]>
Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* ELF linker support. |
2bd171e0 | 2 | Copyright 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. |
252b5132 RH |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
19 | ||
20 | /* ELF linker code. */ | |
21 | ||
22 | /* This struct is used to pass information to routines called via | |
23 | elf_link_hash_traverse which must return failure. */ | |
24 | ||
25 | struct elf_info_failed | |
26 | { | |
27 | boolean failed; | |
28 | struct bfd_link_info *info; | |
29 | }; | |
30 | ||
31 | static boolean elf_link_add_object_symbols | |
32 | PARAMS ((bfd *, struct bfd_link_info *)); | |
33 | static boolean elf_link_add_archive_symbols | |
34 | PARAMS ((bfd *, struct bfd_link_info *)); | |
35 | static boolean elf_merge_symbol | |
36 | PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *, | |
37 | asection **, bfd_vma *, struct elf_link_hash_entry **, | |
38 | boolean *, boolean *, boolean *)); | |
39 | static boolean elf_export_symbol | |
40 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
41 | static boolean elf_fix_symbol_flags | |
42 | PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *)); | |
43 | static boolean elf_adjust_dynamic_symbol | |
44 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
45 | static boolean elf_link_find_version_dependencies | |
46 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
47 | static boolean elf_link_find_version_dependencies | |
48 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
49 | static boolean elf_link_assign_sym_version | |
50 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
252b5132 RH |
51 | static boolean elf_collect_hash_codes |
52 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
6b5bd373 MM |
53 | static boolean elf_link_read_relocs_from_section |
54 | PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *)); | |
23bc299b MM |
55 | static void elf_link_output_relocs |
56 | PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *)); | |
57 | static boolean elf_link_size_reloc_section | |
58 | PARAMS ((bfd *, Elf_Internal_Shdr *, asection *)); | |
31367b81 MM |
59 | static void elf_link_adjust_relocs |
60 | PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int, | |
61 | struct elf_link_hash_entry **)); | |
252b5132 RH |
62 | |
63 | /* Given an ELF BFD, add symbols to the global hash table as | |
64 | appropriate. */ | |
65 | ||
66 | boolean | |
67 | elf_bfd_link_add_symbols (abfd, info) | |
68 | bfd *abfd; | |
69 | struct bfd_link_info *info; | |
70 | { | |
71 | switch (bfd_get_format (abfd)) | |
72 | { | |
73 | case bfd_object: | |
74 | return elf_link_add_object_symbols (abfd, info); | |
75 | case bfd_archive: | |
76 | return elf_link_add_archive_symbols (abfd, info); | |
77 | default: | |
78 | bfd_set_error (bfd_error_wrong_format); | |
79 | return false; | |
80 | } | |
81 | } | |
82 | \f | |
48dfb430 NC |
83 | /* Return true iff this is a non-common definition of a symbol. */ |
84 | static boolean | |
85 | is_global_symbol_definition (abfd, sym) | |
86033394 | 86 | bfd * abfd ATTRIBUTE_UNUSED; |
48dfb430 NC |
87 | Elf_Internal_Sym * sym; |
88 | { | |
89 | /* Local symbols do not count, but target specific ones might. */ | |
90 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL | |
91 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) | |
92 | return false; | |
93 | ||
94 | /* If the section is undefined, then so is the symbol. */ | |
95 | if (sym->st_shndx == SHN_UNDEF) | |
96 | return false; | |
97 | ||
98 | /* If the symbol is defined in the common section, then | |
99 | it is a common definition and so does not count. */ | |
100 | if (sym->st_shndx == SHN_COMMON) | |
101 | return false; | |
102 | ||
103 | /* If the symbol is in a target specific section then we | |
104 | must rely upon the backend to tell us what it is. */ | |
105 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) | |
106 | /* FIXME - this function is not coded yet: | |
107 | ||
108 | return _bfd_is_global_symbol_definition (abfd, sym); | |
109 | ||
110 | Instead for now assume that the definition is not global, | |
111 | Even if this is wrong, at least the linker will behave | |
112 | in the same way that it used to do. */ | |
113 | return false; | |
114 | ||
115 | return true; | |
116 | } | |
117 | ||
118 | ||
a3a8c91d NC |
119 | /* Search the symbol table of the archive element of the archive ABFD |
120 | whoes archove map contains a mention of SYMDEF, and determine if | |
121 | the symbol is defined in this element. */ | |
122 | static boolean | |
123 | elf_link_is_defined_archive_symbol (abfd, symdef) | |
124 | bfd * abfd; | |
125 | carsym * symdef; | |
126 | { | |
127 | Elf_Internal_Shdr * hdr; | |
128 | Elf_External_Sym * esym; | |
129 | Elf_External_Sym * esymend; | |
130 | Elf_External_Sym * buf = NULL; | |
131 | size_t symcount; | |
132 | size_t extsymcount; | |
133 | size_t extsymoff; | |
134 | boolean result = false; | |
135 | ||
136 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
137 | if (abfd == (bfd *) NULL) | |
138 | return false; | |
139 | ||
140 | if (! bfd_check_format (abfd, bfd_object)) | |
141 | return false; | |
142 | ||
48dfb430 NC |
143 | /* If we have already included the element containing this symbol in the |
144 | link then we do not need to include it again. Just claim that any symbol | |
145 | it contains is not a definition, so that our caller will not decide to | |
146 | (re)include this element. */ | |
147 | if (abfd->archive_pass) | |
148 | return false; | |
149 | ||
a3a8c91d NC |
150 | /* Select the appropriate symbol table. */ |
151 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) | |
152 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
153 | else | |
154 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
155 | ||
156 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
157 | ||
158 | /* The sh_info field of the symtab header tells us where the | |
159 | external symbols start. We don't care about the local symbols. */ | |
160 | if (elf_bad_symtab (abfd)) | |
161 | { | |
162 | extsymcount = symcount; | |
163 | extsymoff = 0; | |
164 | } | |
165 | else | |
166 | { | |
167 | extsymcount = symcount - hdr->sh_info; | |
168 | extsymoff = hdr->sh_info; | |
169 | } | |
170 | ||
171 | buf = ((Elf_External_Sym *) | |
172 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); | |
173 | if (buf == NULL && extsymcount != 0) | |
174 | return false; | |
175 | ||
176 | /* Read in the symbol table. | |
177 | FIXME: This ought to be cached somewhere. */ | |
178 | if (bfd_seek (abfd, | |
179 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), | |
180 | SEEK_SET) != 0 | |
181 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
182 | != extsymcount * sizeof (Elf_External_Sym))) | |
183 | { | |
184 | free (buf); | |
185 | return false; | |
186 | } | |
187 | ||
188 | /* Scan the symbol table looking for SYMDEF. */ | |
189 | esymend = buf + extsymcount; | |
190 | for (esym = buf; | |
191 | esym < esymend; | |
192 | esym++) | |
193 | { | |
194 | Elf_Internal_Sym sym; | |
195 | const char * name; | |
196 | ||
197 | elf_swap_symbol_in (abfd, esym, & sym); | |
198 | ||
199 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
200 | if (name == (const char *) NULL) | |
201 | break; | |
202 | ||
203 | if (strcmp (name, symdef->name) == 0) | |
204 | { | |
48dfb430 | 205 | result = is_global_symbol_definition (abfd, & sym); |
a3a8c91d NC |
206 | break; |
207 | } | |
208 | } | |
209 | ||
210 | free (buf); | |
211 | ||
212 | return result; | |
213 | } | |
214 | \f | |
252b5132 RH |
215 | |
216 | /* Add symbols from an ELF archive file to the linker hash table. We | |
217 | don't use _bfd_generic_link_add_archive_symbols because of a | |
218 | problem which arises on UnixWare. The UnixWare libc.so is an | |
219 | archive which includes an entry libc.so.1 which defines a bunch of | |
220 | symbols. The libc.so archive also includes a number of other | |
221 | object files, which also define symbols, some of which are the same | |
222 | as those defined in libc.so.1. Correct linking requires that we | |
223 | consider each object file in turn, and include it if it defines any | |
224 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
225 | this; it looks through the list of undefined symbols, and includes | |
226 | any object file which defines them. When this algorithm is used on | |
227 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
228 | bunch of symbols. This means that some of the other objects in the | |
229 | archive are not included in the link, which is incorrect since they | |
230 | precede libc.so.1 in the archive. | |
231 | ||
232 | Fortunately, ELF archive handling is simpler than that done by | |
233 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
234 | oddities. In ELF, if we find a symbol in the archive map, and the | |
235 | symbol is currently undefined, we know that we must pull in that | |
236 | object file. | |
237 | ||
238 | Unfortunately, we do have to make multiple passes over the symbol | |
239 | table until nothing further is resolved. */ | |
240 | ||
241 | static boolean | |
242 | elf_link_add_archive_symbols (abfd, info) | |
243 | bfd *abfd; | |
244 | struct bfd_link_info *info; | |
245 | { | |
246 | symindex c; | |
247 | boolean *defined = NULL; | |
248 | boolean *included = NULL; | |
249 | carsym *symdefs; | |
250 | boolean loop; | |
251 | ||
252 | if (! bfd_has_map (abfd)) | |
253 | { | |
254 | /* An empty archive is a special case. */ | |
255 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
256 | return true; | |
257 | bfd_set_error (bfd_error_no_armap); | |
258 | return false; | |
259 | } | |
260 | ||
261 | /* Keep track of all symbols we know to be already defined, and all | |
262 | files we know to be already included. This is to speed up the | |
263 | second and subsequent passes. */ | |
264 | c = bfd_ardata (abfd)->symdef_count; | |
265 | if (c == 0) | |
266 | return true; | |
267 | defined = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
268 | included = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
269 | if (defined == (boolean *) NULL || included == (boolean *) NULL) | |
270 | goto error_return; | |
271 | memset (defined, 0, c * sizeof (boolean)); | |
272 | memset (included, 0, c * sizeof (boolean)); | |
273 | ||
274 | symdefs = bfd_ardata (abfd)->symdefs; | |
275 | ||
276 | do | |
277 | { | |
278 | file_ptr last; | |
279 | symindex i; | |
280 | carsym *symdef; | |
281 | carsym *symdefend; | |
282 | ||
283 | loop = false; | |
284 | last = -1; | |
285 | ||
286 | symdef = symdefs; | |
287 | symdefend = symdef + c; | |
288 | for (i = 0; symdef < symdefend; symdef++, i++) | |
289 | { | |
290 | struct elf_link_hash_entry *h; | |
291 | bfd *element; | |
292 | struct bfd_link_hash_entry *undefs_tail; | |
293 | symindex mark; | |
294 | ||
295 | if (defined[i] || included[i]) | |
296 | continue; | |
297 | if (symdef->file_offset == last) | |
298 | { | |
299 | included[i] = true; | |
300 | continue; | |
301 | } | |
302 | ||
303 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
304 | false, false, false); | |
305 | ||
306 | if (h == NULL) | |
307 | { | |
308 | char *p, *copy; | |
309 | ||
310 | /* If this is a default version (the name contains @@), | |
311 | look up the symbol again without the version. The | |
312 | effect is that references to the symbol without the | |
313 | version will be matched by the default symbol in the | |
314 | archive. */ | |
315 | ||
316 | p = strchr (symdef->name, ELF_VER_CHR); | |
317 | if (p == NULL || p[1] != ELF_VER_CHR) | |
318 | continue; | |
319 | ||
320 | copy = bfd_alloc (abfd, p - symdef->name + 1); | |
321 | if (copy == NULL) | |
322 | goto error_return; | |
323 | memcpy (copy, symdef->name, p - symdef->name); | |
324 | copy[p - symdef->name] = '\0'; | |
325 | ||
326 | h = elf_link_hash_lookup (elf_hash_table (info), copy, | |
327 | false, false, false); | |
328 | ||
329 | bfd_release (abfd, copy); | |
330 | } | |
331 | ||
332 | if (h == NULL) | |
333 | continue; | |
334 | ||
a3a8c91d NC |
335 | if (h->root.type == bfd_link_hash_common) |
336 | { | |
337 | /* We currently have a common symbol. The archive map contains | |
338 | a reference to this symbol, so we may want to include it. We | |
339 | only want to include it however, if this archive element | |
340 | contains a definition of the symbol, not just another common | |
341 | declaration of it. | |
342 | ||
343 | Unfortunately some archivers (including GNU ar) will put | |
344 | declarations of common symbols into their archive maps, as | |
345 | well as real definitions, so we cannot just go by the archive | |
346 | map alone. Instead we must read in the element's symbol | |
347 | table and check that to see what kind of symbol definition | |
348 | this is. */ | |
349 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | |
350 | continue; | |
351 | } | |
352 | else if (h->root.type != bfd_link_hash_undefined) | |
252b5132 RH |
353 | { |
354 | if (h->root.type != bfd_link_hash_undefweak) | |
355 | defined[i] = true; | |
356 | continue; | |
357 | } | |
358 | ||
359 | /* We need to include this archive member. */ | |
252b5132 RH |
360 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); |
361 | if (element == (bfd *) NULL) | |
362 | goto error_return; | |
363 | ||
364 | if (! bfd_check_format (element, bfd_object)) | |
365 | goto error_return; | |
366 | ||
367 | /* Doublecheck that we have not included this object | |
368 | already--it should be impossible, but there may be | |
369 | something wrong with the archive. */ | |
370 | if (element->archive_pass != 0) | |
371 | { | |
372 | bfd_set_error (bfd_error_bad_value); | |
373 | goto error_return; | |
374 | } | |
375 | element->archive_pass = 1; | |
376 | ||
377 | undefs_tail = info->hash->undefs_tail; | |
378 | ||
379 | if (! (*info->callbacks->add_archive_element) (info, element, | |
380 | symdef->name)) | |
381 | goto error_return; | |
382 | if (! elf_link_add_object_symbols (element, info)) | |
383 | goto error_return; | |
384 | ||
385 | /* If there are any new undefined symbols, we need to make | |
386 | another pass through the archive in order to see whether | |
387 | they can be defined. FIXME: This isn't perfect, because | |
388 | common symbols wind up on undefs_tail and because an | |
389 | undefined symbol which is defined later on in this pass | |
390 | does not require another pass. This isn't a bug, but it | |
391 | does make the code less efficient than it could be. */ | |
392 | if (undefs_tail != info->hash->undefs_tail) | |
393 | loop = true; | |
394 | ||
395 | /* Look backward to mark all symbols from this object file | |
396 | which we have already seen in this pass. */ | |
397 | mark = i; | |
398 | do | |
399 | { | |
400 | included[mark] = true; | |
401 | if (mark == 0) | |
402 | break; | |
403 | --mark; | |
404 | } | |
405 | while (symdefs[mark].file_offset == symdef->file_offset); | |
406 | ||
407 | /* We mark subsequent symbols from this object file as we go | |
408 | on through the loop. */ | |
409 | last = symdef->file_offset; | |
410 | } | |
411 | } | |
412 | while (loop); | |
413 | ||
414 | free (defined); | |
415 | free (included); | |
416 | ||
417 | return true; | |
418 | ||
419 | error_return: | |
420 | if (defined != (boolean *) NULL) | |
421 | free (defined); | |
422 | if (included != (boolean *) NULL) | |
423 | free (included); | |
424 | return false; | |
425 | } | |
426 | ||
427 | /* This function is called when we want to define a new symbol. It | |
428 | handles the various cases which arise when we find a definition in | |
429 | a dynamic object, or when there is already a definition in a | |
430 | dynamic object. The new symbol is described by NAME, SYM, PSEC, | |
431 | and PVALUE. We set SYM_HASH to the hash table entry. We set | |
432 | OVERRIDE if the old symbol is overriding a new definition. We set | |
433 | TYPE_CHANGE_OK if it is OK for the type to change. We set | |
434 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to | |
435 | change, we mean that we shouldn't warn if the type or size does | |
436 | change. */ | |
437 | ||
438 | static boolean | |
439 | elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash, | |
440 | override, type_change_ok, size_change_ok) | |
441 | bfd *abfd; | |
442 | struct bfd_link_info *info; | |
443 | const char *name; | |
444 | Elf_Internal_Sym *sym; | |
445 | asection **psec; | |
446 | bfd_vma *pvalue; | |
447 | struct elf_link_hash_entry **sym_hash; | |
448 | boolean *override; | |
449 | boolean *type_change_ok; | |
450 | boolean *size_change_ok; | |
451 | { | |
452 | asection *sec; | |
453 | struct elf_link_hash_entry *h; | |
454 | int bind; | |
455 | bfd *oldbfd; | |
456 | boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
457 | ||
458 | *override = false; | |
459 | ||
460 | sec = *psec; | |
461 | bind = ELF_ST_BIND (sym->st_info); | |
462 | ||
463 | if (! bfd_is_und_section (sec)) | |
464 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); | |
465 | else | |
466 | h = ((struct elf_link_hash_entry *) | |
467 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); | |
468 | if (h == NULL) | |
469 | return false; | |
470 | *sym_hash = h; | |
471 | ||
472 | /* This code is for coping with dynamic objects, and is only useful | |
473 | if we are doing an ELF link. */ | |
474 | if (info->hash->creator != abfd->xvec) | |
475 | return true; | |
476 | ||
477 | /* For merging, we only care about real symbols. */ | |
478 | ||
479 | while (h->root.type == bfd_link_hash_indirect | |
480 | || h->root.type == bfd_link_hash_warning) | |
481 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
482 | ||
483 | /* If we just created the symbol, mark it as being an ELF symbol. | |
484 | Other than that, there is nothing to do--there is no merge issue | |
485 | with a newly defined symbol--so we just return. */ | |
486 | ||
487 | if (h->root.type == bfd_link_hash_new) | |
488 | { | |
489 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
490 | return true; | |
491 | } | |
492 | ||
493 | /* OLDBFD is a BFD associated with the existing symbol. */ | |
494 | ||
495 | switch (h->root.type) | |
496 | { | |
497 | default: | |
498 | oldbfd = NULL; | |
499 | break; | |
500 | ||
501 | case bfd_link_hash_undefined: | |
502 | case bfd_link_hash_undefweak: | |
503 | oldbfd = h->root.u.undef.abfd; | |
504 | break; | |
505 | ||
506 | case bfd_link_hash_defined: | |
507 | case bfd_link_hash_defweak: | |
508 | oldbfd = h->root.u.def.section->owner; | |
509 | break; | |
510 | ||
511 | case bfd_link_hash_common: | |
512 | oldbfd = h->root.u.c.p->section->owner; | |
513 | break; | |
514 | } | |
515 | ||
b4536acd ILT |
516 | /* In cases involving weak versioned symbols, we may wind up trying |
517 | to merge a symbol with itself. Catch that here, to avoid the | |
518 | confusion that results if we try to override a symbol with | |
accc7f69 ILT |
519 | itself. The additional tests catch cases like |
520 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |
521 | dynamic object, which we do want to handle here. */ | |
522 | if (abfd == oldbfd | |
523 | && ((abfd->flags & DYNAMIC) == 0 | |
524 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
b4536acd ILT |
525 | return true; |
526 | ||
252b5132 RH |
527 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, |
528 | respectively, is from a dynamic object. */ | |
529 | ||
530 | if ((abfd->flags & DYNAMIC) != 0) | |
531 | newdyn = true; | |
532 | else | |
533 | newdyn = false; | |
534 | ||
0035bd7b ILT |
535 | if (oldbfd != NULL) |
536 | olddyn = (oldbfd->flags & DYNAMIC) != 0; | |
252b5132 | 537 | else |
0035bd7b ILT |
538 | { |
539 | asection *hsec; | |
540 | ||
541 | /* This code handles the special SHN_MIPS_{TEXT,DATA} section | |
542 | indices used by MIPS ELF. */ | |
543 | switch (h->root.type) | |
544 | { | |
545 | default: | |
546 | hsec = NULL; | |
547 | break; | |
548 | ||
549 | case bfd_link_hash_defined: | |
550 | case bfd_link_hash_defweak: | |
551 | hsec = h->root.u.def.section; | |
552 | break; | |
553 | ||
554 | case bfd_link_hash_common: | |
555 | hsec = h->root.u.c.p->section; | |
556 | break; | |
557 | } | |
558 | ||
559 | if (hsec == NULL) | |
560 | olddyn = false; | |
561 | else | |
562 | olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0; | |
563 | } | |
252b5132 RH |
564 | |
565 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, | |
566 | respectively, appear to be a definition rather than reference. */ | |
567 | ||
568 | if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) | |
569 | newdef = false; | |
570 | else | |
571 | newdef = true; | |
572 | ||
573 | if (h->root.type == bfd_link_hash_undefined | |
574 | || h->root.type == bfd_link_hash_undefweak | |
575 | || h->root.type == bfd_link_hash_common) | |
576 | olddef = false; | |
577 | else | |
578 | olddef = true; | |
579 | ||
580 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old | |
581 | symbol, respectively, appears to be a common symbol in a dynamic | |
582 | object. If a symbol appears in an uninitialized section, and is | |
583 | not weak, and is not a function, then it may be a common symbol | |
584 | which was resolved when the dynamic object was created. We want | |
585 | to treat such symbols specially, because they raise special | |
586 | considerations when setting the symbol size: if the symbol | |
587 | appears as a common symbol in a regular object, and the size in | |
588 | the regular object is larger, we must make sure that we use the | |
589 | larger size. This problematic case can always be avoided in C, | |
590 | but it must be handled correctly when using Fortran shared | |
591 | libraries. | |
592 | ||
593 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
594 | likewise for OLDDYNCOMMON and OLDDEF. | |
595 | ||
596 | Note that this test is just a heuristic, and that it is quite | |
597 | possible to have an uninitialized symbol in a shared object which | |
598 | is really a definition, rather than a common symbol. This could | |
599 | lead to some minor confusion when the symbol really is a common | |
600 | symbol in some regular object. However, I think it will be | |
601 | harmless. */ | |
602 | ||
603 | if (newdyn | |
604 | && newdef | |
605 | && (sec->flags & SEC_ALLOC) != 0 | |
606 | && (sec->flags & SEC_LOAD) == 0 | |
607 | && sym->st_size > 0 | |
608 | && bind != STB_WEAK | |
609 | && ELF_ST_TYPE (sym->st_info) != STT_FUNC) | |
610 | newdyncommon = true; | |
611 | else | |
612 | newdyncommon = false; | |
613 | ||
614 | if (olddyn | |
615 | && olddef | |
616 | && h->root.type == bfd_link_hash_defined | |
617 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
618 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 | |
619 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
620 | && h->size > 0 | |
621 | && h->type != STT_FUNC) | |
622 | olddyncommon = true; | |
623 | else | |
624 | olddyncommon = false; | |
625 | ||
626 | /* It's OK to change the type if either the existing symbol or the | |
627 | new symbol is weak. */ | |
628 | ||
629 | if (h->root.type == bfd_link_hash_defweak | |
630 | || h->root.type == bfd_link_hash_undefweak | |
631 | || bind == STB_WEAK) | |
632 | *type_change_ok = true; | |
633 | ||
634 | /* It's OK to change the size if either the existing symbol or the | |
635 | new symbol is weak, or if the old symbol is undefined. */ | |
636 | ||
637 | if (*type_change_ok | |
638 | || h->root.type == bfd_link_hash_undefined) | |
639 | *size_change_ok = true; | |
640 | ||
641 | /* If both the old and the new symbols look like common symbols in a | |
642 | dynamic object, set the size of the symbol to the larger of the | |
643 | two. */ | |
644 | ||
645 | if (olddyncommon | |
646 | && newdyncommon | |
647 | && sym->st_size != h->size) | |
648 | { | |
649 | /* Since we think we have two common symbols, issue a multiple | |
650 | common warning if desired. Note that we only warn if the | |
651 | size is different. If the size is the same, we simply let | |
652 | the old symbol override the new one as normally happens with | |
653 | symbols defined in dynamic objects. */ | |
654 | ||
655 | if (! ((*info->callbacks->multiple_common) | |
656 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
657 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
658 | return false; | |
659 | ||
660 | if (sym->st_size > h->size) | |
661 | h->size = sym->st_size; | |
662 | ||
663 | *size_change_ok = true; | |
664 | } | |
665 | ||
666 | /* If we are looking at a dynamic object, and we have found a | |
667 | definition, we need to see if the symbol was already defined by | |
668 | some other object. If so, we want to use the existing | |
669 | definition, and we do not want to report a multiple symbol | |
670 | definition error; we do this by clobbering *PSEC to be | |
671 | bfd_und_section_ptr. | |
672 | ||
673 | We treat a common symbol as a definition if the symbol in the | |
674 | shared library is a function, since common symbols always | |
675 | represent variables; this can cause confusion in principle, but | |
676 | any such confusion would seem to indicate an erroneous program or | |
677 | shared library. We also permit a common symbol in a regular | |
0525d26e ILT |
678 | object to override a weak symbol in a shared object. |
679 | ||
680 | We prefer a non-weak definition in a shared library to a weak | |
681 | definition in the executable. */ | |
252b5132 RH |
682 | |
683 | if (newdyn | |
684 | && newdef | |
685 | && (olddef | |
686 | || (h->root.type == bfd_link_hash_common | |
687 | && (bind == STB_WEAK | |
0525d26e ILT |
688 | || ELF_ST_TYPE (sym->st_info) == STT_FUNC))) |
689 | && (h->root.type != bfd_link_hash_defweak | |
690 | || bind == STB_WEAK)) | |
252b5132 RH |
691 | { |
692 | *override = true; | |
693 | newdef = false; | |
694 | newdyncommon = false; | |
695 | ||
696 | *psec = sec = bfd_und_section_ptr; | |
697 | *size_change_ok = true; | |
698 | ||
699 | /* If we get here when the old symbol is a common symbol, then | |
700 | we are explicitly letting it override a weak symbol or | |
701 | function in a dynamic object, and we don't want to warn about | |
702 | a type change. If the old symbol is a defined symbol, a type | |
703 | change warning may still be appropriate. */ | |
704 | ||
705 | if (h->root.type == bfd_link_hash_common) | |
706 | *type_change_ok = true; | |
707 | } | |
708 | ||
709 | /* Handle the special case of an old common symbol merging with a | |
710 | new symbol which looks like a common symbol in a shared object. | |
711 | We change *PSEC and *PVALUE to make the new symbol look like a | |
712 | common symbol, and let _bfd_generic_link_add_one_symbol will do | |
713 | the right thing. */ | |
714 | ||
715 | if (newdyncommon | |
716 | && h->root.type == bfd_link_hash_common) | |
717 | { | |
718 | *override = true; | |
719 | newdef = false; | |
720 | newdyncommon = false; | |
721 | *pvalue = sym->st_size; | |
722 | *psec = sec = bfd_com_section_ptr; | |
723 | *size_change_ok = true; | |
724 | } | |
725 | ||
726 | /* If the old symbol is from a dynamic object, and the new symbol is | |
727 | a definition which is not from a dynamic object, then the new | |
728 | symbol overrides the old symbol. Symbols from regular files | |
729 | always take precedence over symbols from dynamic objects, even if | |
730 | they are defined after the dynamic object in the link. | |
731 | ||
732 | As above, we again permit a common symbol in a regular object to | |
733 | override a definition in a shared object if the shared object | |
0525d26e ILT |
734 | symbol is a function or is weak. |
735 | ||
736 | As above, we permit a non-weak definition in a shared object to | |
737 | override a weak definition in a regular object. */ | |
252b5132 RH |
738 | |
739 | if (! newdyn | |
740 | && (newdef | |
741 | || (bfd_is_com_section (sec) | |
742 | && (h->root.type == bfd_link_hash_defweak | |
743 | || h->type == STT_FUNC))) | |
744 | && olddyn | |
745 | && olddef | |
0525d26e ILT |
746 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
747 | && (bind != STB_WEAK | |
748 | || h->root.type == bfd_link_hash_defweak)) | |
252b5132 RH |
749 | { |
750 | /* Change the hash table entry to undefined, and let | |
751 | _bfd_generic_link_add_one_symbol do the right thing with the | |
752 | new definition. */ | |
753 | ||
754 | h->root.type = bfd_link_hash_undefined; | |
755 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
756 | *size_change_ok = true; | |
757 | ||
758 | olddef = false; | |
759 | olddyncommon = false; | |
760 | ||
761 | /* We again permit a type change when a common symbol may be | |
762 | overriding a function. */ | |
763 | ||
764 | if (bfd_is_com_section (sec)) | |
765 | *type_change_ok = true; | |
766 | ||
767 | /* This union may have been set to be non-NULL when this symbol | |
768 | was seen in a dynamic object. We must force the union to be | |
769 | NULL, so that it is correct for a regular symbol. */ | |
770 | ||
771 | h->verinfo.vertree = NULL; | |
772 | ||
773 | /* In this special case, if H is the target of an indirection, | |
774 | we want the caller to frob with H rather than with the | |
775 | indirect symbol. That will permit the caller to redefine the | |
776 | target of the indirection, rather than the indirect symbol | |
777 | itself. FIXME: This will break the -y option if we store a | |
778 | symbol with a different name. */ | |
779 | *sym_hash = h; | |
780 | } | |
781 | ||
782 | /* Handle the special case of a new common symbol merging with an | |
783 | old symbol that looks like it might be a common symbol defined in | |
784 | a shared object. Note that we have already handled the case in | |
785 | which a new common symbol should simply override the definition | |
786 | in the shared library. */ | |
787 | ||
788 | if (! newdyn | |
789 | && bfd_is_com_section (sec) | |
790 | && olddyncommon) | |
791 | { | |
792 | /* It would be best if we could set the hash table entry to a | |
793 | common symbol, but we don't know what to use for the section | |
794 | or the alignment. */ | |
795 | if (! ((*info->callbacks->multiple_common) | |
796 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
797 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
798 | return false; | |
799 | ||
800 | /* If the predumed common symbol in the dynamic object is | |
801 | larger, pretend that the new symbol has its size. */ | |
802 | ||
803 | if (h->size > *pvalue) | |
804 | *pvalue = h->size; | |
805 | ||
806 | /* FIXME: We no longer know the alignment required by the symbol | |
807 | in the dynamic object, so we just wind up using the one from | |
808 | the regular object. */ | |
809 | ||
810 | olddef = false; | |
811 | olddyncommon = false; | |
812 | ||
813 | h->root.type = bfd_link_hash_undefined; | |
814 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
815 | ||
816 | *size_change_ok = true; | |
817 | *type_change_ok = true; | |
818 | ||
819 | h->verinfo.vertree = NULL; | |
820 | } | |
821 | ||
0525d26e ILT |
822 | /* Handle the special case of a weak definition in a regular object |
823 | followed by a non-weak definition in a shared object. In this | |
b4536acd | 824 | case, we prefer the definition in the shared object. */ |
0525d26e | 825 | if (olddef |
0525d26e ILT |
826 | && h->root.type == bfd_link_hash_defweak |
827 | && newdef | |
828 | && newdyn | |
829 | && bind != STB_WEAK) | |
b4536acd ILT |
830 | { |
831 | /* To make this work we have to frob the flags so that the rest | |
832 | of the code does not think we are using the regular | |
833 | definition. */ | |
64df8d0b ILT |
834 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
835 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
836 | else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
837 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
838 | h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR | |
839 | | ELF_LINK_HASH_DEF_DYNAMIC); | |
b4536acd ILT |
840 | |
841 | /* If H is the target of an indirection, we want the caller to | |
842 | use H rather than the indirect symbol. Otherwise if we are | |
843 | defining a new indirect symbol we will wind up attaching it | |
844 | to the entry we are overriding. */ | |
845 | *sym_hash = h; | |
846 | } | |
0525d26e ILT |
847 | |
848 | /* Handle the special case of a non-weak definition in a shared | |
849 | object followed by a weak definition in a regular object. In | |
850 | this case we prefer to definition in the shared object. To make | |
851 | this work we have to tell the caller to not treat the new symbol | |
852 | as a definition. */ | |
853 | if (olddef | |
854 | && olddyn | |
855 | && h->root.type != bfd_link_hash_defweak | |
856 | && newdef | |
857 | && ! newdyn | |
858 | && bind == STB_WEAK) | |
859 | *override = true; | |
860 | ||
252b5132 RH |
861 | return true; |
862 | } | |
863 | ||
864 | /* Add symbols from an ELF object file to the linker hash table. */ | |
865 | ||
866 | static boolean | |
867 | elf_link_add_object_symbols (abfd, info) | |
868 | bfd *abfd; | |
869 | struct bfd_link_info *info; | |
870 | { | |
871 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
872 | const Elf_Internal_Sym *, | |
873 | const char **, flagword *, | |
874 | asection **, bfd_vma *)); | |
875 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, | |
876 | asection *, const Elf_Internal_Rela *)); | |
877 | boolean collect; | |
878 | Elf_Internal_Shdr *hdr; | |
879 | size_t symcount; | |
880 | size_t extsymcount; | |
881 | size_t extsymoff; | |
882 | Elf_External_Sym *buf = NULL; | |
883 | struct elf_link_hash_entry **sym_hash; | |
884 | boolean dynamic; | |
885 | bfd_byte *dynver = NULL; | |
886 | Elf_External_Versym *extversym = NULL; | |
887 | Elf_External_Versym *ever; | |
888 | Elf_External_Dyn *dynbuf = NULL; | |
889 | struct elf_link_hash_entry *weaks; | |
890 | Elf_External_Sym *esym; | |
891 | Elf_External_Sym *esymend; | |
c61b8717 | 892 | struct elf_backend_data *bed; |
74816898 | 893 | boolean dt_needed; |
252b5132 | 894 | |
c61b8717 RH |
895 | bed = get_elf_backend_data (abfd); |
896 | add_symbol_hook = bed->elf_add_symbol_hook; | |
897 | collect = bed->collect; | |
252b5132 RH |
898 | |
899 | if ((abfd->flags & DYNAMIC) == 0) | |
900 | dynamic = false; | |
901 | else | |
902 | { | |
903 | dynamic = true; | |
904 | ||
905 | /* You can't use -r against a dynamic object. Also, there's no | |
906 | hope of using a dynamic object which does not exactly match | |
907 | the format of the output file. */ | |
908 | if (info->relocateable || info->hash->creator != abfd->xvec) | |
909 | { | |
910 | bfd_set_error (bfd_error_invalid_operation); | |
911 | goto error_return; | |
912 | } | |
913 | } | |
914 | ||
915 | /* As a GNU extension, any input sections which are named | |
916 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
917 | symbol. This differs from .gnu.warning sections, which generate | |
918 | warnings when they are included in an output file. */ | |
919 | if (! info->shared) | |
920 | { | |
921 | asection *s; | |
922 | ||
923 | for (s = abfd->sections; s != NULL; s = s->next) | |
924 | { | |
925 | const char *name; | |
926 | ||
927 | name = bfd_get_section_name (abfd, s); | |
928 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
929 | { | |
930 | char *msg; | |
931 | bfd_size_type sz; | |
932 | ||
933 | name += sizeof ".gnu.warning." - 1; | |
934 | ||
935 | /* If this is a shared object, then look up the symbol | |
936 | in the hash table. If it is there, and it is already | |
937 | been defined, then we will not be using the entry | |
938 | from this shared object, so we don't need to warn. | |
939 | FIXME: If we see the definition in a regular object | |
940 | later on, we will warn, but we shouldn't. The only | |
941 | fix is to keep track of what warnings we are supposed | |
942 | to emit, and then handle them all at the end of the | |
943 | link. */ | |
944 | if (dynamic && abfd->xvec == info->hash->creator) | |
945 | { | |
946 | struct elf_link_hash_entry *h; | |
947 | ||
948 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
949 | false, false, true); | |
950 | ||
951 | /* FIXME: What about bfd_link_hash_common? */ | |
952 | if (h != NULL | |
953 | && (h->root.type == bfd_link_hash_defined | |
954 | || h->root.type == bfd_link_hash_defweak)) | |
955 | { | |
956 | /* We don't want to issue this warning. Clobber | |
957 | the section size so that the warning does not | |
958 | get copied into the output file. */ | |
959 | s->_raw_size = 0; | |
960 | continue; | |
961 | } | |
962 | } | |
963 | ||
964 | sz = bfd_section_size (abfd, s); | |
965 | msg = (char *) bfd_alloc (abfd, sz + 1); | |
966 | if (msg == NULL) | |
967 | goto error_return; | |
968 | ||
969 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) | |
970 | goto error_return; | |
971 | ||
972 | msg[sz] = '\0'; | |
973 | ||
974 | if (! (_bfd_generic_link_add_one_symbol | |
975 | (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg, | |
976 | false, collect, (struct bfd_link_hash_entry **) NULL))) | |
977 | goto error_return; | |
978 | ||
979 | if (! info->relocateable) | |
980 | { | |
981 | /* Clobber the section size so that the warning does | |
982 | not get copied into the output file. */ | |
983 | s->_raw_size = 0; | |
984 | } | |
985 | } | |
986 | } | |
987 | } | |
988 | ||
989 | /* If this is a dynamic object, we always link against the .dynsym | |
990 | symbol table, not the .symtab symbol table. The dynamic linker | |
991 | will only see the .dynsym symbol table, so there is no reason to | |
992 | look at .symtab for a dynamic object. */ | |
993 | ||
994 | if (! dynamic || elf_dynsymtab (abfd) == 0) | |
995 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
996 | else | |
997 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
998 | ||
999 | if (dynamic) | |
1000 | { | |
1001 | /* Read in any version definitions. */ | |
1002 | ||
1003 | if (! _bfd_elf_slurp_version_tables (abfd)) | |
1004 | goto error_return; | |
1005 | ||
1006 | /* Read in the symbol versions, but don't bother to convert them | |
1007 | to internal format. */ | |
1008 | if (elf_dynversym (abfd) != 0) | |
1009 | { | |
1010 | Elf_Internal_Shdr *versymhdr; | |
1011 | ||
1012 | versymhdr = &elf_tdata (abfd)->dynversym_hdr; | |
1013 | extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size); | |
1014 | if (extversym == NULL) | |
1015 | goto error_return; | |
1016 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 | |
1017 | || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd) | |
1018 | != versymhdr->sh_size)) | |
1019 | goto error_return; | |
1020 | } | |
1021 | } | |
1022 | ||
1023 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
1024 | ||
1025 | /* The sh_info field of the symtab header tells us where the | |
1026 | external symbols start. We don't care about the local symbols at | |
1027 | this point. */ | |
1028 | if (elf_bad_symtab (abfd)) | |
1029 | { | |
1030 | extsymcount = symcount; | |
1031 | extsymoff = 0; | |
1032 | } | |
1033 | else | |
1034 | { | |
1035 | extsymcount = symcount - hdr->sh_info; | |
1036 | extsymoff = hdr->sh_info; | |
1037 | } | |
1038 | ||
1039 | buf = ((Elf_External_Sym *) | |
1040 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); | |
1041 | if (buf == NULL && extsymcount != 0) | |
1042 | goto error_return; | |
1043 | ||
1044 | /* We store a pointer to the hash table entry for each external | |
1045 | symbol. */ | |
1046 | sym_hash = ((struct elf_link_hash_entry **) | |
1047 | bfd_alloc (abfd, | |
1048 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
1049 | if (sym_hash == NULL) | |
1050 | goto error_return; | |
1051 | elf_sym_hashes (abfd) = sym_hash; | |
1052 | ||
74816898 L |
1053 | dt_needed = false; |
1054 | ||
252b5132 RH |
1055 | if (! dynamic) |
1056 | { | |
1057 | /* If we are creating a shared library, create all the dynamic | |
1058 | sections immediately. We need to attach them to something, | |
1059 | so we attach them to this BFD, provided it is the right | |
1060 | format. FIXME: If there are no input BFD's of the same | |
1061 | format as the output, we can't make a shared library. */ | |
1062 | if (info->shared | |
1063 | && ! elf_hash_table (info)->dynamic_sections_created | |
1064 | && abfd->xvec == info->hash->creator) | |
1065 | { | |
1066 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
1067 | goto error_return; | |
1068 | } | |
1069 | } | |
1070 | else | |
1071 | { | |
1072 | asection *s; | |
1073 | boolean add_needed; | |
1074 | const char *name; | |
1075 | bfd_size_type oldsize; | |
1076 | bfd_size_type strindex; | |
1077 | ||
1078 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
1079 | object. If the object has a DT_SONAME entry, we use it. | |
1080 | Otherwise, if the generic linker stuck something in | |
1081 | elf_dt_name, we use that. Otherwise, we just use the file | |
1082 | name. If the generic linker put a null string into | |
1083 | elf_dt_name, we don't make a DT_NEEDED entry at all, even if | |
1084 | there is a DT_SONAME entry. */ | |
1085 | add_needed = true; | |
1086 | name = bfd_get_filename (abfd); | |
1087 | if (elf_dt_name (abfd) != NULL) | |
1088 | { | |
1089 | name = elf_dt_name (abfd); | |
1090 | if (*name == '\0') | |
74816898 L |
1091 | { |
1092 | if (elf_dt_soname (abfd) != NULL) | |
1093 | dt_needed = true; | |
1094 | ||
1095 | add_needed = false; | |
1096 | } | |
252b5132 RH |
1097 | } |
1098 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
1099 | if (s != NULL) | |
1100 | { | |
1101 | Elf_External_Dyn *extdyn; | |
1102 | Elf_External_Dyn *extdynend; | |
1103 | int elfsec; | |
1104 | unsigned long link; | |
1105 | ||
1106 | dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size); | |
1107 | if (dynbuf == NULL) | |
1108 | goto error_return; | |
1109 | ||
1110 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
1111 | (file_ptr) 0, s->_raw_size)) | |
1112 | goto error_return; | |
1113 | ||
1114 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
1115 | if (elfsec == -1) | |
1116 | goto error_return; | |
1117 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
1118 | ||
20e29382 JL |
1119 | { |
1120 | /* The shared libraries distributed with hpux11 have a bogus | |
1121 | sh_link field for the ".dynamic" section. This code detects | |
1122 | when LINK refers to a section that is not a string table and | |
1123 | tries to find the string table for the ".dynsym" section | |
1124 | instead. */ | |
1125 | Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link]; | |
1126 | if (hdr->sh_type != SHT_STRTAB) | |
1127 | { | |
1128 | asection *s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1129 | int elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
1130 | if (elfsec == -1) | |
1131 | goto error_return; | |
1132 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
1133 | } | |
1134 | } | |
1135 | ||
252b5132 RH |
1136 | extdyn = dynbuf; |
1137 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
1138 | for (; extdyn < extdynend; extdyn++) | |
1139 | { | |
1140 | Elf_Internal_Dyn dyn; | |
1141 | ||
1142 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
1143 | if (dyn.d_tag == DT_SONAME) | |
1144 | { | |
1145 | name = bfd_elf_string_from_elf_section (abfd, link, | |
1146 | dyn.d_un.d_val); | |
1147 | if (name == NULL) | |
1148 | goto error_return; | |
1149 | } | |
1150 | if (dyn.d_tag == DT_NEEDED) | |
1151 | { | |
1152 | struct bfd_link_needed_list *n, **pn; | |
1153 | char *fnm, *anm; | |
1154 | ||
1155 | n = ((struct bfd_link_needed_list *) | |
1156 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); | |
1157 | fnm = bfd_elf_string_from_elf_section (abfd, link, | |
1158 | dyn.d_un.d_val); | |
1159 | if (n == NULL || fnm == NULL) | |
1160 | goto error_return; | |
1161 | anm = bfd_alloc (abfd, strlen (fnm) + 1); | |
1162 | if (anm == NULL) | |
1163 | goto error_return; | |
1164 | strcpy (anm, fnm); | |
1165 | n->name = anm; | |
1166 | n->by = abfd; | |
1167 | n->next = NULL; | |
1168 | for (pn = &elf_hash_table (info)->needed; | |
1169 | *pn != NULL; | |
1170 | pn = &(*pn)->next) | |
1171 | ; | |
1172 | *pn = n; | |
1173 | } | |
1174 | } | |
1175 | ||
1176 | free (dynbuf); | |
1177 | dynbuf = NULL; | |
1178 | } | |
1179 | ||
1180 | /* We do not want to include any of the sections in a dynamic | |
1181 | object in the output file. We hack by simply clobbering the | |
1182 | list of sections in the BFD. This could be handled more | |
1183 | cleanly by, say, a new section flag; the existing | |
1184 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
1185 | still implies that the section takes up space in the output | |
1186 | file. */ | |
1187 | abfd->sections = NULL; | |
1188 | abfd->section_count = 0; | |
1189 | ||
1190 | /* If this is the first dynamic object found in the link, create | |
1191 | the special sections required for dynamic linking. */ | |
1192 | if (! elf_hash_table (info)->dynamic_sections_created) | |
1193 | { | |
1194 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
1195 | goto error_return; | |
1196 | } | |
1197 | ||
1198 | if (add_needed) | |
1199 | { | |
1200 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
1201 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1202 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, | |
1203 | true, false); | |
1204 | if (strindex == (bfd_size_type) -1) | |
1205 | goto error_return; | |
1206 | ||
1207 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
1208 | { | |
1209 | asection *sdyn; | |
1210 | Elf_External_Dyn *dyncon, *dynconend; | |
1211 | ||
1212 | /* The hash table size did not change, which means that | |
1213 | the dynamic object name was already entered. If we | |
1214 | have already included this dynamic object in the | |
1215 | link, just ignore it. There is no reason to include | |
1216 | a particular dynamic object more than once. */ | |
1217 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
1218 | ".dynamic"); | |
1219 | BFD_ASSERT (sdyn != NULL); | |
1220 | ||
1221 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
1222 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
1223 | sdyn->_raw_size); | |
1224 | for (; dyncon < dynconend; dyncon++) | |
1225 | { | |
1226 | Elf_Internal_Dyn dyn; | |
1227 | ||
1228 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, | |
1229 | &dyn); | |
1230 | if (dyn.d_tag == DT_NEEDED | |
1231 | && dyn.d_un.d_val == strindex) | |
1232 | { | |
1233 | if (buf != NULL) | |
1234 | free (buf); | |
1235 | if (extversym != NULL) | |
1236 | free (extversym); | |
1237 | return true; | |
1238 | } | |
1239 | } | |
1240 | } | |
1241 | ||
1242 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
1243 | goto error_return; | |
1244 | } | |
1245 | ||
1246 | /* Save the SONAME, if there is one, because sometimes the | |
1247 | linker emulation code will need to know it. */ | |
1248 | if (*name == '\0') | |
1249 | name = bfd_get_filename (abfd); | |
1250 | elf_dt_name (abfd) = name; | |
1251 | } | |
1252 | ||
1253 | if (bfd_seek (abfd, | |
1254 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), | |
1255 | SEEK_SET) != 0 | |
1256 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
1257 | != extsymcount * sizeof (Elf_External_Sym))) | |
1258 | goto error_return; | |
1259 | ||
1260 | weaks = NULL; | |
1261 | ||
1262 | ever = extversym != NULL ? extversym + extsymoff : NULL; | |
1263 | esymend = buf + extsymcount; | |
1264 | for (esym = buf; | |
1265 | esym < esymend; | |
1266 | esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) | |
1267 | { | |
1268 | Elf_Internal_Sym sym; | |
1269 | int bind; | |
1270 | bfd_vma value; | |
1271 | asection *sec; | |
1272 | flagword flags; | |
1273 | const char *name; | |
1274 | struct elf_link_hash_entry *h; | |
1275 | boolean definition; | |
1276 | boolean size_change_ok, type_change_ok; | |
1277 | boolean new_weakdef; | |
1278 | unsigned int old_alignment; | |
1279 | ||
1280 | elf_swap_symbol_in (abfd, esym, &sym); | |
1281 | ||
1282 | flags = BSF_NO_FLAGS; | |
1283 | sec = NULL; | |
1284 | value = sym.st_value; | |
1285 | *sym_hash = NULL; | |
1286 | ||
1287 | bind = ELF_ST_BIND (sym.st_info); | |
1288 | if (bind == STB_LOCAL) | |
1289 | { | |
1290 | /* This should be impossible, since ELF requires that all | |
1291 | global symbols follow all local symbols, and that sh_info | |
1292 | point to the first global symbol. Unfortunatealy, Irix 5 | |
1293 | screws this up. */ | |
1294 | continue; | |
1295 | } | |
1296 | else if (bind == STB_GLOBAL) | |
1297 | { | |
1298 | if (sym.st_shndx != SHN_UNDEF | |
1299 | && sym.st_shndx != SHN_COMMON) | |
1300 | flags = BSF_GLOBAL; | |
1301 | else | |
1302 | flags = 0; | |
1303 | } | |
1304 | else if (bind == STB_WEAK) | |
1305 | flags = BSF_WEAK; | |
1306 | else | |
1307 | { | |
1308 | /* Leave it up to the processor backend. */ | |
1309 | } | |
1310 | ||
1311 | if (sym.st_shndx == SHN_UNDEF) | |
1312 | sec = bfd_und_section_ptr; | |
1313 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) | |
1314 | { | |
1315 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
1316 | if (sec == NULL) | |
1317 | sec = bfd_abs_section_ptr; | |
1318 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) | |
1319 | value -= sec->vma; | |
1320 | } | |
1321 | else if (sym.st_shndx == SHN_ABS) | |
1322 | sec = bfd_abs_section_ptr; | |
1323 | else if (sym.st_shndx == SHN_COMMON) | |
1324 | { | |
1325 | sec = bfd_com_section_ptr; | |
1326 | /* What ELF calls the size we call the value. What ELF | |
1327 | calls the value we call the alignment. */ | |
1328 | value = sym.st_size; | |
1329 | } | |
1330 | else | |
1331 | { | |
1332 | /* Leave it up to the processor backend. */ | |
1333 | } | |
1334 | ||
1335 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
1336 | if (name == (const char *) NULL) | |
1337 | goto error_return; | |
1338 | ||
1339 | if (add_symbol_hook) | |
1340 | { | |
1341 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
1342 | &value)) | |
1343 | goto error_return; | |
1344 | ||
1345 | /* The hook function sets the name to NULL if this symbol | |
1346 | should be skipped for some reason. */ | |
1347 | if (name == (const char *) NULL) | |
1348 | continue; | |
1349 | } | |
1350 | ||
1351 | /* Sanity check that all possibilities were handled. */ | |
1352 | if (sec == (asection *) NULL) | |
1353 | { | |
1354 | bfd_set_error (bfd_error_bad_value); | |
1355 | goto error_return; | |
1356 | } | |
1357 | ||
1358 | if (bfd_is_und_section (sec) | |
1359 | || bfd_is_com_section (sec)) | |
1360 | definition = false; | |
1361 | else | |
1362 | definition = true; | |
1363 | ||
1364 | size_change_ok = false; | |
1365 | type_change_ok = get_elf_backend_data (abfd)->type_change_ok; | |
1366 | old_alignment = 0; | |
1367 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
1368 | { | |
1369 | Elf_Internal_Versym iver; | |
1370 | unsigned int vernum = 0; | |
1371 | boolean override; | |
1372 | ||
1373 | if (ever != NULL) | |
1374 | { | |
1375 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |
1376 | vernum = iver.vs_vers & VERSYM_VERSION; | |
1377 | ||
1378 | /* If this is a hidden symbol, or if it is not version | |
1379 | 1, we append the version name to the symbol name. | |
1380 | However, we do not modify a non-hidden absolute | |
1381 | symbol, because it might be the version symbol | |
1382 | itself. FIXME: What if it isn't? */ | |
1383 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 | |
1384 | || (vernum > 1 && ! bfd_is_abs_section (sec))) | |
1385 | { | |
1386 | const char *verstr; | |
1387 | int namelen, newlen; | |
1388 | char *newname, *p; | |
1389 | ||
1390 | if (sym.st_shndx != SHN_UNDEF) | |
1391 | { | |
1392 | if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info) | |
1393 | { | |
1394 | (*_bfd_error_handler) | |
1395 | (_("%s: %s: invalid version %u (max %d)"), | |
1396 | bfd_get_filename (abfd), name, vernum, | |
1397 | elf_tdata (abfd)->dynverdef_hdr.sh_info); | |
1398 | bfd_set_error (bfd_error_bad_value); | |
1399 | goto error_return; | |
1400 | } | |
1401 | else if (vernum > 1) | |
1402 | verstr = | |
1403 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | |
1404 | else | |
1405 | verstr = ""; | |
1406 | } | |
1407 | else | |
1408 | { | |
1409 | /* We cannot simply test for the number of | |
1410 | entries in the VERNEED section since the | |
1411 | numbers for the needed versions do not start | |
1412 | at 0. */ | |
1413 | Elf_Internal_Verneed *t; | |
1414 | ||
1415 | verstr = NULL; | |
1416 | for (t = elf_tdata (abfd)->verref; | |
1417 | t != NULL; | |
1418 | t = t->vn_nextref) | |
1419 | { | |
1420 | Elf_Internal_Vernaux *a; | |
1421 | ||
1422 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
1423 | { | |
1424 | if (a->vna_other == vernum) | |
1425 | { | |
1426 | verstr = a->vna_nodename; | |
1427 | break; | |
1428 | } | |
1429 | } | |
1430 | if (a != NULL) | |
1431 | break; | |
1432 | } | |
1433 | if (verstr == NULL) | |
1434 | { | |
1435 | (*_bfd_error_handler) | |
1436 | (_("%s: %s: invalid needed version %d"), | |
1437 | bfd_get_filename (abfd), name, vernum); | |
1438 | bfd_set_error (bfd_error_bad_value); | |
1439 | goto error_return; | |
1440 | } | |
1441 | } | |
1442 | ||
1443 | namelen = strlen (name); | |
1444 | newlen = namelen + strlen (verstr) + 2; | |
1445 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0) | |
1446 | ++newlen; | |
1447 | ||
1448 | newname = (char *) bfd_alloc (abfd, newlen); | |
1449 | if (newname == NULL) | |
1450 | goto error_return; | |
1451 | strcpy (newname, name); | |
1452 | p = newname + namelen; | |
1453 | *p++ = ELF_VER_CHR; | |
1287d1cc ILT |
1454 | /* If this is a defined non-hidden version symbol, |
1455 | we add another @ to the name. This indicates the | |
1456 | default version of the symbol. */ | |
1457 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
1458 | && sym.st_shndx != SHN_UNDEF) | |
252b5132 RH |
1459 | *p++ = ELF_VER_CHR; |
1460 | strcpy (p, verstr); | |
1461 | ||
1462 | name = newname; | |
1463 | } | |
1464 | } | |
1465 | ||
1466 | if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value, | |
1467 | sym_hash, &override, &type_change_ok, | |
1468 | &size_change_ok)) | |
1469 | goto error_return; | |
1470 | ||
1471 | if (override) | |
1472 | definition = false; | |
1473 | ||
1474 | h = *sym_hash; | |
1475 | while (h->root.type == bfd_link_hash_indirect | |
1476 | || h->root.type == bfd_link_hash_warning) | |
1477 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1478 | ||
1479 | /* Remember the old alignment if this is a common symbol, so | |
1480 | that we don't reduce the alignment later on. We can't | |
1481 | check later, because _bfd_generic_link_add_one_symbol | |
1482 | will set a default for the alignment which we want to | |
1483 | override. */ | |
1484 | if (h->root.type == bfd_link_hash_common) | |
1485 | old_alignment = h->root.u.c.p->alignment_power; | |
1486 | ||
1487 | if (elf_tdata (abfd)->verdef != NULL | |
1488 | && ! override | |
1489 | && vernum > 1 | |
1490 | && definition) | |
1491 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | |
1492 | } | |
1493 | ||
1494 | if (! (_bfd_generic_link_add_one_symbol | |
1495 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
1496 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
1497 | goto error_return; | |
1498 | ||
1499 | h = *sym_hash; | |
1500 | while (h->root.type == bfd_link_hash_indirect | |
1501 | || h->root.type == bfd_link_hash_warning) | |
1502 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1503 | *sym_hash = h; | |
1504 | ||
1505 | new_weakdef = false; | |
1506 | if (dynamic | |
1507 | && definition | |
1508 | && (flags & BSF_WEAK) != 0 | |
1509 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
1510 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
1511 | && h->weakdef == NULL) | |
1512 | { | |
1513 | /* Keep a list of all weak defined non function symbols from | |
1514 | a dynamic object, using the weakdef field. Later in this | |
1515 | function we will set the weakdef field to the correct | |
1516 | value. We only put non-function symbols from dynamic | |
1517 | objects on this list, because that happens to be the only | |
1518 | time we need to know the normal symbol corresponding to a | |
1519 | weak symbol, and the information is time consuming to | |
1520 | figure out. If the weakdef field is not already NULL, | |
1521 | then this symbol was already defined by some previous | |
1522 | dynamic object, and we will be using that previous | |
1523 | definition anyhow. */ | |
1524 | ||
1525 | h->weakdef = weaks; | |
1526 | weaks = h; | |
1527 | new_weakdef = true; | |
1528 | } | |
1529 | ||
1530 | /* Set the alignment of a common symbol. */ | |
1531 | if (sym.st_shndx == SHN_COMMON | |
1532 | && h->root.type == bfd_link_hash_common) | |
1533 | { | |
1534 | unsigned int align; | |
1535 | ||
1536 | align = bfd_log2 (sym.st_value); | |
1537 | if (align > old_alignment) | |
1538 | h->root.u.c.p->alignment_power = align; | |
1539 | } | |
1540 | ||
1541 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
1542 | { | |
1543 | int old_flags; | |
1544 | boolean dynsym; | |
1545 | int new_flag; | |
1546 | ||
1547 | /* Remember the symbol size and type. */ | |
1548 | if (sym.st_size != 0 | |
1549 | && (definition || h->size == 0)) | |
1550 | { | |
1551 | if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) | |
1552 | (*_bfd_error_handler) | |
1553 | (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"), | |
1554 | name, (unsigned long) h->size, (unsigned long) sym.st_size, | |
1555 | bfd_get_filename (abfd)); | |
1556 | ||
1557 | h->size = sym.st_size; | |
1558 | } | |
1559 | ||
1560 | /* If this is a common symbol, then we always want H->SIZE | |
1561 | to be the size of the common symbol. The code just above | |
1562 | won't fix the size if a common symbol becomes larger. We | |
1563 | don't warn about a size change here, because that is | |
1564 | covered by --warn-common. */ | |
1565 | if (h->root.type == bfd_link_hash_common) | |
1566 | h->size = h->root.u.c.size; | |
1567 | ||
1568 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE | |
1569 | && (definition || h->type == STT_NOTYPE)) | |
1570 | { | |
1571 | if (h->type != STT_NOTYPE | |
1572 | && h->type != ELF_ST_TYPE (sym.st_info) | |
1573 | && ! type_change_ok) | |
1574 | (*_bfd_error_handler) | |
1575 | (_("Warning: type of symbol `%s' changed from %d to %d in %s"), | |
1576 | name, h->type, ELF_ST_TYPE (sym.st_info), | |
1577 | bfd_get_filename (abfd)); | |
1578 | ||
1579 | h->type = ELF_ST_TYPE (sym.st_info); | |
1580 | } | |
1581 | ||
7a13edea NC |
1582 | /* If st_other has a processor-specific meaning, specific code |
1583 | might be needed here. */ | |
1584 | if (sym.st_other != 0) | |
1585 | { | |
1586 | /* Combine visibilities, using the most constraining one. */ | |
1587 | unsigned char hvis = ELF_ST_VISIBILITY (h->other); | |
1588 | unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other); | |
1589 | ||
1590 | if (symvis && (hvis > symvis || hvis == 0)) | |
38048eb9 | 1591 | h->other = sym.st_other; |
7a13edea NC |
1592 | |
1593 | /* If neither has visibility, use the st_other of the | |
1594 | definition. This is an arbitrary choice, since the | |
1595 | other bits have no general meaning. */ | |
1596 | if (!symvis && !hvis | |
1597 | && (definition || h->other == 0)) | |
1598 | h->other = sym.st_other; | |
1599 | } | |
252b5132 RH |
1600 | |
1601 | /* Set a flag in the hash table entry indicating the type of | |
1602 | reference or definition we just found. Keep a count of | |
1603 | the number of dynamic symbols we find. A dynamic symbol | |
1604 | is one which is referenced or defined by both a regular | |
1605 | object and a shared object. */ | |
1606 | old_flags = h->elf_link_hash_flags; | |
1607 | dynsym = false; | |
1608 | if (! dynamic) | |
1609 | { | |
1610 | if (! definition) | |
1611 | { | |
1612 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
1613 | if (bind != STB_WEAK) | |
1614 | new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; | |
1615 | } | |
1616 | else | |
1617 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
1618 | if (info->shared | |
1619 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
1620 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
1621 | dynsym = true; | |
1622 | } | |
1623 | else | |
1624 | { | |
1625 | if (! definition) | |
1626 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
1627 | else | |
1628 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
1629 | if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
1630 | | ELF_LINK_HASH_REF_REGULAR)) != 0 | |
1631 | || (h->weakdef != NULL | |
1632 | && ! new_weakdef | |
1633 | && h->weakdef->dynindx != -1)) | |
1634 | dynsym = true; | |
1635 | } | |
1636 | ||
1637 | h->elf_link_hash_flags |= new_flag; | |
1638 | ||
1639 | /* If this symbol has a version, and it is the default | |
1640 | version, we create an indirect symbol from the default | |
1641 | name to the fully decorated name. This will cause | |
1642 | external references which do not specify a version to be | |
1643 | bound to this version of the symbol. */ | |
1644 | if (definition) | |
1645 | { | |
1646 | char *p; | |
1647 | ||
1648 | p = strchr (name, ELF_VER_CHR); | |
1649 | if (p != NULL && p[1] == ELF_VER_CHR) | |
1650 | { | |
1651 | char *shortname; | |
1652 | struct elf_link_hash_entry *hi; | |
1653 | boolean override; | |
1654 | ||
1655 | shortname = bfd_hash_allocate (&info->hash->table, | |
1656 | p - name + 1); | |
1657 | if (shortname == NULL) | |
1658 | goto error_return; | |
1659 | strncpy (shortname, name, p - name); | |
1660 | shortname[p - name] = '\0'; | |
1661 | ||
1662 | /* We are going to create a new symbol. Merge it | |
1663 | with any existing symbol with this name. For the | |
1664 | purposes of the merge, act as though we were | |
1665 | defining the symbol we just defined, although we | |
1666 | actually going to define an indirect symbol. */ | |
1667 | type_change_ok = false; | |
1668 | size_change_ok = false; | |
1669 | if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, | |
1670 | &value, &hi, &override, | |
1671 | &type_change_ok, &size_change_ok)) | |
1672 | goto error_return; | |
1673 | ||
1674 | if (! override) | |
1675 | { | |
1676 | if (! (_bfd_generic_link_add_one_symbol | |
1677 | (info, abfd, shortname, BSF_INDIRECT, | |
1678 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, | |
1679 | collect, (struct bfd_link_hash_entry **) &hi))) | |
1680 | goto error_return; | |
1681 | } | |
1682 | else | |
1683 | { | |
1684 | /* In this case the symbol named SHORTNAME is | |
1685 | overriding the indirect symbol we want to | |
1686 | add. We were planning on making SHORTNAME an | |
1687 | indirect symbol referring to NAME. SHORTNAME | |
1688 | is the name without a version. NAME is the | |
1689 | fully versioned name, and it is the default | |
1690 | version. | |
1691 | ||
1692 | Overriding means that we already saw a | |
1693 | definition for the symbol SHORTNAME in a | |
1694 | regular object, and it is overriding the | |
1695 | symbol defined in the dynamic object. | |
1696 | ||
1697 | When this happens, we actually want to change | |
1698 | NAME, the symbol we just added, to refer to | |
1699 | SHORTNAME. This will cause references to | |
1700 | NAME in the shared object to become | |
1701 | references to SHORTNAME in the regular | |
1702 | object. This is what we expect when we | |
1703 | override a function in a shared object: that | |
1704 | the references in the shared object will be | |
1705 | mapped to the definition in the regular | |
1706 | object. */ | |
1707 | ||
1708 | while (hi->root.type == bfd_link_hash_indirect | |
1709 | || hi->root.type == bfd_link_hash_warning) | |
1710 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1711 | ||
1712 | h->root.type = bfd_link_hash_indirect; | |
1713 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
1714 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) | |
1715 | { | |
1716 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; | |
1717 | hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1718 | if (hi->elf_link_hash_flags | |
1719 | & (ELF_LINK_HASH_REF_REGULAR | |
1720 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1721 | { | |
1722 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
1723 | hi)) | |
1724 | goto error_return; | |
1725 | } | |
1726 | } | |
1727 | ||
1728 | /* Now set HI to H, so that the following code | |
1729 | will set the other fields correctly. */ | |
1730 | hi = h; | |
1731 | } | |
1732 | ||
1733 | /* If there is a duplicate definition somewhere, | |
1734 | then HI may not point to an indirect symbol. We | |
1735 | will have reported an error to the user in that | |
1736 | case. */ | |
1737 | ||
1738 | if (hi->root.type == bfd_link_hash_indirect) | |
1739 | { | |
1740 | struct elf_link_hash_entry *ht; | |
1741 | ||
1742 | /* If the symbol became indirect, then we assume | |
1743 | that we have not seen a definition before. */ | |
1744 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1745 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1746 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1747 | == 0); | |
1748 | ||
1749 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
c61b8717 | 1750 | (*bed->elf_backend_copy_indirect_symbol) (ht, hi); |
252b5132 RH |
1751 | |
1752 | /* See if the new flags lead us to realize that | |
1753 | the symbol must be dynamic. */ | |
1754 | if (! dynsym) | |
1755 | { | |
1756 | if (! dynamic) | |
1757 | { | |
1758 | if (info->shared | |
1759 | || ((hi->elf_link_hash_flags | |
1760 | & ELF_LINK_HASH_REF_DYNAMIC) | |
1761 | != 0)) | |
1762 | dynsym = true; | |
1763 | } | |
1764 | else | |
1765 | { | |
1766 | if ((hi->elf_link_hash_flags | |
1767 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1768 | dynsym = true; | |
1769 | } | |
1770 | } | |
1771 | } | |
1772 | ||
1773 | /* We also need to define an indirection from the | |
1774 | nondefault version of the symbol. */ | |
1775 | ||
1776 | shortname = bfd_hash_allocate (&info->hash->table, | |
1777 | strlen (name)); | |
1778 | if (shortname == NULL) | |
1779 | goto error_return; | |
1780 | strncpy (shortname, name, p - name); | |
1781 | strcpy (shortname + (p - name), p + 1); | |
1782 | ||
1783 | /* Once again, merge with any existing symbol. */ | |
1784 | type_change_ok = false; | |
1785 | size_change_ok = false; | |
1786 | if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, | |
1787 | &value, &hi, &override, | |
1788 | &type_change_ok, &size_change_ok)) | |
1789 | goto error_return; | |
1790 | ||
1791 | if (override) | |
1792 | { | |
1793 | /* Here SHORTNAME is a versioned name, so we | |
1794 | don't expect to see the type of override we | |
1795 | do in the case above. */ | |
1796 | (*_bfd_error_handler) | |
1797 | (_("%s: warning: unexpected redefinition of `%s'"), | |
1798 | bfd_get_filename (abfd), shortname); | |
1799 | } | |
1800 | else | |
1801 | { | |
1802 | if (! (_bfd_generic_link_add_one_symbol | |
1803 | (info, abfd, shortname, BSF_INDIRECT, | |
1804 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, | |
1805 | collect, (struct bfd_link_hash_entry **) &hi))) | |
1806 | goto error_return; | |
1807 | ||
1808 | /* If there is a duplicate definition somewhere, | |
1809 | then HI may not point to an indirect symbol. | |
1810 | We will have reported an error to the user in | |
1811 | that case. */ | |
1812 | ||
1813 | if (hi->root.type == bfd_link_hash_indirect) | |
1814 | { | |
1815 | /* If the symbol became indirect, then we | |
1816 | assume that we have not seen a definition | |
1817 | before. */ | |
1818 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1819 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1820 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1821 | == 0); | |
1822 | ||
c61b8717 | 1823 | (*bed->elf_backend_copy_indirect_symbol) (h, hi); |
252b5132 RH |
1824 | |
1825 | /* See if the new flags lead us to realize | |
1826 | that the symbol must be dynamic. */ | |
1827 | if (! dynsym) | |
1828 | { | |
1829 | if (! dynamic) | |
1830 | { | |
1831 | if (info->shared | |
1832 | || ((hi->elf_link_hash_flags | |
1833 | & ELF_LINK_HASH_REF_DYNAMIC) | |
1834 | != 0)) | |
1835 | dynsym = true; | |
1836 | } | |
1837 | else | |
1838 | { | |
1839 | if ((hi->elf_link_hash_flags | |
1840 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1841 | dynsym = true; | |
1842 | } | |
1843 | } | |
1844 | } | |
1845 | } | |
1846 | } | |
1847 | } | |
1848 | ||
1849 | if (dynsym && h->dynindx == -1) | |
1850 | { | |
1851 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1852 | goto error_return; | |
1853 | if (h->weakdef != NULL | |
1854 | && ! new_weakdef | |
1855 | && h->weakdef->dynindx == -1) | |
1856 | { | |
1857 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
1858 | h->weakdef)) | |
1859 | goto error_return; | |
1860 | } | |
1861 | } | |
38048eb9 | 1862 | else if (dynsym && h->dynindx != -1) |
0444bdd4 L |
1863 | /* If the symbol already has a dynamic index, but |
1864 | visibility says it should not be visible, turn it into | |
1865 | a local symbol. */ | |
1866 | switch (ELF_ST_VISIBILITY (h->other)) | |
1867 | { | |
1868 | case STV_INTERNAL: | |
1869 | case STV_HIDDEN: | |
1870 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; | |
f41cbf03 | 1871 | (*bed->elf_backend_hide_symbol) (info, h); |
0444bdd4 L |
1872 | break; |
1873 | } | |
74816898 L |
1874 | |
1875 | if (dt_needed && definition | |
1876 | && (h->elf_link_hash_flags | |
1877 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1878 | { | |
1879 | bfd_size_type oldsize; | |
1880 | bfd_size_type strindex; | |
1881 | ||
1882 | /* The symbol from a DT_NEEDED object is referenced from | |
1883 | the regular object to create a dynamic executable. We | |
1884 | have to make sure there is a DT_NEEDED entry for it. */ | |
1885 | ||
1886 | dt_needed = false; | |
1887 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1888 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
1889 | elf_dt_soname (abfd), | |
1890 | true, false); | |
1891 | if (strindex == (bfd_size_type) -1) | |
1892 | goto error_return; | |
1893 | ||
1894 | if (oldsize | |
1895 | == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
1896 | { | |
1897 | asection *sdyn; | |
1898 | Elf_External_Dyn *dyncon, *dynconend; | |
1899 | ||
1900 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
1901 | ".dynamic"); | |
1902 | BFD_ASSERT (sdyn != NULL); | |
1903 | ||
1904 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
1905 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
1906 | sdyn->_raw_size); | |
1907 | for (; dyncon < dynconend; dyncon++) | |
1908 | { | |
1909 | Elf_Internal_Dyn dyn; | |
1910 | ||
1911 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, | |
1912 | dyncon, &dyn); | |
1913 | BFD_ASSERT (dyn.d_tag != DT_NEEDED || | |
1914 | dyn.d_un.d_val != strindex); | |
1915 | } | |
1916 | } | |
1917 | ||
1918 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
1919 | goto error_return; | |
1920 | } | |
252b5132 RH |
1921 | } |
1922 | } | |
1923 | ||
1924 | /* Now set the weakdefs field correctly for all the weak defined | |
1925 | symbols we found. The only way to do this is to search all the | |
1926 | symbols. Since we only need the information for non functions in | |
1927 | dynamic objects, that's the only time we actually put anything on | |
1928 | the list WEAKS. We need this information so that if a regular | |
1929 | object refers to a symbol defined weakly in a dynamic object, the | |
1930 | real symbol in the dynamic object is also put in the dynamic | |
1931 | symbols; we also must arrange for both symbols to point to the | |
1932 | same memory location. We could handle the general case of symbol | |
1933 | aliasing, but a general symbol alias can only be generated in | |
1934 | assembler code, handling it correctly would be very time | |
1935 | consuming, and other ELF linkers don't handle general aliasing | |
1936 | either. */ | |
1937 | while (weaks != NULL) | |
1938 | { | |
1939 | struct elf_link_hash_entry *hlook; | |
1940 | asection *slook; | |
1941 | bfd_vma vlook; | |
1942 | struct elf_link_hash_entry **hpp; | |
1943 | struct elf_link_hash_entry **hppend; | |
1944 | ||
1945 | hlook = weaks; | |
1946 | weaks = hlook->weakdef; | |
1947 | hlook->weakdef = NULL; | |
1948 | ||
1949 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
1950 | || hlook->root.type == bfd_link_hash_defweak | |
1951 | || hlook->root.type == bfd_link_hash_common | |
1952 | || hlook->root.type == bfd_link_hash_indirect); | |
1953 | slook = hlook->root.u.def.section; | |
1954 | vlook = hlook->root.u.def.value; | |
1955 | ||
1956 | hpp = elf_sym_hashes (abfd); | |
1957 | hppend = hpp + extsymcount; | |
1958 | for (; hpp < hppend; hpp++) | |
1959 | { | |
1960 | struct elf_link_hash_entry *h; | |
1961 | ||
1962 | h = *hpp; | |
1963 | if (h != NULL && h != hlook | |
1964 | && h->root.type == bfd_link_hash_defined | |
1965 | && h->root.u.def.section == slook | |
1966 | && h->root.u.def.value == vlook) | |
1967 | { | |
1968 | hlook->weakdef = h; | |
1969 | ||
1970 | /* If the weak definition is in the list of dynamic | |
1971 | symbols, make sure the real definition is put there | |
1972 | as well. */ | |
1973 | if (hlook->dynindx != -1 | |
1974 | && h->dynindx == -1) | |
1975 | { | |
1976 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1977 | goto error_return; | |
1978 | } | |
1979 | ||
1980 | /* If the real definition is in the list of dynamic | |
1981 | symbols, make sure the weak definition is put there | |
1982 | as well. If we don't do this, then the dynamic | |
1983 | loader might not merge the entries for the real | |
1984 | definition and the weak definition. */ | |
1985 | if (h->dynindx != -1 | |
1986 | && hlook->dynindx == -1) | |
1987 | { | |
1988 | if (! _bfd_elf_link_record_dynamic_symbol (info, hlook)) | |
1989 | goto error_return; | |
1990 | } | |
1991 | ||
1992 | break; | |
1993 | } | |
1994 | } | |
1995 | } | |
1996 | ||
1997 | if (buf != NULL) | |
1998 | { | |
1999 | free (buf); | |
2000 | buf = NULL; | |
2001 | } | |
2002 | ||
2003 | if (extversym != NULL) | |
2004 | { | |
2005 | free (extversym); | |
2006 | extversym = NULL; | |
2007 | } | |
2008 | ||
2009 | /* If this object is the same format as the output object, and it is | |
2010 | not a shared library, then let the backend look through the | |
2011 | relocs. | |
2012 | ||
2013 | This is required to build global offset table entries and to | |
2014 | arrange for dynamic relocs. It is not required for the | |
2015 | particular common case of linking non PIC code, even when linking | |
2016 | against shared libraries, but unfortunately there is no way of | |
2017 | knowing whether an object file has been compiled PIC or not. | |
2018 | Looking through the relocs is not particularly time consuming. | |
2019 | The problem is that we must either (1) keep the relocs in memory, | |
2020 | which causes the linker to require additional runtime memory or | |
2021 | (2) read the relocs twice from the input file, which wastes time. | |
2022 | This would be a good case for using mmap. | |
2023 | ||
2024 | I have no idea how to handle linking PIC code into a file of a | |
2025 | different format. It probably can't be done. */ | |
2026 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
2027 | if (! dynamic | |
2028 | && abfd->xvec == info->hash->creator | |
2029 | && check_relocs != NULL) | |
2030 | { | |
2031 | asection *o; | |
2032 | ||
2033 | for (o = abfd->sections; o != NULL; o = o->next) | |
2034 | { | |
2035 | Elf_Internal_Rela *internal_relocs; | |
2036 | boolean ok; | |
2037 | ||
2038 | if ((o->flags & SEC_RELOC) == 0 | |
2039 | || o->reloc_count == 0 | |
2040 | || ((info->strip == strip_all || info->strip == strip_debugger) | |
2041 | && (o->flags & SEC_DEBUGGING) != 0) | |
2042 | || bfd_is_abs_section (o->output_section)) | |
2043 | continue; | |
2044 | ||
2045 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
2046 | (abfd, o, (PTR) NULL, | |
2047 | (Elf_Internal_Rela *) NULL, | |
2048 | info->keep_memory)); | |
2049 | if (internal_relocs == NULL) | |
2050 | goto error_return; | |
2051 | ||
2052 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
2053 | ||
2054 | if (! info->keep_memory) | |
2055 | free (internal_relocs); | |
2056 | ||
2057 | if (! ok) | |
2058 | goto error_return; | |
2059 | } | |
2060 | } | |
2061 | ||
2062 | /* If this is a non-traditional, non-relocateable link, try to | |
2063 | optimize the handling of the .stab/.stabstr sections. */ | |
2064 | if (! dynamic | |
2065 | && ! info->relocateable | |
2066 | && ! info->traditional_format | |
2067 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
2068 | && (info->strip != strip_all && info->strip != strip_debugger)) | |
2069 | { | |
2070 | asection *stab, *stabstr; | |
2071 | ||
2072 | stab = bfd_get_section_by_name (abfd, ".stab"); | |
2073 | if (stab != NULL) | |
2074 | { | |
2075 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
2076 | ||
2077 | if (stabstr != NULL) | |
2078 | { | |
2079 | struct bfd_elf_section_data *secdata; | |
2080 | ||
2081 | secdata = elf_section_data (stab); | |
2082 | if (! _bfd_link_section_stabs (abfd, | |
2083 | &elf_hash_table (info)->stab_info, | |
2084 | stab, stabstr, | |
2085 | &secdata->stab_info)) | |
2086 | goto error_return; | |
2087 | } | |
2088 | } | |
2089 | } | |
2090 | ||
2091 | return true; | |
2092 | ||
2093 | error_return: | |
2094 | if (buf != NULL) | |
2095 | free (buf); | |
2096 | if (dynbuf != NULL) | |
2097 | free (dynbuf); | |
2098 | if (dynver != NULL) | |
2099 | free (dynver); | |
2100 | if (extversym != NULL) | |
2101 | free (extversym); | |
2102 | return false; | |
2103 | } | |
2104 | ||
2105 | /* Create some sections which will be filled in with dynamic linking | |
2106 | information. ABFD is an input file which requires dynamic sections | |
2107 | to be created. The dynamic sections take up virtual memory space | |
2108 | when the final executable is run, so we need to create them before | |
2109 | addresses are assigned to the output sections. We work out the | |
2110 | actual contents and size of these sections later. */ | |
2111 | ||
2112 | boolean | |
2113 | elf_link_create_dynamic_sections (abfd, info) | |
2114 | bfd *abfd; | |
2115 | struct bfd_link_info *info; | |
2116 | { | |
2117 | flagword flags; | |
2118 | register asection *s; | |
2119 | struct elf_link_hash_entry *h; | |
2120 | struct elf_backend_data *bed; | |
2121 | ||
2122 | if (elf_hash_table (info)->dynamic_sections_created) | |
2123 | return true; | |
2124 | ||
2125 | /* Make sure that all dynamic sections use the same input BFD. */ | |
2126 | if (elf_hash_table (info)->dynobj == NULL) | |
2127 | elf_hash_table (info)->dynobj = abfd; | |
2128 | else | |
2129 | abfd = elf_hash_table (info)->dynobj; | |
2130 | ||
2131 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
2132 | sections. */ | |
2133 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
2134 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
2135 | ||
2136 | /* A dynamically linked executable has a .interp section, but a | |
2137 | shared library does not. */ | |
2138 | if (! info->shared) | |
2139 | { | |
2140 | s = bfd_make_section (abfd, ".interp"); | |
2141 | if (s == NULL | |
2142 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
2143 | return false; | |
2144 | } | |
2145 | ||
2146 | /* Create sections to hold version informations. These are removed | |
2147 | if they are not needed. */ | |
2148 | s = bfd_make_section (abfd, ".gnu.version_d"); | |
2149 | if (s == NULL | |
2150 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2151 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2152 | return false; | |
2153 | ||
2154 | s = bfd_make_section (abfd, ".gnu.version"); | |
2155 | if (s == NULL | |
2156 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2157 | || ! bfd_set_section_alignment (abfd, s, 1)) | |
2158 | return false; | |
2159 | ||
2160 | s = bfd_make_section (abfd, ".gnu.version_r"); | |
2161 | if (s == NULL | |
2162 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2163 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2164 | return false; | |
2165 | ||
2166 | s = bfd_make_section (abfd, ".dynsym"); | |
2167 | if (s == NULL | |
2168 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2169 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2170 | return false; | |
2171 | ||
2172 | s = bfd_make_section (abfd, ".dynstr"); | |
2173 | if (s == NULL | |
2174 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
2175 | return false; | |
2176 | ||
2177 | /* Create a strtab to hold the dynamic symbol names. */ | |
2178 | if (elf_hash_table (info)->dynstr == NULL) | |
2179 | { | |
2180 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
2181 | if (elf_hash_table (info)->dynstr == NULL) | |
2182 | return false; | |
2183 | } | |
2184 | ||
2185 | s = bfd_make_section (abfd, ".dynamic"); | |
2186 | if (s == NULL | |
2187 | || ! bfd_set_section_flags (abfd, s, flags) | |
2188 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2189 | return false; | |
2190 | ||
2191 | /* The special symbol _DYNAMIC is always set to the start of the | |
2192 | .dynamic section. This call occurs before we have processed the | |
2193 | symbols for any dynamic object, so we don't have to worry about | |
2194 | overriding a dynamic definition. We could set _DYNAMIC in a | |
2195 | linker script, but we only want to define it if we are, in fact, | |
2196 | creating a .dynamic section. We don't want to define it if there | |
2197 | is no .dynamic section, since on some ELF platforms the start up | |
2198 | code examines it to decide how to initialize the process. */ | |
2199 | h = NULL; | |
2200 | if (! (_bfd_generic_link_add_one_symbol | |
2201 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
2202 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
2203 | (struct bfd_link_hash_entry **) &h))) | |
2204 | return false; | |
2205 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2206 | h->type = STT_OBJECT; | |
2207 | ||
2208 | if (info->shared | |
2209 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2210 | return false; | |
2211 | ||
c7ac6ff8 MM |
2212 | bed = get_elf_backend_data (abfd); |
2213 | ||
252b5132 RH |
2214 | s = bfd_make_section (abfd, ".hash"); |
2215 | if (s == NULL | |
2216 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2217 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2218 | return false; | |
c7ac6ff8 | 2219 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; |
252b5132 RH |
2220 | |
2221 | /* Let the backend create the rest of the sections. This lets the | |
2222 | backend set the right flags. The backend will normally create | |
2223 | the .got and .plt sections. */ | |
252b5132 RH |
2224 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
2225 | return false; | |
2226 | ||
2227 | elf_hash_table (info)->dynamic_sections_created = true; | |
2228 | ||
2229 | return true; | |
2230 | } | |
2231 | ||
2232 | /* Add an entry to the .dynamic table. */ | |
2233 | ||
2234 | boolean | |
2235 | elf_add_dynamic_entry (info, tag, val) | |
2236 | struct bfd_link_info *info; | |
2237 | bfd_vma tag; | |
2238 | bfd_vma val; | |
2239 | { | |
2240 | Elf_Internal_Dyn dyn; | |
2241 | bfd *dynobj; | |
2242 | asection *s; | |
2243 | size_t newsize; | |
2244 | bfd_byte *newcontents; | |
2245 | ||
2246 | dynobj = elf_hash_table (info)->dynobj; | |
2247 | ||
2248 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2249 | BFD_ASSERT (s != NULL); | |
2250 | ||
2251 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
2252 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); | |
2253 | if (newcontents == NULL) | |
2254 | return false; | |
2255 | ||
2256 | dyn.d_tag = tag; | |
2257 | dyn.d_un.d_val = val; | |
2258 | elf_swap_dyn_out (dynobj, &dyn, | |
2259 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
2260 | ||
2261 | s->_raw_size = newsize; | |
2262 | s->contents = newcontents; | |
2263 | ||
2264 | return true; | |
2265 | } | |
30b30c21 RH |
2266 | |
2267 | /* Record a new local dynamic symbol. */ | |
2268 | ||
2269 | boolean | |
2270 | elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx) | |
2271 | struct bfd_link_info *info; | |
2272 | bfd *input_bfd; | |
2273 | long input_indx; | |
2274 | { | |
2275 | struct elf_link_local_dynamic_entry *entry; | |
2276 | struct elf_link_hash_table *eht; | |
2277 | struct bfd_strtab_hash *dynstr; | |
2278 | Elf_External_Sym esym; | |
2279 | unsigned long dynstr_index; | |
2280 | char *name; | |
30b30c21 RH |
2281 | |
2282 | /* See if the entry exists already. */ | |
2283 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
2284 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
2285 | return true; | |
2286 | ||
2287 | entry = (struct elf_link_local_dynamic_entry *) | |
2288 | bfd_alloc (input_bfd, sizeof (*entry)); | |
2289 | if (entry == NULL) | |
2290 | return false; | |
2291 | ||
2292 | /* Go find the symbol, so that we can find it's name. */ | |
2293 | if (bfd_seek (input_bfd, | |
2294 | (elf_tdata (input_bfd)->symtab_hdr.sh_offset | |
2295 | + input_indx * sizeof (Elf_External_Sym)), | |
2296 | SEEK_SET) != 0 | |
2297 | || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd) | |
2298 | != sizeof (Elf_External_Sym))) | |
2299 | return false; | |
2300 | elf_swap_symbol_in (input_bfd, &esym, &entry->isym); | |
2301 | ||
2302 | name = (bfd_elf_string_from_elf_section | |
2303 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
2304 | entry->isym.st_name)); | |
2305 | ||
2306 | dynstr = elf_hash_table (info)->dynstr; | |
2307 | if (dynstr == NULL) | |
2308 | { | |
2309 | /* Create a strtab to hold the dynamic symbol names. */ | |
2310 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init (); | |
2311 | if (dynstr == NULL) | |
2312 | return false; | |
2313 | } | |
2314 | ||
2315 | dynstr_index = _bfd_stringtab_add (dynstr, name, true, false); | |
2316 | if (dynstr_index == (unsigned long) -1) | |
2317 | return false; | |
2318 | entry->isym.st_name = dynstr_index; | |
2319 | ||
2320 | eht = elf_hash_table (info); | |
2321 | ||
2322 | entry->next = eht->dynlocal; | |
2323 | eht->dynlocal = entry; | |
2324 | entry->input_bfd = input_bfd; | |
2325 | entry->input_indx = input_indx; | |
2326 | eht->dynsymcount++; | |
2327 | ||
587ff49e RH |
2328 | /* Whatever binding the symbol had before, it's now local. */ |
2329 | entry->isym.st_info | |
2330 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | |
2331 | ||
30b30c21 RH |
2332 | /* The dynindx will be set at the end of size_dynamic_sections. */ |
2333 | ||
2334 | return true; | |
2335 | } | |
252b5132 RH |
2336 | \f |
2337 | ||
6b5bd373 MM |
2338 | /* Read and swap the relocs from the section indicated by SHDR. This |
2339 | may be either a REL or a RELA section. The relocations are | |
2340 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
2341 | which should have already been allocated to contain enough space. | |
2342 | The EXTERNAL_RELOCS are a buffer where the external form of the | |
2343 | relocations should be stored. | |
2344 | ||
2345 | Returns false if something goes wrong. */ | |
2346 | ||
2347 | static boolean | |
2348 | elf_link_read_relocs_from_section (abfd, shdr, external_relocs, | |
2349 | internal_relocs) | |
2350 | bfd *abfd; | |
2351 | Elf_Internal_Shdr *shdr; | |
2352 | PTR external_relocs; | |
2353 | Elf_Internal_Rela *internal_relocs; | |
2354 | { | |
c7ac6ff8 MM |
2355 | struct elf_backend_data *bed; |
2356 | ||
6b5bd373 MM |
2357 | /* If there aren't any relocations, that's OK. */ |
2358 | if (!shdr) | |
2359 | return true; | |
2360 | ||
2361 | /* Position ourselves at the start of the section. */ | |
2362 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
2363 | return false; | |
2364 | ||
2365 | /* Read the relocations. */ | |
2366 | if (bfd_read (external_relocs, 1, shdr->sh_size, abfd) | |
2367 | != shdr->sh_size) | |
2368 | return false; | |
2369 | ||
c7ac6ff8 MM |
2370 | bed = get_elf_backend_data (abfd); |
2371 | ||
6b5bd373 MM |
2372 | /* Convert the external relocations to the internal format. */ |
2373 | if (shdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2374 | { | |
2375 | Elf_External_Rel *erel; | |
2376 | Elf_External_Rel *erelend; | |
2377 | Elf_Internal_Rela *irela; | |
c7ac6ff8 | 2378 | Elf_Internal_Rel *irel; |
6b5bd373 MM |
2379 | |
2380 | erel = (Elf_External_Rel *) external_relocs; | |
2381 | erelend = erel + shdr->sh_size / shdr->sh_entsize; | |
2382 | irela = internal_relocs; | |
c7ac6ff8 MM |
2383 | irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel |
2384 | * sizeof (Elf_Internal_Rel))); | |
2385 | for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel) | |
6b5bd373 | 2386 | { |
65388f2d | 2387 | unsigned char i; |
c7ac6ff8 MM |
2388 | |
2389 | if (bed->s->swap_reloc_in) | |
2390 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel); | |
2391 | else | |
2392 | elf_swap_reloc_in (abfd, erel, irel); | |
6b5bd373 | 2393 | |
c7ac6ff8 MM |
2394 | for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i) |
2395 | { | |
2396 | irela[i].r_offset = irel[i].r_offset; | |
2397 | irela[i].r_info = irel[i].r_info; | |
2398 | irela[i].r_addend = 0; | |
2399 | } | |
6b5bd373 MM |
2400 | } |
2401 | } | |
2402 | else | |
2403 | { | |
2404 | Elf_External_Rela *erela; | |
2405 | Elf_External_Rela *erelaend; | |
2406 | Elf_Internal_Rela *irela; | |
2407 | ||
2408 | BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela)); | |
2409 | ||
2410 | erela = (Elf_External_Rela *) external_relocs; | |
2411 | erelaend = erela + shdr->sh_size / shdr->sh_entsize; | |
2412 | irela = internal_relocs; | |
c7ac6ff8 MM |
2413 | for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel) |
2414 | { | |
2415 | if (bed->s->swap_reloca_in) | |
2416 | (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela); | |
2417 | else | |
2418 | elf_swap_reloca_in (abfd, erela, irela); | |
2419 | } | |
6b5bd373 MM |
2420 | } |
2421 | ||
2422 | return true; | |
2423 | } | |
2424 | ||
23bc299b MM |
2425 | /* Read and swap the relocs for a section O. They may have been |
2426 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
2427 | not NULL, they are used as buffers to read into. They are known to | |
2428 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
2429 | the return value is allocated using either malloc or bfd_alloc, | |
2430 | according to the KEEP_MEMORY argument. If O has two relocation | |
2431 | sections (both REL and RELA relocations), then the REL_HDR | |
2432 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
2433 | REL_HDR2 relocations. */ | |
252b5132 RH |
2434 | |
2435 | Elf_Internal_Rela * | |
2436 | NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs, | |
2437 | keep_memory) | |
2438 | bfd *abfd; | |
2439 | asection *o; | |
2440 | PTR external_relocs; | |
2441 | Elf_Internal_Rela *internal_relocs; | |
2442 | boolean keep_memory; | |
2443 | { | |
2444 | Elf_Internal_Shdr *rel_hdr; | |
2445 | PTR alloc1 = NULL; | |
2446 | Elf_Internal_Rela *alloc2 = NULL; | |
c7ac6ff8 | 2447 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
252b5132 RH |
2448 | |
2449 | if (elf_section_data (o)->relocs != NULL) | |
2450 | return elf_section_data (o)->relocs; | |
2451 | ||
2452 | if (o->reloc_count == 0) | |
2453 | return NULL; | |
2454 | ||
2455 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
2456 | ||
2457 | if (internal_relocs == NULL) | |
2458 | { | |
2459 | size_t size; | |
2460 | ||
c7ac6ff8 MM |
2461 | size = (o->reloc_count * bed->s->int_rels_per_ext_rel |
2462 | * sizeof (Elf_Internal_Rela)); | |
252b5132 RH |
2463 | if (keep_memory) |
2464 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
2465 | else | |
2466 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); | |
2467 | if (internal_relocs == NULL) | |
2468 | goto error_return; | |
2469 | } | |
2470 | ||
2471 | if (external_relocs == NULL) | |
2472 | { | |
6b5bd373 MM |
2473 | size_t size = (size_t) rel_hdr->sh_size; |
2474 | ||
2475 | if (elf_section_data (o)->rel_hdr2) | |
2476 | size += (size_t) elf_section_data (o)->rel_hdr2->sh_size; | |
2477 | alloc1 = (PTR) bfd_malloc (size); | |
252b5132 RH |
2478 | if (alloc1 == NULL) |
2479 | goto error_return; | |
2480 | external_relocs = alloc1; | |
2481 | } | |
2482 | ||
6b5bd373 MM |
2483 | if (!elf_link_read_relocs_from_section (abfd, rel_hdr, |
2484 | external_relocs, | |
2485 | internal_relocs)) | |
2486 | goto error_return; | |
2487 | if (!elf_link_read_relocs_from_section | |
2488 | (abfd, | |
2489 | elf_section_data (o)->rel_hdr2, | |
2f5116e2 | 2490 | ((bfd_byte *) external_relocs) + rel_hdr->sh_size, |
c7ac6ff8 MM |
2491 | internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize |
2492 | * bed->s->int_rels_per_ext_rel))) | |
252b5132 | 2493 | goto error_return; |
252b5132 RH |
2494 | |
2495 | /* Cache the results for next time, if we can. */ | |
2496 | if (keep_memory) | |
2497 | elf_section_data (o)->relocs = internal_relocs; | |
2498 | ||
2499 | if (alloc1 != NULL) | |
2500 | free (alloc1); | |
2501 | ||
2502 | /* Don't free alloc2, since if it was allocated we are passing it | |
2503 | back (under the name of internal_relocs). */ | |
2504 | ||
2505 | return internal_relocs; | |
2506 | ||
2507 | error_return: | |
2508 | if (alloc1 != NULL) | |
2509 | free (alloc1); | |
2510 | if (alloc2 != NULL) | |
2511 | free (alloc2); | |
2512 | return NULL; | |
2513 | } | |
2514 | \f | |
2515 | ||
2516 | /* Record an assignment to a symbol made by a linker script. We need | |
2517 | this in case some dynamic object refers to this symbol. */ | |
2518 | ||
2519 | /*ARGSUSED*/ | |
2520 | boolean | |
2521 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) | |
7442e600 | 2522 | bfd *output_bfd ATTRIBUTE_UNUSED; |
252b5132 RH |
2523 | struct bfd_link_info *info; |
2524 | const char *name; | |
2525 | boolean provide; | |
2526 | { | |
2527 | struct elf_link_hash_entry *h; | |
2528 | ||
2529 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
2530 | return true; | |
2531 | ||
2532 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); | |
2533 | if (h == NULL) | |
2534 | return false; | |
2535 | ||
2536 | if (h->root.type == bfd_link_hash_new) | |
2537 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
2538 | ||
2539 | /* If this symbol is being provided by the linker script, and it is | |
2540 | currently defined by a dynamic object, but not by a regular | |
2541 | object, then mark it as undefined so that the generic linker will | |
2542 | force the correct value. */ | |
2543 | if (provide | |
2544 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2545 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2546 | h->root.type = bfd_link_hash_undefined; | |
2547 | ||
2548 | /* If this symbol is not being provided by the linker script, and it is | |
2549 | currently defined by a dynamic object, but not by a regular object, | |
2550 | then clear out any version information because the symbol will not be | |
2551 | associated with the dynamic object any more. */ | |
2552 | if (!provide | |
2553 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2554 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2555 | h->verinfo.verdef = NULL; | |
2556 | ||
2557 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
994819d2 NC |
2558 | |
2559 | /* When possible, keep the original type of the symbol */ | |
2560 | if (h->type == STT_NOTYPE) | |
2561 | h->type = STT_OBJECT; | |
252b5132 RH |
2562 | |
2563 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
2564 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
2565 | || info->shared) | |
2566 | && h->dynindx == -1) | |
2567 | { | |
2568 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2569 | return false; | |
2570 | ||
2571 | /* If this is a weak defined symbol, and we know a corresponding | |
2572 | real symbol from the same dynamic object, make sure the real | |
2573 | symbol is also made into a dynamic symbol. */ | |
2574 | if (h->weakdef != NULL | |
2575 | && h->weakdef->dynindx == -1) | |
2576 | { | |
2577 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
2578 | return false; | |
2579 | } | |
2580 | } | |
2581 | ||
2582 | return true; | |
2583 | } | |
2584 | \f | |
2585 | /* This structure is used to pass information to | |
2586 | elf_link_assign_sym_version. */ | |
2587 | ||
2588 | struct elf_assign_sym_version_info | |
2589 | { | |
2590 | /* Output BFD. */ | |
2591 | bfd *output_bfd; | |
2592 | /* General link information. */ | |
2593 | struct bfd_link_info *info; | |
2594 | /* Version tree. */ | |
2595 | struct bfd_elf_version_tree *verdefs; | |
2596 | /* Whether we are exporting all dynamic symbols. */ | |
2597 | boolean export_dynamic; | |
252b5132 RH |
2598 | /* Whether we had a failure. */ |
2599 | boolean failed; | |
2600 | }; | |
2601 | ||
2602 | /* This structure is used to pass information to | |
2603 | elf_link_find_version_dependencies. */ | |
2604 | ||
2605 | struct elf_find_verdep_info | |
2606 | { | |
2607 | /* Output BFD. */ | |
2608 | bfd *output_bfd; | |
2609 | /* General link information. */ | |
2610 | struct bfd_link_info *info; | |
2611 | /* The number of dependencies. */ | |
2612 | unsigned int vers; | |
2613 | /* Whether we had a failure. */ | |
2614 | boolean failed; | |
2615 | }; | |
2616 | ||
2617 | /* Array used to determine the number of hash table buckets to use | |
2618 | based on the number of symbols there are. If there are fewer than | |
2619 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
2620 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
2621 | than 32771 buckets. */ | |
2622 | ||
2623 | static const size_t elf_buckets[] = | |
2624 | { | |
2625 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |
2626 | 16411, 32771, 0 | |
2627 | }; | |
2628 | ||
2629 | /* Compute bucket count for hashing table. We do not use a static set | |
2630 | of possible tables sizes anymore. Instead we determine for all | |
2631 | possible reasonable sizes of the table the outcome (i.e., the | |
2632 | number of collisions etc) and choose the best solution. The | |
2633 | weighting functions are not too simple to allow the table to grow | |
2634 | without bounds. Instead one of the weighting factors is the size. | |
2635 | Therefore the result is always a good payoff between few collisions | |
2636 | (= short chain lengths) and table size. */ | |
2637 | static size_t | |
2638 | compute_bucket_count (info) | |
2639 | struct bfd_link_info *info; | |
2640 | { | |
2641 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; | |
7442e600 | 2642 | size_t best_size = 0; |
252b5132 RH |
2643 | unsigned long int *hashcodes; |
2644 | unsigned long int *hashcodesp; | |
2645 | unsigned long int i; | |
2646 | ||
2647 | /* Compute the hash values for all exported symbols. At the same | |
2648 | time store the values in an array so that we could use them for | |
2649 | optimizations. */ | |
2650 | hashcodes = (unsigned long int *) bfd_malloc (dynsymcount | |
2651 | * sizeof (unsigned long int)); | |
2652 | if (hashcodes == NULL) | |
2653 | return 0; | |
2654 | hashcodesp = hashcodes; | |
2655 | ||
2656 | /* Put all hash values in HASHCODES. */ | |
2657 | elf_link_hash_traverse (elf_hash_table (info), | |
2658 | elf_collect_hash_codes, &hashcodesp); | |
2659 | ||
2660 | /* We have a problem here. The following code to optimize the table | |
2661 | size requires an integer type with more the 32 bits. If | |
2662 | BFD_HOST_U_64_BIT is set we know about such a type. */ | |
2663 | #ifdef BFD_HOST_U_64_BIT | |
2664 | if (info->optimize == true) | |
2665 | { | |
2666 | unsigned long int nsyms = hashcodesp - hashcodes; | |
2667 | size_t minsize; | |
2668 | size_t maxsize; | |
2669 | BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); | |
2670 | unsigned long int *counts ; | |
2671 | ||
2672 | /* Possible optimization parameters: if we have NSYMS symbols we say | |
2673 | that the hashing table must at least have NSYMS/4 and at most | |
2674 | 2*NSYMS buckets. */ | |
2675 | minsize = nsyms / 4; | |
2676 | if (minsize == 0) | |
2677 | minsize = 1; | |
2678 | best_size = maxsize = nsyms * 2; | |
2679 | ||
2680 | /* Create array where we count the collisions in. We must use bfd_malloc | |
2681 | since the size could be large. */ | |
2682 | counts = (unsigned long int *) bfd_malloc (maxsize | |
2683 | * sizeof (unsigned long int)); | |
2684 | if (counts == NULL) | |
2685 | { | |
2686 | free (hashcodes); | |
2687 | return 0; | |
2688 | } | |
2689 | ||
2690 | /* Compute the "optimal" size for the hash table. The criteria is a | |
2691 | minimal chain length. The minor criteria is (of course) the size | |
2692 | of the table. */ | |
2693 | for (i = minsize; i < maxsize; ++i) | |
2694 | { | |
2695 | /* Walk through the array of hashcodes and count the collisions. */ | |
2696 | BFD_HOST_U_64_BIT max; | |
2697 | unsigned long int j; | |
2698 | unsigned long int fact; | |
2699 | ||
2700 | memset (counts, '\0', i * sizeof (unsigned long int)); | |
2701 | ||
2702 | /* Determine how often each hash bucket is used. */ | |
2703 | for (j = 0; j < nsyms; ++j) | |
2704 | ++counts[hashcodes[j] % i]; | |
2705 | ||
2706 | /* For the weight function we need some information about the | |
2707 | pagesize on the target. This is information need not be 100% | |
2708 | accurate. Since this information is not available (so far) we | |
2709 | define it here to a reasonable default value. If it is crucial | |
2710 | to have a better value some day simply define this value. */ | |
2711 | # ifndef BFD_TARGET_PAGESIZE | |
2712 | # define BFD_TARGET_PAGESIZE (4096) | |
2713 | # endif | |
2714 | ||
2715 | /* We in any case need 2 + NSYMS entries for the size values and | |
2716 | the chains. */ | |
2717 | max = (2 + nsyms) * (ARCH_SIZE / 8); | |
2718 | ||
2719 | # if 1 | |
2720 | /* Variant 1: optimize for short chains. We add the squares | |
2721 | of all the chain lengths (which favous many small chain | |
2722 | over a few long chains). */ | |
2723 | for (j = 0; j < i; ++j) | |
2724 | max += counts[j] * counts[j]; | |
2725 | ||
2726 | /* This adds penalties for the overall size of the table. */ | |
2727 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; | |
2728 | max *= fact * fact; | |
2729 | # else | |
2730 | /* Variant 2: Optimize a lot more for small table. Here we | |
2731 | also add squares of the size but we also add penalties for | |
2732 | empty slots (the +1 term). */ | |
2733 | for (j = 0; j < i; ++j) | |
2734 | max += (1 + counts[j]) * (1 + counts[j]); | |
2735 | ||
2736 | /* The overall size of the table is considered, but not as | |
2737 | strong as in variant 1, where it is squared. */ | |
2738 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; | |
2739 | max *= fact; | |
2740 | # endif | |
2741 | ||
2742 | /* Compare with current best results. */ | |
2743 | if (max < best_chlen) | |
2744 | { | |
2745 | best_chlen = max; | |
2746 | best_size = i; | |
2747 | } | |
2748 | } | |
2749 | ||
2750 | free (counts); | |
2751 | } | |
2752 | else | |
2753 | #endif /* defined (BFD_HOST_U_64_BIT) */ | |
2754 | { | |
2755 | /* This is the fallback solution if no 64bit type is available or if we | |
2756 | are not supposed to spend much time on optimizations. We select the | |
2757 | bucket count using a fixed set of numbers. */ | |
2758 | for (i = 0; elf_buckets[i] != 0; i++) | |
2759 | { | |
2760 | best_size = elf_buckets[i]; | |
2761 | if (dynsymcount < elf_buckets[i + 1]) | |
2762 | break; | |
2763 | } | |
2764 | } | |
2765 | ||
2766 | /* Free the arrays we needed. */ | |
2767 | free (hashcodes); | |
2768 | ||
2769 | return best_size; | |
2770 | } | |
2771 | ||
2772 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
2773 | called by the ELF linker emulation before_allocation routine. We | |
2774 | must set the sizes of the sections before the linker sets the | |
2775 | addresses of the various sections. */ | |
2776 | ||
2777 | boolean | |
2778 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, | |
2779 | export_dynamic, filter_shlib, | |
2780 | auxiliary_filters, info, sinterpptr, | |
2781 | verdefs) | |
2782 | bfd *output_bfd; | |
2783 | const char *soname; | |
2784 | const char *rpath; | |
2785 | boolean export_dynamic; | |
2786 | const char *filter_shlib; | |
2787 | const char * const *auxiliary_filters; | |
2788 | struct bfd_link_info *info; | |
2789 | asection **sinterpptr; | |
2790 | struct bfd_elf_version_tree *verdefs; | |
2791 | { | |
2792 | bfd_size_type soname_indx; | |
2793 | bfd *dynobj; | |
2794 | struct elf_backend_data *bed; | |
252b5132 RH |
2795 | struct elf_assign_sym_version_info asvinfo; |
2796 | ||
2797 | *sinterpptr = NULL; | |
2798 | ||
2799 | soname_indx = (bfd_size_type) -1; | |
2800 | ||
2801 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
2802 | return true; | |
2803 | ||
2804 | /* The backend may have to create some sections regardless of whether | |
2805 | we're dynamic or not. */ | |
2806 | bed = get_elf_backend_data (output_bfd); | |
2807 | if (bed->elf_backend_always_size_sections | |
2808 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |
2809 | return false; | |
2810 | ||
2811 | dynobj = elf_hash_table (info)->dynobj; | |
2812 | ||
2813 | /* If there were no dynamic objects in the link, there is nothing to | |
2814 | do here. */ | |
2815 | if (dynobj == NULL) | |
2816 | return true; | |
2817 | ||
252b5132 RH |
2818 | if (elf_hash_table (info)->dynamic_sections_created) |
2819 | { | |
2820 | struct elf_info_failed eif; | |
2821 | struct elf_link_hash_entry *h; | |
2822 | bfd_size_type strsize; | |
2823 | ||
2824 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
2825 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
2826 | ||
2827 | if (soname != NULL) | |
2828 | { | |
2829 | soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2830 | soname, true, true); | |
2831 | if (soname_indx == (bfd_size_type) -1 | |
2832 | || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) | |
2833 | return false; | |
2834 | } | |
2835 | ||
2836 | if (info->symbolic) | |
2837 | { | |
2838 | if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
2839 | return false; | |
d6cf2879 | 2840 | info->flags |= DF_SYMBOLIC; |
252b5132 RH |
2841 | } |
2842 | ||
2843 | if (rpath != NULL) | |
2844 | { | |
2845 | bfd_size_type indx; | |
2846 | ||
2847 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, | |
2848 | true, true); | |
2849 | if (indx == (bfd_size_type) -1 | |
d6cf2879 | 2850 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx) |
c25373b7 L |
2851 | || (info->new_dtags |
2852 | && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx))) | |
252b5132 RH |
2853 | return false; |
2854 | } | |
2855 | ||
2856 | if (filter_shlib != NULL) | |
2857 | { | |
2858 | bfd_size_type indx; | |
2859 | ||
2860 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2861 | filter_shlib, true, true); | |
2862 | if (indx == (bfd_size_type) -1 | |
2863 | || ! elf_add_dynamic_entry (info, DT_FILTER, indx)) | |
2864 | return false; | |
2865 | } | |
2866 | ||
2867 | if (auxiliary_filters != NULL) | |
2868 | { | |
2869 | const char * const *p; | |
2870 | ||
2871 | for (p = auxiliary_filters; *p != NULL; p++) | |
2872 | { | |
2873 | bfd_size_type indx; | |
2874 | ||
2875 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2876 | *p, true, true); | |
2877 | if (indx == (bfd_size_type) -1 | |
2878 | || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | |
2879 | return false; | |
2880 | } | |
2881 | } | |
2882 | ||
ea44b734 RH |
2883 | /* If we are supposed to export all symbols into the dynamic symbol |
2884 | table (this is not the normal case), then do so. */ | |
2885 | if (export_dynamic) | |
2886 | { | |
2887 | struct elf_info_failed eif; | |
2888 | ||
2889 | eif.failed = false; | |
2890 | eif.info = info; | |
2891 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
2892 | (PTR) &eif); | |
2893 | if (eif.failed) | |
2894 | return false; | |
2895 | } | |
2896 | ||
252b5132 RH |
2897 | /* Attach all the symbols to their version information. */ |
2898 | asvinfo.output_bfd = output_bfd; | |
2899 | asvinfo.info = info; | |
2900 | asvinfo.verdefs = verdefs; | |
2901 | asvinfo.export_dynamic = export_dynamic; | |
252b5132 RH |
2902 | asvinfo.failed = false; |
2903 | ||
2904 | elf_link_hash_traverse (elf_hash_table (info), | |
2905 | elf_link_assign_sym_version, | |
2906 | (PTR) &asvinfo); | |
2907 | if (asvinfo.failed) | |
2908 | return false; | |
2909 | ||
2910 | /* Find all symbols which were defined in a dynamic object and make | |
2911 | the backend pick a reasonable value for them. */ | |
2912 | eif.failed = false; | |
2913 | eif.info = info; | |
2914 | elf_link_hash_traverse (elf_hash_table (info), | |
2915 | elf_adjust_dynamic_symbol, | |
2916 | (PTR) &eif); | |
2917 | if (eif.failed) | |
2918 | return false; | |
2919 | ||
2920 | /* Add some entries to the .dynamic section. We fill in some of the | |
2921 | values later, in elf_bfd_final_link, but we must add the entries | |
2922 | now so that we know the final size of the .dynamic section. */ | |
f0c2e336 MM |
2923 | |
2924 | /* If there are initialization and/or finalization functions to | |
2925 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |
2926 | h = (info->init_function | |
2927 | ? elf_link_hash_lookup (elf_hash_table (info), | |
2928 | info->init_function, false, | |
2929 | false, false) | |
2930 | : NULL); | |
252b5132 RH |
2931 | if (h != NULL |
2932 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
2933 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
2934 | { | |
2935 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
2936 | return false; | |
2937 | } | |
f0c2e336 MM |
2938 | h = (info->fini_function |
2939 | ? elf_link_hash_lookup (elf_hash_table (info), | |
2940 | info->fini_function, false, | |
2941 | false, false) | |
2942 | : NULL); | |
252b5132 RH |
2943 | if (h != NULL |
2944 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
2945 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
2946 | { | |
2947 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
2948 | return false; | |
2949 | } | |
f0c2e336 | 2950 | |
252b5132 RH |
2951 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); |
2952 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
2953 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
2954 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
2955 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
2956 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
2957 | sizeof (Elf_External_Sym))) | |
2958 | return false; | |
2959 | } | |
2960 | ||
2961 | /* The backend must work out the sizes of all the other dynamic | |
2962 | sections. */ | |
252b5132 RH |
2963 | if (bed->elf_backend_size_dynamic_sections |
2964 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
2965 | return false; | |
2966 | ||
2967 | if (elf_hash_table (info)->dynamic_sections_created) | |
2968 | { | |
2969 | size_t dynsymcount; | |
2970 | asection *s; | |
2971 | size_t bucketcount = 0; | |
2972 | Elf_Internal_Sym isym; | |
c7ac6ff8 | 2973 | size_t hash_entry_size; |
252b5132 RH |
2974 | |
2975 | /* Set up the version definition section. */ | |
2976 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
2977 | BFD_ASSERT (s != NULL); | |
2978 | ||
2979 | /* We may have created additional version definitions if we are | |
2980 | just linking a regular application. */ | |
2981 | verdefs = asvinfo.verdefs; | |
2982 | ||
2983 | if (verdefs == NULL) | |
7f8d5fc9 | 2984 | _bfd_strip_section_from_output (info, s); |
252b5132 RH |
2985 | else |
2986 | { | |
2987 | unsigned int cdefs; | |
2988 | bfd_size_type size; | |
2989 | struct bfd_elf_version_tree *t; | |
2990 | bfd_byte *p; | |
2991 | Elf_Internal_Verdef def; | |
2992 | Elf_Internal_Verdaux defaux; | |
2993 | ||
252b5132 RH |
2994 | cdefs = 0; |
2995 | size = 0; | |
2996 | ||
2997 | /* Make space for the base version. */ | |
2998 | size += sizeof (Elf_External_Verdef); | |
2999 | size += sizeof (Elf_External_Verdaux); | |
3000 | ++cdefs; | |
3001 | ||
3002 | for (t = verdefs; t != NULL; t = t->next) | |
3003 | { | |
3004 | struct bfd_elf_version_deps *n; | |
3005 | ||
3006 | size += sizeof (Elf_External_Verdef); | |
3007 | size += sizeof (Elf_External_Verdaux); | |
3008 | ++cdefs; | |
3009 | ||
3010 | for (n = t->deps; n != NULL; n = n->next) | |
3011 | size += sizeof (Elf_External_Verdaux); | |
3012 | } | |
3013 | ||
3014 | s->_raw_size = size; | |
3015 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
3016 | if (s->contents == NULL && s->_raw_size != 0) | |
3017 | return false; | |
3018 | ||
3019 | /* Fill in the version definition section. */ | |
3020 | ||
3021 | p = s->contents; | |
3022 | ||
3023 | def.vd_version = VER_DEF_CURRENT; | |
3024 | def.vd_flags = VER_FLG_BASE; | |
3025 | def.vd_ndx = 1; | |
3026 | def.vd_cnt = 1; | |
3027 | def.vd_aux = sizeof (Elf_External_Verdef); | |
3028 | def.vd_next = (sizeof (Elf_External_Verdef) | |
3029 | + sizeof (Elf_External_Verdaux)); | |
3030 | ||
3031 | if (soname_indx != (bfd_size_type) -1) | |
3032 | { | |
3a99b017 | 3033 | def.vd_hash = bfd_elf_hash (soname); |
252b5132 RH |
3034 | defaux.vda_name = soname_indx; |
3035 | } | |
3036 | else | |
3037 | { | |
3038 | const char *name; | |
3039 | bfd_size_type indx; | |
3040 | ||
3041 | name = output_bfd->filename; | |
3a99b017 | 3042 | def.vd_hash = bfd_elf_hash (name); |
252b5132 RH |
3043 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
3044 | name, true, false); | |
3045 | if (indx == (bfd_size_type) -1) | |
3046 | return false; | |
3047 | defaux.vda_name = indx; | |
3048 | } | |
3049 | defaux.vda_next = 0; | |
3050 | ||
3051 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
3052 | (Elf_External_Verdef *)p); | |
3053 | p += sizeof (Elf_External_Verdef); | |
3054 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
3055 | (Elf_External_Verdaux *) p); | |
3056 | p += sizeof (Elf_External_Verdaux); | |
3057 | ||
3058 | for (t = verdefs; t != NULL; t = t->next) | |
3059 | { | |
3060 | unsigned int cdeps; | |
3061 | struct bfd_elf_version_deps *n; | |
3062 | struct elf_link_hash_entry *h; | |
3063 | ||
3064 | cdeps = 0; | |
3065 | for (n = t->deps; n != NULL; n = n->next) | |
3066 | ++cdeps; | |
3067 | ||
3068 | /* Add a symbol representing this version. */ | |
3069 | h = NULL; | |
3070 | if (! (_bfd_generic_link_add_one_symbol | |
3071 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | |
3072 | (bfd_vma) 0, (const char *) NULL, false, | |
3073 | get_elf_backend_data (dynobj)->collect, | |
3074 | (struct bfd_link_hash_entry **) &h))) | |
3075 | return false; | |
3076 | h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF; | |
3077 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3078 | h->type = STT_OBJECT; | |
3079 | h->verinfo.vertree = t; | |
3080 | ||
3081 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
3082 | return false; | |
3083 | ||
3084 | def.vd_version = VER_DEF_CURRENT; | |
3085 | def.vd_flags = 0; | |
3086 | if (t->globals == NULL && t->locals == NULL && ! t->used) | |
3087 | def.vd_flags |= VER_FLG_WEAK; | |
3088 | def.vd_ndx = t->vernum + 1; | |
3089 | def.vd_cnt = cdeps + 1; | |
3a99b017 | 3090 | def.vd_hash = bfd_elf_hash (t->name); |
252b5132 RH |
3091 | def.vd_aux = sizeof (Elf_External_Verdef); |
3092 | if (t->next != NULL) | |
3093 | def.vd_next = (sizeof (Elf_External_Verdef) | |
3094 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |
3095 | else | |
3096 | def.vd_next = 0; | |
3097 | ||
3098 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
3099 | (Elf_External_Verdef *) p); | |
3100 | p += sizeof (Elf_External_Verdef); | |
3101 | ||
3102 | defaux.vda_name = h->dynstr_index; | |
3103 | if (t->deps == NULL) | |
3104 | defaux.vda_next = 0; | |
3105 | else | |
3106 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
3107 | t->name_indx = defaux.vda_name; | |
3108 | ||
3109 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
3110 | (Elf_External_Verdaux *) p); | |
3111 | p += sizeof (Elf_External_Verdaux); | |
3112 | ||
3113 | for (n = t->deps; n != NULL; n = n->next) | |
3114 | { | |
3115 | if (n->version_needed == NULL) | |
3116 | { | |
3117 | /* This can happen if there was an error in the | |
3118 | version script. */ | |
3119 | defaux.vda_name = 0; | |
3120 | } | |
3121 | else | |
3122 | defaux.vda_name = n->version_needed->name_indx; | |
3123 | if (n->next == NULL) | |
3124 | defaux.vda_next = 0; | |
3125 | else | |
3126 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
3127 | ||
3128 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
3129 | (Elf_External_Verdaux *) p); | |
3130 | p += sizeof (Elf_External_Verdaux); | |
3131 | } | |
3132 | } | |
3133 | ||
3134 | if (! elf_add_dynamic_entry (info, DT_VERDEF, 0) | |
3135 | || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) | |
3136 | return false; | |
3137 | ||
3138 | elf_tdata (output_bfd)->cverdefs = cdefs; | |
3139 | } | |
3140 | ||
c25373b7 | 3141 | if (info->new_dtags && info->flags) |
d6cf2879 L |
3142 | { |
3143 | if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) | |
3144 | return false; | |
3145 | } | |
3146 | ||
b586af58 | 3147 | if (info->new_dtags && info->flags_1) |
d6cf2879 L |
3148 | { |
3149 | if (! info->shared) | |
3150 | info->flags_1 &= ~ (DF_1_INITFIRST | |
3151 | | DF_1_NODELETE | |
3152 | | DF_1_NOOPEN); | |
3153 | if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) | |
3154 | return false; | |
3155 | } | |
3156 | ||
252b5132 RH |
3157 | /* Work out the size of the version reference section. */ |
3158 | ||
3159 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
3160 | BFD_ASSERT (s != NULL); | |
3161 | { | |
3162 | struct elf_find_verdep_info sinfo; | |
3163 | ||
3164 | sinfo.output_bfd = output_bfd; | |
3165 | sinfo.info = info; | |
3166 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; | |
3167 | if (sinfo.vers == 0) | |
3168 | sinfo.vers = 1; | |
3169 | sinfo.failed = false; | |
3170 | ||
3171 | elf_link_hash_traverse (elf_hash_table (info), | |
3172 | elf_link_find_version_dependencies, | |
3173 | (PTR) &sinfo); | |
3174 | ||
3175 | if (elf_tdata (output_bfd)->verref == NULL) | |
7f8d5fc9 | 3176 | _bfd_strip_section_from_output (info, s); |
252b5132 RH |
3177 | else |
3178 | { | |
3179 | Elf_Internal_Verneed *t; | |
3180 | unsigned int size; | |
3181 | unsigned int crefs; | |
3182 | bfd_byte *p; | |
3183 | ||
3184 | /* Build the version definition section. */ | |
3185 | size = 0; | |
3186 | crefs = 0; | |
3187 | for (t = elf_tdata (output_bfd)->verref; | |
3188 | t != NULL; | |
3189 | t = t->vn_nextref) | |
3190 | { | |
3191 | Elf_Internal_Vernaux *a; | |
3192 | ||
3193 | size += sizeof (Elf_External_Verneed); | |
3194 | ++crefs; | |
3195 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3196 | size += sizeof (Elf_External_Vernaux); | |
3197 | } | |
3198 | ||
3199 | s->_raw_size = size; | |
3200 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, size); | |
3201 | if (s->contents == NULL) | |
3202 | return false; | |
3203 | ||
3204 | p = s->contents; | |
3205 | for (t = elf_tdata (output_bfd)->verref; | |
3206 | t != NULL; | |
3207 | t = t->vn_nextref) | |
3208 | { | |
3209 | unsigned int caux; | |
3210 | Elf_Internal_Vernaux *a; | |
3211 | bfd_size_type indx; | |
3212 | ||
3213 | caux = 0; | |
3214 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3215 | ++caux; | |
3216 | ||
3217 | t->vn_version = VER_NEED_CURRENT; | |
3218 | t->vn_cnt = caux; | |
3219 | if (elf_dt_name (t->vn_bfd) != NULL) | |
3220 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
3221 | elf_dt_name (t->vn_bfd), | |
3222 | true, false); | |
3223 | else | |
3224 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
3225 | t->vn_bfd->filename, true, false); | |
3226 | if (indx == (bfd_size_type) -1) | |
3227 | return false; | |
3228 | t->vn_file = indx; | |
3229 | t->vn_aux = sizeof (Elf_External_Verneed); | |
3230 | if (t->vn_nextref == NULL) | |
3231 | t->vn_next = 0; | |
3232 | else | |
3233 | t->vn_next = (sizeof (Elf_External_Verneed) | |
3234 | + caux * sizeof (Elf_External_Vernaux)); | |
3235 | ||
3236 | _bfd_elf_swap_verneed_out (output_bfd, t, | |
3237 | (Elf_External_Verneed *) p); | |
3238 | p += sizeof (Elf_External_Verneed); | |
3239 | ||
3240 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3241 | { | |
3a99b017 | 3242 | a->vna_hash = bfd_elf_hash (a->vna_nodename); |
252b5132 RH |
3243 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
3244 | a->vna_nodename, true, false); | |
3245 | if (indx == (bfd_size_type) -1) | |
3246 | return false; | |
3247 | a->vna_name = indx; | |
3248 | if (a->vna_nextptr == NULL) | |
3249 | a->vna_next = 0; | |
3250 | else | |
3251 | a->vna_next = sizeof (Elf_External_Vernaux); | |
3252 | ||
3253 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |
3254 | (Elf_External_Vernaux *) p); | |
3255 | p += sizeof (Elf_External_Vernaux); | |
3256 | } | |
3257 | } | |
3258 | ||
3259 | if (! elf_add_dynamic_entry (info, DT_VERNEED, 0) | |
3260 | || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) | |
3261 | return false; | |
3262 | ||
3263 | elf_tdata (output_bfd)->cverrefs = crefs; | |
3264 | } | |
3265 | } | |
3266 | ||
30b30c21 RH |
3267 | /* Assign dynsym indicies. In a shared library we generate a |
3268 | section symbol for each output section, which come first. | |
3269 | Next come all of the back-end allocated local dynamic syms, | |
3270 | followed by the rest of the global symbols. */ | |
3271 | ||
3272 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); | |
252b5132 RH |
3273 | |
3274 | /* Work out the size of the symbol version section. */ | |
3275 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
3276 | BFD_ASSERT (s != NULL); | |
3277 | if (dynsymcount == 0 | |
3278 | || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL)) | |
3279 | { | |
7f8d5fc9 | 3280 | _bfd_strip_section_from_output (info, s); |
42751cf3 MM |
3281 | /* The DYNSYMCOUNT might have changed if we were going to |
3282 | output a dynamic symbol table entry for S. */ | |
30b30c21 | 3283 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); |
252b5132 RH |
3284 | } |
3285 | else | |
3286 | { | |
3287 | s->_raw_size = dynsymcount * sizeof (Elf_External_Versym); | |
3288 | s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size); | |
3289 | if (s->contents == NULL) | |
3290 | return false; | |
3291 | ||
3292 | if (! elf_add_dynamic_entry (info, DT_VERSYM, 0)) | |
3293 | return false; | |
3294 | } | |
3295 | ||
3296 | /* Set the size of the .dynsym and .hash sections. We counted | |
3297 | the number of dynamic symbols in elf_link_add_object_symbols. | |
3298 | We will build the contents of .dynsym and .hash when we build | |
3299 | the final symbol table, because until then we do not know the | |
3300 | correct value to give the symbols. We built the .dynstr | |
3301 | section as we went along in elf_link_add_object_symbols. */ | |
3302 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
3303 | BFD_ASSERT (s != NULL); | |
3304 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
3305 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
3306 | if (s->contents == NULL && s->_raw_size != 0) | |
3307 | return false; | |
3308 | ||
3309 | /* The first entry in .dynsym is a dummy symbol. */ | |
3310 | isym.st_value = 0; | |
3311 | isym.st_size = 0; | |
3312 | isym.st_name = 0; | |
3313 | isym.st_info = 0; | |
3314 | isym.st_other = 0; | |
3315 | isym.st_shndx = 0; | |
3316 | elf_swap_symbol_out (output_bfd, &isym, | |
3317 | (PTR) (Elf_External_Sym *) s->contents); | |
3318 | ||
3319 | /* Compute the size of the hashing table. As a side effect this | |
3320 | computes the hash values for all the names we export. */ | |
3321 | bucketcount = compute_bucket_count (info); | |
3322 | ||
3323 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
3324 | BFD_ASSERT (s != NULL); | |
c7ac6ff8 MM |
3325 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; |
3326 | s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |
252b5132 RH |
3327 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); |
3328 | if (s->contents == NULL) | |
3329 | return false; | |
3330 | memset (s->contents, 0, (size_t) s->_raw_size); | |
3331 | ||
c7ac6ff8 MM |
3332 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); |
3333 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, | |
3334 | s->contents + hash_entry_size); | |
252b5132 RH |
3335 | |
3336 | elf_hash_table (info)->bucketcount = bucketcount; | |
3337 | ||
3338 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
3339 | BFD_ASSERT (s != NULL); | |
3340 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
3341 | ||
3342 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) | |
3343 | return false; | |
3344 | } | |
3345 | ||
3346 | return true; | |
3347 | } | |
3348 | \f | |
3349 | /* Fix up the flags for a symbol. This handles various cases which | |
3350 | can only be fixed after all the input files are seen. This is | |
3351 | currently called by both adjust_dynamic_symbol and | |
3352 | assign_sym_version, which is unnecessary but perhaps more robust in | |
3353 | the face of future changes. */ | |
3354 | ||
3355 | static boolean | |
3356 | elf_fix_symbol_flags (h, eif) | |
3357 | struct elf_link_hash_entry *h; | |
3358 | struct elf_info_failed *eif; | |
3359 | { | |
3360 | /* If this symbol was mentioned in a non-ELF file, try to set | |
3361 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
3362 | permit a non-ELF file to correctly refer to a symbol defined in | |
3363 | an ELF dynamic object. */ | |
3364 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) | |
3365 | { | |
94b6c40a L |
3366 | while (h->root.type == bfd_link_hash_indirect) |
3367 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3368 | ||
252b5132 RH |
3369 | if (h->root.type != bfd_link_hash_defined |
3370 | && h->root.type != bfd_link_hash_defweak) | |
3371 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
3372 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
3373 | else | |
3374 | { | |
3375 | if (h->root.u.def.section->owner != NULL | |
3376 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
3377 | == bfd_target_elf_flavour)) | |
3378 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
3379 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
3380 | else | |
3381 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3382 | } | |
3383 | ||
3384 | if (h->dynindx == -1 | |
3385 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
3386 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
3387 | { | |
3388 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3389 | { | |
3390 | eif->failed = true; | |
3391 | return false; | |
3392 | } | |
3393 | } | |
3394 | } | |
3395 | else | |
3396 | { | |
3397 | /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol | |
3398 | was first seen in a non-ELF file. Fortunately, if the symbol | |
3399 | was first seen in an ELF file, we're probably OK unless the | |
3400 | symbol was defined in a non-ELF file. Catch that case here. | |
3401 | FIXME: We're still in trouble if the symbol was first seen in | |
3402 | a dynamic object, and then later in a non-ELF regular object. */ | |
3403 | if ((h->root.type == bfd_link_hash_defined | |
3404 | || h->root.type == bfd_link_hash_defweak) | |
3405 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
3406 | && (h->root.u.def.section->owner != NULL | |
3407 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
3408 | != bfd_target_elf_flavour) | |
3409 | : (bfd_is_abs_section (h->root.u.def.section) | |
3410 | && (h->elf_link_hash_flags | |
3411 | & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) | |
3412 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3413 | } | |
3414 | ||
3415 | /* If this is a final link, and the symbol was defined as a common | |
3416 | symbol in a regular object file, and there was no definition in | |
3417 | any dynamic object, then the linker will have allocated space for | |
3418 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR | |
3419 | flag will not have been set. */ | |
3420 | if (h->root.type == bfd_link_hash_defined | |
3421 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
3422 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
3423 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3424 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
3425 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3426 | ||
3427 | /* If -Bsymbolic was used (which means to bind references to global | |
3428 | symbols to the definition within the shared object), and this | |
3429 | symbol was defined in a regular object, then it actually doesn't | |
0444bdd4 L |
3430 | need a PLT entry. Likewise, if the symbol has any kind of |
3431 | visibility (internal, hidden, or protected), it doesn't need a | |
3432 | PLT. */ | |
252b5132 RH |
3433 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 |
3434 | && eif->info->shared | |
0444bdd4 | 3435 | && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other)) |
252b5132 RH |
3436 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
3437 | { | |
3438 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
3439 | h->plt.offset = (bfd_vma) -1; | |
3440 | } | |
3441 | ||
fc4cc5bb ILT |
3442 | /* If this is a weak defined symbol in a dynamic object, and we know |
3443 | the real definition in the dynamic object, copy interesting flags | |
3444 | over to the real definition. */ | |
3445 | if (h->weakdef != NULL) | |
3446 | { | |
3447 | struct elf_link_hash_entry *weakdef; | |
3448 | ||
3449 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
3450 | || h->root.type == bfd_link_hash_defweak); | |
3451 | weakdef = h->weakdef; | |
3452 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
3453 | || weakdef->root.type == bfd_link_hash_defweak); | |
3454 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
3455 | ||
3456 | /* If the real definition is defined by a regular object file, | |
3457 | don't do anything special. See the longer description in | |
3458 | elf_adjust_dynamic_symbol, below. */ | |
3459 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
3460 | h->weakdef = NULL; | |
3461 | else | |
3462 | weakdef->elf_link_hash_flags |= | |
3463 | (h->elf_link_hash_flags | |
3464 | & (ELF_LINK_HASH_REF_REGULAR | |
3465 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK | |
3466 | | ELF_LINK_NON_GOT_REF)); | |
3467 | } | |
3468 | ||
252b5132 RH |
3469 | return true; |
3470 | } | |
3471 | ||
3472 | /* Make the backend pick a good value for a dynamic symbol. This is | |
3473 | called via elf_link_hash_traverse, and also calls itself | |
3474 | recursively. */ | |
3475 | ||
3476 | static boolean | |
3477 | elf_adjust_dynamic_symbol (h, data) | |
3478 | struct elf_link_hash_entry *h; | |
3479 | PTR data; | |
3480 | { | |
3481 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
3482 | bfd *dynobj; | |
3483 | struct elf_backend_data *bed; | |
3484 | ||
3485 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
3486 | if (h->root.type == bfd_link_hash_indirect) | |
3487 | return true; | |
3488 | ||
3489 | /* Fix the symbol flags. */ | |
3490 | if (! elf_fix_symbol_flags (h, eif)) | |
3491 | return false; | |
3492 | ||
3493 | /* If this symbol does not require a PLT entry, and it is not | |
3494 | defined by a dynamic object, or is not referenced by a regular | |
3495 | object, ignore it. We do have to handle a weak defined symbol, | |
3496 | even if no regular object refers to it, if we decided to add it | |
3497 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
3498 | about symbols which are defined by one dynamic object and | |
3499 | referenced by another one? */ | |
3500 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 | |
3501 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
3502 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3503 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 | |
3504 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
3505 | { | |
3506 | h->plt.offset = (bfd_vma) -1; | |
3507 | return true; | |
3508 | } | |
3509 | ||
3510 | /* If we've already adjusted this symbol, don't do it again. This | |
3511 | can happen via a recursive call. */ | |
3512 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
3513 | return true; | |
3514 | ||
3515 | /* Don't look at this symbol again. Note that we must set this | |
3516 | after checking the above conditions, because we may look at a | |
3517 | symbol once, decide not to do anything, and then get called | |
3518 | recursively later after REF_REGULAR is set below. */ | |
3519 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
3520 | ||
3521 | /* If this is a weak definition, and we know a real definition, and | |
3522 | the real symbol is not itself defined by a regular object file, | |
3523 | then get a good value for the real definition. We handle the | |
3524 | real symbol first, for the convenience of the backend routine. | |
3525 | ||
3526 | Note that there is a confusing case here. If the real definition | |
3527 | is defined by a regular object file, we don't get the real symbol | |
3528 | from the dynamic object, but we do get the weak symbol. If the | |
3529 | processor backend uses a COPY reloc, then if some routine in the | |
3530 | dynamic object changes the real symbol, we will not see that | |
3531 | change in the corresponding weak symbol. This is the way other | |
3532 | ELF linkers work as well, and seems to be a result of the shared | |
3533 | library model. | |
3534 | ||
3535 | I will clarify this issue. Most SVR4 shared libraries define the | |
3536 | variable _timezone and define timezone as a weak synonym. The | |
3537 | tzset call changes _timezone. If you write | |
3538 | extern int timezone; | |
3539 | int _timezone = 5; | |
3540 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
3541 | you might expect that, since timezone is a synonym for _timezone, | |
3542 | the same number will print both times. However, if the processor | |
3543 | backend uses a COPY reloc, then actually timezone will be copied | |
3544 | into your process image, and, since you define _timezone | |
3545 | yourself, _timezone will not. Thus timezone and _timezone will | |
3546 | wind up at different memory locations. The tzset call will set | |
3547 | _timezone, leaving timezone unchanged. */ | |
3548 | ||
3549 | if (h->weakdef != NULL) | |
3550 | { | |
fc4cc5bb ILT |
3551 | /* If we get to this point, we know there is an implicit |
3552 | reference by a regular object file via the weak symbol H. | |
3553 | FIXME: Is this really true? What if the traversal finds | |
3554 | H->WEAKDEF before it finds H? */ | |
3555 | h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
252b5132 | 3556 | |
fc4cc5bb ILT |
3557 | if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif)) |
3558 | return false; | |
252b5132 RH |
3559 | } |
3560 | ||
3561 | /* If a symbol has no type and no size and does not require a PLT | |
3562 | entry, then we are probably about to do the wrong thing here: we | |
3563 | are probably going to create a COPY reloc for an empty object. | |
3564 | This case can arise when a shared object is built with assembly | |
3565 | code, and the assembly code fails to set the symbol type. */ | |
3566 | if (h->size == 0 | |
3567 | && h->type == STT_NOTYPE | |
3568 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
3569 | (*_bfd_error_handler) | |
3570 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
3571 | h->root.root.string); | |
3572 | ||
3573 | dynobj = elf_hash_table (eif->info)->dynobj; | |
3574 | bed = get_elf_backend_data (dynobj); | |
3575 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
3576 | { | |
3577 | eif->failed = true; | |
3578 | return false; | |
3579 | } | |
3580 | ||
3581 | return true; | |
3582 | } | |
3583 | \f | |
3584 | /* This routine is used to export all defined symbols into the dynamic | |
3585 | symbol table. It is called via elf_link_hash_traverse. */ | |
3586 | ||
3587 | static boolean | |
3588 | elf_export_symbol (h, data) | |
3589 | struct elf_link_hash_entry *h; | |
3590 | PTR data; | |
3591 | { | |
3592 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
3593 | ||
3594 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
3595 | if (h->root.type == bfd_link_hash_indirect) | |
3596 | return true; | |
3597 | ||
3598 | if (h->dynindx == -1 | |
3599 | && (h->elf_link_hash_flags | |
3600 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
3601 | { | |
3602 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3603 | { | |
3604 | eif->failed = true; | |
3605 | return false; | |
3606 | } | |
3607 | } | |
3608 | ||
3609 | return true; | |
3610 | } | |
3611 | \f | |
3612 | /* Look through the symbols which are defined in other shared | |
3613 | libraries and referenced here. Update the list of version | |
3614 | dependencies. This will be put into the .gnu.version_r section. | |
3615 | This function is called via elf_link_hash_traverse. */ | |
3616 | ||
3617 | static boolean | |
3618 | elf_link_find_version_dependencies (h, data) | |
3619 | struct elf_link_hash_entry *h; | |
3620 | PTR data; | |
3621 | { | |
3622 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; | |
3623 | Elf_Internal_Verneed *t; | |
3624 | Elf_Internal_Vernaux *a; | |
3625 | ||
3626 | /* We only care about symbols defined in shared objects with version | |
3627 | information. */ | |
3628 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3629 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
3630 | || h->dynindx == -1 | |
3631 | || h->verinfo.verdef == NULL) | |
3632 | return true; | |
3633 | ||
3634 | /* See if we already know about this version. */ | |
3635 | for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) | |
3636 | { | |
3637 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
3638 | continue; | |
3639 | ||
3640 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3641 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
3642 | return true; | |
3643 | ||
3644 | break; | |
3645 | } | |
3646 | ||
3647 | /* This is a new version. Add it to tree we are building. */ | |
3648 | ||
3649 | if (t == NULL) | |
3650 | { | |
3651 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t); | |
3652 | if (t == NULL) | |
3653 | { | |
3654 | rinfo->failed = true; | |
3655 | return false; | |
3656 | } | |
3657 | ||
3658 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
3659 | t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; | |
3660 | elf_tdata (rinfo->output_bfd)->verref = t; | |
3661 | } | |
3662 | ||
3663 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a); | |
3664 | ||
3665 | /* Note that we are copying a string pointer here, and testing it | |
3666 | above. If bfd_elf_string_from_elf_section is ever changed to | |
3667 | discard the string data when low in memory, this will have to be | |
3668 | fixed. */ | |
3669 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
3670 | ||
3671 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
3672 | a->vna_nextptr = t->vn_auxptr; | |
3673 | ||
3674 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
3675 | ++rinfo->vers; | |
3676 | ||
3677 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
3678 | ||
3679 | t->vn_auxptr = a; | |
3680 | ||
3681 | return true; | |
3682 | } | |
3683 | ||
3684 | /* Figure out appropriate versions for all the symbols. We may not | |
3685 | have the version number script until we have read all of the input | |
3686 | files, so until that point we don't know which symbols should be | |
3687 | local. This function is called via elf_link_hash_traverse. */ | |
3688 | ||
3689 | static boolean | |
3690 | elf_link_assign_sym_version (h, data) | |
3691 | struct elf_link_hash_entry *h; | |
3692 | PTR data; | |
3693 | { | |
3694 | struct elf_assign_sym_version_info *sinfo = | |
3695 | (struct elf_assign_sym_version_info *) data; | |
3696 | struct bfd_link_info *info = sinfo->info; | |
c61b8717 | 3697 | struct elf_backend_data *bed; |
252b5132 RH |
3698 | struct elf_info_failed eif; |
3699 | char *p; | |
3700 | ||
3701 | /* Fix the symbol flags. */ | |
3702 | eif.failed = false; | |
3703 | eif.info = info; | |
3704 | if (! elf_fix_symbol_flags (h, &eif)) | |
3705 | { | |
3706 | if (eif.failed) | |
3707 | sinfo->failed = true; | |
3708 | return false; | |
3709 | } | |
3710 | ||
3711 | /* We only need version numbers for symbols defined in regular | |
3712 | objects. */ | |
3713 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
3714 | return true; | |
3715 | ||
c61b8717 | 3716 | bed = get_elf_backend_data (sinfo->output_bfd); |
252b5132 RH |
3717 | p = strchr (h->root.root.string, ELF_VER_CHR); |
3718 | if (p != NULL && h->verinfo.vertree == NULL) | |
3719 | { | |
3720 | struct bfd_elf_version_tree *t; | |
3721 | boolean hidden; | |
3722 | ||
3723 | hidden = true; | |
3724 | ||
3725 | /* There are two consecutive ELF_VER_CHR characters if this is | |
3726 | not a hidden symbol. */ | |
3727 | ++p; | |
3728 | if (*p == ELF_VER_CHR) | |
3729 | { | |
3730 | hidden = false; | |
3731 | ++p; | |
3732 | } | |
3733 | ||
3734 | /* If there is no version string, we can just return out. */ | |
3735 | if (*p == '\0') | |
3736 | { | |
3737 | if (hidden) | |
3738 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
3739 | return true; | |
3740 | } | |
3741 | ||
3742 | /* Look for the version. If we find it, it is no longer weak. */ | |
3743 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
3744 | { | |
3745 | if (strcmp (t->name, p) == 0) | |
3746 | { | |
3747 | int len; | |
3748 | char *alc; | |
3749 | struct bfd_elf_version_expr *d; | |
3750 | ||
3751 | len = p - h->root.root.string; | |
3752 | alc = bfd_alloc (sinfo->output_bfd, len); | |
3753 | if (alc == NULL) | |
3754 | return false; | |
3755 | strncpy (alc, h->root.root.string, len - 1); | |
3756 | alc[len - 1] = '\0'; | |
3757 | if (alc[len - 2] == ELF_VER_CHR) | |
3758 | alc[len - 2] = '\0'; | |
3759 | ||
3760 | h->verinfo.vertree = t; | |
3761 | t->used = true; | |
3762 | d = NULL; | |
3763 | ||
3764 | if (t->globals != NULL) | |
3765 | { | |
3766 | for (d = t->globals; d != NULL; d = d->next) | |
3767 | if ((*d->match) (d, alc)) | |
3768 | break; | |
3769 | } | |
3770 | ||
3771 | /* See if there is anything to force this symbol to | |
3772 | local scope. */ | |
3773 | if (d == NULL && t->locals != NULL) | |
3774 | { | |
3775 | for (d = t->locals; d != NULL; d = d->next) | |
3776 | { | |
3777 | if ((*d->match) (d, alc)) | |
3778 | { | |
3779 | if (h->dynindx != -1 | |
3780 | && info->shared | |
3781 | && ! sinfo->export_dynamic) | |
3782 | { | |
252b5132 | 3783 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
f41cbf03 | 3784 | (*bed->elf_backend_hide_symbol) (info, h); |
252b5132 RH |
3785 | /* FIXME: The name of the symbol has |
3786 | already been recorded in the dynamic | |
3787 | string table section. */ | |
3788 | } | |
3789 | ||
3790 | break; | |
3791 | } | |
3792 | } | |
3793 | } | |
3794 | ||
3795 | bfd_release (sinfo->output_bfd, alc); | |
3796 | break; | |
3797 | } | |
3798 | } | |
3799 | ||
3800 | /* If we are building an application, we need to create a | |
3801 | version node for this version. */ | |
3802 | if (t == NULL && ! info->shared) | |
3803 | { | |
3804 | struct bfd_elf_version_tree **pp; | |
3805 | int version_index; | |
3806 | ||
3807 | /* If we aren't going to export this symbol, we don't need | |
3808 | to worry about it. */ | |
3809 | if (h->dynindx == -1) | |
3810 | return true; | |
3811 | ||
3812 | t = ((struct bfd_elf_version_tree *) | |
3813 | bfd_alloc (sinfo->output_bfd, sizeof *t)); | |
3814 | if (t == NULL) | |
3815 | { | |
3816 | sinfo->failed = true; | |
3817 | return false; | |
3818 | } | |
3819 | ||
3820 | t->next = NULL; | |
3821 | t->name = p; | |
3822 | t->globals = NULL; | |
3823 | t->locals = NULL; | |
3824 | t->deps = NULL; | |
3825 | t->name_indx = (unsigned int) -1; | |
3826 | t->used = true; | |
3827 | ||
3828 | version_index = 1; | |
3829 | for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) | |
3830 | ++version_index; | |
3831 | t->vernum = version_index; | |
3832 | ||
3833 | *pp = t; | |
3834 | ||
3835 | h->verinfo.vertree = t; | |
3836 | } | |
3837 | else if (t == NULL) | |
3838 | { | |
3839 | /* We could not find the version for a symbol when | |
3840 | generating a shared archive. Return an error. */ | |
3841 | (*_bfd_error_handler) | |
3842 | (_("%s: undefined versioned symbol name %s"), | |
3843 | bfd_get_filename (sinfo->output_bfd), h->root.root.string); | |
3844 | bfd_set_error (bfd_error_bad_value); | |
3845 | sinfo->failed = true; | |
3846 | return false; | |
3847 | } | |
3848 | ||
3849 | if (hidden) | |
3850 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
3851 | } | |
3852 | ||
3853 | /* If we don't have a version for this symbol, see if we can find | |
3854 | something. */ | |
3855 | if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) | |
3856 | { | |
3857 | struct bfd_elf_version_tree *t; | |
3858 | struct bfd_elf_version_tree *deflt; | |
3859 | struct bfd_elf_version_expr *d; | |
3860 | ||
3861 | /* See if can find what version this symbol is in. If the | |
3862 | symbol is supposed to be local, then don't actually register | |
3863 | it. */ | |
3864 | deflt = NULL; | |
3865 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
3866 | { | |
3867 | if (t->globals != NULL) | |
3868 | { | |
3869 | for (d = t->globals; d != NULL; d = d->next) | |
3870 | { | |
3871 | if ((*d->match) (d, h->root.root.string)) | |
3872 | { | |
3873 | h->verinfo.vertree = t; | |
3874 | break; | |
3875 | } | |
3876 | } | |
3877 | ||
3878 | if (d != NULL) | |
3879 | break; | |
3880 | } | |
3881 | ||
3882 | if (t->locals != NULL) | |
3883 | { | |
3884 | for (d = t->locals; d != NULL; d = d->next) | |
3885 | { | |
3886 | if (d->pattern[0] == '*' && d->pattern[1] == '\0') | |
3887 | deflt = t; | |
3888 | else if ((*d->match) (d, h->root.root.string)) | |
3889 | { | |
3890 | h->verinfo.vertree = t; | |
3891 | if (h->dynindx != -1 | |
3892 | && info->shared | |
3893 | && ! sinfo->export_dynamic) | |
3894 | { | |
252b5132 | 3895 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
f41cbf03 | 3896 | (*bed->elf_backend_hide_symbol) (info, h); |
252b5132 RH |
3897 | /* FIXME: The name of the symbol has already |
3898 | been recorded in the dynamic string table | |
3899 | section. */ | |
3900 | } | |
3901 | break; | |
3902 | } | |
3903 | } | |
3904 | ||
3905 | if (d != NULL) | |
3906 | break; | |
3907 | } | |
3908 | } | |
3909 | ||
3910 | if (deflt != NULL && h->verinfo.vertree == NULL) | |
3911 | { | |
3912 | h->verinfo.vertree = deflt; | |
3913 | if (h->dynindx != -1 | |
3914 | && info->shared | |
3915 | && ! sinfo->export_dynamic) | |
3916 | { | |
252b5132 | 3917 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
f41cbf03 | 3918 | (*bed->elf_backend_hide_symbol) (info, h); |
252b5132 RH |
3919 | /* FIXME: The name of the symbol has already been |
3920 | recorded in the dynamic string table section. */ | |
3921 | } | |
3922 | } | |
3923 | } | |
3924 | ||
3925 | return true; | |
3926 | } | |
252b5132 RH |
3927 | \f |
3928 | /* Final phase of ELF linker. */ | |
3929 | ||
3930 | /* A structure we use to avoid passing large numbers of arguments. */ | |
3931 | ||
3932 | struct elf_final_link_info | |
3933 | { | |
3934 | /* General link information. */ | |
3935 | struct bfd_link_info *info; | |
3936 | /* Output BFD. */ | |
3937 | bfd *output_bfd; | |
3938 | /* Symbol string table. */ | |
3939 | struct bfd_strtab_hash *symstrtab; | |
3940 | /* .dynsym section. */ | |
3941 | asection *dynsym_sec; | |
3942 | /* .hash section. */ | |
3943 | asection *hash_sec; | |
3944 | /* symbol version section (.gnu.version). */ | |
3945 | asection *symver_sec; | |
3946 | /* Buffer large enough to hold contents of any section. */ | |
3947 | bfd_byte *contents; | |
3948 | /* Buffer large enough to hold external relocs of any section. */ | |
3949 | PTR external_relocs; | |
3950 | /* Buffer large enough to hold internal relocs of any section. */ | |
3951 | Elf_Internal_Rela *internal_relocs; | |
3952 | /* Buffer large enough to hold external local symbols of any input | |
3953 | BFD. */ | |
3954 | Elf_External_Sym *external_syms; | |
3955 | /* Buffer large enough to hold internal local symbols of any input | |
3956 | BFD. */ | |
3957 | Elf_Internal_Sym *internal_syms; | |
3958 | /* Array large enough to hold a symbol index for each local symbol | |
3959 | of any input BFD. */ | |
3960 | long *indices; | |
3961 | /* Array large enough to hold a section pointer for each local | |
3962 | symbol of any input BFD. */ | |
3963 | asection **sections; | |
3964 | /* Buffer to hold swapped out symbols. */ | |
3965 | Elf_External_Sym *symbuf; | |
3966 | /* Number of swapped out symbols in buffer. */ | |
3967 | size_t symbuf_count; | |
3968 | /* Number of symbols which fit in symbuf. */ | |
3969 | size_t symbuf_size; | |
3970 | }; | |
3971 | ||
3972 | static boolean elf_link_output_sym | |
3973 | PARAMS ((struct elf_final_link_info *, const char *, | |
3974 | Elf_Internal_Sym *, asection *)); | |
3975 | static boolean elf_link_flush_output_syms | |
3976 | PARAMS ((struct elf_final_link_info *)); | |
3977 | static boolean elf_link_output_extsym | |
3978 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
3979 | static boolean elf_link_input_bfd | |
3980 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
3981 | static boolean elf_reloc_link_order | |
3982 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
3983 | struct bfd_link_order *)); | |
3984 | ||
3985 | /* This struct is used to pass information to elf_link_output_extsym. */ | |
3986 | ||
3987 | struct elf_outext_info | |
3988 | { | |
3989 | boolean failed; | |
3990 | boolean localsyms; | |
3991 | struct elf_final_link_info *finfo; | |
3992 | }; | |
3993 | ||
23bc299b MM |
3994 | /* Compute the size of, and allocate space for, REL_HDR which is the |
3995 | section header for a section containing relocations for O. */ | |
3996 | ||
3997 | static boolean | |
3998 | elf_link_size_reloc_section (abfd, rel_hdr, o) | |
3999 | bfd *abfd; | |
4000 | Elf_Internal_Shdr *rel_hdr; | |
4001 | asection *o; | |
4002 | { | |
4003 | register struct elf_link_hash_entry **p, **pend; | |
b037af20 | 4004 | unsigned reloc_count; |
23bc299b | 4005 | |
b037af20 MM |
4006 | /* Figure out how many relocations there will be. */ |
4007 | if (rel_hdr == &elf_section_data (o)->rel_hdr) | |
4008 | reloc_count = elf_section_data (o)->rel_count; | |
4009 | else | |
4010 | reloc_count = elf_section_data (o)->rel_count2; | |
4011 | ||
4012 | /* That allows us to calculate the size of the section. */ | |
4013 | rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count; | |
23bc299b MM |
4014 | |
4015 | /* The contents field must last into write_object_contents, so we | |
4016 | allocate it with bfd_alloc rather than malloc. */ | |
4017 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
4018 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
4019 | return false; | |
b037af20 MM |
4020 | |
4021 | /* We only allocate one set of hash entries, so we only do it the | |
4022 | first time we are called. */ | |
4023 | if (elf_section_data (o)->rel_hashes == NULL) | |
4024 | { | |
4025 | p = ((struct elf_link_hash_entry **) | |
4026 | bfd_malloc (o->reloc_count | |
4027 | * sizeof (struct elf_link_hash_entry *))); | |
4028 | if (p == NULL && o->reloc_count != 0) | |
4029 | return false; | |
23bc299b | 4030 | |
b037af20 MM |
4031 | elf_section_data (o)->rel_hashes = p; |
4032 | pend = p + o->reloc_count; | |
4033 | for (; p < pend; p++) | |
4034 | *p = NULL; | |
4035 | } | |
23bc299b MM |
4036 | |
4037 | return true; | |
4038 | } | |
4039 | ||
31367b81 MM |
4040 | /* When performing a relocateable link, the input relocations are |
4041 | preserved. But, if they reference global symbols, the indices | |
4042 | referenced must be updated. Update all the relocations in | |
4043 | REL_HDR (there are COUNT of them), using the data in REL_HASH. */ | |
4044 | ||
4045 | static void | |
4046 | elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash) | |
4047 | bfd *abfd; | |
4048 | Elf_Internal_Shdr *rel_hdr; | |
4049 | unsigned int count; | |
4050 | struct elf_link_hash_entry **rel_hash; | |
4051 | { | |
4052 | unsigned int i; | |
32f0787a | 4053 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
31367b81 MM |
4054 | |
4055 | for (i = 0; i < count; i++, rel_hash++) | |
4056 | { | |
4057 | if (*rel_hash == NULL) | |
4058 | continue; | |
4059 | ||
4060 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
4061 | ||
4062 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
4063 | { | |
4064 | Elf_External_Rel *erel; | |
4065 | Elf_Internal_Rel irel; | |
4066 | ||
4067 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
32f0787a UC |
4068 | if (bed->s->swap_reloc_in) |
4069 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel); | |
4070 | else | |
4071 | elf_swap_reloc_in (abfd, erel, &irel); | |
31367b81 MM |
4072 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, |
4073 | ELF_R_TYPE (irel.r_info)); | |
32f0787a UC |
4074 | if (bed->s->swap_reloc_out) |
4075 | (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel); | |
4076 | else | |
4077 | elf_swap_reloc_out (abfd, &irel, erel); | |
31367b81 MM |
4078 | } |
4079 | else | |
4080 | { | |
4081 | Elf_External_Rela *erela; | |
4082 | Elf_Internal_Rela irela; | |
4083 | ||
4084 | BFD_ASSERT (rel_hdr->sh_entsize | |
4085 | == sizeof (Elf_External_Rela)); | |
4086 | ||
4087 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
32f0787a UC |
4088 | if (bed->s->swap_reloca_in) |
4089 | (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela); | |
4090 | else | |
4091 | elf_swap_reloca_in (abfd, erela, &irela); | |
31367b81 MM |
4092 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, |
4093 | ELF_R_TYPE (irela.r_info)); | |
32f0787a UC |
4094 | if (bed->s->swap_reloca_out) |
4095 | (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela); | |
4096 | else | |
4097 | elf_swap_reloca_out (abfd, &irela, erela); | |
31367b81 MM |
4098 | } |
4099 | } | |
4100 | } | |
4101 | ||
252b5132 RH |
4102 | /* Do the final step of an ELF link. */ |
4103 | ||
4104 | boolean | |
4105 | elf_bfd_final_link (abfd, info) | |
4106 | bfd *abfd; | |
4107 | struct bfd_link_info *info; | |
4108 | { | |
4109 | boolean dynamic; | |
4110 | bfd *dynobj; | |
4111 | struct elf_final_link_info finfo; | |
4112 | register asection *o; | |
4113 | register struct bfd_link_order *p; | |
4114 | register bfd *sub; | |
4115 | size_t max_contents_size; | |
4116 | size_t max_external_reloc_size; | |
4117 | size_t max_internal_reloc_count; | |
4118 | size_t max_sym_count; | |
4119 | file_ptr off; | |
4120 | Elf_Internal_Sym elfsym; | |
4121 | unsigned int i; | |
4122 | Elf_Internal_Shdr *symtab_hdr; | |
4123 | Elf_Internal_Shdr *symstrtab_hdr; | |
4124 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
4125 | struct elf_outext_info eoinfo; | |
4126 | ||
4127 | if (info->shared) | |
4128 | abfd->flags |= DYNAMIC; | |
4129 | ||
4130 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
4131 | dynobj = elf_hash_table (info)->dynobj; | |
4132 | ||
4133 | finfo.info = info; | |
4134 | finfo.output_bfd = abfd; | |
4135 | finfo.symstrtab = elf_stringtab_init (); | |
4136 | if (finfo.symstrtab == NULL) | |
4137 | return false; | |
4138 | ||
4139 | if (! dynamic) | |
4140 | { | |
4141 | finfo.dynsym_sec = NULL; | |
4142 | finfo.hash_sec = NULL; | |
4143 | finfo.symver_sec = NULL; | |
4144 | } | |
4145 | else | |
4146 | { | |
4147 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
4148 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
4149 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); | |
4150 | finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
4151 | /* Note that it is OK if symver_sec is NULL. */ | |
4152 | } | |
4153 | ||
4154 | finfo.contents = NULL; | |
4155 | finfo.external_relocs = NULL; | |
4156 | finfo.internal_relocs = NULL; | |
4157 | finfo.external_syms = NULL; | |
4158 | finfo.internal_syms = NULL; | |
4159 | finfo.indices = NULL; | |
4160 | finfo.sections = NULL; | |
4161 | finfo.symbuf = NULL; | |
4162 | finfo.symbuf_count = 0; | |
4163 | ||
4164 | /* Count up the number of relocations we will output for each output | |
4165 | section, so that we know the sizes of the reloc sections. We | |
4166 | also figure out some maximum sizes. */ | |
4167 | max_contents_size = 0; | |
4168 | max_external_reloc_size = 0; | |
4169 | max_internal_reloc_count = 0; | |
4170 | max_sym_count = 0; | |
4171 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
4172 | { | |
4173 | o->reloc_count = 0; | |
4174 | ||
4175 | for (p = o->link_order_head; p != NULL; p = p->next) | |
4176 | { | |
4177 | if (p->type == bfd_section_reloc_link_order | |
4178 | || p->type == bfd_symbol_reloc_link_order) | |
4179 | ++o->reloc_count; | |
4180 | else if (p->type == bfd_indirect_link_order) | |
4181 | { | |
4182 | asection *sec; | |
4183 | ||
4184 | sec = p->u.indirect.section; | |
4185 | ||
4186 | /* Mark all sections which are to be included in the | |
4187 | link. This will normally be every section. We need | |
4188 | to do this so that we can identify any sections which | |
4189 | the linker has decided to not include. */ | |
4190 | sec->linker_mark = true; | |
4191 | ||
a712da20 | 4192 | if (info->relocateable || info->emitrelocations) |
252b5132 RH |
4193 | o->reloc_count += sec->reloc_count; |
4194 | ||
4195 | if (sec->_raw_size > max_contents_size) | |
4196 | max_contents_size = sec->_raw_size; | |
4197 | if (sec->_cooked_size > max_contents_size) | |
4198 | max_contents_size = sec->_cooked_size; | |
4199 | ||
4200 | /* We are interested in just local symbols, not all | |
4201 | symbols. */ | |
4202 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour | |
4203 | && (sec->owner->flags & DYNAMIC) == 0) | |
4204 | { | |
4205 | size_t sym_count; | |
4206 | ||
4207 | if (elf_bad_symtab (sec->owner)) | |
4208 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
4209 | / sizeof (Elf_External_Sym)); | |
4210 | else | |
4211 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
4212 | ||
4213 | if (sym_count > max_sym_count) | |
4214 | max_sym_count = sym_count; | |
4215 | ||
4216 | if ((sec->flags & SEC_RELOC) != 0) | |
4217 | { | |
4218 | size_t ext_size; | |
4219 | ||
4220 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; | |
4221 | if (ext_size > max_external_reloc_size) | |
4222 | max_external_reloc_size = ext_size; | |
4223 | if (sec->reloc_count > max_internal_reloc_count) | |
4224 | max_internal_reloc_count = sec->reloc_count; | |
4225 | } | |
4226 | } | |
4227 | } | |
4228 | } | |
4229 | ||
4230 | if (o->reloc_count > 0) | |
4231 | o->flags |= SEC_RELOC; | |
4232 | else | |
4233 | { | |
4234 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
4235 | set it (this is probably a bug) and if it is set | |
4236 | assign_section_numbers will create a reloc section. */ | |
4237 | o->flags &=~ SEC_RELOC; | |
4238 | } | |
4239 | ||
4240 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
4241 | zero. This is done in elf_fake_sections as well, but forcing | |
4242 | the VMA to 0 here will ensure that relocs against these | |
4243 | sections are handled correctly. */ | |
4244 | if ((o->flags & SEC_ALLOC) == 0 | |
4245 | && ! o->user_set_vma) | |
4246 | o->vma = 0; | |
4247 | } | |
4248 | ||
4249 | /* Figure out the file positions for everything but the symbol table | |
4250 | and the relocs. We set symcount to force assign_section_numbers | |
4251 | to create a symbol table. */ | |
4252 | bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; | |
4253 | BFD_ASSERT (! abfd->output_has_begun); | |
4254 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
4255 | goto error_return; | |
4256 | ||
b037af20 MM |
4257 | /* Figure out how many relocations we will have in each section. |
4258 | Just using RELOC_COUNT isn't good enough since that doesn't | |
4259 | maintain a separate value for REL vs. RELA relocations. */ | |
a712da20 | 4260 | if (info->relocateable || info->emitrelocations) |
b037af20 MM |
4261 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) |
4262 | for (o = sub->sections; o != NULL; o = o->next) | |
4263 | { | |
814fe68a | 4264 | asection *output_section; |
b037af20 | 4265 | |
814fe68a ILT |
4266 | if (! o->linker_mark) |
4267 | { | |
4268 | /* This section was omitted from the link. */ | |
4269 | continue; | |
4270 | } | |
4271 | ||
4272 | output_section = o->output_section; | |
4273 | ||
4274 | if (output_section != NULL | |
4275 | && (o->flags & SEC_RELOC) != 0) | |
b037af20 MM |
4276 | { |
4277 | struct bfd_elf_section_data *esdi | |
4278 | = elf_section_data (o); | |
4279 | struct bfd_elf_section_data *esdo | |
4280 | = elf_section_data (output_section); | |
ce006217 MM |
4281 | unsigned int *rel_count; |
4282 | unsigned int *rel_count2; | |
b037af20 | 4283 | |
ce006217 MM |
4284 | /* We must be careful to add the relocation froms the |
4285 | input section to the right output count. */ | |
4286 | if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize) | |
4287 | { | |
4288 | rel_count = &esdo->rel_count; | |
4289 | rel_count2 = &esdo->rel_count2; | |
4290 | } | |
4291 | else | |
4292 | { | |
4293 | rel_count = &esdo->rel_count2; | |
4294 | rel_count2 = &esdo->rel_count; | |
4295 | } | |
4296 | ||
4297 | *rel_count += (esdi->rel_hdr.sh_size | |
4298 | / esdi->rel_hdr.sh_entsize); | |
b037af20 | 4299 | if (esdi->rel_hdr2) |
ce006217 MM |
4300 | *rel_count2 += (esdi->rel_hdr2->sh_size |
4301 | / esdi->rel_hdr2->sh_entsize); | |
b037af20 MM |
4302 | } |
4303 | } | |
4304 | ||
252b5132 RH |
4305 | /* That created the reloc sections. Set their sizes, and assign |
4306 | them file positions, and allocate some buffers. */ | |
4307 | for (o = abfd->sections; o != NULL; o = o->next) | |
4308 | { | |
4309 | if ((o->flags & SEC_RELOC) != 0) | |
4310 | { | |
23bc299b MM |
4311 | if (!elf_link_size_reloc_section (abfd, |
4312 | &elf_section_data (o)->rel_hdr, | |
4313 | o)) | |
252b5132 RH |
4314 | goto error_return; |
4315 | ||
23bc299b MM |
4316 | if (elf_section_data (o)->rel_hdr2 |
4317 | && !elf_link_size_reloc_section (abfd, | |
4318 | elf_section_data (o)->rel_hdr2, | |
4319 | o)) | |
252b5132 | 4320 | goto error_return; |
252b5132 | 4321 | } |
b037af20 MM |
4322 | |
4323 | /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them | |
4324 | to count upwards while actually outputting the relocations. */ | |
4325 | elf_section_data (o)->rel_count = 0; | |
4326 | elf_section_data (o)->rel_count2 = 0; | |
252b5132 RH |
4327 | } |
4328 | ||
4329 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
4330 | ||
4331 | /* We have now assigned file positions for all the sections except | |
4332 | .symtab and .strtab. We start the .symtab section at the current | |
4333 | file position, and write directly to it. We build the .strtab | |
4334 | section in memory. */ | |
4335 | bfd_get_symcount (abfd) = 0; | |
4336 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
4337 | /* sh_name is set in prep_headers. */ | |
4338 | symtab_hdr->sh_type = SHT_SYMTAB; | |
4339 | symtab_hdr->sh_flags = 0; | |
4340 | symtab_hdr->sh_addr = 0; | |
4341 | symtab_hdr->sh_size = 0; | |
4342 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
4343 | /* sh_link is set in assign_section_numbers. */ | |
4344 | /* sh_info is set below. */ | |
4345 | /* sh_offset is set just below. */ | |
4346 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
4347 | ||
4348 | off = elf_tdata (abfd)->next_file_pos; | |
4349 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | |
4350 | ||
4351 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
4352 | incorrect. We do not yet know the size of the .symtab section. | |
4353 | We correct next_file_pos below, after we do know the size. */ | |
4354 | ||
4355 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
4356 | continuously seeking to the right position in the file. */ | |
4357 | if (! info->keep_memory || max_sym_count < 20) | |
4358 | finfo.symbuf_size = 20; | |
4359 | else | |
4360 | finfo.symbuf_size = max_sym_count; | |
4361 | finfo.symbuf = ((Elf_External_Sym *) | |
4362 | bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); | |
4363 | if (finfo.symbuf == NULL) | |
4364 | goto error_return; | |
4365 | ||
4366 | /* Start writing out the symbol table. The first symbol is always a | |
4367 | dummy symbol. */ | |
a712da20 | 4368 | if (info->strip != strip_all || info->relocateable || info->emitrelocations) |
252b5132 RH |
4369 | { |
4370 | elfsym.st_value = 0; | |
4371 | elfsym.st_size = 0; | |
4372 | elfsym.st_info = 0; | |
4373 | elfsym.st_other = 0; | |
4374 | elfsym.st_shndx = SHN_UNDEF; | |
4375 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
4376 | &elfsym, bfd_und_section_ptr)) | |
4377 | goto error_return; | |
4378 | } | |
4379 | ||
4380 | #if 0 | |
4381 | /* Some standard ELF linkers do this, but we don't because it causes | |
4382 | bootstrap comparison failures. */ | |
4383 | /* Output a file symbol for the output file as the second symbol. | |
4384 | We output this even if we are discarding local symbols, although | |
4385 | I'm not sure if this is correct. */ | |
4386 | elfsym.st_value = 0; | |
4387 | elfsym.st_size = 0; | |
4388 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
4389 | elfsym.st_other = 0; | |
4390 | elfsym.st_shndx = SHN_ABS; | |
4391 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), | |
4392 | &elfsym, bfd_abs_section_ptr)) | |
4393 | goto error_return; | |
4394 | #endif | |
4395 | ||
4396 | /* Output a symbol for each section. We output these even if we are | |
4397 | discarding local symbols, since they are used for relocs. These | |
4398 | symbols have no names. We store the index of each one in the | |
4399 | index field of the section, so that we can find it again when | |
4400 | outputting relocs. */ | |
a712da20 | 4401 | if (info->strip != strip_all || info->relocateable || info->emitrelocations) |
252b5132 RH |
4402 | { |
4403 | elfsym.st_size = 0; | |
4404 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
4405 | elfsym.st_other = 0; | |
4406 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
4407 | { | |
4408 | o = section_from_elf_index (abfd, i); | |
4409 | if (o != NULL) | |
4410 | o->target_index = bfd_get_symcount (abfd); | |
4411 | elfsym.st_shndx = i; | |
7ad34365 | 4412 | if (info->relocateable || o == NULL) |
252b5132 RH |
4413 | elfsym.st_value = 0; |
4414 | else | |
4415 | elfsym.st_value = o->vma; | |
4416 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
4417 | &elfsym, o)) | |
4418 | goto error_return; | |
4419 | } | |
4420 | } | |
4421 | ||
4422 | /* Allocate some memory to hold information read in from the input | |
4423 | files. */ | |
4424 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); | |
4425 | finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); | |
4426 | finfo.internal_relocs = ((Elf_Internal_Rela *) | |
4427 | bfd_malloc (max_internal_reloc_count | |
c7ac6ff8 MM |
4428 | * sizeof (Elf_Internal_Rela) |
4429 | * bed->s->int_rels_per_ext_rel)); | |
252b5132 RH |
4430 | finfo.external_syms = ((Elf_External_Sym *) |
4431 | bfd_malloc (max_sym_count | |
4432 | * sizeof (Elf_External_Sym))); | |
4433 | finfo.internal_syms = ((Elf_Internal_Sym *) | |
4434 | bfd_malloc (max_sym_count | |
4435 | * sizeof (Elf_Internal_Sym))); | |
4436 | finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long)); | |
4437 | finfo.sections = ((asection **) | |
4438 | bfd_malloc (max_sym_count * sizeof (asection *))); | |
4439 | if ((finfo.contents == NULL && max_contents_size != 0) | |
4440 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
4441 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
4442 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
4443 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
4444 | || (finfo.indices == NULL && max_sym_count != 0) | |
4445 | || (finfo.sections == NULL && max_sym_count != 0)) | |
4446 | goto error_return; | |
4447 | ||
4448 | /* Since ELF permits relocations to be against local symbols, we | |
4449 | must have the local symbols available when we do the relocations. | |
4450 | Since we would rather only read the local symbols once, and we | |
4451 | would rather not keep them in memory, we handle all the | |
4452 | relocations for a single input file at the same time. | |
4453 | ||
4454 | Unfortunately, there is no way to know the total number of local | |
4455 | symbols until we have seen all of them, and the local symbol | |
4456 | indices precede the global symbol indices. This means that when | |
4457 | we are generating relocateable output, and we see a reloc against | |
4458 | a global symbol, we can not know the symbol index until we have | |
4459 | finished examining all the local symbols to see which ones we are | |
4460 | going to output. To deal with this, we keep the relocations in | |
4461 | memory, and don't output them until the end of the link. This is | |
4462 | an unfortunate waste of memory, but I don't see a good way around | |
4463 | it. Fortunately, it only happens when performing a relocateable | |
4464 | link, which is not the common case. FIXME: If keep_memory is set | |
4465 | we could write the relocs out and then read them again; I don't | |
4466 | know how bad the memory loss will be. */ | |
4467 | ||
4468 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
4469 | sub->output_has_begun = false; | |
4470 | for (o = abfd->sections; o != NULL; o = o->next) | |
4471 | { | |
4472 | for (p = o->link_order_head; p != NULL; p = p->next) | |
4473 | { | |
4474 | if (p->type == bfd_indirect_link_order | |
4475 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
4476 | == bfd_target_elf_flavour)) | |
4477 | { | |
4478 | sub = p->u.indirect.section->owner; | |
4479 | if (! sub->output_has_begun) | |
4480 | { | |
4481 | if (! elf_link_input_bfd (&finfo, sub)) | |
4482 | goto error_return; | |
4483 | sub->output_has_begun = true; | |
4484 | } | |
4485 | } | |
4486 | else if (p->type == bfd_section_reloc_link_order | |
4487 | || p->type == bfd_symbol_reloc_link_order) | |
4488 | { | |
4489 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
4490 | goto error_return; | |
4491 | } | |
4492 | else | |
4493 | { | |
4494 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
4495 | goto error_return; | |
4496 | } | |
4497 | } | |
4498 | } | |
4499 | ||
4500 | /* That wrote out all the local symbols. Finish up the symbol table | |
5cc7c785 L |
4501 | with the global symbols. Even if we want to strip everything we |
4502 | can, we still need to deal with those global symbols that got | |
4503 | converted to local in a version script. */ | |
252b5132 | 4504 | |
2bd171e0 | 4505 | if (info->shared) |
252b5132 RH |
4506 | { |
4507 | /* Output any global symbols that got converted to local in a | |
4508 | version script. We do this in a separate step since ELF | |
4509 | requires all local symbols to appear prior to any global | |
4510 | symbols. FIXME: We should only do this if some global | |
4511 | symbols were, in fact, converted to become local. FIXME: | |
4512 | Will this work correctly with the Irix 5 linker? */ | |
4513 | eoinfo.failed = false; | |
4514 | eoinfo.finfo = &finfo; | |
4515 | eoinfo.localsyms = true; | |
4516 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
4517 | (PTR) &eoinfo); | |
4518 | if (eoinfo.failed) | |
4519 | return false; | |
4520 | } | |
4521 | ||
30b30c21 | 4522 | /* The sh_info field records the index of the first non local symbol. */ |
252b5132 | 4523 | symtab_hdr->sh_info = bfd_get_symcount (abfd); |
30b30c21 | 4524 | |
252b5132 | 4525 | if (dynamic) |
30b30c21 RH |
4526 | { |
4527 | Elf_Internal_Sym sym; | |
4528 | Elf_External_Sym *dynsym = | |
4529 | (Elf_External_Sym *)finfo.dynsym_sec->contents; | |
71a40b32 | 4530 | long last_local = 0; |
30b30c21 RH |
4531 | |
4532 | /* Write out the section symbols for the output sections. */ | |
4533 | if (info->shared) | |
4534 | { | |
4535 | asection *s; | |
4536 | ||
4537 | sym.st_size = 0; | |
4538 | sym.st_name = 0; | |
4539 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
4540 | sym.st_other = 0; | |
4541 | ||
4542 | for (s = abfd->sections; s != NULL; s = s->next) | |
4543 | { | |
4544 | int indx; | |
4545 | indx = elf_section_data (s)->this_idx; | |
4546 | BFD_ASSERT (indx > 0); | |
4547 | sym.st_shndx = indx; | |
4548 | sym.st_value = s->vma; | |
4549 | ||
4550 | elf_swap_symbol_out (abfd, &sym, | |
4551 | dynsym + elf_section_data (s)->dynindx); | |
4552 | } | |
4553 | ||
4554 | last_local = bfd_count_sections (abfd); | |
4555 | } | |
4556 | ||
4557 | /* Write out the local dynsyms. */ | |
4558 | if (elf_hash_table (info)->dynlocal) | |
4559 | { | |
4560 | struct elf_link_local_dynamic_entry *e; | |
4561 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
4562 | { | |
318da145 | 4563 | asection *s; |
30b30c21 | 4564 | |
b037af20 MM |
4565 | sym.st_size = e->isym.st_size; |
4566 | sym.st_other = e->isym.st_other; | |
4567 | ||
1fa0ddb3 RH |
4568 | /* Copy the internal symbol as is. |
4569 | Note that we saved a word of storage and overwrote | |
30b30c21 | 4570 | the original st_name with the dynstr_index. */ |
1fa0ddb3 | 4571 | sym = e->isym; |
30b30c21 | 4572 | |
1fa0ddb3 | 4573 | if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE) |
587ff49e RH |
4574 | { |
4575 | s = bfd_section_from_elf_index (e->input_bfd, | |
4576 | e->isym.st_shndx); | |
4577 | ||
4578 | sym.st_shndx = | |
4579 | elf_section_data (s->output_section)->this_idx; | |
4580 | sym.st_value = (s->output_section->vma | |
4581 | + s->output_offset | |
4582 | + e->isym.st_value); | |
4583 | } | |
30b30c21 RH |
4584 | |
4585 | if (last_local < e->dynindx) | |
4586 | last_local = e->dynindx; | |
4587 | ||
4588 | elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx); | |
4589 | } | |
4590 | } | |
4591 | ||
71a40b32 ILT |
4592 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = |
4593 | last_local + 1; | |
30b30c21 | 4594 | } |
252b5132 RH |
4595 | |
4596 | /* We get the global symbols from the hash table. */ | |
4597 | eoinfo.failed = false; | |
4598 | eoinfo.localsyms = false; | |
4599 | eoinfo.finfo = &finfo; | |
4600 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
4601 | (PTR) &eoinfo); | |
4602 | if (eoinfo.failed) | |
4603 | return false; | |
4604 | ||
587ff49e RH |
4605 | /* If backend needs to output some symbols not present in the hash |
4606 | table, do it now. */ | |
4607 | if (bed->elf_backend_output_arch_syms) | |
4608 | { | |
4609 | if (! (*bed->elf_backend_output_arch_syms) | |
4610 | (abfd, info, (PTR) &finfo, | |
4611 | (boolean (*) PARAMS ((PTR, const char *, | |
4612 | Elf_Internal_Sym *, asection *))) | |
4613 | elf_link_output_sym)) | |
4614 | return false; | |
4615 | } | |
4616 | ||
252b5132 RH |
4617 | /* Flush all symbols to the file. */ |
4618 | if (! elf_link_flush_output_syms (&finfo)) | |
4619 | return false; | |
4620 | ||
4621 | /* Now we know the size of the symtab section. */ | |
4622 | off += symtab_hdr->sh_size; | |
4623 | ||
4624 | /* Finish up and write out the symbol string table (.strtab) | |
4625 | section. */ | |
4626 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
4627 | /* sh_name was set in prep_headers. */ | |
4628 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
4629 | symstrtab_hdr->sh_flags = 0; | |
4630 | symstrtab_hdr->sh_addr = 0; | |
4631 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
4632 | symstrtab_hdr->sh_entsize = 0; | |
4633 | symstrtab_hdr->sh_link = 0; | |
4634 | symstrtab_hdr->sh_info = 0; | |
4635 | /* sh_offset is set just below. */ | |
4636 | symstrtab_hdr->sh_addralign = 1; | |
4637 | ||
4638 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); | |
4639 | elf_tdata (abfd)->next_file_pos = off; | |
4640 | ||
4641 | if (bfd_get_symcount (abfd) > 0) | |
4642 | { | |
4643 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
4644 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
4645 | return false; | |
4646 | } | |
4647 | ||
4648 | /* Adjust the relocs to have the correct symbol indices. */ | |
4649 | for (o = abfd->sections; o != NULL; o = o->next) | |
4650 | { | |
252b5132 RH |
4651 | if ((o->flags & SEC_RELOC) == 0) |
4652 | continue; | |
4653 | ||
31367b81 MM |
4654 | elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr, |
4655 | elf_section_data (o)->rel_count, | |
4656 | elf_section_data (o)->rel_hashes); | |
4657 | if (elf_section_data (o)->rel_hdr2 != NULL) | |
4658 | elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2, | |
4659 | elf_section_data (o)->rel_count2, | |
4660 | (elf_section_data (o)->rel_hashes | |
4661 | + elf_section_data (o)->rel_count)); | |
252b5132 RH |
4662 | |
4663 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
4664 | trying to swap the relocs out itself. */ | |
4665 | o->reloc_count = 0; | |
4666 | } | |
4667 | ||
4668 | /* If we are linking against a dynamic object, or generating a | |
4669 | shared library, finish up the dynamic linking information. */ | |
4670 | if (dynamic) | |
4671 | { | |
4672 | Elf_External_Dyn *dyncon, *dynconend; | |
4673 | ||
4674 | /* Fix up .dynamic entries. */ | |
4675 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
4676 | BFD_ASSERT (o != NULL); | |
4677 | ||
4678 | dyncon = (Elf_External_Dyn *) o->contents; | |
4679 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
4680 | for (; dyncon < dynconend; dyncon++) | |
4681 | { | |
4682 | Elf_Internal_Dyn dyn; | |
4683 | const char *name; | |
4684 | unsigned int type; | |
4685 | ||
4686 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
4687 | ||
4688 | switch (dyn.d_tag) | |
4689 | { | |
4690 | default: | |
4691 | break; | |
252b5132 | 4692 | case DT_INIT: |
f0c2e336 | 4693 | name = info->init_function; |
252b5132 RH |
4694 | goto get_sym; |
4695 | case DT_FINI: | |
f0c2e336 | 4696 | name = info->fini_function; |
252b5132 RH |
4697 | get_sym: |
4698 | { | |
4699 | struct elf_link_hash_entry *h; | |
4700 | ||
4701 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
4702 | false, false, true); | |
4703 | if (h != NULL | |
4704 | && (h->root.type == bfd_link_hash_defined | |
4705 | || h->root.type == bfd_link_hash_defweak)) | |
4706 | { | |
4707 | dyn.d_un.d_val = h->root.u.def.value; | |
4708 | o = h->root.u.def.section; | |
4709 | if (o->output_section != NULL) | |
4710 | dyn.d_un.d_val += (o->output_section->vma | |
4711 | + o->output_offset); | |
4712 | else | |
4713 | { | |
4714 | /* The symbol is imported from another shared | |
4715 | library and does not apply to this one. */ | |
4716 | dyn.d_un.d_val = 0; | |
4717 | } | |
4718 | ||
4719 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4720 | } | |
4721 | } | |
4722 | break; | |
4723 | ||
4724 | case DT_HASH: | |
4725 | name = ".hash"; | |
4726 | goto get_vma; | |
4727 | case DT_STRTAB: | |
4728 | name = ".dynstr"; | |
4729 | goto get_vma; | |
4730 | case DT_SYMTAB: | |
4731 | name = ".dynsym"; | |
4732 | goto get_vma; | |
4733 | case DT_VERDEF: | |
4734 | name = ".gnu.version_d"; | |
4735 | goto get_vma; | |
4736 | case DT_VERNEED: | |
4737 | name = ".gnu.version_r"; | |
4738 | goto get_vma; | |
4739 | case DT_VERSYM: | |
4740 | name = ".gnu.version"; | |
4741 | get_vma: | |
4742 | o = bfd_get_section_by_name (abfd, name); | |
4743 | BFD_ASSERT (o != NULL); | |
4744 | dyn.d_un.d_ptr = o->vma; | |
4745 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4746 | break; | |
4747 | ||
4748 | case DT_REL: | |
4749 | case DT_RELA: | |
4750 | case DT_RELSZ: | |
4751 | case DT_RELASZ: | |
4752 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
4753 | type = SHT_REL; | |
4754 | else | |
4755 | type = SHT_RELA; | |
4756 | dyn.d_un.d_val = 0; | |
4757 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
4758 | { | |
4759 | Elf_Internal_Shdr *hdr; | |
4760 | ||
4761 | hdr = elf_elfsections (abfd)[i]; | |
4762 | if (hdr->sh_type == type | |
4763 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
4764 | { | |
4765 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
4766 | dyn.d_un.d_val += hdr->sh_size; | |
4767 | else | |
4768 | { | |
4769 | if (dyn.d_un.d_val == 0 | |
4770 | || hdr->sh_addr < dyn.d_un.d_val) | |
4771 | dyn.d_un.d_val = hdr->sh_addr; | |
4772 | } | |
4773 | } | |
4774 | } | |
4775 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4776 | break; | |
4777 | } | |
4778 | } | |
4779 | } | |
4780 | ||
4781 | /* If we have created any dynamic sections, then output them. */ | |
4782 | if (dynobj != NULL) | |
4783 | { | |
4784 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
4785 | goto error_return; | |
4786 | ||
4787 | for (o = dynobj->sections; o != NULL; o = o->next) | |
4788 | { | |
4789 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
4790 | || o->_raw_size == 0) | |
4791 | continue; | |
4792 | if ((o->flags & SEC_LINKER_CREATED) == 0) | |
4793 | { | |
4794 | /* At this point, we are only interested in sections | |
4795 | created by elf_link_create_dynamic_sections. */ | |
4796 | continue; | |
4797 | } | |
4798 | if ((elf_section_data (o->output_section)->this_hdr.sh_type | |
4799 | != SHT_STRTAB) | |
4800 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
4801 | { | |
4802 | if (! bfd_set_section_contents (abfd, o->output_section, | |
4803 | o->contents, o->output_offset, | |
4804 | o->_raw_size)) | |
4805 | goto error_return; | |
4806 | } | |
4807 | else | |
4808 | { | |
4809 | file_ptr off; | |
4810 | ||
4811 | /* The contents of the .dynstr section are actually in a | |
4812 | stringtab. */ | |
4813 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
4814 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
4815 | || ! _bfd_stringtab_emit (abfd, | |
4816 | elf_hash_table (info)->dynstr)) | |
4817 | goto error_return; | |
4818 | } | |
4819 | } | |
4820 | } | |
4821 | ||
4822 | /* If we have optimized stabs strings, output them. */ | |
4823 | if (elf_hash_table (info)->stab_info != NULL) | |
4824 | { | |
4825 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) | |
4826 | goto error_return; | |
4827 | } | |
4828 | ||
4829 | if (finfo.symstrtab != NULL) | |
4830 | _bfd_stringtab_free (finfo.symstrtab); | |
4831 | if (finfo.contents != NULL) | |
4832 | free (finfo.contents); | |
4833 | if (finfo.external_relocs != NULL) | |
4834 | free (finfo.external_relocs); | |
4835 | if (finfo.internal_relocs != NULL) | |
4836 | free (finfo.internal_relocs); | |
4837 | if (finfo.external_syms != NULL) | |
4838 | free (finfo.external_syms); | |
4839 | if (finfo.internal_syms != NULL) | |
4840 | free (finfo.internal_syms); | |
4841 | if (finfo.indices != NULL) | |
4842 | free (finfo.indices); | |
4843 | if (finfo.sections != NULL) | |
4844 | free (finfo.sections); | |
4845 | if (finfo.symbuf != NULL) | |
4846 | free (finfo.symbuf); | |
4847 | for (o = abfd->sections; o != NULL; o = o->next) | |
4848 | { | |
4849 | if ((o->flags & SEC_RELOC) != 0 | |
4850 | && elf_section_data (o)->rel_hashes != NULL) | |
4851 | free (elf_section_data (o)->rel_hashes); | |
4852 | } | |
4853 | ||
4854 | elf_tdata (abfd)->linker = true; | |
4855 | ||
4856 | return true; | |
4857 | ||
4858 | error_return: | |
4859 | if (finfo.symstrtab != NULL) | |
4860 | _bfd_stringtab_free (finfo.symstrtab); | |
4861 | if (finfo.contents != NULL) | |
4862 | free (finfo.contents); | |
4863 | if (finfo.external_relocs != NULL) | |
4864 | free (finfo.external_relocs); | |
4865 | if (finfo.internal_relocs != NULL) | |
4866 | free (finfo.internal_relocs); | |
4867 | if (finfo.external_syms != NULL) | |
4868 | free (finfo.external_syms); | |
4869 | if (finfo.internal_syms != NULL) | |
4870 | free (finfo.internal_syms); | |
4871 | if (finfo.indices != NULL) | |
4872 | free (finfo.indices); | |
4873 | if (finfo.sections != NULL) | |
4874 | free (finfo.sections); | |
4875 | if (finfo.symbuf != NULL) | |
4876 | free (finfo.symbuf); | |
4877 | for (o = abfd->sections; o != NULL; o = o->next) | |
4878 | { | |
4879 | if ((o->flags & SEC_RELOC) != 0 | |
4880 | && elf_section_data (o)->rel_hashes != NULL) | |
4881 | free (elf_section_data (o)->rel_hashes); | |
4882 | } | |
4883 | ||
4884 | return false; | |
4885 | } | |
4886 | ||
4887 | /* Add a symbol to the output symbol table. */ | |
4888 | ||
4889 | static boolean | |
4890 | elf_link_output_sym (finfo, name, elfsym, input_sec) | |
4891 | struct elf_final_link_info *finfo; | |
4892 | const char *name; | |
4893 | Elf_Internal_Sym *elfsym; | |
4894 | asection *input_sec; | |
4895 | { | |
4896 | boolean (*output_symbol_hook) PARAMS ((bfd *, | |
4897 | struct bfd_link_info *info, | |
4898 | const char *, | |
4899 | Elf_Internal_Sym *, | |
4900 | asection *)); | |
4901 | ||
4902 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
4903 | elf_backend_link_output_symbol_hook; | |
4904 | if (output_symbol_hook != NULL) | |
4905 | { | |
4906 | if (! ((*output_symbol_hook) | |
4907 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
4908 | return false; | |
4909 | } | |
4910 | ||
4911 | if (name == (const char *) NULL || *name == '\0') | |
4912 | elfsym->st_name = 0; | |
4913 | else if (input_sec->flags & SEC_EXCLUDE) | |
4914 | elfsym->st_name = 0; | |
4915 | else | |
4916 | { | |
4917 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
4918 | name, true, | |
4919 | false); | |
4920 | if (elfsym->st_name == (unsigned long) -1) | |
4921 | return false; | |
4922 | } | |
4923 | ||
4924 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
4925 | { | |
4926 | if (! elf_link_flush_output_syms (finfo)) | |
4927 | return false; | |
4928 | } | |
4929 | ||
4930 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
4931 | (PTR) (finfo->symbuf + finfo->symbuf_count)); | |
4932 | ++finfo->symbuf_count; | |
4933 | ||
4934 | ++ bfd_get_symcount (finfo->output_bfd); | |
4935 | ||
4936 | return true; | |
4937 | } | |
4938 | ||
4939 | /* Flush the output symbols to the file. */ | |
4940 | ||
4941 | static boolean | |
4942 | elf_link_flush_output_syms (finfo) | |
4943 | struct elf_final_link_info *finfo; | |
4944 | { | |
4945 | if (finfo->symbuf_count > 0) | |
4946 | { | |
4947 | Elf_Internal_Shdr *symtab; | |
4948 | ||
4949 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
4950 | ||
4951 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, | |
4952 | SEEK_SET) != 0 | |
4953 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
4954 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
4955 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
4956 | return false; | |
4957 | ||
4958 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); | |
4959 | ||
4960 | finfo->symbuf_count = 0; | |
4961 | } | |
4962 | ||
4963 | return true; | |
4964 | } | |
4965 | ||
4966 | /* Add an external symbol to the symbol table. This is called from | |
4967 | the hash table traversal routine. When generating a shared object, | |
4968 | we go through the symbol table twice. The first time we output | |
4969 | anything that might have been forced to local scope in a version | |
4970 | script. The second time we output the symbols that are still | |
4971 | global symbols. */ | |
4972 | ||
4973 | static boolean | |
4974 | elf_link_output_extsym (h, data) | |
4975 | struct elf_link_hash_entry *h; | |
4976 | PTR data; | |
4977 | { | |
4978 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; | |
4979 | struct elf_final_link_info *finfo = eoinfo->finfo; | |
4980 | boolean strip; | |
4981 | Elf_Internal_Sym sym; | |
4982 | asection *input_sec; | |
4983 | ||
4984 | /* Decide whether to output this symbol in this pass. */ | |
4985 | if (eoinfo->localsyms) | |
4986 | { | |
4987 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) | |
4988 | return true; | |
4989 | } | |
4990 | else | |
4991 | { | |
4992 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
4993 | return true; | |
4994 | } | |
4995 | ||
4996 | /* If we are not creating a shared library, and this symbol is | |
4997 | referenced by a shared library but is not defined anywhere, then | |
4998 | warn that it is undefined. If we do not do this, the runtime | |
4999 | linker will complain that the symbol is undefined when the | |
5000 | program is run. We don't have to worry about symbols that are | |
5001 | referenced by regular files, because we will already have issued | |
5002 | warnings for them. */ | |
5003 | if (! finfo->info->relocateable | |
5004 | && ! (finfo->info->shared | |
252b5132 RH |
5005 | && !finfo->info->no_undefined) |
5006 | && h->root.type == bfd_link_hash_undefined | |
5007 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
5008 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
5009 | { | |
5010 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
5011 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
5cc7c785 | 5012 | (asection *) NULL, 0, true))) |
252b5132 RH |
5013 | { |
5014 | eoinfo->failed = true; | |
5015 | return false; | |
5016 | } | |
5017 | } | |
5018 | ||
5019 | /* We don't want to output symbols that have never been mentioned by | |
5020 | a regular file, or that we have been told to strip. However, if | |
5021 | h->indx is set to -2, the symbol is used by a reloc and we must | |
5022 | output it. */ | |
5023 | if (h->indx == -2) | |
5024 | strip = false; | |
5025 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
5026 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
5027 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
5028 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
5029 | strip = true; | |
5030 | else if (finfo->info->strip == strip_all | |
5031 | || (finfo->info->strip == strip_some | |
5032 | && bfd_hash_lookup (finfo->info->keep_hash, | |
5033 | h->root.root.string, | |
5034 | false, false) == NULL)) | |
5035 | strip = true; | |
5036 | else | |
5037 | strip = false; | |
5038 | ||
5039 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
2bd171e0 ILT |
5040 | nothing else to do unless it is a forced local symbol. */ |
5041 | if (strip | |
5042 | && h->dynindx == -1 | |
5043 | && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) | |
252b5132 RH |
5044 | return true; |
5045 | ||
5046 | sym.st_value = 0; | |
5047 | sym.st_size = h->size; | |
5048 | sym.st_other = h->other; | |
5049 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
5050 | sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); | |
5051 | else if (h->root.type == bfd_link_hash_undefweak | |
5052 | || h->root.type == bfd_link_hash_defweak) | |
5053 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
5054 | else | |
5055 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
5056 | ||
5057 | switch (h->root.type) | |
5058 | { | |
5059 | default: | |
5060 | case bfd_link_hash_new: | |
5061 | abort (); | |
5062 | return false; | |
5063 | ||
5064 | case bfd_link_hash_undefined: | |
5065 | input_sec = bfd_und_section_ptr; | |
5066 | sym.st_shndx = SHN_UNDEF; | |
5067 | break; | |
5068 | ||
5069 | case bfd_link_hash_undefweak: | |
5070 | input_sec = bfd_und_section_ptr; | |
5071 | sym.st_shndx = SHN_UNDEF; | |
5072 | break; | |
5073 | ||
5074 | case bfd_link_hash_defined: | |
5075 | case bfd_link_hash_defweak: | |
5076 | { | |
5077 | input_sec = h->root.u.def.section; | |
5078 | if (input_sec->output_section != NULL) | |
5079 | { | |
5080 | sym.st_shndx = | |
5081 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
5082 | input_sec->output_section); | |
5083 | if (sym.st_shndx == (unsigned short) -1) | |
5084 | { | |
5085 | (*_bfd_error_handler) | |
5086 | (_("%s: could not find output section %s for input section %s"), | |
5087 | bfd_get_filename (finfo->output_bfd), | |
5088 | input_sec->output_section->name, | |
5089 | input_sec->name); | |
5090 | eoinfo->failed = true; | |
5091 | return false; | |
5092 | } | |
5093 | ||
5094 | /* ELF symbols in relocateable files are section relative, | |
5095 | but in nonrelocateable files they are virtual | |
5096 | addresses. */ | |
5097 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
5098 | if (! finfo->info->relocateable) | |
5099 | sym.st_value += input_sec->output_section->vma; | |
5100 | } | |
5101 | else | |
5102 | { | |
5103 | BFD_ASSERT (input_sec->owner == NULL | |
5104 | || (input_sec->owner->flags & DYNAMIC) != 0); | |
5105 | sym.st_shndx = SHN_UNDEF; | |
5106 | input_sec = bfd_und_section_ptr; | |
5107 | } | |
5108 | } | |
5109 | break; | |
5110 | ||
5111 | case bfd_link_hash_common: | |
5112 | input_sec = h->root.u.c.p->section; | |
5113 | sym.st_shndx = SHN_COMMON; | |
5114 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
5115 | break; | |
5116 | ||
5117 | case bfd_link_hash_indirect: | |
5118 | /* These symbols are created by symbol versioning. They point | |
5119 | to the decorated version of the name. For example, if the | |
5120 | symbol foo@@GNU_1.2 is the default, which should be used when | |
5121 | foo is used with no version, then we add an indirect symbol | |
5122 | foo which points to foo@@GNU_1.2. We ignore these symbols, | |
94b6c40a L |
5123 | since the indirected symbol is already in the hash table. */ |
5124 | return true; | |
252b5132 | 5125 | |
252b5132 RH |
5126 | case bfd_link_hash_warning: |
5127 | /* We can't represent these symbols in ELF, although a warning | |
5128 | symbol may have come from a .gnu.warning.SYMBOL section. We | |
5129 | just put the target symbol in the hash table. If the target | |
5130 | symbol does not really exist, don't do anything. */ | |
5131 | if (h->root.u.i.link->type == bfd_link_hash_new) | |
5132 | return true; | |
5133 | return (elf_link_output_extsym | |
5134 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); | |
5135 | } | |
5136 | ||
5137 | /* Give the processor backend a chance to tweak the symbol value, | |
5138 | and also to finish up anything that needs to be done for this | |
5139 | symbol. */ | |
5140 | if ((h->dynindx != -1 | |
5141 | || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
5142 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
5143 | { | |
5144 | struct elf_backend_data *bed; | |
5145 | ||
5146 | bed = get_elf_backend_data (finfo->output_bfd); | |
5147 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
5148 | (finfo->output_bfd, finfo->info, h, &sym))) | |
5149 | { | |
5150 | eoinfo->failed = true; | |
5151 | return false; | |
5152 | } | |
5153 | } | |
5154 | ||
5155 | /* If we are marking the symbol as undefined, and there are no | |
5156 | non-weak references to this symbol from a regular object, then | |
91d3970e ILT |
5157 | mark the symbol as weak undefined; if there are non-weak |
5158 | references, mark the symbol as strong. We can't do this earlier, | |
252b5132 RH |
5159 | because it might not be marked as undefined until the |
5160 | finish_dynamic_symbol routine gets through with it. */ | |
5161 | if (sym.st_shndx == SHN_UNDEF | |
252b5132 | 5162 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 |
91d3970e ILT |
5163 | && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL |
5164 | || ELF_ST_BIND(sym.st_info) == STB_WEAK)) | |
5165 | { | |
5166 | int bindtype; | |
5167 | ||
5168 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0) | |
5169 | bindtype = STB_GLOBAL; | |
5170 | else | |
5171 | bindtype = STB_WEAK; | |
5172 | sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info)); | |
5173 | } | |
252b5132 | 5174 | |
32c092c3 L |
5175 | /* If a symbol is not defined locally, we clear the visibility |
5176 | field. */ | |
5177 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
5178 | sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other); | |
5179 | ||
252b5132 RH |
5180 | /* If this symbol should be put in the .dynsym section, then put it |
5181 | there now. We have already know the symbol index. We also fill | |
5182 | in the entry in the .hash section. */ | |
5183 | if (h->dynindx != -1 | |
5184 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
5185 | { | |
5186 | size_t bucketcount; | |
5187 | size_t bucket; | |
c7ac6ff8 | 5188 | size_t hash_entry_size; |
252b5132 RH |
5189 | bfd_byte *bucketpos; |
5190 | bfd_vma chain; | |
5191 | ||
5192 | sym.st_name = h->dynstr_index; | |
5193 | ||
5194 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
5195 | (PTR) (((Elf_External_Sym *) | |
5196 | finfo->dynsym_sec->contents) | |
5197 | + h->dynindx)); | |
5198 | ||
5199 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
5200 | bucket = h->elf_hash_value % bucketcount; | |
c7ac6ff8 MM |
5201 | hash_entry_size |
5202 | = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize; | |
252b5132 | 5203 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents |
c7ac6ff8 MM |
5204 | + (bucket + 2) * hash_entry_size); |
5205 | chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos); | |
5206 | bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos); | |
5207 | bfd_put (8 * hash_entry_size, finfo->output_bfd, chain, | |
5208 | ((bfd_byte *) finfo->hash_sec->contents | |
5209 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); | |
252b5132 RH |
5210 | |
5211 | if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL) | |
5212 | { | |
5213 | Elf_Internal_Versym iversym; | |
5214 | ||
5215 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
5216 | { | |
5217 | if (h->verinfo.verdef == NULL) | |
5218 | iversym.vs_vers = 0; | |
5219 | else | |
5220 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | |
5221 | } | |
5222 | else | |
5223 | { | |
5224 | if (h->verinfo.vertree == NULL) | |
5225 | iversym.vs_vers = 1; | |
5226 | else | |
5227 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; | |
5228 | } | |
5229 | ||
5230 | if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0) | |
5231 | iversym.vs_vers |= VERSYM_HIDDEN; | |
5232 | ||
5233 | _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, | |
5234 | (((Elf_External_Versym *) | |
5235 | finfo->symver_sec->contents) | |
5236 | + h->dynindx)); | |
5237 | } | |
5238 | } | |
5239 | ||
5240 | /* If we're stripping it, then it was just a dynamic symbol, and | |
5241 | there's nothing else to do. */ | |
5242 | if (strip) | |
5243 | return true; | |
5244 | ||
5245 | h->indx = bfd_get_symcount (finfo->output_bfd); | |
5246 | ||
5247 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) | |
5248 | { | |
5249 | eoinfo->failed = true; | |
5250 | return false; | |
5251 | } | |
5252 | ||
5253 | return true; | |
5254 | } | |
5255 | ||
23bc299b MM |
5256 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which |
5257 | originated from the section given by INPUT_REL_HDR) to the | |
5258 | OUTPUT_BFD. */ | |
5259 | ||
5260 | static void | |
5261 | elf_link_output_relocs (output_bfd, input_section, input_rel_hdr, | |
5262 | internal_relocs) | |
5263 | bfd *output_bfd; | |
5264 | asection *input_section; | |
5265 | Elf_Internal_Shdr *input_rel_hdr; | |
5266 | Elf_Internal_Rela *internal_relocs; | |
5267 | { | |
5268 | Elf_Internal_Rela *irela; | |
5269 | Elf_Internal_Rela *irelaend; | |
5270 | Elf_Internal_Shdr *output_rel_hdr; | |
5271 | asection *output_section; | |
7442e600 | 5272 | unsigned int *rel_countp = NULL; |
32f0787a | 5273 | struct elf_backend_data *bed; |
23bc299b MM |
5274 | |
5275 | output_section = input_section->output_section; | |
5276 | output_rel_hdr = NULL; | |
5277 | ||
5278 | if (elf_section_data (output_section)->rel_hdr.sh_entsize | |
5279 | == input_rel_hdr->sh_entsize) | |
5280 | { | |
5281 | output_rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
5282 | rel_countp = &elf_section_data (output_section)->rel_count; | |
5283 | } | |
5284 | else if (elf_section_data (output_section)->rel_hdr2 | |
5285 | && (elf_section_data (output_section)->rel_hdr2->sh_entsize | |
5286 | == input_rel_hdr->sh_entsize)) | |
5287 | { | |
5288 | output_rel_hdr = elf_section_data (output_section)->rel_hdr2; | |
5289 | rel_countp = &elf_section_data (output_section)->rel_count2; | |
5290 | } | |
5291 | ||
5292 | BFD_ASSERT (output_rel_hdr != NULL); | |
32f0787a UC |
5293 | |
5294 | bed = get_elf_backend_data (output_bfd); | |
23bc299b MM |
5295 | irela = internal_relocs; |
5296 | irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
5297 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
5298 | { | |
5299 | Elf_External_Rel *erel; | |
5300 | ||
5301 | erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp); | |
5302 | for (; irela < irelaend; irela++, erel++) | |
5303 | { | |
5304 | Elf_Internal_Rel irel; | |
5305 | ||
5306 | irel.r_offset = irela->r_offset; | |
5307 | irel.r_info = irela->r_info; | |
5308 | BFD_ASSERT (irela->r_addend == 0); | |
32f0787a UC |
5309 | if (bed->s->swap_reloc_out) |
5310 | (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel); | |
5311 | else | |
5312 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
23bc299b MM |
5313 | } |
5314 | } | |
5315 | else | |
5316 | { | |
5317 | Elf_External_Rela *erela; | |
5318 | ||
5319 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
5320 | == sizeof (Elf_External_Rela)); | |
5321 | erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp); | |
5322 | for (; irela < irelaend; irela++, erela++) | |
32f0787a UC |
5323 | if (bed->s->swap_reloca_out) |
5324 | (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela); | |
5325 | else | |
5326 | elf_swap_reloca_out (output_bfd, irela, erela); | |
23bc299b MM |
5327 | } |
5328 | ||
5329 | /* Bump the counter, so that we know where to add the next set of | |
5330 | relocations. */ | |
5331 | *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
5332 | } | |
5333 | ||
252b5132 RH |
5334 | /* Link an input file into the linker output file. This function |
5335 | handles all the sections and relocations of the input file at once. | |
5336 | This is so that we only have to read the local symbols once, and | |
5337 | don't have to keep them in memory. */ | |
5338 | ||
5339 | static boolean | |
5340 | elf_link_input_bfd (finfo, input_bfd) | |
5341 | struct elf_final_link_info *finfo; | |
5342 | bfd *input_bfd; | |
5343 | { | |
5344 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
5345 | bfd *, asection *, bfd_byte *, | |
5346 | Elf_Internal_Rela *, | |
5347 | Elf_Internal_Sym *, asection **)); | |
5348 | bfd *output_bfd; | |
5349 | Elf_Internal_Shdr *symtab_hdr; | |
5350 | size_t locsymcount; | |
5351 | size_t extsymoff; | |
5352 | Elf_External_Sym *external_syms; | |
5353 | Elf_External_Sym *esym; | |
5354 | Elf_External_Sym *esymend; | |
5355 | Elf_Internal_Sym *isym; | |
5356 | long *pindex; | |
5357 | asection **ppsection; | |
5358 | asection *o; | |
c7ac6ff8 | 5359 | struct elf_backend_data *bed; |
252b5132 RH |
5360 | |
5361 | output_bfd = finfo->output_bfd; | |
c7ac6ff8 MM |
5362 | bed = get_elf_backend_data (output_bfd); |
5363 | relocate_section = bed->elf_backend_relocate_section; | |
252b5132 RH |
5364 | |
5365 | /* If this is a dynamic object, we don't want to do anything here: | |
5366 | we don't want the local symbols, and we don't want the section | |
5367 | contents. */ | |
5368 | if ((input_bfd->flags & DYNAMIC) != 0) | |
5369 | return true; | |
5370 | ||
5371 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5372 | if (elf_bad_symtab (input_bfd)) | |
5373 | { | |
5374 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
5375 | extsymoff = 0; | |
5376 | } | |
5377 | else | |
5378 | { | |
5379 | locsymcount = symtab_hdr->sh_info; | |
5380 | extsymoff = symtab_hdr->sh_info; | |
5381 | } | |
5382 | ||
5383 | /* Read the local symbols. */ | |
5384 | if (symtab_hdr->contents != NULL) | |
5385 | external_syms = (Elf_External_Sym *) symtab_hdr->contents; | |
5386 | else if (locsymcount == 0) | |
5387 | external_syms = NULL; | |
5388 | else | |
5389 | { | |
5390 | external_syms = finfo->external_syms; | |
5391 | if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
5392 | || (bfd_read (external_syms, sizeof (Elf_External_Sym), | |
5393 | locsymcount, input_bfd) | |
5394 | != locsymcount * sizeof (Elf_External_Sym))) | |
5395 | return false; | |
5396 | } | |
5397 | ||
5398 | /* Swap in the local symbols and write out the ones which we know | |
5399 | are going into the output file. */ | |
5400 | esym = external_syms; | |
5401 | esymend = esym + locsymcount; | |
5402 | isym = finfo->internal_syms; | |
5403 | pindex = finfo->indices; | |
5404 | ppsection = finfo->sections; | |
5405 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
5406 | { | |
5407 | asection *isec; | |
5408 | const char *name; | |
5409 | Elf_Internal_Sym osym; | |
5410 | ||
5411 | elf_swap_symbol_in (input_bfd, esym, isym); | |
5412 | *pindex = -1; | |
5413 | ||
5414 | if (elf_bad_symtab (input_bfd)) | |
5415 | { | |
5416 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
5417 | { | |
5418 | *ppsection = NULL; | |
5419 | continue; | |
5420 | } | |
5421 | } | |
5422 | ||
5423 | if (isym->st_shndx == SHN_UNDEF) | |
5424 | isec = bfd_und_section_ptr; | |
5425 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) | |
5426 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
5427 | else if (isym->st_shndx == SHN_ABS) | |
5428 | isec = bfd_abs_section_ptr; | |
5429 | else if (isym->st_shndx == SHN_COMMON) | |
5430 | isec = bfd_com_section_ptr; | |
5431 | else | |
5432 | { | |
5433 | /* Who knows? */ | |
5434 | isec = NULL; | |
5435 | } | |
5436 | ||
5437 | *ppsection = isec; | |
5438 | ||
5439 | /* Don't output the first, undefined, symbol. */ | |
5440 | if (esym == external_syms) | |
5441 | continue; | |
5442 | ||
5443 | /* If we are stripping all symbols, we don't want to output this | |
5444 | one. */ | |
5445 | if (finfo->info->strip == strip_all) | |
5446 | continue; | |
5447 | ||
5448 | /* We never output section symbols. Instead, we use the section | |
5449 | symbol of the corresponding section in the output file. */ | |
5450 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
5451 | continue; | |
5452 | ||
5453 | /* If we are discarding all local symbols, we don't want to | |
5454 | output this one. If we are generating a relocateable output | |
5455 | file, then some of the local symbols may be required by | |
5456 | relocs; we output them below as we discover that they are | |
5457 | needed. */ | |
5458 | if (finfo->info->discard == discard_all) | |
5459 | continue; | |
5460 | ||
5461 | /* If this symbol is defined in a section which we are | |
5462 | discarding, we don't need to keep it, but note that | |
5463 | linker_mark is only reliable for sections that have contents. | |
5464 | For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE | |
5465 | as well as linker_mark. */ | |
5466 | if (isym->st_shndx > 0 | |
5467 | && isym->st_shndx < SHN_LORESERVE | |
5468 | && isec != NULL | |
5469 | && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0) | |
5470 | || (! finfo->info->relocateable | |
5471 | && (isec->flags & SEC_EXCLUDE) != 0))) | |
5472 | continue; | |
5473 | ||
5474 | /* Get the name of the symbol. */ | |
5475 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
5476 | isym->st_name); | |
5477 | if (name == NULL) | |
5478 | return false; | |
5479 | ||
5480 | /* See if we are discarding symbols with this name. */ | |
5481 | if ((finfo->info->strip == strip_some | |
5482 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
5483 | == NULL)) | |
5484 | || (finfo->info->discard == discard_l | |
5485 | && bfd_is_local_label_name (input_bfd, name))) | |
5486 | continue; | |
5487 | ||
5488 | /* If we get here, we are going to output this symbol. */ | |
5489 | ||
5490 | osym = *isym; | |
5491 | ||
5492 | /* Adjust the section index for the output file. */ | |
5493 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
5494 | isec->output_section); | |
5495 | if (osym.st_shndx == (unsigned short) -1) | |
5496 | return false; | |
5497 | ||
5498 | *pindex = bfd_get_symcount (output_bfd); | |
5499 | ||
5500 | /* ELF symbols in relocateable files are section relative, but | |
5501 | in executable files they are virtual addresses. Note that | |
5502 | this code assumes that all ELF sections have an associated | |
5503 | BFD section with a reasonable value for output_offset; below | |
5504 | we assume that they also have a reasonable value for | |
5505 | output_section. Any special sections must be set up to meet | |
5506 | these requirements. */ | |
5507 | osym.st_value += isec->output_offset; | |
5508 | if (! finfo->info->relocateable) | |
5509 | osym.st_value += isec->output_section->vma; | |
5510 | ||
5511 | if (! elf_link_output_sym (finfo, name, &osym, isec)) | |
5512 | return false; | |
5513 | } | |
5514 | ||
5515 | /* Relocate the contents of each section. */ | |
5516 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
5517 | { | |
5518 | bfd_byte *contents; | |
5519 | ||
5520 | if (! o->linker_mark) | |
5521 | { | |
5522 | /* This section was omitted from the link. */ | |
5523 | continue; | |
5524 | } | |
5525 | ||
5526 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
5527 | || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) | |
5528 | continue; | |
5529 | ||
5530 | if ((o->flags & SEC_LINKER_CREATED) != 0) | |
5531 | { | |
5532 | /* Section was created by elf_link_create_dynamic_sections | |
5533 | or somesuch. */ | |
5534 | continue; | |
5535 | } | |
5536 | ||
5537 | /* Get the contents of the section. They have been cached by a | |
5538 | relaxation routine. Note that o is a section in an input | |
5539 | file, so the contents field will not have been set by any of | |
5540 | the routines which work on output files. */ | |
5541 | if (elf_section_data (o)->this_hdr.contents != NULL) | |
5542 | contents = elf_section_data (o)->this_hdr.contents; | |
5543 | else | |
5544 | { | |
5545 | contents = finfo->contents; | |
5546 | if (! bfd_get_section_contents (input_bfd, o, contents, | |
5547 | (file_ptr) 0, o->_raw_size)) | |
5548 | return false; | |
5549 | } | |
5550 | ||
5551 | if ((o->flags & SEC_RELOC) != 0) | |
5552 | { | |
5553 | Elf_Internal_Rela *internal_relocs; | |
5554 | ||
5555 | /* Get the swapped relocs. */ | |
5556 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
5557 | (input_bfd, o, finfo->external_relocs, | |
5558 | finfo->internal_relocs, false)); | |
5559 | if (internal_relocs == NULL | |
5560 | && o->reloc_count > 0) | |
5561 | return false; | |
5562 | ||
5563 | /* Relocate the section by invoking a back end routine. | |
5564 | ||
5565 | The back end routine is responsible for adjusting the | |
5566 | section contents as necessary, and (if using Rela relocs | |
5567 | and generating a relocateable output file) adjusting the | |
5568 | reloc addend as necessary. | |
5569 | ||
5570 | The back end routine does not have to worry about setting | |
5571 | the reloc address or the reloc symbol index. | |
5572 | ||
5573 | The back end routine is given a pointer to the swapped in | |
5574 | internal symbols, and can access the hash table entries | |
5575 | for the external symbols via elf_sym_hashes (input_bfd). | |
5576 | ||
5577 | When generating relocateable output, the back end routine | |
5578 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
5579 | output symbol is going to be a section symbol | |
5580 | corresponding to the output section, which will require | |
5581 | the addend to be adjusted. */ | |
5582 | ||
5583 | if (! (*relocate_section) (output_bfd, finfo->info, | |
5584 | input_bfd, o, contents, | |
5585 | internal_relocs, | |
5586 | finfo->internal_syms, | |
5587 | finfo->sections)) | |
5588 | return false; | |
5589 | ||
a712da20 | 5590 | if (finfo->info->relocateable || finfo->info->emitrelocations) |
252b5132 RH |
5591 | { |
5592 | Elf_Internal_Rela *irela; | |
5593 | Elf_Internal_Rela *irelaend; | |
5594 | struct elf_link_hash_entry **rel_hash; | |
5595 | Elf_Internal_Shdr *input_rel_hdr; | |
252b5132 RH |
5596 | |
5597 | /* Adjust the reloc addresses and symbol indices. */ | |
5598 | ||
5599 | irela = internal_relocs; | |
c7ac6ff8 MM |
5600 | irelaend = |
5601 | irela + o->reloc_count * bed->s->int_rels_per_ext_rel; | |
252b5132 | 5602 | rel_hash = (elf_section_data (o->output_section)->rel_hashes |
31367b81 MM |
5603 | + elf_section_data (o->output_section)->rel_count |
5604 | + elf_section_data (o->output_section)->rel_count2); | |
252b5132 RH |
5605 | for (; irela < irelaend; irela++, rel_hash++) |
5606 | { | |
5607 | unsigned long r_symndx; | |
5608 | Elf_Internal_Sym *isym; | |
5609 | asection *sec; | |
5610 | ||
5611 | irela->r_offset += o->output_offset; | |
5612 | ||
7ad34365 NC |
5613 | /* Relocs in an executable have to be virtual addresses. */ |
5614 | if (finfo->info->emitrelocations) | |
5615 | irela->r_offset += o->output_section->vma; | |
5616 | ||
252b5132 RH |
5617 | r_symndx = ELF_R_SYM (irela->r_info); |
5618 | ||
5619 | if (r_symndx == 0) | |
5620 | continue; | |
5621 | ||
5622 | if (r_symndx >= locsymcount | |
5623 | || (elf_bad_symtab (input_bfd) | |
5624 | && finfo->sections[r_symndx] == NULL)) | |
5625 | { | |
5626 | struct elf_link_hash_entry *rh; | |
5627 | long indx; | |
5628 | ||
5629 | /* This is a reloc against a global symbol. We | |
5630 | have not yet output all the local symbols, so | |
5631 | we do not know the symbol index of any global | |
5632 | symbol. We set the rel_hash entry for this | |
5633 | reloc to point to the global hash table entry | |
5634 | for this symbol. The symbol index is then | |
5635 | set at the end of elf_bfd_final_link. */ | |
5636 | indx = r_symndx - extsymoff; | |
5637 | rh = elf_sym_hashes (input_bfd)[indx]; | |
5638 | while (rh->root.type == bfd_link_hash_indirect | |
5639 | || rh->root.type == bfd_link_hash_warning) | |
5640 | rh = (struct elf_link_hash_entry *) rh->root.u.i.link; | |
5641 | ||
5642 | /* Setting the index to -2 tells | |
5643 | elf_link_output_extsym that this symbol is | |
5644 | used by a reloc. */ | |
5645 | BFD_ASSERT (rh->indx < 0); | |
5646 | rh->indx = -2; | |
5647 | ||
5648 | *rel_hash = rh; | |
5649 | ||
5650 | continue; | |
5651 | } | |
5652 | ||
5653 | /* This is a reloc against a local symbol. */ | |
5654 | ||
5655 | *rel_hash = NULL; | |
5656 | isym = finfo->internal_syms + r_symndx; | |
5657 | sec = finfo->sections[r_symndx]; | |
5658 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
5659 | { | |
5660 | /* I suppose the backend ought to fill in the | |
5661 | section of any STT_SECTION symbol against a | |
5662 | processor specific section. If we have | |
5663 | discarded a section, the output_section will | |
5664 | be the absolute section. */ | |
5665 | if (sec != NULL | |
5666 | && (bfd_is_abs_section (sec) | |
5667 | || (sec->output_section != NULL | |
5668 | && bfd_is_abs_section (sec->output_section)))) | |
5669 | r_symndx = 0; | |
5670 | else if (sec == NULL || sec->owner == NULL) | |
5671 | { | |
5672 | bfd_set_error (bfd_error_bad_value); | |
5673 | return false; | |
5674 | } | |
5675 | else | |
5676 | { | |
5677 | r_symndx = sec->output_section->target_index; | |
5678 | BFD_ASSERT (r_symndx != 0); | |
5679 | } | |
5680 | } | |
5681 | else | |
5682 | { | |
5683 | if (finfo->indices[r_symndx] == -1) | |
5684 | { | |
5685 | unsigned long link; | |
5686 | const char *name; | |
5687 | asection *osec; | |
5688 | ||
5689 | if (finfo->info->strip == strip_all) | |
5690 | { | |
5691 | /* You can't do ld -r -s. */ | |
5692 | bfd_set_error (bfd_error_invalid_operation); | |
5693 | return false; | |
5694 | } | |
5695 | ||
5696 | /* This symbol was skipped earlier, but | |
5697 | since it is needed by a reloc, we | |
5698 | must output it now. */ | |
5699 | link = symtab_hdr->sh_link; | |
5700 | name = bfd_elf_string_from_elf_section (input_bfd, | |
5701 | link, | |
5702 | isym->st_name); | |
5703 | if (name == NULL) | |
5704 | return false; | |
5705 | ||
5706 | osec = sec->output_section; | |
5707 | isym->st_shndx = | |
5708 | _bfd_elf_section_from_bfd_section (output_bfd, | |
5709 | osec); | |
5710 | if (isym->st_shndx == (unsigned short) -1) | |
5711 | return false; | |
5712 | ||
5713 | isym->st_value += sec->output_offset; | |
5714 | if (! finfo->info->relocateable) | |
5715 | isym->st_value += osec->vma; | |
5716 | ||
5717 | finfo->indices[r_symndx] = bfd_get_symcount (output_bfd); | |
5718 | ||
5719 | if (! elf_link_output_sym (finfo, name, isym, sec)) | |
5720 | return false; | |
5721 | } | |
5722 | ||
5723 | r_symndx = finfo->indices[r_symndx]; | |
5724 | } | |
5725 | ||
5726 | irela->r_info = ELF_R_INFO (r_symndx, | |
5727 | ELF_R_TYPE (irela->r_info)); | |
5728 | } | |
5729 | ||
5730 | /* Swap out the relocs. */ | |
5731 | input_rel_hdr = &elf_section_data (o)->rel_hdr; | |
23bc299b MM |
5732 | elf_link_output_relocs (output_bfd, o, |
5733 | input_rel_hdr, | |
5734 | internal_relocs); | |
5735 | internal_relocs | |
5736 | += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
5737 | input_rel_hdr = elf_section_data (o)->rel_hdr2; | |
5738 | if (input_rel_hdr) | |
5739 | elf_link_output_relocs (output_bfd, o, | |
5740 | input_rel_hdr, | |
5741 | internal_relocs); | |
252b5132 RH |
5742 | } |
5743 | } | |
5744 | ||
5745 | /* Write out the modified section contents. */ | |
5746 | if (elf_section_data (o)->stab_info == NULL) | |
5747 | { | |
5748 | if (! (o->flags & SEC_EXCLUDE) && | |
5749 | ! bfd_set_section_contents (output_bfd, o->output_section, | |
5750 | contents, o->output_offset, | |
5751 | (o->_cooked_size != 0 | |
5752 | ? o->_cooked_size | |
5753 | : o->_raw_size))) | |
5754 | return false; | |
5755 | } | |
5756 | else | |
5757 | { | |
5758 | if (! (_bfd_write_section_stabs | |
5759 | (output_bfd, &elf_hash_table (finfo->info)->stab_info, | |
5760 | o, &elf_section_data (o)->stab_info, contents))) | |
5761 | return false; | |
5762 | } | |
5763 | } | |
5764 | ||
5765 | return true; | |
5766 | } | |
5767 | ||
5768 | /* Generate a reloc when linking an ELF file. This is a reloc | |
5769 | requested by the linker, and does come from any input file. This | |
5770 | is used to build constructor and destructor tables when linking | |
5771 | with -Ur. */ | |
5772 | ||
5773 | static boolean | |
5774 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
5775 | bfd *output_bfd; | |
5776 | struct bfd_link_info *info; | |
5777 | asection *output_section; | |
5778 | struct bfd_link_order *link_order; | |
5779 | { | |
5780 | reloc_howto_type *howto; | |
5781 | long indx; | |
5782 | bfd_vma offset; | |
5783 | bfd_vma addend; | |
5784 | struct elf_link_hash_entry **rel_hash_ptr; | |
5785 | Elf_Internal_Shdr *rel_hdr; | |
32f0787a | 5786 | struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
252b5132 RH |
5787 | |
5788 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
5789 | if (howto == NULL) | |
5790 | { | |
5791 | bfd_set_error (bfd_error_bad_value); | |
5792 | return false; | |
5793 | } | |
5794 | ||
5795 | addend = link_order->u.reloc.p->addend; | |
5796 | ||
5797 | /* Figure out the symbol index. */ | |
5798 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
31367b81 MM |
5799 | + elf_section_data (output_section)->rel_count |
5800 | + elf_section_data (output_section)->rel_count2); | |
252b5132 RH |
5801 | if (link_order->type == bfd_section_reloc_link_order) |
5802 | { | |
5803 | indx = link_order->u.reloc.p->u.section->target_index; | |
5804 | BFD_ASSERT (indx != 0); | |
5805 | *rel_hash_ptr = NULL; | |
5806 | } | |
5807 | else | |
5808 | { | |
5809 | struct elf_link_hash_entry *h; | |
5810 | ||
5811 | /* Treat a reloc against a defined symbol as though it were | |
5812 | actually against the section. */ | |
5813 | h = ((struct elf_link_hash_entry *) | |
5814 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
5815 | link_order->u.reloc.p->u.name, | |
5816 | false, false, true)); | |
5817 | if (h != NULL | |
5818 | && (h->root.type == bfd_link_hash_defined | |
5819 | || h->root.type == bfd_link_hash_defweak)) | |
5820 | { | |
5821 | asection *section; | |
5822 | ||
5823 | section = h->root.u.def.section; | |
5824 | indx = section->output_section->target_index; | |
5825 | *rel_hash_ptr = NULL; | |
5826 | /* It seems that we ought to add the symbol value to the | |
5827 | addend here, but in practice it has already been added | |
5828 | because it was passed to constructor_callback. */ | |
5829 | addend += section->output_section->vma + section->output_offset; | |
5830 | } | |
5831 | else if (h != NULL) | |
5832 | { | |
5833 | /* Setting the index to -2 tells elf_link_output_extsym that | |
5834 | this symbol is used by a reloc. */ | |
5835 | h->indx = -2; | |
5836 | *rel_hash_ptr = h; | |
5837 | indx = 0; | |
5838 | } | |
5839 | else | |
5840 | { | |
5841 | if (! ((*info->callbacks->unattached_reloc) | |
5842 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
5843 | (asection *) NULL, (bfd_vma) 0))) | |
5844 | return false; | |
5845 | indx = 0; | |
5846 | } | |
5847 | } | |
5848 | ||
5849 | /* If this is an inplace reloc, we must write the addend into the | |
5850 | object file. */ | |
5851 | if (howto->partial_inplace && addend != 0) | |
5852 | { | |
5853 | bfd_size_type size; | |
5854 | bfd_reloc_status_type rstat; | |
5855 | bfd_byte *buf; | |
5856 | boolean ok; | |
5857 | ||
5858 | size = bfd_get_reloc_size (howto); | |
5859 | buf = (bfd_byte *) bfd_zmalloc (size); | |
5860 | if (buf == (bfd_byte *) NULL) | |
5861 | return false; | |
5862 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); | |
5863 | switch (rstat) | |
5864 | { | |
5865 | case bfd_reloc_ok: | |
5866 | break; | |
5867 | default: | |
5868 | case bfd_reloc_outofrange: | |
5869 | abort (); | |
5870 | case bfd_reloc_overflow: | |
5871 | if (! ((*info->callbacks->reloc_overflow) | |
5872 | (info, | |
5873 | (link_order->type == bfd_section_reloc_link_order | |
5874 | ? bfd_section_name (output_bfd, | |
5875 | link_order->u.reloc.p->u.section) | |
5876 | : link_order->u.reloc.p->u.name), | |
5877 | howto->name, addend, (bfd *) NULL, (asection *) NULL, | |
5878 | (bfd_vma) 0))) | |
5879 | { | |
5880 | free (buf); | |
5881 | return false; | |
5882 | } | |
5883 | break; | |
5884 | } | |
5885 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
5886 | (file_ptr) link_order->offset, size); | |
5887 | free (buf); | |
5888 | if (! ok) | |
5889 | return false; | |
5890 | } | |
5891 | ||
5892 | /* The address of a reloc is relative to the section in a | |
5893 | relocateable file, and is a virtual address in an executable | |
5894 | file. */ | |
5895 | offset = link_order->offset; | |
5896 | if (! info->relocateable) | |
5897 | offset += output_section->vma; | |
5898 | ||
5899 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
5900 | ||
5901 | if (rel_hdr->sh_type == SHT_REL) | |
5902 | { | |
5903 | Elf_Internal_Rel irel; | |
5904 | Elf_External_Rel *erel; | |
5905 | ||
5906 | irel.r_offset = offset; | |
5907 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
5908 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
0525d26e | 5909 | + elf_section_data (output_section)->rel_count); |
32f0787a UC |
5910 | if (bed->s->swap_reloc_out) |
5911 | (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel); | |
5912 | else | |
5913 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
252b5132 RH |
5914 | } |
5915 | else | |
5916 | { | |
5917 | Elf_Internal_Rela irela; | |
5918 | Elf_External_Rela *erela; | |
5919 | ||
5920 | irela.r_offset = offset; | |
5921 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
5922 | irela.r_addend = addend; | |
5923 | erela = ((Elf_External_Rela *) rel_hdr->contents | |
0525d26e | 5924 | + elf_section_data (output_section)->rel_count); |
32f0787a UC |
5925 | if (bed->s->swap_reloca_out) |
5926 | (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela); | |
5927 | else | |
5928 | elf_swap_reloca_out (output_bfd, &irela, erela); | |
252b5132 RH |
5929 | } |
5930 | ||
0525d26e | 5931 | ++elf_section_data (output_section)->rel_count; |
252b5132 RH |
5932 | |
5933 | return true; | |
5934 | } | |
5935 | ||
5936 | \f | |
5937 | /* Allocate a pointer to live in a linker created section. */ | |
5938 | ||
5939 | boolean | |
5940 | elf_create_pointer_linker_section (abfd, info, lsect, h, rel) | |
5941 | bfd *abfd; | |
5942 | struct bfd_link_info *info; | |
5943 | elf_linker_section_t *lsect; | |
5944 | struct elf_link_hash_entry *h; | |
5945 | const Elf_Internal_Rela *rel; | |
5946 | { | |
5947 | elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; | |
5948 | elf_linker_section_pointers_t *linker_section_ptr; | |
5949 | unsigned long r_symndx = ELF_R_SYM (rel->r_info);; | |
5950 | ||
5951 | BFD_ASSERT (lsect != NULL); | |
5952 | ||
5953 | /* Is this a global symbol? */ | |
5954 | if (h != NULL) | |
5955 | { | |
5956 | /* Has this symbol already been allocated, if so, our work is done */ | |
5957 | if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
5958 | rel->r_addend, | |
5959 | lsect->which)) | |
5960 | return true; | |
5961 | ||
5962 | ptr_linker_section_ptr = &h->linker_section_pointer; | |
5963 | /* Make sure this symbol is output as a dynamic symbol. */ | |
5964 | if (h->dynindx == -1) | |
5965 | { | |
5966 | if (! elf_link_record_dynamic_symbol (info, h)) | |
5967 | return false; | |
5968 | } | |
5969 | ||
5970 | if (lsect->rel_section) | |
5971 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
5972 | } | |
5973 | ||
5974 | else /* Allocation of a pointer to a local symbol */ | |
5975 | { | |
5976 | elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); | |
5977 | ||
5978 | /* Allocate a table to hold the local symbols if first time */ | |
5979 | if (!ptr) | |
5980 | { | |
5981 | unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; | |
5982 | register unsigned int i; | |
5983 | ||
5984 | ptr = (elf_linker_section_pointers_t **) | |
5985 | bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *)); | |
5986 | ||
5987 | if (!ptr) | |
5988 | return false; | |
5989 | ||
5990 | elf_local_ptr_offsets (abfd) = ptr; | |
5991 | for (i = 0; i < num_symbols; i++) | |
5992 | ptr[i] = (elf_linker_section_pointers_t *)0; | |
5993 | } | |
5994 | ||
5995 | /* Has this symbol already been allocated, if so, our work is done */ | |
5996 | if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx], | |
5997 | rel->r_addend, | |
5998 | lsect->which)) | |
5999 | return true; | |
6000 | ||
6001 | ptr_linker_section_ptr = &ptr[r_symndx]; | |
6002 | ||
6003 | if (info->shared) | |
6004 | { | |
6005 | /* If we are generating a shared object, we need to | |
6006 | output a R_<xxx>_RELATIVE reloc so that the | |
6007 | dynamic linker can adjust this GOT entry. */ | |
6008 | BFD_ASSERT (lsect->rel_section != NULL); | |
6009 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
6010 | } | |
6011 | } | |
6012 | ||
6013 | /* Allocate space for a pointer in the linker section, and allocate a new pointer record | |
6014 | from internal memory. */ | |
6015 | BFD_ASSERT (ptr_linker_section_ptr != NULL); | |
6016 | linker_section_ptr = (elf_linker_section_pointers_t *) | |
6017 | bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t)); | |
6018 | ||
6019 | if (!linker_section_ptr) | |
6020 | return false; | |
6021 | ||
6022 | linker_section_ptr->next = *ptr_linker_section_ptr; | |
6023 | linker_section_ptr->addend = rel->r_addend; | |
6024 | linker_section_ptr->which = lsect->which; | |
6025 | linker_section_ptr->written_address_p = false; | |
6026 | *ptr_linker_section_ptr = linker_section_ptr; | |
6027 | ||
6028 | #if 0 | |
6029 | if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset) | |
6030 | { | |
6031 | linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8); | |
6032 | lsect->hole_offset += ARCH_SIZE / 8; | |
6033 | lsect->sym_offset += ARCH_SIZE / 8; | |
6034 | if (lsect->sym_hash) /* Bump up symbol value if needed */ | |
6035 | { | |
6036 | lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8; | |
6037 | #ifdef DEBUG | |
6038 | fprintf (stderr, "Bump up %s by %ld, current value = %ld\n", | |
6039 | lsect->sym_hash->root.root.string, | |
6040 | (long)ARCH_SIZE / 8, | |
6041 | (long)lsect->sym_hash->root.u.def.value); | |
6042 | #endif | |
6043 | } | |
6044 | } | |
6045 | else | |
6046 | #endif | |
6047 | linker_section_ptr->offset = lsect->section->_raw_size; | |
6048 | ||
6049 | lsect->section->_raw_size += ARCH_SIZE / 8; | |
6050 | ||
6051 | #ifdef DEBUG | |
6052 | fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n", | |
6053 | lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size); | |
6054 | #endif | |
6055 | ||
6056 | return true; | |
6057 | } | |
6058 | ||
6059 | \f | |
6060 | #if ARCH_SIZE==64 | |
6061 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR) | |
6062 | #endif | |
6063 | #if ARCH_SIZE==32 | |
6064 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR) | |
6065 | #endif | |
6066 | ||
6067 | /* Fill in the address for a pointer generated in alinker section. */ | |
6068 | ||
6069 | bfd_vma | |
6070 | elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc) | |
6071 | bfd *output_bfd; | |
6072 | bfd *input_bfd; | |
6073 | struct bfd_link_info *info; | |
6074 | elf_linker_section_t *lsect; | |
6075 | struct elf_link_hash_entry *h; | |
6076 | bfd_vma relocation; | |
6077 | const Elf_Internal_Rela *rel; | |
6078 | int relative_reloc; | |
6079 | { | |
6080 | elf_linker_section_pointers_t *linker_section_ptr; | |
6081 | ||
6082 | BFD_ASSERT (lsect != NULL); | |
6083 | ||
6084 | if (h != NULL) /* global symbol */ | |
6085 | { | |
6086 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
6087 | rel->r_addend, | |
6088 | lsect->which); | |
6089 | ||
6090 | BFD_ASSERT (linker_section_ptr != NULL); | |
6091 | ||
6092 | if (! elf_hash_table (info)->dynamic_sections_created | |
6093 | || (info->shared | |
6094 | && info->symbolic | |
6095 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
6096 | { | |
6097 | /* This is actually a static link, or it is a | |
6098 | -Bsymbolic link and the symbol is defined | |
6099 | locally. We must initialize this entry in the | |
6100 | global section. | |
6101 | ||
6102 | When doing a dynamic link, we create a .rela.<xxx> | |
6103 | relocation entry to initialize the value. This | |
6104 | is done in the finish_dynamic_symbol routine. */ | |
6105 | if (!linker_section_ptr->written_address_p) | |
6106 | { | |
6107 | linker_section_ptr->written_address_p = true; | |
6108 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
6109 | lsect->section->contents + linker_section_ptr->offset); | |
6110 | } | |
6111 | } | |
6112 | } | |
6113 | else /* local symbol */ | |
6114 | { | |
6115 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); | |
6116 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); | |
6117 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL); | |
6118 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx], | |
6119 | rel->r_addend, | |
6120 | lsect->which); | |
6121 | ||
6122 | BFD_ASSERT (linker_section_ptr != NULL); | |
6123 | ||
6124 | /* Write out pointer if it hasn't been rewritten out before */ | |
6125 | if (!linker_section_ptr->written_address_p) | |
6126 | { | |
6127 | linker_section_ptr->written_address_p = true; | |
6128 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
6129 | lsect->section->contents + linker_section_ptr->offset); | |
6130 | ||
6131 | if (info->shared) | |
6132 | { | |
6133 | asection *srel = lsect->rel_section; | |
6134 | Elf_Internal_Rela outrel; | |
6135 | ||
6136 | /* We need to generate a relative reloc for the dynamic linker. */ | |
6137 | if (!srel) | |
6138 | lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
6139 | lsect->rel_name); | |
6140 | ||
6141 | BFD_ASSERT (srel != NULL); | |
6142 | ||
6143 | outrel.r_offset = (lsect->section->output_section->vma | |
6144 | + lsect->section->output_offset | |
6145 | + linker_section_ptr->offset); | |
6146 | outrel.r_info = ELF_R_INFO (0, relative_reloc); | |
6147 | outrel.r_addend = 0; | |
6148 | elf_swap_reloca_out (output_bfd, &outrel, | |
6149 | (((Elf_External_Rela *) | |
6150 | lsect->section->contents) | |
0525d26e ILT |
6151 | + elf_section_data (lsect->section)->rel_count)); |
6152 | ++elf_section_data (lsect->section)->rel_count; | |
252b5132 RH |
6153 | } |
6154 | } | |
6155 | } | |
6156 | ||
6157 | relocation = (lsect->section->output_offset | |
6158 | + linker_section_ptr->offset | |
6159 | - lsect->hole_offset | |
6160 | - lsect->sym_offset); | |
6161 | ||
6162 | #ifdef DEBUG | |
6163 | fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", | |
6164 | lsect->name, (long)relocation, (long)relocation); | |
6165 | #endif | |
6166 | ||
6167 | /* Subtract out the addend, because it will get added back in by the normal | |
6168 | processing. */ | |
6169 | return relocation - linker_section_ptr->addend; | |
6170 | } | |
6171 | \f | |
6172 | /* Garbage collect unused sections. */ | |
6173 | ||
6174 | static boolean elf_gc_mark | |
6175 | PARAMS ((struct bfd_link_info *info, asection *sec, | |
6176 | asection * (*gc_mark_hook) | |
6177 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
6178 | struct elf_link_hash_entry *, Elf_Internal_Sym *)))); | |
6179 | ||
6180 | static boolean elf_gc_sweep | |
6181 | PARAMS ((struct bfd_link_info *info, | |
6182 | boolean (*gc_sweep_hook) | |
6183 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, | |
6184 | const Elf_Internal_Rela *relocs)))); | |
6185 | ||
6186 | static boolean elf_gc_sweep_symbol | |
6187 | PARAMS ((struct elf_link_hash_entry *h, PTR idxptr)); | |
6188 | ||
6189 | static boolean elf_gc_allocate_got_offsets | |
6190 | PARAMS ((struct elf_link_hash_entry *h, PTR offarg)); | |
6191 | ||
6192 | static boolean elf_gc_propagate_vtable_entries_used | |
6193 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); | |
6194 | ||
6195 | static boolean elf_gc_smash_unused_vtentry_relocs | |
6196 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); | |
6197 | ||
6198 | /* The mark phase of garbage collection. For a given section, mark | |
6199 | it, and all the sections which define symbols to which it refers. */ | |
6200 | ||
6201 | static boolean | |
6202 | elf_gc_mark (info, sec, gc_mark_hook) | |
6203 | struct bfd_link_info *info; | |
6204 | asection *sec; | |
6205 | asection * (*gc_mark_hook) | |
6206 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
6207 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
6208 | { | |
6209 | boolean ret = true; | |
6210 | ||
6211 | sec->gc_mark = 1; | |
6212 | ||
6213 | /* Look through the section relocs. */ | |
6214 | ||
6215 | if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0) | |
6216 | { | |
6217 | Elf_Internal_Rela *relstart, *rel, *relend; | |
6218 | Elf_Internal_Shdr *symtab_hdr; | |
6219 | struct elf_link_hash_entry **sym_hashes; | |
6220 | size_t nlocsyms; | |
6221 | size_t extsymoff; | |
6222 | Elf_External_Sym *locsyms, *freesyms = NULL; | |
6223 | bfd *input_bfd = sec->owner; | |
c7ac6ff8 | 6224 | struct elf_backend_data *bed = get_elf_backend_data (input_bfd); |
252b5132 RH |
6225 | |
6226 | /* GCFIXME: how to arrange so that relocs and symbols are not | |
6227 | reread continually? */ | |
6228 | ||
6229 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
6230 | sym_hashes = elf_sym_hashes (input_bfd); | |
6231 | ||
6232 | /* Read the local symbols. */ | |
6233 | if (elf_bad_symtab (input_bfd)) | |
6234 | { | |
6235 | nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
6236 | extsymoff = 0; | |
6237 | } | |
6238 | else | |
6239 | extsymoff = nlocsyms = symtab_hdr->sh_info; | |
6240 | if (symtab_hdr->contents) | |
6241 | locsyms = (Elf_External_Sym *) symtab_hdr->contents; | |
6242 | else if (nlocsyms == 0) | |
6243 | locsyms = NULL; | |
6244 | else | |
6245 | { | |
6246 | locsyms = freesyms = | |
6247 | bfd_malloc (nlocsyms * sizeof (Elf_External_Sym)); | |
6248 | if (freesyms == NULL | |
6249 | || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
6250 | || (bfd_read (locsyms, sizeof (Elf_External_Sym), | |
6251 | nlocsyms, input_bfd) | |
6252 | != nlocsyms * sizeof (Elf_External_Sym))) | |
6253 | { | |
6254 | ret = false; | |
6255 | goto out1; | |
6256 | } | |
6257 | } | |
6258 | ||
6259 | /* Read the relocations. */ | |
6260 | relstart = (NAME(_bfd_elf,link_read_relocs) | |
6261 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, | |
6262 | info->keep_memory)); | |
6263 | if (relstart == NULL) | |
6264 | { | |
6265 | ret = false; | |
6266 | goto out1; | |
6267 | } | |
c7ac6ff8 | 6268 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
252b5132 RH |
6269 | |
6270 | for (rel = relstart; rel < relend; rel++) | |
6271 | { | |
6272 | unsigned long r_symndx; | |
6273 | asection *rsec; | |
6274 | struct elf_link_hash_entry *h; | |
6275 | Elf_Internal_Sym s; | |
6276 | ||
6277 | r_symndx = ELF_R_SYM (rel->r_info); | |
6278 | if (r_symndx == 0) | |
6279 | continue; | |
6280 | ||
6281 | if (elf_bad_symtab (sec->owner)) | |
6282 | { | |
6283 | elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); | |
6284 | if (ELF_ST_BIND (s.st_info) == STB_LOCAL) | |
6285 | rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s); | |
6286 | else | |
6287 | { | |
6288 | h = sym_hashes[r_symndx - extsymoff]; | |
6289 | rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL); | |
6290 | } | |
6291 | } | |
6292 | else if (r_symndx >= nlocsyms) | |
6293 | { | |
6294 | h = sym_hashes[r_symndx - extsymoff]; | |
6295 | rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL); | |
6296 | } | |
6297 | else | |
6298 | { | |
6299 | elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); | |
6300 | rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s); | |
6301 | } | |
6302 | ||
6303 | if (rsec && !rsec->gc_mark) | |
6304 | if (!elf_gc_mark (info, rsec, gc_mark_hook)) | |
6305 | { | |
6306 | ret = false; | |
6307 | goto out2; | |
6308 | } | |
6309 | } | |
6310 | ||
6311 | out2: | |
6312 | if (!info->keep_memory) | |
6313 | free (relstart); | |
6314 | out1: | |
6315 | if (freesyms) | |
6316 | free (freesyms); | |
6317 | } | |
6318 | ||
6319 | return ret; | |
6320 | } | |
6321 | ||
6322 | /* The sweep phase of garbage collection. Remove all garbage sections. */ | |
6323 | ||
6324 | static boolean | |
6325 | elf_gc_sweep (info, gc_sweep_hook) | |
6326 | struct bfd_link_info *info; | |
6327 | boolean (*gc_sweep_hook) | |
6328 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, | |
6329 | const Elf_Internal_Rela *relocs)); | |
6330 | { | |
6331 | bfd *sub; | |
6332 | ||
6333 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
6334 | { | |
6335 | asection *o; | |
6336 | ||
f6af82bd AM |
6337 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) |
6338 | continue; | |
6339 | ||
252b5132 RH |
6340 | for (o = sub->sections; o != NULL; o = o->next) |
6341 | { | |
6342 | /* Keep special sections. Keep .debug sections. */ | |
6343 | if ((o->flags & SEC_LINKER_CREATED) | |
6344 | || (o->flags & SEC_DEBUGGING)) | |
6345 | o->gc_mark = 1; | |
6346 | ||
6347 | if (o->gc_mark) | |
6348 | continue; | |
6349 | ||
6350 | /* Skip sweeping sections already excluded. */ | |
6351 | if (o->flags & SEC_EXCLUDE) | |
6352 | continue; | |
6353 | ||
6354 | /* Since this is early in the link process, it is simple | |
6355 | to remove a section from the output. */ | |
6356 | o->flags |= SEC_EXCLUDE; | |
6357 | ||
6358 | /* But we also have to update some of the relocation | |
6359 | info we collected before. */ | |
6360 | if (gc_sweep_hook | |
6361 | && (o->flags & SEC_RELOC) && o->reloc_count > 0) | |
6362 | { | |
6363 | Elf_Internal_Rela *internal_relocs; | |
6364 | boolean r; | |
6365 | ||
6366 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
6367 | (o->owner, o, NULL, NULL, info->keep_memory)); | |
6368 | if (internal_relocs == NULL) | |
6369 | return false; | |
6370 | ||
6371 | r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs); | |
6372 | ||
6373 | if (!info->keep_memory) | |
6374 | free (internal_relocs); | |
6375 | ||
6376 | if (!r) | |
6377 | return false; | |
6378 | } | |
6379 | } | |
6380 | } | |
6381 | ||
6382 | /* Remove the symbols that were in the swept sections from the dynamic | |
6383 | symbol table. GCFIXME: Anyone know how to get them out of the | |
6384 | static symbol table as well? */ | |
6385 | { | |
6386 | int i = 0; | |
6387 | ||
6388 | elf_link_hash_traverse (elf_hash_table (info), | |
6389 | elf_gc_sweep_symbol, | |
6390 | (PTR) &i); | |
6391 | ||
6392 | elf_hash_table (info)->dynsymcount = i; | |
6393 | } | |
6394 | ||
6395 | return true; | |
6396 | } | |
6397 | ||
6398 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ | |
6399 | ||
6400 | static boolean | |
6401 | elf_gc_sweep_symbol (h, idxptr) | |
6402 | struct elf_link_hash_entry *h; | |
6403 | PTR idxptr; | |
6404 | { | |
6405 | int *idx = (int *) idxptr; | |
6406 | ||
6407 | if (h->dynindx != -1 | |
6408 | && ((h->root.type != bfd_link_hash_defined | |
6409 | && h->root.type != bfd_link_hash_defweak) | |
6410 | || h->root.u.def.section->gc_mark)) | |
6411 | h->dynindx = (*idx)++; | |
6412 | ||
6413 | return true; | |
6414 | } | |
6415 | ||
6416 | /* Propogate collected vtable information. This is called through | |
6417 | elf_link_hash_traverse. */ | |
6418 | ||
6419 | static boolean | |
6420 | elf_gc_propagate_vtable_entries_used (h, okp) | |
6421 | struct elf_link_hash_entry *h; | |
6422 | PTR okp; | |
6423 | { | |
6424 | /* Those that are not vtables. */ | |
6425 | if (h->vtable_parent == NULL) | |
6426 | return true; | |
6427 | ||
6428 | /* Those vtables that do not have parents, we cannot merge. */ | |
6429 | if (h->vtable_parent == (struct elf_link_hash_entry *) -1) | |
6430 | return true; | |
6431 | ||
6432 | /* If we've already been done, exit. */ | |
6433 | if (h->vtable_entries_used && h->vtable_entries_used[-1]) | |
6434 | return true; | |
6435 | ||
6436 | /* Make sure the parent's table is up to date. */ | |
6437 | elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp); | |
6438 | ||
6439 | if (h->vtable_entries_used == NULL) | |
6440 | { | |
6441 | /* None of this table's entries were referenced. Re-use the | |
6442 | parent's table. */ | |
6443 | h->vtable_entries_used = h->vtable_parent->vtable_entries_used; | |
6444 | h->vtable_entries_size = h->vtable_parent->vtable_entries_size; | |
6445 | } | |
6446 | else | |
6447 | { | |
6448 | size_t n; | |
6449 | boolean *cu, *pu; | |
6450 | ||
6451 | /* Or the parent's entries into ours. */ | |
6452 | cu = h->vtable_entries_used; | |
6453 | cu[-1] = true; | |
6454 | pu = h->vtable_parent->vtable_entries_used; | |
6455 | if (pu != NULL) | |
6456 | { | |
6457 | n = h->vtable_parent->vtable_entries_size / FILE_ALIGN; | |
6458 | while (--n != 0) | |
6459 | { | |
6460 | if (*pu) *cu = true; | |
6461 | pu++, cu++; | |
6462 | } | |
6463 | } | |
6464 | } | |
6465 | ||
6466 | return true; | |
6467 | } | |
6468 | ||
6469 | static boolean | |
6470 | elf_gc_smash_unused_vtentry_relocs (h, okp) | |
6471 | struct elf_link_hash_entry *h; | |
6472 | PTR okp; | |
6473 | { | |
6474 | asection *sec; | |
6475 | bfd_vma hstart, hend; | |
6476 | Elf_Internal_Rela *relstart, *relend, *rel; | |
c7ac6ff8 | 6477 | struct elf_backend_data *bed; |
252b5132 RH |
6478 | |
6479 | /* Take care of both those symbols that do not describe vtables as | |
6480 | well as those that are not loaded. */ | |
6481 | if (h->vtable_parent == NULL) | |
6482 | return true; | |
6483 | ||
6484 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
6485 | || h->root.type == bfd_link_hash_defweak); | |
6486 | ||
6487 | sec = h->root.u.def.section; | |
6488 | hstart = h->root.u.def.value; | |
6489 | hend = hstart + h->size; | |
6490 | ||
6491 | relstart = (NAME(_bfd_elf,link_read_relocs) | |
6492 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true)); | |
6493 | if (!relstart) | |
6494 | return *(boolean *)okp = false; | |
c7ac6ff8 MM |
6495 | bed = get_elf_backend_data (sec->owner); |
6496 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
252b5132 RH |
6497 | |
6498 | for (rel = relstart; rel < relend; ++rel) | |
6499 | if (rel->r_offset >= hstart && rel->r_offset < hend) | |
6500 | { | |
6501 | /* If the entry is in use, do nothing. */ | |
6502 | if (h->vtable_entries_used | |
6503 | && (rel->r_offset - hstart) < h->vtable_entries_size) | |
6504 | { | |
6505 | bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN; | |
6506 | if (h->vtable_entries_used[entry]) | |
6507 | continue; | |
6508 | } | |
6509 | /* Otherwise, kill it. */ | |
6510 | rel->r_offset = rel->r_info = rel->r_addend = 0; | |
6511 | } | |
6512 | ||
6513 | return true; | |
6514 | } | |
6515 | ||
6516 | /* Do mark and sweep of unused sections. */ | |
6517 | ||
6518 | boolean | |
6519 | elf_gc_sections (abfd, info) | |
6520 | bfd *abfd; | |
6521 | struct bfd_link_info *info; | |
6522 | { | |
6523 | boolean ok = true; | |
6524 | bfd *sub; | |
6525 | asection * (*gc_mark_hook) | |
6526 | PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *, | |
6527 | struct elf_link_hash_entry *h, Elf_Internal_Sym *)); | |
6528 | ||
6529 | if (!get_elf_backend_data (abfd)->can_gc_sections | |
6d3e950b | 6530 | || info->relocateable || info->emitrelocations |
252b5132 RH |
6531 | || elf_hash_table (info)->dynamic_sections_created) |
6532 | return true; | |
6533 | ||
6534 | /* Apply transitive closure to the vtable entry usage info. */ | |
6535 | elf_link_hash_traverse (elf_hash_table (info), | |
6536 | elf_gc_propagate_vtable_entries_used, | |
6537 | (PTR) &ok); | |
6538 | if (!ok) | |
6539 | return false; | |
6540 | ||
6541 | /* Kill the vtable relocations that were not used. */ | |
6542 | elf_link_hash_traverse (elf_hash_table (info), | |
6543 | elf_gc_smash_unused_vtentry_relocs, | |
6544 | (PTR) &ok); | |
6545 | if (!ok) | |
6546 | return false; | |
6547 | ||
6548 | /* Grovel through relocs to find out who stays ... */ | |
6549 | ||
6550 | gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook; | |
6551 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
6552 | { | |
6553 | asection *o; | |
f6af82bd AM |
6554 | |
6555 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) | |
6556 | continue; | |
6557 | ||
252b5132 RH |
6558 | for (o = sub->sections; o != NULL; o = o->next) |
6559 | { | |
6560 | if (o->flags & SEC_KEEP) | |
6561 | if (!elf_gc_mark (info, o, gc_mark_hook)) | |
6562 | return false; | |
6563 | } | |
6564 | } | |
6565 | ||
6566 | /* ... and mark SEC_EXCLUDE for those that go. */ | |
6567 | if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook)) | |
6568 | return false; | |
6569 | ||
6570 | return true; | |
6571 | } | |
6572 | \f | |
6573 | /* Called from check_relocs to record the existance of a VTINHERIT reloc. */ | |
6574 | ||
6575 | boolean | |
6576 | elf_gc_record_vtinherit (abfd, sec, h, offset) | |
6577 | bfd *abfd; | |
6578 | asection *sec; | |
6579 | struct elf_link_hash_entry *h; | |
6580 | bfd_vma offset; | |
6581 | { | |
6582 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | |
6583 | struct elf_link_hash_entry **search, *child; | |
6584 | bfd_size_type extsymcount; | |
6585 | ||
6586 | /* The sh_info field of the symtab header tells us where the | |
6587 | external symbols start. We don't care about the local symbols at | |
6588 | this point. */ | |
6589 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym); | |
6590 | if (!elf_bad_symtab (abfd)) | |
6591 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; | |
6592 | ||
6593 | sym_hashes = elf_sym_hashes (abfd); | |
6594 | sym_hashes_end = sym_hashes + extsymcount; | |
6595 | ||
6596 | /* Hunt down the child symbol, which is in this section at the same | |
6597 | offset as the relocation. */ | |
6598 | for (search = sym_hashes; search != sym_hashes_end; ++search) | |
6599 | { | |
6600 | if ((child = *search) != NULL | |
6601 | && (child->root.type == bfd_link_hash_defined | |
6602 | || child->root.type == bfd_link_hash_defweak) | |
6603 | && child->root.u.def.section == sec | |
6604 | && child->root.u.def.value == offset) | |
6605 | goto win; | |
6606 | } | |
6607 | ||
6608 | (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT", | |
6609 | bfd_get_filename (abfd), sec->name, | |
6610 | (unsigned long)offset); | |
6611 | bfd_set_error (bfd_error_invalid_operation); | |
6612 | return false; | |
6613 | ||
6614 | win: | |
6615 | if (!h) | |
6616 | { | |
6617 | /* This *should* only be the absolute section. It could potentially | |
6618 | be that someone has defined a non-global vtable though, which | |
6619 | would be bad. It isn't worth paging in the local symbols to be | |
6620 | sure though; that case should simply be handled by the assembler. */ | |
6621 | ||
6622 | child->vtable_parent = (struct elf_link_hash_entry *) -1; | |
6623 | } | |
6624 | else | |
6625 | child->vtable_parent = h; | |
6626 | ||
6627 | return true; | |
6628 | } | |
6629 | ||
6630 | /* Called from check_relocs to record the existance of a VTENTRY reloc. */ | |
6631 | ||
6632 | boolean | |
6633 | elf_gc_record_vtentry (abfd, sec, h, addend) | |
7442e600 ILT |
6634 | bfd *abfd ATTRIBUTE_UNUSED; |
6635 | asection *sec ATTRIBUTE_UNUSED; | |
252b5132 RH |
6636 | struct elf_link_hash_entry *h; |
6637 | bfd_vma addend; | |
6638 | { | |
6639 | if (addend >= h->vtable_entries_size) | |
6640 | { | |
6641 | size_t size, bytes; | |
6642 | boolean *ptr = h->vtable_entries_used; | |
6643 | ||
6644 | /* While the symbol is undefined, we have to be prepared to handle | |
6645 | a zero size. */ | |
6646 | if (h->root.type == bfd_link_hash_undefined) | |
6647 | size = addend; | |
6648 | else | |
6649 | { | |
6650 | size = h->size; | |
6651 | if (size < addend) | |
6652 | { | |
6653 | /* Oops! We've got a reference past the defined end of | |
6654 | the table. This is probably a bug -- shall we warn? */ | |
6655 | size = addend; | |
6656 | } | |
6657 | } | |
6658 | ||
6659 | /* Allocate one extra entry for use as a "done" flag for the | |
6660 | consolidation pass. */ | |
fed79cc6 | 6661 | bytes = (size / FILE_ALIGN + 1) * sizeof (boolean); |
252b5132 RH |
6662 | |
6663 | if (ptr) | |
6664 | { | |
fed79cc6 NC |
6665 | ptr = bfd_realloc (ptr - 1, bytes); |
6666 | ||
6667 | if (ptr != NULL) | |
6668 | { | |
6669 | size_t oldbytes; | |
252b5132 | 6670 | |
fed79cc6 NC |
6671 | oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean); |
6672 | memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes); | |
6673 | } | |
252b5132 RH |
6674 | } |
6675 | else | |
fed79cc6 | 6676 | ptr = bfd_zmalloc (bytes); |
252b5132 | 6677 | |
fed79cc6 NC |
6678 | if (ptr == NULL) |
6679 | return false; | |
6680 | ||
252b5132 | 6681 | /* And arrange for that done flag to be at index -1. */ |
fed79cc6 | 6682 | h->vtable_entries_used = ptr + 1; |
252b5132 RH |
6683 | h->vtable_entries_size = size; |
6684 | } | |
fed79cc6 | 6685 | |
252b5132 RH |
6686 | h->vtable_entries_used[addend / FILE_ALIGN] = true; |
6687 | ||
6688 | return true; | |
6689 | } | |
6690 | ||
6691 | /* And an accompanying bit to work out final got entry offsets once | |
6692 | we're done. Should be called from final_link. */ | |
6693 | ||
6694 | boolean | |
6695 | elf_gc_common_finalize_got_offsets (abfd, info) | |
6696 | bfd *abfd; | |
6697 | struct bfd_link_info *info; | |
6698 | { | |
6699 | bfd *i; | |
6700 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
6701 | bfd_vma gotoff; | |
6702 | ||
6703 | /* The GOT offset is relative to the .got section, but the GOT header is | |
6704 | put into the .got.plt section, if the backend uses it. */ | |
6705 | if (bed->want_got_plt) | |
6706 | gotoff = 0; | |
6707 | else | |
6708 | gotoff = bed->got_header_size; | |
6709 | ||
6710 | /* Do the local .got entries first. */ | |
6711 | for (i = info->input_bfds; i; i = i->link_next) | |
6712 | { | |
f6af82bd | 6713 | bfd_signed_vma *local_got; |
252b5132 RH |
6714 | bfd_size_type j, locsymcount; |
6715 | Elf_Internal_Shdr *symtab_hdr; | |
6716 | ||
f6af82bd AM |
6717 | if (bfd_get_flavour (i) != bfd_target_elf_flavour) |
6718 | continue; | |
6719 | ||
6720 | local_got = elf_local_got_refcounts (i); | |
252b5132 RH |
6721 | if (!local_got) |
6722 | continue; | |
6723 | ||
6724 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
6725 | if (elf_bad_symtab (i)) | |
6726 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
6727 | else | |
6728 | locsymcount = symtab_hdr->sh_info; | |
6729 | ||
6730 | for (j = 0; j < locsymcount; ++j) | |
6731 | { | |
6732 | if (local_got[j] > 0) | |
6733 | { | |
6734 | local_got[j] = gotoff; | |
6735 | gotoff += ARCH_SIZE / 8; | |
6736 | } | |
6737 | else | |
6738 | local_got[j] = (bfd_vma) -1; | |
6739 | } | |
6740 | } | |
6741 | ||
dd5724d5 AM |
6742 | /* Then the global .got entries. .plt refcounts are handled by |
6743 | adjust_dynamic_symbol */ | |
252b5132 RH |
6744 | elf_link_hash_traverse (elf_hash_table (info), |
6745 | elf_gc_allocate_got_offsets, | |
6746 | (PTR) &gotoff); | |
6747 | return true; | |
6748 | } | |
6749 | ||
6750 | /* We need a special top-level link routine to convert got reference counts | |
6751 | to real got offsets. */ | |
6752 | ||
6753 | static boolean | |
6754 | elf_gc_allocate_got_offsets (h, offarg) | |
6755 | struct elf_link_hash_entry *h; | |
6756 | PTR offarg; | |
6757 | { | |
6758 | bfd_vma *off = (bfd_vma *) offarg; | |
6759 | ||
6760 | if (h->got.refcount > 0) | |
6761 | { | |
6762 | h->got.offset = off[0]; | |
6763 | off[0] += ARCH_SIZE / 8; | |
6764 | } | |
6765 | else | |
6766 | h->got.offset = (bfd_vma) -1; | |
6767 | ||
6768 | return true; | |
6769 | } | |
6770 | ||
6771 | /* Many folk need no more in the way of final link than this, once | |
6772 | got entry reference counting is enabled. */ | |
6773 | ||
6774 | boolean | |
6775 | elf_gc_common_final_link (abfd, info) | |
6776 | bfd *abfd; | |
6777 | struct bfd_link_info *info; | |
6778 | { | |
6779 | if (!elf_gc_common_finalize_got_offsets (abfd, info)) | |
6780 | return false; | |
6781 | ||
6782 | /* Invoke the regular ELF backend linker to do all the work. */ | |
6783 | return elf_bfd_final_link (abfd, info); | |
6784 | } | |
6785 | ||
6786 | /* This function will be called though elf_link_hash_traverse to store | |
6787 | all hash value of the exported symbols in an array. */ | |
6788 | ||
6789 | static boolean | |
6790 | elf_collect_hash_codes (h, data) | |
6791 | struct elf_link_hash_entry *h; | |
6792 | PTR data; | |
6793 | { | |
6794 | unsigned long **valuep = (unsigned long **) data; | |
6795 | const char *name; | |
6796 | char *p; | |
6797 | unsigned long ha; | |
6798 | char *alc = NULL; | |
6799 | ||
6800 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
6801 | if (h->dynindx == -1) | |
6802 | return true; | |
6803 | ||
6804 | name = h->root.root.string; | |
6805 | p = strchr (name, ELF_VER_CHR); | |
6806 | if (p != NULL) | |
6807 | { | |
6808 | alc = bfd_malloc (p - name + 1); | |
6809 | memcpy (alc, name, p - name); | |
6810 | alc[p - name] = '\0'; | |
6811 | name = alc; | |
6812 | } | |
6813 | ||
6814 | /* Compute the hash value. */ | |
6815 | ha = bfd_elf_hash (name); | |
6816 | ||
6817 | /* Store the found hash value in the array given as the argument. */ | |
6818 | *(*valuep)++ = ha; | |
6819 | ||
6820 | /* And store it in the struct so that we can put it in the hash table | |
6821 | later. */ | |
6822 | h->elf_hash_value = ha; | |
6823 | ||
6824 | if (alc != NULL) | |
6825 | free (alc); | |
6826 | ||
6827 | return true; | |
6828 | } |