) | |
b037af20 | 5036 | { |
3e932841 | 5037 | struct bfd_elf_section_data *esdi |
b037af20 | 5038 | = elf_section_data (o); |
3e932841 | 5039 | struct bfd_elf_section_data *esdo |
b037af20 | 5040 | = elf_section_data (output_section); |
ce006217 MM |
5041 | unsigned int *rel_count; |
5042 | unsigned int *rel_count2; | |
b037af20 | 5043 | |
ce006217 MM |
5044 | /* We must be careful to add the relocation froms the |
5045 | input section to the right output count. */ | |
5046 | if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize) | |
5047 | { | |
5048 | rel_count = &esdo->rel_count; | |
5049 | rel_count2 = &esdo->rel_count2; | |
5050 | } | |
5051 | else | |
5052 | { | |
5053 | rel_count = &esdo->rel_count2; | |
5054 | rel_count2 = &esdo->rel_count; | |
5055 | } | |
3e932841 | 5056 | |
d9bc7a44 | 5057 | *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr); |
b037af20 | 5058 | if (esdi->rel_hdr2) |
d9bc7a44 | 5059 | *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2); |
9317eacc | 5060 | output_section->flags |= SEC_RELOC; |
b037af20 MM |
5061 | } |
5062 | } | |
5063 | ||
252b5132 RH |
5064 | /* That created the reloc sections. Set their sizes, and assign |
5065 | them file positions, and allocate some buffers. */ | |
5066 | for (o = abfd->sections; o != NULL; o = o->next) | |
5067 | { | |
5068 | if ((o->flags & SEC_RELOC) != 0) | |
5069 | { | |
23bc299b MM |
5070 | if (!elf_link_size_reloc_section (abfd, |
5071 | &elf_section_data (o)->rel_hdr, | |
5072 | o)) | |
252b5132 RH |
5073 | goto error_return; |
5074 | ||
23bc299b MM |
5075 | if (elf_section_data (o)->rel_hdr2 |
5076 | && !elf_link_size_reloc_section (abfd, | |
5077 | elf_section_data (o)->rel_hdr2, | |
5078 | o)) | |
252b5132 | 5079 | goto error_return; |
252b5132 | 5080 | } |
b037af20 MM |
5081 | |
5082 | /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them | |
3e932841 | 5083 | to count upwards while actually outputting the relocations. */ |
b037af20 MM |
5084 | elf_section_data (o)->rel_count = 0; |
5085 | elf_section_data (o)->rel_count2 = 0; | |
252b5132 RH |
5086 | } |
5087 | ||
5088 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
5089 | ||
5090 | /* We have now assigned file positions for all the sections except | |
5091 | .symtab and .strtab. We start the .symtab section at the current | |
5092 | file position, and write directly to it. We build the .strtab | |
5093 | section in memory. */ | |
5094 | bfd_get_symcount (abfd) = 0; | |
5095 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5096 | /* sh_name is set in prep_headers. */ | |
5097 | symtab_hdr->sh_type = SHT_SYMTAB; | |
5098 | symtab_hdr->sh_flags = 0; | |
5099 | symtab_hdr->sh_addr = 0; | |
5100 | symtab_hdr->sh_size = 0; | |
5101 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
5102 | /* sh_link is set in assign_section_numbers. */ | |
5103 | /* sh_info is set below. */ | |
5104 | /* sh_offset is set just below. */ | |
f0e1d18a | 5105 | symtab_hdr->sh_addralign = bed->s->file_align; |
252b5132 RH |
5106 | |
5107 | off = elf_tdata (abfd)->next_file_pos; | |
5108 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | |
5109 | ||
5110 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
5111 | incorrect. We do not yet know the size of the .symtab section. | |
5112 | We correct next_file_pos below, after we do know the size. */ | |
5113 | ||
5114 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
5115 | continuously seeking to the right position in the file. */ | |
5116 | if (! info->keep_memory || max_sym_count < 20) | |
5117 | finfo.symbuf_size = 20; | |
5118 | else | |
5119 | finfo.symbuf_size = max_sym_count; | |
dc810e39 AM |
5120 | amt = finfo.symbuf_size; |
5121 | amt *= sizeof (Elf_External_Sym); | |
5122 | finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt); | |
252b5132 RH |
5123 | if (finfo.symbuf == NULL) |
5124 | goto error_return; | |
9ad5cbcf AM |
5125 | if (elf_numsections (abfd) > SHN_LORESERVE) |
5126 | { | |
5127 | amt = finfo.symbuf_size; | |
5128 | amt *= sizeof (Elf_External_Sym_Shndx); | |
5129 | finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt); | |
5130 | if (finfo.symshndxbuf == NULL) | |
5131 | goto error_return; | |
5132 | } | |
252b5132 RH |
5133 | |
5134 | /* Start writing out the symbol table. The first symbol is always a | |
5135 | dummy symbol. */ | |
9317eacc CM |
5136 | if (info->strip != strip_all |
5137 | || emit_relocs) | |
252b5132 RH |
5138 | { |
5139 | elfsym.st_value = 0; | |
5140 | elfsym.st_size = 0; | |
5141 | elfsym.st_info = 0; | |
5142 | elfsym.st_other = 0; | |
5143 | elfsym.st_shndx = SHN_UNDEF; | |
5144 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
5145 | &elfsym, bfd_und_section_ptr)) | |
5146 | goto error_return; | |
5147 | } | |
5148 | ||
5149 | #if 0 | |
5150 | /* Some standard ELF linkers do this, but we don't because it causes | |
5151 | bootstrap comparison failures. */ | |
5152 | /* Output a file symbol for the output file as the second symbol. | |
5153 | We output this even if we are discarding local symbols, although | |
5154 | I'm not sure if this is correct. */ | |
5155 | elfsym.st_value = 0; | |
5156 | elfsym.st_size = 0; | |
5157 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
5158 | elfsym.st_other = 0; | |
5159 | elfsym.st_shndx = SHN_ABS; | |
5160 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), | |
5161 | &elfsym, bfd_abs_section_ptr)) | |
5162 | goto error_return; | |
5163 | #endif | |
5164 | ||
5165 | /* Output a symbol for each section. We output these even if we are | |
5166 | discarding local symbols, since they are used for relocs. These | |
5167 | symbols have no names. We store the index of each one in the | |
5168 | index field of the section, so that we can find it again when | |
5169 | outputting relocs. */ | |
9317eacc CM |
5170 | if (info->strip != strip_all |
5171 | || emit_relocs) | |
252b5132 RH |
5172 | { |
5173 | elfsym.st_size = 0; | |
5174 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
5175 | elfsym.st_other = 0; | |
9ad5cbcf | 5176 | for (i = 1; i < elf_numsections (abfd); i++) |
252b5132 RH |
5177 | { |
5178 | o = section_from_elf_index (abfd, i); | |
5179 | if (o != NULL) | |
5180 | o->target_index = bfd_get_symcount (abfd); | |
5181 | elfsym.st_shndx = i; | |
7ad34365 | 5182 | if (info->relocateable || o == NULL) |
252b5132 RH |
5183 | elfsym.st_value = 0; |
5184 | else | |
5185 | elfsym.st_value = o->vma; | |
5186 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
5187 | &elfsym, o)) | |
5188 | goto error_return; | |
9ad5cbcf AM |
5189 | if (i == SHN_LORESERVE) |
5190 | i += SHN_HIRESERVE + 1 - SHN_LORESERVE; | |
252b5132 RH |
5191 | } |
5192 | } | |
5193 | ||
5194 | /* Allocate some memory to hold information read in from the input | |
5195 | files. */ | |
9ad5cbcf AM |
5196 | if (max_contents_size != 0) |
5197 | { | |
5198 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); | |
5199 | if (finfo.contents == NULL) | |
5200 | goto error_return; | |
5201 | } | |
5202 | ||
5203 | if (max_external_reloc_size != 0) | |
5204 | { | |
5205 | finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); | |
5206 | if (finfo.external_relocs == NULL) | |
5207 | goto error_return; | |
5208 | } | |
5209 | ||
5210 | if (max_internal_reloc_count != 0) | |
5211 | { | |
5212 | amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel; | |
5213 | amt *= sizeof (Elf_Internal_Rela); | |
5214 | finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); | |
5215 | if (finfo.internal_relocs == NULL) | |
5216 | goto error_return; | |
5217 | } | |
5218 | ||
5219 | if (max_sym_count != 0) | |
5220 | { | |
5221 | amt = max_sym_count * sizeof (Elf_External_Sym); | |
5222 | finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt); | |
5223 | if (finfo.external_syms == NULL) | |
5224 | goto error_return; | |
5225 | ||
5226 | amt = max_sym_count * sizeof (Elf_Internal_Sym); | |
5227 | finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); | |
5228 | if (finfo.internal_syms == NULL) | |
5229 | goto error_return; | |
5230 | ||
5231 | amt = max_sym_count * sizeof (long); | |
5232 | finfo.indices = (long *) bfd_malloc (amt); | |
5233 | if (finfo.indices == NULL) | |
5234 | goto error_return; | |
5235 | ||
5236 | amt = max_sym_count * sizeof (asection *); | |
5237 | finfo.sections = (asection **) bfd_malloc (amt); | |
5238 | if (finfo.sections == NULL) | |
5239 | goto error_return; | |
5240 | } | |
5241 | ||
5242 | if (max_sym_shndx_count != 0) | |
5243 | { | |
5244 | amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); | |
5245 | finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); | |
5246 | if (finfo.locsym_shndx == NULL) | |
5247 | goto error_return; | |
5248 | } | |
252b5132 RH |
5249 | |
5250 | /* Since ELF permits relocations to be against local symbols, we | |
5251 | must have the local symbols available when we do the relocations. | |
5252 | Since we would rather only read the local symbols once, and we | |
5253 | would rather not keep them in memory, we handle all the | |
5254 | relocations for a single input file at the same time. | |
5255 | ||
5256 | Unfortunately, there is no way to know the total number of local | |
5257 | symbols until we have seen all of them, and the local symbol | |
5258 | indices precede the global symbol indices. This means that when | |
5259 | we are generating relocateable output, and we see a reloc against | |
5260 | a global symbol, we can not know the symbol index until we have | |
5261 | finished examining all the local symbols to see which ones we are | |
5262 | going to output. To deal with this, we keep the relocations in | |
5263 | memory, and don't output them until the end of the link. This is | |
5264 | an unfortunate waste of memory, but I don't see a good way around | |
5265 | it. Fortunately, it only happens when performing a relocateable | |
5266 | link, which is not the common case. FIXME: If keep_memory is set | |
5267 | we could write the relocs out and then read them again; I don't | |
5268 | know how bad the memory loss will be. */ | |
5269 | ||
5270 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
5271 | sub->output_has_begun = false; | |
5272 | for (o = abfd->sections; o != NULL; o = o->next) | |
5273 | { | |
5274 | for (p = o->link_order_head; p != NULL; p = p->next) | |
5275 | { | |
5276 | if (p->type == bfd_indirect_link_order | |
5277 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
5278 | == bfd_target_elf_flavour)) | |
5279 | { | |
5280 | sub = p->u.indirect.section->owner; | |
5281 | if (! sub->output_has_begun) | |
5282 | { | |
5283 | if (! elf_link_input_bfd (&finfo, sub)) | |
5284 | goto error_return; | |
5285 | sub->output_has_begun = true; | |
5286 | } | |
5287 | } | |
5288 | else if (p->type == bfd_section_reloc_link_order | |
5289 | || p->type == bfd_symbol_reloc_link_order) | |
5290 | { | |
5291 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
5292 | goto error_return; | |
5293 | } | |
5294 | else | |
5295 | { | |
5296 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
5297 | goto error_return; | |
5298 | } | |
5299 | } | |
5300 | } | |
5301 | ||
5302 | /* That wrote out all the local symbols. Finish up the symbol table | |
5cc7c785 L |
5303 | with the global symbols. Even if we want to strip everything we |
5304 | can, we still need to deal with those global symbols that got | |
3e932841 | 5305 | converted to local in a version script. */ |
252b5132 | 5306 | |
2bd171e0 | 5307 | if (info->shared) |
252b5132 RH |
5308 | { |
5309 | /* Output any global symbols that got converted to local in a | |
5310 | version script. We do this in a separate step since ELF | |
5311 | requires all local symbols to appear prior to any global | |
5312 | symbols. FIXME: We should only do this if some global | |
5313 | symbols were, in fact, converted to become local. FIXME: | |
5314 | Will this work correctly with the Irix 5 linker? */ | |
5315 | eoinfo.failed = false; | |
5316 | eoinfo.finfo = &finfo; | |
5317 | eoinfo.localsyms = true; | |
5318 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
5319 | (PTR) &eoinfo); | |
5320 | if (eoinfo.failed) | |
5321 | return false; | |
5322 | } | |
5323 | ||
30b30c21 | 5324 | /* The sh_info field records the index of the first non local symbol. */ |
252b5132 | 5325 | symtab_hdr->sh_info = bfd_get_symcount (abfd); |
30b30c21 | 5326 | |
fc8c40a0 AM |
5327 | if (dynamic |
5328 | && finfo.dynsym_sec->output_section != bfd_abs_section_ptr) | |
30b30c21 RH |
5329 | { |
5330 | Elf_Internal_Sym sym; | |
5331 | Elf_External_Sym *dynsym = | |
a7b97311 | 5332 | (Elf_External_Sym *) finfo.dynsym_sec->contents; |
71a40b32 | 5333 | long last_local = 0; |
30b30c21 RH |
5334 | |
5335 | /* Write out the section symbols for the output sections. */ | |
5336 | if (info->shared) | |
5337 | { | |
5338 | asection *s; | |
5339 | ||
5340 | sym.st_size = 0; | |
5341 | sym.st_name = 0; | |
5342 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
5343 | sym.st_other = 0; | |
5344 | ||
5345 | for (s = abfd->sections; s != NULL; s = s->next) | |
5346 | { | |
5347 | int indx; | |
9ad5cbcf AM |
5348 | Elf_External_Sym *dest; |
5349 | ||
30b30c21 RH |
5350 | indx = elf_section_data (s)->this_idx; |
5351 | BFD_ASSERT (indx > 0); | |
5352 | sym.st_shndx = indx; | |
5353 | sym.st_value = s->vma; | |
9ad5cbcf AM |
5354 | dest = dynsym + elf_section_data (s)->dynindx; |
5355 | elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0); | |
30b30c21 RH |
5356 | } |
5357 | ||
5358 | last_local = bfd_count_sections (abfd); | |
5359 | } | |
5360 | ||
5361 | /* Write out the local dynsyms. */ | |
5362 | if (elf_hash_table (info)->dynlocal) | |
5363 | { | |
5364 | struct elf_link_local_dynamic_entry *e; | |
5365 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
5366 | { | |
318da145 | 5367 | asection *s; |
9ad5cbcf | 5368 | Elf_External_Sym *dest; |
30b30c21 | 5369 | |
b037af20 MM |
5370 | sym.st_size = e->isym.st_size; |
5371 | sym.st_other = e->isym.st_other; | |
5372 | ||
1fa0ddb3 RH |
5373 | /* Copy the internal symbol as is. |
5374 | Note that we saved a word of storage and overwrote | |
30b30c21 | 5375 | the original st_name with the dynstr_index. */ |
1fa0ddb3 | 5376 | sym = e->isym; |
30b30c21 | 5377 | |
9ad5cbcf AM |
5378 | if (e->isym.st_shndx < SHN_LORESERVE |
5379 | || e->isym.st_shndx > SHN_HIRESERVE) | |
587ff49e RH |
5380 | { |
5381 | s = bfd_section_from_elf_index (e->input_bfd, | |
5382 | e->isym.st_shndx); | |
5383 | ||
5384 | sym.st_shndx = | |
5385 | elf_section_data (s->output_section)->this_idx; | |
5386 | sym.st_value = (s->output_section->vma | |
5387 | + s->output_offset | |
5388 | + e->isym.st_value); | |
5389 | } | |
30b30c21 RH |
5390 | |
5391 | if (last_local < e->dynindx) | |
5392 | last_local = e->dynindx; | |
5393 | ||
9ad5cbcf AM |
5394 | dest = dynsym + e->dynindx; |
5395 | elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0); | |
30b30c21 RH |
5396 | } |
5397 | } | |
5398 | ||
71a40b32 ILT |
5399 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = |
5400 | last_local + 1; | |
30b30c21 | 5401 | } |
252b5132 RH |
5402 | |
5403 | /* We get the global symbols from the hash table. */ | |
5404 | eoinfo.failed = false; | |
5405 | eoinfo.localsyms = false; | |
5406 | eoinfo.finfo = &finfo; | |
5407 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
5408 | (PTR) &eoinfo); | |
5409 | if (eoinfo.failed) | |
5410 | return false; | |
5411 | ||
587ff49e RH |
5412 | /* If backend needs to output some symbols not present in the hash |
5413 | table, do it now. */ | |
5414 | if (bed->elf_backend_output_arch_syms) | |
5415 | { | |
dc810e39 AM |
5416 | typedef boolean (*out_sym_func) PARAMS ((PTR, const char *, |
5417 | Elf_Internal_Sym *, | |
5418 | asection *)); | |
5419 | ||
5420 | if (! ((*bed->elf_backend_output_arch_syms) | |
5421 | (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym))) | |
587ff49e | 5422 | return false; |
3e932841 | 5423 | } |
587ff49e | 5424 | |
252b5132 RH |
5425 | /* Flush all symbols to the file. */ |
5426 | if (! elf_link_flush_output_syms (&finfo)) | |
5427 | return false; | |
5428 | ||
5429 | /* Now we know the size of the symtab section. */ | |
5430 | off += symtab_hdr->sh_size; | |
5431 | ||
5432 | /* Finish up and write out the symbol string table (.strtab) | |
5433 | section. */ | |
5434 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
5435 | /* sh_name was set in prep_headers. */ | |
5436 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
5437 | symstrtab_hdr->sh_flags = 0; | |
5438 | symstrtab_hdr->sh_addr = 0; | |
5439 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
5440 | symstrtab_hdr->sh_entsize = 0; | |
5441 | symstrtab_hdr->sh_link = 0; | |
5442 | symstrtab_hdr->sh_info = 0; | |
5443 | /* sh_offset is set just below. */ | |
5444 | symstrtab_hdr->sh_addralign = 1; | |
5445 | ||
5446 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); | |
5447 | elf_tdata (abfd)->next_file_pos = off; | |
5448 | ||
5449 | if (bfd_get_symcount (abfd) > 0) | |
5450 | { | |
5451 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
5452 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
5453 | return false; | |
5454 | } | |
5455 | ||
5456 | /* Adjust the relocs to have the correct symbol indices. */ | |
5457 | for (o = abfd->sections; o != NULL; o = o->next) | |
5458 | { | |
252b5132 RH |
5459 | if ((o->flags & SEC_RELOC) == 0) |
5460 | continue; | |
5461 | ||
3e932841 | 5462 | elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr, |
31367b81 MM |
5463 | elf_section_data (o)->rel_count, |
5464 | elf_section_data (o)->rel_hashes); | |
5465 | if (elf_section_data (o)->rel_hdr2 != NULL) | |
5466 | elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2, | |
5467 | elf_section_data (o)->rel_count2, | |
3e932841 | 5468 | (elf_section_data (o)->rel_hashes |
31367b81 | 5469 | + elf_section_data (o)->rel_count)); |
252b5132 RH |
5470 | |
5471 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
5472 | trying to swap the relocs out itself. */ | |
5473 | o->reloc_count = 0; | |
5474 | } | |
5475 | ||
db6751f2 JJ |
5476 | if (dynamic && info->combreloc && dynobj != NULL) |
5477 | relativecount = elf_link_sort_relocs (abfd, info, &reldyn); | |
5478 | ||
252b5132 RH |
5479 | /* If we are linking against a dynamic object, or generating a |
5480 | shared library, finish up the dynamic linking information. */ | |
5481 | if (dynamic) | |
5482 | { | |
5483 | Elf_External_Dyn *dyncon, *dynconend; | |
5484 | ||
5485 | /* Fix up .dynamic entries. */ | |
5486 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
5487 | BFD_ASSERT (o != NULL); | |
5488 | ||
5489 | dyncon = (Elf_External_Dyn *) o->contents; | |
5490 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
5491 | for (; dyncon < dynconend; dyncon++) | |
5492 | { | |
5493 | Elf_Internal_Dyn dyn; | |
5494 | const char *name; | |
5495 | unsigned int type; | |
5496 | ||
5497 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
5498 | ||
5499 | switch (dyn.d_tag) | |
5500 | { | |
5501 | default: | |
5502 | break; | |
db6751f2 JJ |
5503 | case DT_NULL: |
5504 | if (relativecount > 0 && dyncon + 1 < dynconend) | |
5505 | { | |
5506 | switch (elf_section_data (reldyn)->this_hdr.sh_type) | |
5507 | { | |
5508 | case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; | |
5509 | case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; | |
5510 | default: break; | |
5511 | } | |
5512 | if (dyn.d_tag != DT_NULL) | |
5513 | { | |
5514 | dyn.d_un.d_val = relativecount; | |
5515 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5516 | relativecount = 0; | |
5517 | } | |
5518 | } | |
5519 | break; | |
252b5132 | 5520 | case DT_INIT: |
f0c2e336 | 5521 | name = info->init_function; |
252b5132 RH |
5522 | goto get_sym; |
5523 | case DT_FINI: | |
f0c2e336 | 5524 | name = info->fini_function; |
252b5132 RH |
5525 | get_sym: |
5526 | { | |
5527 | struct elf_link_hash_entry *h; | |
5528 | ||
5529 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
5530 | false, false, true); | |
5531 | if (h != NULL | |
5532 | && (h->root.type == bfd_link_hash_defined | |
5533 | || h->root.type == bfd_link_hash_defweak)) | |
5534 | { | |
5535 | dyn.d_un.d_val = h->root.u.def.value; | |
5536 | o = h->root.u.def.section; | |
5537 | if (o->output_section != NULL) | |
5538 | dyn.d_un.d_val += (o->output_section->vma | |
5539 | + o->output_offset); | |
5540 | else | |
5541 | { | |
5542 | /* The symbol is imported from another shared | |
5543 | library and does not apply to this one. */ | |
5544 | dyn.d_un.d_val = 0; | |
5545 | } | |
5546 | ||
5547 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5548 | } | |
5549 | } | |
5550 | break; | |
5551 | ||
5552 | case DT_HASH: | |
5553 | name = ".hash"; | |
5554 | goto get_vma; | |
5555 | case DT_STRTAB: | |
5556 | name = ".dynstr"; | |
5557 | goto get_vma; | |
5558 | case DT_SYMTAB: | |
5559 | name = ".dynsym"; | |
5560 | goto get_vma; | |
5561 | case DT_VERDEF: | |
5562 | name = ".gnu.version_d"; | |
5563 | goto get_vma; | |
5564 | case DT_VERNEED: | |
5565 | name = ".gnu.version_r"; | |
5566 | goto get_vma; | |
5567 | case DT_VERSYM: | |
5568 | name = ".gnu.version"; | |
5569 | get_vma: | |
5570 | o = bfd_get_section_by_name (abfd, name); | |
5571 | BFD_ASSERT (o != NULL); | |
5572 | dyn.d_un.d_ptr = o->vma; | |
5573 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5574 | break; | |
5575 | ||
5576 | case DT_REL: | |
5577 | case DT_RELA: | |
5578 | case DT_RELSZ: | |
5579 | case DT_RELASZ: | |
5580 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
5581 | type = SHT_REL; | |
5582 | else | |
5583 | type = SHT_RELA; | |
5584 | dyn.d_un.d_val = 0; | |
9ad5cbcf | 5585 | for (i = 1; i < elf_numsections (abfd); i++) |
252b5132 RH |
5586 | { |
5587 | Elf_Internal_Shdr *hdr; | |
5588 | ||
5589 | hdr = elf_elfsections (abfd)[i]; | |
5590 | if (hdr->sh_type == type | |
5591 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
5592 | { | |
5593 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
5594 | dyn.d_un.d_val += hdr->sh_size; | |
5595 | else | |
5596 | { | |
5597 | if (dyn.d_un.d_val == 0 | |
5598 | || hdr->sh_addr < dyn.d_un.d_val) | |
5599 | dyn.d_un.d_val = hdr->sh_addr; | |
5600 | } | |
5601 | } | |
5602 | } | |
5603 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5604 | break; | |
5605 | } | |
5606 | } | |
5607 | } | |
5608 | ||
5609 | /* If we have created any dynamic sections, then output them. */ | |
5610 | if (dynobj != NULL) | |
5611 | { | |
5612 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
5613 | goto error_return; | |
5614 | ||
5615 | for (o = dynobj->sections; o != NULL; o = o->next) | |
5616 | { | |
5617 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
fc8c40a0 AM |
5618 | || o->_raw_size == 0 |
5619 | || o->output_section == bfd_abs_section_ptr) | |
252b5132 RH |
5620 | continue; |
5621 | if ((o->flags & SEC_LINKER_CREATED) == 0) | |
5622 | { | |
5623 | /* At this point, we are only interested in sections | |
5624 | created by elf_link_create_dynamic_sections. */ | |
5625 | continue; | |
5626 | } | |
5627 | if ((elf_section_data (o->output_section)->this_hdr.sh_type | |
5628 | != SHT_STRTAB) | |
5629 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
5630 | { | |
5631 | if (! bfd_set_section_contents (abfd, o->output_section, | |
dc810e39 AM |
5632 | o->contents, |
5633 | (file_ptr) o->output_offset, | |
252b5132 RH |
5634 | o->_raw_size)) |
5635 | goto error_return; | |
5636 | } | |
5637 | else | |
5638 | { | |
252b5132 RH |
5639 | /* The contents of the .dynstr section are actually in a |
5640 | stringtab. */ | |
5641 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
5642 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
2b0f7ef9 JJ |
5643 | || ! _bfd_elf_strtab_emit (abfd, |
5644 | elf_hash_table (info)->dynstr)) | |
252b5132 RH |
5645 | goto error_return; |
5646 | } | |
5647 | } | |
5648 | } | |
5649 | ||
5650 | /* If we have optimized stabs strings, output them. */ | |
5651 | if (elf_hash_table (info)->stab_info != NULL) | |
5652 | { | |
5653 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) | |
5654 | goto error_return; | |
5655 | } | |
5656 | ||
57a72197 | 5657 | if (info->eh_frame_hdr && elf_hash_table (info)->dynobj) |
65765700 JJ |
5658 | { |
5659 | o = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
5660 | ".eh_frame_hdr"); | |
5661 | if (o | |
5662 | && (elf_section_data (o)->sec_info_type | |
5663 | == ELF_INFO_TYPE_EH_FRAME_HDR)) | |
5664 | { | |
5665 | if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o)) | |
5666 | goto error_return; | |
5667 | } | |
5668 | } | |
5669 | ||
252b5132 RH |
5670 | if (finfo.symstrtab != NULL) |
5671 | _bfd_stringtab_free (finfo.symstrtab); | |
5672 | if (finfo.contents != NULL) | |
5673 | free (finfo.contents); | |
5674 | if (finfo.external_relocs != NULL) | |
5675 | free (finfo.external_relocs); | |
5676 | if (finfo.internal_relocs != NULL) | |
5677 | free (finfo.internal_relocs); | |
5678 | if (finfo.external_syms != NULL) | |
5679 | free (finfo.external_syms); | |
9ad5cbcf AM |
5680 | if (finfo.locsym_shndx != NULL) |
5681 | free (finfo.locsym_shndx); | |
252b5132 RH |
5682 | if (finfo.internal_syms != NULL) |
5683 | free (finfo.internal_syms); | |
5684 | if (finfo.indices != NULL) | |
5685 | free (finfo.indices); | |
5686 | if (finfo.sections != NULL) | |
5687 | free (finfo.sections); | |
5688 | if (finfo.symbuf != NULL) | |
5689 | free (finfo.symbuf); | |
9ad5cbcf AM |
5690 | if (finfo.symshndxbuf != NULL) |
5691 | free (finfo.symbuf); | |
252b5132 RH |
5692 | for (o = abfd->sections; o != NULL; o = o->next) |
5693 | { | |
5694 | if ((o->flags & SEC_RELOC) != 0 | |
5695 | && elf_section_data (o)->rel_hashes != NULL) | |
9317eacc | 5696 | free (elf_section_data (o)->rel_hashes); |
252b5132 RH |
5697 | } |
5698 | ||
5699 | elf_tdata (abfd)->linker = true; | |
5700 | ||
5701 | return true; | |
5702 | ||
5703 | error_return: | |
5704 | if (finfo.symstrtab != NULL) | |
5705 | _bfd_stringtab_free (finfo.symstrtab); | |
5706 | if (finfo.contents != NULL) | |
5707 | free (finfo.contents); | |
5708 | if (finfo.external_relocs != NULL) | |
5709 | free (finfo.external_relocs); | |
5710 | if (finfo.internal_relocs != NULL) | |
5711 | free (finfo.internal_relocs); | |
5712 | if (finfo.external_syms != NULL) | |
5713 | free (finfo.external_syms); | |
9ad5cbcf AM |
5714 | if (finfo.locsym_shndx != NULL) |
5715 | free (finfo.locsym_shndx); | |
252b5132 RH |
5716 | if (finfo.internal_syms != NULL) |
5717 | free (finfo.internal_syms); | |
5718 | if (finfo.indices != NULL) | |
5719 | free (finfo.indices); | |
5720 | if (finfo.sections != NULL) | |
5721 | free (finfo.sections); | |
5722 | if (finfo.symbuf != NULL) | |
5723 | free (finfo.symbuf); | |
9ad5cbcf AM |
5724 | if (finfo.symshndxbuf != NULL) |
5725 | free (finfo.symbuf); | |
252b5132 RH |
5726 | for (o = abfd->sections; o != NULL; o = o->next) |
5727 | { | |
5728 | if ((o->flags & SEC_RELOC) != 0 | |
5729 | && elf_section_data (o)->rel_hashes != NULL) | |
5730 | free (elf_section_data (o)->rel_hashes); | |
5731 | } | |
5732 | ||
5733 | return false; | |
5734 | } | |
5735 | ||
5736 | /* Add a symbol to the output symbol table. */ | |
5737 | ||
5738 | static boolean | |
5739 | elf_link_output_sym (finfo, name, elfsym, input_sec) | |
5740 | struct elf_final_link_info *finfo; | |
5741 | const char *name; | |
5742 | Elf_Internal_Sym *elfsym; | |
5743 | asection *input_sec; | |
5744 | { | |
9ad5cbcf AM |
5745 | Elf_External_Sym *dest; |
5746 | Elf_External_Sym_Shndx *destshndx; | |
5747 | ||
252b5132 RH |
5748 | boolean (*output_symbol_hook) PARAMS ((bfd *, |
5749 | struct bfd_link_info *info, | |
5750 | const char *, | |
5751 | Elf_Internal_Sym *, | |
5752 | asection *)); | |
5753 | ||
5754 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
5755 | elf_backend_link_output_symbol_hook; | |
5756 | if (output_symbol_hook != NULL) | |
5757 | { | |
5758 | if (! ((*output_symbol_hook) | |
5759 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
5760 | return false; | |
5761 | } | |
5762 | ||
5763 | if (name == (const char *) NULL || *name == '\0') | |
5764 | elfsym->st_name = 0; | |
5765 | else if (input_sec->flags & SEC_EXCLUDE) | |
5766 | elfsym->st_name = 0; | |
5767 | else | |
5768 | { | |
5769 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
a7b97311 | 5770 | name, true, false); |
252b5132 RH |
5771 | if (elfsym->st_name == (unsigned long) -1) |
5772 | return false; | |
5773 | } | |
5774 | ||
5775 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
5776 | { | |
5777 | if (! elf_link_flush_output_syms (finfo)) | |
5778 | return false; | |
5779 | } | |
5780 | ||
9ad5cbcf AM |
5781 | dest = finfo->symbuf + finfo->symbuf_count; |
5782 | destshndx = finfo->symshndxbuf; | |
5783 | if (destshndx != NULL) | |
5784 | destshndx += finfo->symbuf_count; | |
5785 | elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx); | |
252b5132 RH |
5786 | ++finfo->symbuf_count; |
5787 | ||
5788 | ++ bfd_get_symcount (finfo->output_bfd); | |
5789 | ||
5790 | return true; | |
5791 | } | |
5792 | ||
5793 | /* Flush the output symbols to the file. */ | |
5794 | ||
5795 | static boolean | |
5796 | elf_link_flush_output_syms (finfo) | |
5797 | struct elf_final_link_info *finfo; | |
5798 | { | |
5799 | if (finfo->symbuf_count > 0) | |
5800 | { | |
9ad5cbcf | 5801 | Elf_Internal_Shdr *hdr; |
dc810e39 AM |
5802 | file_ptr pos; |
5803 | bfd_size_type amt; | |
252b5132 | 5804 | |
9ad5cbcf AM |
5805 | hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr; |
5806 | pos = hdr->sh_offset + hdr->sh_size; | |
dc810e39 AM |
5807 | amt = finfo->symbuf_count * sizeof (Elf_External_Sym); |
5808 | if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0 | |
5809 | || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt) | |
252b5132 RH |
5810 | return false; |
5811 | ||
9ad5cbcf AM |
5812 | hdr->sh_size += amt; |
5813 | ||
5814 | if (finfo->symshndxbuf != NULL) | |
5815 | { | |
5816 | hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr; | |
5817 | pos = hdr->sh_offset + hdr->sh_size; | |
5818 | amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx); | |
5819 | if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0 | |
5820 | || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd) | |
5821 | != amt)) | |
5822 | return false; | |
5823 | ||
5824 | hdr->sh_size += amt; | |
5825 | } | |
252b5132 RH |
5826 | |
5827 | finfo->symbuf_count = 0; | |
5828 | } | |
5829 | ||
5830 | return true; | |
5831 | } | |
5832 | ||
f5fa8ca2 JJ |
5833 | /* Adjust all external symbols pointing into SEC_MERGE sections |
5834 | to reflect the object merging within the sections. */ | |
5835 | ||
5836 | static boolean | |
5837 | elf_link_sec_merge_syms (h, data) | |
5838 | struct elf_link_hash_entry *h; | |
5839 | PTR data; | |
5840 | { | |
5841 | asection *sec; | |
5842 | ||
5843 | if ((h->root.type == bfd_link_hash_defined | |
5844 | || h->root.type == bfd_link_hash_defweak) | |
5845 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE) | |
65765700 | 5846 | && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE) |
f5fa8ca2 JJ |
5847 | { |
5848 | bfd *output_bfd = (bfd *) data; | |
5849 | ||
5850 | h->root.u.def.value = | |
5851 | _bfd_merged_section_offset (output_bfd, | |
5852 | &h->root.u.def.section, | |
65765700 | 5853 | elf_section_data (sec)->sec_info, |
f5fa8ca2 JJ |
5854 | h->root.u.def.value, (bfd_vma) 0); |
5855 | } | |
5856 | ||
5857 | return true; | |
5858 | } | |
5859 | ||
252b5132 RH |
5860 | /* Add an external symbol to the symbol table. This is called from |
5861 | the hash table traversal routine. When generating a shared object, | |
5862 | we go through the symbol table twice. The first time we output | |
5863 | anything that might have been forced to local scope in a version | |
5864 | script. The second time we output the symbols that are still | |
5865 | global symbols. */ | |
5866 | ||
5867 | static boolean | |
5868 | elf_link_output_extsym (h, data) | |
5869 | struct elf_link_hash_entry *h; | |
5870 | PTR data; | |
5871 | { | |
5872 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; | |
5873 | struct elf_final_link_info *finfo = eoinfo->finfo; | |
5874 | boolean strip; | |
5875 | Elf_Internal_Sym sym; | |
5876 | asection *input_sec; | |
5877 | ||
5878 | /* Decide whether to output this symbol in this pass. */ | |
5879 | if (eoinfo->localsyms) | |
5880 | { | |
5881 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) | |
5882 | return true; | |
5883 | } | |
5884 | else | |
5885 | { | |
5886 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
5887 | return true; | |
5888 | } | |
5889 | ||
5890 | /* If we are not creating a shared library, and this symbol is | |
5891 | referenced by a shared library but is not defined anywhere, then | |
5892 | warn that it is undefined. If we do not do this, the runtime | |
5893 | linker will complain that the symbol is undefined when the | |
5894 | program is run. We don't have to worry about symbols that are | |
5895 | referenced by regular files, because we will already have issued | |
5896 | warnings for them. */ | |
5897 | if (! finfo->info->relocateable | |
b79e8c78 | 5898 | && ! finfo->info->allow_shlib_undefined |
e45bf863 | 5899 | && ! finfo->info->shared |
252b5132 RH |
5900 | && h->root.type == bfd_link_hash_undefined |
5901 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
5902 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
5903 | { | |
5904 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
5905 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
dc810e39 | 5906 | (asection *) NULL, (bfd_vma) 0, true))) |
252b5132 RH |
5907 | { |
5908 | eoinfo->failed = true; | |
5909 | return false; | |
5910 | } | |
5911 | } | |
5912 | ||
5913 | /* We don't want to output symbols that have never been mentioned by | |
5914 | a regular file, or that we have been told to strip. However, if | |
5915 | h->indx is set to -2, the symbol is used by a reloc and we must | |
5916 | output it. */ | |
5917 | if (h->indx == -2) | |
5918 | strip = false; | |
5919 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
5920 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
5921 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
5922 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
5923 | strip = true; | |
5924 | else if (finfo->info->strip == strip_all | |
5925 | || (finfo->info->strip == strip_some | |
5926 | && bfd_hash_lookup (finfo->info->keep_hash, | |
5927 | h->root.root.string, | |
5928 | false, false) == NULL)) | |
5929 | strip = true; | |
5930 | else | |
5931 | strip = false; | |
5932 | ||
5933 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
2bd171e0 ILT |
5934 | nothing else to do unless it is a forced local symbol. */ |
5935 | if (strip | |
5936 | && h->dynindx == -1 | |
5937 | && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) | |
252b5132 RH |
5938 | return true; |
5939 | ||
5940 | sym.st_value = 0; | |
5941 | sym.st_size = h->size; | |
5942 | sym.st_other = h->other; | |
5943 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
5944 | sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); | |
5945 | else if (h->root.type == bfd_link_hash_undefweak | |
5946 | || h->root.type == bfd_link_hash_defweak) | |
5947 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
5948 | else | |
5949 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
5950 | ||
5951 | switch (h->root.type) | |
5952 | { | |
5953 | default: | |
5954 | case bfd_link_hash_new: | |
5955 | abort (); | |
5956 | return false; | |
5957 | ||
5958 | case bfd_link_hash_undefined: | |
5959 | input_sec = bfd_und_section_ptr; | |
5960 | sym.st_shndx = SHN_UNDEF; | |
5961 | break; | |
5962 | ||
5963 | case bfd_link_hash_undefweak: | |
5964 | input_sec = bfd_und_section_ptr; | |
5965 | sym.st_shndx = SHN_UNDEF; | |
5966 | break; | |
5967 | ||
5968 | case bfd_link_hash_defined: | |
5969 | case bfd_link_hash_defweak: | |
5970 | { | |
5971 | input_sec = h->root.u.def.section; | |
5972 | if (input_sec->output_section != NULL) | |
5973 | { | |
5974 | sym.st_shndx = | |
5975 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
5976 | input_sec->output_section); | |
9ad5cbcf | 5977 | if (sym.st_shndx == SHN_BAD) |
252b5132 RH |
5978 | { |
5979 | (*_bfd_error_handler) | |
5980 | (_("%s: could not find output section %s for input section %s"), | |
5981 | bfd_get_filename (finfo->output_bfd), | |
5982 | input_sec->output_section->name, | |
5983 | input_sec->name); | |
5984 | eoinfo->failed = true; | |
5985 | return false; | |
5986 | } | |
5987 | ||
5988 | /* ELF symbols in relocateable files are section relative, | |
5989 | but in nonrelocateable files they are virtual | |
5990 | addresses. */ | |
5991 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
5992 | if (! finfo->info->relocateable) | |
5993 | sym.st_value += input_sec->output_section->vma; | |
5994 | } | |
5995 | else | |
5996 | { | |
5997 | BFD_ASSERT (input_sec->owner == NULL | |
5998 | || (input_sec->owner->flags & DYNAMIC) != 0); | |
5999 | sym.st_shndx = SHN_UNDEF; | |
6000 | input_sec = bfd_und_section_ptr; | |
6001 | } | |
6002 | } | |
6003 | break; | |
6004 | ||
6005 | case bfd_link_hash_common: | |
6006 | input_sec = h->root.u.c.p->section; | |
6007 | sym.st_shndx = SHN_COMMON; | |
6008 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
6009 | break; | |
6010 | ||
6011 | case bfd_link_hash_indirect: | |
6012 | /* These symbols are created by symbol versioning. They point | |
6013 | to the decorated version of the name. For example, if the | |
6014 | symbol foo@@GNU_1.2 is the default, which should be used when | |
6015 | foo is used with no version, then we add an indirect symbol | |
6016 | foo which points to foo@@GNU_1.2. We ignore these symbols, | |
94b6c40a L |
6017 | since the indirected symbol is already in the hash table. */ |
6018 | return true; | |
252b5132 | 6019 | |
252b5132 RH |
6020 | case bfd_link_hash_warning: |
6021 | /* We can't represent these symbols in ELF, although a warning | |
6022 | symbol may have come from a .gnu.warning.SYMBOL section. We | |
6023 | just put the target symbol in the hash table. If the target | |
6024 | symbol does not really exist, don't do anything. */ | |
6025 | if (h->root.u.i.link->type == bfd_link_hash_new) | |
6026 | return true; | |
6027 | return (elf_link_output_extsym | |
6028 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); | |
6029 | } | |
6030 | ||
6031 | /* Give the processor backend a chance to tweak the symbol value, | |
6032 | and also to finish up anything that needs to be done for this | |
6033 | symbol. */ | |
6034 | if ((h->dynindx != -1 | |
6035 | || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
6036 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
6037 | { | |
6038 | struct elf_backend_data *bed; | |
6039 | ||
6040 | bed = get_elf_backend_data (finfo->output_bfd); | |
6041 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
6042 | (finfo->output_bfd, finfo->info, h, &sym))) | |
6043 | { | |
6044 | eoinfo->failed = true; | |
6045 | return false; | |
6046 | } | |
6047 | } | |
6048 | ||
6049 | /* If we are marking the symbol as undefined, and there are no | |
6050 | non-weak references to this symbol from a regular object, then | |
91d3970e ILT |
6051 | mark the symbol as weak undefined; if there are non-weak |
6052 | references, mark the symbol as strong. We can't do this earlier, | |
252b5132 RH |
6053 | because it might not be marked as undefined until the |
6054 | finish_dynamic_symbol routine gets through with it. */ | |
6055 | if (sym.st_shndx == SHN_UNDEF | |
252b5132 | 6056 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 |
a7b97311 AM |
6057 | && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL |
6058 | || ELF_ST_BIND (sym.st_info) == STB_WEAK)) | |
91d3970e ILT |
6059 | { |
6060 | int bindtype; | |
6061 | ||
6062 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0) | |
6063 | bindtype = STB_GLOBAL; | |
6064 | else | |
6065 | bindtype = STB_WEAK; | |
6066 | sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info)); | |
6067 | } | |
252b5132 | 6068 | |
32c092c3 | 6069 | /* If a symbol is not defined locally, we clear the visibility |
3e932841 | 6070 | field. */ |
2cd533b7 L |
6071 | if (! finfo->info->relocateable |
6072 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
a7b97311 | 6073 | sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other); |
32c092c3 | 6074 | |
252b5132 RH |
6075 | /* If this symbol should be put in the .dynsym section, then put it |
6076 | there now. We have already know the symbol index. We also fill | |
6077 | in the entry in the .hash section. */ | |
6078 | if (h->dynindx != -1 | |
6079 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
6080 | { | |
6081 | size_t bucketcount; | |
6082 | size_t bucket; | |
c7ac6ff8 | 6083 | size_t hash_entry_size; |
252b5132 RH |
6084 | bfd_byte *bucketpos; |
6085 | bfd_vma chain; | |
dc810e39 | 6086 | Elf_External_Sym *esym; |
252b5132 RH |
6087 | |
6088 | sym.st_name = h->dynstr_index; | |
dc810e39 | 6089 | esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx; |
9ad5cbcf | 6090 | elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0); |
252b5132 RH |
6091 | |
6092 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
6093 | bucket = h->elf_hash_value % bucketcount; | |
3e932841 | 6094 | hash_entry_size |
c7ac6ff8 | 6095 | = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize; |
252b5132 | 6096 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents |
c7ac6ff8 MM |
6097 | + (bucket + 2) * hash_entry_size); |
6098 | chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos); | |
dc810e39 AM |
6099 | bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx, |
6100 | bucketpos); | |
c7ac6ff8 MM |
6101 | bfd_put (8 * hash_entry_size, finfo->output_bfd, chain, |
6102 | ((bfd_byte *) finfo->hash_sec->contents | |
6103 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); | |
252b5132 RH |
6104 | |
6105 | if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL) | |
6106 | { | |
6107 | Elf_Internal_Versym iversym; | |
dc810e39 | 6108 | Elf_External_Versym *eversym; |
252b5132 RH |
6109 | |
6110 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
6111 | { | |
6112 | if (h->verinfo.verdef == NULL) | |
6113 | iversym.vs_vers = 0; | |
6114 | else | |
6115 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | |
6116 | } | |
6117 | else | |
6118 | { | |
6119 | if (h->verinfo.vertree == NULL) | |
6120 | iversym.vs_vers = 1; | |
6121 | else | |
6122 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; | |
6123 | } | |
6124 | ||
6125 | if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0) | |
6126 | iversym.vs_vers |= VERSYM_HIDDEN; | |
6127 | ||
dc810e39 AM |
6128 | eversym = (Elf_External_Versym *) finfo->symver_sec->contents; |
6129 | eversym += h->dynindx; | |
6130 | _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym); | |
252b5132 RH |
6131 | } |
6132 | } | |
6133 | ||
6134 | /* If we're stripping it, then it was just a dynamic symbol, and | |
6135 | there's nothing else to do. */ | |
6136 | if (strip) | |
6137 | return true; | |
6138 | ||
6139 | h->indx = bfd_get_symcount (finfo->output_bfd); | |
6140 | ||
6141 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) | |
6142 | { | |
6143 | eoinfo->failed = true; | |
6144 | return false; | |
6145 | } | |
6146 | ||
6147 | return true; | |
6148 | } | |
6149 | ||
23bc299b MM |
6150 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which |
6151 | originated from the section given by INPUT_REL_HDR) to the | |
6152 | OUTPUT_BFD. */ | |
6153 | ||
6154 | static void | |
3e932841 | 6155 | elf_link_output_relocs (output_bfd, input_section, input_rel_hdr, |
23bc299b MM |
6156 | internal_relocs) |
6157 | bfd *output_bfd; | |
6158 | asection *input_section; | |
6159 | Elf_Internal_Shdr *input_rel_hdr; | |
6160 | Elf_Internal_Rela *internal_relocs; | |
6161 | { | |
6162 | Elf_Internal_Rela *irela; | |
6163 | Elf_Internal_Rela *irelaend; | |
6164 | Elf_Internal_Shdr *output_rel_hdr; | |
6165 | asection *output_section; | |
7442e600 | 6166 | unsigned int *rel_countp = NULL; |
32f0787a | 6167 | struct elf_backend_data *bed; |
dc810e39 | 6168 | bfd_size_type amt; |
23bc299b MM |
6169 | |
6170 | output_section = input_section->output_section; | |
6171 | output_rel_hdr = NULL; | |
6172 | ||
3e932841 | 6173 | if (elf_section_data (output_section)->rel_hdr.sh_entsize |
23bc299b MM |
6174 | == input_rel_hdr->sh_entsize) |
6175 | { | |
6176 | output_rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
6177 | rel_countp = &elf_section_data (output_section)->rel_count; | |
6178 | } | |
6179 | else if (elf_section_data (output_section)->rel_hdr2 | |
6180 | && (elf_section_data (output_section)->rel_hdr2->sh_entsize | |
6181 | == input_rel_hdr->sh_entsize)) | |
6182 | { | |
6183 | output_rel_hdr = elf_section_data (output_section)->rel_hdr2; | |
6184 | rel_countp = &elf_section_data (output_section)->rel_count2; | |
6185 | } | |
6186 | ||
6187 | BFD_ASSERT (output_rel_hdr != NULL); | |
32f0787a UC |
6188 | |
6189 | bed = get_elf_backend_data (output_bfd); | |
23bc299b | 6190 | irela = internal_relocs; |
209f668e NC |
6191 | irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr) |
6192 | * bed->s->int_rels_per_ext_rel; | |
6193 | ||
23bc299b MM |
6194 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) |
6195 | { | |
6196 | Elf_External_Rel *erel; | |
209f668e | 6197 | Elf_Internal_Rel *irel; |
dc810e39 AM |
6198 | |
6199 | amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel); | |
6200 | irel = (Elf_Internal_Rel *) bfd_zmalloc (amt); | |
209f668e NC |
6201 | if (irel == NULL) |
6202 | { | |
6203 | (*_bfd_error_handler) (_("Error: out of memory")); | |
6204 | abort (); | |
6205 | } | |
23bc299b MM |
6206 | |
6207 | erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp); | |
209f668e | 6208 | for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++) |
23bc299b | 6209 | { |
4e8a9624 | 6210 | unsigned int i; |
dc810e39 | 6211 | |
209f668e NC |
6212 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) |
6213 | { | |
6214 | irel[i].r_offset = irela[i].r_offset; | |
6215 | irel[i].r_info = irela[i].r_info; | |
6216 | BFD_ASSERT (irela[i].r_addend == 0); | |
6217 | } | |
23bc299b | 6218 | |
32f0787a | 6219 | if (bed->s->swap_reloc_out) |
209f668e | 6220 | (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel); |
32f0787a | 6221 | else |
209f668e | 6222 | elf_swap_reloc_out (output_bfd, irel, erel); |
23bc299b | 6223 | } |
209f668e NC |
6224 | |
6225 | free (irel); | |
23bc299b MM |
6226 | } |
6227 | else | |
6228 | { | |
6229 | Elf_External_Rela *erela; | |
6230 | ||
209f668e NC |
6231 | BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); |
6232 | ||
23bc299b | 6233 | erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp); |
209f668e | 6234 | for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++) |
32f0787a UC |
6235 | if (bed->s->swap_reloca_out) |
6236 | (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela); | |
6237 | else | |
6238 | elf_swap_reloca_out (output_bfd, irela, erela); | |
23bc299b MM |
6239 | } |
6240 | ||
6241 | /* Bump the counter, so that we know where to add the next set of | |
6242 | relocations. */ | |
d9bc7a44 | 6243 | *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr); |
23bc299b MM |
6244 | } |
6245 | ||
252b5132 RH |
6246 | /* Link an input file into the linker output file. This function |
6247 | handles all the sections and relocations of the input file at once. | |
6248 | This is so that we only have to read the local symbols once, and | |
6249 | don't have to keep them in memory. */ | |
6250 | ||
6251 | static boolean | |
6252 | elf_link_input_bfd (finfo, input_bfd) | |
6253 | struct elf_final_link_info *finfo; | |
6254 | bfd *input_bfd; | |
6255 | { | |
6256 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
6257 | bfd *, asection *, bfd_byte *, | |
6258 | Elf_Internal_Rela *, | |
6259 | Elf_Internal_Sym *, asection **)); | |
6260 | bfd *output_bfd; | |
6261 | Elf_Internal_Shdr *symtab_hdr; | |
9ad5cbcf | 6262 | Elf_Internal_Shdr *shndx_hdr; |
252b5132 RH |
6263 | size_t locsymcount; |
6264 | size_t extsymoff; | |
6265 | Elf_External_Sym *external_syms; | |
6266 | Elf_External_Sym *esym; | |
6267 | Elf_External_Sym *esymend; | |
9ad5cbcf AM |
6268 | Elf_External_Sym_Shndx *shndx_buf; |
6269 | Elf_External_Sym_Shndx *shndx; | |
252b5132 RH |
6270 | Elf_Internal_Sym *isym; |
6271 | long *pindex; | |
6272 | asection **ppsection; | |
6273 | asection *o; | |
c7ac6ff8 | 6274 | struct elf_backend_data *bed; |
9317eacc | 6275 | boolean emit_relocs; |
f8deed93 | 6276 | struct elf_link_hash_entry **sym_hashes; |
252b5132 RH |
6277 | |
6278 | output_bfd = finfo->output_bfd; | |
c7ac6ff8 MM |
6279 | bed = get_elf_backend_data (output_bfd); |
6280 | relocate_section = bed->elf_backend_relocate_section; | |
252b5132 RH |
6281 | |
6282 | /* If this is a dynamic object, we don't want to do anything here: | |
6283 | we don't want the local symbols, and we don't want the section | |
6284 | contents. */ | |
6285 | if ((input_bfd->flags & DYNAMIC) != 0) | |
6286 | return true; | |
6287 | ||
9317eacc CM |
6288 | emit_relocs = (finfo->info->relocateable |
6289 | || finfo->info->emitrelocations | |
6290 | || bed->elf_backend_emit_relocs); | |
6291 | ||
252b5132 RH |
6292 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
6293 | if (elf_bad_symtab (input_bfd)) | |
6294 | { | |
6295 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
6296 | extsymoff = 0; | |
6297 | } | |
6298 | else | |
6299 | { | |
6300 | locsymcount = symtab_hdr->sh_info; | |
6301 | extsymoff = symtab_hdr->sh_info; | |
6302 | } | |
6303 | ||
6304 | /* Read the local symbols. */ | |
6305 | if (symtab_hdr->contents != NULL) | |
6306 | external_syms = (Elf_External_Sym *) symtab_hdr->contents; | |
6307 | else if (locsymcount == 0) | |
6308 | external_syms = NULL; | |
6309 | else | |
6310 | { | |
dc810e39 | 6311 | bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym); |
252b5132 RH |
6312 | external_syms = finfo->external_syms; |
6313 | if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
dc810e39 | 6314 | || bfd_bread (external_syms, amt, input_bfd) != amt) |
252b5132 RH |
6315 | return false; |
6316 | } | |
6317 | ||
9ad5cbcf AM |
6318 | shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr; |
6319 | shndx_buf = NULL; | |
6320 | if (shndx_hdr->sh_size != 0 && locsymcount != 0) | |
6321 | { | |
6322 | bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym_Shndx); | |
6323 | shndx_buf = finfo->locsym_shndx; | |
6324 | if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0 | |
6325 | || bfd_bread (shndx_buf, amt, input_bfd) != amt) | |
6326 | return false; | |
6327 | } | |
6328 | ||
252b5132 RH |
6329 | /* Swap in the local symbols and write out the ones which we know |
6330 | are going into the output file. */ | |
9ad5cbcf AM |
6331 | for (esym = external_syms, esymend = esym + locsymcount, |
6332 | isym = finfo->internal_syms, pindex = finfo->indices, | |
6333 | ppsection = finfo->sections, shndx = shndx_buf; | |
6334 | esym < esymend; | |
6335 | esym++, isym++, pindex++, ppsection++, | |
6336 | shndx = (shndx != NULL ? shndx + 1 : NULL)) | |
252b5132 RH |
6337 | { |
6338 | asection *isec; | |
6339 | const char *name; | |
6340 | Elf_Internal_Sym osym; | |
6341 | ||
9ad5cbcf | 6342 | elf_swap_symbol_in (input_bfd, esym, shndx, isym); |
252b5132 RH |
6343 | *pindex = -1; |
6344 | ||
6345 | if (elf_bad_symtab (input_bfd)) | |
6346 | { | |
6347 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
6348 | { | |
6349 | *ppsection = NULL; | |
6350 | continue; | |
6351 | } | |
6352 | } | |
6353 | ||
6354 | if (isym->st_shndx == SHN_UNDEF) | |
862517b6 | 6355 | isec = bfd_und_section_ptr; |
9ad5cbcf AM |
6356 | else if (isym->st_shndx < SHN_LORESERVE |
6357 | || isym->st_shndx > SHN_HIRESERVE) | |
f5fa8ca2 JJ |
6358 | { |
6359 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
65765700 JJ |
6360 | if (isec |
6361 | && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE | |
f5fa8ca2 JJ |
6362 | && ELF_ST_TYPE (isym->st_info) != STT_SECTION) |
6363 | isym->st_value = | |
6364 | _bfd_merged_section_offset (output_bfd, &isec, | |
65765700 | 6365 | elf_section_data (isec)->sec_info, |
f5fa8ca2 JJ |
6366 | isym->st_value, (bfd_vma) 0); |
6367 | } | |
252b5132 | 6368 | else if (isym->st_shndx == SHN_ABS) |
862517b6 | 6369 | isec = bfd_abs_section_ptr; |
252b5132 | 6370 | else if (isym->st_shndx == SHN_COMMON) |
862517b6 | 6371 | isec = bfd_com_section_ptr; |
252b5132 RH |
6372 | else |
6373 | { | |
6374 | /* Who knows? */ | |
6375 | isec = NULL; | |
6376 | } | |
6377 | ||
6378 | *ppsection = isec; | |
6379 | ||
6380 | /* Don't output the first, undefined, symbol. */ | |
6381 | if (esym == external_syms) | |
6382 | continue; | |
6383 | ||
24376d1b AM |
6384 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
6385 | { | |
24376d1b AM |
6386 | /* We never output section symbols. Instead, we use the |
6387 | section symbol of the corresponding section in the output | |
6388 | file. */ | |
6389 | continue; | |
6390 | } | |
6391 | ||
252b5132 RH |
6392 | /* If we are stripping all symbols, we don't want to output this |
6393 | one. */ | |
6394 | if (finfo->info->strip == strip_all) | |
6395 | continue; | |
6396 | ||
252b5132 RH |
6397 | /* If we are discarding all local symbols, we don't want to |
6398 | output this one. If we are generating a relocateable output | |
6399 | file, then some of the local symbols may be required by | |
6400 | relocs; we output them below as we discover that they are | |
6401 | needed. */ | |
6402 | if (finfo->info->discard == discard_all) | |
6403 | continue; | |
6404 | ||
6405 | /* If this symbol is defined in a section which we are | |
6406 | discarding, we don't need to keep it, but note that | |
6407 | linker_mark is only reliable for sections that have contents. | |
6408 | For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE | |
6409 | as well as linker_mark. */ | |
9ad5cbcf | 6410 | if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE) |
252b5132 RH |
6411 | && isec != NULL |
6412 | && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0) | |
6413 | || (! finfo->info->relocateable | |
6414 | && (isec->flags & SEC_EXCLUDE) != 0))) | |
6415 | continue; | |
6416 | ||
6417 | /* Get the name of the symbol. */ | |
6418 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
6419 | isym->st_name); | |
6420 | if (name == NULL) | |
6421 | return false; | |
6422 | ||
6423 | /* See if we are discarding symbols with this name. */ | |
6424 | if ((finfo->info->strip == strip_some | |
6425 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
6426 | == NULL)) | |
f5fa8ca2 JJ |
6427 | || (((finfo->info->discard == discard_sec_merge |
6428 | && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable) | |
6429 | || finfo->info->discard == discard_l) | |
252b5132 RH |
6430 | && bfd_is_local_label_name (input_bfd, name))) |
6431 | continue; | |
6432 | ||
6433 | /* If we get here, we are going to output this symbol. */ | |
6434 | ||
6435 | osym = *isym; | |
6436 | ||
6437 | /* Adjust the section index for the output file. */ | |
6438 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
6439 | isec->output_section); | |
9ad5cbcf | 6440 | if (osym.st_shndx == SHN_BAD) |
252b5132 RH |
6441 | return false; |
6442 | ||
6443 | *pindex = bfd_get_symcount (output_bfd); | |
6444 | ||
6445 | /* ELF symbols in relocateable files are section relative, but | |
6446 | in executable files they are virtual addresses. Note that | |
6447 | this code assumes that all ELF sections have an associated | |
6448 | BFD section with a reasonable value for output_offset; below | |
6449 | we assume that they also have a reasonable value for | |
6450 | output_section. Any special sections must be set up to meet | |
6451 | these requirements. */ | |
6452 | osym.st_value += isec->output_offset; | |
6453 | if (! finfo->info->relocateable) | |
6454 | osym.st_value += isec->output_section->vma; | |
6455 | ||
6456 | if (! elf_link_output_sym (finfo, name, &osym, isec)) | |
6457 | return false; | |
6458 | } | |
6459 | ||
6460 | /* Relocate the contents of each section. */ | |
f8deed93 | 6461 | sym_hashes = elf_sym_hashes (input_bfd); |
252b5132 RH |
6462 | for (o = input_bfd->sections; o != NULL; o = o->next) |
6463 | { | |
6464 | bfd_byte *contents; | |
6465 | ||
6466 | if (! o->linker_mark) | |
6467 | { | |
6468 | /* This section was omitted from the link. */ | |
6469 | continue; | |
6470 | } | |
6471 | ||
6472 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
6473 | || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) | |
6474 | continue; | |
6475 | ||
6476 | if ((o->flags & SEC_LINKER_CREATED) != 0) | |
6477 | { | |
6478 | /* Section was created by elf_link_create_dynamic_sections | |
6479 | or somesuch. */ | |
6480 | continue; | |
6481 | } | |
6482 | ||
6483 | /* Get the contents of the section. They have been cached by a | |
6484 | relaxation routine. Note that o is a section in an input | |
6485 | file, so the contents field will not have been set by any of | |
6486 | the routines which work on output files. */ | |
6487 | if (elf_section_data (o)->this_hdr.contents != NULL) | |
6488 | contents = elf_section_data (o)->this_hdr.contents; | |
6489 | else | |
6490 | { | |
6491 | contents = finfo->contents; | |
6492 | if (! bfd_get_section_contents (input_bfd, o, contents, | |
6493 | (file_ptr) 0, o->_raw_size)) | |
6494 | return false; | |
6495 | } | |
6496 | ||
6497 | if ((o->flags & SEC_RELOC) != 0) | |
6498 | { | |
6499 | Elf_Internal_Rela *internal_relocs; | |
6500 | ||
6501 | /* Get the swapped relocs. */ | |
6502 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
6503 | (input_bfd, o, finfo->external_relocs, | |
6504 | finfo->internal_relocs, false)); | |
6505 | if (internal_relocs == NULL | |
6506 | && o->reloc_count > 0) | |
6507 | return false; | |
6508 | ||
ec338859 AM |
6509 | /* Run through the relocs looking for any against symbols |
6510 | from discarded sections and section symbols from | |
6511 | removed link-once sections. Complain about relocs | |
6512 | against discarded sections. Zero relocs against removed | |
6513 | link-once sections. We should really complain if | |
6514 | anything in the final link tries to use it, but | |
6515 | DWARF-based exception handling might have an entry in | |
6516 | .eh_frame to describe a routine in the linkonce section, | |
6517 | and it turns out to be hard to remove the .eh_frame | |
6518 | entry too. FIXME. */ | |
73d074b4 DJ |
6519 | if (!finfo->info->relocateable |
6520 | && !elf_section_ignore_discarded_relocs (o)) | |
ec338859 AM |
6521 | { |
6522 | Elf_Internal_Rela *rel, *relend; | |
50b4d486 | 6523 | |
ec338859 AM |
6524 | rel = internal_relocs; |
6525 | relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel; | |
6526 | for ( ; rel < relend; rel++) | |
6527 | { | |
6528 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); | |
6529 | ||
6530 | if (r_symndx >= locsymcount | |
6531 | || (elf_bad_symtab (input_bfd) | |
6532 | && finfo->sections[r_symndx] == NULL)) | |
6533 | { | |
6534 | struct elf_link_hash_entry *h; | |
6535 | ||
6536 | h = sym_hashes[r_symndx - extsymoff]; | |
6537 | while (h->root.type == bfd_link_hash_indirect | |
6538 | || h->root.type == bfd_link_hash_warning) | |
6539 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
6540 | ||
6541 | /* Complain if the definition comes from a | |
6542 | discarded section. */ | |
6543 | if ((h->root.type == bfd_link_hash_defined | |
6544 | || h->root.type == bfd_link_hash_defweak) | |
ed4de5e2 | 6545 | && elf_discarded_section (h->root.u.def.section)) |
ec338859 | 6546 | { |
f8deed93 | 6547 | #if BFD_VERSION_DATE < 20031005 |
ec338859 AM |
6548 | if ((o->flags & SEC_DEBUGGING) != 0) |
6549 | { | |
f8deed93 | 6550 | #if BFD_VERSION_DATE > 20021005 |
ec338859 AM |
6551 | (*finfo->info->callbacks->warning) |
6552 | (finfo->info, | |
6553 | _("warning: relocation against removed section; zeroing"), | |
6554 | NULL, input_bfd, o, rel->r_offset); | |
f8deed93 | 6555 | #endif |
45e9217a | 6556 | BFD_ASSERT (r_symndx != 0); |
f8deed93 | 6557 | memset (rel, 0, sizeof (*rel)); |
ec338859 AM |
6558 | } |
6559 | else | |
f8deed93 | 6560 | #endif |
ec338859 AM |
6561 | { |
6562 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
6563 | (finfo->info, h->root.root.string, | |
6564 | input_bfd, o, rel->r_offset, | |
6565 | true))) | |
6566 | return false; | |
6567 | } | |
6568 | } | |
6569 | } | |
6570 | else | |
6571 | { | |
f9f32305 | 6572 | asection *sec = finfo->sections[r_symndx]; |
50b4d486 | 6573 | |
ed4de5e2 | 6574 | if (sec != NULL && elf_discarded_section (sec)) |
f9f32305 | 6575 | { |
f8deed93 | 6576 | #if BFD_VERSION_DATE < 20031005 |
f9f32305 AM |
6577 | if ((o->flags & SEC_DEBUGGING) != 0 |
6578 | || (sec->flags & SEC_LINK_ONCE) != 0) | |
6579 | { | |
50b4d486 | 6580 | #if BFD_VERSION_DATE > 20021005 |
f9f32305 AM |
6581 | (*finfo->info->callbacks->warning) |
6582 | (finfo->info, | |
6583 | _("warning: relocation against removed section"), | |
6584 | NULL, input_bfd, o, rel->r_offset); | |
50b4d486 | 6585 | #endif |
45e9217a | 6586 | BFD_ASSERT (r_symndx != 0); |
f9f32305 AM |
6587 | rel->r_info |
6588 | = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info)); | |
6589 | rel->r_addend = 0; | |
6590 | } | |
6591 | else | |
f8deed93 | 6592 | #endif |
f9f32305 AM |
6593 | { |
6594 | boolean ok; | |
6595 | const char *msg | |
6596 | = _("local symbols in discarded section %s"); | |
6597 | bfd_size_type amt | |
6598 | = strlen (sec->name) + strlen (msg) - 1; | |
6599 | char *buf = (char *) bfd_malloc (amt); | |
6600 | ||
6601 | if (buf != NULL) | |
6602 | sprintf (buf, msg, sec->name); | |
6603 | else | |
6604 | buf = (char *) sec->name; | |
6605 | ok = (*finfo->info->callbacks | |
6606 | ->undefined_symbol) (finfo->info, buf, | |
6607 | input_bfd, o, | |
6608 | rel->r_offset, | |
6609 | true); | |
6610 | if (buf != sec->name) | |
6611 | free (buf); | |
6612 | if (!ok) | |
6613 | return false; | |
ec338859 AM |
6614 | } |
6615 | } | |
6616 | } | |
6617 | } | |
6618 | } | |
50b4d486 | 6619 | |
252b5132 RH |
6620 | /* Relocate the section by invoking a back end routine. |
6621 | ||
6622 | The back end routine is responsible for adjusting the | |
6623 | section contents as necessary, and (if using Rela relocs | |
6624 | and generating a relocateable output file) adjusting the | |
6625 | reloc addend as necessary. | |
6626 | ||
6627 | The back end routine does not have to worry about setting | |
6628 | the reloc address or the reloc symbol index. | |
6629 | ||
6630 | The back end routine is given a pointer to the swapped in | |
6631 | internal symbols, and can access the hash table entries | |
6632 | for the external symbols via elf_sym_hashes (input_bfd). | |
6633 | ||
6634 | When generating relocateable output, the back end routine | |
6635 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
6636 | output symbol is going to be a section symbol | |
6637 | corresponding to the output section, which will require | |
6638 | the addend to be adjusted. */ | |
6639 | ||
6640 | if (! (*relocate_section) (output_bfd, finfo->info, | |
6641 | input_bfd, o, contents, | |
6642 | internal_relocs, | |
6643 | finfo->internal_syms, | |
6644 | finfo->sections)) | |
6645 | return false; | |
6646 | ||
9317eacc | 6647 | if (emit_relocs) |
252b5132 RH |
6648 | { |
6649 | Elf_Internal_Rela *irela; | |
6650 | Elf_Internal_Rela *irelaend; | |
6651 | struct elf_link_hash_entry **rel_hash; | |
6652 | Elf_Internal_Shdr *input_rel_hdr; | |
4e8a9624 | 6653 | unsigned int next_erel; |
dc810e39 AM |
6654 | void (*reloc_emitter) PARAMS ((bfd *, asection *, |
6655 | Elf_Internal_Shdr *, | |
6656 | Elf_Internal_Rela *)); | |
252b5132 RH |
6657 | |
6658 | /* Adjust the reloc addresses and symbol indices. */ | |
6659 | ||
6660 | irela = internal_relocs; | |
dc810e39 | 6661 | irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel; |
252b5132 | 6662 | rel_hash = (elf_section_data (o->output_section)->rel_hashes |
31367b81 MM |
6663 | + elf_section_data (o->output_section)->rel_count |
6664 | + elf_section_data (o->output_section)->rel_count2); | |
209f668e | 6665 | for (next_erel = 0; irela < irelaend; irela++, next_erel++) |
252b5132 RH |
6666 | { |
6667 | unsigned long r_symndx; | |
252b5132 RH |
6668 | asection *sec; |
6669 | ||
209f668e NC |
6670 | if (next_erel == bed->s->int_rels_per_ext_rel) |
6671 | { | |
6672 | rel_hash++; | |
6673 | next_erel = 0; | |
6674 | } | |
6675 | ||
252b5132 RH |
6676 | irela->r_offset += o->output_offset; |
6677 | ||
7ad34365 NC |
6678 | /* Relocs in an executable have to be virtual addresses. */ |
6679 | if (finfo->info->emitrelocations) | |
6680 | irela->r_offset += o->output_section->vma; | |
6681 | ||
252b5132 RH |
6682 | r_symndx = ELF_R_SYM (irela->r_info); |
6683 | ||
6684 | if (r_symndx == 0) | |
6685 | continue; | |
6686 | ||
6687 | if (r_symndx >= locsymcount | |
6688 | || (elf_bad_symtab (input_bfd) | |
6689 | && finfo->sections[r_symndx] == NULL)) | |
6690 | { | |
6691 | struct elf_link_hash_entry *rh; | |
209f668e | 6692 | unsigned long indx; |
252b5132 RH |
6693 | |
6694 | /* This is a reloc against a global symbol. We | |
6695 | have not yet output all the local symbols, so | |
6696 | we do not know the symbol index of any global | |
6697 | symbol. We set the rel_hash entry for this | |
6698 | reloc to point to the global hash table entry | |
6699 | for this symbol. The symbol index is then | |
6700 | set at the end of elf_bfd_final_link. */ | |
6701 | indx = r_symndx - extsymoff; | |
6702 | rh = elf_sym_hashes (input_bfd)[indx]; | |
6703 | while (rh->root.type == bfd_link_hash_indirect | |
6704 | || rh->root.type == bfd_link_hash_warning) | |
6705 | rh = (struct elf_link_hash_entry *) rh->root.u.i.link; | |
6706 | ||
6707 | /* Setting the index to -2 tells | |
6708 | elf_link_output_extsym that this symbol is | |
6709 | used by a reloc. */ | |
6710 | BFD_ASSERT (rh->indx < 0); | |
6711 | rh->indx = -2; | |
6712 | ||
6713 | *rel_hash = rh; | |
6714 | ||
6715 | continue; | |
6716 | } | |
6717 | ||
3e932841 | 6718 | /* This is a reloc against a local symbol. */ |
252b5132 RH |
6719 | |
6720 | *rel_hash = NULL; | |
6721 | isym = finfo->internal_syms + r_symndx; | |
6722 | sec = finfo->sections[r_symndx]; | |
6723 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
6724 | { | |
6725 | /* I suppose the backend ought to fill in the | |
6726 | section of any STT_SECTION symbol against a | |
6727 | processor specific section. If we have | |
6728 | discarded a section, the output_section will | |
6729 | be the absolute section. */ | |
6730 | if (sec != NULL | |
6731 | && (bfd_is_abs_section (sec) | |
6732 | || (sec->output_section != NULL | |
6733 | && bfd_is_abs_section (sec->output_section)))) | |
6734 | r_symndx = 0; | |
6735 | else if (sec == NULL || sec->owner == NULL) | |
6736 | { | |
6737 | bfd_set_error (bfd_error_bad_value); | |
6738 | return false; | |
6739 | } | |
6740 | else | |
6741 | { | |
6742 | r_symndx = sec->output_section->target_index; | |
6743 | BFD_ASSERT (r_symndx != 0); | |
6744 | } | |
6745 | } | |
6746 | else | |
6747 | { | |
6748 | if (finfo->indices[r_symndx] == -1) | |
6749 | { | |
dc810e39 | 6750 | unsigned long shlink; |
252b5132 RH |
6751 | const char *name; |
6752 | asection *osec; | |
6753 | ||
6754 | if (finfo->info->strip == strip_all) | |
6755 | { | |
6756 | /* You can't do ld -r -s. */ | |
6757 | bfd_set_error (bfd_error_invalid_operation); | |
6758 | return false; | |
6759 | } | |
6760 | ||
6761 | /* This symbol was skipped earlier, but | |
6762 | since it is needed by a reloc, we | |
6763 | must output it now. */ | |
dc810e39 | 6764 | shlink = symtab_hdr->sh_link; |
a7b97311 | 6765 | name = (bfd_elf_string_from_elf_section |
dc810e39 | 6766 | (input_bfd, shlink, isym->st_name)); |
252b5132 RH |
6767 | if (name == NULL) |
6768 | return false; | |
6769 | ||
6770 | osec = sec->output_section; | |
6771 | isym->st_shndx = | |
6772 | _bfd_elf_section_from_bfd_section (output_bfd, | |
6773 | osec); | |
9ad5cbcf | 6774 | if (isym->st_shndx == SHN_BAD) |
252b5132 RH |
6775 | return false; |
6776 | ||
6777 | isym->st_value += sec->output_offset; | |
6778 | if (! finfo->info->relocateable) | |
6779 | isym->st_value += osec->vma; | |
6780 | ||
a7b97311 AM |
6781 | finfo->indices[r_symndx] |
6782 | = bfd_get_symcount (output_bfd); | |
252b5132 RH |
6783 | |
6784 | if (! elf_link_output_sym (finfo, name, isym, sec)) | |
6785 | return false; | |
6786 | } | |
6787 | ||
6788 | r_symndx = finfo->indices[r_symndx]; | |
6789 | } | |
6790 | ||
6791 | irela->r_info = ELF_R_INFO (r_symndx, | |
6792 | ELF_R_TYPE (irela->r_info)); | |
6793 | } | |
6794 | ||
6795 | /* Swap out the relocs. */ | |
9317eacc | 6796 | if (bed->elf_backend_emit_relocs |
a7b97311 AM |
6797 | && !(finfo->info->relocateable |
6798 | || finfo->info->emitrelocations)) | |
9317eacc CM |
6799 | reloc_emitter = bed->elf_backend_emit_relocs; |
6800 | else | |
6801 | reloc_emitter = elf_link_output_relocs; | |
6802 | ||
252b5132 | 6803 | input_rel_hdr = &elf_section_data (o)->rel_hdr; |
9317eacc CM |
6804 | (*reloc_emitter) (output_bfd, o, input_rel_hdr, internal_relocs); |
6805 | ||
23bc299b | 6806 | input_rel_hdr = elf_section_data (o)->rel_hdr2; |
9317eacc CM |
6807 | if (input_rel_hdr) |
6808 | { | |
dc810e39 AM |
6809 | internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) |
6810 | * bed->s->int_rels_per_ext_rel); | |
9317eacc CM |
6811 | reloc_emitter (output_bfd, o, input_rel_hdr, internal_relocs); |
6812 | } | |
6813 | ||
252b5132 RH |
6814 | } |
6815 | } | |
6816 | ||
6817 | /* Write out the modified section contents. */ | |
73d074b4 | 6818 | if (bed->elf_backend_write_section |
f9f32305 | 6819 | && (*bed->elf_backend_write_section) (output_bfd, o, contents)) |
73d074b4 DJ |
6820 | { |
6821 | /* Section written out. */ | |
6822 | } | |
65765700 | 6823 | else switch (elf_section_data (o)->sec_info_type) |
f5fa8ca2 | 6824 | { |
65765700 | 6825 | case ELF_INFO_TYPE_STABS: |
f5fa8ca2 | 6826 | if (! (_bfd_write_section_stabs |
65765700 JJ |
6827 | (output_bfd, |
6828 | &elf_hash_table (finfo->info)->stab_info, | |
6829 | o, &elf_section_data (o)->sec_info, contents))) | |
f5fa8ca2 | 6830 | return false; |
65765700 JJ |
6831 | break; |
6832 | case ELF_INFO_TYPE_MERGE: | |
f5fa8ca2 | 6833 | if (! (_bfd_write_merged_section |
65765700 | 6834 | (output_bfd, o, elf_section_data (o)->sec_info))) |
252b5132 | 6835 | return false; |
65765700 JJ |
6836 | break; |
6837 | case ELF_INFO_TYPE_EH_FRAME: | |
6838 | { | |
6839 | asection *ehdrsec; | |
6840 | ||
6841 | ehdrsec | |
6842 | = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj, | |
6843 | ".eh_frame_hdr"); | |
6844 | if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec, | |
6845 | contents))) | |
6846 | return false; | |
6847 | } | |
6848 | break; | |
6849 | default: | |
6850 | { | |
6851 | bfd_size_type sec_size; | |
6852 | ||
6853 | sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size); | |
6854 | if (! (o->flags & SEC_EXCLUDE) | |
6855 | && ! bfd_set_section_contents (output_bfd, o->output_section, | |
6856 | contents, | |
6857 | (file_ptr) o->output_offset, | |
6858 | sec_size)) | |
6859 | return false; | |
6860 | } | |
6861 | break; | |
252b5132 RH |
6862 | } |
6863 | } | |
6864 | ||
6865 | return true; | |
6866 | } | |
6867 | ||
6868 | /* Generate a reloc when linking an ELF file. This is a reloc | |
6869 | requested by the linker, and does come from any input file. This | |
6870 | is used to build constructor and destructor tables when linking | |
6871 | with -Ur. */ | |
6872 | ||
6873 | static boolean | |
6874 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
6875 | bfd *output_bfd; | |
6876 | struct bfd_link_info *info; | |
6877 | asection *output_section; | |
6878 | struct bfd_link_order *link_order; | |
6879 | { | |
6880 | reloc_howto_type *howto; | |
6881 | long indx; | |
6882 | bfd_vma offset; | |
6883 | bfd_vma addend; | |
6884 | struct elf_link_hash_entry **rel_hash_ptr; | |
6885 | Elf_Internal_Shdr *rel_hdr; | |
32f0787a | 6886 | struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
252b5132 RH |
6887 | |
6888 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
6889 | if (howto == NULL) | |
6890 | { | |
6891 | bfd_set_error (bfd_error_bad_value); | |
6892 | return false; | |
6893 | } | |
6894 | ||
6895 | addend = link_order->u.reloc.p->addend; | |
6896 | ||
6897 | /* Figure out the symbol index. */ | |
6898 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
31367b81 MM |
6899 | + elf_section_data (output_section)->rel_count |
6900 | + elf_section_data (output_section)->rel_count2); | |
252b5132 RH |
6901 | if (link_order->type == bfd_section_reloc_link_order) |
6902 | { | |
6903 | indx = link_order->u.reloc.p->u.section->target_index; | |
6904 | BFD_ASSERT (indx != 0); | |
6905 | *rel_hash_ptr = NULL; | |
6906 | } | |
6907 | else | |
6908 | { | |
6909 | struct elf_link_hash_entry *h; | |
6910 | ||
6911 | /* Treat a reloc against a defined symbol as though it were | |
6912 | actually against the section. */ | |
6913 | h = ((struct elf_link_hash_entry *) | |
6914 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
6915 | link_order->u.reloc.p->u.name, | |
6916 | false, false, true)); | |
6917 | if (h != NULL | |
6918 | && (h->root.type == bfd_link_hash_defined | |
6919 | || h->root.type == bfd_link_hash_defweak)) | |
6920 | { | |
6921 | asection *section; | |
6922 | ||
6923 | section = h->root.u.def.section; | |
6924 | indx = section->output_section->target_index; | |
6925 | *rel_hash_ptr = NULL; | |
6926 | /* It seems that we ought to add the symbol value to the | |
6927 | addend here, but in practice it has already been added | |
6928 | because it was passed to constructor_callback. */ | |
6929 | addend += section->output_section->vma + section->output_offset; | |
6930 | } | |
6931 | else if (h != NULL) | |
6932 | { | |
6933 | /* Setting the index to -2 tells elf_link_output_extsym that | |
6934 | this symbol is used by a reloc. */ | |
6935 | h->indx = -2; | |
6936 | *rel_hash_ptr = h; | |
6937 | indx = 0; | |
6938 | } | |
6939 | else | |
6940 | { | |
6941 | if (! ((*info->callbacks->unattached_reloc) | |
6942 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
6943 | (asection *) NULL, (bfd_vma) 0))) | |
6944 | return false; | |
6945 | indx = 0; | |
6946 | } | |
6947 | } | |
6948 | ||
6949 | /* If this is an inplace reloc, we must write the addend into the | |
6950 | object file. */ | |
6951 | if (howto->partial_inplace && addend != 0) | |
6952 | { | |
6953 | bfd_size_type size; | |
6954 | bfd_reloc_status_type rstat; | |
6955 | bfd_byte *buf; | |
6956 | boolean ok; | |
dc810e39 | 6957 | const char *sym_name; |
252b5132 RH |
6958 | |
6959 | size = bfd_get_reloc_size (howto); | |
6960 | buf = (bfd_byte *) bfd_zmalloc (size); | |
6961 | if (buf == (bfd_byte *) NULL) | |
6962 | return false; | |
dc810e39 | 6963 | rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf); |
252b5132 RH |
6964 | switch (rstat) |
6965 | { | |
6966 | case bfd_reloc_ok: | |
6967 | break; | |
dc810e39 | 6968 | |
252b5132 RH |
6969 | default: |
6970 | case bfd_reloc_outofrange: | |
6971 | abort (); | |
dc810e39 | 6972 | |
252b5132 | 6973 | case bfd_reloc_overflow: |
dc810e39 AM |
6974 | if (link_order->type == bfd_section_reloc_link_order) |
6975 | sym_name = bfd_section_name (output_bfd, | |
6976 | link_order->u.reloc.p->u.section); | |
6977 | else | |
6978 | sym_name = link_order->u.reloc.p->u.name; | |
252b5132 | 6979 | if (! ((*info->callbacks->reloc_overflow) |
dc810e39 AM |
6980 | (info, sym_name, howto->name, addend, |
6981 | (bfd *) NULL, (asection *) NULL, (bfd_vma) 0))) | |
252b5132 RH |
6982 | { |
6983 | free (buf); | |
6984 | return false; | |
6985 | } | |
6986 | break; | |
6987 | } | |
6988 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
6989 | (file_ptr) link_order->offset, size); | |
6990 | free (buf); | |
6991 | if (! ok) | |
6992 | return false; | |
6993 | } | |
6994 | ||
6995 | /* The address of a reloc is relative to the section in a | |
6996 | relocateable file, and is a virtual address in an executable | |
6997 | file. */ | |
6998 | offset = link_order->offset; | |
6999 | if (! info->relocateable) | |
7000 | offset += output_section->vma; | |
7001 | ||
7002 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
7003 | ||
7004 | if (rel_hdr->sh_type == SHT_REL) | |
7005 | { | |
dc810e39 | 7006 | bfd_size_type size; |
209f668e | 7007 | Elf_Internal_Rel *irel; |
252b5132 | 7008 | Elf_External_Rel *erel; |
4e8a9624 | 7009 | unsigned int i; |
dc810e39 AM |
7010 | |
7011 | size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel); | |
7012 | irel = (Elf_Internal_Rel *) bfd_zmalloc (size); | |
209f668e NC |
7013 | if (irel == NULL) |
7014 | return false; | |
dc810e39 | 7015 | |
209f668e NC |
7016 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) |
7017 | irel[i].r_offset = offset; | |
7018 | irel[0].r_info = ELF_R_INFO (indx, howto->type); | |
252b5132 | 7019 | |
252b5132 | 7020 | erel = ((Elf_External_Rel *) rel_hdr->contents |
0525d26e | 7021 | + elf_section_data (output_section)->rel_count); |
209f668e | 7022 | |
32f0787a | 7023 | if (bed->s->swap_reloc_out) |
209f668e | 7024 | (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel); |
32f0787a | 7025 | else |
209f668e NC |
7026 | elf_swap_reloc_out (output_bfd, irel, erel); |
7027 | ||
7028 | free (irel); | |
252b5132 RH |
7029 | } |
7030 | else | |
7031 | { | |
dc810e39 | 7032 | bfd_size_type size; |
209f668e | 7033 | Elf_Internal_Rela *irela; |
252b5132 | 7034 | Elf_External_Rela *erela; |
4e8a9624 | 7035 | unsigned int i; |
dc810e39 AM |
7036 | |
7037 | size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); | |
7038 | irela = (Elf_Internal_Rela *) bfd_zmalloc (size); | |
209f668e NC |
7039 | if (irela == NULL) |
7040 | return false; | |
7041 | ||
7042 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) | |
7043 | irela[i].r_offset = offset; | |
7044 | irela[0].r_info = ELF_R_INFO (indx, howto->type); | |
7045 | irela[0].r_addend = addend; | |
252b5132 | 7046 | |
252b5132 | 7047 | erela = ((Elf_External_Rela *) rel_hdr->contents |
0525d26e | 7048 | + elf_section_data (output_section)->rel_count); |
209f668e | 7049 | |
32f0787a | 7050 | if (bed->s->swap_reloca_out) |
209f668e | 7051 | (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela); |
32f0787a | 7052 | else |
209f668e | 7053 | elf_swap_reloca_out (output_bfd, irela, erela); |
252b5132 RH |
7054 | } |
7055 | ||
0525d26e | 7056 | ++elf_section_data (output_section)->rel_count; |
252b5132 RH |
7057 | |
7058 | return true; | |
7059 | } | |
252b5132 RH |
7060 | \f |
7061 | /* Allocate a pointer to live in a linker created section. */ | |
7062 | ||
7063 | boolean | |
7064 | elf_create_pointer_linker_section (abfd, info, lsect, h, rel) | |
7065 | bfd *abfd; | |
7066 | struct bfd_link_info *info; | |
7067 | elf_linker_section_t *lsect; | |
7068 | struct elf_link_hash_entry *h; | |
7069 | const Elf_Internal_Rela *rel; | |
7070 | { | |
7071 | elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; | |
7072 | elf_linker_section_pointers_t *linker_section_ptr; | |
dc810e39 AM |
7073 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); |
7074 | bfd_size_type amt; | |
252b5132 RH |
7075 | |
7076 | BFD_ASSERT (lsect != NULL); | |
7077 | ||
a7b97311 | 7078 | /* Is this a global symbol? */ |
252b5132 RH |
7079 | if (h != NULL) |
7080 | { | |
a7b97311 | 7081 | /* Has this symbol already been allocated? If so, our work is done. */ |
252b5132 RH |
7082 | if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer, |
7083 | rel->r_addend, | |
7084 | lsect->which)) | |
7085 | return true; | |
7086 | ||
7087 | ptr_linker_section_ptr = &h->linker_section_pointer; | |
7088 | /* Make sure this symbol is output as a dynamic symbol. */ | |
7089 | if (h->dynindx == -1) | |
7090 | { | |
7091 | if (! elf_link_record_dynamic_symbol (info, h)) | |
7092 | return false; | |
7093 | } | |
7094 | ||
7095 | if (lsect->rel_section) | |
7096 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
7097 | } | |
a7b97311 | 7098 | else |
252b5132 | 7099 | { |
a7b97311 | 7100 | /* Allocation of a pointer to a local symbol. */ |
252b5132 RH |
7101 | elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); |
7102 | ||
a7b97311 | 7103 | /* Allocate a table to hold the local symbols if first time. */ |
252b5132 RH |
7104 | if (!ptr) |
7105 | { | |
7106 | unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; | |
7107 | register unsigned int i; | |
7108 | ||
dc810e39 AM |
7109 | amt = num_symbols; |
7110 | amt *= sizeof (elf_linker_section_pointers_t *); | |
7111 | ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt); | |
252b5132 RH |
7112 | |
7113 | if (!ptr) | |
7114 | return false; | |
7115 | ||
7116 | elf_local_ptr_offsets (abfd) = ptr; | |
7117 | for (i = 0; i < num_symbols; i++) | |
a7b97311 | 7118 | ptr[i] = (elf_linker_section_pointers_t *) 0; |
252b5132 RH |
7119 | } |
7120 | ||
a7b97311 | 7121 | /* Has this symbol already been allocated? If so, our work is done. */ |
252b5132 RH |
7122 | if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx], |
7123 | rel->r_addend, | |
7124 | lsect->which)) | |
7125 | return true; | |
7126 | ||
7127 | ptr_linker_section_ptr = &ptr[r_symndx]; | |
7128 | ||
7129 | if (info->shared) | |
7130 | { | |
7131 | /* If we are generating a shared object, we need to | |
7132 | output a R_<xxx>_RELATIVE reloc so that the | |
7133 | dynamic linker can adjust this GOT entry. */ | |
7134 | BFD_ASSERT (lsect->rel_section != NULL); | |
7135 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
7136 | } | |
7137 | } | |
7138 | ||
a7b97311 AM |
7139 | /* Allocate space for a pointer in the linker section, and allocate |
7140 | a new pointer record from internal memory. */ | |
252b5132 | 7141 | BFD_ASSERT (ptr_linker_section_ptr != NULL); |
dc810e39 AM |
7142 | amt = sizeof (elf_linker_section_pointers_t); |
7143 | linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt); | |
252b5132 RH |
7144 | |
7145 | if (!linker_section_ptr) | |
7146 | return false; | |
7147 | ||
7148 | linker_section_ptr->next = *ptr_linker_section_ptr; | |
7149 | linker_section_ptr->addend = rel->r_addend; | |
7150 | linker_section_ptr->which = lsect->which; | |
7151 | linker_section_ptr->written_address_p = false; | |
7152 | *ptr_linker_section_ptr = linker_section_ptr; | |
7153 | ||
7154 | #if 0 | |
7155 | if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset) | |
7156 | { | |
a7b97311 AM |
7157 | linker_section_ptr->offset = (lsect->section->_raw_size |
7158 | - lsect->hole_size + (ARCH_SIZE / 8)); | |
252b5132 RH |
7159 | lsect->hole_offset += ARCH_SIZE / 8; |
7160 | lsect->sym_offset += ARCH_SIZE / 8; | |
a7b97311 | 7161 | if (lsect->sym_hash) |
252b5132 | 7162 | { |
a7b97311 | 7163 | /* Bump up symbol value if needed. */ |
252b5132 RH |
7164 | lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8; |
7165 | #ifdef DEBUG | |
7166 | fprintf (stderr, "Bump up %s by %ld, current value = %ld\n", | |
7167 | lsect->sym_hash->root.root.string, | |
a7b97311 AM |
7168 | (long) ARCH_SIZE / 8, |
7169 | (long) lsect->sym_hash->root.u.def.value); | |
252b5132 RH |
7170 | #endif |
7171 | } | |
7172 | } | |
7173 | else | |
7174 | #endif | |
7175 | linker_section_ptr->offset = lsect->section->_raw_size; | |
7176 | ||
7177 | lsect->section->_raw_size += ARCH_SIZE / 8; | |
7178 | ||
7179 | #ifdef DEBUG | |
a7b97311 AM |
7180 | fprintf (stderr, |
7181 | "Create pointer in linker section %s, offset = %ld, section size = %ld\n", | |
7182 | lsect->name, (long) linker_section_ptr->offset, | |
7183 | (long) lsect->section->_raw_size); | |
252b5132 RH |
7184 | #endif |
7185 | ||
7186 | return true; | |
7187 | } | |
252b5132 RH |
7188 | \f |
7189 | #if ARCH_SIZE==64 | |
7190 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR) | |
7191 | #endif | |
7192 | #if ARCH_SIZE==32 | |
7193 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR) | |
7194 | #endif | |
7195 | ||
209f668e | 7196 | /* Fill in the address for a pointer generated in a linker section. */ |
252b5132 RH |
7197 | |
7198 | bfd_vma | |
a7b97311 AM |
7199 | elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, |
7200 | relocation, rel, relative_reloc) | |
252b5132 RH |
7201 | bfd *output_bfd; |
7202 | bfd *input_bfd; | |
7203 | struct bfd_link_info *info; | |
7204 | elf_linker_section_t *lsect; | |
7205 | struct elf_link_hash_entry *h; | |
7206 | bfd_vma relocation; | |
7207 | const Elf_Internal_Rela *rel; | |
7208 | int relative_reloc; | |
7209 | { | |
7210 | elf_linker_section_pointers_t *linker_section_ptr; | |
7211 | ||
7212 | BFD_ASSERT (lsect != NULL); | |
7213 | ||
a7b97311 | 7214 | if (h != NULL) |
252b5132 | 7215 | { |
a7b97311 AM |
7216 | /* Handle global symbol. */ |
7217 | linker_section_ptr = (_bfd_elf_find_pointer_linker_section | |
7218 | (h->linker_section_pointer, | |
7219 | rel->r_addend, | |
7220 | lsect->which)); | |
252b5132 RH |
7221 | |
7222 | BFD_ASSERT (linker_section_ptr != NULL); | |
7223 | ||
7224 | if (! elf_hash_table (info)->dynamic_sections_created | |
7225 | || (info->shared | |
7226 | && info->symbolic | |
7227 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
7228 | { | |
7229 | /* This is actually a static link, or it is a | |
7230 | -Bsymbolic link and the symbol is defined | |
7231 | locally. We must initialize this entry in the | |
7232 | global section. | |
7233 | ||
7234 | When doing a dynamic link, we create a .rela.<xxx> | |
7235 | relocation entry to initialize the value. This | |
7236 | is done in the finish_dynamic_symbol routine. */ | |
7237 | if (!linker_section_ptr->written_address_p) | |
7238 | { | |
7239 | linker_section_ptr->written_address_p = true; | |
a7b97311 AM |
7240 | bfd_put_ptr (output_bfd, |
7241 | relocation + linker_section_ptr->addend, | |
7242 | (lsect->section->contents | |
7243 | + linker_section_ptr->offset)); | |
252b5132 RH |
7244 | } |
7245 | } | |
7246 | } | |
a7b97311 | 7247 | else |
252b5132 | 7248 | { |
a7b97311 | 7249 | /* Handle local symbol. */ |
252b5132 RH |
7250 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); |
7251 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); | |
7252 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL); | |
a7b97311 AM |
7253 | linker_section_ptr = (_bfd_elf_find_pointer_linker_section |
7254 | (elf_local_ptr_offsets (input_bfd)[r_symndx], | |
7255 | rel->r_addend, | |
7256 | lsect->which)); | |
252b5132 RH |
7257 | |
7258 | BFD_ASSERT (linker_section_ptr != NULL); | |
7259 | ||
a7b97311 | 7260 | /* Write out pointer if it hasn't been rewritten out before. */ |
252b5132 RH |
7261 | if (!linker_section_ptr->written_address_p) |
7262 | { | |
7263 | linker_section_ptr->written_address_p = true; | |
7264 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
7265 | lsect->section->contents + linker_section_ptr->offset); | |
7266 | ||
7267 | if (info->shared) | |
7268 | { | |
7269 | asection *srel = lsect->rel_section; | |
209f668e | 7270 | Elf_Internal_Rela *outrel; |
dc810e39 | 7271 | Elf_External_Rela *erel; |
209f668e NC |
7272 | struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
7273 | unsigned int i; | |
dc810e39 | 7274 | bfd_size_type amt; |
209f668e | 7275 | |
dc810e39 AM |
7276 | amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel; |
7277 | outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt); | |
209f668e NC |
7278 | if (outrel == NULL) |
7279 | { | |
7280 | (*_bfd_error_handler) (_("Error: out of memory")); | |
7281 | return 0; | |
7282 | } | |
252b5132 | 7283 | |
a7b97311 AM |
7284 | /* We need to generate a relative reloc for the dynamic |
7285 | linker. */ | |
252b5132 | 7286 | if (!srel) |
a7b97311 AM |
7287 | { |
7288 | srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
7289 | lsect->rel_name); | |
7290 | lsect->rel_section = srel; | |
7291 | } | |
252b5132 RH |
7292 | |
7293 | BFD_ASSERT (srel != NULL); | |
7294 | ||
209f668e NC |
7295 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) |
7296 | outrel[i].r_offset = (lsect->section->output_section->vma | |
7297 | + lsect->section->output_offset | |
7298 | + linker_section_ptr->offset); | |
7299 | outrel[0].r_info = ELF_R_INFO (0, relative_reloc); | |
7300 | outrel[0].r_addend = 0; | |
dc810e39 AM |
7301 | erel = (Elf_External_Rela *) lsect->section->contents; |
7302 | erel += elf_section_data (lsect->section)->rel_count; | |
7303 | elf_swap_reloca_out (output_bfd, outrel, erel); | |
0525d26e | 7304 | ++elf_section_data (lsect->section)->rel_count; |
dc810e39 | 7305 | |
209f668e | 7306 | free (outrel); |
252b5132 RH |
7307 | } |
7308 | } | |
7309 | } | |
7310 | ||
7311 | relocation = (lsect->section->output_offset | |
7312 | + linker_section_ptr->offset | |
7313 | - lsect->hole_offset | |
7314 | - lsect->sym_offset); | |
7315 | ||
7316 | #ifdef DEBUG | |
a7b97311 AM |
7317 | fprintf (stderr, |
7318 | "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", | |
7319 | lsect->name, (long) relocation, (long) relocation); | |
252b5132 RH |
7320 | #endif |
7321 | ||
7322 | /* Subtract out the addend, because it will get added back in by the normal | |
7323 | processing. */ | |
7324 | return relocation - linker_section_ptr->addend; | |
7325 | } | |
7326 | \f | |
7327 | /* Garbage collect unused sections. */ | |
7328 | ||
7329 | static boolean elf_gc_mark | |
7330 | PARAMS ((struct bfd_link_info *info, asection *sec, | |
7331 | asection * (*gc_mark_hook) | |
7332 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
7333 | struct elf_link_hash_entry *, Elf_Internal_Sym *)))); | |
7334 | ||
7335 | static boolean elf_gc_sweep | |
7336 | PARAMS ((struct bfd_link_info *info, | |
7337 | boolean (*gc_sweep_hook) | |
7338 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, | |
7339 | const Elf_Internal_Rela *relocs)))); | |
7340 | ||
7341 | static boolean elf_gc_sweep_symbol | |
7342 | PARAMS ((struct elf_link_hash_entry *h, PTR idxptr)); | |
7343 | ||
7344 | static boolean elf_gc_allocate_got_offsets | |
7345 | PARAMS ((struct elf_link_hash_entry *h, PTR offarg)); | |
7346 | ||
7347 | static boolean elf_gc_propagate_vtable_entries_used | |
7348 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); | |
7349 | ||
7350 | static boolean elf_gc_smash_unused_vtentry_relocs | |
7351 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); | |
7352 | ||
7353 | /* The mark phase of garbage collection. For a given section, mark | |
dbb410c3 AM |
7354 | it and any sections in this section's group, and all the sections |
7355 | which define symbols to which it refers. */ | |
252b5132 RH |
7356 | |
7357 | static boolean | |
7358 | elf_gc_mark (info, sec, gc_mark_hook) | |
7359 | struct bfd_link_info *info; | |
7360 | asection *sec; | |
7361 | asection * (*gc_mark_hook) | |
7362 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
7363 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
7364 | { | |
dbb410c3 AM |
7365 | boolean ret; |
7366 | asection *group_sec; | |
252b5132 RH |
7367 | |
7368 | sec->gc_mark = 1; | |
7369 | ||
dbb410c3 AM |
7370 | /* Mark all the sections in the group. */ |
7371 | group_sec = elf_section_data (sec)->next_in_group; | |
7372 | if (group_sec && !group_sec->gc_mark) | |
7373 | if (!elf_gc_mark (info, group_sec, gc_mark_hook)) | |
7374 | return false; | |
252b5132 | 7375 | |
dbb410c3 AM |
7376 | /* Look through the section relocs. */ |
7377 | ret = true; | |
252b5132 RH |
7378 | if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0) |
7379 | { | |
7380 | Elf_Internal_Rela *relstart, *rel, *relend; | |
7381 | Elf_Internal_Shdr *symtab_hdr; | |
9ad5cbcf | 7382 | Elf_Internal_Shdr *shndx_hdr; |
252b5132 RH |
7383 | struct elf_link_hash_entry **sym_hashes; |
7384 | size_t nlocsyms; | |
7385 | size_t extsymoff; | |
7386 | Elf_External_Sym *locsyms, *freesyms = NULL; | |
9ad5cbcf | 7387 | Elf_External_Sym_Shndx *locsym_shndx; |
252b5132 | 7388 | bfd *input_bfd = sec->owner; |
c7ac6ff8 | 7389 | struct elf_backend_data *bed = get_elf_backend_data (input_bfd); |
252b5132 RH |
7390 | |
7391 | /* GCFIXME: how to arrange so that relocs and symbols are not | |
7392 | reread continually? */ | |
7393 | ||
7394 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
7395 | sym_hashes = elf_sym_hashes (input_bfd); | |
7396 | ||
7397 | /* Read the local symbols. */ | |
7398 | if (elf_bad_symtab (input_bfd)) | |
7399 | { | |
7400 | nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
7401 | extsymoff = 0; | |
7402 | } | |
7403 | else | |
7404 | extsymoff = nlocsyms = symtab_hdr->sh_info; | |
9ad5cbcf | 7405 | |
252b5132 RH |
7406 | if (symtab_hdr->contents) |
7407 | locsyms = (Elf_External_Sym *) symtab_hdr->contents; | |
7408 | else if (nlocsyms == 0) | |
7409 | locsyms = NULL; | |
7410 | else | |
7411 | { | |
dc810e39 AM |
7412 | bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym); |
7413 | locsyms = freesyms = bfd_malloc (amt); | |
252b5132 RH |
7414 | if (freesyms == NULL |
7415 | || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
dc810e39 | 7416 | || bfd_bread (locsyms, amt, input_bfd) != amt) |
252b5132 RH |
7417 | { |
7418 | ret = false; | |
7419 | goto out1; | |
7420 | } | |
7421 | } | |
7422 | ||
9ad5cbcf AM |
7423 | shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr; |
7424 | locsym_shndx = NULL; | |
7425 | if (shndx_hdr->sh_size != 0 && nlocsyms != 0) | |
7426 | { | |
7427 | bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym_Shndx); | |
7428 | locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); | |
7429 | if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0 | |
7430 | || bfd_bread (locsym_shndx, amt, input_bfd) != amt) | |
7431 | return false; | |
7432 | } | |
7433 | ||
252b5132 RH |
7434 | /* Read the relocations. */ |
7435 | relstart = (NAME(_bfd_elf,link_read_relocs) | |
7436 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, | |
7437 | info->keep_memory)); | |
7438 | if (relstart == NULL) | |
7439 | { | |
7440 | ret = false; | |
7441 | goto out1; | |
7442 | } | |
c7ac6ff8 | 7443 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
252b5132 RH |
7444 | |
7445 | for (rel = relstart; rel < relend; rel++) | |
7446 | { | |
7447 | unsigned long r_symndx; | |
7448 | asection *rsec; | |
7449 | struct elf_link_hash_entry *h; | |
7450 | Elf_Internal_Sym s; | |
7451 | ||
7452 | r_symndx = ELF_R_SYM (rel->r_info); | |
7453 | if (r_symndx == 0) | |
7454 | continue; | |
7455 | ||
7456 | if (elf_bad_symtab (sec->owner)) | |
7457 | { | |
9ad5cbcf AM |
7458 | elf_swap_symbol_in (input_bfd, |
7459 | locsyms + r_symndx, | |
7460 | locsym_shndx + (locsym_shndx ? r_symndx : 0), | |
7461 | &s); | |
252b5132 | 7462 | if (ELF_ST_BIND (s.st_info) == STB_LOCAL) |
3e932841 | 7463 | rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s); |
252b5132 RH |
7464 | else |
7465 | { | |
7466 | h = sym_hashes[r_symndx - extsymoff]; | |
3e932841 | 7467 | rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL); |
252b5132 RH |
7468 | } |
7469 | } | |
7470 | else if (r_symndx >= nlocsyms) | |
7471 | { | |
7472 | h = sym_hashes[r_symndx - extsymoff]; | |
3e932841 | 7473 | rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL); |
252b5132 RH |
7474 | } |
7475 | else | |
7476 | { | |
9ad5cbcf AM |
7477 | elf_swap_symbol_in (input_bfd, |
7478 | locsyms + r_symndx, | |
7479 | locsym_shndx + (locsym_shndx ? r_symndx : 0), | |
7480 | &s); | |
3e932841 | 7481 | rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s); |
252b5132 RH |
7482 | } |
7483 | ||
7484 | if (rsec && !rsec->gc_mark) | |
7485 | if (!elf_gc_mark (info, rsec, gc_mark_hook)) | |
7486 | { | |
7487 | ret = false; | |
7488 | goto out2; | |
7489 | } | |
7490 | } | |
7491 | ||
7492 | out2: | |
7493 | if (!info->keep_memory) | |
7494 | free (relstart); | |
7495 | out1: | |
7496 | if (freesyms) | |
7497 | free (freesyms); | |
7498 | } | |
7499 | ||
7500 | return ret; | |
7501 | } | |
7502 | ||
7503 | /* The sweep phase of garbage collection. Remove all garbage sections. */ | |
7504 | ||
7505 | static boolean | |
7506 | elf_gc_sweep (info, gc_sweep_hook) | |
7507 | struct bfd_link_info *info; | |
7508 | boolean (*gc_sweep_hook) | |
7509 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, | |
7510 | const Elf_Internal_Rela *relocs)); | |
7511 | { | |
7512 | bfd *sub; | |
7513 | ||
7514 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
7515 | { | |
7516 | asection *o; | |
7517 | ||
f6af82bd AM |
7518 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) |
7519 | continue; | |
7520 | ||
252b5132 RH |
7521 | for (o = sub->sections; o != NULL; o = o->next) |
7522 | { | |
7523 | /* Keep special sections. Keep .debug sections. */ | |
7524 | if ((o->flags & SEC_LINKER_CREATED) | |
7525 | || (o->flags & SEC_DEBUGGING)) | |
7526 | o->gc_mark = 1; | |
7527 | ||
7528 | if (o->gc_mark) | |
7529 | continue; | |
7530 | ||
7531 | /* Skip sweeping sections already excluded. */ | |
7532 | if (o->flags & SEC_EXCLUDE) | |
7533 | continue; | |
7534 | ||
7535 | /* Since this is early in the link process, it is simple | |
7536 | to remove a section from the output. */ | |
7537 | o->flags |= SEC_EXCLUDE; | |
7538 | ||
7539 | /* But we also have to update some of the relocation | |
7540 | info we collected before. */ | |
7541 | if (gc_sweep_hook | |
7542 | && (o->flags & SEC_RELOC) && o->reloc_count > 0) | |
7543 | { | |
7544 | Elf_Internal_Rela *internal_relocs; | |
7545 | boolean r; | |
7546 | ||
7547 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
7548 | (o->owner, o, NULL, NULL, info->keep_memory)); | |
7549 | if (internal_relocs == NULL) | |
7550 | return false; | |
7551 | ||
3e932841 | 7552 | r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs); |
252b5132 RH |
7553 | |
7554 | if (!info->keep_memory) | |
7555 | free (internal_relocs); | |
7556 | ||
7557 | if (!r) | |
7558 | return false; | |
7559 | } | |
7560 | } | |
7561 | } | |
7562 | ||
7563 | /* Remove the symbols that were in the swept sections from the dynamic | |
7564 | symbol table. GCFIXME: Anyone know how to get them out of the | |
7565 | static symbol table as well? */ | |
7566 | { | |
7567 | int i = 0; | |
7568 | ||
7569 | elf_link_hash_traverse (elf_hash_table (info), | |
7570 | elf_gc_sweep_symbol, | |
7571 | (PTR) &i); | |
7572 | ||
7573 | elf_hash_table (info)->dynsymcount = i; | |
7574 | } | |
7575 | ||
7576 | return true; | |
7577 | } | |
7578 | ||
7579 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ | |
7580 | ||
7581 | static boolean | |
7582 | elf_gc_sweep_symbol (h, idxptr) | |
7583 | struct elf_link_hash_entry *h; | |
7584 | PTR idxptr; | |
7585 | { | |
7586 | int *idx = (int *) idxptr; | |
7587 | ||
7588 | if (h->dynindx != -1 | |
7589 | && ((h->root.type != bfd_link_hash_defined | |
7590 | && h->root.type != bfd_link_hash_defweak) | |
7591 | || h->root.u.def.section->gc_mark)) | |
7592 | h->dynindx = (*idx)++; | |
7593 | ||
7594 | return true; | |
7595 | } | |
7596 | ||
7597 | /* Propogate collected vtable information. This is called through | |
7598 | elf_link_hash_traverse. */ | |
7599 | ||
7600 | static boolean | |
7601 | elf_gc_propagate_vtable_entries_used (h, okp) | |
7602 | struct elf_link_hash_entry *h; | |
7603 | PTR okp; | |
7604 | { | |
3e932841 | 7605 | /* Those that are not vtables. */ |
252b5132 RH |
7606 | if (h->vtable_parent == NULL) |
7607 | return true; | |
7608 | ||
7609 | /* Those vtables that do not have parents, we cannot merge. */ | |
7610 | if (h->vtable_parent == (struct elf_link_hash_entry *) -1) | |
7611 | return true; | |
7612 | ||
7613 | /* If we've already been done, exit. */ | |
7614 | if (h->vtable_entries_used && h->vtable_entries_used[-1]) | |
7615 | return true; | |
7616 | ||
7617 | /* Make sure the parent's table is up to date. */ | |
7618 | elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp); | |
7619 | ||
7620 | if (h->vtable_entries_used == NULL) | |
7621 | { | |
7622 | /* None of this table's entries were referenced. Re-use the | |
7623 | parent's table. */ | |
7624 | h->vtable_entries_used = h->vtable_parent->vtable_entries_used; | |
7625 | h->vtable_entries_size = h->vtable_parent->vtable_entries_size; | |
7626 | } | |
7627 | else | |
7628 | { | |
7629 | size_t n; | |
7630 | boolean *cu, *pu; | |
7631 | ||
7632 | /* Or the parent's entries into ours. */ | |
7633 | cu = h->vtable_entries_used; | |
7634 | cu[-1] = true; | |
7635 | pu = h->vtable_parent->vtable_entries_used; | |
7636 | if (pu != NULL) | |
7637 | { | |
0d1ea5c0 CM |
7638 | asection *sec = h->root.u.def.section; |
7639 | struct elf_backend_data *bed = get_elf_backend_data (sec->owner); | |
7640 | int file_align = bed->s->file_align; | |
7641 | ||
7642 | n = h->vtable_parent->vtable_entries_size / file_align; | |
374b596d | 7643 | while (n--) |
252b5132 | 7644 | { |
374b596d NC |
7645 | if (*pu) |
7646 | *cu = true; | |
7647 | pu++; | |
7648 | cu++; | |
252b5132 RH |
7649 | } |
7650 | } | |
7651 | } | |
7652 | ||
7653 | return true; | |
7654 | } | |
7655 | ||
7656 | static boolean | |
7657 | elf_gc_smash_unused_vtentry_relocs (h, okp) | |
7658 | struct elf_link_hash_entry *h; | |
7659 | PTR okp; | |
7660 | { | |
7661 | asection *sec; | |
7662 | bfd_vma hstart, hend; | |
7663 | Elf_Internal_Rela *relstart, *relend, *rel; | |
c7ac6ff8 | 7664 | struct elf_backend_data *bed; |
0d1ea5c0 | 7665 | int file_align; |
252b5132 RH |
7666 | |
7667 | /* Take care of both those symbols that do not describe vtables as | |
7668 | well as those that are not loaded. */ | |
7669 | if (h->vtable_parent == NULL) | |
7670 | return true; | |
7671 | ||
7672 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
7673 | || h->root.type == bfd_link_hash_defweak); | |
7674 | ||
7675 | sec = h->root.u.def.section; | |
7676 | hstart = h->root.u.def.value; | |
7677 | hend = hstart + h->size; | |
7678 | ||
7679 | relstart = (NAME(_bfd_elf,link_read_relocs) | |
7680 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true)); | |
7681 | if (!relstart) | |
a7b97311 | 7682 | return *(boolean *) okp = false; |
c7ac6ff8 | 7683 | bed = get_elf_backend_data (sec->owner); |
0d1ea5c0 CM |
7684 | file_align = bed->s->file_align; |
7685 | ||
c7ac6ff8 | 7686 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
252b5132 RH |
7687 | |
7688 | for (rel = relstart; rel < relend; ++rel) | |
7689 | if (rel->r_offset >= hstart && rel->r_offset < hend) | |
7690 | { | |
7691 | /* If the entry is in use, do nothing. */ | |
7692 | if (h->vtable_entries_used | |
7693 | && (rel->r_offset - hstart) < h->vtable_entries_size) | |
7694 | { | |
0d1ea5c0 | 7695 | bfd_vma entry = (rel->r_offset - hstart) / file_align; |
252b5132 RH |
7696 | if (h->vtable_entries_used[entry]) |
7697 | continue; | |
7698 | } | |
7699 | /* Otherwise, kill it. */ | |
7700 | rel->r_offset = rel->r_info = rel->r_addend = 0; | |
7701 | } | |
7702 | ||
7703 | return true; | |
7704 | } | |
7705 | ||
7706 | /* Do mark and sweep of unused sections. */ | |
7707 | ||
7708 | boolean | |
7709 | elf_gc_sections (abfd, info) | |
7710 | bfd *abfd; | |
7711 | struct bfd_link_info *info; | |
7712 | { | |
7713 | boolean ok = true; | |
7714 | bfd *sub; | |
7715 | asection * (*gc_mark_hook) | |
dc810e39 | 7716 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, |
252b5132 RH |
7717 | struct elf_link_hash_entry *h, Elf_Internal_Sym *)); |
7718 | ||
7719 | if (!get_elf_backend_data (abfd)->can_gc_sections | |
6d3e950b | 7720 | || info->relocateable || info->emitrelocations |
252b5132 RH |
7721 | || elf_hash_table (info)->dynamic_sections_created) |
7722 | return true; | |
7723 | ||
7724 | /* Apply transitive closure to the vtable entry usage info. */ | |
7725 | elf_link_hash_traverse (elf_hash_table (info), | |
7726 | elf_gc_propagate_vtable_entries_used, | |
7727 | (PTR) &ok); | |
7728 | if (!ok) | |
7729 | return false; | |
7730 | ||
7731 | /* Kill the vtable relocations that were not used. */ | |
7732 | elf_link_hash_traverse (elf_hash_table (info), | |
7733 | elf_gc_smash_unused_vtentry_relocs, | |
7734 | (PTR) &ok); | |
7735 | if (!ok) | |
7736 | return false; | |
7737 | ||
7738 | /* Grovel through relocs to find out who stays ... */ | |
7739 | ||
7740 | gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook; | |
7741 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
7742 | { | |
7743 | asection *o; | |
f6af82bd AM |
7744 | |
7745 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) | |
7746 | continue; | |
7747 | ||
252b5132 RH |
7748 | for (o = sub->sections; o != NULL; o = o->next) |
7749 | { | |
7750 | if (o->flags & SEC_KEEP) | |
7751 | if (!elf_gc_mark (info, o, gc_mark_hook)) | |
7752 | return false; | |
7753 | } | |
7754 | } | |
7755 | ||
7756 | /* ... and mark SEC_EXCLUDE for those that go. */ | |
a7b97311 | 7757 | if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook)) |
252b5132 RH |
7758 | return false; |
7759 | ||
7760 | return true; | |
7761 | } | |
7762 | \f | |
7763 | /* Called from check_relocs to record the existance of a VTINHERIT reloc. */ | |
7764 | ||
7765 | boolean | |
7766 | elf_gc_record_vtinherit (abfd, sec, h, offset) | |
7767 | bfd *abfd; | |
7768 | asection *sec; | |
7769 | struct elf_link_hash_entry *h; | |
7770 | bfd_vma offset; | |
7771 | { | |
7772 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | |
7773 | struct elf_link_hash_entry **search, *child; | |
7774 | bfd_size_type extsymcount; | |
7775 | ||
7776 | /* The sh_info field of the symtab header tells us where the | |
7777 | external symbols start. We don't care about the local symbols at | |
7778 | this point. */ | |
7779 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym); | |
7780 | if (!elf_bad_symtab (abfd)) | |
7781 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; | |
7782 | ||
7783 | sym_hashes = elf_sym_hashes (abfd); | |
7784 | sym_hashes_end = sym_hashes + extsymcount; | |
7785 | ||
7786 | /* Hunt down the child symbol, which is in this section at the same | |
7787 | offset as the relocation. */ | |
7788 | for (search = sym_hashes; search != sym_hashes_end; ++search) | |
7789 | { | |
7790 | if ((child = *search) != NULL | |
7791 | && (child->root.type == bfd_link_hash_defined | |
7792 | || child->root.type == bfd_link_hash_defweak) | |
7793 | && child->root.u.def.section == sec | |
7794 | && child->root.u.def.value == offset) | |
7795 | goto win; | |
7796 | } | |
7797 | ||
7798 | (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT", | |
8f615d07 | 7799 | bfd_archive_filename (abfd), sec->name, |
a7b97311 | 7800 | (unsigned long) offset); |
252b5132 RH |
7801 | bfd_set_error (bfd_error_invalid_operation); |
7802 | return false; | |
7803 | ||
dc810e39 | 7804 | win: |
252b5132 RH |
7805 | if (!h) |
7806 | { | |
7807 | /* This *should* only be the absolute section. It could potentially | |
7808 | be that someone has defined a non-global vtable though, which | |
7809 | would be bad. It isn't worth paging in the local symbols to be | |
7810 | sure though; that case should simply be handled by the assembler. */ | |
7811 | ||
7812 | child->vtable_parent = (struct elf_link_hash_entry *) -1; | |
7813 | } | |
7814 | else | |
7815 | child->vtable_parent = h; | |
7816 | ||
7817 | return true; | |
7818 | } | |
7819 | ||
7820 | /* Called from check_relocs to record the existance of a VTENTRY reloc. */ | |
7821 | ||
7822 | boolean | |
7823 | elf_gc_record_vtentry (abfd, sec, h, addend) | |
7442e600 ILT |
7824 | bfd *abfd ATTRIBUTE_UNUSED; |
7825 | asection *sec ATTRIBUTE_UNUSED; | |
252b5132 RH |
7826 | struct elf_link_hash_entry *h; |
7827 | bfd_vma addend; | |
7828 | { | |
0d1ea5c0 CM |
7829 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
7830 | int file_align = bed->s->file_align; | |
7831 | ||
252b5132 RH |
7832 | if (addend >= h->vtable_entries_size) |
7833 | { | |
7834 | size_t size, bytes; | |
7835 | boolean *ptr = h->vtable_entries_used; | |
7836 | ||
7837 | /* While the symbol is undefined, we have to be prepared to handle | |
7838 | a zero size. */ | |
7839 | if (h->root.type == bfd_link_hash_undefined) | |
7840 | size = addend; | |
7841 | else | |
7842 | { | |
7843 | size = h->size; | |
7844 | if (size < addend) | |
7845 | { | |
7846 | /* Oops! We've got a reference past the defined end of | |
7847 | the table. This is probably a bug -- shall we warn? */ | |
7848 | size = addend; | |
7849 | } | |
7850 | } | |
7851 | ||
7852 | /* Allocate one extra entry for use as a "done" flag for the | |
7853 | consolidation pass. */ | |
0d1ea5c0 | 7854 | bytes = (size / file_align + 1) * sizeof (boolean); |
252b5132 RH |
7855 | |
7856 | if (ptr) | |
7857 | { | |
dc810e39 | 7858 | ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes); |
3e932841 | 7859 | |
fed79cc6 NC |
7860 | if (ptr != NULL) |
7861 | { | |
7862 | size_t oldbytes; | |
252b5132 | 7863 | |
a7b97311 AM |
7864 | oldbytes = ((h->vtable_entries_size / file_align + 1) |
7865 | * sizeof (boolean)); | |
7866 | memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); | |
fed79cc6 | 7867 | } |
252b5132 RH |
7868 | } |
7869 | else | |
dc810e39 | 7870 | ptr = bfd_zmalloc ((bfd_size_type) bytes); |
252b5132 | 7871 | |
fed79cc6 NC |
7872 | if (ptr == NULL) |
7873 | return false; | |
3e932841 | 7874 | |
252b5132 | 7875 | /* And arrange for that done flag to be at index -1. */ |
fed79cc6 | 7876 | h->vtable_entries_used = ptr + 1; |
252b5132 RH |
7877 | h->vtable_entries_size = size; |
7878 | } | |
3e932841 | 7879 | |
0d1ea5c0 | 7880 | h->vtable_entries_used[addend / file_align] = true; |
252b5132 RH |
7881 | |
7882 | return true; | |
7883 | } | |
7884 | ||
7885 | /* And an accompanying bit to work out final got entry offsets once | |
7886 | we're done. Should be called from final_link. */ | |
7887 | ||
7888 | boolean | |
7889 | elf_gc_common_finalize_got_offsets (abfd, info) | |
7890 | bfd *abfd; | |
7891 | struct bfd_link_info *info; | |
7892 | { | |
7893 | bfd *i; | |
7894 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
7895 | bfd_vma gotoff; | |
7896 | ||
7897 | /* The GOT offset is relative to the .got section, but the GOT header is | |
7898 | put into the .got.plt section, if the backend uses it. */ | |
7899 | if (bed->want_got_plt) | |
7900 | gotoff = 0; | |
7901 | else | |
7902 | gotoff = bed->got_header_size; | |
7903 | ||
7904 | /* Do the local .got entries first. */ | |
7905 | for (i = info->input_bfds; i; i = i->link_next) | |
7906 | { | |
f6af82bd | 7907 | bfd_signed_vma *local_got; |
252b5132 RH |
7908 | bfd_size_type j, locsymcount; |
7909 | Elf_Internal_Shdr *symtab_hdr; | |
7910 | ||
f6af82bd AM |
7911 | if (bfd_get_flavour (i) != bfd_target_elf_flavour) |
7912 | continue; | |
7913 | ||
7914 | local_got = elf_local_got_refcounts (i); | |
252b5132 RH |
7915 | if (!local_got) |
7916 | continue; | |
7917 | ||
7918 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
7919 | if (elf_bad_symtab (i)) | |
7920 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
7921 | else | |
7922 | locsymcount = symtab_hdr->sh_info; | |
7923 | ||
7924 | for (j = 0; j < locsymcount; ++j) | |
7925 | { | |
7926 | if (local_got[j] > 0) | |
7927 | { | |
7928 | local_got[j] = gotoff; | |
7929 | gotoff += ARCH_SIZE / 8; | |
7930 | } | |
7931 | else | |
7932 | local_got[j] = (bfd_vma) -1; | |
7933 | } | |
7934 | } | |
7935 | ||
dd5724d5 AM |
7936 | /* Then the global .got entries. .plt refcounts are handled by |
7937 | adjust_dynamic_symbol */ | |
252b5132 RH |
7938 | elf_link_hash_traverse (elf_hash_table (info), |
7939 | elf_gc_allocate_got_offsets, | |
7940 | (PTR) &gotoff); | |
7941 | return true; | |
7942 | } | |
7943 | ||
7944 | /* We need a special top-level link routine to convert got reference counts | |
7945 | to real got offsets. */ | |
7946 | ||
7947 | static boolean | |
7948 | elf_gc_allocate_got_offsets (h, offarg) | |
7949 | struct elf_link_hash_entry *h; | |
7950 | PTR offarg; | |
7951 | { | |
7952 | bfd_vma *off = (bfd_vma *) offarg; | |
7953 | ||
7954 | if (h->got.refcount > 0) | |
7955 | { | |
7956 | h->got.offset = off[0]; | |
7957 | off[0] += ARCH_SIZE / 8; | |
7958 | } | |
7959 | else | |
7960 | h->got.offset = (bfd_vma) -1; | |
7961 | ||
7962 | return true; | |
7963 | } | |
7964 | ||
7965 | /* Many folk need no more in the way of final link than this, once | |
7966 | got entry reference counting is enabled. */ | |
7967 | ||
7968 | boolean | |
7969 | elf_gc_common_final_link (abfd, info) | |
7970 | bfd *abfd; | |
7971 | struct bfd_link_info *info; | |
7972 | { | |
7973 | if (!elf_gc_common_finalize_got_offsets (abfd, info)) | |
7974 | return false; | |
7975 | ||
7976 | /* Invoke the regular ELF backend linker to do all the work. */ | |
7977 | return elf_bfd_final_link (abfd, info); | |
7978 | } | |
7979 | ||
7980 | /* This function will be called though elf_link_hash_traverse to store | |
7981 | all hash value of the exported symbols in an array. */ | |
7982 | ||
7983 | static boolean | |
7984 | elf_collect_hash_codes (h, data) | |
7985 | struct elf_link_hash_entry *h; | |
7986 | PTR data; | |
7987 | { | |
7988 | unsigned long **valuep = (unsigned long **) data; | |
7989 | const char *name; | |
7990 | char *p; | |
7991 | unsigned long ha; | |
7992 | char *alc = NULL; | |
7993 | ||
7994 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
7995 | if (h->dynindx == -1) | |
7996 | return true; | |
7997 | ||
7998 | name = h->root.root.string; | |
7999 | p = strchr (name, ELF_VER_CHR); | |
8000 | if (p != NULL) | |
8001 | { | |
dc810e39 AM |
8002 | alc = bfd_malloc ((bfd_size_type) (p - name + 1)); |
8003 | memcpy (alc, name, (size_t) (p - name)); | |
252b5132 RH |
8004 | alc[p - name] = '\0'; |
8005 | name = alc; | |
8006 | } | |
8007 | ||
8008 | /* Compute the hash value. */ | |
8009 | ha = bfd_elf_hash (name); | |
8010 | ||
8011 | /* Store the found hash value in the array given as the argument. */ | |
8012 | *(*valuep)++ = ha; | |
8013 | ||
8014 | /* And store it in the struct so that we can put it in the hash table | |
8015 | later. */ | |
8016 | h->elf_hash_value = ha; | |
8017 | ||
8018 | if (alc != NULL) | |
8019 | free (alc); | |
8020 | ||
8021 | return true; | |
8022 | } | |
73d074b4 DJ |
8023 | |
8024 | boolean | |
8025 | elf_reloc_symbol_deleted_p (offset, cookie) | |
8026 | bfd_vma offset; | |
8027 | PTR cookie; | |
8028 | { | |
9ad5cbcf | 8029 | struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; |
73d074b4 DJ |
8030 | |
8031 | if (rcookie->bad_symtab) | |
8032 | rcookie->rel = rcookie->rels; | |
8033 | ||
8034 | for (; rcookie->rel < rcookie->relend; rcookie->rel++) | |
8035 | { | |
8036 | unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info); | |
8037 | Elf_Internal_Sym isym; | |
8038 | ||
8039 | if (! rcookie->bad_symtab) | |
8040 | if (rcookie->rel->r_offset > offset) | |
8041 | return false; | |
8042 | if (rcookie->rel->r_offset != offset) | |
8043 | continue; | |
8044 | ||
f9f32305 | 8045 | if (rcookie->locsyms && r_symndx < rcookie->locsymcount) |
9ad5cbcf AM |
8046 | { |
8047 | Elf_External_Sym *lsym; | |
8048 | Elf_External_Sym_Shndx *lshndx; | |
8049 | ||
8050 | lsym = (Elf_External_Sym *) rcookie->locsyms + r_symndx; | |
8051 | lshndx = (Elf_External_Sym_Shndx *) rcookie->locsym_shndx; | |
8052 | if (lshndx != NULL) | |
8053 | lshndx += r_symndx; | |
8054 | elf_swap_symbol_in (rcookie->abfd, lsym, lshndx, &isym); | |
8055 | } | |
73d074b4 DJ |
8056 | |
8057 | if (r_symndx >= rcookie->locsymcount | |
8058 | || (rcookie->locsyms | |
8059 | && ELF_ST_BIND (isym.st_info) != STB_LOCAL)) | |
8060 | { | |
8061 | struct elf_link_hash_entry *h; | |
8062 | ||
8063 | h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; | |
8064 | ||
8065 | while (h->root.type == bfd_link_hash_indirect | |
8066 | || h->root.type == bfd_link_hash_warning) | |
8067 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
8068 | ||
8069 | if ((h->root.type == bfd_link_hash_defined | |
8070 | || h->root.type == bfd_link_hash_defweak) | |
ed4de5e2 | 8071 | && elf_discarded_section (h->root.u.def.section)) |
73d074b4 DJ |
8072 | return true; |
8073 | else | |
8074 | return false; | |
8075 | } | |
8076 | else if (rcookie->locsyms) | |
8077 | { | |
8078 | /* It's not a relocation against a global symbol, | |
44421011 | 8079 | but it could be a relocation against a local |
73d074b4 DJ |
8080 | symbol for a discarded section. */ |
8081 | asection *isec; | |
8082 | ||
8083 | /* Need to: get the symbol; get the section. */ | |
9ad5cbcf | 8084 | if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE) |
73d074b4 DJ |
8085 | { |
8086 | isec = section_from_elf_index (rcookie->abfd, isym.st_shndx); | |
ed4de5e2 | 8087 | if (isec != NULL && elf_discarded_section (isec)) |
73d074b4 DJ |
8088 | return true; |
8089 | } | |
8090 | } | |
8091 | return false; | |
8092 | } | |
8093 | return false; | |
8094 | } | |
8095 | ||
8096 | /* Discard unneeded references to discarded sections. | |
8097 | Returns true if any section's size was changed. */ | |
8098 | /* This function assumes that the relocations are in sorted order, | |
8099 | which is true for all known assemblers. */ | |
8100 | ||
8101 | boolean | |
65765700 JJ |
8102 | elf_bfd_discard_info (output_bfd, info) |
8103 | bfd *output_bfd; | |
73d074b4 DJ |
8104 | struct bfd_link_info *info; |
8105 | { | |
8106 | struct elf_reloc_cookie cookie; | |
65765700 | 8107 | asection *stab, *eh, *ehdr; |
73d074b4 | 8108 | Elf_Internal_Shdr *symtab_hdr; |
9ad5cbcf | 8109 | Elf_Internal_Shdr *shndx_hdr; |
73d074b4 DJ |
8110 | Elf_External_Sym *freesyms; |
8111 | struct elf_backend_data *bed; | |
8112 | bfd *abfd; | |
8113 | boolean ret = false; | |
65765700 | 8114 | boolean strip = info->strip == strip_all || info->strip == strip_debugger; |
73d074b4 DJ |
8115 | |
8116 | if (info->relocateable | |
8117 | || info->traditional_format | |
8118 | || info->hash->creator->flavour != bfd_target_elf_flavour | |
65765700 | 8119 | || ! is_elf_hash_table (info)) |
73d074b4 | 8120 | return false; |
65765700 | 8121 | |
72dd6331 AM |
8122 | ehdr = NULL; |
8123 | if (elf_hash_table (info)->dynobj != NULL) | |
8124 | ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
8125 | ".eh_frame_hdr"); | |
65765700 | 8126 | |
73d074b4 DJ |
8127 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) |
8128 | { | |
163c1c30 L |
8129 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
8130 | continue; | |
8131 | ||
73d074b4 DJ |
8132 | bed = get_elf_backend_data (abfd); |
8133 | ||
8134 | if ((abfd->flags & DYNAMIC) != 0) | |
8135 | continue; | |
8136 | ||
65765700 JJ |
8137 | eh = NULL; |
8138 | if (ehdr) | |
8139 | { | |
8140 | eh = bfd_get_section_by_name (abfd, ".eh_frame"); | |
8141 | if (eh && eh->_raw_size == 0) | |
8142 | eh = NULL; | |
8143 | } | |
8144 | ||
8145 | stab = strip ? NULL : bfd_get_section_by_name (abfd, ".stab"); | |
8146 | if ((! stab || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS) | |
8147 | && ! eh | |
8148 | && (strip || ! bed->elf_backend_discard_info)) | |
73d074b4 DJ |
8149 | continue; |
8150 | ||
8151 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9ad5cbcf | 8152 | shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; |
73d074b4 DJ |
8153 | |
8154 | cookie.abfd = abfd; | |
8155 | cookie.sym_hashes = elf_sym_hashes (abfd); | |
8156 | cookie.bad_symtab = elf_bad_symtab (abfd); | |
8157 | if (cookie.bad_symtab) | |
8158 | { | |
8159 | cookie.locsymcount = | |
8160 | symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
8161 | cookie.extsymoff = 0; | |
8162 | } | |
8163 | else | |
8164 | { | |
8165 | cookie.locsymcount = symtab_hdr->sh_info; | |
8166 | cookie.extsymoff = symtab_hdr->sh_info; | |
8167 | } | |
8168 | ||
8169 | freesyms = NULL; | |
8170 | if (symtab_hdr->contents) | |
8171 | cookie.locsyms = (void *) symtab_hdr->contents; | |
8172 | else if (cookie.locsymcount == 0) | |
8173 | cookie.locsyms = NULL; | |
8174 | else | |
8175 | { | |
8176 | bfd_size_type amt = cookie.locsymcount * sizeof (Elf_External_Sym); | |
8177 | cookie.locsyms = bfd_malloc (amt); | |
9ad5cbcf AM |
8178 | if (cookie.locsyms == NULL) |
8179 | return false; | |
8180 | freesyms = cookie.locsyms; | |
8181 | if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
73d074b4 DJ |
8182 | || bfd_bread (cookie.locsyms, amt, abfd) != amt) |
8183 | { | |
9ad5cbcf AM |
8184 | error_ret_free_loc: |
8185 | free (cookie.locsyms); | |
8186 | return false; | |
73d074b4 | 8187 | } |
9ad5cbcf AM |
8188 | } |
8189 | ||
8190 | cookie.locsym_shndx = NULL; | |
8191 | if (shndx_hdr->sh_size != 0 && cookie.locsymcount != 0) | |
8192 | { | |
8193 | bfd_size_type amt; | |
8194 | amt = cookie.locsymcount * sizeof (Elf_External_Sym_Shndx); | |
8195 | cookie.locsym_shndx = bfd_malloc (amt); | |
8196 | if (cookie.locsym_shndx == NULL) | |
8197 | goto error_ret_free_loc; | |
8198 | if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0 | |
8199 | || bfd_bread (cookie.locsym_shndx, amt, abfd) != amt) | |
73d074b4 | 8200 | { |
9ad5cbcf AM |
8201 | free (cookie.locsym_shndx); |
8202 | goto error_ret_free_loc; | |
73d074b4 | 8203 | } |
9ad5cbcf | 8204 | } |
73d074b4 | 8205 | |
65765700 | 8206 | if (stab) |
73d074b4 DJ |
8207 | { |
8208 | cookie.rels = (NAME(_bfd_elf,link_read_relocs) | |
65765700 | 8209 | (abfd, stab, (PTR) NULL, |
73d074b4 DJ |
8210 | (Elf_Internal_Rela *) NULL, |
8211 | info->keep_memory)); | |
8212 | if (cookie.rels) | |
8213 | { | |
8214 | cookie.rel = cookie.rels; | |
8215 | cookie.relend = | |
65765700 JJ |
8216 | cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel; |
8217 | if (_bfd_discard_section_stabs (abfd, stab, | |
8218 | elf_section_data (stab)->sec_info, | |
73d074b4 DJ |
8219 | elf_reloc_symbol_deleted_p, |
8220 | &cookie)) | |
8221 | ret = true; | |
8222 | if (! info->keep_memory) | |
8223 | free (cookie.rels); | |
8224 | } | |
8225 | } | |
8226 | ||
65765700 JJ |
8227 | if (eh) |
8228 | { | |
8229 | cookie.rels = NULL; | |
8230 | cookie.rel = NULL; | |
8231 | cookie.relend = NULL; | |
8232 | if (eh->reloc_count) | |
8233 | cookie.rels = (NAME(_bfd_elf,link_read_relocs) | |
8234 | (abfd, eh, (PTR) NULL, | |
8235 | (Elf_Internal_Rela *) NULL, | |
8236 | info->keep_memory)); | |
8237 | if (cookie.rels) | |
8238 | { | |
8239 | cookie.rel = cookie.rels; | |
8240 | cookie.relend = | |
8241 | cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel; | |
8242 | } | |
8243 | if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr, | |
8244 | elf_reloc_symbol_deleted_p, | |
8245 | &cookie)) | |
8246 | ret = true; | |
8247 | if (! info->keep_memory) | |
8248 | free (cookie.rels); | |
8249 | } | |
8250 | ||
73d074b4 DJ |
8251 | if (bed->elf_backend_discard_info) |
8252 | { | |
8253 | if (bed->elf_backend_discard_info (abfd, &cookie, info)) | |
8254 | ret = true; | |
8255 | } | |
8256 | ||
9ad5cbcf AM |
8257 | if (cookie.locsym_shndx != NULL) |
8258 | free (cookie.locsym_shndx); | |
8259 | ||
8260 | if (freesyms != NULL) | |
73d074b4 DJ |
8261 | free (freesyms); |
8262 | } | |
65765700 JJ |
8263 | |
8264 | if (ehdr | |
8265 | && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, | |
8266 | info, ehdr)) | |
8267 | ret = true; | |
73d074b4 DJ |
8268 | return ret; |
8269 | } | |
8270 | ||
8271 | static boolean | |
8272 | elf_section_ignore_discarded_relocs (sec) | |
8273 | asection *sec; | |
8274 | { | |
65765700 JJ |
8275 | switch (elf_section_data (sec)->sec_info_type) |
8276 | { | |
8277 | case ELF_INFO_TYPE_STABS: | |
8278 | case ELF_INFO_TYPE_EH_FRAME: | |
8279 | return true; | |
8280 | default: | |
8281 | break; | |
8282 | } | |
8283 | if ((get_elf_backend_data (sec->owner)->elf_backend_ignore_discarded_relocs | |
8284 | != NULL) | |
8285 | && (*get_elf_backend_data (sec->owner) | |
8286 | ->elf_backend_ignore_discarded_relocs) (sec)) | |
73d074b4 | 8287 | return true; |
65765700 JJ |
8288 | |
8289 | return false; | |
73d074b4 | 8290 | } |