]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c AC |
2 | |
3 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, | |
b368761e | 4 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 |
083ae935 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "gdbcore.h" | |
28 | #include "frame.h" | |
29 | #include "target.h" | |
30 | #include "value.h" | |
31 | #include "symfile.h" | |
32 | #include "objfiles.h" | |
33 | #include "gdbcmd.h" | |
34 | #include "call-cmds.h" | |
88987551 | 35 | #include "gdb_regex.h" |
c906108c SS |
36 | #include "expression.h" |
37 | #include "language.h" | |
38 | #include "demangle.h" | |
39 | #include "inferior.h" | |
c5f0f3d0 | 40 | #include "linespec.h" |
0378c332 | 41 | #include "source.h" |
a7fdf62f | 42 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 43 | #include "objc-lang.h" |
c906108c | 44 | |
2de7ced7 DJ |
45 | #include "hashtab.h" |
46 | ||
04ea0df1 | 47 | #include "gdb_obstack.h" |
fe898f56 | 48 | #include "block.h" |
de4f826b | 49 | #include "dictionary.h" |
c906108c SS |
50 | |
51 | #include <sys/types.h> | |
52 | #include <fcntl.h> | |
53 | #include "gdb_string.h" | |
54 | #include "gdb_stat.h" | |
55 | #include <ctype.h> | |
015a42b4 | 56 | #include "cp-abi.h" |
c906108c | 57 | |
c906108c SS |
58 | /* Prototypes for local functions */ |
59 | ||
a14ed312 | 60 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 61 | |
a14ed312 | 62 | static void rbreak_command (char *, int); |
c906108c | 63 | |
a14ed312 | 64 | static void types_info (char *, int); |
c906108c | 65 | |
a14ed312 | 66 | static void functions_info (char *, int); |
c906108c | 67 | |
a14ed312 | 68 | static void variables_info (char *, int); |
c906108c | 69 | |
a14ed312 | 70 | static void sources_info (char *, int); |
c906108c | 71 | |
a14ed312 | 72 | static void output_source_filename (char *, int *); |
c906108c | 73 | |
a14ed312 | 74 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 75 | |
50641945 FN |
76 | /* This one is used by linespec.c */ |
77 | ||
78 | char *operator_chars (char *p, char **end); | |
79 | ||
3121eff0 | 80 | static struct symbol *lookup_symbol_aux (const char *name, |
5ad1c190 | 81 | const char *linkage_name, |
3121eff0 | 82 | const struct block *block, |
176620f1 | 83 | const domain_enum domain, |
3121eff0 DJ |
84 | int *is_a_field_of_this, |
85 | struct symtab **symtab); | |
fba7f19c | 86 | |
e4051eeb DC |
87 | static |
88 | struct symbol *lookup_symbol_aux_local (const char *name, | |
5ad1c190 | 89 | const char *linkage_name, |
e4051eeb | 90 | const struct block *block, |
176620f1 | 91 | const domain_enum domain, |
89a9d1b1 | 92 | struct symtab **symtab); |
8155455b DC |
93 | |
94 | static | |
95 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
96 | const char *name, | |
5ad1c190 | 97 | const char *linkage_name, |
176620f1 | 98 | const domain_enum domain, |
8155455b DC |
99 | struct symtab **symtab); |
100 | ||
101 | static | |
102 | struct symbol *lookup_symbol_aux_psymtabs (int block_index, | |
103 | const char *name, | |
5ad1c190 | 104 | const char *linkage_name, |
176620f1 | 105 | const domain_enum domain, |
8155455b | 106 | struct symtab **symtab); |
fba7f19c | 107 | |
ae2f03ac | 108 | #if 0 |
406bc4de DC |
109 | static |
110 | struct symbol *lookup_symbol_aux_minsyms (const char *name, | |
5ad1c190 | 111 | const char *linkage_name, |
176620f1 | 112 | const domain_enum domain, |
406bc4de | 113 | int *is_a_field_of_this, |
e45febe2 | 114 | struct symtab **symtab); |
ae2f03ac | 115 | #endif |
406bc4de | 116 | |
f83f82bc AC |
117 | /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c. |
118 | Signals the presence of objects compiled by HP compilers. */ | |
119 | int deprecated_hp_som_som_object_present = 0; | |
c906108c | 120 | |
a14ed312 | 121 | static void fixup_section (struct general_symbol_info *, struct objfile *); |
c906108c | 122 | |
a14ed312 | 123 | static int file_matches (char *, char **, int); |
c906108c | 124 | |
176620f1 | 125 | static void print_symbol_info (domain_enum, |
a14ed312 | 126 | struct symtab *, struct symbol *, int, char *); |
c906108c | 127 | |
a14ed312 | 128 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 129 | |
176620f1 | 130 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 131 | |
a14ed312 | 132 | void _initialize_symtab (void); |
c906108c SS |
133 | |
134 | /* */ | |
135 | ||
136 | /* The single non-language-specific builtin type */ | |
137 | struct type *builtin_type_error; | |
138 | ||
139 | /* Block in which the most recently searched-for symbol was found. | |
140 | Might be better to make this a parameter to lookup_symbol and | |
141 | value_of_this. */ | |
142 | ||
143 | const struct block *block_found; | |
144 | ||
c906108c SS |
145 | /* Check for a symtab of a specific name; first in symtabs, then in |
146 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
147 | in the symtab filename will also work. */ | |
148 | ||
1b15f1fa TT |
149 | struct symtab * |
150 | lookup_symtab (const char *name) | |
c906108c | 151 | { |
52f0bd74 AC |
152 | struct symtab *s; |
153 | struct partial_symtab *ps; | |
154 | struct objfile *objfile; | |
58d370e0 | 155 | char *real_path = NULL; |
f079a2e5 | 156 | char *full_path = NULL; |
58d370e0 TT |
157 | |
158 | /* Here we are interested in canonicalizing an absolute path, not | |
159 | absolutizing a relative path. */ | |
160 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
161 | { |
162 | full_path = xfullpath (name); | |
163 | make_cleanup (xfree, full_path); | |
164 | real_path = gdb_realpath (name); | |
165 | make_cleanup (xfree, real_path); | |
166 | } | |
c906108c | 167 | |
c5aa993b | 168 | got_symtab: |
c906108c SS |
169 | |
170 | /* First, search for an exact match */ | |
171 | ||
172 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 173 | { |
a7fdf62f | 174 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 175 | { |
58d370e0 TT |
176 | return s; |
177 | } | |
f079a2e5 | 178 | |
58d370e0 TT |
179 | /* If the user gave us an absolute path, try to find the file in |
180 | this symtab and use its absolute path. */ | |
f079a2e5 JB |
181 | |
182 | if (full_path != NULL) | |
183 | { | |
184 | const char *fp = symtab_to_filename (s); | |
185 | if (FILENAME_CMP (full_path, fp) == 0) | |
186 | { | |
187 | return s; | |
188 | } | |
189 | } | |
190 | ||
58d370e0 TT |
191 | if (real_path != NULL) |
192 | { | |
25f1b008 | 193 | char *rp = gdb_realpath (symtab_to_filename (s)); |
f079a2e5 | 194 | make_cleanup (xfree, rp); |
58d370e0 TT |
195 | if (FILENAME_CMP (real_path, rp) == 0) |
196 | { | |
58d370e0 TT |
197 | return s; |
198 | } | |
199 | } | |
200 | } | |
201 | ||
c906108c SS |
202 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
203 | ||
caadab2c | 204 | if (lbasename (name) == name) |
c906108c | 205 | ALL_SYMTABS (objfile, s) |
c5aa993b | 206 | { |
31889e00 | 207 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
208 | return s; |
209 | } | |
c906108c SS |
210 | |
211 | /* Same search rules as above apply here, but now we look thru the | |
212 | psymtabs. */ | |
213 | ||
214 | ps = lookup_partial_symtab (name); | |
215 | if (!ps) | |
216 | return (NULL); | |
217 | ||
c5aa993b | 218 | if (ps->readin) |
c906108c | 219 | error ("Internal: readin %s pst for `%s' found when no symtab found.", |
c5aa993b | 220 | ps->filename, name); |
c906108c SS |
221 | |
222 | s = PSYMTAB_TO_SYMTAB (ps); | |
223 | ||
224 | if (s) | |
225 | return s; | |
226 | ||
227 | /* At this point, we have located the psymtab for this file, but | |
228 | the conversion to a symtab has failed. This usually happens | |
229 | when we are looking up an include file. In this case, | |
230 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
231 | been created. So, we need to run through the symtabs again in | |
232 | order to find the file. | |
233 | XXX - This is a crock, and should be fixed inside of the the | |
234 | symbol parsing routines. */ | |
235 | goto got_symtab; | |
236 | } | |
237 | ||
c906108c SS |
238 | /* Lookup the partial symbol table of a source file named NAME. |
239 | *If* there is no '/' in the name, a match after a '/' | |
240 | in the psymtab filename will also work. */ | |
241 | ||
242 | struct partial_symtab * | |
1f8cc6db | 243 | lookup_partial_symtab (const char *name) |
c906108c | 244 | { |
52f0bd74 AC |
245 | struct partial_symtab *pst; |
246 | struct objfile *objfile; | |
f079a2e5 | 247 | char *full_path = NULL; |
58d370e0 TT |
248 | char *real_path = NULL; |
249 | ||
250 | /* Here we are interested in canonicalizing an absolute path, not | |
251 | absolutizing a relative path. */ | |
252 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
253 | { |
254 | full_path = xfullpath (name); | |
255 | make_cleanup (xfree, full_path); | |
256 | real_path = gdb_realpath (name); | |
257 | make_cleanup (xfree, real_path); | |
258 | } | |
c5aa993b | 259 | |
c906108c | 260 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 261 | { |
a7fdf62f | 262 | if (FILENAME_CMP (name, pst->filename) == 0) |
c5aa993b JM |
263 | { |
264 | return (pst); | |
265 | } | |
f079a2e5 | 266 | |
58d370e0 TT |
267 | /* If the user gave us an absolute path, try to find the file in |
268 | this symtab and use its absolute path. */ | |
f079a2e5 | 269 | if (full_path != NULL) |
58d370e0 TT |
270 | { |
271 | if (pst->fullname == NULL) | |
272 | source_full_path_of (pst->filename, &pst->fullname); | |
273 | if (pst->fullname != NULL | |
f079a2e5 | 274 | && FILENAME_CMP (full_path, pst->fullname) == 0) |
58d370e0 | 275 | { |
58d370e0 TT |
276 | return pst; |
277 | } | |
278 | } | |
c906108c | 279 | |
f079a2e5 JB |
280 | if (real_path != NULL) |
281 | { | |
282 | char *rp = NULL; | |
283 | if (pst->fullname == NULL) | |
284 | source_full_path_of (pst->filename, &pst->fullname); | |
285 | if (pst->fullname != NULL) | |
286 | { | |
287 | rp = gdb_realpath (pst->fullname); | |
288 | make_cleanup (xfree, rp); | |
289 | } | |
290 | if (rp != NULL && FILENAME_CMP (real_path, rp) == 0) | |
291 | { | |
292 | return pst; | |
293 | } | |
294 | } | |
295 | } | |
58d370e0 | 296 | |
c906108c SS |
297 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
298 | ||
caadab2c | 299 | if (lbasename (name) == name) |
c906108c | 300 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 301 | { |
31889e00 | 302 | if (FILENAME_CMP (lbasename (pst->filename), name) == 0) |
c5aa993b JM |
303 | return (pst); |
304 | } | |
c906108c SS |
305 | |
306 | return (NULL); | |
307 | } | |
308 | \f | |
309 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
310 | full method name, which consist of the class name (from T), the unadorned | |
311 | method name from METHOD_ID, and the signature for the specific overload, | |
312 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
313 | ||
314 | char * | |
fba45db2 | 315 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
316 | { |
317 | int mangled_name_len; | |
318 | char *mangled_name; | |
319 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
320 | struct fn_field *method = &f[signature_id]; | |
321 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
322 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
323 | char *newname = type_name_no_tag (type); | |
324 | ||
325 | /* Does the form of physname indicate that it is the full mangled name | |
326 | of a constructor (not just the args)? */ | |
327 | int is_full_physname_constructor; | |
328 | ||
329 | int is_constructor; | |
015a42b4 | 330 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
331 | /* Need a new type prefix. */ |
332 | char *const_prefix = method->is_const ? "C" : ""; | |
333 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
334 | char buf[20]; | |
335 | int len = (newname == NULL ? 0 : strlen (newname)); | |
336 | ||
43630227 PS |
337 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
338 | or an operator name. */ | |
339 | if ((physname[0] == '_' && physname[1] == 'Z') | |
340 | || is_operator_name (field_name)) | |
235d1e03 EZ |
341 | return xstrdup (physname); |
342 | ||
015a42b4 | 343 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c SS |
344 | |
345 | is_constructor = | |
6314a349 | 346 | is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); |
c906108c SS |
347 | |
348 | if (!is_destructor) | |
c5aa993b | 349 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
350 | |
351 | if (is_destructor || is_full_physname_constructor) | |
352 | { | |
c5aa993b JM |
353 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
354 | strcpy (mangled_name, physname); | |
c906108c SS |
355 | return mangled_name; |
356 | } | |
357 | ||
358 | if (len == 0) | |
359 | { | |
360 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
361 | } | |
362 | else if (physname[0] == 't' || physname[0] == 'Q') | |
363 | { | |
364 | /* The physname for template and qualified methods already includes | |
c5aa993b | 365 | the class name. */ |
c906108c SS |
366 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
367 | newname = NULL; | |
368 | len = 0; | |
369 | } | |
370 | else | |
371 | { | |
372 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
373 | } | |
374 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 375 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 376 | |
c906108c | 377 | { |
c5aa993b | 378 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
379 | if (is_constructor) |
380 | mangled_name[0] = '\0'; | |
381 | else | |
382 | strcpy (mangled_name, field_name); | |
383 | } | |
384 | strcat (mangled_name, buf); | |
385 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
386 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 387 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
388 | if (newname != NULL) |
389 | strcat (mangled_name, newname); | |
390 | ||
391 | strcat (mangled_name, physname); | |
392 | return (mangled_name); | |
393 | } | |
12af6855 JB |
394 | |
395 | \f | |
89aad1f9 EZ |
396 | /* Initialize the language dependent portion of a symbol |
397 | depending upon the language for the symbol. */ | |
398 | void | |
399 | symbol_init_language_specific (struct general_symbol_info *gsymbol, | |
400 | enum language language) | |
401 | { | |
402 | gsymbol->language = language; | |
403 | if (gsymbol->language == language_cplus | |
5784d15e AF |
404 | || gsymbol->language == language_java |
405 | || gsymbol->language == language_objc) | |
89aad1f9 EZ |
406 | { |
407 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
408 | } | |
89aad1f9 EZ |
409 | else |
410 | { | |
411 | memset (&gsymbol->language_specific, 0, | |
412 | sizeof (gsymbol->language_specific)); | |
413 | } | |
414 | } | |
415 | ||
2de7ced7 DJ |
416 | /* Functions to initialize a symbol's mangled name. */ |
417 | ||
418 | /* Create the hash table used for demangled names. Each hash entry is | |
419 | a pair of strings; one for the mangled name and one for the demangled | |
420 | name. The entry is hashed via just the mangled name. */ | |
421 | ||
422 | static void | |
423 | create_demangled_names_hash (struct objfile *objfile) | |
424 | { | |
425 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
426 | The hash table code will round this up to the next prime number. | |
427 | Choosing a much larger table size wastes memory, and saves only about | |
428 | 1% in symbol reading. */ | |
429 | ||
430 | objfile->demangled_names_hash = htab_create_alloc_ex | |
431 | (256, htab_hash_string, (int (*) (const void *, const void *)) streq, | |
432 | NULL, objfile->md, xmcalloc, xmfree); | |
433 | } | |
12af6855 | 434 | |
2de7ced7 | 435 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
436 | language of that symbol. If the language is set to language_auto, |
437 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
438 | then set the language appropriately. The returned name is allocated |
439 | by the demangler and should be xfree'd. */ | |
12af6855 | 440 | |
2de7ced7 DJ |
441 | static char * |
442 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
443 | const char *mangled) | |
12af6855 | 444 | { |
12af6855 JB |
445 | char *demangled = NULL; |
446 | ||
447 | if (gsymbol->language == language_unknown) | |
448 | gsymbol->language = language_auto; | |
1bae87b9 AF |
449 | |
450 | if (gsymbol->language == language_objc | |
451 | || gsymbol->language == language_auto) | |
452 | { | |
453 | demangled = | |
454 | objc_demangle (mangled, 0); | |
455 | if (demangled != NULL) | |
456 | { | |
457 | gsymbol->language = language_objc; | |
458 | return demangled; | |
459 | } | |
460 | } | |
12af6855 JB |
461 | if (gsymbol->language == language_cplus |
462 | || gsymbol->language == language_auto) | |
463 | { | |
464 | demangled = | |
2de7ced7 | 465 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 466 | if (demangled != NULL) |
2de7ced7 DJ |
467 | { |
468 | gsymbol->language = language_cplus; | |
469 | return demangled; | |
470 | } | |
12af6855 JB |
471 | } |
472 | if (gsymbol->language == language_java) | |
473 | { | |
474 | demangled = | |
2de7ced7 | 475 | cplus_demangle (mangled, |
12af6855 JB |
476 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
477 | if (demangled != NULL) | |
2de7ced7 DJ |
478 | { |
479 | gsymbol->language = language_java; | |
480 | return demangled; | |
481 | } | |
482 | } | |
483 | return NULL; | |
484 | } | |
485 | ||
980cae7a DC |
486 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
487 | on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE | |
4a146b47 | 488 | is used, and the memory comes from that objfile's objfile_obstack. |
980cae7a DC |
489 | LINKAGE_NAME is copied, so the pointer can be discarded after |
490 | calling this function. */ | |
2de7ced7 | 491 | |
d2a52b27 DC |
492 | /* We have to be careful when dealing with Java names: when we run |
493 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
494 | gets demangled as a C++ name. This is unfortunate, but there's not | |
495 | much we can do about it: but when demangling partial symbols and | |
496 | regular symbols, we'd better not reuse the wrong demangled name. | |
497 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
498 | on Java names when storing them in the hash table. */ | |
499 | ||
500 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
501 | don't mind the Java prefix so much: different languages have | |
502 | different demangling requirements, so it's only natural that we | |
503 | need to keep language data around in our demangling cache. But | |
504 | it's not good that the minimal symbol has the wrong demangled name. | |
505 | Unfortunately, I can't think of any easy solution to that | |
506 | problem. */ | |
507 | ||
508 | #define JAVA_PREFIX "##JAVA$$" | |
509 | #define JAVA_PREFIX_LEN 8 | |
510 | ||
2de7ced7 DJ |
511 | void |
512 | symbol_set_names (struct general_symbol_info *gsymbol, | |
980cae7a | 513 | const char *linkage_name, int len, struct objfile *objfile) |
2de7ced7 DJ |
514 | { |
515 | char **slot; | |
980cae7a DC |
516 | /* A 0-terminated copy of the linkage name. */ |
517 | const char *linkage_name_copy; | |
d2a52b27 DC |
518 | /* A copy of the linkage name that might have a special Java prefix |
519 | added to it, for use when looking names up in the hash table. */ | |
520 | const char *lookup_name; | |
521 | /* The length of lookup_name. */ | |
522 | int lookup_len; | |
2de7ced7 DJ |
523 | |
524 | if (objfile->demangled_names_hash == NULL) | |
525 | create_demangled_names_hash (objfile); | |
526 | ||
980cae7a DC |
527 | /* The stabs reader generally provides names that are not |
528 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
529 | can just use the given copy, unless we're in the Java case. */ |
530 | if (gsymbol->language == language_java) | |
531 | { | |
532 | char *alloc_name; | |
533 | lookup_len = len + JAVA_PREFIX_LEN; | |
534 | ||
535 | alloc_name = alloca (lookup_len + 1); | |
536 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
537 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
538 | alloc_name[lookup_len] = '\0'; | |
539 | ||
540 | lookup_name = alloc_name; | |
541 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
542 | } | |
543 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 544 | { |
980cae7a | 545 | char *alloc_name; |
d2a52b27 | 546 | lookup_len = len; |
980cae7a | 547 | |
d2a52b27 | 548 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 549 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 550 | alloc_name[lookup_len] = '\0'; |
980cae7a | 551 | |
d2a52b27 | 552 | lookup_name = alloc_name; |
980cae7a | 553 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
554 | } |
555 | else | |
980cae7a | 556 | { |
d2a52b27 DC |
557 | lookup_len = len; |
558 | lookup_name = linkage_name; | |
980cae7a DC |
559 | linkage_name_copy = linkage_name; |
560 | } | |
2de7ced7 | 561 | |
980cae7a | 562 | slot = (char **) htab_find_slot (objfile->demangled_names_hash, |
d2a52b27 | 563 | lookup_name, INSERT); |
2de7ced7 DJ |
564 | |
565 | /* If this name is not in the hash table, add it. */ | |
566 | if (*slot == NULL) | |
567 | { | |
980cae7a DC |
568 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
569 | linkage_name_copy); | |
2de7ced7 DJ |
570 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
571 | ||
572 | /* If there is a demangled name, place it right after the mangled name. | |
573 | Otherwise, just place a second zero byte after the end of the mangled | |
574 | name. */ | |
4a146b47 | 575 | *slot = obstack_alloc (&objfile->objfile_obstack, |
d2a52b27 DC |
576 | lookup_len + demangled_len + 2); |
577 | memcpy (*slot, lookup_name, lookup_len + 1); | |
980cae7a | 578 | if (demangled_name != NULL) |
2de7ced7 | 579 | { |
d2a52b27 | 580 | memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1); |
2de7ced7 DJ |
581 | xfree (demangled_name); |
582 | } | |
583 | else | |
d2a52b27 | 584 | (*slot)[lookup_len + 1] = '\0'; |
2de7ced7 DJ |
585 | } |
586 | ||
d2a52b27 DC |
587 | gsymbol->name = *slot + lookup_len - len; |
588 | if ((*slot)[lookup_len + 1] != '\0') | |
2de7ced7 | 589 | gsymbol->language_specific.cplus_specific.demangled_name |
d2a52b27 | 590 | = &(*slot)[lookup_len + 1]; |
2de7ced7 DJ |
591 | else |
592 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
593 | } | |
594 | ||
595 | /* Initialize the demangled name of GSYMBOL if possible. Any required space | |
596 | to store the name is obtained from the specified obstack. The function | |
597 | symbol_set_names, above, should be used instead where possible for more | |
598 | efficient memory usage. */ | |
599 | ||
600 | void | |
601 | symbol_init_demangled_name (struct general_symbol_info *gsymbol, | |
602 | struct obstack *obstack) | |
603 | { | |
604 | char *mangled = gsymbol->name; | |
605 | char *demangled = NULL; | |
606 | ||
607 | demangled = symbol_find_demangled_name (gsymbol, mangled); | |
608 | if (gsymbol->language == language_cplus | |
1bae87b9 AF |
609 | || gsymbol->language == language_java |
610 | || gsymbol->language == language_objc) | |
2de7ced7 DJ |
611 | { |
612 | if (demangled) | |
613 | { | |
614 | gsymbol->language_specific.cplus_specific.demangled_name | |
615 | = obsavestring (demangled, strlen (demangled), obstack); | |
616 | xfree (demangled); | |
617 | } | |
12af6855 | 618 | else |
2de7ced7 DJ |
619 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; |
620 | } | |
621 | else | |
622 | { | |
623 | /* Unknown language; just clean up quietly. */ | |
624 | if (demangled) | |
625 | xfree (demangled); | |
12af6855 | 626 | } |
12af6855 JB |
627 | } |
628 | ||
22abf04a DC |
629 | /* Return the source code name of a symbol. In languages where |
630 | demangling is necessary, this is the demangled name. */ | |
631 | ||
632 | char * | |
633 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
634 | { | |
635 | if ((gsymbol->language == language_cplus | |
636 | || gsymbol->language == language_java | |
637 | || gsymbol->language == language_objc) | |
638 | && (gsymbol->language_specific.cplus_specific.demangled_name != NULL)) | |
639 | { | |
640 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
641 | } | |
642 | else | |
643 | { | |
644 | return gsymbol->name; | |
645 | } | |
646 | } | |
647 | ||
9cc0d196 EZ |
648 | /* Return the demangled name for a symbol based on the language for |
649 | that symbol. If no demangled name exists, return NULL. */ | |
650 | char * | |
651 | symbol_demangled_name (struct general_symbol_info *gsymbol) | |
652 | { | |
653 | if (gsymbol->language == language_cplus | |
5784d15e AF |
654 | || gsymbol->language == language_java |
655 | || gsymbol->language == language_objc) | |
9cc0d196 | 656 | return gsymbol->language_specific.cplus_specific.demangled_name; |
12af6855 | 657 | |
9cc0d196 EZ |
658 | else |
659 | return NULL; | |
9cc0d196 | 660 | } |
fe39c653 | 661 | |
4725b721 PH |
662 | /* Return the search name of a symbol---generally the demangled or |
663 | linkage name of the symbol, depending on how it will be searched for. | |
664 | If there is no distinct demangled name, then returns the same value | |
665 | (same pointer) as SYMBOL_LINKAGE_NAME. */ | |
666 | char *symbol_search_name (const struct general_symbol_info *gsymbol) { | |
667 | return symbol_natural_name (gsymbol); | |
668 | } | |
669 | ||
fe39c653 EZ |
670 | /* Initialize the structure fields to zero values. */ |
671 | void | |
672 | init_sal (struct symtab_and_line *sal) | |
673 | { | |
674 | sal->symtab = 0; | |
675 | sal->section = 0; | |
676 | sal->line = 0; | |
677 | sal->pc = 0; | |
678 | sal->end = 0; | |
679 | } | |
c906108c SS |
680 | \f |
681 | ||
c5aa993b | 682 | |
ccefbec3 EZ |
683 | /* Find which partial symtab contains PC and SECTION. Return 0 if |
684 | none. We return the psymtab that contains a symbol whose address | |
685 | exactly matches PC, or, if we cannot find an exact match, the | |
686 | psymtab that contains a symbol whose address is closest to PC. */ | |
c906108c | 687 | struct partial_symtab * |
fba45db2 | 688 | find_pc_sect_psymtab (CORE_ADDR pc, asection *section) |
c906108c | 689 | { |
52f0bd74 AC |
690 | struct partial_symtab *pst; |
691 | struct objfile *objfile; | |
8a48e967 DJ |
692 | struct minimal_symbol *msymbol; |
693 | ||
694 | /* If we know that this is not a text address, return failure. This is | |
695 | necessary because we loop based on texthigh and textlow, which do | |
696 | not include the data ranges. */ | |
697 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
698 | if (msymbol | |
699 | && (msymbol->type == mst_data | |
700 | || msymbol->type == mst_bss | |
701 | || msymbol->type == mst_abs | |
702 | || msymbol->type == mst_file_data | |
703 | || msymbol->type == mst_file_bss)) | |
704 | return NULL; | |
c906108c SS |
705 | |
706 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 707 | { |
c5aa993b | 708 | if (pc >= pst->textlow && pc < pst->texthigh) |
c5aa993b | 709 | { |
c5aa993b | 710 | struct partial_symtab *tpst; |
ccefbec3 EZ |
711 | struct partial_symtab *best_pst = pst; |
712 | struct partial_symbol *best_psym = NULL; | |
c5aa993b JM |
713 | |
714 | /* An objfile that has its functions reordered might have | |
715 | many partial symbol tables containing the PC, but | |
716 | we want the partial symbol table that contains the | |
717 | function containing the PC. */ | |
718 | if (!(objfile->flags & OBJF_REORDERED) && | |
719 | section == 0) /* can't validate section this way */ | |
720 | return (pst); | |
721 | ||
c5aa993b JM |
722 | if (msymbol == NULL) |
723 | return (pst); | |
724 | ||
ccefbec3 EZ |
725 | /* The code range of partial symtabs sometimes overlap, so, in |
726 | the loop below, we need to check all partial symtabs and | |
727 | find the one that fits better for the given PC address. We | |
728 | select the partial symtab that contains a symbol whose | |
729 | address is closest to the PC address. By closest we mean | |
730 | that find_pc_sect_symbol returns the symbol with address | |
731 | that is closest and still less than the given PC. */ | |
c5aa993b JM |
732 | for (tpst = pst; tpst != NULL; tpst = tpst->next) |
733 | { | |
c5aa993b | 734 | if (pc >= tpst->textlow && pc < tpst->texthigh) |
c5aa993b JM |
735 | { |
736 | struct partial_symbol *p; | |
c906108c | 737 | |
c5aa993b JM |
738 | p = find_pc_sect_psymbol (tpst, pc, section); |
739 | if (p != NULL | |
740 | && SYMBOL_VALUE_ADDRESS (p) | |
741 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
742 | return (tpst); | |
ccefbec3 EZ |
743 | if (p != NULL) |
744 | { | |
745 | /* We found a symbol in this partial symtab which | |
746 | matches (or is closest to) PC, check whether it | |
747 | is closer than our current BEST_PSYM. Since | |
748 | this symbol address is necessarily lower or | |
749 | equal to PC, the symbol closer to PC is the | |
750 | symbol which address is the highest. */ | |
751 | /* This way we return the psymtab which contains | |
752 | such best match symbol. This can help in cases | |
753 | where the symbol information/debuginfo is not | |
754 | complete, like for instance on IRIX6 with gcc, | |
755 | where no debug info is emitted for | |
756 | statics. (See also the nodebug.exp | |
757 | testcase.) */ | |
758 | if (best_psym == NULL | |
759 | || SYMBOL_VALUE_ADDRESS (p) | |
760 | > SYMBOL_VALUE_ADDRESS (best_psym)) | |
761 | { | |
762 | best_psym = p; | |
763 | best_pst = tpst; | |
764 | } | |
765 | } | |
766 | ||
c5aa993b JM |
767 | } |
768 | } | |
ccefbec3 | 769 | return (best_pst); |
c5aa993b JM |
770 | } |
771 | } | |
c906108c SS |
772 | return (NULL); |
773 | } | |
774 | ||
775 | /* Find which partial symtab contains PC. Return 0 if none. | |
776 | Backward compatibility, no section */ | |
777 | ||
778 | struct partial_symtab * | |
fba45db2 | 779 | find_pc_psymtab (CORE_ADDR pc) |
c906108c SS |
780 | { |
781 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); | |
782 | } | |
783 | ||
784 | /* Find which partial symbol within a psymtab matches PC and SECTION. | |
785 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ | |
786 | ||
787 | struct partial_symbol * | |
fba45db2 KB |
788 | find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc, |
789 | asection *section) | |
c906108c SS |
790 | { |
791 | struct partial_symbol *best = NULL, *p, **pp; | |
792 | CORE_ADDR best_pc; | |
c5aa993b | 793 | |
c906108c SS |
794 | if (!psymtab) |
795 | psymtab = find_pc_sect_psymtab (pc, section); | |
796 | if (!psymtab) | |
797 | return 0; | |
798 | ||
799 | /* Cope with programs that start at address 0 */ | |
800 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; | |
801 | ||
802 | /* Search the global symbols as well as the static symbols, so that | |
803 | find_pc_partial_function doesn't use a minimal symbol and thus | |
804 | cache a bad endaddr. */ | |
805 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; | |
c5aa993b JM |
806 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
807 | < psymtab->n_global_syms); | |
c906108c SS |
808 | pp++) |
809 | { | |
810 | p = *pp; | |
176620f1 | 811 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
812 | && SYMBOL_CLASS (p) == LOC_BLOCK |
813 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
814 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
815 | || (psymtab->textlow == 0 | |
816 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) | |
817 | { | |
c5aa993b | 818 | if (section) /* match on a specific section */ |
c906108c SS |
819 | { |
820 | fixup_psymbol_section (p, psymtab->objfile); | |
821 | if (SYMBOL_BFD_SECTION (p) != section) | |
822 | continue; | |
823 | } | |
824 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
825 | best = p; | |
826 | } | |
827 | } | |
828 | ||
829 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; | |
c5aa993b JM |
830 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
831 | < psymtab->n_static_syms); | |
c906108c SS |
832 | pp++) |
833 | { | |
834 | p = *pp; | |
176620f1 | 835 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
836 | && SYMBOL_CLASS (p) == LOC_BLOCK |
837 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
838 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
c5aa993b | 839 | || (psymtab->textlow == 0 |
c906108c SS |
840 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) |
841 | { | |
c5aa993b | 842 | if (section) /* match on a specific section */ |
c906108c SS |
843 | { |
844 | fixup_psymbol_section (p, psymtab->objfile); | |
845 | if (SYMBOL_BFD_SECTION (p) != section) | |
846 | continue; | |
847 | } | |
848 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
849 | best = p; | |
850 | } | |
851 | } | |
852 | ||
853 | return best; | |
854 | } | |
855 | ||
856 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. | |
857 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ | |
858 | ||
859 | struct partial_symbol * | |
fba45db2 | 860 | find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc) |
c906108c SS |
861 | { |
862 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); | |
863 | } | |
864 | \f | |
865 | /* Debug symbols usually don't have section information. We need to dig that | |
866 | out of the minimal symbols and stash that in the debug symbol. */ | |
867 | ||
868 | static void | |
fba45db2 | 869 | fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile) |
c906108c SS |
870 | { |
871 | struct minimal_symbol *msym; | |
872 | msym = lookup_minimal_symbol (ginfo->name, NULL, objfile); | |
873 | ||
874 | if (msym) | |
7a78d0ee KB |
875 | { |
876 | ginfo->bfd_section = SYMBOL_BFD_SECTION (msym); | |
877 | ginfo->section = SYMBOL_SECTION (msym); | |
878 | } | |
c906108c SS |
879 | } |
880 | ||
881 | struct symbol * | |
fba45db2 | 882 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c SS |
883 | { |
884 | if (!sym) | |
885 | return NULL; | |
886 | ||
887 | if (SYMBOL_BFD_SECTION (sym)) | |
888 | return sym; | |
889 | ||
890 | fixup_section (&sym->ginfo, objfile); | |
891 | ||
892 | return sym; | |
893 | } | |
894 | ||
7a78d0ee | 895 | struct partial_symbol * |
fba45db2 | 896 | fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile) |
c906108c SS |
897 | { |
898 | if (!psym) | |
899 | return NULL; | |
900 | ||
901 | if (SYMBOL_BFD_SECTION (psym)) | |
902 | return psym; | |
903 | ||
904 | fixup_section (&psym->ginfo, objfile); | |
905 | ||
906 | return psym; | |
907 | } | |
908 | ||
909 | /* Find the definition for a specified symbol name NAME | |
176620f1 | 910 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c SS |
911 | Returns the struct symbol pointer, or zero if no symbol is found. |
912 | If SYMTAB is non-NULL, store the symbol table in which the | |
913 | symbol was found there, or NULL if not found. | |
914 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if | |
915 | NAME is a field of the current implied argument `this'. If so set | |
916 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. | |
917 | BLOCK_FOUND is set to the block in which NAME is found (in the case of | |
918 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
919 | ||
920 | /* This function has a bunch of loops in it and it would seem to be | |
921 | attractive to put in some QUIT's (though I'm not really sure | |
922 | whether it can run long enough to be really important). But there | |
923 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
924 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
925 | that there is C++ code below which can error(), but that probably | |
926 | doesn't affect these calls since they are looking for a known | |
927 | variable and thus can probably assume it will never hit the C++ | |
928 | code). */ | |
c906108c SS |
929 | |
930 | struct symbol * | |
fba7f19c | 931 | lookup_symbol (const char *name, const struct block *block, |
176620f1 | 932 | const domain_enum domain, int *is_a_field_of_this, |
fba45db2 | 933 | struct symtab **symtab) |
c906108c | 934 | { |
729051e6 DJ |
935 | char *demangled_name = NULL; |
936 | const char *modified_name = NULL; | |
3121eff0 | 937 | const char *mangled_name = NULL; |
fba7f19c EZ |
938 | int needtofreename = 0; |
939 | struct symbol *returnval; | |
c906108c | 940 | |
729051e6 DJ |
941 | modified_name = name; |
942 | ||
943 | /* If we are using C++ language, demangle the name before doing a lookup, so | |
944 | we can always binary search. */ | |
945 | if (current_language->la_language == language_cplus) | |
946 | { | |
947 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
948 | if (demangled_name) | |
949 | { | |
950 | mangled_name = name; | |
951 | modified_name = demangled_name; | |
952 | needtofreename = 1; | |
953 | } | |
954 | } | |
955 | ||
63872f9d JG |
956 | if (case_sensitivity == case_sensitive_off) |
957 | { | |
958 | char *copy; | |
959 | int len, i; | |
960 | ||
961 | len = strlen (name); | |
962 | copy = (char *) alloca (len + 1); | |
963 | for (i= 0; i < len; i++) | |
964 | copy[i] = tolower (name[i]); | |
965 | copy[len] = 0; | |
fba7f19c | 966 | modified_name = copy; |
63872f9d | 967 | } |
fba7f19c | 968 | |
3121eff0 | 969 | returnval = lookup_symbol_aux (modified_name, mangled_name, block, |
176620f1 | 970 | domain, is_a_field_of_this, symtab); |
fba7f19c | 971 | if (needtofreename) |
729051e6 | 972 | xfree (demangled_name); |
fba7f19c EZ |
973 | |
974 | return returnval; | |
975 | } | |
976 | ||
5ad1c190 DC |
977 | /* Behave like lookup_symbol_aux except that NAME is the natural name |
978 | of the symbol that we're looking for and, if LINKAGE_NAME is | |
979 | non-NULL, ensure that the symbol's linkage name matches as | |
980 | well. */ | |
981 | ||
fba7f19c | 982 | static struct symbol * |
5ad1c190 | 983 | lookup_symbol_aux (const char *name, const char *linkage_name, |
176620f1 | 984 | const struct block *block, const domain_enum domain, |
3121eff0 | 985 | int *is_a_field_of_this, struct symtab **symtab) |
fba7f19c | 986 | { |
8155455b | 987 | struct symbol *sym; |
406bc4de | 988 | |
9a146a11 EZ |
989 | /* Make sure we do something sensible with is_a_field_of_this, since |
990 | the callers that set this parameter to some non-null value will | |
991 | certainly use it later and expect it to be either 0 or 1. | |
992 | If we don't set it, the contents of is_a_field_of_this are | |
993 | undefined. */ | |
994 | if (is_a_field_of_this != NULL) | |
995 | *is_a_field_of_this = 0; | |
996 | ||
e4051eeb DC |
997 | /* Search specified block and its superiors. Don't search |
998 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 999 | |
5ad1c190 | 1000 | sym = lookup_symbol_aux_local (name, linkage_name, block, domain, |
89a9d1b1 | 1001 | symtab); |
8155455b DC |
1002 | if (sym != NULL) |
1003 | return sym; | |
c906108c | 1004 | |
5f9a71c3 DC |
1005 | /* If requested to do so by the caller and if appropriate for the |
1006 | current language, check to see if NAME is a field of `this'. */ | |
1007 | ||
1008 | if (current_language->la_value_of_this != NULL | |
1009 | && is_a_field_of_this != NULL) | |
c906108c | 1010 | { |
5f9a71c3 | 1011 | struct value *v = current_language->la_value_of_this (0); |
c5aa993b | 1012 | |
c906108c SS |
1013 | if (v && check_field (v, name)) |
1014 | { | |
1015 | *is_a_field_of_this = 1; | |
1016 | if (symtab != NULL) | |
1017 | *symtab = NULL; | |
1018 | return NULL; | |
1019 | } | |
1020 | } | |
1021 | ||
5f9a71c3 DC |
1022 | /* Now do whatever is appropriate for the current language to look |
1023 | up static and global variables. */ | |
c906108c | 1024 | |
5f9a71c3 DC |
1025 | sym = current_language->la_lookup_symbol_nonlocal (name, linkage_name, |
1026 | block, domain, | |
1027 | symtab); | |
8155455b DC |
1028 | if (sym != NULL) |
1029 | return sym; | |
c906108c | 1030 | |
8155455b DC |
1031 | /* Now search all static file-level symbols. Not strictly correct, |
1032 | but more useful than an error. Do the symtabs first, then check | |
1033 | the psymtabs. If a psymtab indicates the existence of the | |
1034 | desired name as a file-level static, then do psymtab-to-symtab | |
c906108c SS |
1035 | conversion on the fly and return the found symbol. */ |
1036 | ||
5ad1c190 | 1037 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, |
176620f1 | 1038 | domain, symtab); |
8155455b DC |
1039 | if (sym != NULL) |
1040 | return sym; | |
1041 | ||
5ad1c190 | 1042 | sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, |
176620f1 | 1043 | domain, symtab); |
8155455b DC |
1044 | if (sym != NULL) |
1045 | return sym; | |
c906108c | 1046 | |
c906108c SS |
1047 | if (symtab != NULL) |
1048 | *symtab = NULL; | |
8155455b | 1049 | return NULL; |
c906108c | 1050 | } |
8155455b | 1051 | |
e4051eeb | 1052 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1053 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1054 | |
1055 | static struct symbol * | |
5ad1c190 | 1056 | lookup_symbol_aux_local (const char *name, const char *linkage_name, |
8155455b | 1057 | const struct block *block, |
176620f1 | 1058 | const domain_enum domain, |
89a9d1b1 | 1059 | struct symtab **symtab) |
8155455b DC |
1060 | { |
1061 | struct symbol *sym; | |
89a9d1b1 DC |
1062 | const struct block *static_block = block_static_block (block); |
1063 | ||
e4051eeb DC |
1064 | /* Check if either no block is specified or it's a global block. */ |
1065 | ||
89a9d1b1 DC |
1066 | if (static_block == NULL) |
1067 | return NULL; | |
e4051eeb | 1068 | |
89a9d1b1 | 1069 | while (block != static_block) |
f61e8913 | 1070 | { |
5ad1c190 | 1071 | sym = lookup_symbol_aux_block (name, linkage_name, block, domain, |
f61e8913 DC |
1072 | symtab); |
1073 | if (sym != NULL) | |
1074 | return sym; | |
1075 | block = BLOCK_SUPERBLOCK (block); | |
1076 | } | |
1077 | ||
89a9d1b1 | 1078 | /* We've reached the static block without finding a result. */ |
e4051eeb | 1079 | |
f61e8913 DC |
1080 | return NULL; |
1081 | } | |
1082 | ||
1083 | /* Look up a symbol in a block; if found, locate its symtab, fixup the | |
1084 | symbol, and set block_found appropriately. */ | |
1085 | ||
5f9a71c3 | 1086 | struct symbol * |
5ad1c190 | 1087 | lookup_symbol_aux_block (const char *name, const char *linkage_name, |
f61e8913 | 1088 | const struct block *block, |
176620f1 | 1089 | const domain_enum domain, |
f61e8913 DC |
1090 | struct symtab **symtab) |
1091 | { | |
1092 | struct symbol *sym; | |
8155455b DC |
1093 | struct objfile *objfile = NULL; |
1094 | struct blockvector *bv; | |
1095 | struct block *b; | |
1096 | struct symtab *s = NULL; | |
f61e8913 | 1097 | |
5ad1c190 | 1098 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
f61e8913 | 1099 | if (sym) |
8155455b | 1100 | { |
f61e8913 DC |
1101 | block_found = block; |
1102 | if (symtab != NULL) | |
8155455b | 1103 | { |
f61e8913 DC |
1104 | /* Search the list of symtabs for one which contains the |
1105 | address of the start of this block. */ | |
1106 | ALL_SYMTABS (objfile, s) | |
8155455b | 1107 | { |
f61e8913 DC |
1108 | bv = BLOCKVECTOR (s); |
1109 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1110 | if (BLOCK_START (b) <= BLOCK_START (block) | |
1111 | && BLOCK_END (b) > BLOCK_START (block)) | |
1112 | goto found; | |
8155455b | 1113 | } |
f61e8913 DC |
1114 | found: |
1115 | *symtab = s; | |
8155455b | 1116 | } |
f61e8913 DC |
1117 | |
1118 | return fixup_symbol_section (sym, objfile); | |
8155455b DC |
1119 | } |
1120 | ||
1121 | return NULL; | |
1122 | } | |
1123 | ||
1124 | /* Check to see if the symbol is defined in one of the symtabs. | |
1125 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1126 | depending on whether or not we want to search global symbols or | |
1127 | static symbols. */ | |
1128 | ||
1129 | static struct symbol * | |
1130 | lookup_symbol_aux_symtabs (int block_index, | |
5ad1c190 | 1131 | const char *name, const char *linkage_name, |
176620f1 | 1132 | const domain_enum domain, |
8155455b DC |
1133 | struct symtab **symtab) |
1134 | { | |
1135 | struct symbol *sym; | |
1136 | struct objfile *objfile; | |
1137 | struct blockvector *bv; | |
1138 | const struct block *block; | |
1139 | struct symtab *s; | |
1140 | ||
1141 | ALL_SYMTABS (objfile, s) | |
1142 | { | |
1143 | bv = BLOCKVECTOR (s); | |
1144 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1145 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1146 | if (sym) |
1147 | { | |
1148 | block_found = block; | |
1149 | if (symtab != NULL) | |
1150 | *symtab = s; | |
1151 | return fixup_symbol_section (sym, objfile); | |
1152 | } | |
1153 | } | |
1154 | ||
1155 | return NULL; | |
1156 | } | |
1157 | ||
1158 | /* Check to see if the symbol is defined in one of the partial | |
1159 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or | |
1160 | STATIC_BLOCK, depending on whether or not we want to search global | |
1161 | symbols or static symbols. */ | |
1162 | ||
1163 | static struct symbol * | |
1164 | lookup_symbol_aux_psymtabs (int block_index, const char *name, | |
5ad1c190 | 1165 | const char *linkage_name, |
176620f1 | 1166 | const domain_enum domain, |
8155455b DC |
1167 | struct symtab **symtab) |
1168 | { | |
1169 | struct symbol *sym; | |
1170 | struct objfile *objfile; | |
1171 | struct blockvector *bv; | |
1172 | const struct block *block; | |
1173 | struct partial_symtab *ps; | |
1174 | struct symtab *s; | |
1175 | const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0); | |
1176 | ||
1177 | ALL_PSYMTABS (objfile, ps) | |
1178 | { | |
1179 | if (!ps->readin | |
5ad1c190 | 1180 | && lookup_partial_symbol (ps, name, linkage_name, |
176620f1 | 1181 | psymtab_index, domain)) |
8155455b DC |
1182 | { |
1183 | s = PSYMTAB_TO_SYMTAB (ps); | |
1184 | bv = BLOCKVECTOR (s); | |
1185 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1186 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1187 | if (!sym) |
1188 | { | |
1189 | /* This shouldn't be necessary, but as a last resort try | |
1190 | looking in the statics even though the psymtab claimed | |
1191 | the symbol was global, or vice-versa. It's possible | |
1192 | that the psymtab gets it wrong in some cases. */ | |
1193 | ||
1194 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1195 | If that happens, isn't it likely to be a GDB error, in | |
1196 | which case we should fix the GDB error rather than | |
1197 | silently dealing with it here? So I'd vote for | |
1198 | removing the check for the symbol in the other | |
1199 | block. */ | |
1200 | block = BLOCKVECTOR_BLOCK (bv, | |
1201 | block_index == GLOBAL_BLOCK ? | |
1202 | STATIC_BLOCK : GLOBAL_BLOCK); | |
5ad1c190 | 1203 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1204 | if (!sym) |
1205 | error ("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>).", | |
1206 | block_index == GLOBAL_BLOCK ? "global" : "static", | |
1207 | name, ps->filename, name, name); | |
1208 | } | |
1209 | if (symtab != NULL) | |
1210 | *symtab = s; | |
1211 | return fixup_symbol_section (sym, objfile); | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | return NULL; | |
1216 | } | |
1217 | ||
ae2f03ac | 1218 | #if 0 |
406bc4de DC |
1219 | /* Check for the possibility of the symbol being a function or a |
1220 | mangled variable that is stored in one of the minimal symbol | |
1221 | tables. Eventually, all global symbols might be resolved in this | |
1222 | way. */ | |
1223 | ||
e45febe2 DC |
1224 | /* NOTE: carlton/2002-12-05: At one point, this function was part of |
1225 | lookup_symbol_aux, and what are now 'return' statements within | |
1226 | lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if | |
1227 | sym was NULL. As far as I can tell, this was basically accidental; | |
1228 | it didn't happen every time that msymbol was non-NULL, but only if | |
1229 | some additional conditions held as well, and it caused problems | |
1230 | with HP-generated symbol tables. */ | |
1231 | ||
ae2f03ac EZ |
1232 | /* NOTE: carlton/2003-05-14: This function was once used as part of |
1233 | lookup_symbol. It is currently unnecessary for correctness | |
1234 | reasons, however, and using it doesn't seem to be any faster than | |
1235 | using lookup_symbol_aux_psymtabs, so I'm commenting it out. */ | |
1236 | ||
406bc4de DC |
1237 | static struct symbol * |
1238 | lookup_symbol_aux_minsyms (const char *name, | |
5ad1c190 | 1239 | const char *linkage_name, |
176620f1 | 1240 | const domain_enum domain, |
406bc4de | 1241 | int *is_a_field_of_this, |
e45febe2 | 1242 | struct symtab **symtab) |
406bc4de DC |
1243 | { |
1244 | struct symbol *sym; | |
1245 | struct blockvector *bv; | |
1246 | const struct block *block; | |
1247 | struct minimal_symbol *msymbol; | |
1248 | struct symtab *s; | |
1249 | ||
176620f1 | 1250 | if (domain == VAR_DOMAIN) |
406bc4de DC |
1251 | { |
1252 | msymbol = lookup_minimal_symbol (name, NULL, NULL); | |
1253 | ||
1254 | if (msymbol != NULL) | |
1255 | { | |
1256 | /* OK, we found a minimal symbol in spite of not finding any | |
1257 | symbol. There are various possible explanations for | |
1258 | this. One possibility is the symbol exists in code not | |
1259 | compiled -g. Another possibility is that the 'psymtab' | |
1260 | isn't doing its job. A third possibility, related to #2, | |
1261 | is that we were confused by name-mangling. For instance, | |
1262 | maybe the psymtab isn't doing its job because it only | |
1263 | know about demangled names, but we were given a mangled | |
1264 | name... */ | |
1265 | ||
1266 | /* We first use the address in the msymbol to try to locate | |
1267 | the appropriate symtab. Note that find_pc_sect_symtab() | |
1268 | has a side-effect of doing psymtab-to-symtab expansion, | |
1269 | for the found symtab. */ | |
1270 | s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol), | |
1271 | SYMBOL_BFD_SECTION (msymbol)); | |
1272 | if (s != NULL) | |
1273 | { | |
1274 | /* This is a function which has a symtab for its address. */ | |
1275 | bv = BLOCKVECTOR (s); | |
1276 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1277 | ||
2335f48e | 1278 | /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the |
406bc4de DC |
1279 | `name' argument to lookup_block_symbol. But the name |
1280 | of a minimal symbol is always mangled, so that seems | |
1281 | to be clearly the wrong thing to pass as the | |
1282 | unmangled name. */ | |
1283 | sym = | |
5ad1c190 | 1284 | lookup_block_symbol (block, name, linkage_name, domain); |
406bc4de DC |
1285 | /* We kept static functions in minimal symbol table as well as |
1286 | in static scope. We want to find them in the symbol table. */ | |
1287 | if (!sym) | |
1288 | { | |
1289 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1290 | sym = lookup_block_symbol (block, name, | |
5ad1c190 | 1291 | linkage_name, domain); |
406bc4de DC |
1292 | } |
1293 | ||
1294 | /* NOTE: carlton/2002-12-04: The following comment was | |
1295 | taken from a time when two versions of this function | |
1296 | were part of the body of lookup_symbol_aux: this | |
1297 | comment was taken from the version of the function | |
1298 | that was #ifdef HPUXHPPA, and the comment was right | |
1299 | before the 'return NULL' part of lookup_symbol_aux. | |
1300 | (Hence the "Fall through and return 0" comment.) | |
1301 | Elena did some digging into the situation for | |
1302 | Fortran, and she reports: | |
1303 | ||
1304 | "I asked around (thanks to Jeff Knaggs), and I think | |
1305 | the story for Fortran goes like this: | |
1306 | ||
1307 | "Apparently, in older Fortrans, '_' was not part of | |
1308 | the user namespace. g77 attached a final '_' to | |
1309 | procedure names as the exported symbols for linkage | |
1310 | (foo_) , but the symbols went in the debug info just | |
1311 | like 'foo'. The rationale behind this is not | |
1312 | completely clear, and maybe it was done to other | |
1313 | symbols as well, not just procedures." */ | |
1314 | ||
1315 | /* If we get here with sym == 0, the symbol was | |
1316 | found in the minimal symbol table | |
1317 | but not in the symtab. | |
1318 | Fall through and return 0 to use the msymbol | |
1319 | definition of "foo_". | |
1320 | (Note that outer code generally follows up a call | |
1321 | to this routine with a call to lookup_minimal_symbol(), | |
1322 | so a 0 return means we'll just flow into that other routine). | |
1323 | ||
1324 | This happens for Fortran "foo_" symbols, | |
1325 | which are "foo" in the symtab. | |
1326 | ||
1327 | This can also happen if "asm" is used to make a | |
1328 | regular symbol but not a debugging symbol, e.g. | |
1329 | asm(".globl _main"); | |
1330 | asm("_main:"); | |
1331 | */ | |
1332 | ||
1333 | if (symtab != NULL && sym != NULL) | |
1334 | *symtab = s; | |
406bc4de DC |
1335 | return fixup_symbol_section (sym, s->objfile); |
1336 | } | |
406bc4de DC |
1337 | } |
1338 | } | |
1339 | ||
1340 | return NULL; | |
1341 | } | |
ae2f03ac | 1342 | #endif /* 0 */ |
406bc4de | 1343 | |
5f9a71c3 DC |
1344 | /* A default version of lookup_symbol_nonlocal for use by languages |
1345 | that can't think of anything better to do. This implements the C | |
1346 | lookup rules. */ | |
1347 | ||
1348 | struct symbol * | |
1349 | basic_lookup_symbol_nonlocal (const char *name, | |
1350 | const char *linkage_name, | |
1351 | const struct block *block, | |
1352 | const domain_enum domain, | |
1353 | struct symtab **symtab) | |
1354 | { | |
1355 | struct symbol *sym; | |
1356 | ||
1357 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1358 | this (or what turned into this) was part of lookup_symbol_aux; | |
1359 | I'm much less worried about these questions now, since these | |
1360 | decisions have turned out well, but I leave these comments here | |
1361 | for posterity. */ | |
1362 | ||
1363 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1364 | not it would be appropriate to search the current global block | |
1365 | here as well. (That's what this code used to do before the | |
1366 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1367 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1368 | next. On the other hand, if decode_line_1 is passed an argument | |
1369 | like filename:var, then the user presumably wants 'var' to be | |
1370 | searched for in filename. On the third hand, there shouldn't be | |
1371 | multiple global variables all of which are named 'var', and it's | |
1372 | not like decode_line_1 has ever restricted its search to only | |
1373 | global variables in a single filename. All in all, only | |
1374 | searching the static block here seems best: it's correct and it's | |
1375 | cleanest. */ | |
1376 | ||
1377 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1378 | issue here: if you usually search for global symbols in the | |
1379 | current file, then it would be slightly better to search the | |
1380 | current global block before searching all the symtabs. But there | |
1381 | are other factors that have a much greater effect on performance | |
1382 | than that one, so I don't think we should worry about that for | |
1383 | now. */ | |
1384 | ||
1385 | sym = lookup_symbol_static (name, linkage_name, block, domain, symtab); | |
1386 | if (sym != NULL) | |
1387 | return sym; | |
1388 | ||
1389 | return lookup_symbol_global (name, linkage_name, domain, symtab); | |
1390 | } | |
1391 | ||
1392 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1393 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1394 | ||
1395 | struct symbol * | |
1396 | lookup_symbol_static (const char *name, | |
1397 | const char *linkage_name, | |
1398 | const struct block *block, | |
1399 | const domain_enum domain, | |
1400 | struct symtab **symtab) | |
1401 | { | |
1402 | const struct block *static_block = block_static_block (block); | |
1403 | ||
1404 | if (static_block != NULL) | |
1405 | return lookup_symbol_aux_block (name, linkage_name, static_block, | |
1406 | domain, symtab); | |
1407 | else | |
1408 | return NULL; | |
1409 | } | |
1410 | ||
1411 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1412 | necessary). */ | |
1413 | ||
1414 | struct symbol * | |
1415 | lookup_symbol_global (const char *name, | |
1416 | const char *linkage_name, | |
1417 | const domain_enum domain, | |
1418 | struct symtab **symtab) | |
1419 | { | |
1420 | struct symbol *sym; | |
1421 | ||
1422 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, | |
1423 | domain, symtab); | |
1424 | if (sym != NULL) | |
1425 | return sym; | |
1426 | ||
1427 | return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, | |
1428 | domain, symtab); | |
1429 | } | |
1430 | ||
3d4e8fd2 DC |
1431 | /* Look, in partial_symtab PST, for symbol whose natural name is NAME. |
1432 | If LINKAGE_NAME is non-NULL, check in addition that the symbol's | |
1433 | linkage name matches it. Check the global symbols if GLOBAL, the | |
1434 | static symbols if not */ | |
c906108c | 1435 | |
b6429628 | 1436 | struct partial_symbol * |
3d4e8fd2 DC |
1437 | lookup_partial_symbol (struct partial_symtab *pst, const char *name, |
1438 | const char *linkage_name, int global, | |
176620f1 | 1439 | domain_enum domain) |
c906108c | 1440 | { |
357e46e7 | 1441 | struct partial_symbol *temp; |
c906108c | 1442 | struct partial_symbol **start, **psym; |
38d49aff | 1443 | struct partial_symbol **top, **real_top, **bottom, **center; |
c906108c SS |
1444 | int length = (global ? pst->n_global_syms : pst->n_static_syms); |
1445 | int do_linear_search = 1; | |
357e46e7 | 1446 | |
c906108c SS |
1447 | if (length == 0) |
1448 | { | |
1449 | return (NULL); | |
1450 | } | |
c906108c SS |
1451 | start = (global ? |
1452 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
c5aa993b | 1453 | pst->objfile->static_psymbols.list + pst->statics_offset); |
357e46e7 | 1454 | |
c5aa993b | 1455 | if (global) /* This means we can use a binary search. */ |
c906108c SS |
1456 | { |
1457 | do_linear_search = 0; | |
1458 | ||
1459 | /* Binary search. This search is guaranteed to end with center | |
0fe19209 DC |
1460 | pointing at the earliest partial symbol whose name might be |
1461 | correct. At that point *all* partial symbols with an | |
1462 | appropriate name will be checked against the correct | |
176620f1 | 1463 | domain. */ |
c906108c SS |
1464 | |
1465 | bottom = start; | |
1466 | top = start + length - 1; | |
38d49aff | 1467 | real_top = top; |
c906108c SS |
1468 | while (top > bottom) |
1469 | { | |
1470 | center = bottom + (top - bottom) / 2; | |
1471 | if (!(center < top)) | |
e1e9e218 | 1472 | internal_error (__FILE__, __LINE__, "failed internal consistency check"); |
c906108c | 1473 | if (!do_linear_search |
357e46e7 | 1474 | && (SYMBOL_LANGUAGE (*center) == language_java)) |
c906108c SS |
1475 | { |
1476 | do_linear_search = 1; | |
1477 | } | |
4725b721 | 1478 | if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0) |
c906108c SS |
1479 | { |
1480 | top = center; | |
1481 | } | |
1482 | else | |
1483 | { | |
1484 | bottom = center + 1; | |
1485 | } | |
1486 | } | |
1487 | if (!(top == bottom)) | |
e1e9e218 | 1488 | internal_error (__FILE__, __LINE__, "failed internal consistency check"); |
357e46e7 | 1489 | |
3d4e8fd2 DC |
1490 | while (top <= real_top |
1491 | && (linkage_name != NULL | |
1492 | ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0 | |
4725b721 | 1493 | : SYMBOL_MATCHES_SEARCH_NAME (*top,name))) |
c906108c | 1494 | { |
176620f1 | 1495 | if (SYMBOL_DOMAIN (*top) == domain) |
c906108c | 1496 | { |
357e46e7 | 1497 | return (*top); |
c906108c | 1498 | } |
c5aa993b | 1499 | top++; |
c906108c SS |
1500 | } |
1501 | } | |
1502 | ||
1503 | /* Can't use a binary search or else we found during the binary search that | |
1504 | we should also do a linear search. */ | |
1505 | ||
1506 | if (do_linear_search) | |
357e46e7 | 1507 | { |
c906108c SS |
1508 | for (psym = start; psym < start + length; psym++) |
1509 | { | |
176620f1 | 1510 | if (domain == SYMBOL_DOMAIN (*psym)) |
c906108c | 1511 | { |
3d4e8fd2 DC |
1512 | if (linkage_name != NULL |
1513 | ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0 | |
4725b721 | 1514 | : SYMBOL_MATCHES_SEARCH_NAME (*psym, name)) |
c906108c SS |
1515 | { |
1516 | return (*psym); | |
1517 | } | |
1518 | } | |
1519 | } | |
1520 | } | |
1521 | ||
1522 | return (NULL); | |
1523 | } | |
1524 | ||
176620f1 | 1525 | /* Look up a type named NAME in the struct_domain. The type returned |
b368761e DC |
1526 | must not be opaque -- i.e., must have at least one field |
1527 | defined. */ | |
c906108c | 1528 | |
b368761e DC |
1529 | struct type * |
1530 | lookup_transparent_type (const char *name) | |
1531 | { | |
1532 | return current_language->la_lookup_transparent_type (name); | |
1533 | } | |
c906108c | 1534 | |
b368761e DC |
1535 | /* The standard implementation of lookup_transparent_type. This code |
1536 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1537 | up types were just left out. In particular it's assumed here that | |
1538 | types are available in struct_domain and only at file-static or | |
1539 | global blocks. */ | |
c906108c SS |
1540 | |
1541 | struct type * | |
b368761e | 1542 | basic_lookup_transparent_type (const char *name) |
c906108c | 1543 | { |
52f0bd74 AC |
1544 | struct symbol *sym; |
1545 | struct symtab *s = NULL; | |
1546 | struct partial_symtab *ps; | |
c906108c | 1547 | struct blockvector *bv; |
52f0bd74 AC |
1548 | struct objfile *objfile; |
1549 | struct block *block; | |
c906108c SS |
1550 | |
1551 | /* Now search all the global symbols. Do the symtab's first, then | |
1552 | check the psymtab's. If a psymtab indicates the existence | |
1553 | of the desired name as a global, then do psymtab-to-symtab | |
1554 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1555 | |
c906108c | 1556 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
1557 | { |
1558 | bv = BLOCKVECTOR (s); | |
1559 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1560 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1561 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1562 | { | |
1563 | return SYMBOL_TYPE (sym); | |
1564 | } | |
1565 | } | |
c906108c SS |
1566 | |
1567 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1568 | { |
3d4e8fd2 | 1569 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, |
176620f1 | 1570 | 1, STRUCT_DOMAIN)) |
c5aa993b JM |
1571 | { |
1572 | s = PSYMTAB_TO_SYMTAB (ps); | |
1573 | bv = BLOCKVECTOR (s); | |
1574 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1575 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1576 | if (!sym) |
1577 | { | |
1578 | /* This shouldn't be necessary, but as a last resort | |
1579 | * try looking in the statics even though the psymtab | |
1580 | * claimed the symbol was global. It's possible that | |
1581 | * the psymtab gets it wrong in some cases. | |
1582 | */ | |
1583 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1584 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1585 | if (!sym) |
1586 | error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ | |
c906108c SS |
1587 | %s may be an inlined function, or may be a template function\n\ |
1588 | (if a template, try specifying an instantiation: %s<type>).", | |
c5aa993b JM |
1589 | name, ps->filename, name, name); |
1590 | } | |
1591 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1592 | return SYMBOL_TYPE (sym); | |
1593 | } | |
1594 | } | |
c906108c SS |
1595 | |
1596 | /* Now search the static file-level symbols. | |
1597 | Not strictly correct, but more useful than an error. | |
1598 | Do the symtab's first, then | |
1599 | check the psymtab's. If a psymtab indicates the existence | |
1600 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1601 | conversion on the fly and return the found symbol. | |
1602 | */ | |
1603 | ||
1604 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1605 | { |
1606 | bv = BLOCKVECTOR (s); | |
1607 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1608 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1609 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1610 | { | |
1611 | return SYMBOL_TYPE (sym); | |
1612 | } | |
1613 | } | |
c906108c SS |
1614 | |
1615 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1616 | { |
176620f1 | 1617 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN)) |
c5aa993b JM |
1618 | { |
1619 | s = PSYMTAB_TO_SYMTAB (ps); | |
1620 | bv = BLOCKVECTOR (s); | |
1621 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1622 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1623 | if (!sym) |
1624 | { | |
1625 | /* This shouldn't be necessary, but as a last resort | |
1626 | * try looking in the globals even though the psymtab | |
1627 | * claimed the symbol was static. It's possible that | |
1628 | * the psymtab gets it wrong in some cases. | |
1629 | */ | |
1630 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1631 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1632 | if (!sym) |
1633 | error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ | |
c906108c SS |
1634 | %s may be an inlined function, or may be a template function\n\ |
1635 | (if a template, try specifying an instantiation: %s<type>).", | |
c5aa993b JM |
1636 | name, ps->filename, name, name); |
1637 | } | |
1638 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1639 | return SYMBOL_TYPE (sym); | |
1640 | } | |
1641 | } | |
c906108c SS |
1642 | return (struct type *) 0; |
1643 | } | |
1644 | ||
1645 | ||
1646 | /* Find the psymtab containing main(). */ | |
1647 | /* FIXME: What about languages without main() or specially linked | |
1648 | executables that have no main() ? */ | |
1649 | ||
1650 | struct partial_symtab * | |
fba45db2 | 1651 | find_main_psymtab (void) |
c906108c | 1652 | { |
52f0bd74 AC |
1653 | struct partial_symtab *pst; |
1654 | struct objfile *objfile; | |
c906108c SS |
1655 | |
1656 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 1657 | { |
176620f1 | 1658 | if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN)) |
c5aa993b JM |
1659 | { |
1660 | return (pst); | |
1661 | } | |
1662 | } | |
c906108c SS |
1663 | return (NULL); |
1664 | } | |
1665 | ||
176620f1 | 1666 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1667 | |
1668 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1669 | to find a match during the binary search of the non-encoded names, but | |
1670 | for now we don't worry about the slight inefficiency of looking for | |
1671 | a match we'll never find, since it will go pretty quick. Once the | |
1672 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 AF |
1673 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
1674 | symbol (language_cplus or language_objc set) has both the encoded and | |
1675 | non-encoded names tested for a match. | |
3121eff0 | 1676 | |
5ad1c190 | 1677 | If LINKAGE_NAME is non-NULL, verify that any symbol we find has this |
3121eff0 DJ |
1678 | particular mangled name. |
1679 | */ | |
c906108c SS |
1680 | |
1681 | struct symbol * | |
aa1ee363 | 1682 | lookup_block_symbol (const struct block *block, const char *name, |
5ad1c190 | 1683 | const char *linkage_name, |
176620f1 | 1684 | const domain_enum domain) |
c906108c | 1685 | { |
de4f826b DC |
1686 | struct dict_iterator iter; |
1687 | struct symbol *sym; | |
c906108c | 1688 | |
de4f826b | 1689 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1690 | { |
de4f826b DC |
1691 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
1692 | sym != NULL; | |
1693 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 1694 | { |
de4f826b DC |
1695 | if (SYMBOL_DOMAIN (sym) == domain |
1696 | && (linkage_name != NULL | |
1697 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
261397f8 DJ |
1698 | return sym; |
1699 | } | |
1700 | return NULL; | |
1701 | } | |
526e70c0 | 1702 | else |
c906108c | 1703 | { |
526e70c0 DC |
1704 | /* Note that parameter symbols do not always show up last in the |
1705 | list; this loop makes sure to take anything else other than | |
1706 | parameter symbols first; it only uses parameter symbols as a | |
1707 | last resort. Note that this only takes up extra computation | |
1708 | time on a match. */ | |
de4f826b DC |
1709 | |
1710 | struct symbol *sym_found = NULL; | |
1711 | ||
1712 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
1713 | sym != NULL; | |
1714 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 1715 | { |
176620f1 | 1716 | if (SYMBOL_DOMAIN (sym) == domain |
de4f826b DC |
1717 | && (linkage_name != NULL |
1718 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
c906108c | 1719 | { |
c906108c SS |
1720 | sym_found = sym; |
1721 | if (SYMBOL_CLASS (sym) != LOC_ARG && | |
1722 | SYMBOL_CLASS (sym) != LOC_LOCAL_ARG && | |
1723 | SYMBOL_CLASS (sym) != LOC_REF_ARG && | |
1724 | SYMBOL_CLASS (sym) != LOC_REGPARM && | |
1725 | SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR && | |
4c2df51b DJ |
1726 | SYMBOL_CLASS (sym) != LOC_BASEREG_ARG && |
1727 | SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG) | |
c906108c SS |
1728 | { |
1729 | break; | |
1730 | } | |
1731 | } | |
c906108c | 1732 | } |
de4f826b | 1733 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1734 | } |
c906108c SS |
1735 | } |
1736 | ||
c906108c SS |
1737 | /* Find the symtab associated with PC and SECTION. Look through the |
1738 | psymtabs and read in another symtab if necessary. */ | |
1739 | ||
1740 | struct symtab * | |
fba45db2 | 1741 | find_pc_sect_symtab (CORE_ADDR pc, asection *section) |
c906108c | 1742 | { |
52f0bd74 | 1743 | struct block *b; |
c906108c | 1744 | struct blockvector *bv; |
52f0bd74 AC |
1745 | struct symtab *s = NULL; |
1746 | struct symtab *best_s = NULL; | |
1747 | struct partial_symtab *ps; | |
1748 | struct objfile *objfile; | |
c906108c | 1749 | CORE_ADDR distance = 0; |
8a48e967 DJ |
1750 | struct minimal_symbol *msymbol; |
1751 | ||
1752 | /* If we know that this is not a text address, return failure. This is | |
1753 | necessary because we loop based on the block's high and low code | |
1754 | addresses, which do not include the data ranges, and because | |
1755 | we call find_pc_sect_psymtab which has a similar restriction based | |
1756 | on the partial_symtab's texthigh and textlow. */ | |
1757 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
1758 | if (msymbol | |
1759 | && (msymbol->type == mst_data | |
1760 | || msymbol->type == mst_bss | |
1761 | || msymbol->type == mst_abs | |
1762 | || msymbol->type == mst_file_data | |
1763 | || msymbol->type == mst_file_bss)) | |
1764 | return NULL; | |
c906108c SS |
1765 | |
1766 | /* Search all symtabs for the one whose file contains our address, and which | |
1767 | is the smallest of all the ones containing the address. This is designed | |
1768 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
1769 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
1770 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
1771 | ||
1772 | This happens for native ecoff format, where code from included files | |
1773 | gets its own symtab. The symtab for the included file should have | |
1774 | been read in already via the dependency mechanism. | |
1775 | It might be swifter to create several symtabs with the same name | |
1776 | like xcoff does (I'm not sure). | |
1777 | ||
1778 | It also happens for objfiles that have their functions reordered. | |
1779 | For these, the symtab we are looking for is not necessarily read in. */ | |
1780 | ||
1781 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1782 | { |
1783 | bv = BLOCKVECTOR (s); | |
1784 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 1785 | |
c5aa993b | 1786 | if (BLOCK_START (b) <= pc |
c5aa993b | 1787 | && BLOCK_END (b) > pc |
c5aa993b JM |
1788 | && (distance == 0 |
1789 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
1790 | { | |
1791 | /* For an objfile that has its functions reordered, | |
1792 | find_pc_psymtab will find the proper partial symbol table | |
1793 | and we simply return its corresponding symtab. */ | |
1794 | /* In order to better support objfiles that contain both | |
1795 | stabs and coff debugging info, we continue on if a psymtab | |
1796 | can't be found. */ | |
1797 | if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs) | |
1798 | { | |
1799 | ps = find_pc_sect_psymtab (pc, section); | |
1800 | if (ps) | |
1801 | return PSYMTAB_TO_SYMTAB (ps); | |
1802 | } | |
1803 | if (section != 0) | |
1804 | { | |
de4f826b | 1805 | struct dict_iterator iter; |
261397f8 | 1806 | struct symbol *sym = NULL; |
c906108c | 1807 | |
de4f826b | 1808 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 1809 | { |
261397f8 DJ |
1810 | fixup_symbol_section (sym, objfile); |
1811 | if (section == SYMBOL_BFD_SECTION (sym)) | |
c5aa993b JM |
1812 | break; |
1813 | } | |
de4f826b | 1814 | if (sym == NULL) |
c5aa993b JM |
1815 | continue; /* no symbol in this symtab matches section */ |
1816 | } | |
1817 | distance = BLOCK_END (b) - BLOCK_START (b); | |
1818 | best_s = s; | |
1819 | } | |
1820 | } | |
c906108c SS |
1821 | |
1822 | if (best_s != NULL) | |
c5aa993b | 1823 | return (best_s); |
c906108c SS |
1824 | |
1825 | s = NULL; | |
1826 | ps = find_pc_sect_psymtab (pc, section); | |
1827 | if (ps) | |
1828 | { | |
1829 | if (ps->readin) | |
1830 | /* Might want to error() here (in case symtab is corrupt and | |
1831 | will cause a core dump), but maybe we can successfully | |
1832 | continue, so let's not. */ | |
c906108c | 1833 | warning ("\ |
d730266b AC |
1834 | (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n", |
1835 | paddr_nz (pc)); | |
c906108c SS |
1836 | s = PSYMTAB_TO_SYMTAB (ps); |
1837 | } | |
1838 | return (s); | |
1839 | } | |
1840 | ||
1841 | /* Find the symtab associated with PC. Look through the psymtabs and | |
1842 | read in another symtab if necessary. Backward compatibility, no section */ | |
1843 | ||
1844 | struct symtab * | |
fba45db2 | 1845 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
1846 | { |
1847 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
1848 | } | |
c906108c | 1849 | \f |
c5aa993b | 1850 | |
7e73cedf | 1851 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
1852 | Return a structure containing a symtab pointer, a line number, |
1853 | and a pc range for the entire source line. | |
1854 | The value's .pc field is NOT the specified pc. | |
1855 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
1856 | use the line that ends there. Otherwise, in that case, the line | |
1857 | that begins there is used. */ | |
1858 | ||
1859 | /* The big complication here is that a line may start in one file, and end just | |
1860 | before the start of another file. This usually occurs when you #include | |
1861 | code in the middle of a subroutine. To properly find the end of a line's PC | |
1862 | range, we must search all symtabs associated with this compilation unit, and | |
1863 | find the one whose first PC is closer than that of the next line in this | |
1864 | symtab. */ | |
1865 | ||
1866 | /* If it's worth the effort, we could be using a binary search. */ | |
1867 | ||
1868 | struct symtab_and_line | |
198beae2 | 1869 | find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent) |
c906108c SS |
1870 | { |
1871 | struct symtab *s; | |
52f0bd74 AC |
1872 | struct linetable *l; |
1873 | int len; | |
1874 | int i; | |
1875 | struct linetable_entry *item; | |
c906108c SS |
1876 | struct symtab_and_line val; |
1877 | struct blockvector *bv; | |
1878 | struct minimal_symbol *msymbol; | |
1879 | struct minimal_symbol *mfunsym; | |
1880 | ||
1881 | /* Info on best line seen so far, and where it starts, and its file. */ | |
1882 | ||
1883 | struct linetable_entry *best = NULL; | |
1884 | CORE_ADDR best_end = 0; | |
1885 | struct symtab *best_symtab = 0; | |
1886 | ||
1887 | /* Store here the first line number | |
1888 | of a file which contains the line at the smallest pc after PC. | |
1889 | If we don't find a line whose range contains PC, | |
1890 | we will use a line one less than this, | |
1891 | with a range from the start of that file to the first line's pc. */ | |
1892 | struct linetable_entry *alt = NULL; | |
1893 | struct symtab *alt_symtab = 0; | |
1894 | ||
1895 | /* Info on best line seen in this file. */ | |
1896 | ||
1897 | struct linetable_entry *prev; | |
1898 | ||
1899 | /* If this pc is not from the current frame, | |
1900 | it is the address of the end of a call instruction. | |
1901 | Quite likely that is the start of the following statement. | |
1902 | But what we want is the statement containing the instruction. | |
1903 | Fudge the pc to make sure we get that. */ | |
1904 | ||
fe39c653 | 1905 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 1906 | |
b77b1eb7 JB |
1907 | /* It's tempting to assume that, if we can't find debugging info for |
1908 | any function enclosing PC, that we shouldn't search for line | |
1909 | number info, either. However, GAS can emit line number info for | |
1910 | assembly files --- very helpful when debugging hand-written | |
1911 | assembly code. In such a case, we'd have no debug info for the | |
1912 | function, but we would have line info. */ | |
648f4f79 | 1913 | |
c906108c SS |
1914 | if (notcurrent) |
1915 | pc -= 1; | |
1916 | ||
c5aa993b | 1917 | /* elz: added this because this function returned the wrong |
c906108c SS |
1918 | information if the pc belongs to a stub (import/export) |
1919 | to call a shlib function. This stub would be anywhere between | |
1920 | two functions in the target, and the line info was erroneously | |
1921 | taken to be the one of the line before the pc. | |
c5aa993b | 1922 | */ |
c906108c | 1923 | /* RT: Further explanation: |
c5aa993b | 1924 | |
c906108c SS |
1925 | * We have stubs (trampolines) inserted between procedures. |
1926 | * | |
1927 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
1928 | * exists in the main image. | |
1929 | * | |
1930 | * In the minimal symbol table, we have a bunch of symbols | |
1931 | * sorted by start address. The stubs are marked as "trampoline", | |
1932 | * the others appear as text. E.g.: | |
1933 | * | |
1934 | * Minimal symbol table for main image | |
1935 | * main: code for main (text symbol) | |
1936 | * shr1: stub (trampoline symbol) | |
1937 | * foo: code for foo (text symbol) | |
1938 | * ... | |
1939 | * Minimal symbol table for "shr1" image: | |
1940 | * ... | |
1941 | * shr1: code for shr1 (text symbol) | |
1942 | * ... | |
1943 | * | |
1944 | * So the code below is trying to detect if we are in the stub | |
1945 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
1946 | * and if found, do the symbolization from the real-code address | |
1947 | * rather than the stub address. | |
1948 | * | |
1949 | * Assumptions being made about the minimal symbol table: | |
1950 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
1951 | * if we're really in the trampoline. If we're beyond it (say | |
1952 | * we're in "foo" in the above example), it'll have a closer | |
1953 | * symbol (the "foo" text symbol for example) and will not | |
1954 | * return the trampoline. | |
1955 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
1956 | * corresponding to the trampoline, and whose address will | |
1957 | * be different than the trampoline address. I put in a sanity | |
1958 | * check for the address being the same, to avoid an | |
1959 | * infinite recursion. | |
1960 | */ | |
c5aa993b JM |
1961 | msymbol = lookup_minimal_symbol_by_pc (pc); |
1962 | if (msymbol != NULL) | |
c906108c | 1963 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 1964 | { |
2335f48e | 1965 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 1966 | NULL); |
c5aa993b JM |
1967 | if (mfunsym == NULL) |
1968 | /* I eliminated this warning since it is coming out | |
1969 | * in the following situation: | |
1970 | * gdb shmain // test program with shared libraries | |
1971 | * (gdb) break shr1 // function in shared lib | |
1972 | * Warning: In stub for ... | |
1973 | * In the above situation, the shared lib is not loaded yet, | |
1974 | * so of course we can't find the real func/line info, | |
1975 | * but the "break" still works, and the warning is annoying. | |
1976 | * So I commented out the warning. RT */ | |
2335f48e | 1977 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
1978 | /* fall through */ |
1979 | else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol)) | |
1980 | /* Avoid infinite recursion */ | |
1981 | /* See above comment about why warning is commented out */ | |
2335f48e | 1982 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
1983 | /* fall through */ |
1984 | else | |
1985 | return find_pc_line (SYMBOL_VALUE (mfunsym), 0); | |
1986 | } | |
c906108c SS |
1987 | |
1988 | ||
1989 | s = find_pc_sect_symtab (pc, section); | |
1990 | if (!s) | |
1991 | { | |
1992 | /* if no symbol information, return previous pc */ | |
1993 | if (notcurrent) | |
1994 | pc++; | |
1995 | val.pc = pc; | |
1996 | return val; | |
1997 | } | |
1998 | ||
1999 | bv = BLOCKVECTOR (s); | |
2000 | ||
2001 | /* Look at all the symtabs that share this blockvector. | |
2002 | They all have the same apriori range, that we found was right; | |
2003 | but they have different line tables. */ | |
2004 | ||
2005 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2006 | { | |
2007 | /* Find the best line in this symtab. */ | |
2008 | l = LINETABLE (s); | |
2009 | if (!l) | |
c5aa993b | 2010 | continue; |
c906108c SS |
2011 | len = l->nitems; |
2012 | if (len <= 0) | |
2013 | { | |
2014 | /* I think len can be zero if the symtab lacks line numbers | |
2015 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2016 | I'm not sure which, and maybe it depends on the symbol | |
2017 | reader). */ | |
2018 | continue; | |
2019 | } | |
2020 | ||
2021 | prev = NULL; | |
2022 | item = l->item; /* Get first line info */ | |
2023 | ||
2024 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2025 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2026 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2027 | { | |
2028 | alt = item; | |
2029 | alt_symtab = s; | |
2030 | } | |
2031 | ||
2032 | for (i = 0; i < len; i++, item++) | |
2033 | { | |
2034 | /* Leave prev pointing to the linetable entry for the last line | |
2035 | that started at or before PC. */ | |
2036 | if (item->pc > pc) | |
2037 | break; | |
2038 | ||
2039 | prev = item; | |
2040 | } | |
2041 | ||
2042 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2043 | item points at the next line. If we ran off the end of the linetable |
2044 | (pc >= start of the last line), then prev == item. If pc < start of | |
2045 | the first line, prev will not be set. */ | |
c906108c SS |
2046 | |
2047 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2048 | If so, record this file, and its best line, as best so far. Don't |
2049 | save prev if it represents the end of a function (i.e. line number | |
2050 | 0) instead of a real line. */ | |
c906108c | 2051 | |
083ae935 | 2052 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2053 | { |
2054 | best = prev; | |
2055 | best_symtab = s; | |
25d53da1 KB |
2056 | |
2057 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2058 | if (best_end <= best->pc) | |
2059 | best_end = 0; | |
c906108c | 2060 | } |
25d53da1 KB |
2061 | |
2062 | /* If another line (denoted by ITEM) is in the linetable and its | |
2063 | PC is after BEST's PC, but before the current BEST_END, then | |
2064 | use ITEM's PC as the new best_end. */ | |
2065 | if (best && i < len && item->pc > best->pc | |
2066 | && (best_end == 0 || best_end > item->pc)) | |
2067 | best_end = item->pc; | |
c906108c SS |
2068 | } |
2069 | ||
2070 | if (!best_symtab) | |
2071 | { | |
2072 | if (!alt_symtab) | |
2073 | { /* If we didn't find any line # info, just | |
2074 | return zeros. */ | |
2075 | val.pc = pc; | |
2076 | } | |
2077 | else | |
2078 | { | |
2079 | val.symtab = alt_symtab; | |
2080 | val.line = alt->line - 1; | |
2081 | ||
2082 | /* Don't return line 0, that means that we didn't find the line. */ | |
c5aa993b JM |
2083 | if (val.line == 0) |
2084 | ++val.line; | |
c906108c SS |
2085 | |
2086 | val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2087 | val.end = alt->pc; | |
2088 | } | |
2089 | } | |
e8717518 FF |
2090 | else if (best->line == 0) |
2091 | { | |
2092 | /* If our best fit is in a range of PC's for which no line | |
2093 | number info is available (line number is zero) then we didn't | |
2094 | find any valid line information. */ | |
2095 | val.pc = pc; | |
2096 | } | |
c906108c SS |
2097 | else |
2098 | { | |
2099 | val.symtab = best_symtab; | |
2100 | val.line = best->line; | |
2101 | val.pc = best->pc; | |
2102 | if (best_end && (!alt || best_end < alt->pc)) | |
2103 | val.end = best_end; | |
2104 | else if (alt) | |
2105 | val.end = alt->pc; | |
2106 | else | |
2107 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2108 | } | |
2109 | val.section = section; | |
2110 | return val; | |
2111 | } | |
2112 | ||
2113 | /* Backward compatibility (no section) */ | |
2114 | ||
2115 | struct symtab_and_line | |
fba45db2 | 2116 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2117 | { |
c5aa993b | 2118 | asection *section; |
c906108c SS |
2119 | |
2120 | section = find_pc_overlay (pc); | |
2121 | if (pc_in_unmapped_range (pc, section)) | |
2122 | pc = overlay_mapped_address (pc, section); | |
2123 | return find_pc_sect_line (pc, section, notcurrent); | |
2124 | } | |
c906108c | 2125 | \f |
c906108c SS |
2126 | /* Find line number LINE in any symtab whose name is the same as |
2127 | SYMTAB. | |
2128 | ||
2129 | If found, return the symtab that contains the linetable in which it was | |
2130 | found, set *INDEX to the index in the linetable of the best entry | |
2131 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2132 | exact match. | |
2133 | ||
2134 | If not found, return NULL. */ | |
2135 | ||
50641945 | 2136 | struct symtab * |
fba45db2 | 2137 | find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match) |
c906108c SS |
2138 | { |
2139 | int exact; | |
2140 | ||
2141 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2142 | so far seen. */ | |
2143 | ||
2144 | int best_index; | |
2145 | struct linetable *best_linetable; | |
2146 | struct symtab *best_symtab; | |
2147 | ||
2148 | /* First try looking it up in the given symtab. */ | |
2149 | best_linetable = LINETABLE (symtab); | |
2150 | best_symtab = symtab; | |
2151 | best_index = find_line_common (best_linetable, line, &exact); | |
2152 | if (best_index < 0 || !exact) | |
2153 | { | |
2154 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2155 | another symtab with the same name. In the case of xcoff, |
2156 | multiple csects for one source file (produced by IBM's FORTRAN | |
2157 | compiler) produce multiple symtabs (this is unavoidable | |
2158 | assuming csects can be at arbitrary places in memory and that | |
2159 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2160 | |
2161 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2162 | or 0 if none has been seen so far. |
2163 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2164 | int best; |
2165 | ||
2166 | struct objfile *objfile; | |
2167 | struct symtab *s; | |
2168 | ||
2169 | if (best_index >= 0) | |
2170 | best = best_linetable->item[best_index].line; | |
2171 | else | |
2172 | best = 0; | |
2173 | ||
2174 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
2175 | { |
2176 | struct linetable *l; | |
2177 | int ind; | |
c906108c | 2178 | |
6314a349 | 2179 | if (strcmp (symtab->filename, s->filename) != 0) |
c5aa993b JM |
2180 | continue; |
2181 | l = LINETABLE (s); | |
2182 | ind = find_line_common (l, line, &exact); | |
2183 | if (ind >= 0) | |
2184 | { | |
2185 | if (exact) | |
2186 | { | |
2187 | best_index = ind; | |
2188 | best_linetable = l; | |
2189 | best_symtab = s; | |
2190 | goto done; | |
2191 | } | |
2192 | if (best == 0 || l->item[ind].line < best) | |
2193 | { | |
2194 | best = l->item[ind].line; | |
2195 | best_index = ind; | |
2196 | best_linetable = l; | |
2197 | best_symtab = s; | |
2198 | } | |
2199 | } | |
2200 | } | |
c906108c | 2201 | } |
c5aa993b | 2202 | done: |
c906108c SS |
2203 | if (best_index < 0) |
2204 | return NULL; | |
2205 | ||
2206 | if (index) | |
2207 | *index = best_index; | |
2208 | if (exact_match) | |
2209 | *exact_match = exact; | |
2210 | ||
2211 | return best_symtab; | |
2212 | } | |
2213 | \f | |
2214 | /* Set the PC value for a given source file and line number and return true. | |
2215 | Returns zero for invalid line number (and sets the PC to 0). | |
2216 | The source file is specified with a struct symtab. */ | |
2217 | ||
2218 | int | |
fba45db2 | 2219 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2220 | { |
2221 | struct linetable *l; | |
2222 | int ind; | |
2223 | ||
2224 | *pc = 0; | |
2225 | if (symtab == 0) | |
2226 | return 0; | |
2227 | ||
2228 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2229 | if (symtab != NULL) | |
2230 | { | |
2231 | l = LINETABLE (symtab); | |
2232 | *pc = l->item[ind].pc; | |
2233 | return 1; | |
2234 | } | |
2235 | else | |
2236 | return 0; | |
2237 | } | |
2238 | ||
2239 | /* Find the range of pc values in a line. | |
2240 | Store the starting pc of the line into *STARTPTR | |
2241 | and the ending pc (start of next line) into *ENDPTR. | |
2242 | Returns 1 to indicate success. | |
2243 | Returns 0 if could not find the specified line. */ | |
2244 | ||
2245 | int | |
fba45db2 KB |
2246 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2247 | CORE_ADDR *endptr) | |
c906108c SS |
2248 | { |
2249 | CORE_ADDR startaddr; | |
2250 | struct symtab_and_line found_sal; | |
2251 | ||
2252 | startaddr = sal.pc; | |
c5aa993b | 2253 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2254 | return 0; |
2255 | ||
2256 | /* This whole function is based on address. For example, if line 10 has | |
2257 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2258 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2259 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2260 | This also insures that we never give a range like "starts at 0x134 | |
2261 | and ends at 0x12c". */ | |
2262 | ||
2263 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2264 | if (found_sal.line != sal.line) | |
2265 | { | |
2266 | /* The specified line (sal) has zero bytes. */ | |
2267 | *startptr = found_sal.pc; | |
2268 | *endptr = found_sal.pc; | |
2269 | } | |
2270 | else | |
2271 | { | |
2272 | *startptr = found_sal.pc; | |
2273 | *endptr = found_sal.end; | |
2274 | } | |
2275 | return 1; | |
2276 | } | |
2277 | ||
2278 | /* Given a line table and a line number, return the index into the line | |
2279 | table for the pc of the nearest line whose number is >= the specified one. | |
2280 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2281 | ||
2282 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2283 | ||
2284 | static int | |
aa1ee363 | 2285 | find_line_common (struct linetable *l, int lineno, |
fba45db2 | 2286 | int *exact_match) |
c906108c | 2287 | { |
52f0bd74 AC |
2288 | int i; |
2289 | int len; | |
c906108c SS |
2290 | |
2291 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2292 | or 0 if none has been seen so far. | |
2293 | BEST_INDEX identifies the item for it. */ | |
2294 | ||
2295 | int best_index = -1; | |
2296 | int best = 0; | |
2297 | ||
2298 | if (lineno <= 0) | |
2299 | return -1; | |
2300 | if (l == 0) | |
2301 | return -1; | |
2302 | ||
2303 | len = l->nitems; | |
2304 | for (i = 0; i < len; i++) | |
2305 | { | |
aa1ee363 | 2306 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2307 | |
2308 | if (item->line == lineno) | |
2309 | { | |
2310 | /* Return the first (lowest address) entry which matches. */ | |
2311 | *exact_match = 1; | |
2312 | return i; | |
2313 | } | |
2314 | ||
2315 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2316 | { | |
2317 | best = item->line; | |
2318 | best_index = i; | |
2319 | } | |
2320 | } | |
2321 | ||
2322 | /* If we got here, we didn't get an exact match. */ | |
2323 | ||
2324 | *exact_match = 0; | |
2325 | return best_index; | |
2326 | } | |
2327 | ||
2328 | int | |
fba45db2 | 2329 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2330 | { |
2331 | struct symtab_and_line sal; | |
2332 | sal = find_pc_line (pc, 0); | |
2333 | *startptr = sal.pc; | |
2334 | *endptr = sal.end; | |
2335 | return sal.symtab != 0; | |
2336 | } | |
2337 | ||
2338 | /* Given a function symbol SYM, find the symtab and line for the start | |
2339 | of the function. | |
2340 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2341 | of real code inside the function. */ | |
2342 | ||
50641945 | 2343 | struct symtab_and_line |
fba45db2 | 2344 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c SS |
2345 | { |
2346 | CORE_ADDR pc; | |
2347 | struct symtab_and_line sal; | |
2348 | ||
2349 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2350 | fixup_symbol_section (sym, NULL); | |
2351 | if (funfirstline) | |
c5aa993b | 2352 | { /* skip "first line" of function (which is actually its prologue) */ |
c906108c SS |
2353 | asection *section = SYMBOL_BFD_SECTION (sym); |
2354 | /* If function is in an unmapped overlay, use its unmapped LMA | |
c5aa993b | 2355 | address, so that SKIP_PROLOGUE has something unique to work on */ |
c906108c SS |
2356 | if (section_is_overlay (section) && |
2357 | !section_is_mapped (section)) | |
2358 | pc = overlay_unmapped_address (pc, section); | |
2359 | ||
2360 | pc += FUNCTION_START_OFFSET; | |
b83266a0 | 2361 | pc = SKIP_PROLOGUE (pc); |
c906108c SS |
2362 | |
2363 | /* For overlays, map pc back into its mapped VMA range */ | |
2364 | pc = overlay_mapped_address (pc, section); | |
2365 | } | |
2366 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2367 | ||
c906108c SS |
2368 | /* Check if SKIP_PROLOGUE left us in mid-line, and the next |
2369 | line is still part of the same function. */ | |
2370 | if (sal.pc != pc | |
2371 | && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end | |
2372 | && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
2373 | { | |
2374 | /* First pc of next line */ | |
2375 | pc = sal.end; | |
2376 | /* Recalculate the line number (might not be N+1). */ | |
2377 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2378 | } | |
2379 | sal.pc = pc; | |
c906108c SS |
2380 | |
2381 | return sal; | |
2382 | } | |
50641945 | 2383 | |
c906108c SS |
2384 | /* If P is of the form "operator[ \t]+..." where `...' is |
2385 | some legitimate operator text, return a pointer to the | |
2386 | beginning of the substring of the operator text. | |
2387 | Otherwise, return "". */ | |
2388 | char * | |
fba45db2 | 2389 | operator_chars (char *p, char **end) |
c906108c SS |
2390 | { |
2391 | *end = ""; | |
2392 | if (strncmp (p, "operator", 8)) | |
2393 | return *end; | |
2394 | p += 8; | |
2395 | ||
2396 | /* Don't get faked out by `operator' being part of a longer | |
2397 | identifier. */ | |
c5aa993b | 2398 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2399 | return *end; |
2400 | ||
2401 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2402 | while (*p == ' ' || *p == '\t') | |
2403 | p++; | |
2404 | ||
2405 | /* Recognize 'operator TYPENAME'. */ | |
2406 | ||
c5aa993b | 2407 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2408 | { |
aa1ee363 | 2409 | char *q = p + 1; |
c5aa993b | 2410 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2411 | q++; |
2412 | *end = q; | |
2413 | return p; | |
2414 | } | |
2415 | ||
53e8ad3d MS |
2416 | while (*p) |
2417 | switch (*p) | |
2418 | { | |
2419 | case '\\': /* regexp quoting */ | |
2420 | if (p[1] == '*') | |
2421 | { | |
2422 | if (p[2] == '=') /* 'operator\*=' */ | |
2423 | *end = p + 3; | |
2424 | else /* 'operator\*' */ | |
2425 | *end = p + 2; | |
2426 | return p; | |
2427 | } | |
2428 | else if (p[1] == '[') | |
2429 | { | |
2430 | if (p[2] == ']') | |
2431 | error ("mismatched quoting on brackets, try 'operator\\[\\]'"); | |
2432 | else if (p[2] == '\\' && p[3] == ']') | |
2433 | { | |
2434 | *end = p + 4; /* 'operator\[\]' */ | |
2435 | return p; | |
2436 | } | |
2437 | else | |
2438 | error ("nothing is allowed between '[' and ']'"); | |
2439 | } | |
2440 | else | |
2441 | { | |
2442 | /* Gratuitous qoute: skip it and move on. */ | |
2443 | p++; | |
2444 | continue; | |
2445 | } | |
2446 | break; | |
2447 | case '!': | |
2448 | case '=': | |
2449 | case '*': | |
2450 | case '/': | |
2451 | case '%': | |
2452 | case '^': | |
2453 | if (p[1] == '=') | |
2454 | *end = p + 2; | |
2455 | else | |
2456 | *end = p + 1; | |
2457 | return p; | |
2458 | case '<': | |
2459 | case '>': | |
2460 | case '+': | |
2461 | case '-': | |
2462 | case '&': | |
2463 | case '|': | |
2464 | if (p[0] == '-' && p[1] == '>') | |
2465 | { | |
2466 | /* Struct pointer member operator 'operator->'. */ | |
2467 | if (p[2] == '*') | |
2468 | { | |
2469 | *end = p + 3; /* 'operator->*' */ | |
2470 | return p; | |
2471 | } | |
2472 | else if (p[2] == '\\') | |
2473 | { | |
2474 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2475 | return p; | |
2476 | } | |
2477 | else | |
2478 | { | |
2479 | *end = p + 2; /* 'operator->' */ | |
2480 | return p; | |
2481 | } | |
2482 | } | |
2483 | if (p[1] == '=' || p[1] == p[0]) | |
2484 | *end = p + 2; | |
2485 | else | |
2486 | *end = p + 1; | |
2487 | return p; | |
2488 | case '~': | |
2489 | case ',': | |
c5aa993b | 2490 | *end = p + 1; |
53e8ad3d MS |
2491 | return p; |
2492 | case '(': | |
2493 | if (p[1] != ')') | |
2494 | error ("`operator ()' must be specified without whitespace in `()'"); | |
c5aa993b | 2495 | *end = p + 2; |
53e8ad3d MS |
2496 | return p; |
2497 | case '?': | |
2498 | if (p[1] != ':') | |
2499 | error ("`operator ?:' must be specified without whitespace in `?:'"); | |
2500 | *end = p + 2; | |
2501 | return p; | |
2502 | case '[': | |
2503 | if (p[1] != ']') | |
2504 | error ("`operator []' must be specified without whitespace in `[]'"); | |
2505 | *end = p + 2; | |
2506 | return p; | |
2507 | default: | |
2508 | error ("`operator %s' not supported", p); | |
2509 | break; | |
2510 | } | |
2511 | ||
c906108c SS |
2512 | *end = ""; |
2513 | return *end; | |
2514 | } | |
c906108c | 2515 | \f |
c5aa993b | 2516 | |
c94fdfd0 EZ |
2517 | /* If FILE is not already in the table of files, return zero; |
2518 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2519 | is non-zero. If *FIRST is non-zero, forget the old table | |
2520 | contents. */ | |
2521 | static int | |
2522 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2523 | { |
c94fdfd0 EZ |
2524 | /* Table of files seen so far. */ |
2525 | static const char **tab = NULL; | |
c906108c SS |
2526 | /* Allocated size of tab in elements. |
2527 | Start with one 256-byte block (when using GNU malloc.c). | |
2528 | 24 is the malloc overhead when range checking is in effect. */ | |
2529 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2530 | /* Current size of tab in elements. */ | |
2531 | static int tab_cur_size; | |
c94fdfd0 | 2532 | const char **p; |
c906108c SS |
2533 | |
2534 | if (*first) | |
2535 | { | |
2536 | if (tab == NULL) | |
c94fdfd0 | 2537 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2538 | tab_cur_size = 0; |
2539 | } | |
2540 | ||
c94fdfd0 | 2541 | /* Is FILE in tab? */ |
c906108c | 2542 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2543 | if (strcmp (*p, file) == 0) |
2544 | return 1; | |
2545 | ||
2546 | /* No; maybe add it to tab. */ | |
2547 | if (add) | |
c906108c | 2548 | { |
c94fdfd0 EZ |
2549 | if (tab_cur_size == tab_alloc_size) |
2550 | { | |
2551 | tab_alloc_size *= 2; | |
2552 | tab = (const char **) xrealloc ((char *) tab, | |
2553 | tab_alloc_size * sizeof (*tab)); | |
2554 | } | |
2555 | tab[tab_cur_size++] = file; | |
c906108c | 2556 | } |
c906108c | 2557 | |
c94fdfd0 EZ |
2558 | return 0; |
2559 | } | |
2560 | ||
2561 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2562 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2563 | name printed. Set *FIRST to zero. */ | |
2564 | static void | |
2565 | output_source_filename (char *name, int *first) | |
2566 | { | |
2567 | /* Since a single source file can result in several partial symbol | |
2568 | tables, we need to avoid printing it more than once. Note: if | |
2569 | some of the psymtabs are read in and some are not, it gets | |
2570 | printed both under "Source files for which symbols have been | |
2571 | read" and "Source files for which symbols will be read in on | |
2572 | demand". I consider this a reasonable way to deal with the | |
2573 | situation. I'm not sure whether this can also happen for | |
2574 | symtabs; it doesn't hurt to check. */ | |
2575 | ||
2576 | /* Was NAME already seen? */ | |
2577 | if (filename_seen (name, 1, first)) | |
2578 | { | |
2579 | /* Yes; don't print it again. */ | |
2580 | return; | |
2581 | } | |
2582 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
2583 | if (*first) |
2584 | { | |
2585 | *first = 0; | |
2586 | } | |
2587 | else | |
2588 | { | |
2589 | printf_filtered (", "); | |
2590 | } | |
2591 | ||
2592 | wrap_here (""); | |
2593 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 2594 | } |
c906108c SS |
2595 | |
2596 | static void | |
fba45db2 | 2597 | sources_info (char *ignore, int from_tty) |
c906108c | 2598 | { |
52f0bd74 AC |
2599 | struct symtab *s; |
2600 | struct partial_symtab *ps; | |
2601 | struct objfile *objfile; | |
c906108c | 2602 | int first; |
c5aa993b | 2603 | |
c906108c SS |
2604 | if (!have_full_symbols () && !have_partial_symbols ()) |
2605 | { | |
e85428fc | 2606 | error ("No symbol table is loaded. Use the \"file\" command."); |
c906108c | 2607 | } |
c5aa993b | 2608 | |
c906108c SS |
2609 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2610 | ||
2611 | first = 1; | |
2612 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
2613 | { |
2614 | output_source_filename (s->filename, &first); | |
2615 | } | |
c906108c | 2616 | printf_filtered ("\n\n"); |
c5aa993b | 2617 | |
c906108c SS |
2618 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
2619 | ||
2620 | first = 1; | |
2621 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2622 | { |
2623 | if (!ps->readin) | |
2624 | { | |
2625 | output_source_filename (ps->filename, &first); | |
2626 | } | |
2627 | } | |
c906108c SS |
2628 | printf_filtered ("\n"); |
2629 | } | |
2630 | ||
2631 | static int | |
fd118b61 | 2632 | file_matches (char *file, char *files[], int nfiles) |
c906108c SS |
2633 | { |
2634 | int i; | |
2635 | ||
2636 | if (file != NULL && nfiles != 0) | |
2637 | { | |
2638 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 2639 | { |
31889e00 | 2640 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
2641 | return 1; |
2642 | } | |
c906108c SS |
2643 | } |
2644 | else if (nfiles == 0) | |
2645 | return 1; | |
2646 | return 0; | |
2647 | } | |
2648 | ||
2649 | /* Free any memory associated with a search. */ | |
2650 | void | |
fba45db2 | 2651 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
2652 | { |
2653 | struct symbol_search *p; | |
2654 | struct symbol_search *next; | |
2655 | ||
2656 | for (p = symbols; p != NULL; p = next) | |
2657 | { | |
2658 | next = p->next; | |
b8c9b27d | 2659 | xfree (p); |
c906108c SS |
2660 | } |
2661 | } | |
2662 | ||
5bd98722 AC |
2663 | static void |
2664 | do_free_search_symbols_cleanup (void *symbols) | |
2665 | { | |
2666 | free_search_symbols (symbols); | |
2667 | } | |
2668 | ||
2669 | struct cleanup * | |
2670 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
2671 | { | |
2672 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
2673 | } | |
2674 | ||
434d2d4f DJ |
2675 | /* Helper function for sort_search_symbols and qsort. Can only |
2676 | sort symbols, not minimal symbols. */ | |
2677 | static int | |
2678 | compare_search_syms (const void *sa, const void *sb) | |
2679 | { | |
2680 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
2681 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
2682 | ||
de5ad195 DC |
2683 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
2684 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
2685 | } |
2686 | ||
2687 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
2688 | prevtail where it is, but update its next pointer to point to | |
2689 | the first of the sorted symbols. */ | |
2690 | static struct symbol_search * | |
2691 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
2692 | { | |
2693 | struct symbol_search **symbols, *symp, *old_next; | |
2694 | int i; | |
2695 | ||
2696 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
2697 | * nfound); | |
2698 | symp = prevtail->next; | |
2699 | for (i = 0; i < nfound; i++) | |
2700 | { | |
2701 | symbols[i] = symp; | |
2702 | symp = symp->next; | |
2703 | } | |
2704 | /* Generally NULL. */ | |
2705 | old_next = symp; | |
2706 | ||
2707 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
2708 | compare_search_syms); | |
2709 | ||
2710 | symp = prevtail; | |
2711 | for (i = 0; i < nfound; i++) | |
2712 | { | |
2713 | symp->next = symbols[i]; | |
2714 | symp = symp->next; | |
2715 | } | |
2716 | symp->next = old_next; | |
2717 | ||
8ed32cc0 | 2718 | xfree (symbols); |
434d2d4f DJ |
2719 | return symp; |
2720 | } | |
5bd98722 | 2721 | |
c906108c SS |
2722 | /* Search the symbol table for matches to the regular expression REGEXP, |
2723 | returning the results in *MATCHES. | |
2724 | ||
2725 | Only symbols of KIND are searched: | |
176620f1 EZ |
2726 | FUNCTIONS_DOMAIN - search all functions |
2727 | TYPES_DOMAIN - search all type names | |
2728 | METHODS_DOMAIN - search all methods NOT IMPLEMENTED | |
2729 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, | |
c5aa993b | 2730 | and constants (enums) |
c906108c SS |
2731 | |
2732 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
2733 | |
2734 | The results are sorted locally; each symtab's global and static blocks are | |
2735 | separately alphabetized. | |
c5aa993b | 2736 | */ |
c906108c | 2737 | void |
176620f1 | 2738 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 2739 | struct symbol_search **matches) |
c906108c | 2740 | { |
52f0bd74 AC |
2741 | struct symtab *s; |
2742 | struct partial_symtab *ps; | |
2743 | struct blockvector *bv; | |
c906108c | 2744 | struct blockvector *prev_bv = 0; |
52f0bd74 AC |
2745 | struct block *b; |
2746 | int i = 0; | |
de4f826b | 2747 | struct dict_iterator iter; |
52f0bd74 | 2748 | struct symbol *sym; |
c906108c SS |
2749 | struct partial_symbol **psym; |
2750 | struct objfile *objfile; | |
2751 | struct minimal_symbol *msymbol; | |
2752 | char *val; | |
2753 | int found_misc = 0; | |
2754 | static enum minimal_symbol_type types[] | |
c5aa993b JM |
2755 | = |
2756 | {mst_data, mst_text, mst_abs, mst_unknown}; | |
c906108c | 2757 | static enum minimal_symbol_type types2[] |
c5aa993b JM |
2758 | = |
2759 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; | |
c906108c | 2760 | static enum minimal_symbol_type types3[] |
c5aa993b JM |
2761 | = |
2762 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; | |
c906108c | 2763 | static enum minimal_symbol_type types4[] |
c5aa993b JM |
2764 | = |
2765 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; | |
c906108c SS |
2766 | enum minimal_symbol_type ourtype; |
2767 | enum minimal_symbol_type ourtype2; | |
2768 | enum minimal_symbol_type ourtype3; | |
2769 | enum minimal_symbol_type ourtype4; | |
2770 | struct symbol_search *sr; | |
2771 | struct symbol_search *psr; | |
2772 | struct symbol_search *tail; | |
2773 | struct cleanup *old_chain = NULL; | |
2774 | ||
176620f1 EZ |
2775 | if (kind < VARIABLES_DOMAIN) |
2776 | error ("must search on specific domain"); | |
c906108c | 2777 | |
176620f1 EZ |
2778 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
2779 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
2780 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
2781 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
2782 | |
2783 | sr = *matches = NULL; | |
2784 | tail = NULL; | |
2785 | ||
2786 | if (regexp != NULL) | |
2787 | { | |
2788 | /* Make sure spacing is right for C++ operators. | |
2789 | This is just a courtesy to make the matching less sensitive | |
2790 | to how many spaces the user leaves between 'operator' | |
2791 | and <TYPENAME> or <OPERATOR>. */ | |
2792 | char *opend; | |
2793 | char *opname = operator_chars (regexp, &opend); | |
2794 | if (*opname) | |
c5aa993b JM |
2795 | { |
2796 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
2797 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
2798 | { | |
2799 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
2800 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
2801 | fix = 1; | |
2802 | } | |
2803 | else | |
2804 | { | |
2805 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
2806 | if (opname[-1] == ' ') | |
2807 | fix = 0; | |
2808 | } | |
2809 | /* If wrong number of spaces, fix it. */ | |
2810 | if (fix >= 0) | |
2811 | { | |
045f55a6 | 2812 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
c5aa993b JM |
2813 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
2814 | regexp = tmp; | |
2815 | } | |
2816 | } | |
2817 | ||
c906108c | 2818 | if (0 != (val = re_comp (regexp))) |
c5aa993b | 2819 | error ("Invalid regexp (%s): %s", val, regexp); |
c906108c SS |
2820 | } |
2821 | ||
2822 | /* Search through the partial symtabs *first* for all symbols | |
2823 | matching the regexp. That way we don't have to reproduce all of | |
2824 | the machinery below. */ | |
2825 | ||
2826 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2827 | { |
2828 | struct partial_symbol **bound, **gbound, **sbound; | |
2829 | int keep_going = 1; | |
2830 | ||
2831 | if (ps->readin) | |
2832 | continue; | |
2833 | ||
2834 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; | |
2835 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; | |
2836 | bound = gbound; | |
2837 | ||
2838 | /* Go through all of the symbols stored in a partial | |
2839 | symtab in one loop. */ | |
2840 | psym = objfile->global_psymbols.list + ps->globals_offset; | |
2841 | while (keep_going) | |
2842 | { | |
2843 | if (psym >= bound) | |
2844 | { | |
2845 | if (bound == gbound && ps->n_static_syms != 0) | |
2846 | { | |
2847 | psym = objfile->static_psymbols.list + ps->statics_offset; | |
2848 | bound = sbound; | |
2849 | } | |
2850 | else | |
2851 | keep_going = 0; | |
2852 | continue; | |
2853 | } | |
2854 | else | |
2855 | { | |
2856 | QUIT; | |
2857 | ||
2858 | /* If it would match (logic taken from loop below) | |
2859 | load the file and go on to the next one */ | |
2860 | if (file_matches (ps->filename, files, nfiles) | |
25120b0d DC |
2861 | && ((regexp == NULL |
2862 | || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0) | |
176620f1 | 2863 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF |
c5aa993b | 2864 | && SYMBOL_CLASS (*psym) != LOC_BLOCK) |
176620f1 EZ |
2865 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK) |
2866 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF) | |
2867 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)))) | |
c5aa993b JM |
2868 | { |
2869 | PSYMTAB_TO_SYMTAB (ps); | |
2870 | keep_going = 0; | |
2871 | } | |
2872 | } | |
2873 | psym++; | |
2874 | } | |
2875 | } | |
c906108c SS |
2876 | |
2877 | /* Here, we search through the minimal symbol tables for functions | |
2878 | and variables that match, and force their symbols to be read. | |
2879 | This is in particular necessary for demangled variable names, | |
2880 | which are no longer put into the partial symbol tables. | |
2881 | The symbol will then be found during the scan of symtabs below. | |
2882 | ||
2883 | For functions, find_pc_symtab should succeed if we have debug info | |
2884 | for the function, for variables we have to call lookup_symbol | |
2885 | to determine if the variable has debug info. | |
2886 | If the lookup fails, set found_misc so that we will rescan to print | |
2887 | any matching symbols without debug info. | |
c5aa993b | 2888 | */ |
c906108c | 2889 | |
176620f1 | 2890 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
2891 | { |
2892 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
2893 | { |
2894 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
2895 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
2896 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
2897 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
2898 | { | |
25120b0d DC |
2899 | if (regexp == NULL |
2900 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
2901 | { |
2902 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
2903 | { | |
b1262a02 DC |
2904 | /* FIXME: carlton/2003-02-04: Given that the |
2905 | semantics of lookup_symbol keeps on changing | |
2906 | slightly, it would be a nice idea if we had a | |
2907 | function lookup_symbol_minsym that found the | |
2908 | symbol associated to a given minimal symbol (if | |
2909 | any). */ | |
176620f1 | 2910 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 2911 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 2912 | (struct block *) NULL, |
176620f1 | 2913 | VAR_DOMAIN, |
b1262a02 DC |
2914 | 0, (struct symtab **) NULL) == NULL) |
2915 | found_misc = 1; | |
c5aa993b JM |
2916 | } |
2917 | } | |
2918 | } | |
2919 | } | |
c906108c SS |
2920 | } |
2921 | ||
2922 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
2923 | { |
2924 | bv = BLOCKVECTOR (s); | |
2925 | /* Often many files share a blockvector. | |
2926 | Scan each blockvector only once so that | |
2927 | we don't get every symbol many times. | |
2928 | It happens that the first symtab in the list | |
2929 | for any given blockvector is the main file. */ | |
2930 | if (bv != prev_bv) | |
2931 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
2932 | { | |
434d2d4f DJ |
2933 | struct symbol_search *prevtail = tail; |
2934 | int nfound = 0; | |
c5aa993b | 2935 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 2936 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b JM |
2937 | { |
2938 | QUIT; | |
c5aa993b | 2939 | if (file_matches (s->filename, files, nfiles) |
25120b0d DC |
2940 | && ((regexp == NULL |
2941 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
176620f1 | 2942 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF |
c5aa993b JM |
2943 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
2944 | && SYMBOL_CLASS (sym) != LOC_CONST) | |
176620f1 EZ |
2945 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) |
2946 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
2947 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)))) | |
c5aa993b JM |
2948 | { |
2949 | /* match */ | |
2950 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
2951 | psr->block = i; | |
2952 | psr->symtab = s; | |
2953 | psr->symbol = sym; | |
2954 | psr->msymbol = NULL; | |
2955 | psr->next = NULL; | |
2956 | if (tail == NULL) | |
434d2d4f | 2957 | sr = psr; |
c5aa993b JM |
2958 | else |
2959 | tail->next = psr; | |
2960 | tail = psr; | |
434d2d4f DJ |
2961 | nfound ++; |
2962 | } | |
2963 | } | |
2964 | if (nfound > 0) | |
2965 | { | |
2966 | if (prevtail == NULL) | |
2967 | { | |
2968 | struct symbol_search dummy; | |
2969 | ||
2970 | dummy.next = sr; | |
2971 | tail = sort_search_symbols (&dummy, nfound); | |
2972 | sr = dummy.next; | |
2973 | ||
2974 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 2975 | } |
434d2d4f DJ |
2976 | else |
2977 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
2978 | } |
2979 | } | |
2980 | prev_bv = bv; | |
2981 | } | |
c906108c SS |
2982 | |
2983 | /* If there are no eyes, avoid all contact. I mean, if there are | |
2984 | no debug symbols, then print directly from the msymbol_vector. */ | |
2985 | ||
176620f1 | 2986 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
2987 | { |
2988 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
2989 | { |
2990 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
2991 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
2992 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
2993 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
2994 | { | |
25120b0d DC |
2995 | if (regexp == NULL |
2996 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
2997 | { |
2998 | /* Functions: Look up by address. */ | |
176620f1 | 2999 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3000 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3001 | { | |
3002 | /* Variables/Absolutes: Look up by name */ | |
2335f48e | 3003 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
176620f1 | 3004 | (struct block *) NULL, VAR_DOMAIN, |
c5aa993b JM |
3005 | 0, (struct symtab **) NULL) == NULL) |
3006 | { | |
3007 | /* match */ | |
3008 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3009 | psr->block = i; | |
3010 | psr->msymbol = msymbol; | |
3011 | psr->symtab = NULL; | |
3012 | psr->symbol = NULL; | |
3013 | psr->next = NULL; | |
3014 | if (tail == NULL) | |
3015 | { | |
3016 | sr = psr; | |
5bd98722 | 3017 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3018 | } |
3019 | else | |
3020 | tail->next = psr; | |
3021 | tail = psr; | |
3022 | } | |
3023 | } | |
3024 | } | |
3025 | } | |
3026 | } | |
c906108c SS |
3027 | } |
3028 | ||
3029 | *matches = sr; | |
3030 | if (sr != NULL) | |
3031 | discard_cleanups (old_chain); | |
3032 | } | |
3033 | ||
3034 | /* Helper function for symtab_symbol_info, this function uses | |
3035 | the data returned from search_symbols() to print information | |
3036 | regarding the match to gdb_stdout. | |
c5aa993b | 3037 | */ |
c906108c | 3038 | static void |
176620f1 | 3039 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3040 | int block, char *last) |
c906108c SS |
3041 | { |
3042 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3043 | { | |
3044 | fputs_filtered ("\nFile ", gdb_stdout); | |
3045 | fputs_filtered (s->filename, gdb_stdout); | |
3046 | fputs_filtered (":\n", gdb_stdout); | |
3047 | } | |
3048 | ||
176620f1 | 3049 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3050 | printf_filtered ("static "); |
c5aa993b | 3051 | |
c906108c | 3052 | /* Typedef that is not a C++ class */ |
176620f1 EZ |
3053 | if (kind == TYPES_DOMAIN |
3054 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3055 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3056 | /* variable, func, or typedef-that-is-c++-class */ |
176620f1 EZ |
3057 | else if (kind < TYPES_DOMAIN || |
3058 | (kind == TYPES_DOMAIN && | |
3059 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3060 | { |
3061 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3062 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3063 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3064 | gdb_stdout, 0); |
c906108c SS |
3065 | |
3066 | printf_filtered (";\n"); | |
3067 | } | |
c906108c SS |
3068 | } |
3069 | ||
3070 | /* This help function for symtab_symbol_info() prints information | |
3071 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3072 | */ |
c906108c | 3073 | static void |
fba45db2 | 3074 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3075 | { |
3ac4495a MS |
3076 | char *tmp; |
3077 | ||
3078 | if (TARGET_ADDR_BIT <= 32) | |
14a5e767 AC |
3079 | tmp = local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3080 | & (CORE_ADDR) 0xffffffff, | |
3081 | "08l"); | |
3ac4495a | 3082 | else |
14a5e767 AC |
3083 | tmp = local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3084 | "016l"); | |
3ac4495a | 3085 | printf_filtered ("%s %s\n", |
de5ad195 | 3086 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3087 | } |
3088 | ||
3089 | /* This is the guts of the commands "info functions", "info types", and | |
3090 | "info variables". It calls search_symbols to find all matches and then | |
3091 | print_[m]symbol_info to print out some useful information about the | |
3092 | matches. | |
c5aa993b | 3093 | */ |
c906108c | 3094 | static void |
176620f1 | 3095 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c SS |
3096 | { |
3097 | static char *classnames[] | |
c5aa993b JM |
3098 | = |
3099 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3100 | struct symbol_search *symbols; |
3101 | struct symbol_search *p; | |
3102 | struct cleanup *old_chain; | |
3103 | char *last_filename = NULL; | |
3104 | int first = 1; | |
3105 | ||
3106 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3107 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
5bd98722 | 3108 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3109 | |
3110 | printf_filtered (regexp | |
c5aa993b JM |
3111 | ? "All %ss matching regular expression \"%s\":\n" |
3112 | : "All defined %ss:\n", | |
176620f1 | 3113 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3114 | |
3115 | for (p = symbols; p != NULL; p = p->next) | |
3116 | { | |
3117 | QUIT; | |
3118 | ||
3119 | if (p->msymbol != NULL) | |
c5aa993b JM |
3120 | { |
3121 | if (first) | |
3122 | { | |
3123 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3124 | first = 0; | |
3125 | } | |
3126 | print_msymbol_info (p->msymbol); | |
3127 | } | |
c906108c | 3128 | else |
c5aa993b JM |
3129 | { |
3130 | print_symbol_info (kind, | |
3131 | p->symtab, | |
3132 | p->symbol, | |
3133 | p->block, | |
3134 | last_filename); | |
3135 | last_filename = p->symtab->filename; | |
3136 | } | |
c906108c SS |
3137 | } |
3138 | ||
3139 | do_cleanups (old_chain); | |
3140 | } | |
3141 | ||
3142 | static void | |
fba45db2 | 3143 | variables_info (char *regexp, int from_tty) |
c906108c | 3144 | { |
176620f1 | 3145 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3146 | } |
3147 | ||
3148 | static void | |
fba45db2 | 3149 | functions_info (char *regexp, int from_tty) |
c906108c | 3150 | { |
176620f1 | 3151 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3152 | } |
3153 | ||
357e46e7 | 3154 | |
c906108c | 3155 | static void |
fba45db2 | 3156 | types_info (char *regexp, int from_tty) |
c906108c | 3157 | { |
176620f1 | 3158 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3159 | } |
3160 | ||
c906108c | 3161 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3162 | |
8b93c638 | 3163 | void |
fba45db2 | 3164 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3165 | { |
3166 | rbreak_command (regexp, from_tty); | |
3167 | } | |
8926118c | 3168 | |
c906108c | 3169 | static void |
fba45db2 | 3170 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3171 | { |
3172 | struct symbol_search *ss; | |
3173 | struct symbol_search *p; | |
3174 | struct cleanup *old_chain; | |
3175 | ||
176620f1 | 3176 | search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss); |
5bd98722 | 3177 | old_chain = make_cleanup_free_search_symbols (ss); |
c906108c SS |
3178 | |
3179 | for (p = ss; p != NULL; p = p->next) | |
3180 | { | |
3181 | if (p->msymbol == NULL) | |
c5aa993b | 3182 | { |
2335f48e DC |
3183 | char *string = alloca (strlen (p->symtab->filename) |
3184 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3185 | + 4); | |
c5aa993b JM |
3186 | strcpy (string, p->symtab->filename); |
3187 | strcat (string, ":'"); | |
2335f48e | 3188 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3189 | strcat (string, "'"); |
3190 | break_command (string, from_tty); | |
176620f1 | 3191 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3192 | p->symtab, |
3193 | p->symbol, | |
3194 | p->block, | |
3195 | p->symtab->filename); | |
3196 | } | |
c906108c | 3197 | else |
c5aa993b | 3198 | { |
2335f48e | 3199 | break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty); |
c5aa993b | 3200 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3201 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3202 | } |
c906108c SS |
3203 | } |
3204 | ||
3205 | do_cleanups (old_chain); | |
3206 | } | |
c906108c | 3207 | \f |
c5aa993b | 3208 | |
c906108c SS |
3209 | /* Helper routine for make_symbol_completion_list. */ |
3210 | ||
3211 | static int return_val_size; | |
3212 | static int return_val_index; | |
3213 | static char **return_val; | |
3214 | ||
3215 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3216 | completion_list_add_name \ |
2335f48e | 3217 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3218 | |
3219 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
3220 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3221 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
3222 | |
3223 | static void | |
fba45db2 KB |
3224 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3225 | char *text, char *word) | |
c906108c SS |
3226 | { |
3227 | int newsize; | |
3228 | int i; | |
3229 | ||
3230 | /* clip symbols that cannot match */ | |
3231 | ||
3232 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3233 | { | |
3234 | return; | |
3235 | } | |
3236 | ||
c906108c SS |
3237 | /* We have a match for a completion, so add SYMNAME to the current list |
3238 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
3239 | ||
3240 | { | |
3241 | char *new; | |
3242 | if (word == sym_text) | |
3243 | { | |
3244 | new = xmalloc (strlen (symname) + 5); | |
3245 | strcpy (new, symname); | |
3246 | } | |
3247 | else if (word > sym_text) | |
3248 | { | |
3249 | /* Return some portion of symname. */ | |
3250 | new = xmalloc (strlen (symname) + 5); | |
3251 | strcpy (new, symname + (word - sym_text)); | |
3252 | } | |
3253 | else | |
3254 | { | |
3255 | /* Return some of SYM_TEXT plus symname. */ | |
3256 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3257 | strncpy (new, word, sym_text - word); | |
3258 | new[sym_text - word] = '\0'; | |
3259 | strcat (new, symname); | |
3260 | } | |
3261 | ||
c906108c SS |
3262 | if (return_val_index + 3 > return_val_size) |
3263 | { | |
3264 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3265 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3266 | } | |
3267 | return_val[return_val_index++] = new; | |
3268 | return_val[return_val_index] = NULL; | |
3269 | } | |
3270 | } | |
3271 | ||
69636828 AF |
3272 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3273 | again and feed all the selectors into the mill. */ | |
3274 | ||
3275 | static void | |
3276 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3277 | int sym_text_len, char *text, char *word) | |
3278 | { | |
3279 | static char *tmp = NULL; | |
3280 | static unsigned int tmplen = 0; | |
3281 | ||
3282 | char *method, *category, *selector; | |
3283 | char *tmp2 = NULL; | |
3284 | ||
3285 | method = SYMBOL_NATURAL_NAME (msymbol); | |
3286 | ||
3287 | /* Is it a method? */ | |
3288 | if ((method[0] != '-') && (method[0] != '+')) | |
3289 | return; | |
3290 | ||
3291 | if (sym_text[0] == '[') | |
3292 | /* Complete on shortened method method. */ | |
3293 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
3294 | ||
3295 | while ((strlen (method) + 1) >= tmplen) | |
3296 | { | |
3297 | if (tmplen == 0) | |
3298 | tmplen = 1024; | |
3299 | else | |
3300 | tmplen *= 2; | |
3301 | tmp = xrealloc (tmp, tmplen); | |
3302 | } | |
3303 | selector = strchr (method, ' '); | |
3304 | if (selector != NULL) | |
3305 | selector++; | |
3306 | ||
3307 | category = strchr (method, '('); | |
3308 | ||
3309 | if ((category != NULL) && (selector != NULL)) | |
3310 | { | |
3311 | memcpy (tmp, method, (category - method)); | |
3312 | tmp[category - method] = ' '; | |
3313 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3314 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3315 | if (sym_text[0] == '[') | |
3316 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3317 | } | |
3318 | ||
3319 | if (selector != NULL) | |
3320 | { | |
3321 | /* Complete on selector only. */ | |
3322 | strcpy (tmp, selector); | |
3323 | tmp2 = strchr (tmp, ']'); | |
3324 | if (tmp2 != NULL) | |
3325 | *tmp2 = '\0'; | |
3326 | ||
3327 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3328 | } | |
3329 | } | |
3330 | ||
3331 | /* Break the non-quoted text based on the characters which are in | |
3332 | symbols. FIXME: This should probably be language-specific. */ | |
3333 | ||
3334 | static char * | |
3335 | language_search_unquoted_string (char *text, char *p) | |
3336 | { | |
3337 | for (; p > text; --p) | |
3338 | { | |
3339 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3340 | continue; | |
3341 | else | |
3342 | { | |
3343 | if ((current_language->la_language == language_objc)) | |
3344 | { | |
3345 | if (p[-1] == ':') /* might be part of a method name */ | |
3346 | continue; | |
3347 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
3348 | p -= 2; /* beginning of a method name */ | |
3349 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
3350 | { /* might be part of a method name */ | |
3351 | char *t = p; | |
3352 | ||
3353 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3354 | that we are in the middle of a method name. However, | |
3355 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3356 | Unfortunately we have to find it now to decide. */ | |
3357 | ||
3358 | while (t > text) | |
3359 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3360 | t[-1] == ' ' || t[-1] == ':' || | |
3361 | t[-1] == '(' || t[-1] == ')') | |
3362 | --t; | |
3363 | else | |
3364 | break; | |
3365 | ||
3366 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
3367 | p = t - 2; /* method name detected */ | |
3368 | /* else we leave with p unchanged */ | |
3369 | } | |
3370 | } | |
3371 | break; | |
3372 | } | |
3373 | } | |
3374 | return p; | |
3375 | } | |
3376 | ||
3377 | ||
c94fdfd0 EZ |
3378 | /* Return a NULL terminated array of all symbols (regardless of class) |
3379 | which begin by matching TEXT. If the answer is no symbols, then | |
3380 | the return value is an array which contains only a NULL pointer. | |
c906108c SS |
3381 | |
3382 | Problem: All of the symbols have to be copied because readline frees them. | |
3383 | I'm not going to worry about this; hopefully there won't be that many. */ | |
3384 | ||
3385 | char ** | |
fba45db2 | 3386 | make_symbol_completion_list (char *text, char *word) |
c906108c | 3387 | { |
de4f826b DC |
3388 | struct symbol *sym; |
3389 | struct symtab *s; | |
3390 | struct partial_symtab *ps; | |
3391 | struct minimal_symbol *msymbol; | |
3392 | struct objfile *objfile; | |
3393 | struct block *b, *surrounding_static_block = 0; | |
3394 | struct dict_iterator iter; | |
3395 | int j; | |
c906108c SS |
3396 | struct partial_symbol **psym; |
3397 | /* The symbol we are completing on. Points in same buffer as text. */ | |
3398 | char *sym_text; | |
3399 | /* Length of sym_text. */ | |
3400 | int sym_text_len; | |
3401 | ||
3402 | /* Now look for the symbol we are supposed to complete on. | |
3403 | FIXME: This should be language-specific. */ | |
3404 | { | |
3405 | char *p; | |
3406 | char quote_found; | |
3407 | char *quote_pos = NULL; | |
3408 | ||
3409 | /* First see if this is a quoted string. */ | |
3410 | quote_found = '\0'; | |
3411 | for (p = text; *p != '\0'; ++p) | |
3412 | { | |
3413 | if (quote_found != '\0') | |
3414 | { | |
3415 | if (*p == quote_found) | |
3416 | /* Found close quote. */ | |
3417 | quote_found = '\0'; | |
3418 | else if (*p == '\\' && p[1] == quote_found) | |
3419 | /* A backslash followed by the quote character | |
c5aa993b | 3420 | doesn't end the string. */ |
c906108c SS |
3421 | ++p; |
3422 | } | |
3423 | else if (*p == '\'' || *p == '"') | |
3424 | { | |
3425 | quote_found = *p; | |
3426 | quote_pos = p; | |
3427 | } | |
3428 | } | |
3429 | if (quote_found == '\'') | |
3430 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3431 | sym_text = quote_pos + 1; | |
3432 | else if (quote_found == '"') | |
3433 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3434 | to complete it any other way. */ |
c94fdfd0 EZ |
3435 | { |
3436 | return_val = (char **) xmalloc (sizeof (char *)); | |
3437 | return_val[0] = NULL; | |
3438 | return return_val; | |
3439 | } | |
c906108c SS |
3440 | else |
3441 | { | |
3442 | /* It is not a quoted string. Break it based on the characters | |
3443 | which are in symbols. */ | |
3444 | while (p > text) | |
3445 | { | |
3446 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3447 | --p; | |
3448 | else | |
3449 | break; | |
3450 | } | |
3451 | sym_text = p; | |
3452 | } | |
3453 | } | |
3454 | ||
3455 | sym_text_len = strlen (sym_text); | |
3456 | ||
3457 | return_val_size = 100; | |
3458 | return_val_index = 0; | |
3459 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3460 | return_val[0] = NULL; | |
3461 | ||
3462 | /* Look through the partial symtabs for all symbols which begin | |
3463 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
3464 | ||
3465 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3466 | { |
3467 | /* If the psymtab's been read in we'll get it when we search | |
3468 | through the blockvector. */ | |
3469 | if (ps->readin) | |
3470 | continue; | |
3471 | ||
3472 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
3473 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
3474 | + ps->n_global_syms); | |
3475 | psym++) | |
3476 | { | |
3477 | /* If interrupted, then quit. */ | |
3478 | QUIT; | |
3479 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3480 | } | |
3481 | ||
3482 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
3483 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
3484 | + ps->n_static_syms); | |
3485 | psym++) | |
3486 | { | |
3487 | QUIT; | |
3488 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3489 | } | |
3490 | } | |
c906108c SS |
3491 | |
3492 | /* At this point scan through the misc symbol vectors and add each | |
3493 | symbol you find to the list. Eventually we want to ignore | |
3494 | anything that isn't a text symbol (everything else will be | |
3495 | handled by the psymtab code above). */ | |
3496 | ||
3497 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3498 | { |
3499 | QUIT; | |
3500 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
69636828 AF |
3501 | |
3502 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); | |
c5aa993b | 3503 | } |
c906108c SS |
3504 | |
3505 | /* Search upwards from currently selected frame (so that we can | |
3506 | complete on local vars. */ | |
3507 | ||
ae767bfb | 3508 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) |
c906108c SS |
3509 | { |
3510 | if (!BLOCK_SUPERBLOCK (b)) | |
3511 | { | |
c5aa993b | 3512 | surrounding_static_block = b; /* For elmin of dups */ |
c906108c | 3513 | } |
c5aa993b | 3514 | |
c906108c | 3515 | /* Also catch fields of types defined in this places which match our |
c5aa993b | 3516 | text string. Only complete on types visible from current context. */ |
c906108c | 3517 | |
de4f826b | 3518 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c906108c | 3519 | { |
69636828 | 3520 | QUIT; |
c906108c SS |
3521 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3522 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3523 | { | |
3524 | struct type *t = SYMBOL_TYPE (sym); | |
3525 | enum type_code c = TYPE_CODE (t); | |
3526 | ||
3527 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3528 | { | |
3529 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3530 | { | |
3531 | if (TYPE_FIELD_NAME (t, j)) | |
3532 | { | |
3533 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
c5aa993b | 3534 | sym_text, sym_text_len, text, word); |
c906108c SS |
3535 | } |
3536 | } | |
3537 | } | |
3538 | } | |
3539 | } | |
3540 | } | |
3541 | ||
3542 | /* Go through the symtabs and check the externs and statics for | |
3543 | symbols which match. */ | |
3544 | ||
3545 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3546 | { |
3547 | QUIT; | |
3548 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3549 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3550 | { |
c5aa993b JM |
3551 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3552 | } | |
3553 | } | |
c906108c SS |
3554 | |
3555 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3556 | { |
3557 | QUIT; | |
3558 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
3559 | /* Don't do this block twice. */ | |
3560 | if (b == surrounding_static_block) | |
3561 | continue; | |
de4f826b | 3562 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3563 | { |
c5aa993b JM |
3564 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3565 | } | |
3566 | } | |
c906108c SS |
3567 | |
3568 | return (return_val); | |
3569 | } | |
3570 | ||
c94fdfd0 EZ |
3571 | /* Like make_symbol_completion_list, but returns a list of symbols |
3572 | defined in a source file FILE. */ | |
3573 | ||
3574 | char ** | |
3575 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
3576 | { | |
52f0bd74 AC |
3577 | struct symbol *sym; |
3578 | struct symtab *s; | |
3579 | struct block *b; | |
de4f826b | 3580 | struct dict_iterator iter; |
c94fdfd0 EZ |
3581 | /* The symbol we are completing on. Points in same buffer as text. */ |
3582 | char *sym_text; | |
3583 | /* Length of sym_text. */ | |
3584 | int sym_text_len; | |
3585 | ||
3586 | /* Now look for the symbol we are supposed to complete on. | |
3587 | FIXME: This should be language-specific. */ | |
3588 | { | |
3589 | char *p; | |
3590 | char quote_found; | |
3591 | char *quote_pos = NULL; | |
3592 | ||
3593 | /* First see if this is a quoted string. */ | |
3594 | quote_found = '\0'; | |
3595 | for (p = text; *p != '\0'; ++p) | |
3596 | { | |
3597 | if (quote_found != '\0') | |
3598 | { | |
3599 | if (*p == quote_found) | |
3600 | /* Found close quote. */ | |
3601 | quote_found = '\0'; | |
3602 | else if (*p == '\\' && p[1] == quote_found) | |
3603 | /* A backslash followed by the quote character | |
3604 | doesn't end the string. */ | |
3605 | ++p; | |
3606 | } | |
3607 | else if (*p == '\'' || *p == '"') | |
3608 | { | |
3609 | quote_found = *p; | |
3610 | quote_pos = p; | |
3611 | } | |
3612 | } | |
3613 | if (quote_found == '\'') | |
3614 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3615 | sym_text = quote_pos + 1; | |
3616 | else if (quote_found == '"') | |
3617 | /* A double-quoted string is never a symbol, nor does it make sense | |
3618 | to complete it any other way. */ | |
3619 | { | |
3620 | return_val = (char **) xmalloc (sizeof (char *)); | |
3621 | return_val[0] = NULL; | |
3622 | return return_val; | |
3623 | } | |
3624 | else | |
3625 | { | |
69636828 AF |
3626 | /* Not a quoted string. */ |
3627 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
3628 | } |
3629 | } | |
3630 | ||
3631 | sym_text_len = strlen (sym_text); | |
3632 | ||
3633 | return_val_size = 10; | |
3634 | return_val_index = 0; | |
3635 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3636 | return_val[0] = NULL; | |
3637 | ||
3638 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
3639 | in). */ | |
3640 | s = lookup_symtab (srcfile); | |
3641 | if (s == NULL) | |
3642 | { | |
3643 | /* Maybe they typed the file with leading directories, while the | |
3644 | symbol tables record only its basename. */ | |
31889e00 | 3645 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
3646 | |
3647 | if (tail > srcfile) | |
3648 | s = lookup_symtab (tail); | |
3649 | } | |
3650 | ||
3651 | /* If we have no symtab for that file, return an empty list. */ | |
3652 | if (s == NULL) | |
3653 | return (return_val); | |
3654 | ||
3655 | /* Go through this symtab and check the externs and statics for | |
3656 | symbols which match. */ | |
3657 | ||
3658 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3659 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3660 | { |
c94fdfd0 EZ |
3661 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3662 | } | |
3663 | ||
3664 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 3665 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3666 | { |
c94fdfd0 EZ |
3667 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3668 | } | |
3669 | ||
3670 | return (return_val); | |
3671 | } | |
3672 | ||
3673 | /* A helper function for make_source_files_completion_list. It adds | |
3674 | another file name to a list of possible completions, growing the | |
3675 | list as necessary. */ | |
3676 | ||
3677 | static void | |
3678 | add_filename_to_list (const char *fname, char *text, char *word, | |
3679 | char ***list, int *list_used, int *list_alloced) | |
3680 | { | |
3681 | char *new; | |
3682 | size_t fnlen = strlen (fname); | |
3683 | ||
3684 | if (*list_used + 1 >= *list_alloced) | |
3685 | { | |
3686 | *list_alloced *= 2; | |
3687 | *list = (char **) xrealloc ((char *) *list, | |
3688 | *list_alloced * sizeof (char *)); | |
3689 | } | |
3690 | ||
3691 | if (word == text) | |
3692 | { | |
3693 | /* Return exactly fname. */ | |
3694 | new = xmalloc (fnlen + 5); | |
3695 | strcpy (new, fname); | |
3696 | } | |
3697 | else if (word > text) | |
3698 | { | |
3699 | /* Return some portion of fname. */ | |
3700 | new = xmalloc (fnlen + 5); | |
3701 | strcpy (new, fname + (word - text)); | |
3702 | } | |
3703 | else | |
3704 | { | |
3705 | /* Return some of TEXT plus fname. */ | |
3706 | new = xmalloc (fnlen + (text - word) + 5); | |
3707 | strncpy (new, word, text - word); | |
3708 | new[text - word] = '\0'; | |
3709 | strcat (new, fname); | |
3710 | } | |
3711 | (*list)[*list_used] = new; | |
3712 | (*list)[++*list_used] = NULL; | |
3713 | } | |
3714 | ||
3715 | static int | |
3716 | not_interesting_fname (const char *fname) | |
3717 | { | |
3718 | static const char *illegal_aliens[] = { | |
3719 | "_globals_", /* inserted by coff_symtab_read */ | |
3720 | NULL | |
3721 | }; | |
3722 | int i; | |
3723 | ||
3724 | for (i = 0; illegal_aliens[i]; i++) | |
3725 | { | |
3726 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
3727 | return 1; | |
3728 | } | |
3729 | return 0; | |
3730 | } | |
3731 | ||
3732 | /* Return a NULL terminated array of all source files whose names | |
3733 | begin with matching TEXT. The file names are looked up in the | |
3734 | symbol tables of this program. If the answer is no matchess, then | |
3735 | the return value is an array which contains only a NULL pointer. */ | |
3736 | ||
3737 | char ** | |
3738 | make_source_files_completion_list (char *text, char *word) | |
3739 | { | |
52f0bd74 AC |
3740 | struct symtab *s; |
3741 | struct partial_symtab *ps; | |
3742 | struct objfile *objfile; | |
c94fdfd0 EZ |
3743 | int first = 1; |
3744 | int list_alloced = 1; | |
3745 | int list_used = 0; | |
3746 | size_t text_len = strlen (text); | |
3747 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 3748 | const char *base_name; |
c94fdfd0 EZ |
3749 | |
3750 | list[0] = NULL; | |
3751 | ||
3752 | if (!have_full_symbols () && !have_partial_symbols ()) | |
3753 | return list; | |
3754 | ||
3755 | ALL_SYMTABS (objfile, s) | |
3756 | { | |
3757 | if (not_interesting_fname (s->filename)) | |
3758 | continue; | |
3759 | if (!filename_seen (s->filename, 1, &first) | |
3760 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3761 | && strncasecmp (s->filename, text, text_len) == 0 | |
3762 | #else | |
3763 | && strncmp (s->filename, text, text_len) == 0 | |
3764 | #endif | |
3765 | ) | |
3766 | { | |
3767 | /* This file matches for a completion; add it to the current | |
3768 | list of matches. */ | |
3769 | add_filename_to_list (s->filename, text, word, | |
3770 | &list, &list_used, &list_alloced); | |
3771 | } | |
3772 | else | |
3773 | { | |
3774 | /* NOTE: We allow the user to type a base name when the | |
3775 | debug info records leading directories, but not the other | |
3776 | way around. This is what subroutines of breakpoint | |
3777 | command do when they parse file names. */ | |
31889e00 | 3778 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
3779 | if (base_name != s->filename |
3780 | && !filename_seen (base_name, 1, &first) | |
3781 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3782 | && strncasecmp (base_name, text, text_len) == 0 | |
3783 | #else | |
3784 | && strncmp (base_name, text, text_len) == 0 | |
3785 | #endif | |
3786 | ) | |
3787 | add_filename_to_list (base_name, text, word, | |
3788 | &list, &list_used, &list_alloced); | |
3789 | } | |
3790 | } | |
3791 | ||
3792 | ALL_PSYMTABS (objfile, ps) | |
3793 | { | |
3794 | if (not_interesting_fname (ps->filename)) | |
3795 | continue; | |
3796 | if (!ps->readin) | |
3797 | { | |
3798 | if (!filename_seen (ps->filename, 1, &first) | |
3799 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3800 | && strncasecmp (ps->filename, text, text_len) == 0 | |
3801 | #else | |
3802 | && strncmp (ps->filename, text, text_len) == 0 | |
3803 | #endif | |
3804 | ) | |
3805 | { | |
3806 | /* This file matches for a completion; add it to the | |
3807 | current list of matches. */ | |
3808 | add_filename_to_list (ps->filename, text, word, | |
3809 | &list, &list_used, &list_alloced); | |
3810 | ||
3811 | } | |
3812 | else | |
3813 | { | |
31889e00 | 3814 | base_name = lbasename (ps->filename); |
c94fdfd0 EZ |
3815 | if (base_name != ps->filename |
3816 | && !filename_seen (base_name, 1, &first) | |
3817 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3818 | && strncasecmp (base_name, text, text_len) == 0 | |
3819 | #else | |
3820 | && strncmp (base_name, text, text_len) == 0 | |
3821 | #endif | |
3822 | ) | |
3823 | add_filename_to_list (base_name, text, word, | |
3824 | &list, &list_used, &list_alloced); | |
3825 | } | |
3826 | } | |
3827 | } | |
3828 | ||
3829 | return list; | |
3830 | } | |
3831 | ||
c906108c SS |
3832 | /* Determine if PC is in the prologue of a function. The prologue is the area |
3833 | between the first instruction of a function, and the first executable line. | |
3834 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
3835 | ||
3836 | If non-zero, func_start is where we think the prologue starts, possibly | |
3837 | by previous examination of symbol table information. | |
3838 | */ | |
3839 | ||
3840 | int | |
fba45db2 | 3841 | in_prologue (CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
3842 | { |
3843 | struct symtab_and_line sal; | |
3844 | CORE_ADDR func_addr, func_end; | |
3845 | ||
54cf9c03 EZ |
3846 | /* We have several sources of information we can consult to figure |
3847 | this out. | |
3848 | - Compilers usually emit line number info that marks the prologue | |
3849 | as its own "source line". So the ending address of that "line" | |
3850 | is the end of the prologue. If available, this is the most | |
3851 | reliable method. | |
3852 | - The minimal symbols and partial symbols, which can usually tell | |
3853 | us the starting and ending addresses of a function. | |
3854 | - If we know the function's start address, we can call the | |
3855 | architecture-defined SKIP_PROLOGUE function to analyze the | |
3856 | instruction stream and guess where the prologue ends. | |
3857 | - Our `func_start' argument; if non-zero, this is the caller's | |
3858 | best guess as to the function's entry point. At the time of | |
3859 | this writing, handle_inferior_event doesn't get this right, so | |
3860 | it should be our last resort. */ | |
3861 | ||
3862 | /* Consult the partial symbol table, to find which function | |
3863 | the PC is in. */ | |
3864 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
3865 | { | |
3866 | CORE_ADDR prologue_end; | |
c906108c | 3867 | |
54cf9c03 EZ |
3868 | /* We don't even have minsym information, so fall back to using |
3869 | func_start, if given. */ | |
3870 | if (! func_start) | |
3871 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 3872 | |
54cf9c03 | 3873 | prologue_end = SKIP_PROLOGUE (func_start); |
c906108c | 3874 | |
54cf9c03 EZ |
3875 | return func_start <= pc && pc < prologue_end; |
3876 | } | |
c906108c | 3877 | |
54cf9c03 EZ |
3878 | /* If we have line number information for the function, that's |
3879 | usually pretty reliable. */ | |
3880 | sal = find_pc_line (func_addr, 0); | |
c906108c | 3881 | |
54cf9c03 EZ |
3882 | /* Now sal describes the source line at the function's entry point, |
3883 | which (by convention) is the prologue. The end of that "line", | |
3884 | sal.end, is the end of the prologue. | |
3885 | ||
3886 | Note that, for functions whose source code is all on a single | |
3887 | line, the line number information doesn't always end up this way. | |
3888 | So we must verify that our purported end-of-prologue address is | |
3889 | *within* the function, not at its start or end. */ | |
3890 | if (sal.line == 0 | |
3891 | || sal.end <= func_addr | |
3892 | || func_end <= sal.end) | |
3893 | { | |
3894 | /* We don't have any good line number info, so use the minsym | |
3895 | information, together with the architecture-specific prologue | |
3896 | scanning code. */ | |
3897 | CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr); | |
c906108c | 3898 | |
54cf9c03 EZ |
3899 | return func_addr <= pc && pc < prologue_end; |
3900 | } | |
c906108c | 3901 | |
54cf9c03 EZ |
3902 | /* We have line number info, and it looks good. */ |
3903 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
3904 | } |
3905 | ||
634aa483 AC |
3906 | /* Given PC at the function's start address, attempt to find the |
3907 | prologue end using SAL information. Return zero if the skip fails. | |
3908 | ||
3909 | A non-optimized prologue traditionally has one SAL for the function | |
3910 | and a second for the function body. A single line function has | |
3911 | them both pointing at the same line. | |
3912 | ||
3913 | An optimized prologue is similar but the prologue may contain | |
3914 | instructions (SALs) from the instruction body. Need to skip those | |
3915 | while not getting into the function body. | |
3916 | ||
3917 | The functions end point and an increasing SAL line are used as | |
3918 | indicators of the prologue's endpoint. | |
3919 | ||
3920 | This code is based on the function refine_prologue_limit (versions | |
3921 | found in both ia64 and ppc). */ | |
3922 | ||
3923 | CORE_ADDR | |
3924 | skip_prologue_using_sal (CORE_ADDR func_addr) | |
3925 | { | |
3926 | struct symtab_and_line prologue_sal; | |
3927 | CORE_ADDR start_pc; | |
3928 | CORE_ADDR end_pc; | |
3929 | ||
3930 | /* Get an initial range for the function. */ | |
3931 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
3932 | start_pc += FUNCTION_START_OFFSET; | |
3933 | ||
3934 | prologue_sal = find_pc_line (start_pc, 0); | |
3935 | if (prologue_sal.line != 0) | |
3936 | { | |
3937 | while (prologue_sal.end < end_pc) | |
3938 | { | |
3939 | struct symtab_and_line sal; | |
3940 | ||
3941 | sal = find_pc_line (prologue_sal.end, 0); | |
3942 | if (sal.line == 0) | |
3943 | break; | |
3944 | /* Assume that a consecutive SAL for the same (or larger) | |
3945 | line mark the prologue -> body transition. */ | |
3946 | if (sal.line >= prologue_sal.line) | |
3947 | break; | |
3948 | /* The case in which compiler's optimizer/scheduler has | |
3949 | moved instructions into the prologue. We look ahead in | |
3950 | the function looking for address ranges whose | |
3951 | corresponding line number is less the first one that we | |
3952 | found for the function. This is more conservative then | |
3953 | refine_prologue_limit which scans a large number of SALs | |
3954 | looking for any in the prologue */ | |
3955 | prologue_sal = sal; | |
3956 | } | |
3957 | } | |
3958 | return prologue_sal.end; | |
3959 | } | |
c906108c | 3960 | \f |
50641945 FN |
3961 | struct symtabs_and_lines |
3962 | decode_line_spec (char *string, int funfirstline) | |
3963 | { | |
3964 | struct symtabs_and_lines sals; | |
0378c332 FN |
3965 | struct symtab_and_line cursal; |
3966 | ||
50641945 FN |
3967 | if (string == 0) |
3968 | error ("Empty line specification."); | |
0378c332 FN |
3969 | |
3970 | /* We use whatever is set as the current source line. We do not try | |
3971 | and get a default or it will recursively call us! */ | |
3972 | cursal = get_current_source_symtab_and_line (); | |
3973 | ||
50641945 | 3974 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 3975 | cursal.symtab, cursal.line, |
bffe1ece | 3976 | (char ***) NULL, NULL); |
0378c332 | 3977 | |
50641945 FN |
3978 | if (*string) |
3979 | error ("Junk at end of line specification: %s", string); | |
3980 | return sals; | |
3981 | } | |
c5aa993b | 3982 | |
51cc5b07 AC |
3983 | /* Track MAIN */ |
3984 | static char *name_of_main; | |
3985 | ||
3986 | void | |
3987 | set_main_name (const char *name) | |
3988 | { | |
3989 | if (name_of_main != NULL) | |
3990 | { | |
3991 | xfree (name_of_main); | |
3992 | name_of_main = NULL; | |
3993 | } | |
3994 | if (name != NULL) | |
3995 | { | |
3996 | name_of_main = xstrdup (name); | |
3997 | } | |
3998 | } | |
3999 | ||
4000 | char * | |
4001 | main_name (void) | |
4002 | { | |
4003 | if (name_of_main != NULL) | |
4004 | return name_of_main; | |
4005 | else | |
4006 | return "main"; | |
4007 | } | |
4008 | ||
4009 | ||
c906108c | 4010 | void |
fba45db2 | 4011 | _initialize_symtab (void) |
c906108c SS |
4012 | { |
4013 | add_info ("variables", variables_info, | |
c5aa993b | 4014 | "All global and static variable names, or those matching REGEXP."); |
c906108c | 4015 | if (dbx_commands) |
c5aa993b JM |
4016 | add_com ("whereis", class_info, variables_info, |
4017 | "All global and static variable names, or those matching REGEXP."); | |
c906108c SS |
4018 | |
4019 | add_info ("functions", functions_info, | |
4020 | "All function names, or those matching REGEXP."); | |
4021 | ||
357e46e7 | 4022 | |
c906108c SS |
4023 | /* FIXME: This command has at least the following problems: |
4024 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4025 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4026 | typedef struct foo *FOO |
4027 | type_print prints "FOO" when we want to make it (in this situation) | |
4028 | print "struct foo *". | |
c906108c SS |
4029 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4030 | there is much disagreement "info types" can be fixed). */ | |
4031 | add_info ("types", types_info, | |
4032 | "All type names, or those matching REGEXP."); | |
4033 | ||
c906108c SS |
4034 | add_info ("sources", sources_info, |
4035 | "Source files in the program."); | |
4036 | ||
4037 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
c5aa993b | 4038 | "Set a breakpoint for all functions matching REGEXP."); |
c906108c SS |
4039 | |
4040 | if (xdb_commands) | |
4041 | { | |
4042 | add_com ("lf", class_info, sources_info, "Source files in the program"); | |
4043 | add_com ("lg", class_info, variables_info, | |
c5aa993b | 4044 | "All global and static variable names, or those matching REGEXP."); |
c906108c SS |
4045 | } |
4046 | ||
4047 | /* Initialize the one built-in type that isn't language dependent... */ | |
4048 | builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0, | |
4049 | "<unknown type>", (struct objfile *) NULL); | |
4050 | } |