]>
Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* ELF linking support for BFD. |
051d5130 | 2 | Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 |
7898deda | 3 | Free Software Foundation, Inc. |
252b5132 RH |
4 | |
5 | This file is part of BFD, the Binary File Descriptor library. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "bfd.h" | |
22 | #include "sysdep.h" | |
23 | #include "bfdlink.h" | |
24 | #include "libbfd.h" | |
25 | #define ARCH_SIZE 0 | |
26 | #include "elf-bfd.h" | |
4ad4eba5 | 27 | #include "safe-ctype.h" |
252b5132 | 28 | |
b34976b6 | 29 | bfd_boolean |
268b6b39 | 30 | _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
252b5132 RH |
31 | { |
32 | flagword flags; | |
aad5d350 | 33 | asection *s; |
252b5132 | 34 | struct elf_link_hash_entry *h; |
14a793b2 | 35 | struct bfd_link_hash_entry *bh; |
9c5bfbb7 | 36 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
252b5132 RH |
37 | int ptralign; |
38 | ||
39 | /* This function may be called more than once. */ | |
aad5d350 AM |
40 | s = bfd_get_section_by_name (abfd, ".got"); |
41 | if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0) | |
b34976b6 | 42 | return TRUE; |
252b5132 RH |
43 | |
44 | switch (bed->s->arch_size) | |
45 | { | |
bb0deeff AO |
46 | case 32: |
47 | ptralign = 2; | |
48 | break; | |
49 | ||
50 | case 64: | |
51 | ptralign = 3; | |
52 | break; | |
53 | ||
54 | default: | |
55 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 56 | return FALSE; |
252b5132 RH |
57 | } |
58 | ||
59 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
60 | | SEC_LINKER_CREATED); | |
61 | ||
62 | s = bfd_make_section (abfd, ".got"); | |
63 | if (s == NULL | |
64 | || !bfd_set_section_flags (abfd, s, flags) | |
65 | || !bfd_set_section_alignment (abfd, s, ptralign)) | |
b34976b6 | 66 | return FALSE; |
252b5132 RH |
67 | |
68 | if (bed->want_got_plt) | |
69 | { | |
70 | s = bfd_make_section (abfd, ".got.plt"); | |
71 | if (s == NULL | |
72 | || !bfd_set_section_flags (abfd, s, flags) | |
73 | || !bfd_set_section_alignment (abfd, s, ptralign)) | |
b34976b6 | 74 | return FALSE; |
252b5132 RH |
75 | } |
76 | ||
2517a57f AM |
77 | if (bed->want_got_sym) |
78 | { | |
79 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | |
80 | (or .got.plt) section. We don't do this in the linker script | |
81 | because we don't want to define the symbol if we are not creating | |
82 | a global offset table. */ | |
14a793b2 | 83 | bh = NULL; |
2517a57f AM |
84 | if (!(_bfd_generic_link_add_one_symbol |
85 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
268b6b39 | 86 | bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh))) |
b34976b6 | 87 | return FALSE; |
14a793b2 | 88 | h = (struct elf_link_hash_entry *) bh; |
2517a57f AM |
89 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
90 | h->type = STT_OBJECT; | |
252b5132 | 91 | |
36af4a4e | 92 | if (! info->executable |
2517a57f | 93 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 94 | return FALSE; |
252b5132 | 95 | |
2517a57f AM |
96 | elf_hash_table (info)->hgot = h; |
97 | } | |
252b5132 RH |
98 | |
99 | /* The first bit of the global offset table is the header. */ | |
100 | s->_raw_size += bed->got_header_size + bed->got_symbol_offset; | |
101 | ||
b34976b6 | 102 | return TRUE; |
252b5132 RH |
103 | } |
104 | \f | |
45d6a902 AM |
105 | /* Create some sections which will be filled in with dynamic linking |
106 | information. ABFD is an input file which requires dynamic sections | |
107 | to be created. The dynamic sections take up virtual memory space | |
108 | when the final executable is run, so we need to create them before | |
109 | addresses are assigned to the output sections. We work out the | |
110 | actual contents and size of these sections later. */ | |
252b5132 | 111 | |
b34976b6 | 112 | bfd_boolean |
268b6b39 | 113 | _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
252b5132 | 114 | { |
45d6a902 AM |
115 | flagword flags; |
116 | register asection *s; | |
117 | struct elf_link_hash_entry *h; | |
118 | struct bfd_link_hash_entry *bh; | |
9c5bfbb7 | 119 | const struct elf_backend_data *bed; |
252b5132 | 120 | |
0eddce27 | 121 | if (! is_elf_hash_table (info->hash)) |
45d6a902 AM |
122 | return FALSE; |
123 | ||
124 | if (elf_hash_table (info)->dynamic_sections_created) | |
125 | return TRUE; | |
126 | ||
127 | /* Make sure that all dynamic sections use the same input BFD. */ | |
128 | if (elf_hash_table (info)->dynobj == NULL) | |
129 | elf_hash_table (info)->dynobj = abfd; | |
130 | else | |
131 | abfd = elf_hash_table (info)->dynobj; | |
132 | ||
133 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
134 | sections. */ | |
135 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
136 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
137 | ||
138 | /* A dynamically linked executable has a .interp section, but a | |
139 | shared library does not. */ | |
36af4a4e | 140 | if (info->executable) |
252b5132 | 141 | { |
45d6a902 AM |
142 | s = bfd_make_section (abfd, ".interp"); |
143 | if (s == NULL | |
144 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
145 | return FALSE; | |
146 | } | |
bb0deeff | 147 | |
0eddce27 | 148 | if (! info->traditional_format) |
45d6a902 AM |
149 | { |
150 | s = bfd_make_section (abfd, ".eh_frame_hdr"); | |
151 | if (s == NULL | |
152 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
153 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
154 | return FALSE; | |
155 | elf_hash_table (info)->eh_info.hdr_sec = s; | |
156 | } | |
bb0deeff | 157 | |
45d6a902 AM |
158 | bed = get_elf_backend_data (abfd); |
159 | ||
160 | /* Create sections to hold version informations. These are removed | |
161 | if they are not needed. */ | |
162 | s = bfd_make_section (abfd, ".gnu.version_d"); | |
163 | if (s == NULL | |
164 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
165 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
166 | return FALSE; | |
167 | ||
168 | s = bfd_make_section (abfd, ".gnu.version"); | |
169 | if (s == NULL | |
170 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
171 | || ! bfd_set_section_alignment (abfd, s, 1)) | |
172 | return FALSE; | |
173 | ||
174 | s = bfd_make_section (abfd, ".gnu.version_r"); | |
175 | if (s == NULL | |
176 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
177 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
178 | return FALSE; | |
179 | ||
180 | s = bfd_make_section (abfd, ".dynsym"); | |
181 | if (s == NULL | |
182 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
183 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
184 | return FALSE; | |
185 | ||
186 | s = bfd_make_section (abfd, ".dynstr"); | |
187 | if (s == NULL | |
188 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
189 | return FALSE; | |
190 | ||
191 | /* Create a strtab to hold the dynamic symbol names. */ | |
192 | if (elf_hash_table (info)->dynstr == NULL) | |
193 | { | |
194 | elf_hash_table (info)->dynstr = _bfd_elf_strtab_init (); | |
195 | if (elf_hash_table (info)->dynstr == NULL) | |
196 | return FALSE; | |
252b5132 RH |
197 | } |
198 | ||
45d6a902 AM |
199 | s = bfd_make_section (abfd, ".dynamic"); |
200 | if (s == NULL | |
201 | || ! bfd_set_section_flags (abfd, s, flags) | |
202 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
203 | return FALSE; | |
204 | ||
205 | /* The special symbol _DYNAMIC is always set to the start of the | |
206 | .dynamic section. This call occurs before we have processed the | |
207 | symbols for any dynamic object, so we don't have to worry about | |
208 | overriding a dynamic definition. We could set _DYNAMIC in a | |
209 | linker script, but we only want to define it if we are, in fact, | |
210 | creating a .dynamic section. We don't want to define it if there | |
211 | is no .dynamic section, since on some ELF platforms the start up | |
212 | code examines it to decide how to initialize the process. */ | |
213 | bh = NULL; | |
214 | if (! (_bfd_generic_link_add_one_symbol | |
268b6b39 AM |
215 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE, |
216 | get_elf_backend_data (abfd)->collect, &bh))) | |
45d6a902 AM |
217 | return FALSE; |
218 | h = (struct elf_link_hash_entry *) bh; | |
219 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
220 | h->type = STT_OBJECT; | |
221 | ||
36af4a4e | 222 | if (! info->executable |
45d6a902 AM |
223 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) |
224 | return FALSE; | |
225 | ||
226 | s = bfd_make_section (abfd, ".hash"); | |
227 | if (s == NULL | |
228 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
229 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
230 | return FALSE; | |
231 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; | |
232 | ||
233 | /* Let the backend create the rest of the sections. This lets the | |
234 | backend set the right flags. The backend will normally create | |
235 | the .got and .plt sections. */ | |
236 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
237 | return FALSE; | |
238 | ||
239 | elf_hash_table (info)->dynamic_sections_created = TRUE; | |
240 | ||
241 | return TRUE; | |
242 | } | |
243 | ||
244 | /* Create dynamic sections when linking against a dynamic object. */ | |
245 | ||
246 | bfd_boolean | |
268b6b39 | 247 | _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
45d6a902 AM |
248 | { |
249 | flagword flags, pltflags; | |
250 | asection *s; | |
9c5bfbb7 | 251 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
45d6a902 | 252 | |
252b5132 RH |
253 | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
254 | .rel[a].bss sections. */ | |
255 | ||
256 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
257 | | SEC_LINKER_CREATED); | |
258 | ||
259 | pltflags = flags; | |
260 | pltflags |= SEC_CODE; | |
261 | if (bed->plt_not_loaded) | |
5d1634d7 | 262 | pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); |
252b5132 RH |
263 | if (bed->plt_readonly) |
264 | pltflags |= SEC_READONLY; | |
265 | ||
266 | s = bfd_make_section (abfd, ".plt"); | |
267 | if (s == NULL | |
268 | || ! bfd_set_section_flags (abfd, s, pltflags) | |
269 | || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) | |
b34976b6 | 270 | return FALSE; |
252b5132 RH |
271 | |
272 | if (bed->want_plt_sym) | |
273 | { | |
274 | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the | |
275 | .plt section. */ | |
14a793b2 AM |
276 | struct elf_link_hash_entry *h; |
277 | struct bfd_link_hash_entry *bh = NULL; | |
278 | ||
252b5132 | 279 | if (! (_bfd_generic_link_add_one_symbol |
268b6b39 AM |
280 | (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL, |
281 | FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 282 | return FALSE; |
14a793b2 | 283 | h = (struct elf_link_hash_entry *) bh; |
252b5132 RH |
284 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
285 | h->type = STT_OBJECT; | |
286 | ||
36af4a4e | 287 | if (! info->executable |
252b5132 | 288 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 289 | return FALSE; |
252b5132 RH |
290 | } |
291 | ||
3e932841 | 292 | s = bfd_make_section (abfd, |
bf572ba0 | 293 | bed->default_use_rela_p ? ".rela.plt" : ".rel.plt"); |
252b5132 RH |
294 | if (s == NULL |
295 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
45d6a902 | 296 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
b34976b6 | 297 | return FALSE; |
252b5132 RH |
298 | |
299 | if (! _bfd_elf_create_got_section (abfd, info)) | |
b34976b6 | 300 | return FALSE; |
252b5132 | 301 | |
3018b441 RH |
302 | if (bed->want_dynbss) |
303 | { | |
304 | /* The .dynbss section is a place to put symbols which are defined | |
305 | by dynamic objects, are referenced by regular objects, and are | |
306 | not functions. We must allocate space for them in the process | |
307 | image and use a R_*_COPY reloc to tell the dynamic linker to | |
308 | initialize them at run time. The linker script puts the .dynbss | |
309 | section into the .bss section of the final image. */ | |
310 | s = bfd_make_section (abfd, ".dynbss"); | |
311 | if (s == NULL | |
77f3d027 | 312 | || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED)) |
b34976b6 | 313 | return FALSE; |
252b5132 | 314 | |
3018b441 | 315 | /* The .rel[a].bss section holds copy relocs. This section is not |
252b5132 RH |
316 | normally needed. We need to create it here, though, so that the |
317 | linker will map it to an output section. We can't just create it | |
318 | only if we need it, because we will not know whether we need it | |
319 | until we have seen all the input files, and the first time the | |
320 | main linker code calls BFD after examining all the input files | |
321 | (size_dynamic_sections) the input sections have already been | |
322 | mapped to the output sections. If the section turns out not to | |
323 | be needed, we can discard it later. We will never need this | |
324 | section when generating a shared object, since they do not use | |
325 | copy relocs. */ | |
3018b441 RH |
326 | if (! info->shared) |
327 | { | |
3e932841 KH |
328 | s = bfd_make_section (abfd, |
329 | (bed->default_use_rela_p | |
330 | ? ".rela.bss" : ".rel.bss")); | |
3018b441 RH |
331 | if (s == NULL |
332 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
45d6a902 | 333 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
b34976b6 | 334 | return FALSE; |
3018b441 | 335 | } |
252b5132 RH |
336 | } |
337 | ||
b34976b6 | 338 | return TRUE; |
252b5132 RH |
339 | } |
340 | \f | |
252b5132 RH |
341 | /* Record a new dynamic symbol. We record the dynamic symbols as we |
342 | read the input files, since we need to have a list of all of them | |
343 | before we can determine the final sizes of the output sections. | |
344 | Note that we may actually call this function even though we are not | |
345 | going to output any dynamic symbols; in some cases we know that a | |
346 | symbol should be in the dynamic symbol table, but only if there is | |
347 | one. */ | |
348 | ||
b34976b6 | 349 | bfd_boolean |
268b6b39 AM |
350 | _bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, |
351 | struct elf_link_hash_entry *h) | |
252b5132 RH |
352 | { |
353 | if (h->dynindx == -1) | |
354 | { | |
2b0f7ef9 | 355 | struct elf_strtab_hash *dynstr; |
68b6ddd0 | 356 | char *p; |
252b5132 | 357 | const char *name; |
252b5132 RH |
358 | bfd_size_type indx; |
359 | ||
7a13edea NC |
360 | /* XXX: The ABI draft says the linker must turn hidden and |
361 | internal symbols into STB_LOCAL symbols when producing the | |
362 | DSO. However, if ld.so honors st_other in the dynamic table, | |
363 | this would not be necessary. */ | |
364 | switch (ELF_ST_VISIBILITY (h->other)) | |
365 | { | |
366 | case STV_INTERNAL: | |
367 | case STV_HIDDEN: | |
9d6eee78 L |
368 | if (h->root.type != bfd_link_hash_undefined |
369 | && h->root.type != bfd_link_hash_undefweak) | |
38048eb9 L |
370 | { |
371 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; | |
b34976b6 | 372 | return TRUE; |
7a13edea | 373 | } |
0444bdd4 | 374 | |
7a13edea NC |
375 | default: |
376 | break; | |
377 | } | |
378 | ||
252b5132 RH |
379 | h->dynindx = elf_hash_table (info)->dynsymcount; |
380 | ++elf_hash_table (info)->dynsymcount; | |
381 | ||
382 | dynstr = elf_hash_table (info)->dynstr; | |
383 | if (dynstr == NULL) | |
384 | { | |
385 | /* Create a strtab to hold the dynamic symbol names. */ | |
2b0f7ef9 | 386 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
252b5132 | 387 | if (dynstr == NULL) |
b34976b6 | 388 | return FALSE; |
252b5132 RH |
389 | } |
390 | ||
391 | /* We don't put any version information in the dynamic string | |
aad5d350 | 392 | table. */ |
252b5132 RH |
393 | name = h->root.root.string; |
394 | p = strchr (name, ELF_VER_CHR); | |
68b6ddd0 AM |
395 | if (p != NULL) |
396 | /* We know that the p points into writable memory. In fact, | |
397 | there are only a few symbols that have read-only names, being | |
398 | those like _GLOBAL_OFFSET_TABLE_ that are created specially | |
399 | by the backends. Most symbols will have names pointing into | |
400 | an ELF string table read from a file, or to objalloc memory. */ | |
401 | *p = 0; | |
402 | ||
403 | indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); | |
404 | ||
405 | if (p != NULL) | |
406 | *p = ELF_VER_CHR; | |
252b5132 RH |
407 | |
408 | if (indx == (bfd_size_type) -1) | |
b34976b6 | 409 | return FALSE; |
252b5132 RH |
410 | h->dynstr_index = indx; |
411 | } | |
412 | ||
b34976b6 | 413 | return TRUE; |
252b5132 | 414 | } |
45d6a902 AM |
415 | \f |
416 | /* Record an assignment to a symbol made by a linker script. We need | |
417 | this in case some dynamic object refers to this symbol. */ | |
418 | ||
419 | bfd_boolean | |
268b6b39 AM |
420 | bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED, |
421 | struct bfd_link_info *info, | |
422 | const char *name, | |
423 | bfd_boolean provide) | |
45d6a902 AM |
424 | { |
425 | struct elf_link_hash_entry *h; | |
426 | ||
0eddce27 | 427 | if (!is_elf_hash_table (info->hash)) |
45d6a902 AM |
428 | return TRUE; |
429 | ||
430 | h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE); | |
431 | if (h == NULL) | |
432 | return FALSE; | |
433 | ||
02bb6eae AO |
434 | /* Since we're defining the symbol, don't let it seem to have not |
435 | been defined. record_dynamic_symbol and size_dynamic_sections | |
436 | may depend on this. */ | |
437 | if (h->root.type == bfd_link_hash_undefweak | |
438 | || h->root.type == bfd_link_hash_undefined) | |
439 | h->root.type = bfd_link_hash_new; | |
440 | ||
45d6a902 AM |
441 | if (h->root.type == bfd_link_hash_new) |
442 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; | |
443 | ||
444 | /* If this symbol is being provided by the linker script, and it is | |
445 | currently defined by a dynamic object, but not by a regular | |
446 | object, then mark it as undefined so that the generic linker will | |
447 | force the correct value. */ | |
448 | if (provide | |
449 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
450 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
451 | h->root.type = bfd_link_hash_undefined; | |
452 | ||
453 | /* If this symbol is not being provided by the linker script, and it is | |
454 | currently defined by a dynamic object, but not by a regular object, | |
455 | then clear out any version information because the symbol will not be | |
456 | associated with the dynamic object any more. */ | |
457 | if (!provide | |
458 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
459 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
460 | h->verinfo.verdef = NULL; | |
461 | ||
462 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
463 | ||
464 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
465 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
466 | || info->shared) | |
467 | && h->dynindx == -1) | |
468 | { | |
469 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
470 | return FALSE; | |
471 | ||
472 | /* If this is a weak defined symbol, and we know a corresponding | |
473 | real symbol from the same dynamic object, make sure the real | |
474 | symbol is also made into a dynamic symbol. */ | |
475 | if (h->weakdef != NULL | |
476 | && h->weakdef->dynindx == -1) | |
477 | { | |
478 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
479 | return FALSE; | |
480 | } | |
481 | } | |
482 | ||
483 | return TRUE; | |
484 | } | |
42751cf3 | 485 | |
8c58d23b AM |
486 | /* Record a new local dynamic symbol. Returns 0 on failure, 1 on |
487 | success, and 2 on a failure caused by attempting to record a symbol | |
488 | in a discarded section, eg. a discarded link-once section symbol. */ | |
489 | ||
490 | int | |
268b6b39 AM |
491 | elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, |
492 | bfd *input_bfd, | |
493 | long input_indx) | |
8c58d23b AM |
494 | { |
495 | bfd_size_type amt; | |
496 | struct elf_link_local_dynamic_entry *entry; | |
497 | struct elf_link_hash_table *eht; | |
498 | struct elf_strtab_hash *dynstr; | |
499 | unsigned long dynstr_index; | |
500 | char *name; | |
501 | Elf_External_Sym_Shndx eshndx; | |
502 | char esym[sizeof (Elf64_External_Sym)]; | |
503 | ||
0eddce27 | 504 | if (! is_elf_hash_table (info->hash)) |
8c58d23b AM |
505 | return 0; |
506 | ||
507 | /* See if the entry exists already. */ | |
508 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
509 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
510 | return 1; | |
511 | ||
512 | amt = sizeof (*entry); | |
268b6b39 | 513 | entry = bfd_alloc (input_bfd, amt); |
8c58d23b AM |
514 | if (entry == NULL) |
515 | return 0; | |
516 | ||
517 | /* Go find the symbol, so that we can find it's name. */ | |
518 | if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, | |
268b6b39 | 519 | 1, input_indx, &entry->isym, esym, &eshndx)) |
8c58d23b AM |
520 | { |
521 | bfd_release (input_bfd, entry); | |
522 | return 0; | |
523 | } | |
524 | ||
525 | if (entry->isym.st_shndx != SHN_UNDEF | |
526 | && (entry->isym.st_shndx < SHN_LORESERVE | |
527 | || entry->isym.st_shndx > SHN_HIRESERVE)) | |
528 | { | |
529 | asection *s; | |
530 | ||
531 | s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); | |
532 | if (s == NULL || bfd_is_abs_section (s->output_section)) | |
533 | { | |
534 | /* We can still bfd_release here as nothing has done another | |
535 | bfd_alloc. We can't do this later in this function. */ | |
536 | bfd_release (input_bfd, entry); | |
537 | return 2; | |
538 | } | |
539 | } | |
540 | ||
541 | name = (bfd_elf_string_from_elf_section | |
542 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
543 | entry->isym.st_name)); | |
544 | ||
545 | dynstr = elf_hash_table (info)->dynstr; | |
546 | if (dynstr == NULL) | |
547 | { | |
548 | /* Create a strtab to hold the dynamic symbol names. */ | |
549 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); | |
550 | if (dynstr == NULL) | |
551 | return 0; | |
552 | } | |
553 | ||
b34976b6 | 554 | dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); |
8c58d23b AM |
555 | if (dynstr_index == (unsigned long) -1) |
556 | return 0; | |
557 | entry->isym.st_name = dynstr_index; | |
558 | ||
559 | eht = elf_hash_table (info); | |
560 | ||
561 | entry->next = eht->dynlocal; | |
562 | eht->dynlocal = entry; | |
563 | entry->input_bfd = input_bfd; | |
564 | entry->input_indx = input_indx; | |
565 | eht->dynsymcount++; | |
566 | ||
567 | /* Whatever binding the symbol had before, it's now local. */ | |
568 | entry->isym.st_info | |
569 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | |
570 | ||
571 | /* The dynindx will be set at the end of size_dynamic_sections. */ | |
572 | ||
573 | return 1; | |
574 | } | |
575 | ||
30b30c21 | 576 | /* Return the dynindex of a local dynamic symbol. */ |
42751cf3 | 577 | |
30b30c21 | 578 | long |
268b6b39 AM |
579 | _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, |
580 | bfd *input_bfd, | |
581 | long input_indx) | |
30b30c21 RH |
582 | { |
583 | struct elf_link_local_dynamic_entry *e; | |
584 | ||
585 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
586 | if (e->input_bfd == input_bfd && e->input_indx == input_indx) | |
587 | return e->dynindx; | |
588 | return -1; | |
589 | } | |
590 | ||
591 | /* This function is used to renumber the dynamic symbols, if some of | |
592 | them are removed because they are marked as local. This is called | |
593 | via elf_link_hash_traverse. */ | |
594 | ||
b34976b6 | 595 | static bfd_boolean |
268b6b39 AM |
596 | elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, |
597 | void *data) | |
42751cf3 | 598 | { |
268b6b39 | 599 | size_t *count = data; |
30b30c21 | 600 | |
e92d460e AM |
601 | if (h->root.type == bfd_link_hash_warning) |
602 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
603 | ||
42751cf3 | 604 | if (h->dynindx != -1) |
30b30c21 RH |
605 | h->dynindx = ++(*count); |
606 | ||
b34976b6 | 607 | return TRUE; |
42751cf3 | 608 | } |
30b30c21 | 609 | |
062e2358 | 610 | /* Assign dynsym indices. In a shared library we generate a section |
30b30c21 RH |
611 | symbol for each output section, which come first. Next come all of |
612 | the back-end allocated local dynamic syms, followed by the rest of | |
613 | the global symbols. */ | |
614 | ||
615 | unsigned long | |
268b6b39 | 616 | _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info) |
30b30c21 RH |
617 | { |
618 | unsigned long dynsymcount = 0; | |
619 | ||
620 | if (info->shared) | |
621 | { | |
622 | asection *p; | |
623 | for (p = output_bfd->sections; p ; p = p->next) | |
bc0ba537 AM |
624 | if ((p->flags & SEC_EXCLUDE) == 0) |
625 | elf_section_data (p)->dynindx = ++dynsymcount; | |
30b30c21 RH |
626 | } |
627 | ||
628 | if (elf_hash_table (info)->dynlocal) | |
629 | { | |
630 | struct elf_link_local_dynamic_entry *p; | |
631 | for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) | |
632 | p->dynindx = ++dynsymcount; | |
633 | } | |
634 | ||
635 | elf_link_hash_traverse (elf_hash_table (info), | |
636 | elf_link_renumber_hash_table_dynsyms, | |
637 | &dynsymcount); | |
638 | ||
639 | /* There is an unused NULL entry at the head of the table which | |
640 | we must account for in our count. Unless there weren't any | |
641 | symbols, which means we'll have no table at all. */ | |
642 | if (dynsymcount != 0) | |
643 | ++dynsymcount; | |
644 | ||
645 | return elf_hash_table (info)->dynsymcount = dynsymcount; | |
646 | } | |
252b5132 | 647 | |
45d6a902 AM |
648 | /* This function is called when we want to define a new symbol. It |
649 | handles the various cases which arise when we find a definition in | |
650 | a dynamic object, or when there is already a definition in a | |
651 | dynamic object. The new symbol is described by NAME, SYM, PSEC, | |
652 | and PVALUE. We set SYM_HASH to the hash table entry. We set | |
653 | OVERRIDE if the old symbol is overriding a new definition. We set | |
654 | TYPE_CHANGE_OK if it is OK for the type to change. We set | |
655 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to | |
656 | change, we mean that we shouldn't warn if the type or size does | |
0f8a2703 | 657 | change. */ |
45d6a902 AM |
658 | |
659 | bfd_boolean | |
268b6b39 AM |
660 | _bfd_elf_merge_symbol (bfd *abfd, |
661 | struct bfd_link_info *info, | |
662 | const char *name, | |
663 | Elf_Internal_Sym *sym, | |
664 | asection **psec, | |
665 | bfd_vma *pvalue, | |
666 | struct elf_link_hash_entry **sym_hash, | |
667 | bfd_boolean *skip, | |
668 | bfd_boolean *override, | |
669 | bfd_boolean *type_change_ok, | |
0f8a2703 | 670 | bfd_boolean *size_change_ok) |
252b5132 | 671 | { |
45d6a902 AM |
672 | asection *sec; |
673 | struct elf_link_hash_entry *h; | |
674 | struct elf_link_hash_entry *flip; | |
675 | int bind; | |
676 | bfd *oldbfd; | |
677 | bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
79349b09 | 678 | bfd_boolean newweak, oldweak; |
45d6a902 AM |
679 | |
680 | *skip = FALSE; | |
681 | *override = FALSE; | |
682 | ||
683 | sec = *psec; | |
684 | bind = ELF_ST_BIND (sym->st_info); | |
685 | ||
686 | if (! bfd_is_und_section (sec)) | |
687 | h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); | |
688 | else | |
689 | h = ((struct elf_link_hash_entry *) | |
690 | bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); | |
691 | if (h == NULL) | |
692 | return FALSE; | |
693 | *sym_hash = h; | |
252b5132 | 694 | |
45d6a902 AM |
695 | /* This code is for coping with dynamic objects, and is only useful |
696 | if we are doing an ELF link. */ | |
697 | if (info->hash->creator != abfd->xvec) | |
698 | return TRUE; | |
252b5132 | 699 | |
45d6a902 AM |
700 | /* For merging, we only care about real symbols. */ |
701 | ||
702 | while (h->root.type == bfd_link_hash_indirect | |
703 | || h->root.type == bfd_link_hash_warning) | |
704 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
705 | ||
706 | /* If we just created the symbol, mark it as being an ELF symbol. | |
707 | Other than that, there is nothing to do--there is no merge issue | |
708 | with a newly defined symbol--so we just return. */ | |
709 | ||
710 | if (h->root.type == bfd_link_hash_new) | |
252b5132 | 711 | { |
45d6a902 AM |
712 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; |
713 | return TRUE; | |
714 | } | |
252b5132 | 715 | |
45d6a902 | 716 | /* OLDBFD is a BFD associated with the existing symbol. */ |
252b5132 | 717 | |
45d6a902 AM |
718 | switch (h->root.type) |
719 | { | |
720 | default: | |
721 | oldbfd = NULL; | |
722 | break; | |
252b5132 | 723 | |
45d6a902 AM |
724 | case bfd_link_hash_undefined: |
725 | case bfd_link_hash_undefweak: | |
726 | oldbfd = h->root.u.undef.abfd; | |
727 | break; | |
728 | ||
729 | case bfd_link_hash_defined: | |
730 | case bfd_link_hash_defweak: | |
731 | oldbfd = h->root.u.def.section->owner; | |
732 | break; | |
733 | ||
734 | case bfd_link_hash_common: | |
735 | oldbfd = h->root.u.c.p->section->owner; | |
736 | break; | |
737 | } | |
738 | ||
739 | /* In cases involving weak versioned symbols, we may wind up trying | |
740 | to merge a symbol with itself. Catch that here, to avoid the | |
741 | confusion that results if we try to override a symbol with | |
742 | itself. The additional tests catch cases like | |
743 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |
744 | dynamic object, which we do want to handle here. */ | |
745 | if (abfd == oldbfd | |
746 | && ((abfd->flags & DYNAMIC) == 0 | |
747 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
748 | return TRUE; | |
749 | ||
750 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, | |
751 | respectively, is from a dynamic object. */ | |
752 | ||
753 | if ((abfd->flags & DYNAMIC) != 0) | |
754 | newdyn = TRUE; | |
755 | else | |
756 | newdyn = FALSE; | |
757 | ||
758 | if (oldbfd != NULL) | |
759 | olddyn = (oldbfd->flags & DYNAMIC) != 0; | |
760 | else | |
761 | { | |
762 | asection *hsec; | |
763 | ||
764 | /* This code handles the special SHN_MIPS_{TEXT,DATA} section | |
765 | indices used by MIPS ELF. */ | |
766 | switch (h->root.type) | |
252b5132 | 767 | { |
45d6a902 AM |
768 | default: |
769 | hsec = NULL; | |
770 | break; | |
252b5132 | 771 | |
45d6a902 AM |
772 | case bfd_link_hash_defined: |
773 | case bfd_link_hash_defweak: | |
774 | hsec = h->root.u.def.section; | |
775 | break; | |
252b5132 | 776 | |
45d6a902 AM |
777 | case bfd_link_hash_common: |
778 | hsec = h->root.u.c.p->section; | |
779 | break; | |
252b5132 | 780 | } |
252b5132 | 781 | |
45d6a902 AM |
782 | if (hsec == NULL) |
783 | olddyn = FALSE; | |
784 | else | |
785 | olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0; | |
786 | } | |
252b5132 | 787 | |
45d6a902 AM |
788 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, |
789 | respectively, appear to be a definition rather than reference. */ | |
790 | ||
791 | if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) | |
792 | newdef = FALSE; | |
793 | else | |
794 | newdef = TRUE; | |
795 | ||
796 | if (h->root.type == bfd_link_hash_undefined | |
797 | || h->root.type == bfd_link_hash_undefweak | |
798 | || h->root.type == bfd_link_hash_common) | |
799 | olddef = FALSE; | |
800 | else | |
801 | olddef = TRUE; | |
802 | ||
4cc11e76 | 803 | /* We need to remember if a symbol has a definition in a dynamic |
45d6a902 AM |
804 | object or is weak in all dynamic objects. Internal and hidden |
805 | visibility will make it unavailable to dynamic objects. */ | |
806 | if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0) | |
807 | { | |
808 | if (!bfd_is_und_section (sec)) | |
809 | h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF; | |
810 | else | |
252b5132 | 811 | { |
45d6a902 AM |
812 | /* Check if this symbol is weak in all dynamic objects. If it |
813 | is the first time we see it in a dynamic object, we mark | |
814 | if it is weak. Otherwise, we clear it. */ | |
815 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0) | |
79349b09 | 816 | { |
45d6a902 AM |
817 | if (bind == STB_WEAK) |
818 | h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK; | |
252b5132 | 819 | } |
45d6a902 AM |
820 | else if (bind != STB_WEAK) |
821 | h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK; | |
252b5132 | 822 | } |
45d6a902 | 823 | } |
252b5132 | 824 | |
45d6a902 AM |
825 | /* If the old symbol has non-default visibility, we ignore the new |
826 | definition from a dynamic object. */ | |
827 | if (newdyn | |
9c7a29a3 | 828 | && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
45d6a902 AM |
829 | && !bfd_is_und_section (sec)) |
830 | { | |
831 | *skip = TRUE; | |
832 | /* Make sure this symbol is dynamic. */ | |
833 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
834 | /* A protected symbol has external availability. Make sure it is | |
835 | recorded as dynamic. | |
836 | ||
837 | FIXME: Should we check type and size for protected symbol? */ | |
838 | if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) | |
839 | return _bfd_elf_link_record_dynamic_symbol (info, h); | |
840 | else | |
841 | return TRUE; | |
842 | } | |
843 | else if (!newdyn | |
9c7a29a3 | 844 | && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT |
45d6a902 AM |
845 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) |
846 | { | |
847 | /* If the new symbol with non-default visibility comes from a | |
848 | relocatable file and the old definition comes from a dynamic | |
849 | object, we remove the old definition. */ | |
850 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
851 | h = *sym_hash; | |
1de1a317 L |
852 | |
853 | if ((h->root.und_next || info->hash->undefs_tail == &h->root) | |
854 | && bfd_is_und_section (sec)) | |
855 | { | |
856 | /* If the new symbol is undefined and the old symbol was | |
857 | also undefined before, we need to make sure | |
858 | _bfd_generic_link_add_one_symbol doesn't mess | |
859 | up the linker hash table undefs list. Since the old | |
860 | definition came from a dynamic object, it is still on the | |
861 | undefs list. */ | |
862 | h->root.type = bfd_link_hash_undefined; | |
863 | /* FIXME: What if the new symbol is weak undefined? */ | |
864 | h->root.u.undef.abfd = abfd; | |
865 | } | |
866 | else | |
867 | { | |
868 | h->root.type = bfd_link_hash_new; | |
869 | h->root.u.undef.abfd = NULL; | |
870 | } | |
871 | ||
45d6a902 | 872 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) |
252b5132 | 873 | { |
45d6a902 | 874 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC; |
22d5e339 L |
875 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC |
876 | | ELF_LINK_DYNAMIC_DEF); | |
45d6a902 AM |
877 | } |
878 | /* FIXME: Should we check type and size for protected symbol? */ | |
879 | h->size = 0; | |
880 | h->type = 0; | |
881 | return TRUE; | |
882 | } | |
14a793b2 | 883 | |
79349b09 AM |
884 | /* Differentiate strong and weak symbols. */ |
885 | newweak = bind == STB_WEAK; | |
886 | oldweak = (h->root.type == bfd_link_hash_defweak | |
887 | || h->root.type == bfd_link_hash_undefweak); | |
14a793b2 | 888 | |
0f8a2703 AM |
889 | /* If a new weak symbol comes from a regular file and the old symbol |
890 | comes from a dynamic library, we treat the new one as strong. | |
891 | Similarly, an old weak symbol from a regular file is treated as | |
892 | strong when the new symbol comes from a dynamic library. Further, | |
893 | an old weak symbol from a dynamic library is treated as strong if | |
894 | the new symbol is from a dynamic library. This reflects the way | |
895 | glibc's ld.so works. */ | |
896 | if (!newdyn && olddyn) | |
897 | newweak = FALSE; | |
898 | if (newdyn) | |
899 | oldweak = FALSE; | |
900 | ||
79349b09 AM |
901 | /* It's OK to change the type if either the existing symbol or the |
902 | new symbol is weak. A type change is also OK if the old symbol | |
903 | is undefined and the new symbol is defined. */ | |
252b5132 | 904 | |
79349b09 AM |
905 | if (oldweak |
906 | || newweak | |
907 | || (newdef | |
908 | && h->root.type == bfd_link_hash_undefined)) | |
909 | *type_change_ok = TRUE; | |
910 | ||
911 | /* It's OK to change the size if either the existing symbol or the | |
912 | new symbol is weak, or if the old symbol is undefined. */ | |
913 | ||
914 | if (*type_change_ok | |
915 | || h->root.type == bfd_link_hash_undefined) | |
916 | *size_change_ok = TRUE; | |
45d6a902 | 917 | |
45d6a902 AM |
918 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old |
919 | symbol, respectively, appears to be a common symbol in a dynamic | |
920 | object. If a symbol appears in an uninitialized section, and is | |
921 | not weak, and is not a function, then it may be a common symbol | |
922 | which was resolved when the dynamic object was created. We want | |
923 | to treat such symbols specially, because they raise special | |
924 | considerations when setting the symbol size: if the symbol | |
925 | appears as a common symbol in a regular object, and the size in | |
926 | the regular object is larger, we must make sure that we use the | |
927 | larger size. This problematic case can always be avoided in C, | |
928 | but it must be handled correctly when using Fortran shared | |
929 | libraries. | |
930 | ||
931 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
932 | likewise for OLDDYNCOMMON and OLDDEF. | |
933 | ||
934 | Note that this test is just a heuristic, and that it is quite | |
935 | possible to have an uninitialized symbol in a shared object which | |
936 | is really a definition, rather than a common symbol. This could | |
937 | lead to some minor confusion when the symbol really is a common | |
938 | symbol in some regular object. However, I think it will be | |
939 | harmless. */ | |
940 | ||
941 | if (newdyn | |
942 | && newdef | |
79349b09 | 943 | && !newweak |
45d6a902 AM |
944 | && (sec->flags & SEC_ALLOC) != 0 |
945 | && (sec->flags & SEC_LOAD) == 0 | |
946 | && sym->st_size > 0 | |
45d6a902 AM |
947 | && ELF_ST_TYPE (sym->st_info) != STT_FUNC) |
948 | newdyncommon = TRUE; | |
949 | else | |
950 | newdyncommon = FALSE; | |
951 | ||
952 | if (olddyn | |
953 | && olddef | |
954 | && h->root.type == bfd_link_hash_defined | |
955 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
956 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 | |
957 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
958 | && h->size > 0 | |
959 | && h->type != STT_FUNC) | |
960 | olddyncommon = TRUE; | |
961 | else | |
962 | olddyncommon = FALSE; | |
963 | ||
45d6a902 AM |
964 | /* If both the old and the new symbols look like common symbols in a |
965 | dynamic object, set the size of the symbol to the larger of the | |
966 | two. */ | |
967 | ||
968 | if (olddyncommon | |
969 | && newdyncommon | |
970 | && sym->st_size != h->size) | |
971 | { | |
972 | /* Since we think we have two common symbols, issue a multiple | |
973 | common warning if desired. Note that we only warn if the | |
974 | size is different. If the size is the same, we simply let | |
975 | the old symbol override the new one as normally happens with | |
976 | symbols defined in dynamic objects. */ | |
977 | ||
978 | if (! ((*info->callbacks->multiple_common) | |
979 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
980 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
981 | return FALSE; | |
252b5132 | 982 | |
45d6a902 AM |
983 | if (sym->st_size > h->size) |
984 | h->size = sym->st_size; | |
252b5132 | 985 | |
45d6a902 | 986 | *size_change_ok = TRUE; |
252b5132 RH |
987 | } |
988 | ||
45d6a902 AM |
989 | /* If we are looking at a dynamic object, and we have found a |
990 | definition, we need to see if the symbol was already defined by | |
991 | some other object. If so, we want to use the existing | |
992 | definition, and we do not want to report a multiple symbol | |
993 | definition error; we do this by clobbering *PSEC to be | |
994 | bfd_und_section_ptr. | |
995 | ||
996 | We treat a common symbol as a definition if the symbol in the | |
997 | shared library is a function, since common symbols always | |
998 | represent variables; this can cause confusion in principle, but | |
999 | any such confusion would seem to indicate an erroneous program or | |
1000 | shared library. We also permit a common symbol in a regular | |
79349b09 | 1001 | object to override a weak symbol in a shared object. */ |
45d6a902 AM |
1002 | |
1003 | if (newdyn | |
1004 | && newdef | |
1005 | && (olddef | |
1006 | || (h->root.type == bfd_link_hash_common | |
79349b09 | 1007 | && (newweak |
0f8a2703 | 1008 | || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))) |
45d6a902 AM |
1009 | { |
1010 | *override = TRUE; | |
1011 | newdef = FALSE; | |
1012 | newdyncommon = FALSE; | |
252b5132 | 1013 | |
45d6a902 AM |
1014 | *psec = sec = bfd_und_section_ptr; |
1015 | *size_change_ok = TRUE; | |
252b5132 | 1016 | |
45d6a902 AM |
1017 | /* If we get here when the old symbol is a common symbol, then |
1018 | we are explicitly letting it override a weak symbol or | |
1019 | function in a dynamic object, and we don't want to warn about | |
1020 | a type change. If the old symbol is a defined symbol, a type | |
1021 | change warning may still be appropriate. */ | |
252b5132 | 1022 | |
45d6a902 AM |
1023 | if (h->root.type == bfd_link_hash_common) |
1024 | *type_change_ok = TRUE; | |
1025 | } | |
1026 | ||
1027 | /* Handle the special case of an old common symbol merging with a | |
1028 | new symbol which looks like a common symbol in a shared object. | |
1029 | We change *PSEC and *PVALUE to make the new symbol look like a | |
1030 | common symbol, and let _bfd_generic_link_add_one_symbol will do | |
1031 | the right thing. */ | |
1032 | ||
1033 | if (newdyncommon | |
1034 | && h->root.type == bfd_link_hash_common) | |
1035 | { | |
1036 | *override = TRUE; | |
1037 | newdef = FALSE; | |
1038 | newdyncommon = FALSE; | |
1039 | *pvalue = sym->st_size; | |
1040 | *psec = sec = bfd_com_section_ptr; | |
1041 | *size_change_ok = TRUE; | |
1042 | } | |
1043 | ||
1044 | /* If the old symbol is from a dynamic object, and the new symbol is | |
1045 | a definition which is not from a dynamic object, then the new | |
1046 | symbol overrides the old symbol. Symbols from regular files | |
1047 | always take precedence over symbols from dynamic objects, even if | |
1048 | they are defined after the dynamic object in the link. | |
1049 | ||
1050 | As above, we again permit a common symbol in a regular object to | |
1051 | override a definition in a shared object if the shared object | |
0f8a2703 | 1052 | symbol is a function or is weak. */ |
45d6a902 AM |
1053 | |
1054 | flip = NULL; | |
1055 | if (! newdyn | |
1056 | && (newdef | |
1057 | || (bfd_is_com_section (sec) | |
79349b09 AM |
1058 | && (oldweak |
1059 | || h->type == STT_FUNC))) | |
45d6a902 AM |
1060 | && olddyn |
1061 | && olddef | |
0f8a2703 | 1062 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) |
45d6a902 AM |
1063 | { |
1064 | /* Change the hash table entry to undefined, and let | |
1065 | _bfd_generic_link_add_one_symbol do the right thing with the | |
1066 | new definition. */ | |
1067 | ||
1068 | h->root.type = bfd_link_hash_undefined; | |
1069 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1070 | *size_change_ok = TRUE; | |
1071 | ||
1072 | olddef = FALSE; | |
1073 | olddyncommon = FALSE; | |
1074 | ||
1075 | /* We again permit a type change when a common symbol may be | |
1076 | overriding a function. */ | |
1077 | ||
1078 | if (bfd_is_com_section (sec)) | |
1079 | *type_change_ok = TRUE; | |
1080 | ||
1081 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
1082 | flip = *sym_hash; | |
1083 | else | |
1084 | /* This union may have been set to be non-NULL when this symbol | |
1085 | was seen in a dynamic object. We must force the union to be | |
1086 | NULL, so that it is correct for a regular symbol. */ | |
1087 | h->verinfo.vertree = NULL; | |
1088 | } | |
1089 | ||
1090 | /* Handle the special case of a new common symbol merging with an | |
1091 | old symbol that looks like it might be a common symbol defined in | |
1092 | a shared object. Note that we have already handled the case in | |
1093 | which a new common symbol should simply override the definition | |
1094 | in the shared library. */ | |
1095 | ||
1096 | if (! newdyn | |
1097 | && bfd_is_com_section (sec) | |
1098 | && olddyncommon) | |
1099 | { | |
1100 | /* It would be best if we could set the hash table entry to a | |
1101 | common symbol, but we don't know what to use for the section | |
1102 | or the alignment. */ | |
1103 | if (! ((*info->callbacks->multiple_common) | |
1104 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
1105 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
1106 | return FALSE; | |
1107 | ||
4cc11e76 | 1108 | /* If the presumed common symbol in the dynamic object is |
45d6a902 AM |
1109 | larger, pretend that the new symbol has its size. */ |
1110 | ||
1111 | if (h->size > *pvalue) | |
1112 | *pvalue = h->size; | |
1113 | ||
1114 | /* FIXME: We no longer know the alignment required by the symbol | |
1115 | in the dynamic object, so we just wind up using the one from | |
1116 | the regular object. */ | |
1117 | ||
1118 | olddef = FALSE; | |
1119 | olddyncommon = FALSE; | |
1120 | ||
1121 | h->root.type = bfd_link_hash_undefined; | |
1122 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1123 | ||
1124 | *size_change_ok = TRUE; | |
1125 | *type_change_ok = TRUE; | |
1126 | ||
1127 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
1128 | flip = *sym_hash; | |
1129 | else | |
1130 | h->verinfo.vertree = NULL; | |
1131 | } | |
1132 | ||
1133 | if (flip != NULL) | |
1134 | { | |
1135 | /* Handle the case where we had a versioned symbol in a dynamic | |
1136 | library and now find a definition in a normal object. In this | |
1137 | case, we make the versioned symbol point to the normal one. */ | |
9c5bfbb7 | 1138 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
45d6a902 AM |
1139 | flip->root.type = h->root.type; |
1140 | h->root.type = bfd_link_hash_indirect; | |
1141 | h->root.u.i.link = (struct bfd_link_hash_entry *) flip; | |
1142 | (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h); | |
1143 | flip->root.u.undef.abfd = h->root.u.undef.abfd; | |
1144 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) | |
1145 | { | |
1146 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC; | |
1147 | flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1148 | } | |
1149 | } | |
1150 | ||
45d6a902 AM |
1151 | return TRUE; |
1152 | } | |
1153 | ||
1154 | /* This function is called to create an indirect symbol from the | |
1155 | default for the symbol with the default version if needed. The | |
1156 | symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We | |
0f8a2703 | 1157 | set DYNSYM if the new indirect symbol is dynamic. */ |
45d6a902 AM |
1158 | |
1159 | bfd_boolean | |
268b6b39 AM |
1160 | _bfd_elf_add_default_symbol (bfd *abfd, |
1161 | struct bfd_link_info *info, | |
1162 | struct elf_link_hash_entry *h, | |
1163 | const char *name, | |
1164 | Elf_Internal_Sym *sym, | |
1165 | asection **psec, | |
1166 | bfd_vma *value, | |
1167 | bfd_boolean *dynsym, | |
0f8a2703 | 1168 | bfd_boolean override) |
45d6a902 AM |
1169 | { |
1170 | bfd_boolean type_change_ok; | |
1171 | bfd_boolean size_change_ok; | |
1172 | bfd_boolean skip; | |
1173 | char *shortname; | |
1174 | struct elf_link_hash_entry *hi; | |
1175 | struct bfd_link_hash_entry *bh; | |
9c5bfbb7 | 1176 | const struct elf_backend_data *bed; |
45d6a902 AM |
1177 | bfd_boolean collect; |
1178 | bfd_boolean dynamic; | |
1179 | char *p; | |
1180 | size_t len, shortlen; | |
1181 | asection *sec; | |
1182 | ||
1183 | /* If this symbol has a version, and it is the default version, we | |
1184 | create an indirect symbol from the default name to the fully | |
1185 | decorated name. This will cause external references which do not | |
1186 | specify a version to be bound to this version of the symbol. */ | |
1187 | p = strchr (name, ELF_VER_CHR); | |
1188 | if (p == NULL || p[1] != ELF_VER_CHR) | |
1189 | return TRUE; | |
1190 | ||
1191 | if (override) | |
1192 | { | |
4cc11e76 | 1193 | /* We are overridden by an old definition. We need to check if we |
45d6a902 AM |
1194 | need to create the indirect symbol from the default name. */ |
1195 | hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, | |
1196 | FALSE, FALSE); | |
1197 | BFD_ASSERT (hi != NULL); | |
1198 | if (hi == h) | |
1199 | return TRUE; | |
1200 | while (hi->root.type == bfd_link_hash_indirect | |
1201 | || hi->root.type == bfd_link_hash_warning) | |
1202 | { | |
1203 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1204 | if (hi == h) | |
1205 | return TRUE; | |
1206 | } | |
1207 | } | |
1208 | ||
1209 | bed = get_elf_backend_data (abfd); | |
1210 | collect = bed->collect; | |
1211 | dynamic = (abfd->flags & DYNAMIC) != 0; | |
1212 | ||
1213 | shortlen = p - name; | |
1214 | shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1); | |
1215 | if (shortname == NULL) | |
1216 | return FALSE; | |
1217 | memcpy (shortname, name, shortlen); | |
1218 | shortname[shortlen] = '\0'; | |
1219 | ||
1220 | /* We are going to create a new symbol. Merge it with any existing | |
1221 | symbol with this name. For the purposes of the merge, act as | |
1222 | though we were defining the symbol we just defined, although we | |
1223 | actually going to define an indirect symbol. */ | |
1224 | type_change_ok = FALSE; | |
1225 | size_change_ok = FALSE; | |
1226 | sec = *psec; | |
1227 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, | |
1228 | &hi, &skip, &override, &type_change_ok, | |
0f8a2703 | 1229 | &size_change_ok)) |
45d6a902 AM |
1230 | return FALSE; |
1231 | ||
1232 | if (skip) | |
1233 | goto nondefault; | |
1234 | ||
1235 | if (! override) | |
1236 | { | |
1237 | bh = &hi->root; | |
1238 | if (! (_bfd_generic_link_add_one_symbol | |
1239 | (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr, | |
268b6b39 | 1240 | 0, name, FALSE, collect, &bh))) |
45d6a902 AM |
1241 | return FALSE; |
1242 | hi = (struct elf_link_hash_entry *) bh; | |
1243 | } | |
1244 | else | |
1245 | { | |
1246 | /* In this case the symbol named SHORTNAME is overriding the | |
1247 | indirect symbol we want to add. We were planning on making | |
1248 | SHORTNAME an indirect symbol referring to NAME. SHORTNAME | |
1249 | is the name without a version. NAME is the fully versioned | |
1250 | name, and it is the default version. | |
1251 | ||
1252 | Overriding means that we already saw a definition for the | |
1253 | symbol SHORTNAME in a regular object, and it is overriding | |
1254 | the symbol defined in the dynamic object. | |
1255 | ||
1256 | When this happens, we actually want to change NAME, the | |
1257 | symbol we just added, to refer to SHORTNAME. This will cause | |
1258 | references to NAME in the shared object to become references | |
1259 | to SHORTNAME in the regular object. This is what we expect | |
1260 | when we override a function in a shared object: that the | |
1261 | references in the shared object will be mapped to the | |
1262 | definition in the regular object. */ | |
1263 | ||
1264 | while (hi->root.type == bfd_link_hash_indirect | |
1265 | || hi->root.type == bfd_link_hash_warning) | |
1266 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1267 | ||
1268 | h->root.type = bfd_link_hash_indirect; | |
1269 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
1270 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) | |
1271 | { | |
1272 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; | |
1273 | hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1274 | if (hi->elf_link_hash_flags | |
1275 | & (ELF_LINK_HASH_REF_REGULAR | |
1276 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1277 | { | |
1278 | if (! _bfd_elf_link_record_dynamic_symbol (info, hi)) | |
1279 | return FALSE; | |
1280 | } | |
1281 | } | |
1282 | ||
1283 | /* Now set HI to H, so that the following code will set the | |
1284 | other fields correctly. */ | |
1285 | hi = h; | |
1286 | } | |
1287 | ||
1288 | /* If there is a duplicate definition somewhere, then HI may not | |
1289 | point to an indirect symbol. We will have reported an error to | |
1290 | the user in that case. */ | |
1291 | ||
1292 | if (hi->root.type == bfd_link_hash_indirect) | |
1293 | { | |
1294 | struct elf_link_hash_entry *ht; | |
1295 | ||
45d6a902 AM |
1296 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; |
1297 | (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi); | |
1298 | ||
1299 | /* See if the new flags lead us to realize that the symbol must | |
1300 | be dynamic. */ | |
1301 | if (! *dynsym) | |
1302 | { | |
1303 | if (! dynamic) | |
1304 | { | |
1305 | if (info->shared | |
1306 | || ((hi->elf_link_hash_flags | |
1307 | & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
1308 | *dynsym = TRUE; | |
1309 | } | |
1310 | else | |
1311 | { | |
1312 | if ((hi->elf_link_hash_flags | |
1313 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1314 | *dynsym = TRUE; | |
1315 | } | |
1316 | } | |
1317 | } | |
1318 | ||
1319 | /* We also need to define an indirection from the nondefault version | |
1320 | of the symbol. */ | |
1321 | ||
1322 | nondefault: | |
1323 | len = strlen (name); | |
1324 | shortname = bfd_hash_allocate (&info->hash->table, len); | |
1325 | if (shortname == NULL) | |
1326 | return FALSE; | |
1327 | memcpy (shortname, name, shortlen); | |
1328 | memcpy (shortname + shortlen, p + 1, len - shortlen); | |
1329 | ||
1330 | /* Once again, merge with any existing symbol. */ | |
1331 | type_change_ok = FALSE; | |
1332 | size_change_ok = FALSE; | |
1333 | sec = *psec; | |
1334 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, | |
1335 | &hi, &skip, &override, &type_change_ok, | |
0f8a2703 | 1336 | &size_change_ok)) |
45d6a902 AM |
1337 | return FALSE; |
1338 | ||
1339 | if (skip) | |
1340 | return TRUE; | |
1341 | ||
1342 | if (override) | |
1343 | { | |
1344 | /* Here SHORTNAME is a versioned name, so we don't expect to see | |
1345 | the type of override we do in the case above unless it is | |
4cc11e76 | 1346 | overridden by a versioned definition. */ |
45d6a902 AM |
1347 | if (hi->root.type != bfd_link_hash_defined |
1348 | && hi->root.type != bfd_link_hash_defweak) | |
1349 | (*_bfd_error_handler) | |
1350 | (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"), | |
1351 | bfd_archive_filename (abfd), shortname); | |
1352 | } | |
1353 | else | |
1354 | { | |
1355 | bh = &hi->root; | |
1356 | if (! (_bfd_generic_link_add_one_symbol | |
1357 | (info, abfd, shortname, BSF_INDIRECT, | |
268b6b39 | 1358 | bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) |
45d6a902 AM |
1359 | return FALSE; |
1360 | hi = (struct elf_link_hash_entry *) bh; | |
1361 | ||
1362 | /* If there is a duplicate definition somewhere, then HI may not | |
1363 | point to an indirect symbol. We will have reported an error | |
1364 | to the user in that case. */ | |
1365 | ||
1366 | if (hi->root.type == bfd_link_hash_indirect) | |
1367 | { | |
45d6a902 AM |
1368 | (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi); |
1369 | ||
1370 | /* See if the new flags lead us to realize that the symbol | |
1371 | must be dynamic. */ | |
1372 | if (! *dynsym) | |
1373 | { | |
1374 | if (! dynamic) | |
1375 | { | |
1376 | if (info->shared | |
1377 | || ((hi->elf_link_hash_flags | |
1378 | & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
1379 | *dynsym = TRUE; | |
1380 | } | |
1381 | else | |
1382 | { | |
1383 | if ((hi->elf_link_hash_flags | |
1384 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1385 | *dynsym = TRUE; | |
1386 | } | |
1387 | } | |
1388 | } | |
1389 | } | |
1390 | ||
1391 | return TRUE; | |
1392 | } | |
1393 | \f | |
1394 | /* This routine is used to export all defined symbols into the dynamic | |
1395 | symbol table. It is called via elf_link_hash_traverse. */ | |
1396 | ||
1397 | bfd_boolean | |
268b6b39 | 1398 | _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 1399 | { |
268b6b39 | 1400 | struct elf_info_failed *eif = data; |
45d6a902 AM |
1401 | |
1402 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
1403 | if (h->root.type == bfd_link_hash_indirect) | |
1404 | return TRUE; | |
1405 | ||
1406 | if (h->root.type == bfd_link_hash_warning) | |
1407 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1408 | ||
1409 | if (h->dynindx == -1 | |
1410 | && (h->elf_link_hash_flags | |
1411 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
1412 | { | |
1413 | struct bfd_elf_version_tree *t; | |
1414 | struct bfd_elf_version_expr *d; | |
1415 | ||
1416 | for (t = eif->verdefs; t != NULL; t = t->next) | |
1417 | { | |
108ba305 | 1418 | if (t->globals.list != NULL) |
45d6a902 | 1419 | { |
108ba305 JJ |
1420 | d = (*t->match) (&t->globals, NULL, h->root.root.string); |
1421 | if (d != NULL) | |
1422 | goto doit; | |
45d6a902 AM |
1423 | } |
1424 | ||
108ba305 | 1425 | if (t->locals.list != NULL) |
45d6a902 | 1426 | { |
108ba305 JJ |
1427 | d = (*t->match) (&t->locals, NULL, h->root.root.string); |
1428 | if (d != NULL) | |
1429 | return TRUE; | |
45d6a902 AM |
1430 | } |
1431 | } | |
1432 | ||
1433 | if (!eif->verdefs) | |
1434 | { | |
1435 | doit: | |
1436 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
1437 | { | |
1438 | eif->failed = TRUE; | |
1439 | return FALSE; | |
1440 | } | |
1441 | } | |
1442 | } | |
1443 | ||
1444 | return TRUE; | |
1445 | } | |
1446 | \f | |
1447 | /* Look through the symbols which are defined in other shared | |
1448 | libraries and referenced here. Update the list of version | |
1449 | dependencies. This will be put into the .gnu.version_r section. | |
1450 | This function is called via elf_link_hash_traverse. */ | |
1451 | ||
1452 | bfd_boolean | |
268b6b39 AM |
1453 | _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, |
1454 | void *data) | |
45d6a902 | 1455 | { |
268b6b39 | 1456 | struct elf_find_verdep_info *rinfo = data; |
45d6a902 AM |
1457 | Elf_Internal_Verneed *t; |
1458 | Elf_Internal_Vernaux *a; | |
1459 | bfd_size_type amt; | |
1460 | ||
1461 | if (h->root.type == bfd_link_hash_warning) | |
1462 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1463 | ||
1464 | /* We only care about symbols defined in shared objects with version | |
1465 | information. */ | |
1466 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
1467 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1468 | || h->dynindx == -1 | |
1469 | || h->verinfo.verdef == NULL) | |
1470 | return TRUE; | |
1471 | ||
1472 | /* See if we already know about this version. */ | |
1473 | for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) | |
1474 | { | |
1475 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
1476 | continue; | |
1477 | ||
1478 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
1479 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
1480 | return TRUE; | |
1481 | ||
1482 | break; | |
1483 | } | |
1484 | ||
1485 | /* This is a new version. Add it to tree we are building. */ | |
1486 | ||
1487 | if (t == NULL) | |
1488 | { | |
1489 | amt = sizeof *t; | |
268b6b39 | 1490 | t = bfd_zalloc (rinfo->output_bfd, amt); |
45d6a902 AM |
1491 | if (t == NULL) |
1492 | { | |
1493 | rinfo->failed = TRUE; | |
1494 | return FALSE; | |
1495 | } | |
1496 | ||
1497 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
1498 | t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; | |
1499 | elf_tdata (rinfo->output_bfd)->verref = t; | |
1500 | } | |
1501 | ||
1502 | amt = sizeof *a; | |
268b6b39 | 1503 | a = bfd_zalloc (rinfo->output_bfd, amt); |
45d6a902 AM |
1504 | |
1505 | /* Note that we are copying a string pointer here, and testing it | |
1506 | above. If bfd_elf_string_from_elf_section is ever changed to | |
1507 | discard the string data when low in memory, this will have to be | |
1508 | fixed. */ | |
1509 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
1510 | ||
1511 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
1512 | a->vna_nextptr = t->vn_auxptr; | |
1513 | ||
1514 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
1515 | ++rinfo->vers; | |
1516 | ||
1517 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
1518 | ||
1519 | t->vn_auxptr = a; | |
1520 | ||
1521 | return TRUE; | |
1522 | } | |
1523 | ||
1524 | /* Figure out appropriate versions for all the symbols. We may not | |
1525 | have the version number script until we have read all of the input | |
1526 | files, so until that point we don't know which symbols should be | |
1527 | local. This function is called via elf_link_hash_traverse. */ | |
1528 | ||
1529 | bfd_boolean | |
268b6b39 | 1530 | _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) |
45d6a902 AM |
1531 | { |
1532 | struct elf_assign_sym_version_info *sinfo; | |
1533 | struct bfd_link_info *info; | |
9c5bfbb7 | 1534 | const struct elf_backend_data *bed; |
45d6a902 AM |
1535 | struct elf_info_failed eif; |
1536 | char *p; | |
1537 | bfd_size_type amt; | |
1538 | ||
268b6b39 | 1539 | sinfo = data; |
45d6a902 AM |
1540 | info = sinfo->info; |
1541 | ||
1542 | if (h->root.type == bfd_link_hash_warning) | |
1543 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1544 | ||
1545 | /* Fix the symbol flags. */ | |
1546 | eif.failed = FALSE; | |
1547 | eif.info = info; | |
1548 | if (! _bfd_elf_fix_symbol_flags (h, &eif)) | |
1549 | { | |
1550 | if (eif.failed) | |
1551 | sinfo->failed = TRUE; | |
1552 | return FALSE; | |
1553 | } | |
1554 | ||
1555 | /* We only need version numbers for symbols defined in regular | |
1556 | objects. */ | |
1557 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
1558 | return TRUE; | |
1559 | ||
1560 | bed = get_elf_backend_data (sinfo->output_bfd); | |
1561 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
1562 | if (p != NULL && h->verinfo.vertree == NULL) | |
1563 | { | |
1564 | struct bfd_elf_version_tree *t; | |
1565 | bfd_boolean hidden; | |
1566 | ||
1567 | hidden = TRUE; | |
1568 | ||
1569 | /* There are two consecutive ELF_VER_CHR characters if this is | |
1570 | not a hidden symbol. */ | |
1571 | ++p; | |
1572 | if (*p == ELF_VER_CHR) | |
1573 | { | |
1574 | hidden = FALSE; | |
1575 | ++p; | |
1576 | } | |
1577 | ||
1578 | /* If there is no version string, we can just return out. */ | |
1579 | if (*p == '\0') | |
1580 | { | |
1581 | if (hidden) | |
1582 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
1583 | return TRUE; | |
1584 | } | |
1585 | ||
1586 | /* Look for the version. If we find it, it is no longer weak. */ | |
1587 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
1588 | { | |
1589 | if (strcmp (t->name, p) == 0) | |
1590 | { | |
1591 | size_t len; | |
1592 | char *alc; | |
1593 | struct bfd_elf_version_expr *d; | |
1594 | ||
1595 | len = p - h->root.root.string; | |
268b6b39 | 1596 | alc = bfd_malloc (len); |
45d6a902 AM |
1597 | if (alc == NULL) |
1598 | return FALSE; | |
1599 | memcpy (alc, h->root.root.string, len - 1); | |
1600 | alc[len - 1] = '\0'; | |
1601 | if (alc[len - 2] == ELF_VER_CHR) | |
1602 | alc[len - 2] = '\0'; | |
1603 | ||
1604 | h->verinfo.vertree = t; | |
1605 | t->used = TRUE; | |
1606 | d = NULL; | |
1607 | ||
108ba305 JJ |
1608 | if (t->globals.list != NULL) |
1609 | d = (*t->match) (&t->globals, NULL, alc); | |
45d6a902 AM |
1610 | |
1611 | /* See if there is anything to force this symbol to | |
1612 | local scope. */ | |
108ba305 | 1613 | if (d == NULL && t->locals.list != NULL) |
45d6a902 | 1614 | { |
108ba305 JJ |
1615 | d = (*t->match) (&t->locals, NULL, alc); |
1616 | if (d != NULL | |
1617 | && h->dynindx != -1 | |
1618 | && info->shared | |
1619 | && ! info->export_dynamic) | |
1620 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
45d6a902 AM |
1621 | } |
1622 | ||
1623 | free (alc); | |
1624 | break; | |
1625 | } | |
1626 | } | |
1627 | ||
1628 | /* If we are building an application, we need to create a | |
1629 | version node for this version. */ | |
36af4a4e | 1630 | if (t == NULL && info->executable) |
45d6a902 AM |
1631 | { |
1632 | struct bfd_elf_version_tree **pp; | |
1633 | int version_index; | |
1634 | ||
1635 | /* If we aren't going to export this symbol, we don't need | |
1636 | to worry about it. */ | |
1637 | if (h->dynindx == -1) | |
1638 | return TRUE; | |
1639 | ||
1640 | amt = sizeof *t; | |
108ba305 | 1641 | t = bfd_zalloc (sinfo->output_bfd, amt); |
45d6a902 AM |
1642 | if (t == NULL) |
1643 | { | |
1644 | sinfo->failed = TRUE; | |
1645 | return FALSE; | |
1646 | } | |
1647 | ||
45d6a902 | 1648 | t->name = p; |
45d6a902 AM |
1649 | t->name_indx = (unsigned int) -1; |
1650 | t->used = TRUE; | |
1651 | ||
1652 | version_index = 1; | |
1653 | /* Don't count anonymous version tag. */ | |
1654 | if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0) | |
1655 | version_index = 0; | |
1656 | for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) | |
1657 | ++version_index; | |
1658 | t->vernum = version_index; | |
1659 | ||
1660 | *pp = t; | |
1661 | ||
1662 | h->verinfo.vertree = t; | |
1663 | } | |
1664 | else if (t == NULL) | |
1665 | { | |
1666 | /* We could not find the version for a symbol when | |
1667 | generating a shared archive. Return an error. */ | |
1668 | (*_bfd_error_handler) | |
1669 | (_("%s: undefined versioned symbol name %s"), | |
1670 | bfd_get_filename (sinfo->output_bfd), h->root.root.string); | |
1671 | bfd_set_error (bfd_error_bad_value); | |
1672 | sinfo->failed = TRUE; | |
1673 | return FALSE; | |
1674 | } | |
1675 | ||
1676 | if (hidden) | |
1677 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
1678 | } | |
1679 | ||
1680 | /* If we don't have a version for this symbol, see if we can find | |
1681 | something. */ | |
1682 | if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) | |
1683 | { | |
1684 | struct bfd_elf_version_tree *t; | |
1685 | struct bfd_elf_version_tree *local_ver; | |
1686 | struct bfd_elf_version_expr *d; | |
1687 | ||
1688 | /* See if can find what version this symbol is in. If the | |
1689 | symbol is supposed to be local, then don't actually register | |
1690 | it. */ | |
1691 | local_ver = NULL; | |
1692 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
1693 | { | |
108ba305 | 1694 | if (t->globals.list != NULL) |
45d6a902 AM |
1695 | { |
1696 | bfd_boolean matched; | |
1697 | ||
1698 | matched = FALSE; | |
108ba305 JJ |
1699 | d = NULL; |
1700 | while ((d = (*t->match) (&t->globals, d, | |
1701 | h->root.root.string)) != NULL) | |
1702 | if (d->symver) | |
1703 | matched = TRUE; | |
1704 | else | |
1705 | { | |
1706 | /* There is a version without definition. Make | |
1707 | the symbol the default definition for this | |
1708 | version. */ | |
1709 | h->verinfo.vertree = t; | |
1710 | local_ver = NULL; | |
1711 | d->script = 1; | |
1712 | break; | |
1713 | } | |
45d6a902 AM |
1714 | if (d != NULL) |
1715 | break; | |
1716 | else if (matched) | |
1717 | /* There is no undefined version for this symbol. Hide the | |
1718 | default one. */ | |
1719 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
1720 | } | |
1721 | ||
108ba305 | 1722 | if (t->locals.list != NULL) |
45d6a902 | 1723 | { |
108ba305 JJ |
1724 | d = NULL; |
1725 | while ((d = (*t->match) (&t->locals, d, | |
1726 | h->root.root.string)) != NULL) | |
45d6a902 | 1727 | { |
108ba305 | 1728 | local_ver = t; |
45d6a902 | 1729 | /* If the match is "*", keep looking for a more |
108ba305 JJ |
1730 | explicit, perhaps even global, match. |
1731 | XXX: Shouldn't this be !d->wildcard instead? */ | |
1732 | if (d->pattern[0] != '*' || d->pattern[1] != '\0') | |
1733 | break; | |
45d6a902 AM |
1734 | } |
1735 | ||
1736 | if (d != NULL) | |
1737 | break; | |
1738 | } | |
1739 | } | |
1740 | ||
1741 | if (local_ver != NULL) | |
1742 | { | |
1743 | h->verinfo.vertree = local_ver; | |
1744 | if (h->dynindx != -1 | |
1745 | && info->shared | |
1746 | && ! info->export_dynamic) | |
1747 | { | |
1748 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
1749 | } | |
1750 | } | |
1751 | } | |
1752 | ||
1753 | return TRUE; | |
1754 | } | |
1755 | \f | |
45d6a902 AM |
1756 | /* Read and swap the relocs from the section indicated by SHDR. This |
1757 | may be either a REL or a RELA section. The relocations are | |
1758 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
1759 | which should have already been allocated to contain enough space. | |
1760 | The EXTERNAL_RELOCS are a buffer where the external form of the | |
1761 | relocations should be stored. | |
1762 | ||
1763 | Returns FALSE if something goes wrong. */ | |
1764 | ||
1765 | static bfd_boolean | |
268b6b39 | 1766 | elf_link_read_relocs_from_section (bfd *abfd, |
243ef1e0 | 1767 | asection *sec, |
268b6b39 AM |
1768 | Elf_Internal_Shdr *shdr, |
1769 | void *external_relocs, | |
1770 | Elf_Internal_Rela *internal_relocs) | |
45d6a902 | 1771 | { |
9c5bfbb7 | 1772 | const struct elf_backend_data *bed; |
268b6b39 | 1773 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
45d6a902 AM |
1774 | const bfd_byte *erela; |
1775 | const bfd_byte *erelaend; | |
1776 | Elf_Internal_Rela *irela; | |
243ef1e0 L |
1777 | Elf_Internal_Shdr *symtab_hdr; |
1778 | size_t nsyms; | |
45d6a902 | 1779 | |
45d6a902 AM |
1780 | /* Position ourselves at the start of the section. */ |
1781 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
1782 | return FALSE; | |
1783 | ||
1784 | /* Read the relocations. */ | |
1785 | if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) | |
1786 | return FALSE; | |
1787 | ||
243ef1e0 L |
1788 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1789 | nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize; | |
1790 | ||
45d6a902 AM |
1791 | bed = get_elf_backend_data (abfd); |
1792 | ||
1793 | /* Convert the external relocations to the internal format. */ | |
1794 | if (shdr->sh_entsize == bed->s->sizeof_rel) | |
1795 | swap_in = bed->s->swap_reloc_in; | |
1796 | else if (shdr->sh_entsize == bed->s->sizeof_rela) | |
1797 | swap_in = bed->s->swap_reloca_in; | |
1798 | else | |
1799 | { | |
1800 | bfd_set_error (bfd_error_wrong_format); | |
1801 | return FALSE; | |
1802 | } | |
1803 | ||
1804 | erela = external_relocs; | |
51992aec | 1805 | erelaend = erela + shdr->sh_size; |
45d6a902 AM |
1806 | irela = internal_relocs; |
1807 | while (erela < erelaend) | |
1808 | { | |
243ef1e0 L |
1809 | bfd_vma r_symndx; |
1810 | ||
45d6a902 | 1811 | (*swap_in) (abfd, erela, irela); |
243ef1e0 L |
1812 | r_symndx = ELF32_R_SYM (irela->r_info); |
1813 | if (bed->s->arch_size == 64) | |
1814 | r_symndx >>= 24; | |
1815 | if ((size_t) r_symndx >= nsyms) | |
1816 | { | |
1817 | (*_bfd_error_handler) | |
1818 | (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"), | |
1819 | bfd_archive_filename (abfd), (unsigned long) r_symndx, | |
1820 | (unsigned long) nsyms, irela->r_offset, sec->name); | |
1821 | bfd_set_error (bfd_error_bad_value); | |
1822 | return FALSE; | |
1823 | } | |
45d6a902 AM |
1824 | irela += bed->s->int_rels_per_ext_rel; |
1825 | erela += shdr->sh_entsize; | |
1826 | } | |
1827 | ||
1828 | return TRUE; | |
1829 | } | |
1830 | ||
1831 | /* Read and swap the relocs for a section O. They may have been | |
1832 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
1833 | not NULL, they are used as buffers to read into. They are known to | |
1834 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
1835 | the return value is allocated using either malloc or bfd_alloc, | |
1836 | according to the KEEP_MEMORY argument. If O has two relocation | |
1837 | sections (both REL and RELA relocations), then the REL_HDR | |
1838 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
1839 | REL_HDR2 relocations. */ | |
1840 | ||
1841 | Elf_Internal_Rela * | |
268b6b39 AM |
1842 | _bfd_elf_link_read_relocs (bfd *abfd, |
1843 | asection *o, | |
1844 | void *external_relocs, | |
1845 | Elf_Internal_Rela *internal_relocs, | |
1846 | bfd_boolean keep_memory) | |
45d6a902 AM |
1847 | { |
1848 | Elf_Internal_Shdr *rel_hdr; | |
268b6b39 | 1849 | void *alloc1 = NULL; |
45d6a902 | 1850 | Elf_Internal_Rela *alloc2 = NULL; |
9c5bfbb7 | 1851 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
45d6a902 AM |
1852 | |
1853 | if (elf_section_data (o)->relocs != NULL) | |
1854 | return elf_section_data (o)->relocs; | |
1855 | ||
1856 | if (o->reloc_count == 0) | |
1857 | return NULL; | |
1858 | ||
1859 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1860 | ||
1861 | if (internal_relocs == NULL) | |
1862 | { | |
1863 | bfd_size_type size; | |
1864 | ||
1865 | size = o->reloc_count; | |
1866 | size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); | |
1867 | if (keep_memory) | |
268b6b39 | 1868 | internal_relocs = bfd_alloc (abfd, size); |
45d6a902 | 1869 | else |
268b6b39 | 1870 | internal_relocs = alloc2 = bfd_malloc (size); |
45d6a902 AM |
1871 | if (internal_relocs == NULL) |
1872 | goto error_return; | |
1873 | } | |
1874 | ||
1875 | if (external_relocs == NULL) | |
1876 | { | |
1877 | bfd_size_type size = rel_hdr->sh_size; | |
1878 | ||
1879 | if (elf_section_data (o)->rel_hdr2) | |
1880 | size += elf_section_data (o)->rel_hdr2->sh_size; | |
268b6b39 | 1881 | alloc1 = bfd_malloc (size); |
45d6a902 AM |
1882 | if (alloc1 == NULL) |
1883 | goto error_return; | |
1884 | external_relocs = alloc1; | |
1885 | } | |
1886 | ||
243ef1e0 | 1887 | if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr, |
45d6a902 AM |
1888 | external_relocs, |
1889 | internal_relocs)) | |
1890 | goto error_return; | |
51992aec AM |
1891 | if (elf_section_data (o)->rel_hdr2 |
1892 | && (!elf_link_read_relocs_from_section | |
1893 | (abfd, o, | |
1894 | elf_section_data (o)->rel_hdr2, | |
1895 | ((bfd_byte *) external_relocs) + rel_hdr->sh_size, | |
1896 | internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr) | |
1897 | * bed->s->int_rels_per_ext_rel)))) | |
45d6a902 AM |
1898 | goto error_return; |
1899 | ||
1900 | /* Cache the results for next time, if we can. */ | |
1901 | if (keep_memory) | |
1902 | elf_section_data (o)->relocs = internal_relocs; | |
1903 | ||
1904 | if (alloc1 != NULL) | |
1905 | free (alloc1); | |
1906 | ||
1907 | /* Don't free alloc2, since if it was allocated we are passing it | |
1908 | back (under the name of internal_relocs). */ | |
1909 | ||
1910 | return internal_relocs; | |
1911 | ||
1912 | error_return: | |
1913 | if (alloc1 != NULL) | |
1914 | free (alloc1); | |
1915 | if (alloc2 != NULL) | |
1916 | free (alloc2); | |
1917 | return NULL; | |
1918 | } | |
1919 | ||
1920 | /* Compute the size of, and allocate space for, REL_HDR which is the | |
1921 | section header for a section containing relocations for O. */ | |
1922 | ||
1923 | bfd_boolean | |
268b6b39 AM |
1924 | _bfd_elf_link_size_reloc_section (bfd *abfd, |
1925 | Elf_Internal_Shdr *rel_hdr, | |
1926 | asection *o) | |
45d6a902 AM |
1927 | { |
1928 | bfd_size_type reloc_count; | |
1929 | bfd_size_type num_rel_hashes; | |
1930 | ||
1931 | /* Figure out how many relocations there will be. */ | |
1932 | if (rel_hdr == &elf_section_data (o)->rel_hdr) | |
1933 | reloc_count = elf_section_data (o)->rel_count; | |
1934 | else | |
1935 | reloc_count = elf_section_data (o)->rel_count2; | |
1936 | ||
1937 | num_rel_hashes = o->reloc_count; | |
1938 | if (num_rel_hashes < reloc_count) | |
1939 | num_rel_hashes = reloc_count; | |
1940 | ||
1941 | /* That allows us to calculate the size of the section. */ | |
1942 | rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count; | |
1943 | ||
1944 | /* The contents field must last into write_object_contents, so we | |
1945 | allocate it with bfd_alloc rather than malloc. Also since we | |
1946 | cannot be sure that the contents will actually be filled in, | |
1947 | we zero the allocated space. */ | |
268b6b39 | 1948 | rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size); |
45d6a902 AM |
1949 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) |
1950 | return FALSE; | |
1951 | ||
1952 | /* We only allocate one set of hash entries, so we only do it the | |
1953 | first time we are called. */ | |
1954 | if (elf_section_data (o)->rel_hashes == NULL | |
1955 | && num_rel_hashes) | |
1956 | { | |
1957 | struct elf_link_hash_entry **p; | |
1958 | ||
268b6b39 | 1959 | p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *)); |
45d6a902 AM |
1960 | if (p == NULL) |
1961 | return FALSE; | |
1962 | ||
1963 | elf_section_data (o)->rel_hashes = p; | |
1964 | } | |
1965 | ||
1966 | return TRUE; | |
1967 | } | |
1968 | ||
1969 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which | |
1970 | originated from the section given by INPUT_REL_HDR) to the | |
1971 | OUTPUT_BFD. */ | |
1972 | ||
1973 | bfd_boolean | |
268b6b39 AM |
1974 | _bfd_elf_link_output_relocs (bfd *output_bfd, |
1975 | asection *input_section, | |
1976 | Elf_Internal_Shdr *input_rel_hdr, | |
1977 | Elf_Internal_Rela *internal_relocs) | |
45d6a902 AM |
1978 | { |
1979 | Elf_Internal_Rela *irela; | |
1980 | Elf_Internal_Rela *irelaend; | |
1981 | bfd_byte *erel; | |
1982 | Elf_Internal_Shdr *output_rel_hdr; | |
1983 | asection *output_section; | |
1984 | unsigned int *rel_countp = NULL; | |
9c5bfbb7 | 1985 | const struct elf_backend_data *bed; |
268b6b39 | 1986 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
45d6a902 AM |
1987 | |
1988 | output_section = input_section->output_section; | |
1989 | output_rel_hdr = NULL; | |
1990 | ||
1991 | if (elf_section_data (output_section)->rel_hdr.sh_entsize | |
1992 | == input_rel_hdr->sh_entsize) | |
1993 | { | |
1994 | output_rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
1995 | rel_countp = &elf_section_data (output_section)->rel_count; | |
1996 | } | |
1997 | else if (elf_section_data (output_section)->rel_hdr2 | |
1998 | && (elf_section_data (output_section)->rel_hdr2->sh_entsize | |
1999 | == input_rel_hdr->sh_entsize)) | |
2000 | { | |
2001 | output_rel_hdr = elf_section_data (output_section)->rel_hdr2; | |
2002 | rel_countp = &elf_section_data (output_section)->rel_count2; | |
2003 | } | |
2004 | else | |
2005 | { | |
2006 | (*_bfd_error_handler) | |
2007 | (_("%s: relocation size mismatch in %s section %s"), | |
2008 | bfd_get_filename (output_bfd), | |
2009 | bfd_archive_filename (input_section->owner), | |
2010 | input_section->name); | |
2011 | bfd_set_error (bfd_error_wrong_object_format); | |
2012 | return FALSE; | |
2013 | } | |
2014 | ||
2015 | bed = get_elf_backend_data (output_bfd); | |
2016 | if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel) | |
2017 | swap_out = bed->s->swap_reloc_out; | |
2018 | else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela) | |
2019 | swap_out = bed->s->swap_reloca_out; | |
2020 | else | |
2021 | abort (); | |
2022 | ||
2023 | erel = output_rel_hdr->contents; | |
2024 | erel += *rel_countp * input_rel_hdr->sh_entsize; | |
2025 | irela = internal_relocs; | |
2026 | irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) | |
2027 | * bed->s->int_rels_per_ext_rel); | |
2028 | while (irela < irelaend) | |
2029 | { | |
2030 | (*swap_out) (output_bfd, irela, erel); | |
2031 | irela += bed->s->int_rels_per_ext_rel; | |
2032 | erel += input_rel_hdr->sh_entsize; | |
2033 | } | |
2034 | ||
2035 | /* Bump the counter, so that we know where to add the next set of | |
2036 | relocations. */ | |
2037 | *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr); | |
2038 | ||
2039 | return TRUE; | |
2040 | } | |
2041 | \f | |
2042 | /* Fix up the flags for a symbol. This handles various cases which | |
2043 | can only be fixed after all the input files are seen. This is | |
2044 | currently called by both adjust_dynamic_symbol and | |
2045 | assign_sym_version, which is unnecessary but perhaps more robust in | |
2046 | the face of future changes. */ | |
2047 | ||
2048 | bfd_boolean | |
268b6b39 AM |
2049 | _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, |
2050 | struct elf_info_failed *eif) | |
45d6a902 AM |
2051 | { |
2052 | /* If this symbol was mentioned in a non-ELF file, try to set | |
2053 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
2054 | permit a non-ELF file to correctly refer to a symbol defined in | |
2055 | an ELF dynamic object. */ | |
2056 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) | |
2057 | { | |
2058 | while (h->root.type == bfd_link_hash_indirect) | |
2059 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2060 | ||
2061 | if (h->root.type != bfd_link_hash_defined | |
2062 | && h->root.type != bfd_link_hash_defweak) | |
2063 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
2064 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
2065 | else | |
2066 | { | |
2067 | if (h->root.u.def.section->owner != NULL | |
2068 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
2069 | == bfd_target_elf_flavour)) | |
2070 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
2071 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
2072 | else | |
2073 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2074 | } | |
2075 | ||
2076 | if (h->dynindx == -1 | |
2077 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2078 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
2079 | { | |
2080 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
2081 | { | |
2082 | eif->failed = TRUE; | |
2083 | return FALSE; | |
2084 | } | |
2085 | } | |
2086 | } | |
2087 | else | |
2088 | { | |
2089 | /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol | |
2090 | was first seen in a non-ELF file. Fortunately, if the symbol | |
2091 | was first seen in an ELF file, we're probably OK unless the | |
2092 | symbol was defined in a non-ELF file. Catch that case here. | |
2093 | FIXME: We're still in trouble if the symbol was first seen in | |
2094 | a dynamic object, and then later in a non-ELF regular object. */ | |
2095 | if ((h->root.type == bfd_link_hash_defined | |
2096 | || h->root.type == bfd_link_hash_defweak) | |
2097 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
2098 | && (h->root.u.def.section->owner != NULL | |
2099 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
2100 | != bfd_target_elf_flavour) | |
2101 | : (bfd_is_abs_section (h->root.u.def.section) | |
2102 | && (h->elf_link_hash_flags | |
2103 | & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) | |
2104 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2105 | } | |
2106 | ||
2107 | /* If this is a final link, and the symbol was defined as a common | |
2108 | symbol in a regular object file, and there was no definition in | |
2109 | any dynamic object, then the linker will have allocated space for | |
2110 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR | |
2111 | flag will not have been set. */ | |
2112 | if (h->root.type == bfd_link_hash_defined | |
2113 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
2114 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
2115 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
2116 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
2117 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2118 | ||
2119 | /* If -Bsymbolic was used (which means to bind references to global | |
2120 | symbols to the definition within the shared object), and this | |
2121 | symbol was defined in a regular object, then it actually doesn't | |
9c7a29a3 AM |
2122 | need a PLT entry. Likewise, if the symbol has non-default |
2123 | visibility. If the symbol has hidden or internal visibility, we | |
c1be741f | 2124 | will force it local. */ |
45d6a902 AM |
2125 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 |
2126 | && eif->info->shared | |
0eddce27 | 2127 | && is_elf_hash_table (eif->info->hash) |
45d6a902 | 2128 | && (eif->info->symbolic |
c1be741f | 2129 | || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
45d6a902 AM |
2130 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
2131 | { | |
9c5bfbb7 | 2132 | const struct elf_backend_data *bed; |
45d6a902 AM |
2133 | bfd_boolean force_local; |
2134 | ||
2135 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); | |
2136 | ||
2137 | force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL | |
2138 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); | |
2139 | (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); | |
2140 | } | |
2141 | ||
2142 | /* If a weak undefined symbol has non-default visibility, we also | |
2143 | hide it from the dynamic linker. */ | |
9c7a29a3 | 2144 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
45d6a902 AM |
2145 | && h->root.type == bfd_link_hash_undefweak) |
2146 | { | |
9c5bfbb7 | 2147 | const struct elf_backend_data *bed; |
45d6a902 AM |
2148 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); |
2149 | (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); | |
2150 | } | |
2151 | ||
2152 | /* If this is a weak defined symbol in a dynamic object, and we know | |
2153 | the real definition in the dynamic object, copy interesting flags | |
2154 | over to the real definition. */ | |
2155 | if (h->weakdef != NULL) | |
2156 | { | |
2157 | struct elf_link_hash_entry *weakdef; | |
2158 | ||
2159 | weakdef = h->weakdef; | |
2160 | if (h->root.type == bfd_link_hash_indirect) | |
2161 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2162 | ||
2163 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
2164 | || h->root.type == bfd_link_hash_defweak); | |
2165 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
2166 | || weakdef->root.type == bfd_link_hash_defweak); | |
2167 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
2168 | ||
2169 | /* If the real definition is defined by a regular object file, | |
2170 | don't do anything special. See the longer description in | |
2171 | _bfd_elf_adjust_dynamic_symbol, below. */ | |
2172 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
2173 | h->weakdef = NULL; | |
2174 | else | |
2175 | { | |
9c5bfbb7 | 2176 | const struct elf_backend_data *bed; |
45d6a902 AM |
2177 | |
2178 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); | |
2179 | (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h); | |
2180 | } | |
2181 | } | |
2182 | ||
2183 | return TRUE; | |
2184 | } | |
2185 | ||
2186 | /* Make the backend pick a good value for a dynamic symbol. This is | |
2187 | called via elf_link_hash_traverse, and also calls itself | |
2188 | recursively. */ | |
2189 | ||
2190 | bfd_boolean | |
268b6b39 | 2191 | _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 2192 | { |
268b6b39 | 2193 | struct elf_info_failed *eif = data; |
45d6a902 | 2194 | bfd *dynobj; |
9c5bfbb7 | 2195 | const struct elf_backend_data *bed; |
45d6a902 | 2196 | |
0eddce27 | 2197 | if (! is_elf_hash_table (eif->info->hash)) |
45d6a902 AM |
2198 | return FALSE; |
2199 | ||
2200 | if (h->root.type == bfd_link_hash_warning) | |
2201 | { | |
2202 | h->plt = elf_hash_table (eif->info)->init_offset; | |
2203 | h->got = elf_hash_table (eif->info)->init_offset; | |
2204 | ||
2205 | /* When warning symbols are created, they **replace** the "real" | |
2206 | entry in the hash table, thus we never get to see the real | |
2207 | symbol in a hash traversal. So look at it now. */ | |
2208 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2209 | } | |
2210 | ||
2211 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
2212 | if (h->root.type == bfd_link_hash_indirect) | |
2213 | return TRUE; | |
2214 | ||
2215 | /* Fix the symbol flags. */ | |
2216 | if (! _bfd_elf_fix_symbol_flags (h, eif)) | |
2217 | return FALSE; | |
2218 | ||
2219 | /* If this symbol does not require a PLT entry, and it is not | |
2220 | defined by a dynamic object, or is not referenced by a regular | |
2221 | object, ignore it. We do have to handle a weak defined symbol, | |
2222 | even if no regular object refers to it, if we decided to add it | |
2223 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
2224 | about symbols which are defined by one dynamic object and | |
2225 | referenced by another one? */ | |
2226 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 | |
2227 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
2228 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
2229 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 | |
2230 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
2231 | { | |
2232 | h->plt = elf_hash_table (eif->info)->init_offset; | |
2233 | return TRUE; | |
2234 | } | |
2235 | ||
2236 | /* If we've already adjusted this symbol, don't do it again. This | |
2237 | can happen via a recursive call. */ | |
2238 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
2239 | return TRUE; | |
2240 | ||
2241 | /* Don't look at this symbol again. Note that we must set this | |
2242 | after checking the above conditions, because we may look at a | |
2243 | symbol once, decide not to do anything, and then get called | |
2244 | recursively later after REF_REGULAR is set below. */ | |
2245 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
2246 | ||
2247 | /* If this is a weak definition, and we know a real definition, and | |
2248 | the real symbol is not itself defined by a regular object file, | |
2249 | then get a good value for the real definition. We handle the | |
2250 | real symbol first, for the convenience of the backend routine. | |
2251 | ||
2252 | Note that there is a confusing case here. If the real definition | |
2253 | is defined by a regular object file, we don't get the real symbol | |
2254 | from the dynamic object, but we do get the weak symbol. If the | |
2255 | processor backend uses a COPY reloc, then if some routine in the | |
2256 | dynamic object changes the real symbol, we will not see that | |
2257 | change in the corresponding weak symbol. This is the way other | |
2258 | ELF linkers work as well, and seems to be a result of the shared | |
2259 | library model. | |
2260 | ||
2261 | I will clarify this issue. Most SVR4 shared libraries define the | |
2262 | variable _timezone and define timezone as a weak synonym. The | |
2263 | tzset call changes _timezone. If you write | |
2264 | extern int timezone; | |
2265 | int _timezone = 5; | |
2266 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
2267 | you might expect that, since timezone is a synonym for _timezone, | |
2268 | the same number will print both times. However, if the processor | |
2269 | backend uses a COPY reloc, then actually timezone will be copied | |
2270 | into your process image, and, since you define _timezone | |
2271 | yourself, _timezone will not. Thus timezone and _timezone will | |
2272 | wind up at different memory locations. The tzset call will set | |
2273 | _timezone, leaving timezone unchanged. */ | |
2274 | ||
2275 | if (h->weakdef != NULL) | |
2276 | { | |
2277 | /* If we get to this point, we know there is an implicit | |
2278 | reference by a regular object file via the weak symbol H. | |
2279 | FIXME: Is this really true? What if the traversal finds | |
2280 | H->WEAKDEF before it finds H? */ | |
2281 | h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
2282 | ||
268b6b39 | 2283 | if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif)) |
45d6a902 AM |
2284 | return FALSE; |
2285 | } | |
2286 | ||
2287 | /* If a symbol has no type and no size and does not require a PLT | |
2288 | entry, then we are probably about to do the wrong thing here: we | |
2289 | are probably going to create a COPY reloc for an empty object. | |
2290 | This case can arise when a shared object is built with assembly | |
2291 | code, and the assembly code fails to set the symbol type. */ | |
2292 | if (h->size == 0 | |
2293 | && h->type == STT_NOTYPE | |
2294 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
2295 | (*_bfd_error_handler) | |
2296 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
2297 | h->root.root.string); | |
2298 | ||
2299 | dynobj = elf_hash_table (eif->info)->dynobj; | |
2300 | bed = get_elf_backend_data (dynobj); | |
2301 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
2302 | { | |
2303 | eif->failed = TRUE; | |
2304 | return FALSE; | |
2305 | } | |
2306 | ||
2307 | return TRUE; | |
2308 | } | |
2309 | ||
2310 | /* Adjust all external symbols pointing into SEC_MERGE sections | |
2311 | to reflect the object merging within the sections. */ | |
2312 | ||
2313 | bfd_boolean | |
268b6b39 | 2314 | _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) |
45d6a902 AM |
2315 | { |
2316 | asection *sec; | |
2317 | ||
2318 | if (h->root.type == bfd_link_hash_warning) | |
2319 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2320 | ||
2321 | if ((h->root.type == bfd_link_hash_defined | |
2322 | || h->root.type == bfd_link_hash_defweak) | |
2323 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE) | |
2324 | && sec->sec_info_type == ELF_INFO_TYPE_MERGE) | |
2325 | { | |
268b6b39 | 2326 | bfd *output_bfd = data; |
45d6a902 AM |
2327 | |
2328 | h->root.u.def.value = | |
2329 | _bfd_merged_section_offset (output_bfd, | |
2330 | &h->root.u.def.section, | |
2331 | elf_section_data (sec)->sec_info, | |
268b6b39 | 2332 | h->root.u.def.value, 0); |
45d6a902 AM |
2333 | } |
2334 | ||
2335 | return TRUE; | |
2336 | } | |
986a241f RH |
2337 | |
2338 | /* Returns false if the symbol referred to by H should be considered | |
2339 | to resolve local to the current module, and true if it should be | |
2340 | considered to bind dynamically. */ | |
2341 | ||
2342 | bfd_boolean | |
268b6b39 AM |
2343 | _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, |
2344 | struct bfd_link_info *info, | |
2345 | bfd_boolean ignore_protected) | |
986a241f RH |
2346 | { |
2347 | bfd_boolean binding_stays_local_p; | |
2348 | ||
2349 | if (h == NULL) | |
2350 | return FALSE; | |
2351 | ||
2352 | while (h->root.type == bfd_link_hash_indirect | |
2353 | || h->root.type == bfd_link_hash_warning) | |
2354 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2355 | ||
2356 | /* If it was forced local, then clearly it's not dynamic. */ | |
2357 | if (h->dynindx == -1) | |
2358 | return FALSE; | |
2359 | if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) | |
2360 | return FALSE; | |
2361 | ||
2362 | /* Identify the cases where name binding rules say that a | |
2363 | visible symbol resolves locally. */ | |
2364 | binding_stays_local_p = info->executable || info->symbolic; | |
2365 | ||
2366 | switch (ELF_ST_VISIBILITY (h->other)) | |
2367 | { | |
2368 | case STV_INTERNAL: | |
2369 | case STV_HIDDEN: | |
2370 | return FALSE; | |
2371 | ||
2372 | case STV_PROTECTED: | |
2373 | /* Proper resolution for function pointer equality may require | |
2374 | that these symbols perhaps be resolved dynamically, even though | |
2375 | we should be resolving them to the current module. */ | |
2376 | if (!ignore_protected) | |
2377 | binding_stays_local_p = TRUE; | |
2378 | break; | |
2379 | ||
2380 | default: | |
986a241f RH |
2381 | break; |
2382 | } | |
2383 | ||
aa37626c L |
2384 | /* If it isn't defined locally, then clearly it's dynamic. */ |
2385 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2386 | return TRUE; | |
2387 | ||
986a241f RH |
2388 | /* Otherwise, the symbol is dynamic if binding rules don't tell |
2389 | us that it remains local. */ | |
2390 | return !binding_stays_local_p; | |
2391 | } | |
f6c52c13 AM |
2392 | |
2393 | /* Return true if the symbol referred to by H should be considered | |
2394 | to resolve local to the current module, and false otherwise. Differs | |
2395 | from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of | |
2396 | undefined symbols and weak symbols. */ | |
2397 | ||
2398 | bfd_boolean | |
268b6b39 AM |
2399 | _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, |
2400 | struct bfd_link_info *info, | |
2401 | bfd_boolean local_protected) | |
f6c52c13 AM |
2402 | { |
2403 | /* If it's a local sym, of course we resolve locally. */ | |
2404 | if (h == NULL) | |
2405 | return TRUE; | |
2406 | ||
2407 | /* If we don't have a definition in a regular file, then we can't | |
2408 | resolve locally. The sym is either undefined or dynamic. */ | |
2409 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2410 | return FALSE; | |
2411 | ||
2412 | /* Forced local symbols resolve locally. */ | |
2413 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
2414 | return TRUE; | |
2415 | ||
2416 | /* As do non-dynamic symbols. */ | |
2417 | if (h->dynindx == -1) | |
2418 | return TRUE; | |
2419 | ||
2420 | /* At this point, we know the symbol is defined and dynamic. In an | |
2421 | executable it must resolve locally, likewise when building symbolic | |
2422 | shared libraries. */ | |
2423 | if (info->executable || info->symbolic) | |
2424 | return TRUE; | |
2425 | ||
2426 | /* Now deal with defined dynamic symbols in shared libraries. Ones | |
2427 | with default visibility might not resolve locally. */ | |
2428 | if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | |
2429 | return FALSE; | |
2430 | ||
2431 | /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */ | |
2432 | if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED) | |
2433 | return TRUE; | |
2434 | ||
2435 | /* Function pointer equality tests may require that STV_PROTECTED | |
2436 | symbols be treated as dynamic symbols, even when we know that the | |
2437 | dynamic linker will resolve them locally. */ | |
2438 | return local_protected; | |
2439 | } | |
e1918d23 AM |
2440 | |
2441 | /* Caches some TLS segment info, and ensures that the TLS segment vma is | |
2442 | aligned. Returns the first TLS output section. */ | |
2443 | ||
2444 | struct bfd_section * | |
2445 | _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) | |
2446 | { | |
2447 | struct bfd_section *sec, *tls; | |
2448 | unsigned int align = 0; | |
2449 | ||
2450 | for (sec = obfd->sections; sec != NULL; sec = sec->next) | |
2451 | if ((sec->flags & SEC_THREAD_LOCAL) != 0) | |
2452 | break; | |
2453 | tls = sec; | |
2454 | ||
2455 | for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) | |
2456 | if (sec->alignment_power > align) | |
2457 | align = sec->alignment_power; | |
2458 | ||
2459 | elf_hash_table (info)->tls_sec = tls; | |
2460 | ||
2461 | /* Ensure the alignment of the first section is the largest alignment, | |
2462 | so that the tls segment starts aligned. */ | |
2463 | if (tls != NULL) | |
2464 | tls->alignment_power = align; | |
2465 | ||
2466 | return tls; | |
2467 | } | |
0ad989f9 L |
2468 | |
2469 | /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ | |
2470 | static bfd_boolean | |
2471 | is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, | |
2472 | Elf_Internal_Sym *sym) | |
2473 | { | |
2474 | /* Local symbols do not count, but target specific ones might. */ | |
2475 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL | |
2476 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) | |
2477 | return FALSE; | |
2478 | ||
2479 | /* Function symbols do not count. */ | |
2480 | if (ELF_ST_TYPE (sym->st_info) == STT_FUNC) | |
2481 | return FALSE; | |
2482 | ||
2483 | /* If the section is undefined, then so is the symbol. */ | |
2484 | if (sym->st_shndx == SHN_UNDEF) | |
2485 | return FALSE; | |
2486 | ||
2487 | /* If the symbol is defined in the common section, then | |
2488 | it is a common definition and so does not count. */ | |
2489 | if (sym->st_shndx == SHN_COMMON) | |
2490 | return FALSE; | |
2491 | ||
2492 | /* If the symbol is in a target specific section then we | |
2493 | must rely upon the backend to tell us what it is. */ | |
2494 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) | |
2495 | /* FIXME - this function is not coded yet: | |
2496 | ||
2497 | return _bfd_is_global_symbol_definition (abfd, sym); | |
2498 | ||
2499 | Instead for now assume that the definition is not global, | |
2500 | Even if this is wrong, at least the linker will behave | |
2501 | in the same way that it used to do. */ | |
2502 | return FALSE; | |
2503 | ||
2504 | return TRUE; | |
2505 | } | |
2506 | ||
2507 | /* Search the symbol table of the archive element of the archive ABFD | |
2508 | whose archive map contains a mention of SYMDEF, and determine if | |
2509 | the symbol is defined in this element. */ | |
2510 | static bfd_boolean | |
2511 | elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) | |
2512 | { | |
2513 | Elf_Internal_Shdr * hdr; | |
2514 | bfd_size_type symcount; | |
2515 | bfd_size_type extsymcount; | |
2516 | bfd_size_type extsymoff; | |
2517 | Elf_Internal_Sym *isymbuf; | |
2518 | Elf_Internal_Sym *isym; | |
2519 | Elf_Internal_Sym *isymend; | |
2520 | bfd_boolean result; | |
2521 | ||
2522 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
2523 | if (abfd == NULL) | |
2524 | return FALSE; | |
2525 | ||
2526 | if (! bfd_check_format (abfd, bfd_object)) | |
2527 | return FALSE; | |
2528 | ||
2529 | /* If we have already included the element containing this symbol in the | |
2530 | link then we do not need to include it again. Just claim that any symbol | |
2531 | it contains is not a definition, so that our caller will not decide to | |
2532 | (re)include this element. */ | |
2533 | if (abfd->archive_pass) | |
2534 | return FALSE; | |
2535 | ||
2536 | /* Select the appropriate symbol table. */ | |
2537 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) | |
2538 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
2539 | else | |
2540 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
2541 | ||
2542 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | |
2543 | ||
2544 | /* The sh_info field of the symtab header tells us where the | |
2545 | external symbols start. We don't care about the local symbols. */ | |
2546 | if (elf_bad_symtab (abfd)) | |
2547 | { | |
2548 | extsymcount = symcount; | |
2549 | extsymoff = 0; | |
2550 | } | |
2551 | else | |
2552 | { | |
2553 | extsymcount = symcount - hdr->sh_info; | |
2554 | extsymoff = hdr->sh_info; | |
2555 | } | |
2556 | ||
2557 | if (extsymcount == 0) | |
2558 | return FALSE; | |
2559 | ||
2560 | /* Read in the symbol table. */ | |
2561 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
2562 | NULL, NULL, NULL); | |
2563 | if (isymbuf == NULL) | |
2564 | return FALSE; | |
2565 | ||
2566 | /* Scan the symbol table looking for SYMDEF. */ | |
2567 | result = FALSE; | |
2568 | for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) | |
2569 | { | |
2570 | const char *name; | |
2571 | ||
2572 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
2573 | isym->st_name); | |
2574 | if (name == NULL) | |
2575 | break; | |
2576 | ||
2577 | if (strcmp (name, symdef->name) == 0) | |
2578 | { | |
2579 | result = is_global_data_symbol_definition (abfd, isym); | |
2580 | break; | |
2581 | } | |
2582 | } | |
2583 | ||
2584 | free (isymbuf); | |
2585 | ||
2586 | return result; | |
2587 | } | |
2588 | \f | |
5a580b3a AM |
2589 | /* Add an entry to the .dynamic table. */ |
2590 | ||
2591 | bfd_boolean | |
2592 | _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, | |
2593 | bfd_vma tag, | |
2594 | bfd_vma val) | |
2595 | { | |
2596 | struct elf_link_hash_table *hash_table; | |
2597 | const struct elf_backend_data *bed; | |
2598 | asection *s; | |
2599 | bfd_size_type newsize; | |
2600 | bfd_byte *newcontents; | |
2601 | Elf_Internal_Dyn dyn; | |
2602 | ||
2603 | hash_table = elf_hash_table (info); | |
2604 | if (! is_elf_hash_table (hash_table)) | |
2605 | return FALSE; | |
2606 | ||
2607 | bed = get_elf_backend_data (hash_table->dynobj); | |
2608 | s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); | |
2609 | BFD_ASSERT (s != NULL); | |
2610 | ||
2611 | newsize = s->_raw_size + bed->s->sizeof_dyn; | |
2612 | newcontents = bfd_realloc (s->contents, newsize); | |
2613 | if (newcontents == NULL) | |
2614 | return FALSE; | |
2615 | ||
2616 | dyn.d_tag = tag; | |
2617 | dyn.d_un.d_val = val; | |
2618 | bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->_raw_size); | |
2619 | ||
2620 | s->_raw_size = newsize; | |
2621 | s->contents = newcontents; | |
2622 | ||
2623 | return TRUE; | |
2624 | } | |
2625 | ||
2626 | /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true, | |
2627 | otherwise just check whether one already exists. Returns -1 on error, | |
2628 | 1 if a DT_NEEDED tag already exists, and 0 on success. */ | |
2629 | ||
4ad4eba5 AM |
2630 | static int |
2631 | elf_add_dt_needed_tag (struct bfd_link_info *info, | |
2632 | const char *soname, | |
2633 | bfd_boolean do_it) | |
5a580b3a AM |
2634 | { |
2635 | struct elf_link_hash_table *hash_table; | |
2636 | bfd_size_type oldsize; | |
2637 | bfd_size_type strindex; | |
2638 | ||
2639 | hash_table = elf_hash_table (info); | |
2640 | oldsize = _bfd_elf_strtab_size (hash_table->dynstr); | |
2641 | strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE); | |
2642 | if (strindex == (bfd_size_type) -1) | |
2643 | return -1; | |
2644 | ||
2645 | if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr)) | |
2646 | { | |
2647 | asection *sdyn; | |
2648 | const struct elf_backend_data *bed; | |
2649 | bfd_byte *extdyn; | |
2650 | ||
2651 | bed = get_elf_backend_data (hash_table->dynobj); | |
2652 | sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); | |
2653 | BFD_ASSERT (sdyn != NULL); | |
2654 | ||
2655 | for (extdyn = sdyn->contents; | |
2656 | extdyn < sdyn->contents + sdyn->_raw_size; | |
2657 | extdyn += bed->s->sizeof_dyn) | |
2658 | { | |
2659 | Elf_Internal_Dyn dyn; | |
2660 | ||
2661 | bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); | |
2662 | if (dyn.d_tag == DT_NEEDED | |
2663 | && dyn.d_un.d_val == strindex) | |
2664 | { | |
2665 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |
2666 | return 1; | |
2667 | } | |
2668 | } | |
2669 | } | |
2670 | ||
2671 | if (do_it) | |
2672 | { | |
2673 | if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
2674 | return -1; | |
2675 | } | |
2676 | else | |
2677 | /* We were just checking for existence of the tag. */ | |
2678 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |
2679 | ||
2680 | return 0; | |
2681 | } | |
2682 | ||
2683 | /* Sort symbol by value and section. */ | |
4ad4eba5 AM |
2684 | static int |
2685 | elf_sort_symbol (const void *arg1, const void *arg2) | |
5a580b3a AM |
2686 | { |
2687 | const struct elf_link_hash_entry *h1; | |
2688 | const struct elf_link_hash_entry *h2; | |
2689 | bfd_signed_vma vdiff; | |
2690 | ||
2691 | h1 = *(const struct elf_link_hash_entry **) arg1; | |
2692 | h2 = *(const struct elf_link_hash_entry **) arg2; | |
2693 | vdiff = h1->root.u.def.value - h2->root.u.def.value; | |
2694 | if (vdiff != 0) | |
2695 | return vdiff > 0 ? 1 : -1; | |
2696 | else | |
2697 | { | |
2698 | long sdiff = h1->root.u.def.section - h2->root.u.def.section; | |
2699 | if (sdiff != 0) | |
2700 | return sdiff > 0 ? 1 : -1; | |
2701 | } | |
2702 | return 0; | |
2703 | } | |
4ad4eba5 | 2704 | |
5a580b3a AM |
2705 | /* This function is used to adjust offsets into .dynstr for |
2706 | dynamic symbols. This is called via elf_link_hash_traverse. */ | |
2707 | ||
2708 | static bfd_boolean | |
2709 | elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) | |
2710 | { | |
2711 | struct elf_strtab_hash *dynstr = data; | |
2712 | ||
2713 | if (h->root.type == bfd_link_hash_warning) | |
2714 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2715 | ||
2716 | if (h->dynindx != -1) | |
2717 | h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); | |
2718 | return TRUE; | |
2719 | } | |
2720 | ||
2721 | /* Assign string offsets in .dynstr, update all structures referencing | |
2722 | them. */ | |
2723 | ||
4ad4eba5 AM |
2724 | static bfd_boolean |
2725 | elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |
5a580b3a AM |
2726 | { |
2727 | struct elf_link_hash_table *hash_table = elf_hash_table (info); | |
2728 | struct elf_link_local_dynamic_entry *entry; | |
2729 | struct elf_strtab_hash *dynstr = hash_table->dynstr; | |
2730 | bfd *dynobj = hash_table->dynobj; | |
2731 | asection *sdyn; | |
2732 | bfd_size_type size; | |
2733 | const struct elf_backend_data *bed; | |
2734 | bfd_byte *extdyn; | |
2735 | ||
2736 | _bfd_elf_strtab_finalize (dynstr); | |
2737 | size = _bfd_elf_strtab_size (dynstr); | |
2738 | ||
2739 | bed = get_elf_backend_data (dynobj); | |
2740 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2741 | BFD_ASSERT (sdyn != NULL); | |
2742 | ||
2743 | /* Update all .dynamic entries referencing .dynstr strings. */ | |
2744 | for (extdyn = sdyn->contents; | |
2745 | extdyn < sdyn->contents + sdyn->_raw_size; | |
2746 | extdyn += bed->s->sizeof_dyn) | |
2747 | { | |
2748 | Elf_Internal_Dyn dyn; | |
2749 | ||
2750 | bed->s->swap_dyn_in (dynobj, extdyn, &dyn); | |
2751 | switch (dyn.d_tag) | |
2752 | { | |
2753 | case DT_STRSZ: | |
2754 | dyn.d_un.d_val = size; | |
2755 | break; | |
2756 | case DT_NEEDED: | |
2757 | case DT_SONAME: | |
2758 | case DT_RPATH: | |
2759 | case DT_RUNPATH: | |
2760 | case DT_FILTER: | |
2761 | case DT_AUXILIARY: | |
2762 | dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); | |
2763 | break; | |
2764 | default: | |
2765 | continue; | |
2766 | } | |
2767 | bed->s->swap_dyn_out (dynobj, &dyn, extdyn); | |
2768 | } | |
2769 | ||
2770 | /* Now update local dynamic symbols. */ | |
2771 | for (entry = hash_table->dynlocal; entry ; entry = entry->next) | |
2772 | entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, | |
2773 | entry->isym.st_name); | |
2774 | ||
2775 | /* And the rest of dynamic symbols. */ | |
2776 | elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); | |
2777 | ||
2778 | /* Adjust version definitions. */ | |
2779 | if (elf_tdata (output_bfd)->cverdefs) | |
2780 | { | |
2781 | asection *s; | |
2782 | bfd_byte *p; | |
2783 | bfd_size_type i; | |
2784 | Elf_Internal_Verdef def; | |
2785 | Elf_Internal_Verdaux defaux; | |
2786 | ||
2787 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
2788 | p = s->contents; | |
2789 | do | |
2790 | { | |
2791 | _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, | |
2792 | &def); | |
2793 | p += sizeof (Elf_External_Verdef); | |
2794 | for (i = 0; i < def.vd_cnt; ++i) | |
2795 | { | |
2796 | _bfd_elf_swap_verdaux_in (output_bfd, | |
2797 | (Elf_External_Verdaux *) p, &defaux); | |
2798 | defaux.vda_name = _bfd_elf_strtab_offset (dynstr, | |
2799 | defaux.vda_name); | |
2800 | _bfd_elf_swap_verdaux_out (output_bfd, | |
2801 | &defaux, (Elf_External_Verdaux *) p); | |
2802 | p += sizeof (Elf_External_Verdaux); | |
2803 | } | |
2804 | } | |
2805 | while (def.vd_next); | |
2806 | } | |
2807 | ||
2808 | /* Adjust version references. */ | |
2809 | if (elf_tdata (output_bfd)->verref) | |
2810 | { | |
2811 | asection *s; | |
2812 | bfd_byte *p; | |
2813 | bfd_size_type i; | |
2814 | Elf_Internal_Verneed need; | |
2815 | Elf_Internal_Vernaux needaux; | |
2816 | ||
2817 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
2818 | p = s->contents; | |
2819 | do | |
2820 | { | |
2821 | _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, | |
2822 | &need); | |
2823 | need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); | |
2824 | _bfd_elf_swap_verneed_out (output_bfd, &need, | |
2825 | (Elf_External_Verneed *) p); | |
2826 | p += sizeof (Elf_External_Verneed); | |
2827 | for (i = 0; i < need.vn_cnt; ++i) | |
2828 | { | |
2829 | _bfd_elf_swap_vernaux_in (output_bfd, | |
2830 | (Elf_External_Vernaux *) p, &needaux); | |
2831 | needaux.vna_name = _bfd_elf_strtab_offset (dynstr, | |
2832 | needaux.vna_name); | |
2833 | _bfd_elf_swap_vernaux_out (output_bfd, | |
2834 | &needaux, | |
2835 | (Elf_External_Vernaux *) p); | |
2836 | p += sizeof (Elf_External_Vernaux); | |
2837 | } | |
2838 | } | |
2839 | while (need.vn_next); | |
2840 | } | |
2841 | ||
2842 | return TRUE; | |
2843 | } | |
2844 | \f | |
4ad4eba5 AM |
2845 | /* Add symbols from an ELF object file to the linker hash table. */ |
2846 | ||
2847 | static bfd_boolean | |
2848 | elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) | |
2849 | { | |
2850 | bfd_boolean (*add_symbol_hook) | |
2851 | (bfd *, struct bfd_link_info *, const Elf_Internal_Sym *, | |
2852 | const char **, flagword *, asection **, bfd_vma *); | |
2853 | bfd_boolean (*check_relocs) | |
2854 | (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); | |
2855 | bfd_boolean collect; | |
2856 | Elf_Internal_Shdr *hdr; | |
2857 | bfd_size_type symcount; | |
2858 | bfd_size_type extsymcount; | |
2859 | bfd_size_type extsymoff; | |
2860 | struct elf_link_hash_entry **sym_hash; | |
2861 | bfd_boolean dynamic; | |
2862 | Elf_External_Versym *extversym = NULL; | |
2863 | Elf_External_Versym *ever; | |
2864 | struct elf_link_hash_entry *weaks; | |
2865 | struct elf_link_hash_entry **nondeflt_vers = NULL; | |
2866 | bfd_size_type nondeflt_vers_cnt = 0; | |
2867 | Elf_Internal_Sym *isymbuf = NULL; | |
2868 | Elf_Internal_Sym *isym; | |
2869 | Elf_Internal_Sym *isymend; | |
2870 | const struct elf_backend_data *bed; | |
2871 | bfd_boolean add_needed; | |
2872 | struct elf_link_hash_table * hash_table; | |
2873 | bfd_size_type amt; | |
2874 | ||
2875 | hash_table = elf_hash_table (info); | |
2876 | ||
2877 | bed = get_elf_backend_data (abfd); | |
2878 | add_symbol_hook = bed->elf_add_symbol_hook; | |
2879 | collect = bed->collect; | |
2880 | ||
2881 | if ((abfd->flags & DYNAMIC) == 0) | |
2882 | dynamic = FALSE; | |
2883 | else | |
2884 | { | |
2885 | dynamic = TRUE; | |
2886 | ||
2887 | /* You can't use -r against a dynamic object. Also, there's no | |
2888 | hope of using a dynamic object which does not exactly match | |
2889 | the format of the output file. */ | |
2890 | if (info->relocatable | |
2891 | || !is_elf_hash_table (hash_table) | |
2892 | || hash_table->root.creator != abfd->xvec) | |
2893 | { | |
2894 | bfd_set_error (bfd_error_invalid_operation); | |
2895 | goto error_return; | |
2896 | } | |
2897 | } | |
2898 | ||
2899 | /* As a GNU extension, any input sections which are named | |
2900 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
2901 | symbol. This differs from .gnu.warning sections, which generate | |
2902 | warnings when they are included in an output file. */ | |
2903 | if (info->executable) | |
2904 | { | |
2905 | asection *s; | |
2906 | ||
2907 | for (s = abfd->sections; s != NULL; s = s->next) | |
2908 | { | |
2909 | const char *name; | |
2910 | ||
2911 | name = bfd_get_section_name (abfd, s); | |
2912 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
2913 | { | |
2914 | char *msg; | |
2915 | bfd_size_type sz; | |
2916 | bfd_size_type prefix_len; | |
2917 | const char * gnu_warning_prefix = _("warning: "); | |
2918 | ||
2919 | name += sizeof ".gnu.warning." - 1; | |
2920 | ||
2921 | /* If this is a shared object, then look up the symbol | |
2922 | in the hash table. If it is there, and it is already | |
2923 | been defined, then we will not be using the entry | |
2924 | from this shared object, so we don't need to warn. | |
2925 | FIXME: If we see the definition in a regular object | |
2926 | later on, we will warn, but we shouldn't. The only | |
2927 | fix is to keep track of what warnings we are supposed | |
2928 | to emit, and then handle them all at the end of the | |
2929 | link. */ | |
2930 | if (dynamic) | |
2931 | { | |
2932 | struct elf_link_hash_entry *h; | |
2933 | ||
2934 | h = elf_link_hash_lookup (hash_table, name, | |
2935 | FALSE, FALSE, TRUE); | |
2936 | ||
2937 | /* FIXME: What about bfd_link_hash_common? */ | |
2938 | if (h != NULL | |
2939 | && (h->root.type == bfd_link_hash_defined | |
2940 | || h->root.type == bfd_link_hash_defweak)) | |
2941 | { | |
2942 | /* We don't want to issue this warning. Clobber | |
2943 | the section size so that the warning does not | |
2944 | get copied into the output file. */ | |
2945 | s->_raw_size = 0; | |
2946 | continue; | |
2947 | } | |
2948 | } | |
2949 | ||
2950 | sz = bfd_section_size (abfd, s); | |
2951 | prefix_len = strlen (gnu_warning_prefix); | |
2952 | msg = bfd_alloc (abfd, prefix_len + sz + 1); | |
2953 | if (msg == NULL) | |
2954 | goto error_return; | |
2955 | ||
2956 | strcpy (msg, gnu_warning_prefix); | |
2957 | if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz)) | |
2958 | goto error_return; | |
2959 | ||
2960 | msg[prefix_len + sz] = '\0'; | |
2961 | ||
2962 | if (! (_bfd_generic_link_add_one_symbol | |
2963 | (info, abfd, name, BSF_WARNING, s, 0, msg, | |
2964 | FALSE, collect, NULL))) | |
2965 | goto error_return; | |
2966 | ||
2967 | if (! info->relocatable) | |
2968 | { | |
2969 | /* Clobber the section size so that the warning does | |
2970 | not get copied into the output file. */ | |
2971 | s->_raw_size = 0; | |
2972 | } | |
2973 | } | |
2974 | } | |
2975 | } | |
2976 | ||
2977 | add_needed = TRUE; | |
2978 | if (! dynamic) | |
2979 | { | |
2980 | /* If we are creating a shared library, create all the dynamic | |
2981 | sections immediately. We need to attach them to something, | |
2982 | so we attach them to this BFD, provided it is the right | |
2983 | format. FIXME: If there are no input BFD's of the same | |
2984 | format as the output, we can't make a shared library. */ | |
2985 | if (info->shared | |
2986 | && is_elf_hash_table (hash_table) | |
2987 | && hash_table->root.creator == abfd->xvec | |
2988 | && ! hash_table->dynamic_sections_created) | |
2989 | { | |
2990 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) | |
2991 | goto error_return; | |
2992 | } | |
2993 | } | |
2994 | else if (!is_elf_hash_table (hash_table)) | |
2995 | goto error_return; | |
2996 | else | |
2997 | { | |
2998 | asection *s; | |
2999 | const char *soname = NULL; | |
3000 | struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; | |
3001 | int ret; | |
3002 | ||
3003 | /* ld --just-symbols and dynamic objects don't mix very well. | |
3004 | Test for --just-symbols by looking at info set up by | |
3005 | _bfd_elf_link_just_syms. */ | |
3006 | if ((s = abfd->sections) != NULL | |
3007 | && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS) | |
3008 | goto error_return; | |
3009 | ||
3010 | /* If this dynamic lib was specified on the command line with | |
3011 | --as-needed in effect, then we don't want to add a DT_NEEDED | |
3012 | tag unless the lib is actually used. Similary for libs brought | |
3013 | in by another lib's DT_NEEDED. */ | |
3014 | add_needed = elf_dyn_lib_class (abfd) == DYN_NORMAL; | |
3015 | ||
3016 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
3017 | if (s != NULL) | |
3018 | { | |
3019 | bfd_byte *dynbuf; | |
3020 | bfd_byte *extdyn; | |
3021 | int elfsec; | |
3022 | unsigned long shlink; | |
3023 | ||
3024 | dynbuf = bfd_malloc (s->_raw_size); | |
3025 | if (dynbuf == NULL) | |
3026 | goto error_return; | |
3027 | ||
3028 | if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size)) | |
3029 | goto error_free_dyn; | |
3030 | ||
3031 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
3032 | if (elfsec == -1) | |
3033 | goto error_free_dyn; | |
3034 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; | |
3035 | ||
3036 | for (extdyn = dynbuf; | |
3037 | extdyn < dynbuf + s->_raw_size; | |
3038 | extdyn += bed->s->sizeof_dyn) | |
3039 | { | |
3040 | Elf_Internal_Dyn dyn; | |
3041 | ||
3042 | bed->s->swap_dyn_in (abfd, extdyn, &dyn); | |
3043 | if (dyn.d_tag == DT_SONAME) | |
3044 | { | |
3045 | unsigned int tagv = dyn.d_un.d_val; | |
3046 | soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
3047 | if (soname == NULL) | |
3048 | goto error_free_dyn; | |
3049 | } | |
3050 | if (dyn.d_tag == DT_NEEDED) | |
3051 | { | |
3052 | struct bfd_link_needed_list *n, **pn; | |
3053 | char *fnm, *anm; | |
3054 | unsigned int tagv = dyn.d_un.d_val; | |
3055 | ||
3056 | amt = sizeof (struct bfd_link_needed_list); | |
3057 | n = bfd_alloc (abfd, amt); | |
3058 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
3059 | if (n == NULL || fnm == NULL) | |
3060 | goto error_free_dyn; | |
3061 | amt = strlen (fnm) + 1; | |
3062 | anm = bfd_alloc (abfd, amt); | |
3063 | if (anm == NULL) | |
3064 | goto error_free_dyn; | |
3065 | memcpy (anm, fnm, amt); | |
3066 | n->name = anm; | |
3067 | n->by = abfd; | |
3068 | n->next = NULL; | |
3069 | for (pn = & hash_table->needed; | |
3070 | *pn != NULL; | |
3071 | pn = &(*pn)->next) | |
3072 | ; | |
3073 | *pn = n; | |
3074 | } | |
3075 | if (dyn.d_tag == DT_RUNPATH) | |
3076 | { | |
3077 | struct bfd_link_needed_list *n, **pn; | |
3078 | char *fnm, *anm; | |
3079 | unsigned int tagv = dyn.d_un.d_val; | |
3080 | ||
3081 | amt = sizeof (struct bfd_link_needed_list); | |
3082 | n = bfd_alloc (abfd, amt); | |
3083 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
3084 | if (n == NULL || fnm == NULL) | |
3085 | goto error_free_dyn; | |
3086 | amt = strlen (fnm) + 1; | |
3087 | anm = bfd_alloc (abfd, amt); | |
3088 | if (anm == NULL) | |
3089 | goto error_free_dyn; | |
3090 | memcpy (anm, fnm, amt); | |
3091 | n->name = anm; | |
3092 | n->by = abfd; | |
3093 | n->next = NULL; | |
3094 | for (pn = & runpath; | |
3095 | *pn != NULL; | |
3096 | pn = &(*pn)->next) | |
3097 | ; | |
3098 | *pn = n; | |
3099 | } | |
3100 | /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ | |
3101 | if (!runpath && dyn.d_tag == DT_RPATH) | |
3102 | { | |
3103 | struct bfd_link_needed_list *n, **pn; | |
3104 | char *fnm, *anm; | |
3105 | unsigned int tagv = dyn.d_un.d_val; | |
3106 | ||
3107 | amt = sizeof (struct bfd_link_needed_list); | |
3108 | n = bfd_alloc (abfd, amt); | |
3109 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
3110 | if (n == NULL || fnm == NULL) | |
3111 | goto error_free_dyn; | |
3112 | amt = strlen (fnm) + 1; | |
3113 | anm = bfd_alloc (abfd, amt); | |
3114 | if (anm == NULL) | |
3115 | { | |
3116 | error_free_dyn: | |
3117 | free (dynbuf); | |
3118 | goto error_return; | |
3119 | } | |
3120 | memcpy (anm, fnm, amt); | |
3121 | n->name = anm; | |
3122 | n->by = abfd; | |
3123 | n->next = NULL; | |
3124 | for (pn = & rpath; | |
3125 | *pn != NULL; | |
3126 | pn = &(*pn)->next) | |
3127 | ; | |
3128 | *pn = n; | |
3129 | } | |
3130 | } | |
3131 | ||
3132 | free (dynbuf); | |
3133 | } | |
3134 | ||
3135 | /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that | |
3136 | frees all more recently bfd_alloc'd blocks as well. */ | |
3137 | if (runpath) | |
3138 | rpath = runpath; | |
3139 | ||
3140 | if (rpath) | |
3141 | { | |
3142 | struct bfd_link_needed_list **pn; | |
3143 | for (pn = & hash_table->runpath; | |
3144 | *pn != NULL; | |
3145 | pn = &(*pn)->next) | |
3146 | ; | |
3147 | *pn = rpath; | |
3148 | } | |
3149 | ||
3150 | /* We do not want to include any of the sections in a dynamic | |
3151 | object in the output file. We hack by simply clobbering the | |
3152 | list of sections in the BFD. This could be handled more | |
3153 | cleanly by, say, a new section flag; the existing | |
3154 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
3155 | still implies that the section takes up space in the output | |
3156 | file. */ | |
3157 | bfd_section_list_clear (abfd); | |
3158 | ||
3159 | /* If this is the first dynamic object found in the link, create | |
3160 | the special sections required for dynamic linking. */ | |
3161 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) | |
3162 | goto error_return; | |
3163 | ||
3164 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
3165 | object. If the object has a DT_SONAME entry, we use it. | |
3166 | Otherwise, if the generic linker stuck something in | |
3167 | elf_dt_name, we use that. Otherwise, we just use the file | |
3168 | name. */ | |
3169 | if (soname == NULL || *soname == '\0') | |
3170 | { | |
3171 | soname = elf_dt_name (abfd); | |
3172 | if (soname == NULL || *soname == '\0') | |
3173 | soname = bfd_get_filename (abfd); | |
3174 | } | |
3175 | ||
3176 | /* Save the SONAME because sometimes the linker emulation code | |
3177 | will need to know it. */ | |
3178 | elf_dt_name (abfd) = soname; | |
3179 | ||
3180 | ret = elf_add_dt_needed_tag (info, soname, add_needed); | |
3181 | if (ret < 0) | |
3182 | goto error_return; | |
3183 | ||
3184 | /* If we have already included this dynamic object in the | |
3185 | link, just ignore it. There is no reason to include a | |
3186 | particular dynamic object more than once. */ | |
3187 | if (ret > 0) | |
3188 | return TRUE; | |
3189 | } | |
3190 | ||
3191 | /* If this is a dynamic object, we always link against the .dynsym | |
3192 | symbol table, not the .symtab symbol table. The dynamic linker | |
3193 | will only see the .dynsym symbol table, so there is no reason to | |
3194 | look at .symtab for a dynamic object. */ | |
3195 | ||
3196 | if (! dynamic || elf_dynsymtab (abfd) == 0) | |
3197 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
3198 | else | |
3199 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
3200 | ||
3201 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |
3202 | ||
3203 | /* The sh_info field of the symtab header tells us where the | |
3204 | external symbols start. We don't care about the local symbols at | |
3205 | this point. */ | |
3206 | if (elf_bad_symtab (abfd)) | |
3207 | { | |
3208 | extsymcount = symcount; | |
3209 | extsymoff = 0; | |
3210 | } | |
3211 | else | |
3212 | { | |
3213 | extsymcount = symcount - hdr->sh_info; | |
3214 | extsymoff = hdr->sh_info; | |
3215 | } | |
3216 | ||
3217 | sym_hash = NULL; | |
3218 | if (extsymcount != 0) | |
3219 | { | |
3220 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
3221 | NULL, NULL, NULL); | |
3222 | if (isymbuf == NULL) | |
3223 | goto error_return; | |
3224 | ||
3225 | /* We store a pointer to the hash table entry for each external | |
3226 | symbol. */ | |
3227 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |
3228 | sym_hash = bfd_alloc (abfd, amt); | |
3229 | if (sym_hash == NULL) | |
3230 | goto error_free_sym; | |
3231 | elf_sym_hashes (abfd) = sym_hash; | |
3232 | } | |
3233 | ||
3234 | if (dynamic) | |
3235 | { | |
3236 | /* Read in any version definitions. */ | |
3237 | if (! _bfd_elf_slurp_version_tables (abfd)) | |
3238 | goto error_free_sym; | |
3239 | ||
3240 | /* Read in the symbol versions, but don't bother to convert them | |
3241 | to internal format. */ | |
3242 | if (elf_dynversym (abfd) != 0) | |
3243 | { | |
3244 | Elf_Internal_Shdr *versymhdr; | |
3245 | ||
3246 | versymhdr = &elf_tdata (abfd)->dynversym_hdr; | |
3247 | extversym = bfd_malloc (versymhdr->sh_size); | |
3248 | if (extversym == NULL) | |
3249 | goto error_free_sym; | |
3250 | amt = versymhdr->sh_size; | |
3251 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 | |
3252 | || bfd_bread (extversym, amt, abfd) != amt) | |
3253 | goto error_free_vers; | |
3254 | } | |
3255 | } | |
3256 | ||
3257 | weaks = NULL; | |
3258 | ||
3259 | ever = extversym != NULL ? extversym + extsymoff : NULL; | |
3260 | for (isym = isymbuf, isymend = isymbuf + extsymcount; | |
3261 | isym < isymend; | |
3262 | isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) | |
3263 | { | |
3264 | int bind; | |
3265 | bfd_vma value; | |
3266 | asection *sec; | |
3267 | flagword flags; | |
3268 | const char *name; | |
3269 | struct elf_link_hash_entry *h; | |
3270 | bfd_boolean definition; | |
3271 | bfd_boolean size_change_ok; | |
3272 | bfd_boolean type_change_ok; | |
3273 | bfd_boolean new_weakdef; | |
3274 | bfd_boolean override; | |
3275 | unsigned int old_alignment; | |
3276 | bfd *old_bfd; | |
3277 | ||
3278 | override = FALSE; | |
3279 | ||
3280 | flags = BSF_NO_FLAGS; | |
3281 | sec = NULL; | |
3282 | value = isym->st_value; | |
3283 | *sym_hash = NULL; | |
3284 | ||
3285 | bind = ELF_ST_BIND (isym->st_info); | |
3286 | if (bind == STB_LOCAL) | |
3287 | { | |
3288 | /* This should be impossible, since ELF requires that all | |
3289 | global symbols follow all local symbols, and that sh_info | |
3290 | point to the first global symbol. Unfortunately, Irix 5 | |
3291 | screws this up. */ | |
3292 | continue; | |
3293 | } | |
3294 | else if (bind == STB_GLOBAL) | |
3295 | { | |
3296 | if (isym->st_shndx != SHN_UNDEF | |
3297 | && isym->st_shndx != SHN_COMMON) | |
3298 | flags = BSF_GLOBAL; | |
3299 | } | |
3300 | else if (bind == STB_WEAK) | |
3301 | flags = BSF_WEAK; | |
3302 | else | |
3303 | { | |
3304 | /* Leave it up to the processor backend. */ | |
3305 | } | |
3306 | ||
3307 | if (isym->st_shndx == SHN_UNDEF) | |
3308 | sec = bfd_und_section_ptr; | |
3309 | else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE) | |
3310 | { | |
3311 | sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
3312 | if (sec == NULL) | |
3313 | sec = bfd_abs_section_ptr; | |
3314 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) | |
3315 | value -= sec->vma; | |
3316 | } | |
3317 | else if (isym->st_shndx == SHN_ABS) | |
3318 | sec = bfd_abs_section_ptr; | |
3319 | else if (isym->st_shndx == SHN_COMMON) | |
3320 | { | |
3321 | sec = bfd_com_section_ptr; | |
3322 | /* What ELF calls the size we call the value. What ELF | |
3323 | calls the value we call the alignment. */ | |
3324 | value = isym->st_size; | |
3325 | } | |
3326 | else | |
3327 | { | |
3328 | /* Leave it up to the processor backend. */ | |
3329 | } | |
3330 | ||
3331 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
3332 | isym->st_name); | |
3333 | if (name == NULL) | |
3334 | goto error_free_vers; | |
3335 | ||
3336 | if (isym->st_shndx == SHN_COMMON | |
3337 | && ELF_ST_TYPE (isym->st_info) == STT_TLS) | |
3338 | { | |
3339 | asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); | |
3340 | ||
3341 | if (tcomm == NULL) | |
3342 | { | |
3343 | tcomm = bfd_make_section (abfd, ".tcommon"); | |
3344 | if (tcomm == NULL | |
3345 | || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC | |
3346 | | SEC_IS_COMMON | |
3347 | | SEC_LINKER_CREATED | |
3348 | | SEC_THREAD_LOCAL))) | |
3349 | goto error_free_vers; | |
3350 | } | |
3351 | sec = tcomm; | |
3352 | } | |
3353 | else if (add_symbol_hook) | |
3354 | { | |
3355 | if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec, | |
3356 | &value)) | |
3357 | goto error_free_vers; | |
3358 | ||
3359 | /* The hook function sets the name to NULL if this symbol | |
3360 | should be skipped for some reason. */ | |
3361 | if (name == NULL) | |
3362 | continue; | |
3363 | } | |
3364 | ||
3365 | /* Sanity check that all possibilities were handled. */ | |
3366 | if (sec == NULL) | |
3367 | { | |
3368 | bfd_set_error (bfd_error_bad_value); | |
3369 | goto error_free_vers; | |
3370 | } | |
3371 | ||
3372 | if (bfd_is_und_section (sec) | |
3373 | || bfd_is_com_section (sec)) | |
3374 | definition = FALSE; | |
3375 | else | |
3376 | definition = TRUE; | |
3377 | ||
3378 | size_change_ok = FALSE; | |
3379 | type_change_ok = get_elf_backend_data (abfd)->type_change_ok; | |
3380 | old_alignment = 0; | |
3381 | old_bfd = NULL; | |
3382 | ||
3383 | if (is_elf_hash_table (hash_table)) | |
3384 | { | |
3385 | Elf_Internal_Versym iver; | |
3386 | unsigned int vernum = 0; | |
3387 | bfd_boolean skip; | |
3388 | ||
3389 | if (ever != NULL) | |
3390 | { | |
3391 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |
3392 | vernum = iver.vs_vers & VERSYM_VERSION; | |
3393 | ||
3394 | /* If this is a hidden symbol, or if it is not version | |
3395 | 1, we append the version name to the symbol name. | |
3396 | However, we do not modify a non-hidden absolute | |
3397 | symbol, because it might be the version symbol | |
3398 | itself. FIXME: What if it isn't? */ | |
3399 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 | |
3400 | || (vernum > 1 && ! bfd_is_abs_section (sec))) | |
3401 | { | |
3402 | const char *verstr; | |
3403 | size_t namelen, verlen, newlen; | |
3404 | char *newname, *p; | |
3405 | ||
3406 | if (isym->st_shndx != SHN_UNDEF) | |
3407 | { | |
3408 | if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info) | |
3409 | { | |
3410 | (*_bfd_error_handler) | |
3411 | (_("%s: %s: invalid version %u (max %d)"), | |
3412 | bfd_archive_filename (abfd), name, vernum, | |
3413 | elf_tdata (abfd)->dynverdef_hdr.sh_info); | |
3414 | bfd_set_error (bfd_error_bad_value); | |
3415 | goto error_free_vers; | |
3416 | } | |
3417 | else if (vernum > 1) | |
3418 | verstr = | |
3419 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | |
3420 | else | |
3421 | verstr = ""; | |
3422 | } | |
3423 | else | |
3424 | { | |
3425 | /* We cannot simply test for the number of | |
3426 | entries in the VERNEED section since the | |
3427 | numbers for the needed versions do not start | |
3428 | at 0. */ | |
3429 | Elf_Internal_Verneed *t; | |
3430 | ||
3431 | verstr = NULL; | |
3432 | for (t = elf_tdata (abfd)->verref; | |
3433 | t != NULL; | |
3434 | t = t->vn_nextref) | |
3435 | { | |
3436 | Elf_Internal_Vernaux *a; | |
3437 | ||
3438 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3439 | { | |
3440 | if (a->vna_other == vernum) | |
3441 | { | |
3442 | verstr = a->vna_nodename; | |
3443 | break; | |
3444 | } | |
3445 | } | |
3446 | if (a != NULL) | |
3447 | break; | |
3448 | } | |
3449 | if (verstr == NULL) | |
3450 | { | |
3451 | (*_bfd_error_handler) | |
3452 | (_("%s: %s: invalid needed version %d"), | |
3453 | bfd_archive_filename (abfd), name, vernum); | |
3454 | bfd_set_error (bfd_error_bad_value); | |
3455 | goto error_free_vers; | |
3456 | } | |
3457 | } | |
3458 | ||
3459 | namelen = strlen (name); | |
3460 | verlen = strlen (verstr); | |
3461 | newlen = namelen + verlen + 2; | |
3462 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
3463 | && isym->st_shndx != SHN_UNDEF) | |
3464 | ++newlen; | |
3465 | ||
3466 | newname = bfd_alloc (abfd, newlen); | |
3467 | if (newname == NULL) | |
3468 | goto error_free_vers; | |
3469 | memcpy (newname, name, namelen); | |
3470 | p = newname + namelen; | |
3471 | *p++ = ELF_VER_CHR; | |
3472 | /* If this is a defined non-hidden version symbol, | |
3473 | we add another @ to the name. This indicates the | |
3474 | default version of the symbol. */ | |
3475 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
3476 | && isym->st_shndx != SHN_UNDEF) | |
3477 | *p++ = ELF_VER_CHR; | |
3478 | memcpy (p, verstr, verlen + 1); | |
3479 | ||
3480 | name = newname; | |
3481 | } | |
3482 | } | |
3483 | ||
3484 | if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, | |
3485 | sym_hash, &skip, &override, | |
3486 | &type_change_ok, &size_change_ok)) | |
3487 | goto error_free_vers; | |
3488 | ||
3489 | if (skip) | |
3490 | continue; | |
3491 | ||
3492 | if (override) | |
3493 | definition = FALSE; | |
3494 | ||
3495 | h = *sym_hash; | |
3496 | while (h->root.type == bfd_link_hash_indirect | |
3497 | || h->root.type == bfd_link_hash_warning) | |
3498 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3499 | ||
3500 | /* Remember the old alignment if this is a common symbol, so | |
3501 | that we don't reduce the alignment later on. We can't | |
3502 | check later, because _bfd_generic_link_add_one_symbol | |
3503 | will set a default for the alignment which we want to | |
3504 | override. We also remember the old bfd where the existing | |
3505 | definition comes from. */ | |
3506 | switch (h->root.type) | |
3507 | { | |
3508 | default: | |
3509 | break; | |
3510 | ||
3511 | case bfd_link_hash_defined: | |
3512 | case bfd_link_hash_defweak: | |
3513 | old_bfd = h->root.u.def.section->owner; | |
3514 | break; | |
3515 | ||
3516 | case bfd_link_hash_common: | |
3517 | old_bfd = h->root.u.c.p->section->owner; | |
3518 | old_alignment = h->root.u.c.p->alignment_power; | |
3519 | break; | |
3520 | } | |
3521 | ||
3522 | if (elf_tdata (abfd)->verdef != NULL | |
3523 | && ! override | |
3524 | && vernum > 1 | |
3525 | && definition) | |
3526 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | |
3527 | } | |
3528 | ||
3529 | if (! (_bfd_generic_link_add_one_symbol | |
3530 | (info, abfd, name, flags, sec, value, NULL, FALSE, collect, | |
3531 | (struct bfd_link_hash_entry **) sym_hash))) | |
3532 | goto error_free_vers; | |
3533 | ||
3534 | h = *sym_hash; | |
3535 | while (h->root.type == bfd_link_hash_indirect | |
3536 | || h->root.type == bfd_link_hash_warning) | |
3537 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3538 | *sym_hash = h; | |
3539 | ||
3540 | new_weakdef = FALSE; | |
3541 | if (dynamic | |
3542 | && definition | |
3543 | && (flags & BSF_WEAK) != 0 | |
3544 | && ELF_ST_TYPE (isym->st_info) != STT_FUNC | |
3545 | && is_elf_hash_table (hash_table) | |
3546 | && h->weakdef == NULL) | |
3547 | { | |
3548 | /* Keep a list of all weak defined non function symbols from | |
3549 | a dynamic object, using the weakdef field. Later in this | |
3550 | function we will set the weakdef field to the correct | |
3551 | value. We only put non-function symbols from dynamic | |
3552 | objects on this list, because that happens to be the only | |
3553 | time we need to know the normal symbol corresponding to a | |
3554 | weak symbol, and the information is time consuming to | |
3555 | figure out. If the weakdef field is not already NULL, | |
3556 | then this symbol was already defined by some previous | |
3557 | dynamic object, and we will be using that previous | |
3558 | definition anyhow. */ | |
3559 | ||
3560 | h->weakdef = weaks; | |
3561 | weaks = h; | |
3562 | new_weakdef = TRUE; | |
3563 | } | |
3564 | ||
3565 | /* Set the alignment of a common symbol. */ | |
3566 | if (isym->st_shndx == SHN_COMMON | |
3567 | && h->root.type == bfd_link_hash_common) | |
3568 | { | |
3569 | unsigned int align; | |
3570 | ||
3571 | align = bfd_log2 (isym->st_value); | |
3572 | if (align > old_alignment | |
3573 | /* Permit an alignment power of zero if an alignment of one | |
3574 | is specified and no other alignments have been specified. */ | |
3575 | || (isym->st_value == 1 && old_alignment == 0)) | |
3576 | h->root.u.c.p->alignment_power = align; | |
3577 | else | |
3578 | h->root.u.c.p->alignment_power = old_alignment; | |
3579 | } | |
3580 | ||
3581 | if (is_elf_hash_table (hash_table)) | |
3582 | { | |
3583 | int old_flags; | |
3584 | bfd_boolean dynsym; | |
3585 | int new_flag; | |
3586 | ||
3587 | /* Check the alignment when a common symbol is involved. This | |
3588 | can change when a common symbol is overridden by a normal | |
3589 | definition or a common symbol is ignored due to the old | |
3590 | normal definition. We need to make sure the maximum | |
3591 | alignment is maintained. */ | |
3592 | if ((old_alignment || isym->st_shndx == SHN_COMMON) | |
3593 | && h->root.type != bfd_link_hash_common) | |
3594 | { | |
3595 | unsigned int common_align; | |
3596 | unsigned int normal_align; | |
3597 | unsigned int symbol_align; | |
3598 | bfd *normal_bfd; | |
3599 | bfd *common_bfd; | |
3600 | ||
3601 | symbol_align = ffs (h->root.u.def.value) - 1; | |
3602 | if (h->root.u.def.section->owner != NULL | |
3603 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
3604 | { | |
3605 | normal_align = h->root.u.def.section->alignment_power; | |
3606 | if (normal_align > symbol_align) | |
3607 | normal_align = symbol_align; | |
3608 | } | |
3609 | else | |
3610 | normal_align = symbol_align; | |
3611 | ||
3612 | if (old_alignment) | |
3613 | { | |
3614 | common_align = old_alignment; | |
3615 | common_bfd = old_bfd; | |
3616 | normal_bfd = abfd; | |
3617 | } | |
3618 | else | |
3619 | { | |
3620 | common_align = bfd_log2 (isym->st_value); | |
3621 | common_bfd = abfd; | |
3622 | normal_bfd = old_bfd; | |
3623 | } | |
3624 | ||
3625 | if (normal_align < common_align) | |
3626 | (*_bfd_error_handler) | |
3627 | (_("Warning: alignment %u of symbol `%s' in %s is smaller than %u in %s"), | |
3628 | 1 << normal_align, | |
3629 | name, | |
3630 | bfd_archive_filename (normal_bfd), | |
3631 | 1 << common_align, | |
3632 | bfd_archive_filename (common_bfd)); | |
3633 | } | |
3634 | ||
3635 | /* Remember the symbol size and type. */ | |
3636 | if (isym->st_size != 0 | |
3637 | && (definition || h->size == 0)) | |
3638 | { | |
3639 | if (h->size != 0 && h->size != isym->st_size && ! size_change_ok) | |
3640 | (*_bfd_error_handler) | |
3641 | (_("Warning: size of symbol `%s' changed from %lu in %s to %lu in %s"), | |
3642 | name, (unsigned long) h->size, | |
3643 | bfd_archive_filename (old_bfd), | |
3644 | (unsigned long) isym->st_size, | |
3645 | bfd_archive_filename (abfd)); | |
3646 | ||
3647 | h->size = isym->st_size; | |
3648 | } | |
3649 | ||
3650 | /* If this is a common symbol, then we always want H->SIZE | |
3651 | to be the size of the common symbol. The code just above | |
3652 | won't fix the size if a common symbol becomes larger. We | |
3653 | don't warn about a size change here, because that is | |
3654 | covered by --warn-common. */ | |
3655 | if (h->root.type == bfd_link_hash_common) | |
3656 | h->size = h->root.u.c.size; | |
3657 | ||
3658 | if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE | |
3659 | && (definition || h->type == STT_NOTYPE)) | |
3660 | { | |
3661 | if (h->type != STT_NOTYPE | |
3662 | && h->type != ELF_ST_TYPE (isym->st_info) | |
3663 | && ! type_change_ok) | |
3664 | (*_bfd_error_handler) | |
3665 | (_("Warning: type of symbol `%s' changed from %d to %d in %s"), | |
3666 | name, h->type, ELF_ST_TYPE (isym->st_info), | |
3667 | bfd_archive_filename (abfd)); | |
3668 | ||
3669 | h->type = ELF_ST_TYPE (isym->st_info); | |
3670 | } | |
3671 | ||
3672 | /* If st_other has a processor-specific meaning, specific | |
3673 | code might be needed here. We never merge the visibility | |
3674 | attribute with the one from a dynamic object. */ | |
3675 | if (bed->elf_backend_merge_symbol_attribute) | |
3676 | (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, | |
3677 | dynamic); | |
3678 | ||
3679 | if (isym->st_other != 0 && !dynamic) | |
3680 | { | |
3681 | unsigned char hvis, symvis, other, nvis; | |
3682 | ||
3683 | /* Take the balance of OTHER from the definition. */ | |
3684 | other = (definition ? isym->st_other : h->other); | |
3685 | other &= ~ ELF_ST_VISIBILITY (-1); | |
3686 | ||
3687 | /* Combine visibilities, using the most constraining one. */ | |
3688 | hvis = ELF_ST_VISIBILITY (h->other); | |
3689 | symvis = ELF_ST_VISIBILITY (isym->st_other); | |
3690 | if (! hvis) | |
3691 | nvis = symvis; | |
3692 | else if (! symvis) | |
3693 | nvis = hvis; | |
3694 | else | |
3695 | nvis = hvis < symvis ? hvis : symvis; | |
3696 | ||
3697 | h->other = other | nvis; | |
3698 | } | |
3699 | ||
3700 | /* Set a flag in the hash table entry indicating the type of | |
3701 | reference or definition we just found. Keep a count of | |
3702 | the number of dynamic symbols we find. A dynamic symbol | |
3703 | is one which is referenced or defined by both a regular | |
3704 | object and a shared object. */ | |
3705 | old_flags = h->elf_link_hash_flags; | |
3706 | dynsym = FALSE; | |
3707 | if (! dynamic) | |
3708 | { | |
3709 | if (! definition) | |
3710 | { | |
3711 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
3712 | if (bind != STB_WEAK) | |
3713 | new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; | |
3714 | } | |
3715 | else | |
3716 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
3717 | if (! info->executable | |
3718 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
3719 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
3720 | dynsym = TRUE; | |
3721 | } | |
3722 | else | |
3723 | { | |
3724 | if (! definition) | |
3725 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
3726 | else | |
3727 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
3728 | if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
3729 | | ELF_LINK_HASH_REF_REGULAR)) != 0 | |
3730 | || (h->weakdef != NULL | |
3731 | && ! new_weakdef | |
3732 | && h->weakdef->dynindx != -1)) | |
3733 | dynsym = TRUE; | |
3734 | } | |
3735 | ||
3736 | h->elf_link_hash_flags |= new_flag; | |
3737 | ||
3738 | /* Check to see if we need to add an indirect symbol for | |
3739 | the default name. */ | |
3740 | if (definition || h->root.type == bfd_link_hash_common) | |
3741 | if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, | |
3742 | &sec, &value, &dynsym, | |
3743 | override)) | |
3744 | goto error_free_vers; | |
3745 | ||
3746 | if (definition && !dynamic) | |
3747 | { | |
3748 | char *p = strchr (name, ELF_VER_CHR); | |
3749 | if (p != NULL && p[1] != ELF_VER_CHR) | |
3750 | { | |
3751 | /* Queue non-default versions so that .symver x, x@FOO | |
3752 | aliases can be checked. */ | |
3753 | if (! nondeflt_vers) | |
3754 | { | |
3755 | amt = (isymend - isym + 1) | |
3756 | * sizeof (struct elf_link_hash_entry *); | |
3757 | nondeflt_vers = bfd_malloc (amt); | |
3758 | } | |
3759 | nondeflt_vers [nondeflt_vers_cnt++] = h; | |
3760 | } | |
3761 | } | |
3762 | ||
3763 | if (dynsym && h->dynindx == -1) | |
3764 | { | |
3765 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
3766 | goto error_free_vers; | |
3767 | if (h->weakdef != NULL | |
3768 | && ! new_weakdef | |
3769 | && h->weakdef->dynindx == -1) | |
3770 | { | |
3771 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
3772 | goto error_free_vers; | |
3773 | } | |
3774 | } | |
3775 | else if (dynsym && h->dynindx != -1) | |
3776 | /* If the symbol already has a dynamic index, but | |
3777 | visibility says it should not be visible, turn it into | |
3778 | a local symbol. */ | |
3779 | switch (ELF_ST_VISIBILITY (h->other)) | |
3780 | { | |
3781 | case STV_INTERNAL: | |
3782 | case STV_HIDDEN: | |
3783 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
3784 | dynsym = FALSE; | |
3785 | break; | |
3786 | } | |
3787 | ||
3788 | if (!add_needed | |
3789 | && definition | |
3790 | && dynsym | |
3791 | && (h->elf_link_hash_flags | |
3792 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
3793 | { | |
3794 | int ret; | |
3795 | const char *soname = elf_dt_name (abfd); | |
3796 | ||
3797 | /* A symbol from a library loaded via DT_NEEDED of some | |
3798 | other library is referenced by a regular object. | |
3799 | Add a DT_NEEDED entry for it. */ | |
3800 | add_needed = TRUE; | |
3801 | ret = elf_add_dt_needed_tag (info, soname, add_needed); | |
3802 | if (ret < 0) | |
3803 | goto error_free_vers; | |
3804 | ||
3805 | BFD_ASSERT (ret == 0); | |
3806 | } | |
3807 | } | |
3808 | } | |
3809 | ||
3810 | /* Now that all the symbols from this input file are created, handle | |
3811 | .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */ | |
3812 | if (nondeflt_vers != NULL) | |
3813 | { | |
3814 | bfd_size_type cnt, symidx; | |
3815 | ||
3816 | for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) | |
3817 | { | |
3818 | struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; | |
3819 | char *shortname, *p; | |
3820 | ||
3821 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
3822 | if (p == NULL | |
3823 | || (h->root.type != bfd_link_hash_defined | |
3824 | && h->root.type != bfd_link_hash_defweak)) | |
3825 | continue; | |
3826 | ||
3827 | amt = p - h->root.root.string; | |
3828 | shortname = bfd_malloc (amt + 1); | |
3829 | memcpy (shortname, h->root.root.string, amt); | |
3830 | shortname[amt] = '\0'; | |
3831 | ||
3832 | hi = (struct elf_link_hash_entry *) | |
3833 | bfd_link_hash_lookup (&hash_table->root, shortname, | |
3834 | FALSE, FALSE, FALSE); | |
3835 | if (hi != NULL | |
3836 | && hi->root.type == h->root.type | |
3837 | && hi->root.u.def.value == h->root.u.def.value | |
3838 | && hi->root.u.def.section == h->root.u.def.section) | |
3839 | { | |
3840 | (*bed->elf_backend_hide_symbol) (info, hi, TRUE); | |
3841 | hi->root.type = bfd_link_hash_indirect; | |
3842 | hi->root.u.i.link = (struct bfd_link_hash_entry *) h; | |
3843 | (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi); | |
3844 | sym_hash = elf_sym_hashes (abfd); | |
3845 | if (sym_hash) | |
3846 | for (symidx = 0; symidx < extsymcount; ++symidx) | |
3847 | if (sym_hash[symidx] == hi) | |
3848 | { | |
3849 | sym_hash[symidx] = h; | |
3850 | break; | |
3851 | } | |
3852 | } | |
3853 | free (shortname); | |
3854 | } | |
3855 | free (nondeflt_vers); | |
3856 | nondeflt_vers = NULL; | |
3857 | } | |
3858 | ||
3859 | if (extversym != NULL) | |
3860 | { | |
3861 | free (extversym); | |
3862 | extversym = NULL; | |
3863 | } | |
3864 | ||
3865 | if (isymbuf != NULL) | |
3866 | free (isymbuf); | |
3867 | isymbuf = NULL; | |
3868 | ||
3869 | /* Now set the weakdefs field correctly for all the weak defined | |
3870 | symbols we found. The only way to do this is to search all the | |
3871 | symbols. Since we only need the information for non functions in | |
3872 | dynamic objects, that's the only time we actually put anything on | |
3873 | the list WEAKS. We need this information so that if a regular | |
3874 | object refers to a symbol defined weakly in a dynamic object, the | |
3875 | real symbol in the dynamic object is also put in the dynamic | |
3876 | symbols; we also must arrange for both symbols to point to the | |
3877 | same memory location. We could handle the general case of symbol | |
3878 | aliasing, but a general symbol alias can only be generated in | |
3879 | assembler code, handling it correctly would be very time | |
3880 | consuming, and other ELF linkers don't handle general aliasing | |
3881 | either. */ | |
3882 | if (weaks != NULL) | |
3883 | { | |
3884 | struct elf_link_hash_entry **hpp; | |
3885 | struct elf_link_hash_entry **hppend; | |
3886 | struct elf_link_hash_entry **sorted_sym_hash; | |
3887 | struct elf_link_hash_entry *h; | |
3888 | size_t sym_count; | |
3889 | ||
3890 | /* Since we have to search the whole symbol list for each weak | |
3891 | defined symbol, search time for N weak defined symbols will be | |
3892 | O(N^2). Binary search will cut it down to O(NlogN). */ | |
3893 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |
3894 | sorted_sym_hash = bfd_malloc (amt); | |
3895 | if (sorted_sym_hash == NULL) | |
3896 | goto error_return; | |
3897 | sym_hash = sorted_sym_hash; | |
3898 | hpp = elf_sym_hashes (abfd); | |
3899 | hppend = hpp + extsymcount; | |
3900 | sym_count = 0; | |
3901 | for (; hpp < hppend; hpp++) | |
3902 | { | |
3903 | h = *hpp; | |
3904 | if (h != NULL | |
3905 | && h->root.type == bfd_link_hash_defined | |
3906 | && h->type != STT_FUNC) | |
3907 | { | |
3908 | *sym_hash = h; | |
3909 | sym_hash++; | |
3910 | sym_count++; | |
3911 | } | |
3912 | } | |
3913 | ||
3914 | qsort (sorted_sym_hash, sym_count, | |
3915 | sizeof (struct elf_link_hash_entry *), | |
3916 | elf_sort_symbol); | |
3917 | ||
3918 | while (weaks != NULL) | |
3919 | { | |
3920 | struct elf_link_hash_entry *hlook; | |
3921 | asection *slook; | |
3922 | bfd_vma vlook; | |
3923 | long ilook; | |
3924 | size_t i, j, idx; | |
3925 | ||
3926 | hlook = weaks; | |
3927 | weaks = hlook->weakdef; | |
3928 | hlook->weakdef = NULL; | |
3929 | ||
3930 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
3931 | || hlook->root.type == bfd_link_hash_defweak | |
3932 | || hlook->root.type == bfd_link_hash_common | |
3933 | || hlook->root.type == bfd_link_hash_indirect); | |
3934 | slook = hlook->root.u.def.section; | |
3935 | vlook = hlook->root.u.def.value; | |
3936 | ||
3937 | ilook = -1; | |
3938 | i = 0; | |
3939 | j = sym_count; | |
3940 | while (i < j) | |
3941 | { | |
3942 | bfd_signed_vma vdiff; | |
3943 | idx = (i + j) / 2; | |
3944 | h = sorted_sym_hash [idx]; | |
3945 | vdiff = vlook - h->root.u.def.value; | |
3946 | if (vdiff < 0) | |
3947 | j = idx; | |
3948 | else if (vdiff > 0) | |
3949 | i = idx + 1; | |
3950 | else | |
3951 | { | |
3952 | long sdiff = slook - h->root.u.def.section; | |
3953 | if (sdiff < 0) | |
3954 | j = idx; | |
3955 | else if (sdiff > 0) | |
3956 | i = idx + 1; | |
3957 | else | |
3958 | { | |
3959 | ilook = idx; | |
3960 | break; | |
3961 | } | |
3962 | } | |
3963 | } | |
3964 | ||
3965 | /* We didn't find a value/section match. */ | |
3966 | if (ilook == -1) | |
3967 | continue; | |
3968 | ||
3969 | for (i = ilook; i < sym_count; i++) | |
3970 | { | |
3971 | h = sorted_sym_hash [i]; | |
3972 | ||
3973 | /* Stop if value or section doesn't match. */ | |
3974 | if (h->root.u.def.value != vlook | |
3975 | || h->root.u.def.section != slook) | |
3976 | break; | |
3977 | else if (h != hlook) | |
3978 | { | |
3979 | hlook->weakdef = h; | |
3980 | ||
3981 | /* If the weak definition is in the list of dynamic | |
3982 | symbols, make sure the real definition is put | |
3983 | there as well. */ | |
3984 | if (hlook->dynindx != -1 && h->dynindx == -1) | |
3985 | { | |
3986 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
3987 | h)) | |
3988 | goto error_return; | |
3989 | } | |
3990 | ||
3991 | /* If the real definition is in the list of dynamic | |
3992 | symbols, make sure the weak definition is put | |
3993 | there as well. If we don't do this, then the | |
3994 | dynamic loader might not merge the entries for the | |
3995 | real definition and the weak definition. */ | |
3996 | if (h->dynindx != -1 && hlook->dynindx == -1) | |
3997 | { | |
3998 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
3999 | hlook)) | |
4000 | goto error_return; | |
4001 | } | |
4002 | break; | |
4003 | } | |
4004 | } | |
4005 | } | |
4006 | ||
4007 | free (sorted_sym_hash); | |
4008 | } | |
4009 | ||
4010 | /* If this object is the same format as the output object, and it is | |
4011 | not a shared library, then let the backend look through the | |
4012 | relocs. | |
4013 | ||
4014 | This is required to build global offset table entries and to | |
4015 | arrange for dynamic relocs. It is not required for the | |
4016 | particular common case of linking non PIC code, even when linking | |
4017 | against shared libraries, but unfortunately there is no way of | |
4018 | knowing whether an object file has been compiled PIC or not. | |
4019 | Looking through the relocs is not particularly time consuming. | |
4020 | The problem is that we must either (1) keep the relocs in memory, | |
4021 | which causes the linker to require additional runtime memory or | |
4022 | (2) read the relocs twice from the input file, which wastes time. | |
4023 | This would be a good case for using mmap. | |
4024 | ||
4025 | I have no idea how to handle linking PIC code into a file of a | |
4026 | different format. It probably can't be done. */ | |
4027 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
4028 | if (! dynamic | |
4029 | && is_elf_hash_table (hash_table) | |
4030 | && hash_table->root.creator == abfd->xvec | |
4031 | && check_relocs != NULL) | |
4032 | { | |
4033 | asection *o; | |
4034 | ||
4035 | for (o = abfd->sections; o != NULL; o = o->next) | |
4036 | { | |
4037 | Elf_Internal_Rela *internal_relocs; | |
4038 | bfd_boolean ok; | |
4039 | ||
4040 | if ((o->flags & SEC_RELOC) == 0 | |
4041 | || o->reloc_count == 0 | |
4042 | || ((info->strip == strip_all || info->strip == strip_debugger) | |
4043 | && (o->flags & SEC_DEBUGGING) != 0) | |
4044 | || bfd_is_abs_section (o->output_section)) | |
4045 | continue; | |
4046 | ||
4047 | internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | |
4048 | info->keep_memory); | |
4049 | if (internal_relocs == NULL) | |
4050 | goto error_return; | |
4051 | ||
4052 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
4053 | ||
4054 | if (elf_section_data (o)->relocs != internal_relocs) | |
4055 | free (internal_relocs); | |
4056 | ||
4057 | if (! ok) | |
4058 | goto error_return; | |
4059 | } | |
4060 | } | |
4061 | ||
4062 | /* If this is a non-traditional link, try to optimize the handling | |
4063 | of the .stab/.stabstr sections. */ | |
4064 | if (! dynamic | |
4065 | && ! info->traditional_format | |
4066 | && is_elf_hash_table (hash_table) | |
4067 | && (info->strip != strip_all && info->strip != strip_debugger)) | |
4068 | { | |
4069 | asection *stabstr; | |
4070 | ||
4071 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
4072 | if (stabstr != NULL) | |
4073 | { | |
4074 | bfd_size_type string_offset = 0; | |
4075 | asection *stab; | |
4076 | ||
4077 | for (stab = abfd->sections; stab; stab = stab->next) | |
4078 | if (strncmp (".stab", stab->name, 5) == 0 | |
4079 | && (!stab->name[5] || | |
4080 | (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) | |
4081 | && (stab->flags & SEC_MERGE) == 0 | |
4082 | && !bfd_is_abs_section (stab->output_section)) | |
4083 | { | |
4084 | struct bfd_elf_section_data *secdata; | |
4085 | ||
4086 | secdata = elf_section_data (stab); | |
4087 | if (! _bfd_link_section_stabs (abfd, | |
4088 | & hash_table->stab_info, | |
4089 | stab, stabstr, | |
4090 | &secdata->sec_info, | |
4091 | &string_offset)) | |
4092 | goto error_return; | |
4093 | if (secdata->sec_info) | |
4094 | stab->sec_info_type = ELF_INFO_TYPE_STABS; | |
4095 | } | |
4096 | } | |
4097 | } | |
4098 | ||
4099 | if (! info->relocatable | |
4100 | && ! dynamic | |
4101 | && is_elf_hash_table (hash_table)) | |
4102 | { | |
4103 | asection *s; | |
4104 | ||
4105 | for (s = abfd->sections; s != NULL; s = s->next) | |
4106 | if ((s->flags & SEC_MERGE) != 0 | |
4107 | && !bfd_is_abs_section (s->output_section)) | |
4108 | { | |
4109 | struct bfd_elf_section_data *secdata; | |
4110 | ||
4111 | secdata = elf_section_data (s); | |
4112 | if (! _bfd_merge_section (abfd, | |
4113 | & hash_table->merge_info, | |
4114 | s, &secdata->sec_info)) | |
4115 | goto error_return; | |
4116 | else if (secdata->sec_info) | |
4117 | s->sec_info_type = ELF_INFO_TYPE_MERGE; | |
4118 | } | |
4119 | } | |
4120 | ||
4121 | if (is_elf_hash_table (hash_table)) | |
4122 | { | |
4123 | /* Add this bfd to the loaded list. */ | |
4124 | struct elf_link_loaded_list *n; | |
4125 | ||
4126 | n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)); | |
4127 | if (n == NULL) | |
4128 | goto error_return; | |
4129 | n->abfd = abfd; | |
4130 | n->next = hash_table->loaded; | |
4131 | hash_table->loaded = n; | |
4132 | } | |
4133 | ||
4134 | return TRUE; | |
4135 | ||
4136 | error_free_vers: | |
4137 | if (nondeflt_vers != NULL) | |
4138 | free (nondeflt_vers); | |
4139 | if (extversym != NULL) | |
4140 | free (extversym); | |
4141 | error_free_sym: | |
4142 | if (isymbuf != NULL) | |
4143 | free (isymbuf); | |
4144 | error_return: | |
4145 | return FALSE; | |
4146 | } | |
4147 | ||
0ad989f9 L |
4148 | /* Add symbols from an ELF archive file to the linker hash table. We |
4149 | don't use _bfd_generic_link_add_archive_symbols because of a | |
4150 | problem which arises on UnixWare. The UnixWare libc.so is an | |
4151 | archive which includes an entry libc.so.1 which defines a bunch of | |
4152 | symbols. The libc.so archive also includes a number of other | |
4153 | object files, which also define symbols, some of which are the same | |
4154 | as those defined in libc.so.1. Correct linking requires that we | |
4155 | consider each object file in turn, and include it if it defines any | |
4156 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
4157 | this; it looks through the list of undefined symbols, and includes | |
4158 | any object file which defines them. When this algorithm is used on | |
4159 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
4160 | bunch of symbols. This means that some of the other objects in the | |
4161 | archive are not included in the link, which is incorrect since they | |
4162 | precede libc.so.1 in the archive. | |
4163 | ||
4164 | Fortunately, ELF archive handling is simpler than that done by | |
4165 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
4166 | oddities. In ELF, if we find a symbol in the archive map, and the | |
4167 | symbol is currently undefined, we know that we must pull in that | |
4168 | object file. | |
4169 | ||
4170 | Unfortunately, we do have to make multiple passes over the symbol | |
4171 | table until nothing further is resolved. */ | |
4172 | ||
4ad4eba5 AM |
4173 | static bfd_boolean |
4174 | elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) | |
0ad989f9 L |
4175 | { |
4176 | symindex c; | |
4177 | bfd_boolean *defined = NULL; | |
4178 | bfd_boolean *included = NULL; | |
4179 | carsym *symdefs; | |
4180 | bfd_boolean loop; | |
4181 | bfd_size_type amt; | |
4182 | ||
4183 | if (! bfd_has_map (abfd)) | |
4184 | { | |
4185 | /* An empty archive is a special case. */ | |
4186 | if (bfd_openr_next_archived_file (abfd, NULL) == NULL) | |
4187 | return TRUE; | |
4188 | bfd_set_error (bfd_error_no_armap); | |
4189 | return FALSE; | |
4190 | } | |
4191 | ||
4192 | /* Keep track of all symbols we know to be already defined, and all | |
4193 | files we know to be already included. This is to speed up the | |
4194 | second and subsequent passes. */ | |
4195 | c = bfd_ardata (abfd)->symdef_count; | |
4196 | if (c == 0) | |
4197 | return TRUE; | |
4198 | amt = c; | |
4199 | amt *= sizeof (bfd_boolean); | |
4200 | defined = bfd_zmalloc (amt); | |
4201 | included = bfd_zmalloc (amt); | |
4202 | if (defined == NULL || included == NULL) | |
4203 | goto error_return; | |
4204 | ||
4205 | symdefs = bfd_ardata (abfd)->symdefs; | |
4206 | ||
4207 | do | |
4208 | { | |
4209 | file_ptr last; | |
4210 | symindex i; | |
4211 | carsym *symdef; | |
4212 | carsym *symdefend; | |
4213 | ||
4214 | loop = FALSE; | |
4215 | last = -1; | |
4216 | ||
4217 | symdef = symdefs; | |
4218 | symdefend = symdef + c; | |
4219 | for (i = 0; symdef < symdefend; symdef++, i++) | |
4220 | { | |
4221 | struct elf_link_hash_entry *h; | |
4222 | bfd *element; | |
4223 | struct bfd_link_hash_entry *undefs_tail; | |
4224 | symindex mark; | |
4225 | ||
4226 | if (defined[i] || included[i]) | |
4227 | continue; | |
4228 | if (symdef->file_offset == last) | |
4229 | { | |
4230 | included[i] = TRUE; | |
4231 | continue; | |
4232 | } | |
4233 | ||
4234 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
4235 | FALSE, FALSE, FALSE); | |
4236 | ||
4237 | if (h == NULL) | |
4238 | { | |
4239 | char *p, *copy; | |
4240 | size_t len, first; | |
4241 | ||
4242 | /* If this is a default version (the name contains @@), | |
4243 | look up the symbol again with only one `@' as well | |
4244 | as without the version. The effect is that references | |
4245 | to the symbol with and without the version will be | |
4246 | matched by the default symbol in the archive. */ | |
4247 | ||
4248 | p = strchr (symdef->name, ELF_VER_CHR); | |
4249 | if (p == NULL || p[1] != ELF_VER_CHR) | |
4250 | continue; | |
4251 | ||
4252 | /* First check with only one `@'. */ | |
4253 | len = strlen (symdef->name); | |
4254 | copy = bfd_alloc (abfd, len); | |
4255 | if (copy == NULL) | |
4256 | goto error_return; | |
4257 | first = p - symdef->name + 1; | |
4258 | memcpy (copy, symdef->name, first); | |
4259 | memcpy (copy + first, symdef->name + first + 1, len - first); | |
4260 | ||
4261 | h = elf_link_hash_lookup (elf_hash_table (info), copy, | |
4262 | FALSE, FALSE, FALSE); | |
4263 | ||
4264 | if (h == NULL) | |
4265 | { | |
4266 | /* We also need to check references to the symbol | |
4267 | without the version. */ | |
4268 | ||
4269 | copy[first - 1] = '\0'; | |
4270 | h = elf_link_hash_lookup (elf_hash_table (info), | |
4271 | copy, FALSE, FALSE, FALSE); | |
4272 | } | |
4273 | ||
4274 | bfd_release (abfd, copy); | |
4275 | } | |
4276 | ||
4277 | if (h == NULL) | |
4278 | continue; | |
4279 | ||
4280 | if (h->root.type == bfd_link_hash_common) | |
4281 | { | |
4282 | /* We currently have a common symbol. The archive map contains | |
4283 | a reference to this symbol, so we may want to include it. We | |
4284 | only want to include it however, if this archive element | |
4285 | contains a definition of the symbol, not just another common | |
4286 | declaration of it. | |
4287 | ||
4288 | Unfortunately some archivers (including GNU ar) will put | |
4289 | declarations of common symbols into their archive maps, as | |
4290 | well as real definitions, so we cannot just go by the archive | |
4291 | map alone. Instead we must read in the element's symbol | |
4292 | table and check that to see what kind of symbol definition | |
4293 | this is. */ | |
4294 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | |
4295 | continue; | |
4296 | } | |
4297 | else if (h->root.type != bfd_link_hash_undefined) | |
4298 | { | |
4299 | if (h->root.type != bfd_link_hash_undefweak) | |
4300 | defined[i] = TRUE; | |
4301 | continue; | |
4302 | } | |
4303 | ||
4304 | /* We need to include this archive member. */ | |
4305 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
4306 | if (element == NULL) | |
4307 | goto error_return; | |
4308 | ||
4309 | if (! bfd_check_format (element, bfd_object)) | |
4310 | goto error_return; | |
4311 | ||
4312 | /* Doublecheck that we have not included this object | |
4313 | already--it should be impossible, but there may be | |
4314 | something wrong with the archive. */ | |
4315 | if (element->archive_pass != 0) | |
4316 | { | |
4317 | bfd_set_error (bfd_error_bad_value); | |
4318 | goto error_return; | |
4319 | } | |
4320 | element->archive_pass = 1; | |
4321 | ||
4322 | undefs_tail = info->hash->undefs_tail; | |
4323 | ||
4324 | if (! (*info->callbacks->add_archive_element) (info, element, | |
4325 | symdef->name)) | |
4326 | goto error_return; | |
4327 | if (! bfd_link_add_symbols (element, info)) | |
4328 | goto error_return; | |
4329 | ||
4330 | /* If there are any new undefined symbols, we need to make | |
4331 | another pass through the archive in order to see whether | |
4332 | they can be defined. FIXME: This isn't perfect, because | |
4333 | common symbols wind up on undefs_tail and because an | |
4334 | undefined symbol which is defined later on in this pass | |
4335 | does not require another pass. This isn't a bug, but it | |
4336 | does make the code less efficient than it could be. */ | |
4337 | if (undefs_tail != info->hash->undefs_tail) | |
4338 | loop = TRUE; | |
4339 | ||
4340 | /* Look backward to mark all symbols from this object file | |
4341 | which we have already seen in this pass. */ | |
4342 | mark = i; | |
4343 | do | |
4344 | { | |
4345 | included[mark] = TRUE; | |
4346 | if (mark == 0) | |
4347 | break; | |
4348 | --mark; | |
4349 | } | |
4350 | while (symdefs[mark].file_offset == symdef->file_offset); | |
4351 | ||
4352 | /* We mark subsequent symbols from this object file as we go | |
4353 | on through the loop. */ | |
4354 | last = symdef->file_offset; | |
4355 | } | |
4356 | } | |
4357 | while (loop); | |
4358 | ||
4359 | free (defined); | |
4360 | free (included); | |
4361 | ||
4362 | return TRUE; | |
4363 | ||
4364 | error_return: | |
4365 | if (defined != NULL) | |
4366 | free (defined); | |
4367 | if (included != NULL) | |
4368 | free (included); | |
4369 | return FALSE; | |
4370 | } | |
4ad4eba5 AM |
4371 | |
4372 | /* Given an ELF BFD, add symbols to the global hash table as | |
4373 | appropriate. */ | |
4374 | ||
4375 | bfd_boolean | |
4376 | bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) | |
4377 | { | |
4378 | switch (bfd_get_format (abfd)) | |
4379 | { | |
4380 | case bfd_object: | |
4381 | return elf_link_add_object_symbols (abfd, info); | |
4382 | case bfd_archive: | |
4383 | return elf_link_add_archive_symbols (abfd, info); | |
4384 | default: | |
4385 | bfd_set_error (bfd_error_wrong_format); | |
4386 | return FALSE; | |
4387 | } | |
4388 | } | |
5a580b3a AM |
4389 | \f |
4390 | /* This function will be called though elf_link_hash_traverse to store | |
4391 | all hash value of the exported symbols in an array. */ | |
4392 | ||
4393 | static bfd_boolean | |
4394 | elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) | |
4395 | { | |
4396 | unsigned long **valuep = data; | |
4397 | const char *name; | |
4398 | char *p; | |
4399 | unsigned long ha; | |
4400 | char *alc = NULL; | |
4401 | ||
4402 | if (h->root.type == bfd_link_hash_warning) | |
4403 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
4404 | ||
4405 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
4406 | if (h->dynindx == -1) | |
4407 | return TRUE; | |
4408 | ||
4409 | name = h->root.root.string; | |
4410 | p = strchr (name, ELF_VER_CHR); | |
4411 | if (p != NULL) | |
4412 | { | |
4413 | alc = bfd_malloc (p - name + 1); | |
4414 | memcpy (alc, name, p - name); | |
4415 | alc[p - name] = '\0'; | |
4416 | name = alc; | |
4417 | } | |
4418 | ||
4419 | /* Compute the hash value. */ | |
4420 | ha = bfd_elf_hash (name); | |
4421 | ||
4422 | /* Store the found hash value in the array given as the argument. */ | |
4423 | *(*valuep)++ = ha; | |
4424 | ||
4425 | /* And store it in the struct so that we can put it in the hash table | |
4426 | later. */ | |
4427 | h->elf_hash_value = ha; | |
4428 | ||
4429 | if (alc != NULL) | |
4430 | free (alc); | |
4431 | ||
4432 | return TRUE; | |
4433 | } | |
4434 | ||
4435 | /* Array used to determine the number of hash table buckets to use | |
4436 | based on the number of symbols there are. If there are fewer than | |
4437 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
4438 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
4439 | than 32771 buckets. */ | |
4440 | ||
4441 | static const size_t elf_buckets[] = | |
4442 | { | |
4443 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |
4444 | 16411, 32771, 0 | |
4445 | }; | |
4446 | ||
4447 | /* Compute bucket count for hashing table. We do not use a static set | |
4448 | of possible tables sizes anymore. Instead we determine for all | |
4449 | possible reasonable sizes of the table the outcome (i.e., the | |
4450 | number of collisions etc) and choose the best solution. The | |
4451 | weighting functions are not too simple to allow the table to grow | |
4452 | without bounds. Instead one of the weighting factors is the size. | |
4453 | Therefore the result is always a good payoff between few collisions | |
4454 | (= short chain lengths) and table size. */ | |
4455 | static size_t | |
4456 | compute_bucket_count (struct bfd_link_info *info) | |
4457 | { | |
4458 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; | |
4459 | size_t best_size = 0; | |
4460 | unsigned long int *hashcodes; | |
4461 | unsigned long int *hashcodesp; | |
4462 | unsigned long int i; | |
4463 | bfd_size_type amt; | |
4464 | ||
4465 | /* Compute the hash values for all exported symbols. At the same | |
4466 | time store the values in an array so that we could use them for | |
4467 | optimizations. */ | |
4468 | amt = dynsymcount; | |
4469 | amt *= sizeof (unsigned long int); | |
4470 | hashcodes = bfd_malloc (amt); | |
4471 | if (hashcodes == NULL) | |
4472 | return 0; | |
4473 | hashcodesp = hashcodes; | |
4474 | ||
4475 | /* Put all hash values in HASHCODES. */ | |
4476 | elf_link_hash_traverse (elf_hash_table (info), | |
4477 | elf_collect_hash_codes, &hashcodesp); | |
4478 | ||
4479 | /* We have a problem here. The following code to optimize the table | |
4480 | size requires an integer type with more the 32 bits. If | |
4481 | BFD_HOST_U_64_BIT is set we know about such a type. */ | |
4482 | #ifdef BFD_HOST_U_64_BIT | |
4483 | if (info->optimize) | |
4484 | { | |
4485 | unsigned long int nsyms = hashcodesp - hashcodes; | |
4486 | size_t minsize; | |
4487 | size_t maxsize; | |
4488 | BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); | |
4489 | unsigned long int *counts ; | |
4490 | bfd *dynobj = elf_hash_table (info)->dynobj; | |
4491 | const struct elf_backend_data *bed = get_elf_backend_data (dynobj); | |
4492 | ||
4493 | /* Possible optimization parameters: if we have NSYMS symbols we say | |
4494 | that the hashing table must at least have NSYMS/4 and at most | |
4495 | 2*NSYMS buckets. */ | |
4496 | minsize = nsyms / 4; | |
4497 | if (minsize == 0) | |
4498 | minsize = 1; | |
4499 | best_size = maxsize = nsyms * 2; | |
4500 | ||
4501 | /* Create array where we count the collisions in. We must use bfd_malloc | |
4502 | since the size could be large. */ | |
4503 | amt = maxsize; | |
4504 | amt *= sizeof (unsigned long int); | |
4505 | counts = bfd_malloc (amt); | |
4506 | if (counts == NULL) | |
4507 | { | |
4508 | free (hashcodes); | |
4509 | return 0; | |
4510 | } | |
4511 | ||
4512 | /* Compute the "optimal" size for the hash table. The criteria is a | |
4513 | minimal chain length. The minor criteria is (of course) the size | |
4514 | of the table. */ | |
4515 | for (i = minsize; i < maxsize; ++i) | |
4516 | { | |
4517 | /* Walk through the array of hashcodes and count the collisions. */ | |
4518 | BFD_HOST_U_64_BIT max; | |
4519 | unsigned long int j; | |
4520 | unsigned long int fact; | |
4521 | ||
4522 | memset (counts, '\0', i * sizeof (unsigned long int)); | |
4523 | ||
4524 | /* Determine how often each hash bucket is used. */ | |
4525 | for (j = 0; j < nsyms; ++j) | |
4526 | ++counts[hashcodes[j] % i]; | |
4527 | ||
4528 | /* For the weight function we need some information about the | |
4529 | pagesize on the target. This is information need not be 100% | |
4530 | accurate. Since this information is not available (so far) we | |
4531 | define it here to a reasonable default value. If it is crucial | |
4532 | to have a better value some day simply define this value. */ | |
4533 | # ifndef BFD_TARGET_PAGESIZE | |
4534 | # define BFD_TARGET_PAGESIZE (4096) | |
4535 | # endif | |
4536 | ||
4537 | /* We in any case need 2 + NSYMS entries for the size values and | |
4538 | the chains. */ | |
4539 | max = (2 + nsyms) * (bed->s->arch_size / 8); | |
4540 | ||
4541 | # if 1 | |
4542 | /* Variant 1: optimize for short chains. We add the squares | |
4543 | of all the chain lengths (which favors many small chain | |
4544 | over a few long chains). */ | |
4545 | for (j = 0; j < i; ++j) | |
4546 | max += counts[j] * counts[j]; | |
4547 | ||
4548 | /* This adds penalties for the overall size of the table. */ | |
4549 | fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1; | |
4550 | max *= fact * fact; | |
4551 | # else | |
4552 | /* Variant 2: Optimize a lot more for small table. Here we | |
4553 | also add squares of the size but we also add penalties for | |
4554 | empty slots (the +1 term). */ | |
4555 | for (j = 0; j < i; ++j) | |
4556 | max += (1 + counts[j]) * (1 + counts[j]); | |
4557 | ||
4558 | /* The overall size of the table is considered, but not as | |
4559 | strong as in variant 1, where it is squared. */ | |
4560 | fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1; | |
4561 | max *= fact; | |
4562 | # endif | |
4563 | ||
4564 | /* Compare with current best results. */ | |
4565 | if (max < best_chlen) | |
4566 | { | |
4567 | best_chlen = max; | |
4568 | best_size = i; | |
4569 | } | |
4570 | } | |
4571 | ||
4572 | free (counts); | |
4573 | } | |
4574 | else | |
4575 | #endif /* defined (BFD_HOST_U_64_BIT) */ | |
4576 | { | |
4577 | /* This is the fallback solution if no 64bit type is available or if we | |
4578 | are not supposed to spend much time on optimizations. We select the | |
4579 | bucket count using a fixed set of numbers. */ | |
4580 | for (i = 0; elf_buckets[i] != 0; i++) | |
4581 | { | |
4582 | best_size = elf_buckets[i]; | |
4583 | if (dynsymcount < elf_buckets[i + 1]) | |
4584 | break; | |
4585 | } | |
4586 | } | |
4587 | ||
4588 | /* Free the arrays we needed. */ | |
4589 | free (hashcodes); | |
4590 | ||
4591 | return best_size; | |
4592 | } | |
4593 | ||
4594 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
4595 | called by the ELF linker emulation before_allocation routine. We | |
4596 | must set the sizes of the sections before the linker sets the | |
4597 | addresses of the various sections. */ | |
4598 | ||
4599 | bfd_boolean | |
4600 | bfd_elf_size_dynamic_sections (bfd *output_bfd, | |
4601 | const char *soname, | |
4602 | const char *rpath, | |
4603 | const char *filter_shlib, | |
4604 | const char * const *auxiliary_filters, | |
4605 | struct bfd_link_info *info, | |
4606 | asection **sinterpptr, | |
4607 | struct bfd_elf_version_tree *verdefs) | |
4608 | { | |
4609 | bfd_size_type soname_indx; | |
4610 | bfd *dynobj; | |
4611 | const struct elf_backend_data *bed; | |
4612 | struct elf_assign_sym_version_info asvinfo; | |
4613 | ||
4614 | *sinterpptr = NULL; | |
4615 | ||
4616 | soname_indx = (bfd_size_type) -1; | |
4617 | ||
4618 | if (!is_elf_hash_table (info->hash)) | |
4619 | return TRUE; | |
4620 | ||
4621 | if (info->execstack) | |
4622 | elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X; | |
4623 | else if (info->noexecstack) | |
4624 | elf_tdata (output_bfd)->stack_flags = PF_R | PF_W; | |
4625 | else | |
4626 | { | |
4627 | bfd *inputobj; | |
4628 | asection *notesec = NULL; | |
4629 | int exec = 0; | |
4630 | ||
4631 | for (inputobj = info->input_bfds; | |
4632 | inputobj; | |
4633 | inputobj = inputobj->link_next) | |
4634 | { | |
4635 | asection *s; | |
4636 | ||
4637 | if (inputobj->flags & DYNAMIC) | |
4638 | continue; | |
4639 | s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); | |
4640 | if (s) | |
4641 | { | |
4642 | if (s->flags & SEC_CODE) | |
4643 | exec = PF_X; | |
4644 | notesec = s; | |
4645 | } | |
4646 | else | |
4647 | exec = PF_X; | |
4648 | } | |
4649 | if (notesec) | |
4650 | { | |
4651 | elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec; | |
4652 | if (exec && info->relocatable | |
4653 | && notesec->output_section != bfd_abs_section_ptr) | |
4654 | notesec->output_section->flags |= SEC_CODE; | |
4655 | } | |
4656 | } | |
4657 | ||
4658 | /* Any syms created from now on start with -1 in | |
4659 | got.refcount/offset and plt.refcount/offset. */ | |
4660 | elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset; | |
4661 | ||
4662 | /* The backend may have to create some sections regardless of whether | |
4663 | we're dynamic or not. */ | |
4664 | bed = get_elf_backend_data (output_bfd); | |
4665 | if (bed->elf_backend_always_size_sections | |
4666 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |
4667 | return FALSE; | |
4668 | ||
4669 | dynobj = elf_hash_table (info)->dynobj; | |
4670 | ||
4671 | /* If there were no dynamic objects in the link, there is nothing to | |
4672 | do here. */ | |
4673 | if (dynobj == NULL) | |
4674 | return TRUE; | |
4675 | ||
4676 | if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) | |
4677 | return FALSE; | |
4678 | ||
4679 | if (elf_hash_table (info)->dynamic_sections_created) | |
4680 | { | |
4681 | struct elf_info_failed eif; | |
4682 | struct elf_link_hash_entry *h; | |
4683 | asection *dynstr; | |
4684 | struct bfd_elf_version_tree *t; | |
4685 | struct bfd_elf_version_expr *d; | |
4686 | bfd_boolean all_defined; | |
4687 | ||
4688 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
4689 | BFD_ASSERT (*sinterpptr != NULL || !info->executable); | |
4690 | ||
4691 | if (soname != NULL) | |
4692 | { | |
4693 | soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
4694 | soname, TRUE); | |
4695 | if (soname_indx == (bfd_size_type) -1 | |
4696 | || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) | |
4697 | return FALSE; | |
4698 | } | |
4699 | ||
4700 | if (info->symbolic) | |
4701 | { | |
4702 | if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
4703 | return FALSE; | |
4704 | info->flags |= DF_SYMBOLIC; | |
4705 | } | |
4706 | ||
4707 | if (rpath != NULL) | |
4708 | { | |
4709 | bfd_size_type indx; | |
4710 | ||
4711 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, | |
4712 | TRUE); | |
4713 | if (indx == (bfd_size_type) -1 | |
4714 | || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
4715 | return FALSE; | |
4716 | ||
4717 | if (info->new_dtags) | |
4718 | { | |
4719 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx); | |
4720 | if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx)) | |
4721 | return FALSE; | |
4722 | } | |
4723 | } | |
4724 | ||
4725 | if (filter_shlib != NULL) | |
4726 | { | |
4727 | bfd_size_type indx; | |
4728 | ||
4729 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
4730 | filter_shlib, TRUE); | |
4731 | if (indx == (bfd_size_type) -1 | |
4732 | || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) | |
4733 | return FALSE; | |
4734 | } | |
4735 | ||
4736 | if (auxiliary_filters != NULL) | |
4737 | { | |
4738 | const char * const *p; | |
4739 | ||
4740 | for (p = auxiliary_filters; *p != NULL; p++) | |
4741 | { | |
4742 | bfd_size_type indx; | |
4743 | ||
4744 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
4745 | *p, TRUE); | |
4746 | if (indx == (bfd_size_type) -1 | |
4747 | || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | |
4748 | return FALSE; | |
4749 | } | |
4750 | } | |
4751 | ||
4752 | eif.info = info; | |
4753 | eif.verdefs = verdefs; | |
4754 | eif.failed = FALSE; | |
4755 | ||
4756 | /* If we are supposed to export all symbols into the dynamic symbol | |
4757 | table (this is not the normal case), then do so. */ | |
4758 | if (info->export_dynamic) | |
4759 | { | |
4760 | elf_link_hash_traverse (elf_hash_table (info), | |
4761 | _bfd_elf_export_symbol, | |
4762 | &eif); | |
4763 | if (eif.failed) | |
4764 | return FALSE; | |
4765 | } | |
4766 | ||
4767 | /* Make all global versions with definition. */ | |
4768 | for (t = verdefs; t != NULL; t = t->next) | |
4769 | for (d = t->globals.list; d != NULL; d = d->next) | |
4770 | if (!d->symver && d->symbol) | |
4771 | { | |
4772 | const char *verstr, *name; | |
4773 | size_t namelen, verlen, newlen; | |
4774 | char *newname, *p; | |
4775 | struct elf_link_hash_entry *newh; | |
4776 | ||
4777 | name = d->symbol; | |
4778 | namelen = strlen (name); | |
4779 | verstr = t->name; | |
4780 | verlen = strlen (verstr); | |
4781 | newlen = namelen + verlen + 3; | |
4782 | ||
4783 | newname = bfd_malloc (newlen); | |
4784 | if (newname == NULL) | |
4785 | return FALSE; | |
4786 | memcpy (newname, name, namelen); | |
4787 | ||
4788 | /* Check the hidden versioned definition. */ | |
4789 | p = newname + namelen; | |
4790 | *p++ = ELF_VER_CHR; | |
4791 | memcpy (p, verstr, verlen + 1); | |
4792 | newh = elf_link_hash_lookup (elf_hash_table (info), | |
4793 | newname, FALSE, FALSE, | |
4794 | FALSE); | |
4795 | if (newh == NULL | |
4796 | || (newh->root.type != bfd_link_hash_defined | |
4797 | && newh->root.type != bfd_link_hash_defweak)) | |
4798 | { | |
4799 | /* Check the default versioned definition. */ | |
4800 | *p++ = ELF_VER_CHR; | |
4801 | memcpy (p, verstr, verlen + 1); | |
4802 | newh = elf_link_hash_lookup (elf_hash_table (info), | |
4803 | newname, FALSE, FALSE, | |
4804 | FALSE); | |
4805 | } | |
4806 | free (newname); | |
4807 | ||
4808 | /* Mark this version if there is a definition and it is | |
4809 | not defined in a shared object. */ | |
4810 | if (newh != NULL | |
4811 | && ((newh->elf_link_hash_flags | |
4812 | & ELF_LINK_HASH_DEF_DYNAMIC) == 0) | |
4813 | && (newh->root.type == bfd_link_hash_defined | |
4814 | || newh->root.type == bfd_link_hash_defweak)) | |
4815 | d->symver = 1; | |
4816 | } | |
4817 | ||
4818 | /* Attach all the symbols to their version information. */ | |
4819 | asvinfo.output_bfd = output_bfd; | |
4820 | asvinfo.info = info; | |
4821 | asvinfo.verdefs = verdefs; | |
4822 | asvinfo.failed = FALSE; | |
4823 | ||
4824 | elf_link_hash_traverse (elf_hash_table (info), | |
4825 | _bfd_elf_link_assign_sym_version, | |
4826 | &asvinfo); | |
4827 | if (asvinfo.failed) | |
4828 | return FALSE; | |
4829 | ||
4830 | if (!info->allow_undefined_version) | |
4831 | { | |
4832 | /* Check if all global versions have a definition. */ | |
4833 | all_defined = TRUE; | |
4834 | for (t = verdefs; t != NULL; t = t->next) | |
4835 | for (d = t->globals.list; d != NULL; d = d->next) | |
4836 | if (!d->symver && !d->script) | |
4837 | { | |
4838 | (*_bfd_error_handler) | |
4839 | (_("%s: undefined version: %s"), | |
4840 | d->pattern, t->name); | |
4841 | all_defined = FALSE; | |
4842 | } | |
4843 | ||
4844 | if (!all_defined) | |
4845 | { | |
4846 | bfd_set_error (bfd_error_bad_value); | |
4847 | return FALSE; | |
4848 | } | |
4849 | } | |
4850 | ||
4851 | /* Find all symbols which were defined in a dynamic object and make | |
4852 | the backend pick a reasonable value for them. */ | |
4853 | elf_link_hash_traverse (elf_hash_table (info), | |
4854 | _bfd_elf_adjust_dynamic_symbol, | |
4855 | &eif); | |
4856 | if (eif.failed) | |
4857 | return FALSE; | |
4858 | ||
4859 | /* Add some entries to the .dynamic section. We fill in some of the | |
4860 | values later, in elf_bfd_final_link, but we must add the entries | |
4861 | now so that we know the final size of the .dynamic section. */ | |
4862 | ||
4863 | /* If there are initialization and/or finalization functions to | |
4864 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |
4865 | h = (info->init_function | |
4866 | ? elf_link_hash_lookup (elf_hash_table (info), | |
4867 | info->init_function, FALSE, | |
4868 | FALSE, FALSE) | |
4869 | : NULL); | |
4870 | if (h != NULL | |
4871 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
4872 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
4873 | { | |
4874 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) | |
4875 | return FALSE; | |
4876 | } | |
4877 | h = (info->fini_function | |
4878 | ? elf_link_hash_lookup (elf_hash_table (info), | |
4879 | info->fini_function, FALSE, | |
4880 | FALSE, FALSE) | |
4881 | : NULL); | |
4882 | if (h != NULL | |
4883 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
4884 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
4885 | { | |
4886 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) | |
4887 | return FALSE; | |
4888 | } | |
4889 | ||
4890 | if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL) | |
4891 | { | |
4892 | /* DT_PREINIT_ARRAY is not allowed in shared library. */ | |
4893 | if (! info->executable) | |
4894 | { | |
4895 | bfd *sub; | |
4896 | asection *o; | |
4897 | ||
4898 | for (sub = info->input_bfds; sub != NULL; | |
4899 | sub = sub->link_next) | |
4900 | for (o = sub->sections; o != NULL; o = o->next) | |
4901 | if (elf_section_data (o)->this_hdr.sh_type | |
4902 | == SHT_PREINIT_ARRAY) | |
4903 | { | |
4904 | (*_bfd_error_handler) | |
4905 | (_("%s: .preinit_array section is not allowed in DSO"), | |
4906 | bfd_archive_filename (sub)); | |
4907 | break; | |
4908 | } | |
4909 | ||
4910 | bfd_set_error (bfd_error_nonrepresentable_section); | |
4911 | return FALSE; | |
4912 | } | |
4913 | ||
4914 | if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) | |
4915 | || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) | |
4916 | return FALSE; | |
4917 | } | |
4918 | if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL) | |
4919 | { | |
4920 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) | |
4921 | || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) | |
4922 | return FALSE; | |
4923 | } | |
4924 | if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL) | |
4925 | { | |
4926 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) | |
4927 | || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) | |
4928 | return FALSE; | |
4929 | } | |
4930 | ||
4931 | dynstr = bfd_get_section_by_name (dynobj, ".dynstr"); | |
4932 | /* If .dynstr is excluded from the link, we don't want any of | |
4933 | these tags. Strictly, we should be checking each section | |
4934 | individually; This quick check covers for the case where | |
4935 | someone does a /DISCARD/ : { *(*) }. */ | |
4936 | if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) | |
4937 | { | |
4938 | bfd_size_type strsize; | |
4939 | ||
4940 | strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
4941 | if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0) | |
4942 | || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
4943 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
4944 | || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
4945 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, | |
4946 | bed->s->sizeof_sym)) | |
4947 | return FALSE; | |
4948 | } | |
4949 | } | |
4950 | ||
4951 | /* The backend must work out the sizes of all the other dynamic | |
4952 | sections. */ | |
4953 | if (bed->elf_backend_size_dynamic_sections | |
4954 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
4955 | return FALSE; | |
4956 | ||
4957 | if (elf_hash_table (info)->dynamic_sections_created) | |
4958 | { | |
4959 | bfd_size_type dynsymcount; | |
4960 | asection *s; | |
4961 | size_t bucketcount = 0; | |
4962 | size_t hash_entry_size; | |
4963 | unsigned int dtagcount; | |
4964 | ||
4965 | /* Set up the version definition section. */ | |
4966 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
4967 | BFD_ASSERT (s != NULL); | |
4968 | ||
4969 | /* We may have created additional version definitions if we are | |
4970 | just linking a regular application. */ | |
4971 | verdefs = asvinfo.verdefs; | |
4972 | ||
4973 | /* Skip anonymous version tag. */ | |
4974 | if (verdefs != NULL && verdefs->vernum == 0) | |
4975 | verdefs = verdefs->next; | |
4976 | ||
4977 | if (verdefs == NULL) | |
4978 | _bfd_strip_section_from_output (info, s); | |
4979 | else | |
4980 | { | |
4981 | unsigned int cdefs; | |
4982 | bfd_size_type size; | |
4983 | struct bfd_elf_version_tree *t; | |
4984 | bfd_byte *p; | |
4985 | Elf_Internal_Verdef def; | |
4986 | Elf_Internal_Verdaux defaux; | |
4987 | ||
4988 | cdefs = 0; | |
4989 | size = 0; | |
4990 | ||
4991 | /* Make space for the base version. */ | |
4992 | size += sizeof (Elf_External_Verdef); | |
4993 | size += sizeof (Elf_External_Verdaux); | |
4994 | ++cdefs; | |
4995 | ||
4996 | for (t = verdefs; t != NULL; t = t->next) | |
4997 | { | |
4998 | struct bfd_elf_version_deps *n; | |
4999 | ||
5000 | size += sizeof (Elf_External_Verdef); | |
5001 | size += sizeof (Elf_External_Verdaux); | |
5002 | ++cdefs; | |
5003 | ||
5004 | for (n = t->deps; n != NULL; n = n->next) | |
5005 | size += sizeof (Elf_External_Verdaux); | |
5006 | } | |
5007 | ||
5008 | s->_raw_size = size; | |
5009 | s->contents = bfd_alloc (output_bfd, s->_raw_size); | |
5010 | if (s->contents == NULL && s->_raw_size != 0) | |
5011 | return FALSE; | |
5012 | ||
5013 | /* Fill in the version definition section. */ | |
5014 | ||
5015 | p = s->contents; | |
5016 | ||
5017 | def.vd_version = VER_DEF_CURRENT; | |
5018 | def.vd_flags = VER_FLG_BASE; | |
5019 | def.vd_ndx = 1; | |
5020 | def.vd_cnt = 1; | |
5021 | def.vd_aux = sizeof (Elf_External_Verdef); | |
5022 | def.vd_next = (sizeof (Elf_External_Verdef) | |
5023 | + sizeof (Elf_External_Verdaux)); | |
5024 | ||
5025 | if (soname_indx != (bfd_size_type) -1) | |
5026 | { | |
5027 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
5028 | soname_indx); | |
5029 | def.vd_hash = bfd_elf_hash (soname); | |
5030 | defaux.vda_name = soname_indx; | |
5031 | } | |
5032 | else | |
5033 | { | |
5034 | const char *name; | |
5035 | bfd_size_type indx; | |
5036 | ||
5037 | name = basename (output_bfd->filename); | |
5038 | def.vd_hash = bfd_elf_hash (name); | |
5039 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5040 | name, FALSE); | |
5041 | if (indx == (bfd_size_type) -1) | |
5042 | return FALSE; | |
5043 | defaux.vda_name = indx; | |
5044 | } | |
5045 | defaux.vda_next = 0; | |
5046 | ||
5047 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
5048 | (Elf_External_Verdef *) p); | |
5049 | p += sizeof (Elf_External_Verdef); | |
5050 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
5051 | (Elf_External_Verdaux *) p); | |
5052 | p += sizeof (Elf_External_Verdaux); | |
5053 | ||
5054 | for (t = verdefs; t != NULL; t = t->next) | |
5055 | { | |
5056 | unsigned int cdeps; | |
5057 | struct bfd_elf_version_deps *n; | |
5058 | struct elf_link_hash_entry *h; | |
5059 | struct bfd_link_hash_entry *bh; | |
5060 | ||
5061 | cdeps = 0; | |
5062 | for (n = t->deps; n != NULL; n = n->next) | |
5063 | ++cdeps; | |
5064 | ||
5065 | /* Add a symbol representing this version. */ | |
5066 | bh = NULL; | |
5067 | if (! (_bfd_generic_link_add_one_symbol | |
5068 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | |
5069 | 0, NULL, FALSE, | |
5070 | get_elf_backend_data (dynobj)->collect, &bh))) | |
5071 | return FALSE; | |
5072 | h = (struct elf_link_hash_entry *) bh; | |
5073 | h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF; | |
5074 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
5075 | h->type = STT_OBJECT; | |
5076 | h->verinfo.vertree = t; | |
5077 | ||
5078 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
5079 | return FALSE; | |
5080 | ||
5081 | def.vd_version = VER_DEF_CURRENT; | |
5082 | def.vd_flags = 0; | |
5083 | if (t->globals.list == NULL | |
5084 | && t->locals.list == NULL | |
5085 | && ! t->used) | |
5086 | def.vd_flags |= VER_FLG_WEAK; | |
5087 | def.vd_ndx = t->vernum + 1; | |
5088 | def.vd_cnt = cdeps + 1; | |
5089 | def.vd_hash = bfd_elf_hash (t->name); | |
5090 | def.vd_aux = sizeof (Elf_External_Verdef); | |
5091 | def.vd_next = 0; | |
5092 | if (t->next != NULL) | |
5093 | def.vd_next = (sizeof (Elf_External_Verdef) | |
5094 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |
5095 | ||
5096 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
5097 | (Elf_External_Verdef *) p); | |
5098 | p += sizeof (Elf_External_Verdef); | |
5099 | ||
5100 | defaux.vda_name = h->dynstr_index; | |
5101 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
5102 | h->dynstr_index); | |
5103 | defaux.vda_next = 0; | |
5104 | if (t->deps != NULL) | |
5105 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
5106 | t->name_indx = defaux.vda_name; | |
5107 | ||
5108 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
5109 | (Elf_External_Verdaux *) p); | |
5110 | p += sizeof (Elf_External_Verdaux); | |
5111 | ||
5112 | for (n = t->deps; n != NULL; n = n->next) | |
5113 | { | |
5114 | if (n->version_needed == NULL) | |
5115 | { | |
5116 | /* This can happen if there was an error in the | |
5117 | version script. */ | |
5118 | defaux.vda_name = 0; | |
5119 | } | |
5120 | else | |
5121 | { | |
5122 | defaux.vda_name = n->version_needed->name_indx; | |
5123 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
5124 | defaux.vda_name); | |
5125 | } | |
5126 | if (n->next == NULL) | |
5127 | defaux.vda_next = 0; | |
5128 | else | |
5129 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
5130 | ||
5131 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
5132 | (Elf_External_Verdaux *) p); | |
5133 | p += sizeof (Elf_External_Verdaux); | |
5134 | } | |
5135 | } | |
5136 | ||
5137 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) | |
5138 | || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) | |
5139 | return FALSE; | |
5140 | ||
5141 | elf_tdata (output_bfd)->cverdefs = cdefs; | |
5142 | } | |
5143 | ||
5144 | if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) | |
5145 | { | |
5146 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) | |
5147 | return FALSE; | |
5148 | } | |
5149 | else if (info->flags & DF_BIND_NOW) | |
5150 | { | |
5151 | if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) | |
5152 | return FALSE; | |
5153 | } | |
5154 | ||
5155 | if (info->flags_1) | |
5156 | { | |
5157 | if (info->executable) | |
5158 | info->flags_1 &= ~ (DF_1_INITFIRST | |
5159 | | DF_1_NODELETE | |
5160 | | DF_1_NOOPEN); | |
5161 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) | |
5162 | return FALSE; | |
5163 | } | |
5164 | ||
5165 | /* Work out the size of the version reference section. */ | |
5166 | ||
5167 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
5168 | BFD_ASSERT (s != NULL); | |
5169 | { | |
5170 | struct elf_find_verdep_info sinfo; | |
5171 | ||
5172 | sinfo.output_bfd = output_bfd; | |
5173 | sinfo.info = info; | |
5174 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; | |
5175 | if (sinfo.vers == 0) | |
5176 | sinfo.vers = 1; | |
5177 | sinfo.failed = FALSE; | |
5178 | ||
5179 | elf_link_hash_traverse (elf_hash_table (info), | |
5180 | _bfd_elf_link_find_version_dependencies, | |
5181 | &sinfo); | |
5182 | ||
5183 | if (elf_tdata (output_bfd)->verref == NULL) | |
5184 | _bfd_strip_section_from_output (info, s); | |
5185 | else | |
5186 | { | |
5187 | Elf_Internal_Verneed *t; | |
5188 | unsigned int size; | |
5189 | unsigned int crefs; | |
5190 | bfd_byte *p; | |
5191 | ||
5192 | /* Build the version definition section. */ | |
5193 | size = 0; | |
5194 | crefs = 0; | |
5195 | for (t = elf_tdata (output_bfd)->verref; | |
5196 | t != NULL; | |
5197 | t = t->vn_nextref) | |
5198 | { | |
5199 | Elf_Internal_Vernaux *a; | |
5200 | ||
5201 | size += sizeof (Elf_External_Verneed); | |
5202 | ++crefs; | |
5203 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
5204 | size += sizeof (Elf_External_Vernaux); | |
5205 | } | |
5206 | ||
5207 | s->_raw_size = size; | |
5208 | s->contents = bfd_alloc (output_bfd, s->_raw_size); | |
5209 | if (s->contents == NULL) | |
5210 | return FALSE; | |
5211 | ||
5212 | p = s->contents; | |
5213 | for (t = elf_tdata (output_bfd)->verref; | |
5214 | t != NULL; | |
5215 | t = t->vn_nextref) | |
5216 | { | |
5217 | unsigned int caux; | |
5218 | Elf_Internal_Vernaux *a; | |
5219 | bfd_size_type indx; | |
5220 | ||
5221 | caux = 0; | |
5222 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
5223 | ++caux; | |
5224 | ||
5225 | t->vn_version = VER_NEED_CURRENT; | |
5226 | t->vn_cnt = caux; | |
5227 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5228 | elf_dt_name (t->vn_bfd) != NULL | |
5229 | ? elf_dt_name (t->vn_bfd) | |
5230 | : basename (t->vn_bfd->filename), | |
5231 | FALSE); | |
5232 | if (indx == (bfd_size_type) -1) | |
5233 | return FALSE; | |
5234 | t->vn_file = indx; | |
5235 | t->vn_aux = sizeof (Elf_External_Verneed); | |
5236 | if (t->vn_nextref == NULL) | |
5237 | t->vn_next = 0; | |
5238 | else | |
5239 | t->vn_next = (sizeof (Elf_External_Verneed) | |
5240 | + caux * sizeof (Elf_External_Vernaux)); | |
5241 | ||
5242 | _bfd_elf_swap_verneed_out (output_bfd, t, | |
5243 | (Elf_External_Verneed *) p); | |
5244 | p += sizeof (Elf_External_Verneed); | |
5245 | ||
5246 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
5247 | { | |
5248 | a->vna_hash = bfd_elf_hash (a->vna_nodename); | |
5249 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5250 | a->vna_nodename, FALSE); | |
5251 | if (indx == (bfd_size_type) -1) | |
5252 | return FALSE; | |
5253 | a->vna_name = indx; | |
5254 | if (a->vna_nextptr == NULL) | |
5255 | a->vna_next = 0; | |
5256 | else | |
5257 | a->vna_next = sizeof (Elf_External_Vernaux); | |
5258 | ||
5259 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |
5260 | (Elf_External_Vernaux *) p); | |
5261 | p += sizeof (Elf_External_Vernaux); | |
5262 | } | |
5263 | } | |
5264 | ||
5265 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) | |
5266 | || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) | |
5267 | return FALSE; | |
5268 | ||
5269 | elf_tdata (output_bfd)->cverrefs = crefs; | |
5270 | } | |
5271 | } | |
5272 | ||
5273 | /* Assign dynsym indicies. In a shared library we generate a | |
5274 | section symbol for each output section, which come first. | |
5275 | Next come all of the back-end allocated local dynamic syms, | |
5276 | followed by the rest of the global symbols. */ | |
5277 | ||
5278 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); | |
5279 | ||
5280 | /* Work out the size of the symbol version section. */ | |
5281 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
5282 | BFD_ASSERT (s != NULL); | |
5283 | if (dynsymcount == 0 | |
5284 | || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL)) | |
5285 | { | |
5286 | _bfd_strip_section_from_output (info, s); | |
5287 | /* The DYNSYMCOUNT might have changed if we were going to | |
5288 | output a dynamic symbol table entry for S. */ | |
5289 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); | |
5290 | } | |
5291 | else | |
5292 | { | |
5293 | s->_raw_size = dynsymcount * sizeof (Elf_External_Versym); | |
5294 | s->contents = bfd_zalloc (output_bfd, s->_raw_size); | |
5295 | if (s->contents == NULL) | |
5296 | return FALSE; | |
5297 | ||
5298 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) | |
5299 | return FALSE; | |
5300 | } | |
5301 | ||
5302 | /* Set the size of the .dynsym and .hash sections. We counted | |
5303 | the number of dynamic symbols in elf_link_add_object_symbols. | |
5304 | We will build the contents of .dynsym and .hash when we build | |
5305 | the final symbol table, because until then we do not know the | |
5306 | correct value to give the symbols. We built the .dynstr | |
5307 | section as we went along in elf_link_add_object_symbols. */ | |
5308 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
5309 | BFD_ASSERT (s != NULL); | |
5310 | s->_raw_size = dynsymcount * bed->s->sizeof_sym; | |
5311 | s->contents = bfd_alloc (output_bfd, s->_raw_size); | |
5312 | if (s->contents == NULL && s->_raw_size != 0) | |
5313 | return FALSE; | |
5314 | ||
5315 | if (dynsymcount != 0) | |
5316 | { | |
5317 | Elf_Internal_Sym isym; | |
5318 | ||
5319 | /* The first entry in .dynsym is a dummy symbol. */ | |
5320 | isym.st_value = 0; | |
5321 | isym.st_size = 0; | |
5322 | isym.st_name = 0; | |
5323 | isym.st_info = 0; | |
5324 | isym.st_other = 0; | |
5325 | isym.st_shndx = 0; | |
5326 | bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0); | |
5327 | } | |
5328 | ||
5329 | /* Compute the size of the hashing table. As a side effect this | |
5330 | computes the hash values for all the names we export. */ | |
5331 | bucketcount = compute_bucket_count (info); | |
5332 | ||
5333 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
5334 | BFD_ASSERT (s != NULL); | |
5335 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; | |
5336 | s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |
5337 | s->contents = bfd_zalloc (output_bfd, s->_raw_size); | |
5338 | if (s->contents == NULL) | |
5339 | return FALSE; | |
5340 | ||
5341 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); | |
5342 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, | |
5343 | s->contents + hash_entry_size); | |
5344 | ||
5345 | elf_hash_table (info)->bucketcount = bucketcount; | |
5346 | ||
5347 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
5348 | BFD_ASSERT (s != NULL); | |
5349 | ||
4ad4eba5 | 5350 | elf_finalize_dynstr (output_bfd, info); |
5a580b3a AM |
5351 | |
5352 | s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
5353 | ||
5354 | for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) | |
5355 | if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) | |
5356 | return FALSE; | |
5357 | } | |
5358 | ||
5359 | return TRUE; | |
5360 | } |