]>
Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* ELF linking support for BFD. |
aad5d350 | 2 | Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 |
7898deda | 3 | Free Software Foundation, Inc. |
252b5132 RH |
4 | |
5 | This file is part of BFD, the Binary File Descriptor library. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "bfd.h" | |
22 | #include "sysdep.h" | |
23 | #include "bfdlink.h" | |
24 | #include "libbfd.h" | |
25 | #define ARCH_SIZE 0 | |
26 | #include "elf-bfd.h" | |
27 | ||
b34976b6 | 28 | bfd_boolean |
268b6b39 | 29 | _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
252b5132 RH |
30 | { |
31 | flagword flags; | |
aad5d350 | 32 | asection *s; |
252b5132 | 33 | struct elf_link_hash_entry *h; |
14a793b2 | 34 | struct bfd_link_hash_entry *bh; |
9c5bfbb7 | 35 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
252b5132 RH |
36 | int ptralign; |
37 | ||
38 | /* This function may be called more than once. */ | |
aad5d350 AM |
39 | s = bfd_get_section_by_name (abfd, ".got"); |
40 | if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0) | |
b34976b6 | 41 | return TRUE; |
252b5132 RH |
42 | |
43 | switch (bed->s->arch_size) | |
44 | { | |
bb0deeff AO |
45 | case 32: |
46 | ptralign = 2; | |
47 | break; | |
48 | ||
49 | case 64: | |
50 | ptralign = 3; | |
51 | break; | |
52 | ||
53 | default: | |
54 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 55 | return FALSE; |
252b5132 RH |
56 | } |
57 | ||
58 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
59 | | SEC_LINKER_CREATED); | |
60 | ||
61 | s = bfd_make_section (abfd, ".got"); | |
62 | if (s == NULL | |
63 | || !bfd_set_section_flags (abfd, s, flags) | |
64 | || !bfd_set_section_alignment (abfd, s, ptralign)) | |
b34976b6 | 65 | return FALSE; |
252b5132 RH |
66 | |
67 | if (bed->want_got_plt) | |
68 | { | |
69 | s = bfd_make_section (abfd, ".got.plt"); | |
70 | if (s == NULL | |
71 | || !bfd_set_section_flags (abfd, s, flags) | |
72 | || !bfd_set_section_alignment (abfd, s, ptralign)) | |
b34976b6 | 73 | return FALSE; |
252b5132 RH |
74 | } |
75 | ||
2517a57f AM |
76 | if (bed->want_got_sym) |
77 | { | |
78 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | |
79 | (or .got.plt) section. We don't do this in the linker script | |
80 | because we don't want to define the symbol if we are not creating | |
81 | a global offset table. */ | |
14a793b2 | 82 | bh = NULL; |
2517a57f AM |
83 | if (!(_bfd_generic_link_add_one_symbol |
84 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
268b6b39 | 85 | bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh))) |
b34976b6 | 86 | return FALSE; |
14a793b2 | 87 | h = (struct elf_link_hash_entry *) bh; |
2517a57f AM |
88 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
89 | h->type = STT_OBJECT; | |
252b5132 | 90 | |
36af4a4e | 91 | if (! info->executable |
2517a57f | 92 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 93 | return FALSE; |
252b5132 | 94 | |
2517a57f AM |
95 | elf_hash_table (info)->hgot = h; |
96 | } | |
252b5132 RH |
97 | |
98 | /* The first bit of the global offset table is the header. */ | |
99 | s->_raw_size += bed->got_header_size + bed->got_symbol_offset; | |
100 | ||
b34976b6 | 101 | return TRUE; |
252b5132 RH |
102 | } |
103 | \f | |
45d6a902 AM |
104 | /* Create some sections which will be filled in with dynamic linking |
105 | information. ABFD is an input file which requires dynamic sections | |
106 | to be created. The dynamic sections take up virtual memory space | |
107 | when the final executable is run, so we need to create them before | |
108 | addresses are assigned to the output sections. We work out the | |
109 | actual contents and size of these sections later. */ | |
252b5132 | 110 | |
b34976b6 | 111 | bfd_boolean |
268b6b39 | 112 | _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
252b5132 | 113 | { |
45d6a902 AM |
114 | flagword flags; |
115 | register asection *s; | |
116 | struct elf_link_hash_entry *h; | |
117 | struct bfd_link_hash_entry *bh; | |
9c5bfbb7 | 118 | const struct elf_backend_data *bed; |
252b5132 | 119 | |
0eddce27 | 120 | if (! is_elf_hash_table (info->hash)) |
45d6a902 AM |
121 | return FALSE; |
122 | ||
123 | if (elf_hash_table (info)->dynamic_sections_created) | |
124 | return TRUE; | |
125 | ||
126 | /* Make sure that all dynamic sections use the same input BFD. */ | |
127 | if (elf_hash_table (info)->dynobj == NULL) | |
128 | elf_hash_table (info)->dynobj = abfd; | |
129 | else | |
130 | abfd = elf_hash_table (info)->dynobj; | |
131 | ||
132 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
133 | sections. */ | |
134 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
135 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
136 | ||
137 | /* A dynamically linked executable has a .interp section, but a | |
138 | shared library does not. */ | |
36af4a4e | 139 | if (info->executable) |
252b5132 | 140 | { |
45d6a902 AM |
141 | s = bfd_make_section (abfd, ".interp"); |
142 | if (s == NULL | |
143 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
144 | return FALSE; | |
145 | } | |
bb0deeff | 146 | |
0eddce27 | 147 | if (! info->traditional_format) |
45d6a902 AM |
148 | { |
149 | s = bfd_make_section (abfd, ".eh_frame_hdr"); | |
150 | if (s == NULL | |
151 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
152 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
153 | return FALSE; | |
154 | elf_hash_table (info)->eh_info.hdr_sec = s; | |
155 | } | |
bb0deeff | 156 | |
45d6a902 AM |
157 | bed = get_elf_backend_data (abfd); |
158 | ||
159 | /* Create sections to hold version informations. These are removed | |
160 | if they are not needed. */ | |
161 | s = bfd_make_section (abfd, ".gnu.version_d"); | |
162 | if (s == NULL | |
163 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
164 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
165 | return FALSE; | |
166 | ||
167 | s = bfd_make_section (abfd, ".gnu.version"); | |
168 | if (s == NULL | |
169 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
170 | || ! bfd_set_section_alignment (abfd, s, 1)) | |
171 | return FALSE; | |
172 | ||
173 | s = bfd_make_section (abfd, ".gnu.version_r"); | |
174 | if (s == NULL | |
175 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
176 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
177 | return FALSE; | |
178 | ||
179 | s = bfd_make_section (abfd, ".dynsym"); | |
180 | if (s == NULL | |
181 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
182 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
183 | return FALSE; | |
184 | ||
185 | s = bfd_make_section (abfd, ".dynstr"); | |
186 | if (s == NULL | |
187 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
188 | return FALSE; | |
189 | ||
190 | /* Create a strtab to hold the dynamic symbol names. */ | |
191 | if (elf_hash_table (info)->dynstr == NULL) | |
192 | { | |
193 | elf_hash_table (info)->dynstr = _bfd_elf_strtab_init (); | |
194 | if (elf_hash_table (info)->dynstr == NULL) | |
195 | return FALSE; | |
252b5132 RH |
196 | } |
197 | ||
45d6a902 AM |
198 | s = bfd_make_section (abfd, ".dynamic"); |
199 | if (s == NULL | |
200 | || ! bfd_set_section_flags (abfd, s, flags) | |
201 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
202 | return FALSE; | |
203 | ||
204 | /* The special symbol _DYNAMIC is always set to the start of the | |
205 | .dynamic section. This call occurs before we have processed the | |
206 | symbols for any dynamic object, so we don't have to worry about | |
207 | overriding a dynamic definition. We could set _DYNAMIC in a | |
208 | linker script, but we only want to define it if we are, in fact, | |
209 | creating a .dynamic section. We don't want to define it if there | |
210 | is no .dynamic section, since on some ELF platforms the start up | |
211 | code examines it to decide how to initialize the process. */ | |
212 | bh = NULL; | |
213 | if (! (_bfd_generic_link_add_one_symbol | |
268b6b39 AM |
214 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE, |
215 | get_elf_backend_data (abfd)->collect, &bh))) | |
45d6a902 AM |
216 | return FALSE; |
217 | h = (struct elf_link_hash_entry *) bh; | |
218 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
219 | h->type = STT_OBJECT; | |
220 | ||
36af4a4e | 221 | if (! info->executable |
45d6a902 AM |
222 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) |
223 | return FALSE; | |
224 | ||
225 | s = bfd_make_section (abfd, ".hash"); | |
226 | if (s == NULL | |
227 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
228 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
229 | return FALSE; | |
230 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; | |
231 | ||
232 | /* Let the backend create the rest of the sections. This lets the | |
233 | backend set the right flags. The backend will normally create | |
234 | the .got and .plt sections. */ | |
235 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
236 | return FALSE; | |
237 | ||
238 | elf_hash_table (info)->dynamic_sections_created = TRUE; | |
239 | ||
240 | return TRUE; | |
241 | } | |
242 | ||
243 | /* Create dynamic sections when linking against a dynamic object. */ | |
244 | ||
245 | bfd_boolean | |
268b6b39 | 246 | _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
45d6a902 AM |
247 | { |
248 | flagword flags, pltflags; | |
249 | asection *s; | |
9c5bfbb7 | 250 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
45d6a902 | 251 | |
252b5132 RH |
252 | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
253 | .rel[a].bss sections. */ | |
254 | ||
255 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
256 | | SEC_LINKER_CREATED); | |
257 | ||
258 | pltflags = flags; | |
259 | pltflags |= SEC_CODE; | |
260 | if (bed->plt_not_loaded) | |
5d1634d7 | 261 | pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); |
252b5132 RH |
262 | if (bed->plt_readonly) |
263 | pltflags |= SEC_READONLY; | |
264 | ||
265 | s = bfd_make_section (abfd, ".plt"); | |
266 | if (s == NULL | |
267 | || ! bfd_set_section_flags (abfd, s, pltflags) | |
268 | || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) | |
b34976b6 | 269 | return FALSE; |
252b5132 RH |
270 | |
271 | if (bed->want_plt_sym) | |
272 | { | |
273 | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the | |
274 | .plt section. */ | |
14a793b2 AM |
275 | struct elf_link_hash_entry *h; |
276 | struct bfd_link_hash_entry *bh = NULL; | |
277 | ||
252b5132 | 278 | if (! (_bfd_generic_link_add_one_symbol |
268b6b39 AM |
279 | (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL, |
280 | FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 281 | return FALSE; |
14a793b2 | 282 | h = (struct elf_link_hash_entry *) bh; |
252b5132 RH |
283 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
284 | h->type = STT_OBJECT; | |
285 | ||
36af4a4e | 286 | if (! info->executable |
252b5132 | 287 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 288 | return FALSE; |
252b5132 RH |
289 | } |
290 | ||
3e932841 | 291 | s = bfd_make_section (abfd, |
bf572ba0 | 292 | bed->default_use_rela_p ? ".rela.plt" : ".rel.plt"); |
252b5132 RH |
293 | if (s == NULL |
294 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
45d6a902 | 295 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
b34976b6 | 296 | return FALSE; |
252b5132 RH |
297 | |
298 | if (! _bfd_elf_create_got_section (abfd, info)) | |
b34976b6 | 299 | return FALSE; |
252b5132 | 300 | |
3018b441 RH |
301 | if (bed->want_dynbss) |
302 | { | |
303 | /* The .dynbss section is a place to put symbols which are defined | |
304 | by dynamic objects, are referenced by regular objects, and are | |
305 | not functions. We must allocate space for them in the process | |
306 | image and use a R_*_COPY reloc to tell the dynamic linker to | |
307 | initialize them at run time. The linker script puts the .dynbss | |
308 | section into the .bss section of the final image. */ | |
309 | s = bfd_make_section (abfd, ".dynbss"); | |
310 | if (s == NULL | |
77f3d027 | 311 | || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED)) |
b34976b6 | 312 | return FALSE; |
252b5132 | 313 | |
3018b441 | 314 | /* The .rel[a].bss section holds copy relocs. This section is not |
252b5132 RH |
315 | normally needed. We need to create it here, though, so that the |
316 | linker will map it to an output section. We can't just create it | |
317 | only if we need it, because we will not know whether we need it | |
318 | until we have seen all the input files, and the first time the | |
319 | main linker code calls BFD after examining all the input files | |
320 | (size_dynamic_sections) the input sections have already been | |
321 | mapped to the output sections. If the section turns out not to | |
322 | be needed, we can discard it later. We will never need this | |
323 | section when generating a shared object, since they do not use | |
324 | copy relocs. */ | |
3018b441 RH |
325 | if (! info->shared) |
326 | { | |
3e932841 KH |
327 | s = bfd_make_section (abfd, |
328 | (bed->default_use_rela_p | |
329 | ? ".rela.bss" : ".rel.bss")); | |
3018b441 RH |
330 | if (s == NULL |
331 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
45d6a902 | 332 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
b34976b6 | 333 | return FALSE; |
3018b441 | 334 | } |
252b5132 RH |
335 | } |
336 | ||
b34976b6 | 337 | return TRUE; |
252b5132 RH |
338 | } |
339 | \f | |
252b5132 RH |
340 | /* Record a new dynamic symbol. We record the dynamic symbols as we |
341 | read the input files, since we need to have a list of all of them | |
342 | before we can determine the final sizes of the output sections. | |
343 | Note that we may actually call this function even though we are not | |
344 | going to output any dynamic symbols; in some cases we know that a | |
345 | symbol should be in the dynamic symbol table, but only if there is | |
346 | one. */ | |
347 | ||
b34976b6 | 348 | bfd_boolean |
268b6b39 AM |
349 | _bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, |
350 | struct elf_link_hash_entry *h) | |
252b5132 RH |
351 | { |
352 | if (h->dynindx == -1) | |
353 | { | |
2b0f7ef9 | 354 | struct elf_strtab_hash *dynstr; |
68b6ddd0 | 355 | char *p; |
252b5132 | 356 | const char *name; |
252b5132 RH |
357 | bfd_size_type indx; |
358 | ||
7a13edea NC |
359 | /* XXX: The ABI draft says the linker must turn hidden and |
360 | internal symbols into STB_LOCAL symbols when producing the | |
361 | DSO. However, if ld.so honors st_other in the dynamic table, | |
362 | this would not be necessary. */ | |
363 | switch (ELF_ST_VISIBILITY (h->other)) | |
364 | { | |
365 | case STV_INTERNAL: | |
366 | case STV_HIDDEN: | |
9d6eee78 L |
367 | if (h->root.type != bfd_link_hash_undefined |
368 | && h->root.type != bfd_link_hash_undefweak) | |
38048eb9 L |
369 | { |
370 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; | |
b34976b6 | 371 | return TRUE; |
7a13edea | 372 | } |
0444bdd4 | 373 | |
7a13edea NC |
374 | default: |
375 | break; | |
376 | } | |
377 | ||
252b5132 RH |
378 | h->dynindx = elf_hash_table (info)->dynsymcount; |
379 | ++elf_hash_table (info)->dynsymcount; | |
380 | ||
381 | dynstr = elf_hash_table (info)->dynstr; | |
382 | if (dynstr == NULL) | |
383 | { | |
384 | /* Create a strtab to hold the dynamic symbol names. */ | |
2b0f7ef9 | 385 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
252b5132 | 386 | if (dynstr == NULL) |
b34976b6 | 387 | return FALSE; |
252b5132 RH |
388 | } |
389 | ||
390 | /* We don't put any version information in the dynamic string | |
aad5d350 | 391 | table. */ |
252b5132 RH |
392 | name = h->root.root.string; |
393 | p = strchr (name, ELF_VER_CHR); | |
68b6ddd0 AM |
394 | if (p != NULL) |
395 | /* We know that the p points into writable memory. In fact, | |
396 | there are only a few symbols that have read-only names, being | |
397 | those like _GLOBAL_OFFSET_TABLE_ that are created specially | |
398 | by the backends. Most symbols will have names pointing into | |
399 | an ELF string table read from a file, or to objalloc memory. */ | |
400 | *p = 0; | |
401 | ||
402 | indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); | |
403 | ||
404 | if (p != NULL) | |
405 | *p = ELF_VER_CHR; | |
252b5132 RH |
406 | |
407 | if (indx == (bfd_size_type) -1) | |
b34976b6 | 408 | return FALSE; |
252b5132 RH |
409 | h->dynstr_index = indx; |
410 | } | |
411 | ||
b34976b6 | 412 | return TRUE; |
252b5132 | 413 | } |
45d6a902 AM |
414 | \f |
415 | /* Record an assignment to a symbol made by a linker script. We need | |
416 | this in case some dynamic object refers to this symbol. */ | |
417 | ||
418 | bfd_boolean | |
268b6b39 AM |
419 | bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED, |
420 | struct bfd_link_info *info, | |
421 | const char *name, | |
422 | bfd_boolean provide) | |
45d6a902 AM |
423 | { |
424 | struct elf_link_hash_entry *h; | |
425 | ||
0eddce27 | 426 | if (!is_elf_hash_table (info->hash)) |
45d6a902 AM |
427 | return TRUE; |
428 | ||
429 | h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE); | |
430 | if (h == NULL) | |
431 | return FALSE; | |
432 | ||
433 | if (h->root.type == bfd_link_hash_new) | |
434 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; | |
435 | ||
436 | /* If this symbol is being provided by the linker script, and it is | |
437 | currently defined by a dynamic object, but not by a regular | |
438 | object, then mark it as undefined so that the generic linker will | |
439 | force the correct value. */ | |
440 | if (provide | |
441 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
442 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
443 | h->root.type = bfd_link_hash_undefined; | |
444 | ||
445 | /* If this symbol is not being provided by the linker script, and it is | |
446 | currently defined by a dynamic object, but not by a regular object, | |
447 | then clear out any version information because the symbol will not be | |
448 | associated with the dynamic object any more. */ | |
449 | if (!provide | |
450 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
451 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
452 | h->verinfo.verdef = NULL; | |
453 | ||
454 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
455 | ||
456 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
457 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
458 | || info->shared) | |
459 | && h->dynindx == -1) | |
460 | { | |
461 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
462 | return FALSE; | |
463 | ||
464 | /* If this is a weak defined symbol, and we know a corresponding | |
465 | real symbol from the same dynamic object, make sure the real | |
466 | symbol is also made into a dynamic symbol. */ | |
467 | if (h->weakdef != NULL | |
468 | && h->weakdef->dynindx == -1) | |
469 | { | |
470 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
471 | return FALSE; | |
472 | } | |
473 | } | |
474 | ||
475 | return TRUE; | |
476 | } | |
42751cf3 | 477 | |
8c58d23b AM |
478 | /* Record a new local dynamic symbol. Returns 0 on failure, 1 on |
479 | success, and 2 on a failure caused by attempting to record a symbol | |
480 | in a discarded section, eg. a discarded link-once section symbol. */ | |
481 | ||
482 | int | |
268b6b39 AM |
483 | elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, |
484 | bfd *input_bfd, | |
485 | long input_indx) | |
8c58d23b AM |
486 | { |
487 | bfd_size_type amt; | |
488 | struct elf_link_local_dynamic_entry *entry; | |
489 | struct elf_link_hash_table *eht; | |
490 | struct elf_strtab_hash *dynstr; | |
491 | unsigned long dynstr_index; | |
492 | char *name; | |
493 | Elf_External_Sym_Shndx eshndx; | |
494 | char esym[sizeof (Elf64_External_Sym)]; | |
495 | ||
0eddce27 | 496 | if (! is_elf_hash_table (info->hash)) |
8c58d23b AM |
497 | return 0; |
498 | ||
499 | /* See if the entry exists already. */ | |
500 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
501 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
502 | return 1; | |
503 | ||
504 | amt = sizeof (*entry); | |
268b6b39 | 505 | entry = bfd_alloc (input_bfd, amt); |
8c58d23b AM |
506 | if (entry == NULL) |
507 | return 0; | |
508 | ||
509 | /* Go find the symbol, so that we can find it's name. */ | |
510 | if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, | |
268b6b39 | 511 | 1, input_indx, &entry->isym, esym, &eshndx)) |
8c58d23b AM |
512 | { |
513 | bfd_release (input_bfd, entry); | |
514 | return 0; | |
515 | } | |
516 | ||
517 | if (entry->isym.st_shndx != SHN_UNDEF | |
518 | && (entry->isym.st_shndx < SHN_LORESERVE | |
519 | || entry->isym.st_shndx > SHN_HIRESERVE)) | |
520 | { | |
521 | asection *s; | |
522 | ||
523 | s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); | |
524 | if (s == NULL || bfd_is_abs_section (s->output_section)) | |
525 | { | |
526 | /* We can still bfd_release here as nothing has done another | |
527 | bfd_alloc. We can't do this later in this function. */ | |
528 | bfd_release (input_bfd, entry); | |
529 | return 2; | |
530 | } | |
531 | } | |
532 | ||
533 | name = (bfd_elf_string_from_elf_section | |
534 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
535 | entry->isym.st_name)); | |
536 | ||
537 | dynstr = elf_hash_table (info)->dynstr; | |
538 | if (dynstr == NULL) | |
539 | { | |
540 | /* Create a strtab to hold the dynamic symbol names. */ | |
541 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); | |
542 | if (dynstr == NULL) | |
543 | return 0; | |
544 | } | |
545 | ||
b34976b6 | 546 | dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); |
8c58d23b AM |
547 | if (dynstr_index == (unsigned long) -1) |
548 | return 0; | |
549 | entry->isym.st_name = dynstr_index; | |
550 | ||
551 | eht = elf_hash_table (info); | |
552 | ||
553 | entry->next = eht->dynlocal; | |
554 | eht->dynlocal = entry; | |
555 | entry->input_bfd = input_bfd; | |
556 | entry->input_indx = input_indx; | |
557 | eht->dynsymcount++; | |
558 | ||
559 | /* Whatever binding the symbol had before, it's now local. */ | |
560 | entry->isym.st_info | |
561 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | |
562 | ||
563 | /* The dynindx will be set at the end of size_dynamic_sections. */ | |
564 | ||
565 | return 1; | |
566 | } | |
567 | ||
30b30c21 | 568 | /* Return the dynindex of a local dynamic symbol. */ |
42751cf3 | 569 | |
30b30c21 | 570 | long |
268b6b39 AM |
571 | _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, |
572 | bfd *input_bfd, | |
573 | long input_indx) | |
30b30c21 RH |
574 | { |
575 | struct elf_link_local_dynamic_entry *e; | |
576 | ||
577 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
578 | if (e->input_bfd == input_bfd && e->input_indx == input_indx) | |
579 | return e->dynindx; | |
580 | return -1; | |
581 | } | |
582 | ||
583 | /* This function is used to renumber the dynamic symbols, if some of | |
584 | them are removed because they are marked as local. This is called | |
585 | via elf_link_hash_traverse. */ | |
586 | ||
b34976b6 | 587 | static bfd_boolean |
268b6b39 AM |
588 | elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, |
589 | void *data) | |
42751cf3 | 590 | { |
268b6b39 | 591 | size_t *count = data; |
30b30c21 | 592 | |
e92d460e AM |
593 | if (h->root.type == bfd_link_hash_warning) |
594 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
595 | ||
42751cf3 | 596 | if (h->dynindx != -1) |
30b30c21 RH |
597 | h->dynindx = ++(*count); |
598 | ||
b34976b6 | 599 | return TRUE; |
42751cf3 | 600 | } |
30b30c21 | 601 | |
062e2358 | 602 | /* Assign dynsym indices. In a shared library we generate a section |
30b30c21 RH |
603 | symbol for each output section, which come first. Next come all of |
604 | the back-end allocated local dynamic syms, followed by the rest of | |
605 | the global symbols. */ | |
606 | ||
607 | unsigned long | |
268b6b39 | 608 | _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info) |
30b30c21 RH |
609 | { |
610 | unsigned long dynsymcount = 0; | |
611 | ||
612 | if (info->shared) | |
613 | { | |
614 | asection *p; | |
615 | for (p = output_bfd->sections; p ; p = p->next) | |
bc0ba537 AM |
616 | if ((p->flags & SEC_EXCLUDE) == 0) |
617 | elf_section_data (p)->dynindx = ++dynsymcount; | |
30b30c21 RH |
618 | } |
619 | ||
620 | if (elf_hash_table (info)->dynlocal) | |
621 | { | |
622 | struct elf_link_local_dynamic_entry *p; | |
623 | for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) | |
624 | p->dynindx = ++dynsymcount; | |
625 | } | |
626 | ||
627 | elf_link_hash_traverse (elf_hash_table (info), | |
628 | elf_link_renumber_hash_table_dynsyms, | |
629 | &dynsymcount); | |
630 | ||
631 | /* There is an unused NULL entry at the head of the table which | |
632 | we must account for in our count. Unless there weren't any | |
633 | symbols, which means we'll have no table at all. */ | |
634 | if (dynsymcount != 0) | |
635 | ++dynsymcount; | |
636 | ||
637 | return elf_hash_table (info)->dynsymcount = dynsymcount; | |
638 | } | |
252b5132 | 639 | |
45d6a902 AM |
640 | /* This function is called when we want to define a new symbol. It |
641 | handles the various cases which arise when we find a definition in | |
642 | a dynamic object, or when there is already a definition in a | |
643 | dynamic object. The new symbol is described by NAME, SYM, PSEC, | |
644 | and PVALUE. We set SYM_HASH to the hash table entry. We set | |
645 | OVERRIDE if the old symbol is overriding a new definition. We set | |
646 | TYPE_CHANGE_OK if it is OK for the type to change. We set | |
647 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to | |
648 | change, we mean that we shouldn't warn if the type or size does | |
649 | change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of | |
650 | a shared object. */ | |
651 | ||
652 | bfd_boolean | |
268b6b39 AM |
653 | _bfd_elf_merge_symbol (bfd *abfd, |
654 | struct bfd_link_info *info, | |
655 | const char *name, | |
656 | Elf_Internal_Sym *sym, | |
657 | asection **psec, | |
658 | bfd_vma *pvalue, | |
659 | struct elf_link_hash_entry **sym_hash, | |
660 | bfd_boolean *skip, | |
661 | bfd_boolean *override, | |
662 | bfd_boolean *type_change_ok, | |
663 | bfd_boolean *size_change_ok, | |
664 | bfd_boolean dt_needed) | |
252b5132 | 665 | { |
45d6a902 AM |
666 | asection *sec; |
667 | struct elf_link_hash_entry *h; | |
668 | struct elf_link_hash_entry *flip; | |
669 | int bind; | |
670 | bfd *oldbfd; | |
671 | bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
672 | bfd_boolean newweakdef, oldweakdef, newweakundef, oldweakundef; | |
673 | ||
674 | *skip = FALSE; | |
675 | *override = FALSE; | |
676 | ||
677 | sec = *psec; | |
678 | bind = ELF_ST_BIND (sym->st_info); | |
679 | ||
680 | if (! bfd_is_und_section (sec)) | |
681 | h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); | |
682 | else | |
683 | h = ((struct elf_link_hash_entry *) | |
684 | bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); | |
685 | if (h == NULL) | |
686 | return FALSE; | |
687 | *sym_hash = h; | |
252b5132 | 688 | |
45d6a902 AM |
689 | /* This code is for coping with dynamic objects, and is only useful |
690 | if we are doing an ELF link. */ | |
691 | if (info->hash->creator != abfd->xvec) | |
692 | return TRUE; | |
252b5132 | 693 | |
45d6a902 AM |
694 | /* For merging, we only care about real symbols. */ |
695 | ||
696 | while (h->root.type == bfd_link_hash_indirect | |
697 | || h->root.type == bfd_link_hash_warning) | |
698 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
699 | ||
700 | /* If we just created the symbol, mark it as being an ELF symbol. | |
701 | Other than that, there is nothing to do--there is no merge issue | |
702 | with a newly defined symbol--so we just return. */ | |
703 | ||
704 | if (h->root.type == bfd_link_hash_new) | |
252b5132 | 705 | { |
45d6a902 AM |
706 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; |
707 | return TRUE; | |
708 | } | |
252b5132 | 709 | |
45d6a902 | 710 | /* OLDBFD is a BFD associated with the existing symbol. */ |
252b5132 | 711 | |
45d6a902 AM |
712 | switch (h->root.type) |
713 | { | |
714 | default: | |
715 | oldbfd = NULL; | |
716 | break; | |
252b5132 | 717 | |
45d6a902 AM |
718 | case bfd_link_hash_undefined: |
719 | case bfd_link_hash_undefweak: | |
720 | oldbfd = h->root.u.undef.abfd; | |
721 | break; | |
722 | ||
723 | case bfd_link_hash_defined: | |
724 | case bfd_link_hash_defweak: | |
725 | oldbfd = h->root.u.def.section->owner; | |
726 | break; | |
727 | ||
728 | case bfd_link_hash_common: | |
729 | oldbfd = h->root.u.c.p->section->owner; | |
730 | break; | |
731 | } | |
732 | ||
733 | /* In cases involving weak versioned symbols, we may wind up trying | |
734 | to merge a symbol with itself. Catch that here, to avoid the | |
735 | confusion that results if we try to override a symbol with | |
736 | itself. The additional tests catch cases like | |
737 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |
738 | dynamic object, which we do want to handle here. */ | |
739 | if (abfd == oldbfd | |
740 | && ((abfd->flags & DYNAMIC) == 0 | |
741 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
742 | return TRUE; | |
743 | ||
744 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, | |
745 | respectively, is from a dynamic object. */ | |
746 | ||
747 | if ((abfd->flags & DYNAMIC) != 0) | |
748 | newdyn = TRUE; | |
749 | else | |
750 | newdyn = FALSE; | |
751 | ||
752 | if (oldbfd != NULL) | |
753 | olddyn = (oldbfd->flags & DYNAMIC) != 0; | |
754 | else | |
755 | { | |
756 | asection *hsec; | |
757 | ||
758 | /* This code handles the special SHN_MIPS_{TEXT,DATA} section | |
759 | indices used by MIPS ELF. */ | |
760 | switch (h->root.type) | |
252b5132 | 761 | { |
45d6a902 AM |
762 | default: |
763 | hsec = NULL; | |
764 | break; | |
252b5132 | 765 | |
45d6a902 AM |
766 | case bfd_link_hash_defined: |
767 | case bfd_link_hash_defweak: | |
768 | hsec = h->root.u.def.section; | |
769 | break; | |
252b5132 | 770 | |
45d6a902 AM |
771 | case bfd_link_hash_common: |
772 | hsec = h->root.u.c.p->section; | |
773 | break; | |
252b5132 | 774 | } |
252b5132 | 775 | |
45d6a902 AM |
776 | if (hsec == NULL) |
777 | olddyn = FALSE; | |
778 | else | |
779 | olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0; | |
780 | } | |
252b5132 | 781 | |
45d6a902 AM |
782 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, |
783 | respectively, appear to be a definition rather than reference. */ | |
784 | ||
785 | if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) | |
786 | newdef = FALSE; | |
787 | else | |
788 | newdef = TRUE; | |
789 | ||
790 | if (h->root.type == bfd_link_hash_undefined | |
791 | || h->root.type == bfd_link_hash_undefweak | |
792 | || h->root.type == bfd_link_hash_common) | |
793 | olddef = FALSE; | |
794 | else | |
795 | olddef = TRUE; | |
796 | ||
4cc11e76 | 797 | /* We need to remember if a symbol has a definition in a dynamic |
45d6a902 AM |
798 | object or is weak in all dynamic objects. Internal and hidden |
799 | visibility will make it unavailable to dynamic objects. */ | |
800 | if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0) | |
801 | { | |
802 | if (!bfd_is_und_section (sec)) | |
803 | h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF; | |
804 | else | |
252b5132 | 805 | { |
45d6a902 AM |
806 | /* Check if this symbol is weak in all dynamic objects. If it |
807 | is the first time we see it in a dynamic object, we mark | |
808 | if it is weak. Otherwise, we clear it. */ | |
809 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0) | |
810 | { | |
811 | if (bind == STB_WEAK) | |
812 | h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK; | |
252b5132 | 813 | } |
45d6a902 AM |
814 | else if (bind != STB_WEAK) |
815 | h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK; | |
252b5132 | 816 | } |
45d6a902 | 817 | } |
252b5132 | 818 | |
45d6a902 AM |
819 | /* If the old symbol has non-default visibility, we ignore the new |
820 | definition from a dynamic object. */ | |
821 | if (newdyn | |
9c7a29a3 | 822 | && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
45d6a902 AM |
823 | && !bfd_is_und_section (sec)) |
824 | { | |
825 | *skip = TRUE; | |
826 | /* Make sure this symbol is dynamic. */ | |
827 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
828 | /* A protected symbol has external availability. Make sure it is | |
829 | recorded as dynamic. | |
830 | ||
831 | FIXME: Should we check type and size for protected symbol? */ | |
832 | if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) | |
833 | return _bfd_elf_link_record_dynamic_symbol (info, h); | |
834 | else | |
835 | return TRUE; | |
836 | } | |
837 | else if (!newdyn | |
9c7a29a3 | 838 | && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT |
45d6a902 AM |
839 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) |
840 | { | |
841 | /* If the new symbol with non-default visibility comes from a | |
842 | relocatable file and the old definition comes from a dynamic | |
843 | object, we remove the old definition. */ | |
844 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
845 | h = *sym_hash; | |
1de1a317 L |
846 | |
847 | if ((h->root.und_next || info->hash->undefs_tail == &h->root) | |
848 | && bfd_is_und_section (sec)) | |
849 | { | |
850 | /* If the new symbol is undefined and the old symbol was | |
851 | also undefined before, we need to make sure | |
852 | _bfd_generic_link_add_one_symbol doesn't mess | |
853 | up the linker hash table undefs list. Since the old | |
854 | definition came from a dynamic object, it is still on the | |
855 | undefs list. */ | |
856 | h->root.type = bfd_link_hash_undefined; | |
857 | /* FIXME: What if the new symbol is weak undefined? */ | |
858 | h->root.u.undef.abfd = abfd; | |
859 | } | |
860 | else | |
861 | { | |
862 | h->root.type = bfd_link_hash_new; | |
863 | h->root.u.undef.abfd = NULL; | |
864 | } | |
865 | ||
45d6a902 | 866 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) |
252b5132 | 867 | { |
45d6a902 | 868 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC; |
22d5e339 L |
869 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC |
870 | | ELF_LINK_DYNAMIC_DEF); | |
45d6a902 AM |
871 | } |
872 | /* FIXME: Should we check type and size for protected symbol? */ | |
873 | h->size = 0; | |
874 | h->type = 0; | |
875 | return TRUE; | |
876 | } | |
14a793b2 | 877 | |
4cc11e76 | 878 | /* We need to treat weak definition right, depending on if there is a |
45d6a902 AM |
879 | definition from a dynamic object. */ |
880 | if (bind == STB_WEAK) | |
881 | { | |
882 | if (olddef) | |
883 | { | |
884 | newweakdef = TRUE; | |
885 | newweakundef = FALSE; | |
886 | } | |
887 | else | |
888 | { | |
889 | newweakdef = FALSE; | |
890 | newweakundef = TRUE; | |
891 | } | |
892 | } | |
893 | else | |
894 | newweakdef = newweakundef = FALSE; | |
14a793b2 | 895 | |
45d6a902 AM |
896 | /* If the new weak definition comes from a relocatable file and the |
897 | old symbol comes from a dynamic object, we treat the new one as | |
898 | strong. */ | |
899 | if (newweakdef && !newdyn && olddyn) | |
900 | newweakdef = FALSE; | |
252b5132 | 901 | |
45d6a902 AM |
902 | if (h->root.type == bfd_link_hash_defweak) |
903 | { | |
904 | oldweakdef = TRUE; | |
905 | oldweakundef = FALSE; | |
906 | } | |
907 | else if (h->root.type == bfd_link_hash_undefweak) | |
908 | { | |
909 | oldweakdef = FALSE; | |
910 | oldweakundef = TRUE; | |
911 | } | |
912 | else | |
913 | oldweakdef = oldweakundef = FALSE; | |
914 | ||
915 | /* If the old weak definition comes from a relocatable file and the | |
916 | new symbol comes from a dynamic object, we treat the old one as | |
917 | strong. */ | |
918 | if (oldweakdef && !olddyn && newdyn) | |
919 | oldweakdef = FALSE; | |
920 | ||
921 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old | |
922 | symbol, respectively, appears to be a common symbol in a dynamic | |
923 | object. If a symbol appears in an uninitialized section, and is | |
924 | not weak, and is not a function, then it may be a common symbol | |
925 | which was resolved when the dynamic object was created. We want | |
926 | to treat such symbols specially, because they raise special | |
927 | considerations when setting the symbol size: if the symbol | |
928 | appears as a common symbol in a regular object, and the size in | |
929 | the regular object is larger, we must make sure that we use the | |
930 | larger size. This problematic case can always be avoided in C, | |
931 | but it must be handled correctly when using Fortran shared | |
932 | libraries. | |
933 | ||
934 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
935 | likewise for OLDDYNCOMMON and OLDDEF. | |
936 | ||
937 | Note that this test is just a heuristic, and that it is quite | |
938 | possible to have an uninitialized symbol in a shared object which | |
939 | is really a definition, rather than a common symbol. This could | |
940 | lead to some minor confusion when the symbol really is a common | |
941 | symbol in some regular object. However, I think it will be | |
942 | harmless. */ | |
943 | ||
944 | if (newdyn | |
945 | && newdef | |
946 | && (sec->flags & SEC_ALLOC) != 0 | |
947 | && (sec->flags & SEC_LOAD) == 0 | |
948 | && sym->st_size > 0 | |
949 | && !newweakdef | |
950 | && !newweakundef | |
951 | && ELF_ST_TYPE (sym->st_info) != STT_FUNC) | |
952 | newdyncommon = TRUE; | |
953 | else | |
954 | newdyncommon = FALSE; | |
955 | ||
956 | if (olddyn | |
957 | && olddef | |
958 | && h->root.type == bfd_link_hash_defined | |
959 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
960 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 | |
961 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
962 | && h->size > 0 | |
963 | && h->type != STT_FUNC) | |
964 | olddyncommon = TRUE; | |
965 | else | |
966 | olddyncommon = FALSE; | |
967 | ||
968 | /* It's OK to change the type if either the existing symbol or the | |
969 | new symbol is weak unless it comes from a DT_NEEDED entry of | |
970 | a shared object, in which case, the DT_NEEDED entry may not be | |
9e4d8df3 L |
971 | required at the run time. The type change is also OK if the |
972 | old symbol is undefined and the new symbol is defined. */ | |
45d6a902 AM |
973 | |
974 | if ((! dt_needed && oldweakdef) | |
975 | || oldweakundef | |
976 | || newweakdef | |
9e4d8df3 L |
977 | || newweakundef |
978 | || (newdef | |
979 | && (h->root.type == bfd_link_hash_undefined | |
980 | || h->root.type == bfd_link_hash_undefweak))) | |
45d6a902 AM |
981 | *type_change_ok = TRUE; |
982 | ||
983 | /* It's OK to change the size if either the existing symbol or the | |
984 | new symbol is weak, or if the old symbol is undefined. */ | |
985 | ||
986 | if (*type_change_ok | |
987 | || h->root.type == bfd_link_hash_undefined) | |
988 | *size_change_ok = TRUE; | |
989 | ||
990 | /* If both the old and the new symbols look like common symbols in a | |
991 | dynamic object, set the size of the symbol to the larger of the | |
992 | two. */ | |
993 | ||
994 | if (olddyncommon | |
995 | && newdyncommon | |
996 | && sym->st_size != h->size) | |
997 | { | |
998 | /* Since we think we have two common symbols, issue a multiple | |
999 | common warning if desired. Note that we only warn if the | |
1000 | size is different. If the size is the same, we simply let | |
1001 | the old symbol override the new one as normally happens with | |
1002 | symbols defined in dynamic objects. */ | |
1003 | ||
1004 | if (! ((*info->callbacks->multiple_common) | |
1005 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
1006 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
1007 | return FALSE; | |
252b5132 | 1008 | |
45d6a902 AM |
1009 | if (sym->st_size > h->size) |
1010 | h->size = sym->st_size; | |
252b5132 | 1011 | |
45d6a902 | 1012 | *size_change_ok = TRUE; |
252b5132 RH |
1013 | } |
1014 | ||
45d6a902 AM |
1015 | /* If we are looking at a dynamic object, and we have found a |
1016 | definition, we need to see if the symbol was already defined by | |
1017 | some other object. If so, we want to use the existing | |
1018 | definition, and we do not want to report a multiple symbol | |
1019 | definition error; we do this by clobbering *PSEC to be | |
1020 | bfd_und_section_ptr. | |
1021 | ||
1022 | We treat a common symbol as a definition if the symbol in the | |
1023 | shared library is a function, since common symbols always | |
1024 | represent variables; this can cause confusion in principle, but | |
1025 | any such confusion would seem to indicate an erroneous program or | |
1026 | shared library. We also permit a common symbol in a regular | |
1027 | object to override a weak symbol in a shared object. | |
1028 | ||
1029 | We prefer a non-weak definition in a shared library to a weak | |
1030 | definition in the executable unless it comes from a DT_NEEDED | |
1031 | entry of a shared object, in which case, the DT_NEEDED entry | |
1032 | may not be required at the run time. */ | |
1033 | ||
1034 | if (newdyn | |
1035 | && newdef | |
1036 | && (olddef | |
1037 | || (h->root.type == bfd_link_hash_common | |
1038 | && (newweakdef | |
1039 | || newweakundef | |
1040 | || ELF_ST_TYPE (sym->st_info) == STT_FUNC))) | |
1041 | && (!oldweakdef | |
1042 | || dt_needed | |
1043 | || newweakdef | |
1044 | || newweakundef)) | |
1045 | { | |
1046 | *override = TRUE; | |
1047 | newdef = FALSE; | |
1048 | newdyncommon = FALSE; | |
252b5132 | 1049 | |
45d6a902 AM |
1050 | *psec = sec = bfd_und_section_ptr; |
1051 | *size_change_ok = TRUE; | |
252b5132 | 1052 | |
45d6a902 AM |
1053 | /* If we get here when the old symbol is a common symbol, then |
1054 | we are explicitly letting it override a weak symbol or | |
1055 | function in a dynamic object, and we don't want to warn about | |
1056 | a type change. If the old symbol is a defined symbol, a type | |
1057 | change warning may still be appropriate. */ | |
252b5132 | 1058 | |
45d6a902 AM |
1059 | if (h->root.type == bfd_link_hash_common) |
1060 | *type_change_ok = TRUE; | |
1061 | } | |
1062 | ||
1063 | /* Handle the special case of an old common symbol merging with a | |
1064 | new symbol which looks like a common symbol in a shared object. | |
1065 | We change *PSEC and *PVALUE to make the new symbol look like a | |
1066 | common symbol, and let _bfd_generic_link_add_one_symbol will do | |
1067 | the right thing. */ | |
1068 | ||
1069 | if (newdyncommon | |
1070 | && h->root.type == bfd_link_hash_common) | |
1071 | { | |
1072 | *override = TRUE; | |
1073 | newdef = FALSE; | |
1074 | newdyncommon = FALSE; | |
1075 | *pvalue = sym->st_size; | |
1076 | *psec = sec = bfd_com_section_ptr; | |
1077 | *size_change_ok = TRUE; | |
1078 | } | |
1079 | ||
1080 | /* If the old symbol is from a dynamic object, and the new symbol is | |
1081 | a definition which is not from a dynamic object, then the new | |
1082 | symbol overrides the old symbol. Symbols from regular files | |
1083 | always take precedence over symbols from dynamic objects, even if | |
1084 | they are defined after the dynamic object in the link. | |
1085 | ||
1086 | As above, we again permit a common symbol in a regular object to | |
1087 | override a definition in a shared object if the shared object | |
1088 | symbol is a function or is weak. | |
1089 | ||
1090 | As above, we permit a non-weak definition in a shared object to | |
1091 | override a weak definition in a regular object. */ | |
1092 | ||
1093 | flip = NULL; | |
1094 | if (! newdyn | |
1095 | && (newdef | |
1096 | || (bfd_is_com_section (sec) | |
1097 | && (oldweakdef || h->type == STT_FUNC))) | |
1098 | && olddyn | |
1099 | && olddef | |
1100 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
1101 | && ((!newweakdef && !newweakundef) || oldweakdef)) | |
1102 | { | |
1103 | /* Change the hash table entry to undefined, and let | |
1104 | _bfd_generic_link_add_one_symbol do the right thing with the | |
1105 | new definition. */ | |
1106 | ||
1107 | h->root.type = bfd_link_hash_undefined; | |
1108 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1109 | *size_change_ok = TRUE; | |
1110 | ||
1111 | olddef = FALSE; | |
1112 | olddyncommon = FALSE; | |
1113 | ||
1114 | /* We again permit a type change when a common symbol may be | |
1115 | overriding a function. */ | |
1116 | ||
1117 | if (bfd_is_com_section (sec)) | |
1118 | *type_change_ok = TRUE; | |
1119 | ||
1120 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
1121 | flip = *sym_hash; | |
1122 | else | |
1123 | /* This union may have been set to be non-NULL when this symbol | |
1124 | was seen in a dynamic object. We must force the union to be | |
1125 | NULL, so that it is correct for a regular symbol. */ | |
1126 | h->verinfo.vertree = NULL; | |
1127 | } | |
1128 | ||
1129 | /* Handle the special case of a new common symbol merging with an | |
1130 | old symbol that looks like it might be a common symbol defined in | |
1131 | a shared object. Note that we have already handled the case in | |
1132 | which a new common symbol should simply override the definition | |
1133 | in the shared library. */ | |
1134 | ||
1135 | if (! newdyn | |
1136 | && bfd_is_com_section (sec) | |
1137 | && olddyncommon) | |
1138 | { | |
1139 | /* It would be best if we could set the hash table entry to a | |
1140 | common symbol, but we don't know what to use for the section | |
1141 | or the alignment. */ | |
1142 | if (! ((*info->callbacks->multiple_common) | |
1143 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
1144 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
1145 | return FALSE; | |
1146 | ||
4cc11e76 | 1147 | /* If the presumed common symbol in the dynamic object is |
45d6a902 AM |
1148 | larger, pretend that the new symbol has its size. */ |
1149 | ||
1150 | if (h->size > *pvalue) | |
1151 | *pvalue = h->size; | |
1152 | ||
1153 | /* FIXME: We no longer know the alignment required by the symbol | |
1154 | in the dynamic object, so we just wind up using the one from | |
1155 | the regular object. */ | |
1156 | ||
1157 | olddef = FALSE; | |
1158 | olddyncommon = FALSE; | |
1159 | ||
1160 | h->root.type = bfd_link_hash_undefined; | |
1161 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1162 | ||
1163 | *size_change_ok = TRUE; | |
1164 | *type_change_ok = TRUE; | |
1165 | ||
1166 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
1167 | flip = *sym_hash; | |
1168 | else | |
1169 | h->verinfo.vertree = NULL; | |
1170 | } | |
1171 | ||
1172 | if (flip != NULL) | |
1173 | { | |
1174 | /* Handle the case where we had a versioned symbol in a dynamic | |
1175 | library and now find a definition in a normal object. In this | |
1176 | case, we make the versioned symbol point to the normal one. */ | |
9c5bfbb7 | 1177 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
45d6a902 AM |
1178 | flip->root.type = h->root.type; |
1179 | h->root.type = bfd_link_hash_indirect; | |
1180 | h->root.u.i.link = (struct bfd_link_hash_entry *) flip; | |
1181 | (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h); | |
1182 | flip->root.u.undef.abfd = h->root.u.undef.abfd; | |
1183 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) | |
1184 | { | |
1185 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC; | |
1186 | flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1187 | } | |
1188 | } | |
1189 | ||
1190 | /* Handle the special case of a weak definition in a regular object | |
1191 | followed by a non-weak definition in a shared object. In this | |
1192 | case, we prefer the definition in the shared object unless it | |
1193 | comes from a DT_NEEDED entry of a shared object, in which case, | |
1194 | the DT_NEEDED entry may not be required at the run time. */ | |
1195 | if (olddef | |
1196 | && ! dt_needed | |
1197 | && oldweakdef | |
1198 | && newdef | |
1199 | && newdyn | |
1200 | && !newweakdef | |
1201 | && !newweakundef) | |
1202 | { | |
1203 | /* To make this work we have to frob the flags so that the rest | |
1204 | of the code does not think we are using the regular | |
1205 | definition. */ | |
1206 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1207 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
1208 | else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
1209 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1210 | h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR | |
1211 | | ELF_LINK_HASH_DEF_DYNAMIC); | |
1212 | ||
1213 | /* If H is the target of an indirection, we want the caller to | |
1214 | use H rather than the indirect symbol. Otherwise if we are | |
1215 | defining a new indirect symbol we will wind up attaching it | |
1216 | to the entry we are overriding. */ | |
1217 | *sym_hash = h; | |
1218 | } | |
1219 | ||
1220 | /* Handle the special case of a non-weak definition in a shared | |
1221 | object followed by a weak definition in a regular object. In | |
1222 | this case we prefer the definition in the shared object. To make | |
1223 | this work we have to tell the caller to not treat the new symbol | |
1224 | as a definition. */ | |
1225 | if (olddef | |
1226 | && olddyn | |
1227 | && !oldweakdef | |
1228 | && newdef | |
1229 | && ! newdyn | |
1230 | && (newweakdef || newweakundef)) | |
1231 | *override = TRUE; | |
1232 | ||
1233 | return TRUE; | |
1234 | } | |
1235 | ||
1236 | /* This function is called to create an indirect symbol from the | |
1237 | default for the symbol with the default version if needed. The | |
1238 | symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We | |
1239 | set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED | |
1240 | indicates if it comes from a DT_NEEDED entry of a shared object. */ | |
1241 | ||
1242 | bfd_boolean | |
268b6b39 AM |
1243 | _bfd_elf_add_default_symbol (bfd *abfd, |
1244 | struct bfd_link_info *info, | |
1245 | struct elf_link_hash_entry *h, | |
1246 | const char *name, | |
1247 | Elf_Internal_Sym *sym, | |
1248 | asection **psec, | |
1249 | bfd_vma *value, | |
1250 | bfd_boolean *dynsym, | |
1251 | bfd_boolean override, | |
1252 | bfd_boolean dt_needed) | |
45d6a902 AM |
1253 | { |
1254 | bfd_boolean type_change_ok; | |
1255 | bfd_boolean size_change_ok; | |
1256 | bfd_boolean skip; | |
1257 | char *shortname; | |
1258 | struct elf_link_hash_entry *hi; | |
1259 | struct bfd_link_hash_entry *bh; | |
9c5bfbb7 | 1260 | const struct elf_backend_data *bed; |
45d6a902 AM |
1261 | bfd_boolean collect; |
1262 | bfd_boolean dynamic; | |
1263 | char *p; | |
1264 | size_t len, shortlen; | |
1265 | asection *sec; | |
1266 | ||
1267 | /* If this symbol has a version, and it is the default version, we | |
1268 | create an indirect symbol from the default name to the fully | |
1269 | decorated name. This will cause external references which do not | |
1270 | specify a version to be bound to this version of the symbol. */ | |
1271 | p = strchr (name, ELF_VER_CHR); | |
1272 | if (p == NULL || p[1] != ELF_VER_CHR) | |
1273 | return TRUE; | |
1274 | ||
1275 | if (override) | |
1276 | { | |
4cc11e76 | 1277 | /* We are overridden by an old definition. We need to check if we |
45d6a902 AM |
1278 | need to create the indirect symbol from the default name. */ |
1279 | hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, | |
1280 | FALSE, FALSE); | |
1281 | BFD_ASSERT (hi != NULL); | |
1282 | if (hi == h) | |
1283 | return TRUE; | |
1284 | while (hi->root.type == bfd_link_hash_indirect | |
1285 | || hi->root.type == bfd_link_hash_warning) | |
1286 | { | |
1287 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1288 | if (hi == h) | |
1289 | return TRUE; | |
1290 | } | |
1291 | } | |
1292 | ||
1293 | bed = get_elf_backend_data (abfd); | |
1294 | collect = bed->collect; | |
1295 | dynamic = (abfd->flags & DYNAMIC) != 0; | |
1296 | ||
1297 | shortlen = p - name; | |
1298 | shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1); | |
1299 | if (shortname == NULL) | |
1300 | return FALSE; | |
1301 | memcpy (shortname, name, shortlen); | |
1302 | shortname[shortlen] = '\0'; | |
1303 | ||
1304 | /* We are going to create a new symbol. Merge it with any existing | |
1305 | symbol with this name. For the purposes of the merge, act as | |
1306 | though we were defining the symbol we just defined, although we | |
1307 | actually going to define an indirect symbol. */ | |
1308 | type_change_ok = FALSE; | |
1309 | size_change_ok = FALSE; | |
1310 | sec = *psec; | |
1311 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, | |
1312 | &hi, &skip, &override, &type_change_ok, | |
1313 | &size_change_ok, dt_needed)) | |
1314 | return FALSE; | |
1315 | ||
1316 | if (skip) | |
1317 | goto nondefault; | |
1318 | ||
1319 | if (! override) | |
1320 | { | |
1321 | bh = &hi->root; | |
1322 | if (! (_bfd_generic_link_add_one_symbol | |
1323 | (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr, | |
268b6b39 | 1324 | 0, name, FALSE, collect, &bh))) |
45d6a902 AM |
1325 | return FALSE; |
1326 | hi = (struct elf_link_hash_entry *) bh; | |
1327 | } | |
1328 | else | |
1329 | { | |
1330 | /* In this case the symbol named SHORTNAME is overriding the | |
1331 | indirect symbol we want to add. We were planning on making | |
1332 | SHORTNAME an indirect symbol referring to NAME. SHORTNAME | |
1333 | is the name without a version. NAME is the fully versioned | |
1334 | name, and it is the default version. | |
1335 | ||
1336 | Overriding means that we already saw a definition for the | |
1337 | symbol SHORTNAME in a regular object, and it is overriding | |
1338 | the symbol defined in the dynamic object. | |
1339 | ||
1340 | When this happens, we actually want to change NAME, the | |
1341 | symbol we just added, to refer to SHORTNAME. This will cause | |
1342 | references to NAME in the shared object to become references | |
1343 | to SHORTNAME in the regular object. This is what we expect | |
1344 | when we override a function in a shared object: that the | |
1345 | references in the shared object will be mapped to the | |
1346 | definition in the regular object. */ | |
1347 | ||
1348 | while (hi->root.type == bfd_link_hash_indirect | |
1349 | || hi->root.type == bfd_link_hash_warning) | |
1350 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1351 | ||
1352 | h->root.type = bfd_link_hash_indirect; | |
1353 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
1354 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) | |
1355 | { | |
1356 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; | |
1357 | hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1358 | if (hi->elf_link_hash_flags | |
1359 | & (ELF_LINK_HASH_REF_REGULAR | |
1360 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1361 | { | |
1362 | if (! _bfd_elf_link_record_dynamic_symbol (info, hi)) | |
1363 | return FALSE; | |
1364 | } | |
1365 | } | |
1366 | ||
1367 | /* Now set HI to H, so that the following code will set the | |
1368 | other fields correctly. */ | |
1369 | hi = h; | |
1370 | } | |
1371 | ||
1372 | /* If there is a duplicate definition somewhere, then HI may not | |
1373 | point to an indirect symbol. We will have reported an error to | |
1374 | the user in that case. */ | |
1375 | ||
1376 | if (hi->root.type == bfd_link_hash_indirect) | |
1377 | { | |
1378 | struct elf_link_hash_entry *ht; | |
1379 | ||
1380 | /* If the symbol became indirect, then we assume that we have | |
1381 | not seen a definition before. */ | |
1382 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1383 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1384 | | ELF_LINK_HASH_DEF_REGULAR)) == 0); | |
1385 | ||
1386 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1387 | (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi); | |
1388 | ||
1389 | /* See if the new flags lead us to realize that the symbol must | |
1390 | be dynamic. */ | |
1391 | if (! *dynsym) | |
1392 | { | |
1393 | if (! dynamic) | |
1394 | { | |
1395 | if (info->shared | |
1396 | || ((hi->elf_link_hash_flags | |
1397 | & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
1398 | *dynsym = TRUE; | |
1399 | } | |
1400 | else | |
1401 | { | |
1402 | if ((hi->elf_link_hash_flags | |
1403 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1404 | *dynsym = TRUE; | |
1405 | } | |
1406 | } | |
1407 | } | |
1408 | ||
1409 | /* We also need to define an indirection from the nondefault version | |
1410 | of the symbol. */ | |
1411 | ||
1412 | nondefault: | |
1413 | len = strlen (name); | |
1414 | shortname = bfd_hash_allocate (&info->hash->table, len); | |
1415 | if (shortname == NULL) | |
1416 | return FALSE; | |
1417 | memcpy (shortname, name, shortlen); | |
1418 | memcpy (shortname + shortlen, p + 1, len - shortlen); | |
1419 | ||
1420 | /* Once again, merge with any existing symbol. */ | |
1421 | type_change_ok = FALSE; | |
1422 | size_change_ok = FALSE; | |
1423 | sec = *psec; | |
1424 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, | |
1425 | &hi, &skip, &override, &type_change_ok, | |
1426 | &size_change_ok, dt_needed)) | |
1427 | return FALSE; | |
1428 | ||
1429 | if (skip) | |
1430 | return TRUE; | |
1431 | ||
1432 | if (override) | |
1433 | { | |
1434 | /* Here SHORTNAME is a versioned name, so we don't expect to see | |
1435 | the type of override we do in the case above unless it is | |
4cc11e76 | 1436 | overridden by a versioned definition. */ |
45d6a902 AM |
1437 | if (hi->root.type != bfd_link_hash_defined |
1438 | && hi->root.type != bfd_link_hash_defweak) | |
1439 | (*_bfd_error_handler) | |
1440 | (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"), | |
1441 | bfd_archive_filename (abfd), shortname); | |
1442 | } | |
1443 | else | |
1444 | { | |
1445 | bh = &hi->root; | |
1446 | if (! (_bfd_generic_link_add_one_symbol | |
1447 | (info, abfd, shortname, BSF_INDIRECT, | |
268b6b39 | 1448 | bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) |
45d6a902 AM |
1449 | return FALSE; |
1450 | hi = (struct elf_link_hash_entry *) bh; | |
1451 | ||
1452 | /* If there is a duplicate definition somewhere, then HI may not | |
1453 | point to an indirect symbol. We will have reported an error | |
1454 | to the user in that case. */ | |
1455 | ||
1456 | if (hi->root.type == bfd_link_hash_indirect) | |
1457 | { | |
1458 | /* If the symbol became indirect, then we assume that we have | |
1459 | not seen a definition before. */ | |
1460 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1461 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1462 | | ELF_LINK_HASH_DEF_REGULAR)) == 0); | |
1463 | ||
1464 | (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi); | |
1465 | ||
1466 | /* See if the new flags lead us to realize that the symbol | |
1467 | must be dynamic. */ | |
1468 | if (! *dynsym) | |
1469 | { | |
1470 | if (! dynamic) | |
1471 | { | |
1472 | if (info->shared | |
1473 | || ((hi->elf_link_hash_flags | |
1474 | & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
1475 | *dynsym = TRUE; | |
1476 | } | |
1477 | else | |
1478 | { | |
1479 | if ((hi->elf_link_hash_flags | |
1480 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1481 | *dynsym = TRUE; | |
1482 | } | |
1483 | } | |
1484 | } | |
1485 | } | |
1486 | ||
1487 | return TRUE; | |
1488 | } | |
1489 | \f | |
1490 | /* This routine is used to export all defined symbols into the dynamic | |
1491 | symbol table. It is called via elf_link_hash_traverse. */ | |
1492 | ||
1493 | bfd_boolean | |
268b6b39 | 1494 | _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 1495 | { |
268b6b39 | 1496 | struct elf_info_failed *eif = data; |
45d6a902 AM |
1497 | |
1498 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
1499 | if (h->root.type == bfd_link_hash_indirect) | |
1500 | return TRUE; | |
1501 | ||
1502 | if (h->root.type == bfd_link_hash_warning) | |
1503 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1504 | ||
1505 | if (h->dynindx == -1 | |
1506 | && (h->elf_link_hash_flags | |
1507 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
1508 | { | |
1509 | struct bfd_elf_version_tree *t; | |
1510 | struct bfd_elf_version_expr *d; | |
1511 | ||
1512 | for (t = eif->verdefs; t != NULL; t = t->next) | |
1513 | { | |
108ba305 | 1514 | if (t->globals.list != NULL) |
45d6a902 | 1515 | { |
108ba305 JJ |
1516 | d = (*t->match) (&t->globals, NULL, h->root.root.string); |
1517 | if (d != NULL) | |
1518 | goto doit; | |
45d6a902 AM |
1519 | } |
1520 | ||
108ba305 | 1521 | if (t->locals.list != NULL) |
45d6a902 | 1522 | { |
108ba305 JJ |
1523 | d = (*t->match) (&t->locals, NULL, h->root.root.string); |
1524 | if (d != NULL) | |
1525 | return TRUE; | |
45d6a902 AM |
1526 | } |
1527 | } | |
1528 | ||
1529 | if (!eif->verdefs) | |
1530 | { | |
1531 | doit: | |
1532 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
1533 | { | |
1534 | eif->failed = TRUE; | |
1535 | return FALSE; | |
1536 | } | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | return TRUE; | |
1541 | } | |
1542 | \f | |
1543 | /* Look through the symbols which are defined in other shared | |
1544 | libraries and referenced here. Update the list of version | |
1545 | dependencies. This will be put into the .gnu.version_r section. | |
1546 | This function is called via elf_link_hash_traverse. */ | |
1547 | ||
1548 | bfd_boolean | |
268b6b39 AM |
1549 | _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, |
1550 | void *data) | |
45d6a902 | 1551 | { |
268b6b39 | 1552 | struct elf_find_verdep_info *rinfo = data; |
45d6a902 AM |
1553 | Elf_Internal_Verneed *t; |
1554 | Elf_Internal_Vernaux *a; | |
1555 | bfd_size_type amt; | |
1556 | ||
1557 | if (h->root.type == bfd_link_hash_warning) | |
1558 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1559 | ||
1560 | /* We only care about symbols defined in shared objects with version | |
1561 | information. */ | |
1562 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
1563 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1564 | || h->dynindx == -1 | |
1565 | || h->verinfo.verdef == NULL) | |
1566 | return TRUE; | |
1567 | ||
1568 | /* See if we already know about this version. */ | |
1569 | for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) | |
1570 | { | |
1571 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
1572 | continue; | |
1573 | ||
1574 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
1575 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
1576 | return TRUE; | |
1577 | ||
1578 | break; | |
1579 | } | |
1580 | ||
1581 | /* This is a new version. Add it to tree we are building. */ | |
1582 | ||
1583 | if (t == NULL) | |
1584 | { | |
1585 | amt = sizeof *t; | |
268b6b39 | 1586 | t = bfd_zalloc (rinfo->output_bfd, amt); |
45d6a902 AM |
1587 | if (t == NULL) |
1588 | { | |
1589 | rinfo->failed = TRUE; | |
1590 | return FALSE; | |
1591 | } | |
1592 | ||
1593 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
1594 | t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; | |
1595 | elf_tdata (rinfo->output_bfd)->verref = t; | |
1596 | } | |
1597 | ||
1598 | amt = sizeof *a; | |
268b6b39 | 1599 | a = bfd_zalloc (rinfo->output_bfd, amt); |
45d6a902 AM |
1600 | |
1601 | /* Note that we are copying a string pointer here, and testing it | |
1602 | above. If bfd_elf_string_from_elf_section is ever changed to | |
1603 | discard the string data when low in memory, this will have to be | |
1604 | fixed. */ | |
1605 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
1606 | ||
1607 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
1608 | a->vna_nextptr = t->vn_auxptr; | |
1609 | ||
1610 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
1611 | ++rinfo->vers; | |
1612 | ||
1613 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
1614 | ||
1615 | t->vn_auxptr = a; | |
1616 | ||
1617 | return TRUE; | |
1618 | } | |
1619 | ||
1620 | /* Figure out appropriate versions for all the symbols. We may not | |
1621 | have the version number script until we have read all of the input | |
1622 | files, so until that point we don't know which symbols should be | |
1623 | local. This function is called via elf_link_hash_traverse. */ | |
1624 | ||
1625 | bfd_boolean | |
268b6b39 | 1626 | _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) |
45d6a902 AM |
1627 | { |
1628 | struct elf_assign_sym_version_info *sinfo; | |
1629 | struct bfd_link_info *info; | |
9c5bfbb7 | 1630 | const struct elf_backend_data *bed; |
45d6a902 AM |
1631 | struct elf_info_failed eif; |
1632 | char *p; | |
1633 | bfd_size_type amt; | |
1634 | ||
268b6b39 | 1635 | sinfo = data; |
45d6a902 AM |
1636 | info = sinfo->info; |
1637 | ||
1638 | if (h->root.type == bfd_link_hash_warning) | |
1639 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1640 | ||
1641 | /* Fix the symbol flags. */ | |
1642 | eif.failed = FALSE; | |
1643 | eif.info = info; | |
1644 | if (! _bfd_elf_fix_symbol_flags (h, &eif)) | |
1645 | { | |
1646 | if (eif.failed) | |
1647 | sinfo->failed = TRUE; | |
1648 | return FALSE; | |
1649 | } | |
1650 | ||
1651 | /* We only need version numbers for symbols defined in regular | |
1652 | objects. */ | |
1653 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
1654 | return TRUE; | |
1655 | ||
1656 | bed = get_elf_backend_data (sinfo->output_bfd); | |
1657 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
1658 | if (p != NULL && h->verinfo.vertree == NULL) | |
1659 | { | |
1660 | struct bfd_elf_version_tree *t; | |
1661 | bfd_boolean hidden; | |
1662 | ||
1663 | hidden = TRUE; | |
1664 | ||
1665 | /* There are two consecutive ELF_VER_CHR characters if this is | |
1666 | not a hidden symbol. */ | |
1667 | ++p; | |
1668 | if (*p == ELF_VER_CHR) | |
1669 | { | |
1670 | hidden = FALSE; | |
1671 | ++p; | |
1672 | } | |
1673 | ||
1674 | /* If there is no version string, we can just return out. */ | |
1675 | if (*p == '\0') | |
1676 | { | |
1677 | if (hidden) | |
1678 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
1679 | return TRUE; | |
1680 | } | |
1681 | ||
1682 | /* Look for the version. If we find it, it is no longer weak. */ | |
1683 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
1684 | { | |
1685 | if (strcmp (t->name, p) == 0) | |
1686 | { | |
1687 | size_t len; | |
1688 | char *alc; | |
1689 | struct bfd_elf_version_expr *d; | |
1690 | ||
1691 | len = p - h->root.root.string; | |
268b6b39 | 1692 | alc = bfd_malloc (len); |
45d6a902 AM |
1693 | if (alc == NULL) |
1694 | return FALSE; | |
1695 | memcpy (alc, h->root.root.string, len - 1); | |
1696 | alc[len - 1] = '\0'; | |
1697 | if (alc[len - 2] == ELF_VER_CHR) | |
1698 | alc[len - 2] = '\0'; | |
1699 | ||
1700 | h->verinfo.vertree = t; | |
1701 | t->used = TRUE; | |
1702 | d = NULL; | |
1703 | ||
108ba305 JJ |
1704 | if (t->globals.list != NULL) |
1705 | d = (*t->match) (&t->globals, NULL, alc); | |
45d6a902 AM |
1706 | |
1707 | /* See if there is anything to force this symbol to | |
1708 | local scope. */ | |
108ba305 | 1709 | if (d == NULL && t->locals.list != NULL) |
45d6a902 | 1710 | { |
108ba305 JJ |
1711 | d = (*t->match) (&t->locals, NULL, alc); |
1712 | if (d != NULL | |
1713 | && h->dynindx != -1 | |
1714 | && info->shared | |
1715 | && ! info->export_dynamic) | |
1716 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
45d6a902 AM |
1717 | } |
1718 | ||
1719 | free (alc); | |
1720 | break; | |
1721 | } | |
1722 | } | |
1723 | ||
1724 | /* If we are building an application, we need to create a | |
1725 | version node for this version. */ | |
36af4a4e | 1726 | if (t == NULL && info->executable) |
45d6a902 AM |
1727 | { |
1728 | struct bfd_elf_version_tree **pp; | |
1729 | int version_index; | |
1730 | ||
1731 | /* If we aren't going to export this symbol, we don't need | |
1732 | to worry about it. */ | |
1733 | if (h->dynindx == -1) | |
1734 | return TRUE; | |
1735 | ||
1736 | amt = sizeof *t; | |
108ba305 | 1737 | t = bfd_zalloc (sinfo->output_bfd, amt); |
45d6a902 AM |
1738 | if (t == NULL) |
1739 | { | |
1740 | sinfo->failed = TRUE; | |
1741 | return FALSE; | |
1742 | } | |
1743 | ||
45d6a902 | 1744 | t->name = p; |
45d6a902 AM |
1745 | t->name_indx = (unsigned int) -1; |
1746 | t->used = TRUE; | |
1747 | ||
1748 | version_index = 1; | |
1749 | /* Don't count anonymous version tag. */ | |
1750 | if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0) | |
1751 | version_index = 0; | |
1752 | for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) | |
1753 | ++version_index; | |
1754 | t->vernum = version_index; | |
1755 | ||
1756 | *pp = t; | |
1757 | ||
1758 | h->verinfo.vertree = t; | |
1759 | } | |
1760 | else if (t == NULL) | |
1761 | { | |
1762 | /* We could not find the version for a symbol when | |
1763 | generating a shared archive. Return an error. */ | |
1764 | (*_bfd_error_handler) | |
1765 | (_("%s: undefined versioned symbol name %s"), | |
1766 | bfd_get_filename (sinfo->output_bfd), h->root.root.string); | |
1767 | bfd_set_error (bfd_error_bad_value); | |
1768 | sinfo->failed = TRUE; | |
1769 | return FALSE; | |
1770 | } | |
1771 | ||
1772 | if (hidden) | |
1773 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
1774 | } | |
1775 | ||
1776 | /* If we don't have a version for this symbol, see if we can find | |
1777 | something. */ | |
1778 | if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) | |
1779 | { | |
1780 | struct bfd_elf_version_tree *t; | |
1781 | struct bfd_elf_version_tree *local_ver; | |
1782 | struct bfd_elf_version_expr *d; | |
1783 | ||
1784 | /* See if can find what version this symbol is in. If the | |
1785 | symbol is supposed to be local, then don't actually register | |
1786 | it. */ | |
1787 | local_ver = NULL; | |
1788 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
1789 | { | |
108ba305 | 1790 | if (t->globals.list != NULL) |
45d6a902 AM |
1791 | { |
1792 | bfd_boolean matched; | |
1793 | ||
1794 | matched = FALSE; | |
108ba305 JJ |
1795 | d = NULL; |
1796 | while ((d = (*t->match) (&t->globals, d, | |
1797 | h->root.root.string)) != NULL) | |
1798 | if (d->symver) | |
1799 | matched = TRUE; | |
1800 | else | |
1801 | { | |
1802 | /* There is a version without definition. Make | |
1803 | the symbol the default definition for this | |
1804 | version. */ | |
1805 | h->verinfo.vertree = t; | |
1806 | local_ver = NULL; | |
1807 | d->script = 1; | |
1808 | break; | |
1809 | } | |
45d6a902 AM |
1810 | if (d != NULL) |
1811 | break; | |
1812 | else if (matched) | |
1813 | /* There is no undefined version for this symbol. Hide the | |
1814 | default one. */ | |
1815 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
1816 | } | |
1817 | ||
108ba305 | 1818 | if (t->locals.list != NULL) |
45d6a902 | 1819 | { |
108ba305 JJ |
1820 | d = NULL; |
1821 | while ((d = (*t->match) (&t->locals, d, | |
1822 | h->root.root.string)) != NULL) | |
45d6a902 | 1823 | { |
108ba305 | 1824 | local_ver = t; |
45d6a902 | 1825 | /* If the match is "*", keep looking for a more |
108ba305 JJ |
1826 | explicit, perhaps even global, match. |
1827 | XXX: Shouldn't this be !d->wildcard instead? */ | |
1828 | if (d->pattern[0] != '*' || d->pattern[1] != '\0') | |
1829 | break; | |
45d6a902 AM |
1830 | } |
1831 | ||
1832 | if (d != NULL) | |
1833 | break; | |
1834 | } | |
1835 | } | |
1836 | ||
1837 | if (local_ver != NULL) | |
1838 | { | |
1839 | h->verinfo.vertree = local_ver; | |
1840 | if (h->dynindx != -1 | |
1841 | && info->shared | |
1842 | && ! info->export_dynamic) | |
1843 | { | |
1844 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
1845 | } | |
1846 | } | |
1847 | } | |
1848 | ||
1849 | return TRUE; | |
1850 | } | |
1851 | \f | |
45d6a902 AM |
1852 | /* Read and swap the relocs from the section indicated by SHDR. This |
1853 | may be either a REL or a RELA section. The relocations are | |
1854 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
1855 | which should have already been allocated to contain enough space. | |
1856 | The EXTERNAL_RELOCS are a buffer where the external form of the | |
1857 | relocations should be stored. | |
1858 | ||
1859 | Returns FALSE if something goes wrong. */ | |
1860 | ||
1861 | static bfd_boolean | |
268b6b39 | 1862 | elf_link_read_relocs_from_section (bfd *abfd, |
243ef1e0 | 1863 | asection *sec, |
268b6b39 AM |
1864 | Elf_Internal_Shdr *shdr, |
1865 | void *external_relocs, | |
1866 | Elf_Internal_Rela *internal_relocs) | |
45d6a902 | 1867 | { |
9c5bfbb7 | 1868 | const struct elf_backend_data *bed; |
268b6b39 | 1869 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
45d6a902 AM |
1870 | const bfd_byte *erela; |
1871 | const bfd_byte *erelaend; | |
1872 | Elf_Internal_Rela *irela; | |
243ef1e0 L |
1873 | Elf_Internal_Shdr *symtab_hdr; |
1874 | size_t nsyms; | |
45d6a902 AM |
1875 | |
1876 | /* If there aren't any relocations, that's OK. */ | |
1877 | if (!shdr) | |
1878 | return TRUE; | |
1879 | ||
1880 | /* Position ourselves at the start of the section. */ | |
1881 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
1882 | return FALSE; | |
1883 | ||
1884 | /* Read the relocations. */ | |
1885 | if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) | |
1886 | return FALSE; | |
1887 | ||
243ef1e0 L |
1888 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1889 | nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize; | |
1890 | ||
45d6a902 AM |
1891 | bed = get_elf_backend_data (abfd); |
1892 | ||
1893 | /* Convert the external relocations to the internal format. */ | |
1894 | if (shdr->sh_entsize == bed->s->sizeof_rel) | |
1895 | swap_in = bed->s->swap_reloc_in; | |
1896 | else if (shdr->sh_entsize == bed->s->sizeof_rela) | |
1897 | swap_in = bed->s->swap_reloca_in; | |
1898 | else | |
1899 | { | |
1900 | bfd_set_error (bfd_error_wrong_format); | |
1901 | return FALSE; | |
1902 | } | |
1903 | ||
1904 | erela = external_relocs; | |
1905 | erelaend = erela + NUM_SHDR_ENTRIES (shdr) * shdr->sh_entsize; | |
1906 | irela = internal_relocs; | |
1907 | while (erela < erelaend) | |
1908 | { | |
243ef1e0 L |
1909 | bfd_vma r_symndx; |
1910 | ||
45d6a902 | 1911 | (*swap_in) (abfd, erela, irela); |
243ef1e0 L |
1912 | r_symndx = ELF32_R_SYM (irela->r_info); |
1913 | if (bed->s->arch_size == 64) | |
1914 | r_symndx >>= 24; | |
1915 | if ((size_t) r_symndx >= nsyms) | |
1916 | { | |
1917 | (*_bfd_error_handler) | |
1918 | (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"), | |
1919 | bfd_archive_filename (abfd), (unsigned long) r_symndx, | |
1920 | (unsigned long) nsyms, irela->r_offset, sec->name); | |
1921 | bfd_set_error (bfd_error_bad_value); | |
1922 | return FALSE; | |
1923 | } | |
45d6a902 AM |
1924 | irela += bed->s->int_rels_per_ext_rel; |
1925 | erela += shdr->sh_entsize; | |
1926 | } | |
1927 | ||
1928 | return TRUE; | |
1929 | } | |
1930 | ||
1931 | /* Read and swap the relocs for a section O. They may have been | |
1932 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
1933 | not NULL, they are used as buffers to read into. They are known to | |
1934 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
1935 | the return value is allocated using either malloc or bfd_alloc, | |
1936 | according to the KEEP_MEMORY argument. If O has two relocation | |
1937 | sections (both REL and RELA relocations), then the REL_HDR | |
1938 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
1939 | REL_HDR2 relocations. */ | |
1940 | ||
1941 | Elf_Internal_Rela * | |
268b6b39 AM |
1942 | _bfd_elf_link_read_relocs (bfd *abfd, |
1943 | asection *o, | |
1944 | void *external_relocs, | |
1945 | Elf_Internal_Rela *internal_relocs, | |
1946 | bfd_boolean keep_memory) | |
45d6a902 AM |
1947 | { |
1948 | Elf_Internal_Shdr *rel_hdr; | |
268b6b39 | 1949 | void *alloc1 = NULL; |
45d6a902 | 1950 | Elf_Internal_Rela *alloc2 = NULL; |
9c5bfbb7 | 1951 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
45d6a902 AM |
1952 | |
1953 | if (elf_section_data (o)->relocs != NULL) | |
1954 | return elf_section_data (o)->relocs; | |
1955 | ||
1956 | if (o->reloc_count == 0) | |
1957 | return NULL; | |
1958 | ||
1959 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1960 | ||
1961 | if (internal_relocs == NULL) | |
1962 | { | |
1963 | bfd_size_type size; | |
1964 | ||
1965 | size = o->reloc_count; | |
1966 | size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); | |
1967 | if (keep_memory) | |
268b6b39 | 1968 | internal_relocs = bfd_alloc (abfd, size); |
45d6a902 | 1969 | else |
268b6b39 | 1970 | internal_relocs = alloc2 = bfd_malloc (size); |
45d6a902 AM |
1971 | if (internal_relocs == NULL) |
1972 | goto error_return; | |
1973 | } | |
1974 | ||
1975 | if (external_relocs == NULL) | |
1976 | { | |
1977 | bfd_size_type size = rel_hdr->sh_size; | |
1978 | ||
1979 | if (elf_section_data (o)->rel_hdr2) | |
1980 | size += elf_section_data (o)->rel_hdr2->sh_size; | |
268b6b39 | 1981 | alloc1 = bfd_malloc (size); |
45d6a902 AM |
1982 | if (alloc1 == NULL) |
1983 | goto error_return; | |
1984 | external_relocs = alloc1; | |
1985 | } | |
1986 | ||
243ef1e0 | 1987 | if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr, |
45d6a902 AM |
1988 | external_relocs, |
1989 | internal_relocs)) | |
1990 | goto error_return; | |
1991 | if (!elf_link_read_relocs_from_section | |
243ef1e0 | 1992 | (abfd, o, |
45d6a902 AM |
1993 | elf_section_data (o)->rel_hdr2, |
1994 | ((bfd_byte *) external_relocs) + rel_hdr->sh_size, | |
1995 | internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr) | |
1996 | * bed->s->int_rels_per_ext_rel))) | |
1997 | goto error_return; | |
1998 | ||
1999 | /* Cache the results for next time, if we can. */ | |
2000 | if (keep_memory) | |
2001 | elf_section_data (o)->relocs = internal_relocs; | |
2002 | ||
2003 | if (alloc1 != NULL) | |
2004 | free (alloc1); | |
2005 | ||
2006 | /* Don't free alloc2, since if it was allocated we are passing it | |
2007 | back (under the name of internal_relocs). */ | |
2008 | ||
2009 | return internal_relocs; | |
2010 | ||
2011 | error_return: | |
2012 | if (alloc1 != NULL) | |
2013 | free (alloc1); | |
2014 | if (alloc2 != NULL) | |
2015 | free (alloc2); | |
2016 | return NULL; | |
2017 | } | |
2018 | ||
2019 | /* Compute the size of, and allocate space for, REL_HDR which is the | |
2020 | section header for a section containing relocations for O. */ | |
2021 | ||
2022 | bfd_boolean | |
268b6b39 AM |
2023 | _bfd_elf_link_size_reloc_section (bfd *abfd, |
2024 | Elf_Internal_Shdr *rel_hdr, | |
2025 | asection *o) | |
45d6a902 AM |
2026 | { |
2027 | bfd_size_type reloc_count; | |
2028 | bfd_size_type num_rel_hashes; | |
2029 | ||
2030 | /* Figure out how many relocations there will be. */ | |
2031 | if (rel_hdr == &elf_section_data (o)->rel_hdr) | |
2032 | reloc_count = elf_section_data (o)->rel_count; | |
2033 | else | |
2034 | reloc_count = elf_section_data (o)->rel_count2; | |
2035 | ||
2036 | num_rel_hashes = o->reloc_count; | |
2037 | if (num_rel_hashes < reloc_count) | |
2038 | num_rel_hashes = reloc_count; | |
2039 | ||
2040 | /* That allows us to calculate the size of the section. */ | |
2041 | rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count; | |
2042 | ||
2043 | /* The contents field must last into write_object_contents, so we | |
2044 | allocate it with bfd_alloc rather than malloc. Also since we | |
2045 | cannot be sure that the contents will actually be filled in, | |
2046 | we zero the allocated space. */ | |
268b6b39 | 2047 | rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size); |
45d6a902 AM |
2048 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) |
2049 | return FALSE; | |
2050 | ||
2051 | /* We only allocate one set of hash entries, so we only do it the | |
2052 | first time we are called. */ | |
2053 | if (elf_section_data (o)->rel_hashes == NULL | |
2054 | && num_rel_hashes) | |
2055 | { | |
2056 | struct elf_link_hash_entry **p; | |
2057 | ||
268b6b39 | 2058 | p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *)); |
45d6a902 AM |
2059 | if (p == NULL) |
2060 | return FALSE; | |
2061 | ||
2062 | elf_section_data (o)->rel_hashes = p; | |
2063 | } | |
2064 | ||
2065 | return TRUE; | |
2066 | } | |
2067 | ||
2068 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which | |
2069 | originated from the section given by INPUT_REL_HDR) to the | |
2070 | OUTPUT_BFD. */ | |
2071 | ||
2072 | bfd_boolean | |
268b6b39 AM |
2073 | _bfd_elf_link_output_relocs (bfd *output_bfd, |
2074 | asection *input_section, | |
2075 | Elf_Internal_Shdr *input_rel_hdr, | |
2076 | Elf_Internal_Rela *internal_relocs) | |
45d6a902 AM |
2077 | { |
2078 | Elf_Internal_Rela *irela; | |
2079 | Elf_Internal_Rela *irelaend; | |
2080 | bfd_byte *erel; | |
2081 | Elf_Internal_Shdr *output_rel_hdr; | |
2082 | asection *output_section; | |
2083 | unsigned int *rel_countp = NULL; | |
9c5bfbb7 | 2084 | const struct elf_backend_data *bed; |
268b6b39 | 2085 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
45d6a902 AM |
2086 | |
2087 | output_section = input_section->output_section; | |
2088 | output_rel_hdr = NULL; | |
2089 | ||
2090 | if (elf_section_data (output_section)->rel_hdr.sh_entsize | |
2091 | == input_rel_hdr->sh_entsize) | |
2092 | { | |
2093 | output_rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
2094 | rel_countp = &elf_section_data (output_section)->rel_count; | |
2095 | } | |
2096 | else if (elf_section_data (output_section)->rel_hdr2 | |
2097 | && (elf_section_data (output_section)->rel_hdr2->sh_entsize | |
2098 | == input_rel_hdr->sh_entsize)) | |
2099 | { | |
2100 | output_rel_hdr = elf_section_data (output_section)->rel_hdr2; | |
2101 | rel_countp = &elf_section_data (output_section)->rel_count2; | |
2102 | } | |
2103 | else | |
2104 | { | |
2105 | (*_bfd_error_handler) | |
2106 | (_("%s: relocation size mismatch in %s section %s"), | |
2107 | bfd_get_filename (output_bfd), | |
2108 | bfd_archive_filename (input_section->owner), | |
2109 | input_section->name); | |
2110 | bfd_set_error (bfd_error_wrong_object_format); | |
2111 | return FALSE; | |
2112 | } | |
2113 | ||
2114 | bed = get_elf_backend_data (output_bfd); | |
2115 | if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel) | |
2116 | swap_out = bed->s->swap_reloc_out; | |
2117 | else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela) | |
2118 | swap_out = bed->s->swap_reloca_out; | |
2119 | else | |
2120 | abort (); | |
2121 | ||
2122 | erel = output_rel_hdr->contents; | |
2123 | erel += *rel_countp * input_rel_hdr->sh_entsize; | |
2124 | irela = internal_relocs; | |
2125 | irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) | |
2126 | * bed->s->int_rels_per_ext_rel); | |
2127 | while (irela < irelaend) | |
2128 | { | |
2129 | (*swap_out) (output_bfd, irela, erel); | |
2130 | irela += bed->s->int_rels_per_ext_rel; | |
2131 | erel += input_rel_hdr->sh_entsize; | |
2132 | } | |
2133 | ||
2134 | /* Bump the counter, so that we know where to add the next set of | |
2135 | relocations. */ | |
2136 | *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr); | |
2137 | ||
2138 | return TRUE; | |
2139 | } | |
2140 | \f | |
2141 | /* Fix up the flags for a symbol. This handles various cases which | |
2142 | can only be fixed after all the input files are seen. This is | |
2143 | currently called by both adjust_dynamic_symbol and | |
2144 | assign_sym_version, which is unnecessary but perhaps more robust in | |
2145 | the face of future changes. */ | |
2146 | ||
2147 | bfd_boolean | |
268b6b39 AM |
2148 | _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, |
2149 | struct elf_info_failed *eif) | |
45d6a902 AM |
2150 | { |
2151 | /* If this symbol was mentioned in a non-ELF file, try to set | |
2152 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
2153 | permit a non-ELF file to correctly refer to a symbol defined in | |
2154 | an ELF dynamic object. */ | |
2155 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) | |
2156 | { | |
2157 | while (h->root.type == bfd_link_hash_indirect) | |
2158 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2159 | ||
2160 | if (h->root.type != bfd_link_hash_defined | |
2161 | && h->root.type != bfd_link_hash_defweak) | |
2162 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
2163 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
2164 | else | |
2165 | { | |
2166 | if (h->root.u.def.section->owner != NULL | |
2167 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
2168 | == bfd_target_elf_flavour)) | |
2169 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
2170 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
2171 | else | |
2172 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2173 | } | |
2174 | ||
2175 | if (h->dynindx == -1 | |
2176 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2177 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
2178 | { | |
2179 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
2180 | { | |
2181 | eif->failed = TRUE; | |
2182 | return FALSE; | |
2183 | } | |
2184 | } | |
2185 | } | |
2186 | else | |
2187 | { | |
2188 | /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol | |
2189 | was first seen in a non-ELF file. Fortunately, if the symbol | |
2190 | was first seen in an ELF file, we're probably OK unless the | |
2191 | symbol was defined in a non-ELF file. Catch that case here. | |
2192 | FIXME: We're still in trouble if the symbol was first seen in | |
2193 | a dynamic object, and then later in a non-ELF regular object. */ | |
2194 | if ((h->root.type == bfd_link_hash_defined | |
2195 | || h->root.type == bfd_link_hash_defweak) | |
2196 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
2197 | && (h->root.u.def.section->owner != NULL | |
2198 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
2199 | != bfd_target_elf_flavour) | |
2200 | : (bfd_is_abs_section (h->root.u.def.section) | |
2201 | && (h->elf_link_hash_flags | |
2202 | & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) | |
2203 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2204 | } | |
2205 | ||
2206 | /* If this is a final link, and the symbol was defined as a common | |
2207 | symbol in a regular object file, and there was no definition in | |
2208 | any dynamic object, then the linker will have allocated space for | |
2209 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR | |
2210 | flag will not have been set. */ | |
2211 | if (h->root.type == bfd_link_hash_defined | |
2212 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
2213 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
2214 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
2215 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
2216 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2217 | ||
2218 | /* If -Bsymbolic was used (which means to bind references to global | |
2219 | symbols to the definition within the shared object), and this | |
2220 | symbol was defined in a regular object, then it actually doesn't | |
9c7a29a3 AM |
2221 | need a PLT entry. Likewise, if the symbol has non-default |
2222 | visibility. If the symbol has hidden or internal visibility, we | |
c1be741f | 2223 | will force it local. */ |
45d6a902 AM |
2224 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 |
2225 | && eif->info->shared | |
0eddce27 | 2226 | && is_elf_hash_table (eif->info->hash) |
45d6a902 | 2227 | && (eif->info->symbolic |
c1be741f | 2228 | || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
45d6a902 AM |
2229 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
2230 | { | |
9c5bfbb7 | 2231 | const struct elf_backend_data *bed; |
45d6a902 AM |
2232 | bfd_boolean force_local; |
2233 | ||
2234 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); | |
2235 | ||
2236 | force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL | |
2237 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); | |
2238 | (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); | |
2239 | } | |
2240 | ||
2241 | /* If a weak undefined symbol has non-default visibility, we also | |
2242 | hide it from the dynamic linker. */ | |
9c7a29a3 | 2243 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
45d6a902 AM |
2244 | && h->root.type == bfd_link_hash_undefweak) |
2245 | { | |
9c5bfbb7 | 2246 | const struct elf_backend_data *bed; |
45d6a902 AM |
2247 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); |
2248 | (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); | |
2249 | } | |
2250 | ||
2251 | /* If this is a weak defined symbol in a dynamic object, and we know | |
2252 | the real definition in the dynamic object, copy interesting flags | |
2253 | over to the real definition. */ | |
2254 | if (h->weakdef != NULL) | |
2255 | { | |
2256 | struct elf_link_hash_entry *weakdef; | |
2257 | ||
2258 | weakdef = h->weakdef; | |
2259 | if (h->root.type == bfd_link_hash_indirect) | |
2260 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2261 | ||
2262 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
2263 | || h->root.type == bfd_link_hash_defweak); | |
2264 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
2265 | || weakdef->root.type == bfd_link_hash_defweak); | |
2266 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
2267 | ||
2268 | /* If the real definition is defined by a regular object file, | |
2269 | don't do anything special. See the longer description in | |
2270 | _bfd_elf_adjust_dynamic_symbol, below. */ | |
2271 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
2272 | h->weakdef = NULL; | |
2273 | else | |
2274 | { | |
9c5bfbb7 | 2275 | const struct elf_backend_data *bed; |
45d6a902 AM |
2276 | |
2277 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); | |
2278 | (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h); | |
2279 | } | |
2280 | } | |
2281 | ||
2282 | return TRUE; | |
2283 | } | |
2284 | ||
2285 | /* Make the backend pick a good value for a dynamic symbol. This is | |
2286 | called via elf_link_hash_traverse, and also calls itself | |
2287 | recursively. */ | |
2288 | ||
2289 | bfd_boolean | |
268b6b39 | 2290 | _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 2291 | { |
268b6b39 | 2292 | struct elf_info_failed *eif = data; |
45d6a902 | 2293 | bfd *dynobj; |
9c5bfbb7 | 2294 | const struct elf_backend_data *bed; |
45d6a902 | 2295 | |
0eddce27 | 2296 | if (! is_elf_hash_table (eif->info->hash)) |
45d6a902 AM |
2297 | return FALSE; |
2298 | ||
2299 | if (h->root.type == bfd_link_hash_warning) | |
2300 | { | |
2301 | h->plt = elf_hash_table (eif->info)->init_offset; | |
2302 | h->got = elf_hash_table (eif->info)->init_offset; | |
2303 | ||
2304 | /* When warning symbols are created, they **replace** the "real" | |
2305 | entry in the hash table, thus we never get to see the real | |
2306 | symbol in a hash traversal. So look at it now. */ | |
2307 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2308 | } | |
2309 | ||
2310 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
2311 | if (h->root.type == bfd_link_hash_indirect) | |
2312 | return TRUE; | |
2313 | ||
2314 | /* Fix the symbol flags. */ | |
2315 | if (! _bfd_elf_fix_symbol_flags (h, eif)) | |
2316 | return FALSE; | |
2317 | ||
2318 | /* If this symbol does not require a PLT entry, and it is not | |
2319 | defined by a dynamic object, or is not referenced by a regular | |
2320 | object, ignore it. We do have to handle a weak defined symbol, | |
2321 | even if no regular object refers to it, if we decided to add it | |
2322 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
2323 | about symbols which are defined by one dynamic object and | |
2324 | referenced by another one? */ | |
2325 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 | |
2326 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
2327 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
2328 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 | |
2329 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
2330 | { | |
2331 | h->plt = elf_hash_table (eif->info)->init_offset; | |
2332 | return TRUE; | |
2333 | } | |
2334 | ||
2335 | /* If we've already adjusted this symbol, don't do it again. This | |
2336 | can happen via a recursive call. */ | |
2337 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
2338 | return TRUE; | |
2339 | ||
2340 | /* Don't look at this symbol again. Note that we must set this | |
2341 | after checking the above conditions, because we may look at a | |
2342 | symbol once, decide not to do anything, and then get called | |
2343 | recursively later after REF_REGULAR is set below. */ | |
2344 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
2345 | ||
2346 | /* If this is a weak definition, and we know a real definition, and | |
2347 | the real symbol is not itself defined by a regular object file, | |
2348 | then get a good value for the real definition. We handle the | |
2349 | real symbol first, for the convenience of the backend routine. | |
2350 | ||
2351 | Note that there is a confusing case here. If the real definition | |
2352 | is defined by a regular object file, we don't get the real symbol | |
2353 | from the dynamic object, but we do get the weak symbol. If the | |
2354 | processor backend uses a COPY reloc, then if some routine in the | |
2355 | dynamic object changes the real symbol, we will not see that | |
2356 | change in the corresponding weak symbol. This is the way other | |
2357 | ELF linkers work as well, and seems to be a result of the shared | |
2358 | library model. | |
2359 | ||
2360 | I will clarify this issue. Most SVR4 shared libraries define the | |
2361 | variable _timezone and define timezone as a weak synonym. The | |
2362 | tzset call changes _timezone. If you write | |
2363 | extern int timezone; | |
2364 | int _timezone = 5; | |
2365 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
2366 | you might expect that, since timezone is a synonym for _timezone, | |
2367 | the same number will print both times. However, if the processor | |
2368 | backend uses a COPY reloc, then actually timezone will be copied | |
2369 | into your process image, and, since you define _timezone | |
2370 | yourself, _timezone will not. Thus timezone and _timezone will | |
2371 | wind up at different memory locations. The tzset call will set | |
2372 | _timezone, leaving timezone unchanged. */ | |
2373 | ||
2374 | if (h->weakdef != NULL) | |
2375 | { | |
2376 | /* If we get to this point, we know there is an implicit | |
2377 | reference by a regular object file via the weak symbol H. | |
2378 | FIXME: Is this really true? What if the traversal finds | |
2379 | H->WEAKDEF before it finds H? */ | |
2380 | h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
2381 | ||
268b6b39 | 2382 | if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif)) |
45d6a902 AM |
2383 | return FALSE; |
2384 | } | |
2385 | ||
2386 | /* If a symbol has no type and no size and does not require a PLT | |
2387 | entry, then we are probably about to do the wrong thing here: we | |
2388 | are probably going to create a COPY reloc for an empty object. | |
2389 | This case can arise when a shared object is built with assembly | |
2390 | code, and the assembly code fails to set the symbol type. */ | |
2391 | if (h->size == 0 | |
2392 | && h->type == STT_NOTYPE | |
2393 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
2394 | (*_bfd_error_handler) | |
2395 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
2396 | h->root.root.string); | |
2397 | ||
2398 | dynobj = elf_hash_table (eif->info)->dynobj; | |
2399 | bed = get_elf_backend_data (dynobj); | |
2400 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
2401 | { | |
2402 | eif->failed = TRUE; | |
2403 | return FALSE; | |
2404 | } | |
2405 | ||
2406 | return TRUE; | |
2407 | } | |
2408 | ||
2409 | /* Adjust all external symbols pointing into SEC_MERGE sections | |
2410 | to reflect the object merging within the sections. */ | |
2411 | ||
2412 | bfd_boolean | |
268b6b39 | 2413 | _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) |
45d6a902 AM |
2414 | { |
2415 | asection *sec; | |
2416 | ||
2417 | if (h->root.type == bfd_link_hash_warning) | |
2418 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2419 | ||
2420 | if ((h->root.type == bfd_link_hash_defined | |
2421 | || h->root.type == bfd_link_hash_defweak) | |
2422 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE) | |
2423 | && sec->sec_info_type == ELF_INFO_TYPE_MERGE) | |
2424 | { | |
268b6b39 | 2425 | bfd *output_bfd = data; |
45d6a902 AM |
2426 | |
2427 | h->root.u.def.value = | |
2428 | _bfd_merged_section_offset (output_bfd, | |
2429 | &h->root.u.def.section, | |
2430 | elf_section_data (sec)->sec_info, | |
268b6b39 | 2431 | h->root.u.def.value, 0); |
45d6a902 AM |
2432 | } |
2433 | ||
2434 | return TRUE; | |
2435 | } | |
986a241f RH |
2436 | |
2437 | /* Returns false if the symbol referred to by H should be considered | |
2438 | to resolve local to the current module, and true if it should be | |
2439 | considered to bind dynamically. */ | |
2440 | ||
2441 | bfd_boolean | |
268b6b39 AM |
2442 | _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, |
2443 | struct bfd_link_info *info, | |
2444 | bfd_boolean ignore_protected) | |
986a241f RH |
2445 | { |
2446 | bfd_boolean binding_stays_local_p; | |
2447 | ||
2448 | if (h == NULL) | |
2449 | return FALSE; | |
2450 | ||
2451 | while (h->root.type == bfd_link_hash_indirect | |
2452 | || h->root.type == bfd_link_hash_warning) | |
2453 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2454 | ||
2455 | /* If it was forced local, then clearly it's not dynamic. */ | |
2456 | if (h->dynindx == -1) | |
2457 | return FALSE; | |
2458 | if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) | |
2459 | return FALSE; | |
2460 | ||
2461 | /* Identify the cases where name binding rules say that a | |
2462 | visible symbol resolves locally. */ | |
2463 | binding_stays_local_p = info->executable || info->symbolic; | |
2464 | ||
2465 | switch (ELF_ST_VISIBILITY (h->other)) | |
2466 | { | |
2467 | case STV_INTERNAL: | |
2468 | case STV_HIDDEN: | |
2469 | return FALSE; | |
2470 | ||
2471 | case STV_PROTECTED: | |
2472 | /* Proper resolution for function pointer equality may require | |
2473 | that these symbols perhaps be resolved dynamically, even though | |
2474 | we should be resolving them to the current module. */ | |
2475 | if (!ignore_protected) | |
2476 | binding_stays_local_p = TRUE; | |
2477 | break; | |
2478 | ||
2479 | default: | |
986a241f RH |
2480 | break; |
2481 | } | |
2482 | ||
aa37626c L |
2483 | /* If it isn't defined locally, then clearly it's dynamic. */ |
2484 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2485 | return TRUE; | |
2486 | ||
986a241f RH |
2487 | /* Otherwise, the symbol is dynamic if binding rules don't tell |
2488 | us that it remains local. */ | |
2489 | return !binding_stays_local_p; | |
2490 | } | |
f6c52c13 AM |
2491 | |
2492 | /* Return true if the symbol referred to by H should be considered | |
2493 | to resolve local to the current module, and false otherwise. Differs | |
2494 | from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of | |
2495 | undefined symbols and weak symbols. */ | |
2496 | ||
2497 | bfd_boolean | |
268b6b39 AM |
2498 | _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, |
2499 | struct bfd_link_info *info, | |
2500 | bfd_boolean local_protected) | |
f6c52c13 AM |
2501 | { |
2502 | /* If it's a local sym, of course we resolve locally. */ | |
2503 | if (h == NULL) | |
2504 | return TRUE; | |
2505 | ||
2506 | /* If we don't have a definition in a regular file, then we can't | |
2507 | resolve locally. The sym is either undefined or dynamic. */ | |
2508 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2509 | return FALSE; | |
2510 | ||
2511 | /* Forced local symbols resolve locally. */ | |
2512 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
2513 | return TRUE; | |
2514 | ||
2515 | /* As do non-dynamic symbols. */ | |
2516 | if (h->dynindx == -1) | |
2517 | return TRUE; | |
2518 | ||
2519 | /* At this point, we know the symbol is defined and dynamic. In an | |
2520 | executable it must resolve locally, likewise when building symbolic | |
2521 | shared libraries. */ | |
2522 | if (info->executable || info->symbolic) | |
2523 | return TRUE; | |
2524 | ||
2525 | /* Now deal with defined dynamic symbols in shared libraries. Ones | |
2526 | with default visibility might not resolve locally. */ | |
2527 | if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | |
2528 | return FALSE; | |
2529 | ||
2530 | /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */ | |
2531 | if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED) | |
2532 | return TRUE; | |
2533 | ||
2534 | /* Function pointer equality tests may require that STV_PROTECTED | |
2535 | symbols be treated as dynamic symbols, even when we know that the | |
2536 | dynamic linker will resolve them locally. */ | |
2537 | return local_protected; | |
2538 | } | |
e1918d23 AM |
2539 | |
2540 | /* Caches some TLS segment info, and ensures that the TLS segment vma is | |
2541 | aligned. Returns the first TLS output section. */ | |
2542 | ||
2543 | struct bfd_section * | |
2544 | _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) | |
2545 | { | |
2546 | struct bfd_section *sec, *tls; | |
2547 | unsigned int align = 0; | |
2548 | ||
2549 | for (sec = obfd->sections; sec != NULL; sec = sec->next) | |
2550 | if ((sec->flags & SEC_THREAD_LOCAL) != 0) | |
2551 | break; | |
2552 | tls = sec; | |
2553 | ||
2554 | for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) | |
2555 | if (sec->alignment_power > align) | |
2556 | align = sec->alignment_power; | |
2557 | ||
2558 | elf_hash_table (info)->tls_sec = tls; | |
2559 | ||
2560 | /* Ensure the alignment of the first section is the largest alignment, | |
2561 | so that the tls segment starts aligned. */ | |
2562 | if (tls != NULL) | |
2563 | tls->alignment_power = align; | |
2564 | ||
2565 | return tls; | |
2566 | } | |
0ad989f9 L |
2567 | |
2568 | /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ | |
2569 | static bfd_boolean | |
2570 | is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, | |
2571 | Elf_Internal_Sym *sym) | |
2572 | { | |
2573 | /* Local symbols do not count, but target specific ones might. */ | |
2574 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL | |
2575 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) | |
2576 | return FALSE; | |
2577 | ||
2578 | /* Function symbols do not count. */ | |
2579 | if (ELF_ST_TYPE (sym->st_info) == STT_FUNC) | |
2580 | return FALSE; | |
2581 | ||
2582 | /* If the section is undefined, then so is the symbol. */ | |
2583 | if (sym->st_shndx == SHN_UNDEF) | |
2584 | return FALSE; | |
2585 | ||
2586 | /* If the symbol is defined in the common section, then | |
2587 | it is a common definition and so does not count. */ | |
2588 | if (sym->st_shndx == SHN_COMMON) | |
2589 | return FALSE; | |
2590 | ||
2591 | /* If the symbol is in a target specific section then we | |
2592 | must rely upon the backend to tell us what it is. */ | |
2593 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) | |
2594 | /* FIXME - this function is not coded yet: | |
2595 | ||
2596 | return _bfd_is_global_symbol_definition (abfd, sym); | |
2597 | ||
2598 | Instead for now assume that the definition is not global, | |
2599 | Even if this is wrong, at least the linker will behave | |
2600 | in the same way that it used to do. */ | |
2601 | return FALSE; | |
2602 | ||
2603 | return TRUE; | |
2604 | } | |
2605 | ||
2606 | /* Search the symbol table of the archive element of the archive ABFD | |
2607 | whose archive map contains a mention of SYMDEF, and determine if | |
2608 | the symbol is defined in this element. */ | |
2609 | static bfd_boolean | |
2610 | elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) | |
2611 | { | |
2612 | Elf_Internal_Shdr * hdr; | |
2613 | bfd_size_type symcount; | |
2614 | bfd_size_type extsymcount; | |
2615 | bfd_size_type extsymoff; | |
2616 | Elf_Internal_Sym *isymbuf; | |
2617 | Elf_Internal_Sym *isym; | |
2618 | Elf_Internal_Sym *isymend; | |
2619 | bfd_boolean result; | |
2620 | ||
2621 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
2622 | if (abfd == NULL) | |
2623 | return FALSE; | |
2624 | ||
2625 | if (! bfd_check_format (abfd, bfd_object)) | |
2626 | return FALSE; | |
2627 | ||
2628 | /* If we have already included the element containing this symbol in the | |
2629 | link then we do not need to include it again. Just claim that any symbol | |
2630 | it contains is not a definition, so that our caller will not decide to | |
2631 | (re)include this element. */ | |
2632 | if (abfd->archive_pass) | |
2633 | return FALSE; | |
2634 | ||
2635 | /* Select the appropriate symbol table. */ | |
2636 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) | |
2637 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
2638 | else | |
2639 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
2640 | ||
2641 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | |
2642 | ||
2643 | /* The sh_info field of the symtab header tells us where the | |
2644 | external symbols start. We don't care about the local symbols. */ | |
2645 | if (elf_bad_symtab (abfd)) | |
2646 | { | |
2647 | extsymcount = symcount; | |
2648 | extsymoff = 0; | |
2649 | } | |
2650 | else | |
2651 | { | |
2652 | extsymcount = symcount - hdr->sh_info; | |
2653 | extsymoff = hdr->sh_info; | |
2654 | } | |
2655 | ||
2656 | if (extsymcount == 0) | |
2657 | return FALSE; | |
2658 | ||
2659 | /* Read in the symbol table. */ | |
2660 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
2661 | NULL, NULL, NULL); | |
2662 | if (isymbuf == NULL) | |
2663 | return FALSE; | |
2664 | ||
2665 | /* Scan the symbol table looking for SYMDEF. */ | |
2666 | result = FALSE; | |
2667 | for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) | |
2668 | { | |
2669 | const char *name; | |
2670 | ||
2671 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
2672 | isym->st_name); | |
2673 | if (name == NULL) | |
2674 | break; | |
2675 | ||
2676 | if (strcmp (name, symdef->name) == 0) | |
2677 | { | |
2678 | result = is_global_data_symbol_definition (abfd, isym); | |
2679 | break; | |
2680 | } | |
2681 | } | |
2682 | ||
2683 | free (isymbuf); | |
2684 | ||
2685 | return result; | |
2686 | } | |
2687 | \f | |
2688 | /* Add symbols from an ELF archive file to the linker hash table. We | |
2689 | don't use _bfd_generic_link_add_archive_symbols because of a | |
2690 | problem which arises on UnixWare. The UnixWare libc.so is an | |
2691 | archive which includes an entry libc.so.1 which defines a bunch of | |
2692 | symbols. The libc.so archive also includes a number of other | |
2693 | object files, which also define symbols, some of which are the same | |
2694 | as those defined in libc.so.1. Correct linking requires that we | |
2695 | consider each object file in turn, and include it if it defines any | |
2696 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
2697 | this; it looks through the list of undefined symbols, and includes | |
2698 | any object file which defines them. When this algorithm is used on | |
2699 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
2700 | bunch of symbols. This means that some of the other objects in the | |
2701 | archive are not included in the link, which is incorrect since they | |
2702 | precede libc.so.1 in the archive. | |
2703 | ||
2704 | Fortunately, ELF archive handling is simpler than that done by | |
2705 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
2706 | oddities. In ELF, if we find a symbol in the archive map, and the | |
2707 | symbol is currently undefined, we know that we must pull in that | |
2708 | object file. | |
2709 | ||
2710 | Unfortunately, we do have to make multiple passes over the symbol | |
2711 | table until nothing further is resolved. */ | |
2712 | ||
2713 | bfd_boolean | |
2714 | _bfd_elf_link_add_archive_symbols (bfd *abfd, | |
2715 | struct bfd_link_info *info) | |
2716 | { | |
2717 | symindex c; | |
2718 | bfd_boolean *defined = NULL; | |
2719 | bfd_boolean *included = NULL; | |
2720 | carsym *symdefs; | |
2721 | bfd_boolean loop; | |
2722 | bfd_size_type amt; | |
2723 | ||
2724 | if (! bfd_has_map (abfd)) | |
2725 | { | |
2726 | /* An empty archive is a special case. */ | |
2727 | if (bfd_openr_next_archived_file (abfd, NULL) == NULL) | |
2728 | return TRUE; | |
2729 | bfd_set_error (bfd_error_no_armap); | |
2730 | return FALSE; | |
2731 | } | |
2732 | ||
2733 | /* Keep track of all symbols we know to be already defined, and all | |
2734 | files we know to be already included. This is to speed up the | |
2735 | second and subsequent passes. */ | |
2736 | c = bfd_ardata (abfd)->symdef_count; | |
2737 | if (c == 0) | |
2738 | return TRUE; | |
2739 | amt = c; | |
2740 | amt *= sizeof (bfd_boolean); | |
2741 | defined = bfd_zmalloc (amt); | |
2742 | included = bfd_zmalloc (amt); | |
2743 | if (defined == NULL || included == NULL) | |
2744 | goto error_return; | |
2745 | ||
2746 | symdefs = bfd_ardata (abfd)->symdefs; | |
2747 | ||
2748 | do | |
2749 | { | |
2750 | file_ptr last; | |
2751 | symindex i; | |
2752 | carsym *symdef; | |
2753 | carsym *symdefend; | |
2754 | ||
2755 | loop = FALSE; | |
2756 | last = -1; | |
2757 | ||
2758 | symdef = symdefs; | |
2759 | symdefend = symdef + c; | |
2760 | for (i = 0; symdef < symdefend; symdef++, i++) | |
2761 | { | |
2762 | struct elf_link_hash_entry *h; | |
2763 | bfd *element; | |
2764 | struct bfd_link_hash_entry *undefs_tail; | |
2765 | symindex mark; | |
2766 | ||
2767 | if (defined[i] || included[i]) | |
2768 | continue; | |
2769 | if (symdef->file_offset == last) | |
2770 | { | |
2771 | included[i] = TRUE; | |
2772 | continue; | |
2773 | } | |
2774 | ||
2775 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
2776 | FALSE, FALSE, FALSE); | |
2777 | ||
2778 | if (h == NULL) | |
2779 | { | |
2780 | char *p, *copy; | |
2781 | size_t len, first; | |
2782 | ||
2783 | /* If this is a default version (the name contains @@), | |
2784 | look up the symbol again with only one `@' as well | |
2785 | as without the version. The effect is that references | |
2786 | to the symbol with and without the version will be | |
2787 | matched by the default symbol in the archive. */ | |
2788 | ||
2789 | p = strchr (symdef->name, ELF_VER_CHR); | |
2790 | if (p == NULL || p[1] != ELF_VER_CHR) | |
2791 | continue; | |
2792 | ||
2793 | /* First check with only one `@'. */ | |
2794 | len = strlen (symdef->name); | |
2795 | copy = bfd_alloc (abfd, len); | |
2796 | if (copy == NULL) | |
2797 | goto error_return; | |
2798 | first = p - symdef->name + 1; | |
2799 | memcpy (copy, symdef->name, first); | |
2800 | memcpy (copy + first, symdef->name + first + 1, len - first); | |
2801 | ||
2802 | h = elf_link_hash_lookup (elf_hash_table (info), copy, | |
2803 | FALSE, FALSE, FALSE); | |
2804 | ||
2805 | if (h == NULL) | |
2806 | { | |
2807 | /* We also need to check references to the symbol | |
2808 | without the version. */ | |
2809 | ||
2810 | copy[first - 1] = '\0'; | |
2811 | h = elf_link_hash_lookup (elf_hash_table (info), | |
2812 | copy, FALSE, FALSE, FALSE); | |
2813 | } | |
2814 | ||
2815 | bfd_release (abfd, copy); | |
2816 | } | |
2817 | ||
2818 | if (h == NULL) | |
2819 | continue; | |
2820 | ||
2821 | if (h->root.type == bfd_link_hash_common) | |
2822 | { | |
2823 | /* We currently have a common symbol. The archive map contains | |
2824 | a reference to this symbol, so we may want to include it. We | |
2825 | only want to include it however, if this archive element | |
2826 | contains a definition of the symbol, not just another common | |
2827 | declaration of it. | |
2828 | ||
2829 | Unfortunately some archivers (including GNU ar) will put | |
2830 | declarations of common symbols into their archive maps, as | |
2831 | well as real definitions, so we cannot just go by the archive | |
2832 | map alone. Instead we must read in the element's symbol | |
2833 | table and check that to see what kind of symbol definition | |
2834 | this is. */ | |
2835 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | |
2836 | continue; | |
2837 | } | |
2838 | else if (h->root.type != bfd_link_hash_undefined) | |
2839 | { | |
2840 | if (h->root.type != bfd_link_hash_undefweak) | |
2841 | defined[i] = TRUE; | |
2842 | continue; | |
2843 | } | |
2844 | ||
2845 | /* We need to include this archive member. */ | |
2846 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
2847 | if (element == NULL) | |
2848 | goto error_return; | |
2849 | ||
2850 | if (! bfd_check_format (element, bfd_object)) | |
2851 | goto error_return; | |
2852 | ||
2853 | /* Doublecheck that we have not included this object | |
2854 | already--it should be impossible, but there may be | |
2855 | something wrong with the archive. */ | |
2856 | if (element->archive_pass != 0) | |
2857 | { | |
2858 | bfd_set_error (bfd_error_bad_value); | |
2859 | goto error_return; | |
2860 | } | |
2861 | element->archive_pass = 1; | |
2862 | ||
2863 | undefs_tail = info->hash->undefs_tail; | |
2864 | ||
2865 | if (! (*info->callbacks->add_archive_element) (info, element, | |
2866 | symdef->name)) | |
2867 | goto error_return; | |
2868 | if (! bfd_link_add_symbols (element, info)) | |
2869 | goto error_return; | |
2870 | ||
2871 | /* If there are any new undefined symbols, we need to make | |
2872 | another pass through the archive in order to see whether | |
2873 | they can be defined. FIXME: This isn't perfect, because | |
2874 | common symbols wind up on undefs_tail and because an | |
2875 | undefined symbol which is defined later on in this pass | |
2876 | does not require another pass. This isn't a bug, but it | |
2877 | does make the code less efficient than it could be. */ | |
2878 | if (undefs_tail != info->hash->undefs_tail) | |
2879 | loop = TRUE; | |
2880 | ||
2881 | /* Look backward to mark all symbols from this object file | |
2882 | which we have already seen in this pass. */ | |
2883 | mark = i; | |
2884 | do | |
2885 | { | |
2886 | included[mark] = TRUE; | |
2887 | if (mark == 0) | |
2888 | break; | |
2889 | --mark; | |
2890 | } | |
2891 | while (symdefs[mark].file_offset == symdef->file_offset); | |
2892 | ||
2893 | /* We mark subsequent symbols from this object file as we go | |
2894 | on through the loop. */ | |
2895 | last = symdef->file_offset; | |
2896 | } | |
2897 | } | |
2898 | while (loop); | |
2899 | ||
2900 | free (defined); | |
2901 | free (included); | |
2902 | ||
2903 | return TRUE; | |
2904 | ||
2905 | error_return: | |
2906 | if (defined != NULL) | |
2907 | free (defined); | |
2908 | if (included != NULL) | |
2909 | free (included); | |
2910 | return FALSE; | |
2911 | } |