]>
Commit | Line | Data |
---|---|---|
d16aafd8 | 1 | /* Floating point routines for GDB, the GNU debugger. |
f1908289 AC |
2 | |
3 | Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2003 Free Software Foundation, | |
5 | Inc. | |
d16aafd8 AC |
6 | |
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
23 | ||
24 | /* Support for converting target fp numbers into host DOUBLEST format. */ | |
25 | ||
26 | /* XXX - This code should really be in libiberty/floatformat.c, | |
27 | however configuration issues with libiberty made this very | |
28 | difficult to do in the available time. */ | |
29 | ||
30 | #include "defs.h" | |
31 | #include "doublest.h" | |
32 | #include "floatformat.h" | |
33 | #include "gdb_assert.h" | |
34 | #include "gdb_string.h" | |
96d2f608 | 35 | #include "gdbtypes.h" |
d16aafd8 AC |
36 | #include <math.h> /* ldexp */ |
37 | ||
38 | /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not | |
39 | going to bother with trying to muck around with whether it is defined in | |
40 | a system header, what we do if not, etc. */ | |
41 | #define FLOATFORMAT_CHAR_BIT 8 | |
42 | ||
43 | static unsigned long get_field (unsigned char *, | |
44 | enum floatformat_byteorders, | |
45 | unsigned int, unsigned int, unsigned int); | |
46 | ||
47 | /* Extract a field which starts at START and is LEN bytes long. DATA and | |
48 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
49 | static unsigned long | |
50 | get_field (unsigned char *data, enum floatformat_byteorders order, | |
51 | unsigned int total_len, unsigned int start, unsigned int len) | |
52 | { | |
53 | unsigned long result; | |
54 | unsigned int cur_byte; | |
55 | int cur_bitshift; | |
56 | ||
57 | /* Start at the least significant part of the field. */ | |
58 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
59 | { | |
60 | /* We start counting from the other end (i.e, from the high bytes | |
61 | rather than the low bytes). As such, we need to be concerned | |
62 | with what happens if bit 0 doesn't start on a byte boundary. | |
63 | I.e, we need to properly handle the case where total_len is | |
64 | not evenly divisible by 8. So we compute ``excess'' which | |
65 | represents the number of bits from the end of our starting | |
66 | byte needed to get to bit 0. */ | |
67 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
68 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) | |
69 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
70 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
71 | - FLOATFORMAT_CHAR_BIT; | |
72 | } | |
73 | else | |
74 | { | |
75 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
76 | cur_bitshift = | |
77 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
78 | } | |
79 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
80 | result = *(data + cur_byte) >> (-cur_bitshift); | |
81 | else | |
82 | result = 0; | |
83 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
84 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
85 | ++cur_byte; | |
86 | else | |
87 | --cur_byte; | |
88 | ||
89 | /* Move towards the most significant part of the field. */ | |
90 | while (cur_bitshift < len) | |
91 | { | |
92 | result |= (unsigned long)*(data + cur_byte) << cur_bitshift; | |
93 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
94 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
95 | ++cur_byte; | |
96 | else | |
97 | --cur_byte; | |
98 | } | |
99 | if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) | |
100 | /* Mask out bits which are not part of the field */ | |
101 | result &= ((1UL << len) - 1); | |
102 | return result; | |
103 | } | |
104 | ||
105 | /* Convert from FMT to a DOUBLEST. | |
106 | FROM is the address of the extended float. | |
107 | Store the DOUBLEST in *TO. */ | |
108 | ||
c422e771 AC |
109 | static void |
110 | convert_floatformat_to_doublest (const struct floatformat *fmt, | |
111 | const void *from, | |
112 | DOUBLEST *to) | |
d16aafd8 AC |
113 | { |
114 | unsigned char *ufrom = (unsigned char *) from; | |
115 | DOUBLEST dto; | |
116 | long exponent; | |
117 | unsigned long mant; | |
118 | unsigned int mant_bits, mant_off; | |
119 | int mant_bits_left; | |
120 | int special_exponent; /* It's a NaN, denorm or zero */ | |
121 | ||
122 | /* If the mantissa bits are not contiguous from one end of the | |
123 | mantissa to the other, we need to make a private copy of the | |
124 | source bytes that is in the right order since the unpacking | |
125 | algorithm assumes that the bits are contiguous. | |
126 | ||
127 | Swap the bytes individually rather than accessing them through | |
128 | "long *" since we have no guarantee that they start on a long | |
129 | alignment, and also sizeof(long) for the host could be different | |
130 | than sizeof(long) for the target. FIXME: Assumes sizeof(long) | |
131 | for the target is 4. */ | |
132 | ||
133 | if (fmt->byteorder == floatformat_littlebyte_bigword) | |
134 | { | |
135 | static unsigned char *newfrom; | |
136 | unsigned char *swapin, *swapout; | |
137 | int longswaps; | |
138 | ||
139 | longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT; | |
140 | longswaps >>= 3; | |
141 | ||
142 | if (newfrom == NULL) | |
143 | { | |
144 | newfrom = (unsigned char *) xmalloc (fmt->totalsize); | |
145 | } | |
146 | swapout = newfrom; | |
147 | swapin = ufrom; | |
148 | ufrom = newfrom; | |
149 | while (longswaps-- > 0) | |
150 | { | |
151 | /* This is ugly, but efficient */ | |
152 | *swapout++ = swapin[4]; | |
153 | *swapout++ = swapin[5]; | |
154 | *swapout++ = swapin[6]; | |
155 | *swapout++ = swapin[7]; | |
156 | *swapout++ = swapin[0]; | |
157 | *swapout++ = swapin[1]; | |
158 | *swapout++ = swapin[2]; | |
159 | *swapout++ = swapin[3]; | |
160 | swapin += 8; | |
161 | } | |
162 | } | |
163 | ||
164 | exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize, | |
165 | fmt->exp_start, fmt->exp_len); | |
166 | /* Note that if exponent indicates a NaN, we can't really do anything useful | |
167 | (not knowing if the host has NaN's, or how to build one). So it will | |
168 | end up as an infinity or something close; that is OK. */ | |
169 | ||
170 | mant_bits_left = fmt->man_len; | |
171 | mant_off = fmt->man_start; | |
172 | dto = 0.0; | |
173 | ||
174 | special_exponent = exponent == 0 || exponent == fmt->exp_nan; | |
175 | ||
38c52d5a DJ |
176 | /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity, |
177 | we don't check for zero as the exponent doesn't matter. Note the cast | |
178 | to int; exp_bias is unsigned, so it's important to make sure the | |
179 | operation is done in signed arithmetic. */ | |
d16aafd8 AC |
180 | if (!special_exponent) |
181 | exponent -= fmt->exp_bias; | |
182 | else if (exponent == 0) | |
38c52d5a | 183 | exponent = 1 - (int) fmt->exp_bias; |
d16aafd8 AC |
184 | |
185 | /* Build the result algebraically. Might go infinite, underflow, etc; | |
186 | who cares. */ | |
187 | ||
188 | /* If this format uses a hidden bit, explicitly add it in now. Otherwise, | |
189 | increment the exponent by one to account for the integer bit. */ | |
190 | ||
191 | if (!special_exponent) | |
192 | { | |
193 | if (fmt->intbit == floatformat_intbit_no) | |
194 | dto = ldexp (1.0, exponent); | |
195 | else | |
196 | exponent++; | |
197 | } | |
198 | ||
199 | while (mant_bits_left > 0) | |
200 | { | |
201 | mant_bits = min (mant_bits_left, 32); | |
202 | ||
203 | mant = get_field (ufrom, fmt->byteorder, fmt->totalsize, | |
204 | mant_off, mant_bits); | |
205 | ||
206 | dto += ldexp ((double) mant, exponent - mant_bits); | |
207 | exponent -= mant_bits; | |
208 | mant_off += mant_bits; | |
209 | mant_bits_left -= mant_bits; | |
210 | } | |
211 | ||
212 | /* Negate it if negative. */ | |
213 | if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1)) | |
214 | dto = -dto; | |
215 | *to = dto; | |
216 | } | |
217 | \f | |
218 | static void put_field (unsigned char *, enum floatformat_byteorders, | |
219 | unsigned int, | |
220 | unsigned int, unsigned int, unsigned long); | |
221 | ||
222 | /* Set a field which starts at START and is LEN bytes long. DATA and | |
223 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
224 | static void | |
225 | put_field (unsigned char *data, enum floatformat_byteorders order, | |
226 | unsigned int total_len, unsigned int start, unsigned int len, | |
227 | unsigned long stuff_to_put) | |
228 | { | |
229 | unsigned int cur_byte; | |
230 | int cur_bitshift; | |
231 | ||
232 | /* Start at the least significant part of the field. */ | |
233 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
234 | { | |
235 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
236 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) | |
237 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
238 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
239 | - FLOATFORMAT_CHAR_BIT; | |
240 | } | |
241 | else | |
242 | { | |
243 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
244 | cur_bitshift = | |
245 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
246 | } | |
247 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
248 | { | |
249 | *(data + cur_byte) &= | |
250 | ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) | |
251 | << (-cur_bitshift)); | |
252 | *(data + cur_byte) |= | |
253 | (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); | |
254 | } | |
255 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
256 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
257 | ++cur_byte; | |
258 | else | |
259 | --cur_byte; | |
260 | ||
261 | /* Move towards the most significant part of the field. */ | |
262 | while (cur_bitshift < len) | |
263 | { | |
264 | if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) | |
265 | { | |
266 | /* This is the last byte. */ | |
267 | *(data + cur_byte) &= | |
268 | ~((1 << (len - cur_bitshift)) - 1); | |
269 | *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); | |
270 | } | |
271 | else | |
272 | *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) | |
273 | & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); | |
274 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
275 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
276 | ++cur_byte; | |
277 | else | |
278 | --cur_byte; | |
279 | } | |
280 | } | |
281 | ||
282 | #ifdef HAVE_LONG_DOUBLE | |
283 | /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR. | |
284 | The range of the returned value is >= 0.5 and < 1.0. This is equivalent to | |
285 | frexp, but operates on the long double data type. */ | |
286 | ||
287 | static long double ldfrexp (long double value, int *eptr); | |
288 | ||
289 | static long double | |
290 | ldfrexp (long double value, int *eptr) | |
291 | { | |
292 | long double tmp; | |
293 | int exp; | |
294 | ||
295 | /* Unfortunately, there are no portable functions for extracting the exponent | |
296 | of a long double, so we have to do it iteratively by multiplying or dividing | |
297 | by two until the fraction is between 0.5 and 1.0. */ | |
298 | ||
299 | if (value < 0.0l) | |
300 | value = -value; | |
301 | ||
302 | tmp = 1.0l; | |
303 | exp = 0; | |
304 | ||
305 | if (value >= tmp) /* Value >= 1.0 */ | |
306 | while (value >= tmp) | |
307 | { | |
308 | tmp *= 2.0l; | |
309 | exp++; | |
310 | } | |
311 | else if (value != 0.0l) /* Value < 1.0 and > 0.0 */ | |
312 | { | |
313 | while (value < tmp) | |
314 | { | |
315 | tmp /= 2.0l; | |
316 | exp--; | |
317 | } | |
318 | tmp *= 2.0l; | |
319 | exp++; | |
320 | } | |
321 | ||
322 | *eptr = exp; | |
323 | return value / tmp; | |
324 | } | |
325 | #endif /* HAVE_LONG_DOUBLE */ | |
326 | ||
327 | ||
328 | /* The converse: convert the DOUBLEST *FROM to an extended float | |
329 | and store where TO points. Neither FROM nor TO have any alignment | |
330 | restrictions. */ | |
331 | ||
c422e771 AC |
332 | static void |
333 | convert_doublest_to_floatformat (CONST struct floatformat *fmt, | |
334 | const DOUBLEST *from, | |
335 | void *to) | |
d16aafd8 AC |
336 | { |
337 | DOUBLEST dfrom; | |
338 | int exponent; | |
339 | DOUBLEST mant; | |
340 | unsigned int mant_bits, mant_off; | |
341 | int mant_bits_left; | |
342 | unsigned char *uto = (unsigned char *) to; | |
343 | ||
344 | memcpy (&dfrom, from, sizeof (dfrom)); | |
345 | memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) | |
346 | / FLOATFORMAT_CHAR_BIT); | |
347 | if (dfrom == 0) | |
348 | return; /* Result is zero */ | |
349 | if (dfrom != dfrom) /* Result is NaN */ | |
350 | { | |
351 | /* From is NaN */ | |
352 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, | |
353 | fmt->exp_len, fmt->exp_nan); | |
354 | /* Be sure it's not infinity, but NaN value is irrel */ | |
355 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, | |
356 | 32, 1); | |
357 | return; | |
358 | } | |
359 | ||
360 | /* If negative, set the sign bit. */ | |
361 | if (dfrom < 0) | |
362 | { | |
363 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1); | |
364 | dfrom = -dfrom; | |
365 | } | |
366 | ||
367 | if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */ | |
368 | { | |
369 | /* Infinity exponent is same as NaN's. */ | |
370 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, | |
371 | fmt->exp_len, fmt->exp_nan); | |
372 | /* Infinity mantissa is all zeroes. */ | |
373 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, | |
374 | fmt->man_len, 0); | |
375 | return; | |
376 | } | |
377 | ||
378 | #ifdef HAVE_LONG_DOUBLE | |
379 | mant = ldfrexp (dfrom, &exponent); | |
380 | #else | |
381 | mant = frexp (dfrom, &exponent); | |
382 | #endif | |
383 | ||
384 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len, | |
385 | exponent + fmt->exp_bias - 1); | |
386 | ||
387 | mant_bits_left = fmt->man_len; | |
388 | mant_off = fmt->man_start; | |
389 | while (mant_bits_left > 0) | |
390 | { | |
391 | unsigned long mant_long; | |
392 | mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; | |
393 | ||
394 | mant *= 4294967296.0; | |
395 | mant_long = ((unsigned long) mant) & 0xffffffffL; | |
396 | mant -= mant_long; | |
397 | ||
398 | /* If the integer bit is implicit, then we need to discard it. | |
399 | If we are discarding a zero, we should be (but are not) creating | |
400 | a denormalized number which means adjusting the exponent | |
401 | (I think). */ | |
402 | if (mant_bits_left == fmt->man_len | |
403 | && fmt->intbit == floatformat_intbit_no) | |
404 | { | |
405 | mant_long <<= 1; | |
406 | mant_long &= 0xffffffffL; | |
06194148 JJ |
407 | /* If we are processing the top 32 mantissa bits of a doublest |
408 | so as to convert to a float value with implied integer bit, | |
409 | we will only be putting 31 of those 32 bits into the | |
410 | final value due to the discarding of the top bit. In the | |
411 | case of a small float value where the number of mantissa | |
412 | bits is less than 32, discarding the top bit does not alter | |
413 | the number of bits we will be adding to the result. */ | |
414 | if (mant_bits == 32) | |
415 | mant_bits -= 1; | |
d16aafd8 AC |
416 | } |
417 | ||
418 | if (mant_bits < 32) | |
419 | { | |
420 | /* The bits we want are in the most significant MANT_BITS bits of | |
421 | mant_long. Move them to the least significant. */ | |
422 | mant_long >>= 32 - mant_bits; | |
423 | } | |
424 | ||
425 | put_field (uto, fmt->byteorder, fmt->totalsize, | |
426 | mant_off, mant_bits, mant_long); | |
427 | mant_off += mant_bits; | |
428 | mant_bits_left -= mant_bits; | |
429 | } | |
430 | if (fmt->byteorder == floatformat_littlebyte_bigword) | |
431 | { | |
432 | int count; | |
433 | unsigned char *swaplow = uto; | |
434 | unsigned char *swaphigh = uto + 4; | |
435 | unsigned char tmp; | |
436 | ||
437 | for (count = 0; count < 4; count++) | |
438 | { | |
439 | tmp = *swaplow; | |
440 | *swaplow++ = *swaphigh; | |
441 | *swaphigh++ = tmp; | |
442 | } | |
443 | } | |
444 | } | |
445 | ||
446 | /* Check if VAL (which is assumed to be a floating point number whose | |
447 | format is described by FMT) is negative. */ | |
448 | ||
449 | int | |
450 | floatformat_is_negative (const struct floatformat *fmt, char *val) | |
451 | { | |
452 | unsigned char *uval = (unsigned char *) val; | |
069e84fd | 453 | gdb_assert (fmt != NULL); |
d16aafd8 AC |
454 | return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1); |
455 | } | |
456 | ||
457 | /* Check if VAL is "not a number" (NaN) for FMT. */ | |
458 | ||
459 | int | |
460 | floatformat_is_nan (const struct floatformat *fmt, char *val) | |
461 | { | |
462 | unsigned char *uval = (unsigned char *) val; | |
463 | long exponent; | |
464 | unsigned long mant; | |
465 | unsigned int mant_bits, mant_off; | |
466 | int mant_bits_left; | |
467 | ||
069e84fd AC |
468 | gdb_assert (fmt != NULL); |
469 | ||
d16aafd8 AC |
470 | if (! fmt->exp_nan) |
471 | return 0; | |
472 | ||
473 | exponent = get_field (uval, fmt->byteorder, fmt->totalsize, | |
474 | fmt->exp_start, fmt->exp_len); | |
475 | ||
476 | if (exponent != fmt->exp_nan) | |
477 | return 0; | |
478 | ||
479 | mant_bits_left = fmt->man_len; | |
480 | mant_off = fmt->man_start; | |
481 | ||
482 | while (mant_bits_left > 0) | |
483 | { | |
484 | mant_bits = min (mant_bits_left, 32); | |
485 | ||
486 | mant = get_field (uval, fmt->byteorder, fmt->totalsize, | |
487 | mant_off, mant_bits); | |
488 | ||
489 | /* If there is an explicit integer bit, mask it off. */ | |
490 | if (mant_off == fmt->man_start | |
491 | && fmt->intbit == floatformat_intbit_yes) | |
492 | mant &= ~(1 << (mant_bits - 1)); | |
493 | ||
494 | if (mant) | |
495 | return 1; | |
496 | ||
497 | mant_off += mant_bits; | |
498 | mant_bits_left -= mant_bits; | |
499 | } | |
500 | ||
501 | return 0; | |
502 | } | |
503 | ||
504 | /* Convert the mantissa of VAL (which is assumed to be a floating | |
505 | point number whose format is described by FMT) into a hexadecimal | |
506 | and store it in a static string. Return a pointer to that string. */ | |
507 | ||
508 | char * | |
509 | floatformat_mantissa (const struct floatformat *fmt, char *val) | |
510 | { | |
511 | unsigned char *uval = (unsigned char *) val; | |
512 | unsigned long mant; | |
513 | unsigned int mant_bits, mant_off; | |
514 | int mant_bits_left; | |
515 | static char res[50]; | |
516 | char buf[9]; | |
517 | ||
518 | /* Make sure we have enough room to store the mantissa. */ | |
069e84fd | 519 | gdb_assert (fmt != NULL); |
d16aafd8 AC |
520 | gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); |
521 | ||
522 | mant_off = fmt->man_start; | |
523 | mant_bits_left = fmt->man_len; | |
524 | mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; | |
525 | ||
526 | mant = get_field (uval, fmt->byteorder, fmt->totalsize, | |
527 | mant_off, mant_bits); | |
528 | ||
529 | sprintf (res, "%lx", mant); | |
530 | ||
531 | mant_off += mant_bits; | |
532 | mant_bits_left -= mant_bits; | |
533 | ||
534 | while (mant_bits_left > 0) | |
535 | { | |
536 | mant = get_field (uval, fmt->byteorder, fmt->totalsize, | |
537 | mant_off, 32); | |
538 | ||
539 | sprintf (buf, "%08lx", mant); | |
540 | strcat (res, buf); | |
541 | ||
542 | mant_off += 32; | |
543 | mant_bits_left -= 32; | |
544 | } | |
545 | ||
546 | return res; | |
547 | } | |
548 | ||
d16aafd8 | 549 | \f |
c422e771 AC |
550 | /* Convert TO/FROM target to the hosts DOUBLEST floating-point format. |
551 | ||
552 | If the host and target formats agree, we just copy the raw data | |
553 | into the appropriate type of variable and return, letting the host | |
554 | increase precision as necessary. Otherwise, we call the conversion | |
555 | routine and let it do the dirty work. */ | |
556 | ||
557 | #ifndef HOST_FLOAT_FORMAT | |
558 | #define HOST_FLOAT_FORMAT 0 | |
559 | #endif | |
560 | #ifndef HOST_DOUBLE_FORMAT | |
561 | #define HOST_DOUBLE_FORMAT 0 | |
562 | #endif | |
563 | #ifndef HOST_LONG_DOUBLE_FORMAT | |
564 | #define HOST_LONG_DOUBLE_FORMAT 0 | |
565 | #endif | |
566 | ||
567 | static const struct floatformat *host_float_format = HOST_FLOAT_FORMAT; | |
568 | static const struct floatformat *host_double_format = HOST_DOUBLE_FORMAT; | |
569 | static const struct floatformat *host_long_double_format = HOST_LONG_DOUBLE_FORMAT; | |
570 | ||
571 | void | |
572 | floatformat_to_doublest (const struct floatformat *fmt, | |
573 | const void *in, DOUBLEST *out) | |
574 | { | |
575 | gdb_assert (fmt != NULL); | |
576 | if (fmt == host_float_format) | |
577 | { | |
578 | float val; | |
579 | memcpy (&val, in, sizeof (val)); | |
580 | *out = val; | |
581 | } | |
582 | else if (fmt == host_double_format) | |
583 | { | |
584 | double val; | |
585 | memcpy (&val, in, sizeof (val)); | |
586 | *out = val; | |
587 | } | |
588 | else if (fmt == host_long_double_format) | |
589 | { | |
590 | long double val; | |
591 | memcpy (&val, in, sizeof (val)); | |
592 | *out = val; | |
593 | } | |
594 | else | |
595 | convert_floatformat_to_doublest (fmt, in, out); | |
596 | } | |
597 | ||
598 | void | |
599 | floatformat_from_doublest (const struct floatformat *fmt, | |
600 | const DOUBLEST *in, void *out) | |
601 | { | |
602 | gdb_assert (fmt != NULL); | |
603 | if (fmt == host_float_format) | |
604 | { | |
605 | float val = *in; | |
606 | memcpy (out, &val, sizeof (val)); | |
607 | } | |
608 | else if (fmt == host_double_format) | |
609 | { | |
610 | double val = *in; | |
611 | memcpy (out, &val, sizeof (val)); | |
612 | } | |
613 | else if (fmt == host_long_double_format) | |
614 | { | |
615 | long double val = *in; | |
616 | memcpy (out, &val, sizeof (val)); | |
617 | } | |
618 | else | |
619 | convert_doublest_to_floatformat (fmt, in, out); | |
620 | } | |
d16aafd8 | 621 | |
c422e771 | 622 | \f |
87ffba60 MK |
623 | /* Return a floating-point format for a floating-point variable of |
624 | length LEN. Return NULL, if no suitable floating-point format | |
625 | could be found. | |
d16aafd8 | 626 | |
87ffba60 MK |
627 | We need this functionality since information about the |
628 | floating-point format of a type is not always available to GDB; the | |
629 | debug information typically only tells us the size of a | |
630 | floating-point type. | |
631 | ||
632 | FIXME: kettenis/2001-10-28: In many places, particularly in | |
633 | target-dependent code, the format of floating-point types is known, | |
634 | but not passed on by GDB. This should be fixed. */ | |
635 | ||
b9362cc7 | 636 | static const struct floatformat * |
87ffba60 | 637 | floatformat_from_length (int len) |
d16aafd8 | 638 | { |
d16aafd8 | 639 | if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT) |
87ffba60 | 640 | return TARGET_FLOAT_FORMAT; |
d16aafd8 | 641 | else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT) |
87ffba60 | 642 | return TARGET_DOUBLE_FORMAT; |
d16aafd8 | 643 | else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT) |
87ffba60 | 644 | return TARGET_LONG_DOUBLE_FORMAT; |
ddbfdd06 PM |
645 | /* On i386 the 'long double' type takes 96 bits, |
646 | while the real number of used bits is only 80, | |
647 | both in processor and in memory. | |
648 | The code below accepts the real bit size. */ | |
649 | else if ((TARGET_LONG_DOUBLE_FORMAT != NULL) | |
650 | && (len * TARGET_CHAR_BIT == | |
651 | TARGET_LONG_DOUBLE_FORMAT->totalsize)) | |
652 | return TARGET_LONG_DOUBLE_FORMAT; | |
87ffba60 MK |
653 | |
654 | return NULL; | |
655 | } | |
656 | ||
c2f05ac9 AC |
657 | const struct floatformat * |
658 | floatformat_from_type (const struct type *type) | |
659 | { | |
660 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
661 | if (TYPE_FLOATFORMAT (type) != NULL) | |
662 | return TYPE_FLOATFORMAT (type); | |
663 | else | |
664 | return floatformat_from_length (TYPE_LENGTH (type)); | |
665 | } | |
666 | ||
87ffba60 MK |
667 | /* If the host doesn't define NAN, use zero instead. */ |
668 | #ifndef NAN | |
669 | #define NAN 0.0 | |
670 | #endif | |
671 | ||
672 | /* Extract a floating-point number of length LEN from a target-order | |
673 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
674 | ||
f1908289 AC |
675 | static DOUBLEST |
676 | extract_floating_by_length (const void *addr, int len) | |
87ffba60 MK |
677 | { |
678 | const struct floatformat *fmt = floatformat_from_length (len); | |
679 | DOUBLEST val; | |
680 | ||
681 | if (fmt == NULL) | |
d16aafd8 | 682 | { |
d05bb1fc | 683 | warning ("Can't extract a floating-point number of %d bytes.", len); |
87ffba60 | 684 | return NAN; |
d16aafd8 | 685 | } |
87ffba60 MK |
686 | |
687 | floatformat_to_doublest (fmt, addr, &val); | |
688 | return val; | |
d16aafd8 AC |
689 | } |
690 | ||
f1908289 AC |
691 | DOUBLEST |
692 | deprecated_extract_floating (const void *addr, int len) | |
693 | { | |
694 | return extract_floating_by_length (addr, len); | |
695 | } | |
696 | ||
87ffba60 MK |
697 | /* Store VAL as a floating-point number of length LEN to a |
698 | target-order byte-stream at ADDR. */ | |
699 | ||
f1908289 AC |
700 | static void |
701 | store_floating_by_length (void *addr, int len, DOUBLEST val) | |
d16aafd8 | 702 | { |
87ffba60 MK |
703 | const struct floatformat *fmt = floatformat_from_length (len); |
704 | ||
705 | if (fmt == NULL) | |
d16aafd8 | 706 | { |
87ffba60 MK |
707 | warning ("Can't store a floating-point number of %d bytes.", len); |
708 | memset (addr, 0, len); | |
b30590dc | 709 | return; |
d16aafd8 | 710 | } |
87ffba60 MK |
711 | |
712 | floatformat_from_doublest (fmt, &val, addr); | |
d16aafd8 | 713 | } |
96d2f608 | 714 | |
f1908289 AC |
715 | void |
716 | deprecated_store_floating (void *addr, int len, DOUBLEST val) | |
717 | { | |
718 | store_floating_by_length (addr, len, val); | |
719 | } | |
720 | ||
87ffba60 MK |
721 | /* Extract a floating-point number of type TYPE from a target-order |
722 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
96d2f608 AC |
723 | |
724 | DOUBLEST | |
725 | extract_typed_floating (const void *addr, const struct type *type) | |
726 | { | |
727 | DOUBLEST retval; | |
87ffba60 | 728 | |
96d2f608 | 729 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
87ffba60 | 730 | |
96d2f608 | 731 | if (TYPE_FLOATFORMAT (type) == NULL) |
f1908289 AC |
732 | /* Not all code remembers to set the FLOATFORMAT (language |
733 | specific code? stabs?) so handle that here as a special case. */ | |
734 | return extract_floating_by_length (addr, TYPE_LENGTH (type)); | |
87ffba60 MK |
735 | |
736 | floatformat_to_doublest (TYPE_FLOATFORMAT (type), addr, &retval); | |
96d2f608 AC |
737 | return retval; |
738 | } | |
739 | ||
87ffba60 MK |
740 | /* Store VAL as a floating-point number of type TYPE to a target-order |
741 | byte-stream at ADDR. */ | |
742 | ||
96d2f608 AC |
743 | void |
744 | store_typed_floating (void *addr, const struct type *type, DOUBLEST val) | |
745 | { | |
746 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
87ffba60 MK |
747 | |
748 | /* FIXME: kettenis/2001-10-28: It is debatable whether we should | |
749 | zero out any remaining bytes in the target buffer when TYPE is | |
750 | longer than the actual underlying floating-point format. Perhaps | |
751 | we should store a fixed bitpattern in those remaining bytes, | |
752 | instead of zero, or perhaps we shouldn't touch those remaining | |
753 | bytes at all. | |
754 | ||
755 | NOTE: cagney/2001-10-28: With the way things currently work, it | |
756 | isn't a good idea to leave the end bits undefined. This is | |
757 | because GDB writes out the entire sizeof(<floating>) bits of the | |
758 | floating-point type even though the value might only be stored | |
759 | in, and the target processor may only refer to, the first N < | |
760 | TYPE_LENGTH (type) bits. If the end of the buffer wasn't | |
761 | initialized, GDB would write undefined data to the target. An | |
762 | errant program, refering to that undefined data, would then | |
43686d64 MK |
763 | become non-deterministic. |
764 | ||
765 | See also the function convert_typed_floating below. */ | |
96d2f608 | 766 | memset (addr, 0, TYPE_LENGTH (type)); |
87ffba60 | 767 | |
96d2f608 | 768 | if (TYPE_FLOATFORMAT (type) == NULL) |
f1908289 AC |
769 | /* Not all code remembers to set the FLOATFORMAT (language |
770 | specific code? stabs?) so handle that here as a special case. */ | |
771 | store_floating_by_length (addr, TYPE_LENGTH (type), val); | |
0b87a11d MK |
772 | else |
773 | floatformat_from_doublest (TYPE_FLOATFORMAT (type), &val, addr); | |
96d2f608 | 774 | } |
43686d64 MK |
775 | |
776 | /* Convert a floating-point number of type FROM_TYPE from a | |
777 | target-order byte-stream at FROM to a floating-point number of type | |
778 | TO_TYPE, and store it to a target-order byte-stream at TO. */ | |
779 | ||
780 | void | |
781 | convert_typed_floating (const void *from, const struct type *from_type, | |
782 | void *to, const struct type *to_type) | |
783 | { | |
c2f05ac9 AC |
784 | const struct floatformat *from_fmt = floatformat_from_type (from_type); |
785 | const struct floatformat *to_fmt = floatformat_from_type (to_type); | |
43686d64 MK |
786 | |
787 | gdb_assert (TYPE_CODE (from_type) == TYPE_CODE_FLT); | |
788 | gdb_assert (TYPE_CODE (to_type) == TYPE_CODE_FLT); | |
789 | ||
43686d64 MK |
790 | if (from_fmt == NULL || to_fmt == NULL) |
791 | { | |
792 | /* If we don't know the floating-point format of FROM_TYPE or | |
793 | TO_TYPE, there's not much we can do. We might make the | |
794 | assumption that if the length of FROM_TYPE and TO_TYPE match, | |
795 | their floating-point format would match too, but that | |
796 | assumption might be wrong on targets that support | |
797 | floating-point types that only differ in endianness for | |
798 | example. So we warn instead, and zero out the target buffer. */ | |
799 | warning ("Can't convert floating-point number to desired type."); | |
800 | memset (to, 0, TYPE_LENGTH (to_type)); | |
801 | } | |
802 | else if (from_fmt == to_fmt) | |
803 | { | |
804 | /* We're in business. The floating-point format of FROM_TYPE | |
805 | and TO_TYPE match. However, even though the floating-point | |
806 | format matches, the length of the type might still be | |
807 | different. Make sure we don't overrun any buffers. See | |
808 | comment in store_typed_floating for a discussion about | |
809 | zeroing out remaining bytes in the target buffer. */ | |
810 | memset (to, 0, TYPE_LENGTH (to_type)); | |
811 | memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type))); | |
812 | } | |
813 | else | |
814 | { | |
815 | /* The floating-point types don't match. The best we can do | |
816 | (aport from simulating the target FPU) is converting to the | |
817 | widest floating-point type supported by the host, and then | |
818 | again to the desired type. */ | |
819 | DOUBLEST d; | |
820 | ||
821 | floatformat_to_doublest (from_fmt, from, &d); | |
822 | floatformat_from_doublest (to_fmt, &d, to); | |
823 | } | |
824 | } |