]>
Commit | Line | Data |
---|---|---|
1ab3bf1b | 1 | /* GDB routines for manipulating objfiles. |
02b40a19 | 2 | Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc. |
1ab3bf1b JG |
3 | Contributed by Cygnus Support, using pieces from other GDB modules. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
6c9638b4 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
1ab3bf1b JG |
20 | |
21 | /* This file contains support routines for creating, manipulating, and | |
22 | destroying objfile structures. */ | |
23 | ||
1ab3bf1b JG |
24 | #include "defs.h" |
25 | #include "bfd.h" /* Binary File Description */ | |
26 | #include "symtab.h" | |
27 | #include "symfile.h" | |
5e2e79f8 | 28 | #include "objfiles.h" |
610a7e74 | 29 | #include "gdb-stabs.h" |
c5198d93 | 30 | #include "target.h" |
1ab3bf1b | 31 | |
318bf84f | 32 | #include <sys/types.h> |
2b576293 | 33 | #include "gdb_stat.h" |
318bf84f | 34 | #include <fcntl.h> |
f309ad95 | 35 | #include "obstack.h" |
2b576293 | 36 | #include "gdb_string.h" |
1ab3bf1b | 37 | |
318bf84f FF |
38 | /* Prototypes for local functions */ |
39 | ||
0728afad | 40 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) |
1867b3be FF |
41 | |
42 | static int | |
43 | open_existing_mapped_file PARAMS ((char *, long, int)); | |
44 | ||
318bf84f | 45 | static int |
b0246b3b | 46 | open_mapped_file PARAMS ((char *filename, long mtime, int mapped)); |
318bf84f | 47 | |
54109914 FF |
48 | static PTR |
49 | map_to_file PARAMS ((int)); | |
50 | ||
0728afad | 51 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
1867b3be | 52 | |
b607efe7 FF |
53 | static void |
54 | add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR)); | |
55 | ||
5e2e79f8 FF |
56 | /* Externally visible variables that are owned by this module. |
57 | See declarations in objfile.h for more info. */ | |
1ab3bf1b JG |
58 | |
59 | struct objfile *object_files; /* Linked list of all objfiles */ | |
5e2e79f8 FF |
60 | struct objfile *current_objfile; /* For symbol file being read in */ |
61 | struct objfile *symfile_objfile; /* Main symbol table loaded from */ | |
02b40a19 | 62 | struct objfile *rt_common_objfile; /* For runtime common symbols */ |
5e2e79f8 | 63 | |
318bf84f | 64 | int mapped_symbol_files; /* Try to use mapped symbol files */ |
1ab3bf1b | 65 | |
73d0fc78 RP |
66 | /* Locate all mappable sections of a BFD file. |
67 | objfile_p_char is a char * to get it through | |
68 | bfd_map_over_sections; we cast it back to its proper type. */ | |
69 | ||
a2266bed RU |
70 | #ifndef TARGET_KEEP_SECTION |
71 | #define TARGET_KEEP_SECTION(ASECT) 0 | |
72 | #endif | |
73 | ||
73d0fc78 RP |
74 | static void |
75 | add_to_objfile_sections (abfd, asect, objfile_p_char) | |
76 | bfd *abfd; | |
77 | sec_ptr asect; | |
78 | PTR objfile_p_char; | |
79 | { | |
80 | struct objfile *objfile = (struct objfile *) objfile_p_char; | |
81 | struct obj_section section; | |
82 | flagword aflag; | |
83 | ||
84 | aflag = bfd_get_section_flags (abfd, asect); | |
a2266bed RU |
85 | |
86 | if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION(asect))) | |
73d0fc78 | 87 | return; |
a2266bed | 88 | |
73d0fc78 RP |
89 | if (0 == bfd_section_size (abfd, asect)) |
90 | return; | |
91 | section.offset = 0; | |
4365c36c | 92 | section.objfile = objfile; |
94d4b713 | 93 | section.the_bfd_section = asect; |
b9580b81 | 94 | section.ovly_mapped = 0; |
73d0fc78 RP |
95 | section.addr = bfd_section_vma (abfd, asect); |
96 | section.endaddr = section.addr + bfd_section_size (abfd, asect); | |
5579919f | 97 | obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof(section)); |
5573d7d4 | 98 | objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); |
73d0fc78 RP |
99 | } |
100 | ||
101 | /* Builds a section table for OBJFILE. | |
4d57c599 JK |
102 | Returns 0 if OK, 1 on error (in which case bfd_error contains the |
103 | error). */ | |
73d0fc78 | 104 | |
4d57c599 | 105 | int |
73d0fc78 RP |
106 | build_objfile_section_table (objfile) |
107 | struct objfile *objfile; | |
108 | { | |
e14316e7 JK |
109 | /* objfile->sections can be already set when reading a mapped symbol |
110 | file. I believe that we do need to rebuild the section table in | |
111 | this case (we rebuild other things derived from the bfd), but we | |
112 | can't free the old one (it's in the psymbol_obstack). So we just | |
113 | waste some memory. */ | |
73d0fc78 RP |
114 | |
115 | objfile->sections_end = 0; | |
116 | bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile); | |
ccd87bf2 JK |
117 | objfile->sections = (struct obj_section *) |
118 | obstack_finish (&objfile->psymbol_obstack); | |
5573d7d4 | 119 | objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; |
73d0fc78 RP |
120 | return(0); |
121 | } | |
122 | ||
b0246b3b FF |
123 | /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates |
124 | whether or not an objfile is to be mapped (MAPPED), allocate a new objfile | |
125 | struct, fill it in as best we can, link it into the list of all known | |
126 | objfiles, and return a pointer to the new objfile struct. */ | |
1ab3bf1b JG |
127 | |
128 | struct objfile * | |
b0246b3b | 129 | allocate_objfile (abfd, mapped) |
1ab3bf1b | 130 | bfd *abfd; |
318bf84f | 131 | int mapped; |
1ab3bf1b | 132 | { |
318bf84f | 133 | struct objfile *objfile = NULL; |
7f4c8595 | 134 | struct objfile *last_one = NULL; |
318bf84f FF |
135 | |
136 | mapped |= mapped_symbol_files; | |
137 | ||
0728afad | 138 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) |
7a9eb4c4 | 139 | if (abfd != NULL) |
100f92e2 | 140 | { |
318bf84f | 141 | |
100f92e2 JK |
142 | /* If we can support mapped symbol files, try to open/reopen the |
143 | mapped file that corresponds to the file from which we wish to | |
144 | read symbols. If the objfile is to be mapped, we must malloc | |
145 | the structure itself using the mmap version, and arrange that | |
146 | all memory allocation for the objfile uses the mmap routines. | |
147 | If we are reusing an existing mapped file, from which we get | |
148 | our objfile pointer, we have to make sure that we update the | |
149 | pointers to the alloc/free functions in the obstack, in case | |
150 | these functions have moved within the current gdb. */ | |
151 | ||
152 | int fd; | |
153 | ||
154 | fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), | |
155 | mapped); | |
156 | if (fd >= 0) | |
157 | { | |
100f92e2 JK |
158 | PTR md; |
159 | ||
54109914 | 160 | if ((md = map_to_file (fd)) == NULL) |
100f92e2 JK |
161 | { |
162 | close (fd); | |
163 | } | |
164 | else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) | |
165 | { | |
166 | /* Update memory corruption handler function addresses. */ | |
167 | init_malloc (md); | |
168 | objfile -> md = md; | |
169 | objfile -> mmfd = fd; | |
170 | /* Update pointers to functions to *our* copies */ | |
2ad5709f FF |
171 | obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc); |
172 | obstack_freefun (&objfile -> psymbol_cache.cache, mfree); | |
100f92e2 JK |
173 | obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc); |
174 | obstack_freefun (&objfile -> psymbol_obstack, mfree); | |
175 | obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc); | |
176 | obstack_freefun (&objfile -> symbol_obstack, mfree); | |
177 | obstack_chunkfun (&objfile -> type_obstack, xmmalloc); | |
178 | obstack_freefun (&objfile -> type_obstack, mfree); | |
179 | /* If already in objfile list, unlink it. */ | |
180 | unlink_objfile (objfile); | |
181 | /* Forget things specific to a particular gdb, may have changed. */ | |
182 | objfile -> sf = NULL; | |
183 | } | |
184 | else | |
185 | { | |
186 | ||
187 | /* Set up to detect internal memory corruption. MUST be | |
188 | done before the first malloc. See comments in | |
189 | init_malloc() and mmcheck(). */ | |
190 | ||
191 | init_malloc (md); | |
192 | ||
193 | objfile = (struct objfile *) | |
194 | xmmalloc (md, sizeof (struct objfile)); | |
195 | memset (objfile, 0, sizeof (struct objfile)); | |
196 | objfile -> md = md; | |
197 | objfile -> mmfd = fd; | |
198 | objfile -> flags |= OBJF_MAPPED; | |
199 | mmalloc_setkey (objfile -> md, 0, objfile); | |
2ad5709f FF |
200 | obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache, |
201 | 0, 0, xmmalloc, mfree, | |
202 | objfile -> md); | |
100f92e2 JK |
203 | obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack, |
204 | 0, 0, xmmalloc, mfree, | |
205 | objfile -> md); | |
206 | obstack_specify_allocation_with_arg (&objfile -> symbol_obstack, | |
207 | 0, 0, xmmalloc, mfree, | |
208 | objfile -> md); | |
209 | obstack_specify_allocation_with_arg (&objfile -> type_obstack, | |
210 | 0, 0, xmmalloc, mfree, | |
211 | objfile -> md); | |
212 | } | |
213 | } | |
214 | ||
215 | if (mapped && (objfile == NULL)) | |
216 | { | |
217 | warning ("symbol table for '%s' will not be mapped", | |
218 | bfd_get_filename (abfd)); | |
219 | } | |
220 | } | |
0728afad | 221 | #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */ |
1ab3bf1b | 222 | |
318bf84f | 223 | if (mapped) |
1ab3bf1b | 224 | { |
e7b6403a | 225 | warning ("mapped symbol tables are not supported on this machine; missing or broken mmap()."); |
318bf84f FF |
226 | |
227 | /* Turn off the global flag so we don't try to do mapped symbol tables | |
228 | any more, which shuts up gdb unless the user specifically gives the | |
229 | "mapped" keyword again. */ | |
230 | ||
231 | mapped_symbol_files = 0; | |
1ab3bf1b | 232 | } |
318bf84f | 233 | |
0728afad | 234 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
318bf84f FF |
235 | |
236 | /* If we don't support mapped symbol files, didn't ask for the file to be | |
237 | mapped, or failed to open the mapped file for some reason, then revert | |
238 | back to an unmapped objfile. */ | |
239 | ||
240 | if (objfile == NULL) | |
1ab3bf1b JG |
241 | { |
242 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
4ed3a9ea | 243 | memset (objfile, 0, sizeof (struct objfile)); |
318bf84f | 244 | objfile -> md = NULL; |
2ad5709f FF |
245 | obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0, |
246 | xmalloc, free); | |
cd46ffad FF |
247 | obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc, |
248 | free); | |
249 | obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc, | |
250 | free); | |
251 | obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc, | |
252 | free); | |
1ab3bf1b JG |
253 | } |
254 | ||
b0246b3b FF |
255 | /* Update the per-objfile information that comes from the bfd, ensuring |
256 | that any data that is reference is saved in the per-objfile data | |
257 | region. */ | |
1ab3bf1b JG |
258 | |
259 | objfile -> obfd = abfd; | |
2d6d969c FF |
260 | if (objfile -> name != NULL) |
261 | { | |
262 | mfree (objfile -> md, objfile -> name); | |
263 | } | |
7a9eb4c4 PB |
264 | if (abfd != NULL) |
265 | { | |
266 | objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd)); | |
267 | objfile -> mtime = bfd_get_mtime (abfd); | |
1ab3bf1b | 268 | |
7a9eb4c4 | 269 | /* Build section table. */ |
73d0fc78 | 270 | |
7a9eb4c4 PB |
271 | if (build_objfile_section_table (objfile)) |
272 | { | |
273 | error ("Can't find the file sections in `%s': %s", | |
274 | objfile -> name, bfd_errmsg (bfd_get_error ())); | |
275 | } | |
73d0fc78 RP |
276 | } |
277 | ||
7f4c8595 | 278 | /* Add this file onto the tail of the linked list of other such files. */ |
1ab3bf1b | 279 | |
7f4c8595 SS |
280 | objfile -> next = NULL; |
281 | if (object_files == NULL) | |
282 | object_files = objfile; | |
283 | else | |
284 | { | |
285 | for (last_one = object_files; | |
286 | last_one -> next; | |
287 | last_one = last_one -> next); | |
288 | last_one -> next = objfile; | |
289 | } | |
1ab3bf1b JG |
290 | return (objfile); |
291 | } | |
292 | ||
3a470454 JK |
293 | /* Put OBJFILE at the front of the list. */ |
294 | ||
295 | void | |
296 | objfile_to_front (objfile) | |
297 | struct objfile *objfile; | |
298 | { | |
299 | struct objfile **objp; | |
300 | for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) | |
301 | { | |
302 | if (*objp == objfile) | |
303 | { | |
304 | /* Unhook it from where it is. */ | |
305 | *objp = objfile->next; | |
306 | /* Put it in the front. */ | |
307 | objfile->next = object_files; | |
308 | object_files = objfile; | |
309 | break; | |
310 | } | |
311 | } | |
312 | } | |
313 | ||
6c316cfd FF |
314 | /* Unlink OBJFILE from the list of known objfiles, if it is found in the |
315 | list. | |
316 | ||
317 | It is not a bug, or error, to call this function if OBJFILE is not known | |
318 | to be in the current list. This is done in the case of mapped objfiles, | |
319 | for example, just to ensure that the mapped objfile doesn't appear twice | |
320 | in the list. Since the list is threaded, linking in a mapped objfile | |
321 | twice would create a circular list. | |
322 | ||
323 | If OBJFILE turns out to be in the list, we zap it's NEXT pointer after | |
324 | unlinking it, just to ensure that we have completely severed any linkages | |
325 | between the OBJFILE and the list. */ | |
326 | ||
327 | void | |
328 | unlink_objfile (objfile) | |
329 | struct objfile *objfile; | |
330 | { | |
331 | struct objfile** objpp; | |
332 | ||
333 | for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next)) | |
334 | { | |
335 | if (*objpp == objfile) | |
336 | { | |
337 | *objpp = (*objpp) -> next; | |
338 | objfile -> next = NULL; | |
339 | break; | |
340 | } | |
341 | } | |
342 | } | |
343 | ||
1ab3bf1b JG |
344 | |
345 | /* Destroy an objfile and all the symtabs and psymtabs under it. Note | |
346 | that as much as possible is allocated on the symbol_obstack and | |
80d68b1d FF |
347 | psymbol_obstack, so that the memory can be efficiently freed. |
348 | ||
349 | Things which we do NOT free because they are not in malloc'd memory | |
350 | or not in memory specific to the objfile include: | |
351 | ||
352 | objfile -> sf | |
353 | ||
2d6d969c FF |
354 | FIXME: If the objfile is using reusable symbol information (via mmalloc), |
355 | then we need to take into account the fact that more than one process | |
356 | may be using the symbol information at the same time (when mmalloc is | |
357 | extended to support cooperative locking). When more than one process | |
358 | is using the mapped symbol info, we need to be more careful about when | |
359 | we free objects in the reusable area. */ | |
1ab3bf1b JG |
360 | |
361 | void | |
362 | free_objfile (objfile) | |
363 | struct objfile *objfile; | |
364 | { | |
2d6d969c FF |
365 | /* First do any symbol file specific actions required when we are |
366 | finished with a particular symbol file. Note that if the objfile | |
367 | is using reusable symbol information (via mmalloc) then each of | |
368 | these routines is responsible for doing the correct thing, either | |
369 | freeing things which are valid only during this particular gdb | |
370 | execution, or leaving them to be reused during the next one. */ | |
1ab3bf1b | 371 | |
80d68b1d FF |
372 | if (objfile -> sf != NULL) |
373 | { | |
374 | (*objfile -> sf -> sym_finish) (objfile); | |
375 | } | |
2d6d969c FF |
376 | |
377 | /* We always close the bfd. */ | |
378 | ||
80d68b1d | 379 | if (objfile -> obfd != NULL) |
1ab3bf1b | 380 | { |
346168a2 | 381 | char *name = bfd_get_filename (objfile->obfd); |
9de0904c JK |
382 | if (!bfd_close (objfile -> obfd)) |
383 | warning ("cannot close \"%s\": %s", | |
384 | name, bfd_errmsg (bfd_get_error ())); | |
346168a2 | 385 | free (name); |
1ab3bf1b JG |
386 | } |
387 | ||
2d6d969c | 388 | /* Remove it from the chain of all objfiles. */ |
1ab3bf1b | 389 | |
6c316cfd | 390 | unlink_objfile (objfile); |
1ab3bf1b | 391 | |
02b40a19 PS |
392 | /* If we are going to free the runtime common objfile, mark it |
393 | as unallocated. */ | |
394 | ||
395 | if (objfile == rt_common_objfile) | |
396 | rt_common_objfile = NULL; | |
397 | ||
1ab3bf1b JG |
398 | /* Before the symbol table code was redone to make it easier to |
399 | selectively load and remove information particular to a specific | |
400 | linkage unit, gdb used to do these things whenever the monolithic | |
401 | symbol table was blown away. How much still needs to be done | |
402 | is unknown, but we play it safe for now and keep each action until | |
403 | it is shown to be no longer needed. */ | |
404 | ||
1ab3bf1b JG |
405 | #if defined (CLEAR_SOLIB) |
406 | CLEAR_SOLIB (); | |
c5198d93 JK |
407 | /* CLEAR_SOLIB closes the bfd's for any shared libraries. But |
408 | the to_sections for a core file might refer to those bfd's. So | |
409 | detach any core file. */ | |
410 | { | |
411 | struct target_ops *t = find_core_target (); | |
412 | if (t != NULL) | |
413 | (t->to_detach) (NULL, 0); | |
414 | } | |
1ab3bf1b | 415 | #endif |
4d57c599 JK |
416 | /* I *think* all our callers call clear_symtab_users. If so, no need |
417 | to call this here. */ | |
1ab3bf1b JG |
418 | clear_pc_function_cache (); |
419 | ||
2d6d969c FF |
420 | /* The last thing we do is free the objfile struct itself for the |
421 | non-reusable case, or detach from the mapped file for the reusable | |
422 | case. Note that the mmalloc_detach or the mfree is the last thing | |
423 | we can do with this objfile. */ | |
1ab3bf1b | 424 | |
0728afad | 425 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) |
55b3ef9a | 426 | |
2d6d969c FF |
427 | if (objfile -> flags & OBJF_MAPPED) |
428 | { | |
429 | /* Remember the fd so we can close it. We can't close it before | |
430 | doing the detach, and after the detach the objfile is gone. */ | |
100f92e2 JK |
431 | int mmfd; |
432 | ||
2d6d969c FF |
433 | mmfd = objfile -> mmfd; |
434 | mmalloc_detach (objfile -> md); | |
55b3ef9a | 435 | objfile = NULL; |
4ed3a9ea | 436 | close (mmfd); |
2d6d969c | 437 | } |
55b3ef9a | 438 | |
0728afad | 439 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
55b3ef9a FF |
440 | |
441 | /* If we still have an objfile, then either we don't support reusable | |
442 | objfiles or this one was not reusable. So free it normally. */ | |
443 | ||
444 | if (objfile != NULL) | |
2d6d969c FF |
445 | { |
446 | if (objfile -> name != NULL) | |
447 | { | |
448 | mfree (objfile -> md, objfile -> name); | |
449 | } | |
346168a2 JG |
450 | if (objfile->global_psymbols.list) |
451 | mfree (objfile->md, objfile->global_psymbols.list); | |
452 | if (objfile->static_psymbols.list) | |
453 | mfree (objfile->md, objfile->static_psymbols.list); | |
2d6d969c | 454 | /* Free the obstacks for non-reusable objfiles */ |
2ad5709f | 455 | obstack_free (&objfile -> psymbol_cache.cache, 0); |
2d6d969c FF |
456 | obstack_free (&objfile -> psymbol_obstack, 0); |
457 | obstack_free (&objfile -> symbol_obstack, 0); | |
458 | obstack_free (&objfile -> type_obstack, 0); | |
459 | mfree (objfile -> md, objfile); | |
55b3ef9a | 460 | objfile = NULL; |
2d6d969c | 461 | } |
1ab3bf1b JG |
462 | } |
463 | ||
cba0d141 | 464 | |
0eb22669 | 465 | /* Free all the object files at once and clean up their users. */ |
cba0d141 JG |
466 | |
467 | void | |
468 | free_all_objfiles () | |
469 | { | |
470 | struct objfile *objfile, *temp; | |
471 | ||
472 | ALL_OBJFILES_SAFE (objfile, temp) | |
473 | { | |
474 | free_objfile (objfile); | |
475 | } | |
0eb22669 | 476 | clear_symtab_users (); |
cba0d141 | 477 | } |
3c02636b JK |
478 | \f |
479 | /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS | |
480 | entries in new_offsets. */ | |
481 | void | |
482 | objfile_relocate (objfile, new_offsets) | |
483 | struct objfile *objfile; | |
484 | struct section_offsets *new_offsets; | |
485 | { | |
b9580b81 MS |
486 | struct section_offsets *delta = (struct section_offsets *) |
487 | alloca (sizeof (struct section_offsets) | |
488 | + objfile->num_sections * sizeof (delta->offsets)); | |
3c02636b JK |
489 | |
490 | { | |
491 | int i; | |
492 | int something_changed = 0; | |
493 | for (i = 0; i < objfile->num_sections; ++i) | |
494 | { | |
495 | ANOFFSET (delta, i) = | |
496 | ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); | |
497 | if (ANOFFSET (delta, i) != 0) | |
498 | something_changed = 1; | |
499 | } | |
500 | if (!something_changed) | |
501 | return; | |
502 | } | |
503 | ||
504 | /* OK, get all the symtabs. */ | |
505 | { | |
506 | struct symtab *s; | |
507 | ||
72bba93b | 508 | ALL_OBJFILE_SYMTABS (objfile, s) |
3c02636b JK |
509 | { |
510 | struct linetable *l; | |
511 | struct blockvector *bv; | |
512 | int i; | |
513 | ||
514 | /* First the line table. */ | |
515 | l = LINETABLE (s); | |
516 | if (l) | |
517 | { | |
518 | for (i = 0; i < l->nitems; ++i) | |
519 | l->item[i].pc += ANOFFSET (delta, s->block_line_section); | |
520 | } | |
521 | ||
522 | /* Don't relocate a shared blockvector more than once. */ | |
523 | if (!s->primary) | |
524 | continue; | |
525 | ||
526 | bv = BLOCKVECTOR (s); | |
527 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) | |
528 | { | |
529 | struct block *b; | |
530 | int j; | |
531 | ||
532 | b = BLOCKVECTOR_BLOCK (bv, i); | |
533 | BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); | |
b9580b81 | 534 | BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); |
3c02636b JK |
535 | |
536 | for (j = 0; j < BLOCK_NSYMS (b); ++j) | |
537 | { | |
538 | struct symbol *sym = BLOCK_SYM (b, j); | |
539 | /* The RS6000 code from which this was taken skipped | |
540 | any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. | |
541 | But I'm leaving out that test, on the theory that | |
542 | they can't possibly pass the tests below. */ | |
543 | if ((SYMBOL_CLASS (sym) == LOC_LABEL | |
544 | || SYMBOL_CLASS (sym) == LOC_STATIC) | |
545 | && SYMBOL_SECTION (sym) >= 0) | |
546 | { | |
b9580b81 | 547 | SYMBOL_VALUE_ADDRESS (sym) += |
3c02636b JK |
548 | ANOFFSET (delta, SYMBOL_SECTION (sym)); |
549 | } | |
72bba93b SG |
550 | #ifdef MIPS_EFI_SYMBOL_NAME |
551 | /* Relocate Extra Function Info for ecoff. */ | |
552 | ||
553 | else | |
554 | if (SYMBOL_CLASS (sym) == LOC_CONST | |
555 | && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE | |
556 | && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) | |
b9580b81 MS |
557 | ecoff_relocate_efi (sym, ANOFFSET (delta, |
558 | s->block_line_section)); | |
72bba93b | 559 | #endif |
3c02636b JK |
560 | } |
561 | } | |
562 | } | |
563 | } | |
564 | ||
610a7e74 ILT |
565 | { |
566 | struct partial_symtab *p; | |
567 | ||
568 | ALL_OBJFILE_PSYMTABS (objfile, p) | |
569 | { | |
570 | p->textlow += ANOFFSET (delta, SECT_OFF_TEXT); | |
571 | p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT); | |
572 | } | |
573 | } | |
574 | ||
575 | { | |
2ad5709f | 576 | struct partial_symbol **psym; |
610a7e74 ILT |
577 | |
578 | for (psym = objfile->global_psymbols.list; | |
579 | psym < objfile->global_psymbols.next; | |
580 | psym++) | |
2ad5709f | 581 | if (SYMBOL_SECTION (*psym) >= 0) |
b9580b81 MS |
582 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, |
583 | SYMBOL_SECTION (*psym)); | |
610a7e74 ILT |
584 | for (psym = objfile->static_psymbols.list; |
585 | psym < objfile->static_psymbols.next; | |
586 | psym++) | |
2ad5709f | 587 | if (SYMBOL_SECTION (*psym) >= 0) |
b9580b81 MS |
588 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, |
589 | SYMBOL_SECTION (*psym)); | |
610a7e74 ILT |
590 | } |
591 | ||
3c02636b JK |
592 | { |
593 | struct minimal_symbol *msym; | |
594 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
610a7e74 ILT |
595 | if (SYMBOL_SECTION (msym) >= 0) |
596 | SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); | |
3c02636b | 597 | } |
3a470454 JK |
598 | /* Relocating different sections by different amounts may cause the symbols |
599 | to be out of order. */ | |
600 | msymbols_sort (objfile); | |
3c02636b JK |
601 | |
602 | { | |
603 | int i; | |
604 | for (i = 0; i < objfile->num_sections; ++i) | |
605 | ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i); | |
606 | } | |
72bba93b SG |
607 | |
608 | { | |
609 | struct obj_section *s; | |
610 | bfd *abfd; | |
611 | ||
3a470454 | 612 | abfd = objfile->obfd; |
72bba93b | 613 | |
3a470454 JK |
614 | for (s = objfile->sections; |
615 | s < objfile->sections_end; ++s) | |
72bba93b SG |
616 | { |
617 | flagword flags; | |
618 | ||
619 | flags = bfd_get_section_flags (abfd, s->the_bfd_section); | |
620 | ||
621 | if (flags & SEC_CODE) | |
622 | { | |
b9580b81 | 623 | s->addr += ANOFFSET (delta, SECT_OFF_TEXT); |
72bba93b SG |
624 | s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT); |
625 | } | |
626 | else if (flags & (SEC_DATA | SEC_LOAD)) | |
627 | { | |
b9580b81 | 628 | s->addr += ANOFFSET (delta, SECT_OFF_DATA); |
72bba93b SG |
629 | s->endaddr += ANOFFSET (delta, SECT_OFF_DATA); |
630 | } | |
631 | else if (flags & SEC_ALLOC) | |
632 | { | |
b9580b81 | 633 | s->addr += ANOFFSET (delta, SECT_OFF_BSS); |
72bba93b SG |
634 | s->endaddr += ANOFFSET (delta, SECT_OFF_BSS); |
635 | } | |
636 | } | |
637 | } | |
a4b4f520 | 638 | |
40b647e9 | 639 | if (objfile->ei.entry_point != ~(CORE_ADDR)0) |
a4b4f520 SG |
640 | objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT); |
641 | ||
642 | if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) | |
643 | { | |
b9580b81 | 644 | objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); |
a4b4f520 SG |
645 | objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); |
646 | } | |
647 | ||
648 | if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) | |
649 | { | |
b9580b81 | 650 | objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); |
a4b4f520 SG |
651 | objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT); |
652 | } | |
653 | ||
654 | if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) | |
655 | { | |
b9580b81 | 656 | objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); |
a4b4f520 SG |
657 | objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); |
658 | } | |
ee804cff FF |
659 | |
660 | /* Relocate breakpoints as necessary, after things are relocated. */ | |
661 | breakpoint_re_set (); | |
3c02636b JK |
662 | } |
663 | \f | |
1ab3bf1b JG |
664 | /* Many places in gdb want to test just to see if we have any partial |
665 | symbols available. This function returns zero if none are currently | |
666 | available, nonzero otherwise. */ | |
667 | ||
668 | int | |
669 | have_partial_symbols () | |
670 | { | |
671 | struct objfile *ofp; | |
1ab3bf1b | 672 | |
84ffdec2 | 673 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
674 | { |
675 | if (ofp -> psymtabs != NULL) | |
676 | { | |
84ffdec2 | 677 | return 1; |
1ab3bf1b JG |
678 | } |
679 | } | |
84ffdec2 | 680 | return 0; |
1ab3bf1b JG |
681 | } |
682 | ||
683 | /* Many places in gdb want to test just to see if we have any full | |
684 | symbols available. This function returns zero if none are currently | |
685 | available, nonzero otherwise. */ | |
686 | ||
687 | int | |
688 | have_full_symbols () | |
689 | { | |
690 | struct objfile *ofp; | |
1ab3bf1b | 691 | |
84ffdec2 | 692 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
693 | { |
694 | if (ofp -> symtabs != NULL) | |
695 | { | |
84ffdec2 | 696 | return 1; |
1ab3bf1b JG |
697 | } |
698 | } | |
84ffdec2 | 699 | return 0; |
1ab3bf1b JG |
700 | } |
701 | ||
702 | /* Many places in gdb want to test just to see if we have any minimal | |
703 | symbols available. This function returns zero if none are currently | |
704 | available, nonzero otherwise. */ | |
705 | ||
706 | int | |
707 | have_minimal_symbols () | |
708 | { | |
709 | struct objfile *ofp; | |
1ab3bf1b | 710 | |
84ffdec2 | 711 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
712 | { |
713 | if (ofp -> msymbols != NULL) | |
714 | { | |
84ffdec2 | 715 | return 1; |
1ab3bf1b JG |
716 | } |
717 | } | |
84ffdec2 | 718 | return 0; |
1ab3bf1b JG |
719 | } |
720 | ||
0728afad | 721 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) |
1867b3be FF |
722 | |
723 | /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp | |
724 | of the corresponding symbol file in MTIME, try to open an existing file | |
725 | with the name SYMSFILENAME and verify it is more recent than the base | |
726 | file by checking it's timestamp against MTIME. | |
727 | ||
728 | If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. | |
729 | ||
730 | If SYMSFILENAME does exist, but is out of date, we check to see if the | |
731 | user has specified creation of a mapped file. If so, we don't issue | |
732 | any warning message because we will be creating a new mapped file anyway, | |
733 | overwriting the old one. If not, then we issue a warning message so that | |
734 | the user will know why we aren't using this existing mapped symbol file. | |
735 | In either case, we return -1. | |
736 | ||
737 | If SYMSFILENAME does exist and is not out of date, but can't be opened for | |
738 | some reason, then prints an appropriate system error message and returns -1. | |
739 | ||
740 | Otherwise, returns the open file descriptor. */ | |
741 | ||
742 | static int | |
743 | open_existing_mapped_file (symsfilename, mtime, mapped) | |
744 | char *symsfilename; | |
745 | long mtime; | |
746 | int mapped; | |
747 | { | |
748 | int fd = -1; | |
749 | struct stat sbuf; | |
750 | ||
751 | if (stat (symsfilename, &sbuf) == 0) | |
752 | { | |
753 | if (sbuf.st_mtime < mtime) | |
754 | { | |
755 | if (!mapped) | |
756 | { | |
a679650f FF |
757 | warning ("mapped symbol file `%s' is out of date, ignored it", |
758 | symsfilename); | |
1867b3be FF |
759 | } |
760 | } | |
761 | else if ((fd = open (symsfilename, O_RDWR)) < 0) | |
762 | { | |
763 | if (error_pre_print) | |
764 | { | |
199b2450 | 765 | printf_unfiltered (error_pre_print); |
1867b3be FF |
766 | } |
767 | print_sys_errmsg (symsfilename, errno); | |
768 | } | |
769 | } | |
770 | return (fd); | |
771 | } | |
772 | ||
b0246b3b | 773 | /* Look for a mapped symbol file that corresponds to FILENAME and is more |
318bf84f | 774 | recent than MTIME. If MAPPED is nonzero, the user has asked that gdb |
b0246b3b FF |
775 | use a mapped symbol file for this file, so create a new one if one does |
776 | not currently exist. | |
318bf84f FF |
777 | |
778 | If found, then return an open file descriptor for the file, otherwise | |
779 | return -1. | |
780 | ||
781 | This routine is responsible for implementing the policy that generates | |
782 | the name of the mapped symbol file from the name of a file containing | |
1867b3be FF |
783 | symbols that gdb would like to read. Currently this policy is to append |
784 | ".syms" to the name of the file. | |
785 | ||
786 | This routine is also responsible for implementing the policy that | |
787 | determines where the mapped symbol file is found (the search path). | |
788 | This policy is that when reading an existing mapped file, a file of | |
789 | the correct name in the current directory takes precedence over a | |
790 | file of the correct name in the same directory as the symbol file. | |
791 | When creating a new mapped file, it is always created in the current | |
792 | directory. This helps to minimize the chances of a user unknowingly | |
793 | creating big mapped files in places like /bin and /usr/local/bin, and | |
794 | allows a local copy to override a manually installed global copy (in | |
795 | /bin for example). */ | |
318bf84f FF |
796 | |
797 | static int | |
b0246b3b FF |
798 | open_mapped_file (filename, mtime, mapped) |
799 | char *filename; | |
318bf84f FF |
800 | long mtime; |
801 | int mapped; | |
802 | { | |
803 | int fd; | |
1867b3be | 804 | char *symsfilename; |
318bf84f | 805 | |
1867b3be FF |
806 | /* First try to open an existing file in the current directory, and |
807 | then try the directory where the symbol file is located. */ | |
318bf84f | 808 | |
1867b3be FF |
809 | symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL); |
810 | if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0) | |
318bf84f | 811 | { |
1867b3be FF |
812 | free (symsfilename); |
813 | symsfilename = concat (filename, ".syms", (char *) NULL); | |
814 | fd = open_existing_mapped_file (symsfilename, mtime, mapped); | |
318bf84f FF |
815 | } |
816 | ||
1867b3be FF |
817 | /* If we don't have an open file by now, then either the file does not |
818 | already exist, or the base file has changed since it was created. In | |
819 | either case, if the user has specified use of a mapped file, then | |
820 | create a new mapped file, truncating any existing one. If we can't | |
821 | create one, print a system error message saying why we can't. | |
318bf84f FF |
822 | |
823 | By default the file is rw for everyone, with the user's umask taking | |
824 | care of turning off the permissions the user wants off. */ | |
825 | ||
1867b3be | 826 | if ((fd < 0) && mapped) |
318bf84f | 827 | { |
1867b3be FF |
828 | free (symsfilename); |
829 | symsfilename = concat ("./", basename (filename), ".syms", | |
830 | (char *) NULL); | |
831 | if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) | |
832 | { | |
833 | if (error_pre_print) | |
834 | { | |
199b2450 | 835 | printf_unfiltered (error_pre_print); |
1867b3be FF |
836 | } |
837 | print_sys_errmsg (symsfilename, errno); | |
838 | } | |
318bf84f FF |
839 | } |
840 | ||
1867b3be | 841 | free (symsfilename); |
318bf84f FF |
842 | return (fd); |
843 | } | |
844 | ||
54109914 FF |
845 | static PTR |
846 | map_to_file (fd) | |
847 | int fd; | |
848 | { | |
849 | PTR md; | |
850 | CORE_ADDR mapto; | |
54109914 FF |
851 | |
852 | md = mmalloc_attach (fd, (PTR) 0); | |
853 | if (md != NULL) | |
854 | { | |
855 | mapto = (CORE_ADDR) mmalloc_getkey (md, 1); | |
856 | md = mmalloc_detach (md); | |
857 | if (md != NULL) | |
858 | { | |
859 | /* FIXME: should figure out why detach failed */ | |
860 | md = NULL; | |
861 | } | |
862 | else if (mapto != (CORE_ADDR) NULL) | |
863 | { | |
864 | /* This mapping file needs to be remapped at "mapto" */ | |
865 | md = mmalloc_attach (fd, (PTR) mapto); | |
866 | } | |
867 | else | |
868 | { | |
869 | /* This is a freshly created mapping file. */ | |
870 | mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024); | |
0a4d0a49 | 871 | if (mapto != 0) |
54109914 FF |
872 | { |
873 | /* To avoid reusing the freshly created mapping file, at the | |
874 | address selected by mmap, we must truncate it before trying | |
875 | to do an attach at the address we want. */ | |
876 | ftruncate (fd, 0); | |
877 | md = mmalloc_attach (fd, (PTR) mapto); | |
878 | if (md != NULL) | |
879 | { | |
880 | mmalloc_setkey (md, 1, (PTR) mapto); | |
881 | } | |
882 | } | |
883 | } | |
884 | } | |
885 | return (md); | |
886 | } | |
887 | ||
0728afad | 888 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
73d0fc78 | 889 | |
b9580b81 MS |
890 | /* Returns a section whose range includes PC and SECTION, |
891 | or NULL if none found. Note the distinction between the return type, | |
892 | struct obj_section (which is defined in gdb), and the input type | |
893 | struct sec (which is a bfd-defined data type). The obj_section | |
894 | contains a pointer to the bfd struct sec section. */ | |
73d0fc78 | 895 | |
4365c36c | 896 | struct obj_section * |
b9580b81 | 897 | find_pc_sect_section (pc, section) |
73d0fc78 | 898 | CORE_ADDR pc; |
b9580b81 | 899 | struct sec *section; |
73d0fc78 RP |
900 | { |
901 | struct obj_section *s; | |
902 | struct objfile *objfile; | |
903 | ||
904 | ALL_OBJFILES (objfile) | |
905 | for (s = objfile->sections; s < objfile->sections_end; ++s) | |
b9580b81 MS |
906 | if ((section == 0 || section == s->the_bfd_section) && |
907 | s->addr <= pc && pc < s->endaddr) | |
4365c36c | 908 | return(s); |
73d0fc78 RP |
909 | |
910 | return(NULL); | |
911 | } | |
38b90473 | 912 | |
b9580b81 MS |
913 | /* Returns a section whose range includes PC or NULL if none found. |
914 | Backward compatibility, no section. */ | |
915 | ||
916 | struct obj_section * | |
917 | find_pc_section(pc) | |
918 | CORE_ADDR pc; | |
919 | { | |
920 | return find_pc_sect_section (pc, find_pc_mapped_section (pc)); | |
921 | } | |
922 | ||
923 | ||
38b90473 PS |
924 | /* In SVR4, we recognize a trampoline by it's section name. |
925 | That is, if the pc is in a section named ".plt" then we are in | |
926 | a trampoline. */ | |
927 | ||
928 | int | |
929 | in_plt_section(pc, name) | |
930 | CORE_ADDR pc; | |
931 | char *name; | |
932 | { | |
933 | struct obj_section *s; | |
934 | int retval = 0; | |
935 | ||
936 | s = find_pc_section(pc); | |
937 | ||
938 | retval = (s != NULL | |
939 | && s->the_bfd_section->name != NULL | |
940 | && STREQ (s->the_bfd_section->name, ".plt")); | |
941 | return(retval); | |
942 | } |