]>
Commit | Line | Data |
---|---|---|
d16aafd8 AC |
1 | /* Floating point routines for GDB, the GNU debugger. |
2 | Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, | |
3 | 1997, 1998, 1999, 2000, 2001 | |
4 | Free Software Foundation, Inc. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | /* Support for converting target fp numbers into host DOUBLEST format. */ | |
24 | ||
25 | /* XXX - This code should really be in libiberty/floatformat.c, | |
26 | however configuration issues with libiberty made this very | |
27 | difficult to do in the available time. */ | |
28 | ||
29 | #include "defs.h" | |
30 | #include "doublest.h" | |
31 | #include "floatformat.h" | |
32 | #include "gdb_assert.h" | |
33 | #include "gdb_string.h" | |
96d2f608 | 34 | #include "gdbtypes.h" |
d16aafd8 AC |
35 | #include <math.h> /* ldexp */ |
36 | ||
37 | /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not | |
38 | going to bother with trying to muck around with whether it is defined in | |
39 | a system header, what we do if not, etc. */ | |
40 | #define FLOATFORMAT_CHAR_BIT 8 | |
41 | ||
42 | static unsigned long get_field (unsigned char *, | |
43 | enum floatformat_byteorders, | |
44 | unsigned int, unsigned int, unsigned int); | |
45 | ||
46 | /* Extract a field which starts at START and is LEN bytes long. DATA and | |
47 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
48 | static unsigned long | |
49 | get_field (unsigned char *data, enum floatformat_byteorders order, | |
50 | unsigned int total_len, unsigned int start, unsigned int len) | |
51 | { | |
52 | unsigned long result; | |
53 | unsigned int cur_byte; | |
54 | int cur_bitshift; | |
55 | ||
56 | /* Start at the least significant part of the field. */ | |
57 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
58 | { | |
59 | /* We start counting from the other end (i.e, from the high bytes | |
60 | rather than the low bytes). As such, we need to be concerned | |
61 | with what happens if bit 0 doesn't start on a byte boundary. | |
62 | I.e, we need to properly handle the case where total_len is | |
63 | not evenly divisible by 8. So we compute ``excess'' which | |
64 | represents the number of bits from the end of our starting | |
65 | byte needed to get to bit 0. */ | |
66 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
67 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) | |
68 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
69 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
70 | - FLOATFORMAT_CHAR_BIT; | |
71 | } | |
72 | else | |
73 | { | |
74 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
75 | cur_bitshift = | |
76 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
77 | } | |
78 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
79 | result = *(data + cur_byte) >> (-cur_bitshift); | |
80 | else | |
81 | result = 0; | |
82 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
83 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
84 | ++cur_byte; | |
85 | else | |
86 | --cur_byte; | |
87 | ||
88 | /* Move towards the most significant part of the field. */ | |
89 | while (cur_bitshift < len) | |
90 | { | |
91 | result |= (unsigned long)*(data + cur_byte) << cur_bitshift; | |
92 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
93 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
94 | ++cur_byte; | |
95 | else | |
96 | --cur_byte; | |
97 | } | |
98 | if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) | |
99 | /* Mask out bits which are not part of the field */ | |
100 | result &= ((1UL << len) - 1); | |
101 | return result; | |
102 | } | |
103 | ||
104 | /* Convert from FMT to a DOUBLEST. | |
105 | FROM is the address of the extended float. | |
106 | Store the DOUBLEST in *TO. */ | |
107 | ||
c422e771 AC |
108 | static void |
109 | convert_floatformat_to_doublest (const struct floatformat *fmt, | |
110 | const void *from, | |
111 | DOUBLEST *to) | |
d16aafd8 AC |
112 | { |
113 | unsigned char *ufrom = (unsigned char *) from; | |
114 | DOUBLEST dto; | |
115 | long exponent; | |
116 | unsigned long mant; | |
117 | unsigned int mant_bits, mant_off; | |
118 | int mant_bits_left; | |
119 | int special_exponent; /* It's a NaN, denorm or zero */ | |
120 | ||
121 | /* If the mantissa bits are not contiguous from one end of the | |
122 | mantissa to the other, we need to make a private copy of the | |
123 | source bytes that is in the right order since the unpacking | |
124 | algorithm assumes that the bits are contiguous. | |
125 | ||
126 | Swap the bytes individually rather than accessing them through | |
127 | "long *" since we have no guarantee that they start on a long | |
128 | alignment, and also sizeof(long) for the host could be different | |
129 | than sizeof(long) for the target. FIXME: Assumes sizeof(long) | |
130 | for the target is 4. */ | |
131 | ||
132 | if (fmt->byteorder == floatformat_littlebyte_bigword) | |
133 | { | |
134 | static unsigned char *newfrom; | |
135 | unsigned char *swapin, *swapout; | |
136 | int longswaps; | |
137 | ||
138 | longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT; | |
139 | longswaps >>= 3; | |
140 | ||
141 | if (newfrom == NULL) | |
142 | { | |
143 | newfrom = (unsigned char *) xmalloc (fmt->totalsize); | |
144 | } | |
145 | swapout = newfrom; | |
146 | swapin = ufrom; | |
147 | ufrom = newfrom; | |
148 | while (longswaps-- > 0) | |
149 | { | |
150 | /* This is ugly, but efficient */ | |
151 | *swapout++ = swapin[4]; | |
152 | *swapout++ = swapin[5]; | |
153 | *swapout++ = swapin[6]; | |
154 | *swapout++ = swapin[7]; | |
155 | *swapout++ = swapin[0]; | |
156 | *swapout++ = swapin[1]; | |
157 | *swapout++ = swapin[2]; | |
158 | *swapout++ = swapin[3]; | |
159 | swapin += 8; | |
160 | } | |
161 | } | |
162 | ||
163 | exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize, | |
164 | fmt->exp_start, fmt->exp_len); | |
165 | /* Note that if exponent indicates a NaN, we can't really do anything useful | |
166 | (not knowing if the host has NaN's, or how to build one). So it will | |
167 | end up as an infinity or something close; that is OK. */ | |
168 | ||
169 | mant_bits_left = fmt->man_len; | |
170 | mant_off = fmt->man_start; | |
171 | dto = 0.0; | |
172 | ||
173 | special_exponent = exponent == 0 || exponent == fmt->exp_nan; | |
174 | ||
175 | /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity, | |
176 | we don't check for zero as the exponent doesn't matter. */ | |
177 | if (!special_exponent) | |
178 | exponent -= fmt->exp_bias; | |
179 | else if (exponent == 0) | |
180 | exponent = 1 - fmt->exp_bias; | |
181 | ||
182 | /* Build the result algebraically. Might go infinite, underflow, etc; | |
183 | who cares. */ | |
184 | ||
185 | /* If this format uses a hidden bit, explicitly add it in now. Otherwise, | |
186 | increment the exponent by one to account for the integer bit. */ | |
187 | ||
188 | if (!special_exponent) | |
189 | { | |
190 | if (fmt->intbit == floatformat_intbit_no) | |
191 | dto = ldexp (1.0, exponent); | |
192 | else | |
193 | exponent++; | |
194 | } | |
195 | ||
196 | while (mant_bits_left > 0) | |
197 | { | |
198 | mant_bits = min (mant_bits_left, 32); | |
199 | ||
200 | mant = get_field (ufrom, fmt->byteorder, fmt->totalsize, | |
201 | mant_off, mant_bits); | |
202 | ||
203 | dto += ldexp ((double) mant, exponent - mant_bits); | |
204 | exponent -= mant_bits; | |
205 | mant_off += mant_bits; | |
206 | mant_bits_left -= mant_bits; | |
207 | } | |
208 | ||
209 | /* Negate it if negative. */ | |
210 | if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1)) | |
211 | dto = -dto; | |
212 | *to = dto; | |
213 | } | |
214 | \f | |
215 | static void put_field (unsigned char *, enum floatformat_byteorders, | |
216 | unsigned int, | |
217 | unsigned int, unsigned int, unsigned long); | |
218 | ||
219 | /* Set a field which starts at START and is LEN bytes long. DATA and | |
220 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
221 | static void | |
222 | put_field (unsigned char *data, enum floatformat_byteorders order, | |
223 | unsigned int total_len, unsigned int start, unsigned int len, | |
224 | unsigned long stuff_to_put) | |
225 | { | |
226 | unsigned int cur_byte; | |
227 | int cur_bitshift; | |
228 | ||
229 | /* Start at the least significant part of the field. */ | |
230 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
231 | { | |
232 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
233 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) | |
234 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
235 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
236 | - FLOATFORMAT_CHAR_BIT; | |
237 | } | |
238 | else | |
239 | { | |
240 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
241 | cur_bitshift = | |
242 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
243 | } | |
244 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
245 | { | |
246 | *(data + cur_byte) &= | |
247 | ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) | |
248 | << (-cur_bitshift)); | |
249 | *(data + cur_byte) |= | |
250 | (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); | |
251 | } | |
252 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
253 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
254 | ++cur_byte; | |
255 | else | |
256 | --cur_byte; | |
257 | ||
258 | /* Move towards the most significant part of the field. */ | |
259 | while (cur_bitshift < len) | |
260 | { | |
261 | if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) | |
262 | { | |
263 | /* This is the last byte. */ | |
264 | *(data + cur_byte) &= | |
265 | ~((1 << (len - cur_bitshift)) - 1); | |
266 | *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); | |
267 | } | |
268 | else | |
269 | *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) | |
270 | & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); | |
271 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
272 | if (order == floatformat_little || order == floatformat_littlebyte_bigword) | |
273 | ++cur_byte; | |
274 | else | |
275 | --cur_byte; | |
276 | } | |
277 | } | |
278 | ||
279 | #ifdef HAVE_LONG_DOUBLE | |
280 | /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR. | |
281 | The range of the returned value is >= 0.5 and < 1.0. This is equivalent to | |
282 | frexp, but operates on the long double data type. */ | |
283 | ||
284 | static long double ldfrexp (long double value, int *eptr); | |
285 | ||
286 | static long double | |
287 | ldfrexp (long double value, int *eptr) | |
288 | { | |
289 | long double tmp; | |
290 | int exp; | |
291 | ||
292 | /* Unfortunately, there are no portable functions for extracting the exponent | |
293 | of a long double, so we have to do it iteratively by multiplying or dividing | |
294 | by two until the fraction is between 0.5 and 1.0. */ | |
295 | ||
296 | if (value < 0.0l) | |
297 | value = -value; | |
298 | ||
299 | tmp = 1.0l; | |
300 | exp = 0; | |
301 | ||
302 | if (value >= tmp) /* Value >= 1.0 */ | |
303 | while (value >= tmp) | |
304 | { | |
305 | tmp *= 2.0l; | |
306 | exp++; | |
307 | } | |
308 | else if (value != 0.0l) /* Value < 1.0 and > 0.0 */ | |
309 | { | |
310 | while (value < tmp) | |
311 | { | |
312 | tmp /= 2.0l; | |
313 | exp--; | |
314 | } | |
315 | tmp *= 2.0l; | |
316 | exp++; | |
317 | } | |
318 | ||
319 | *eptr = exp; | |
320 | return value / tmp; | |
321 | } | |
322 | #endif /* HAVE_LONG_DOUBLE */ | |
323 | ||
324 | ||
325 | /* The converse: convert the DOUBLEST *FROM to an extended float | |
326 | and store where TO points. Neither FROM nor TO have any alignment | |
327 | restrictions. */ | |
328 | ||
c422e771 AC |
329 | static void |
330 | convert_doublest_to_floatformat (CONST struct floatformat *fmt, | |
331 | const DOUBLEST *from, | |
332 | void *to) | |
d16aafd8 AC |
333 | { |
334 | DOUBLEST dfrom; | |
335 | int exponent; | |
336 | DOUBLEST mant; | |
337 | unsigned int mant_bits, mant_off; | |
338 | int mant_bits_left; | |
339 | unsigned char *uto = (unsigned char *) to; | |
340 | ||
341 | memcpy (&dfrom, from, sizeof (dfrom)); | |
342 | memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) | |
343 | / FLOATFORMAT_CHAR_BIT); | |
344 | if (dfrom == 0) | |
345 | return; /* Result is zero */ | |
346 | if (dfrom != dfrom) /* Result is NaN */ | |
347 | { | |
348 | /* From is NaN */ | |
349 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, | |
350 | fmt->exp_len, fmt->exp_nan); | |
351 | /* Be sure it's not infinity, but NaN value is irrel */ | |
352 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, | |
353 | 32, 1); | |
354 | return; | |
355 | } | |
356 | ||
357 | /* If negative, set the sign bit. */ | |
358 | if (dfrom < 0) | |
359 | { | |
360 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1); | |
361 | dfrom = -dfrom; | |
362 | } | |
363 | ||
364 | if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */ | |
365 | { | |
366 | /* Infinity exponent is same as NaN's. */ | |
367 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, | |
368 | fmt->exp_len, fmt->exp_nan); | |
369 | /* Infinity mantissa is all zeroes. */ | |
370 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, | |
371 | fmt->man_len, 0); | |
372 | return; | |
373 | } | |
374 | ||
375 | #ifdef HAVE_LONG_DOUBLE | |
376 | mant = ldfrexp (dfrom, &exponent); | |
377 | #else | |
378 | mant = frexp (dfrom, &exponent); | |
379 | #endif | |
380 | ||
381 | put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len, | |
382 | exponent + fmt->exp_bias - 1); | |
383 | ||
384 | mant_bits_left = fmt->man_len; | |
385 | mant_off = fmt->man_start; | |
386 | while (mant_bits_left > 0) | |
387 | { | |
388 | unsigned long mant_long; | |
389 | mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; | |
390 | ||
391 | mant *= 4294967296.0; | |
392 | mant_long = ((unsigned long) mant) & 0xffffffffL; | |
393 | mant -= mant_long; | |
394 | ||
395 | /* If the integer bit is implicit, then we need to discard it. | |
396 | If we are discarding a zero, we should be (but are not) creating | |
397 | a denormalized number which means adjusting the exponent | |
398 | (I think). */ | |
399 | if (mant_bits_left == fmt->man_len | |
400 | && fmt->intbit == floatformat_intbit_no) | |
401 | { | |
402 | mant_long <<= 1; | |
403 | mant_long &= 0xffffffffL; | |
404 | mant_bits -= 1; | |
405 | } | |
406 | ||
407 | if (mant_bits < 32) | |
408 | { | |
409 | /* The bits we want are in the most significant MANT_BITS bits of | |
410 | mant_long. Move them to the least significant. */ | |
411 | mant_long >>= 32 - mant_bits; | |
412 | } | |
413 | ||
414 | put_field (uto, fmt->byteorder, fmt->totalsize, | |
415 | mant_off, mant_bits, mant_long); | |
416 | mant_off += mant_bits; | |
417 | mant_bits_left -= mant_bits; | |
418 | } | |
419 | if (fmt->byteorder == floatformat_littlebyte_bigword) | |
420 | { | |
421 | int count; | |
422 | unsigned char *swaplow = uto; | |
423 | unsigned char *swaphigh = uto + 4; | |
424 | unsigned char tmp; | |
425 | ||
426 | for (count = 0; count < 4; count++) | |
427 | { | |
428 | tmp = *swaplow; | |
429 | *swaplow++ = *swaphigh; | |
430 | *swaphigh++ = tmp; | |
431 | } | |
432 | } | |
433 | } | |
434 | ||
435 | /* Check if VAL (which is assumed to be a floating point number whose | |
436 | format is described by FMT) is negative. */ | |
437 | ||
438 | int | |
439 | floatformat_is_negative (const struct floatformat *fmt, char *val) | |
440 | { | |
441 | unsigned char *uval = (unsigned char *) val; | |
069e84fd | 442 | gdb_assert (fmt != NULL); |
d16aafd8 AC |
443 | return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1); |
444 | } | |
445 | ||
446 | /* Check if VAL is "not a number" (NaN) for FMT. */ | |
447 | ||
448 | int | |
449 | floatformat_is_nan (const struct floatformat *fmt, char *val) | |
450 | { | |
451 | unsigned char *uval = (unsigned char *) val; | |
452 | long exponent; | |
453 | unsigned long mant; | |
454 | unsigned int mant_bits, mant_off; | |
455 | int mant_bits_left; | |
456 | ||
069e84fd AC |
457 | gdb_assert (fmt != NULL); |
458 | ||
d16aafd8 AC |
459 | if (! fmt->exp_nan) |
460 | return 0; | |
461 | ||
462 | exponent = get_field (uval, fmt->byteorder, fmt->totalsize, | |
463 | fmt->exp_start, fmt->exp_len); | |
464 | ||
465 | if (exponent != fmt->exp_nan) | |
466 | return 0; | |
467 | ||
468 | mant_bits_left = fmt->man_len; | |
469 | mant_off = fmt->man_start; | |
470 | ||
471 | while (mant_bits_left > 0) | |
472 | { | |
473 | mant_bits = min (mant_bits_left, 32); | |
474 | ||
475 | mant = get_field (uval, fmt->byteorder, fmt->totalsize, | |
476 | mant_off, mant_bits); | |
477 | ||
478 | /* If there is an explicit integer bit, mask it off. */ | |
479 | if (mant_off == fmt->man_start | |
480 | && fmt->intbit == floatformat_intbit_yes) | |
481 | mant &= ~(1 << (mant_bits - 1)); | |
482 | ||
483 | if (mant) | |
484 | return 1; | |
485 | ||
486 | mant_off += mant_bits; | |
487 | mant_bits_left -= mant_bits; | |
488 | } | |
489 | ||
490 | return 0; | |
491 | } | |
492 | ||
493 | /* Convert the mantissa of VAL (which is assumed to be a floating | |
494 | point number whose format is described by FMT) into a hexadecimal | |
495 | and store it in a static string. Return a pointer to that string. */ | |
496 | ||
497 | char * | |
498 | floatformat_mantissa (const struct floatformat *fmt, char *val) | |
499 | { | |
500 | unsigned char *uval = (unsigned char *) val; | |
501 | unsigned long mant; | |
502 | unsigned int mant_bits, mant_off; | |
503 | int mant_bits_left; | |
504 | static char res[50]; | |
505 | char buf[9]; | |
506 | ||
507 | /* Make sure we have enough room to store the mantissa. */ | |
069e84fd | 508 | gdb_assert (fmt != NULL); |
d16aafd8 AC |
509 | gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); |
510 | ||
511 | mant_off = fmt->man_start; | |
512 | mant_bits_left = fmt->man_len; | |
513 | mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; | |
514 | ||
515 | mant = get_field (uval, fmt->byteorder, fmt->totalsize, | |
516 | mant_off, mant_bits); | |
517 | ||
518 | sprintf (res, "%lx", mant); | |
519 | ||
520 | mant_off += mant_bits; | |
521 | mant_bits_left -= mant_bits; | |
522 | ||
523 | while (mant_bits_left > 0) | |
524 | { | |
525 | mant = get_field (uval, fmt->byteorder, fmt->totalsize, | |
526 | mant_off, 32); | |
527 | ||
528 | sprintf (buf, "%08lx", mant); | |
529 | strcat (res, buf); | |
530 | ||
531 | mant_off += 32; | |
532 | mant_bits_left -= 32; | |
533 | } | |
534 | ||
535 | return res; | |
536 | } | |
537 | ||
d16aafd8 | 538 | \f |
c422e771 AC |
539 | /* Convert TO/FROM target to the hosts DOUBLEST floating-point format. |
540 | ||
541 | If the host and target formats agree, we just copy the raw data | |
542 | into the appropriate type of variable and return, letting the host | |
543 | increase precision as necessary. Otherwise, we call the conversion | |
544 | routine and let it do the dirty work. */ | |
545 | ||
546 | #ifndef HOST_FLOAT_FORMAT | |
547 | #define HOST_FLOAT_FORMAT 0 | |
548 | #endif | |
549 | #ifndef HOST_DOUBLE_FORMAT | |
550 | #define HOST_DOUBLE_FORMAT 0 | |
551 | #endif | |
552 | #ifndef HOST_LONG_DOUBLE_FORMAT | |
553 | #define HOST_LONG_DOUBLE_FORMAT 0 | |
554 | #endif | |
555 | ||
556 | static const struct floatformat *host_float_format = HOST_FLOAT_FORMAT; | |
557 | static const struct floatformat *host_double_format = HOST_DOUBLE_FORMAT; | |
558 | static const struct floatformat *host_long_double_format = HOST_LONG_DOUBLE_FORMAT; | |
559 | ||
560 | void | |
561 | floatformat_to_doublest (const struct floatformat *fmt, | |
562 | const void *in, DOUBLEST *out) | |
563 | { | |
564 | gdb_assert (fmt != NULL); | |
565 | if (fmt == host_float_format) | |
566 | { | |
567 | float val; | |
568 | memcpy (&val, in, sizeof (val)); | |
569 | *out = val; | |
570 | } | |
571 | else if (fmt == host_double_format) | |
572 | { | |
573 | double val; | |
574 | memcpy (&val, in, sizeof (val)); | |
575 | *out = val; | |
576 | } | |
577 | else if (fmt == host_long_double_format) | |
578 | { | |
579 | long double val; | |
580 | memcpy (&val, in, sizeof (val)); | |
581 | *out = val; | |
582 | } | |
583 | else | |
584 | convert_floatformat_to_doublest (fmt, in, out); | |
585 | } | |
586 | ||
587 | void | |
588 | floatformat_from_doublest (const struct floatformat *fmt, | |
589 | const DOUBLEST *in, void *out) | |
590 | { | |
591 | gdb_assert (fmt != NULL); | |
592 | if (fmt == host_float_format) | |
593 | { | |
594 | float val = *in; | |
595 | memcpy (out, &val, sizeof (val)); | |
596 | } | |
597 | else if (fmt == host_double_format) | |
598 | { | |
599 | double val = *in; | |
600 | memcpy (out, &val, sizeof (val)); | |
601 | } | |
602 | else if (fmt == host_long_double_format) | |
603 | { | |
604 | long double val = *in; | |
605 | memcpy (out, &val, sizeof (val)); | |
606 | } | |
607 | else | |
608 | convert_doublest_to_floatformat (fmt, in, out); | |
609 | } | |
d16aafd8 | 610 | |
c422e771 | 611 | \f |
87ffba60 MK |
612 | /* Return a floating-point format for a floating-point variable of |
613 | length LEN. Return NULL, if no suitable floating-point format | |
614 | could be found. | |
d16aafd8 | 615 | |
87ffba60 MK |
616 | We need this functionality since information about the |
617 | floating-point format of a type is not always available to GDB; the | |
618 | debug information typically only tells us the size of a | |
619 | floating-point type. | |
620 | ||
621 | FIXME: kettenis/2001-10-28: In many places, particularly in | |
622 | target-dependent code, the format of floating-point types is known, | |
623 | but not passed on by GDB. This should be fixed. */ | |
624 | ||
c2f05ac9 | 625 | const struct floatformat * |
87ffba60 | 626 | floatformat_from_length (int len) |
d16aafd8 | 627 | { |
d16aafd8 | 628 | if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT) |
87ffba60 | 629 | return TARGET_FLOAT_FORMAT; |
d16aafd8 | 630 | else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT) |
87ffba60 | 631 | return TARGET_DOUBLE_FORMAT; |
d16aafd8 | 632 | else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT) |
87ffba60 MK |
633 | return TARGET_LONG_DOUBLE_FORMAT; |
634 | ||
635 | return NULL; | |
636 | } | |
637 | ||
c2f05ac9 AC |
638 | const struct floatformat * |
639 | floatformat_from_type (const struct type *type) | |
640 | { | |
641 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
642 | if (TYPE_FLOATFORMAT (type) != NULL) | |
643 | return TYPE_FLOATFORMAT (type); | |
644 | else | |
645 | return floatformat_from_length (TYPE_LENGTH (type)); | |
646 | } | |
647 | ||
87ffba60 MK |
648 | /* If the host doesn't define NAN, use zero instead. */ |
649 | #ifndef NAN | |
650 | #define NAN 0.0 | |
651 | #endif | |
652 | ||
653 | /* Extract a floating-point number of length LEN from a target-order | |
654 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
655 | ||
656 | DOUBLEST | |
657 | extract_floating (const void *addr, int len) | |
658 | { | |
659 | const struct floatformat *fmt = floatformat_from_length (len); | |
660 | DOUBLEST val; | |
661 | ||
662 | if (fmt == NULL) | |
d16aafd8 | 663 | { |
87ffba60 MK |
664 | warning ("Can't store a floating-point number of %d bytes.", len); |
665 | return NAN; | |
d16aafd8 | 666 | } |
87ffba60 MK |
667 | |
668 | floatformat_to_doublest (fmt, addr, &val); | |
669 | return val; | |
d16aafd8 AC |
670 | } |
671 | ||
87ffba60 MK |
672 | /* Store VAL as a floating-point number of length LEN to a |
673 | target-order byte-stream at ADDR. */ | |
674 | ||
d16aafd8 AC |
675 | void |
676 | store_floating (void *addr, int len, DOUBLEST val) | |
677 | { | |
87ffba60 MK |
678 | const struct floatformat *fmt = floatformat_from_length (len); |
679 | ||
680 | if (fmt == NULL) | |
d16aafd8 | 681 | { |
87ffba60 MK |
682 | warning ("Can't store a floating-point number of %d bytes.", len); |
683 | memset (addr, 0, len); | |
d16aafd8 | 684 | } |
87ffba60 MK |
685 | |
686 | floatformat_from_doublest (fmt, &val, addr); | |
d16aafd8 | 687 | } |
96d2f608 | 688 | |
87ffba60 MK |
689 | /* Extract a floating-point number of type TYPE from a target-order |
690 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
96d2f608 AC |
691 | |
692 | DOUBLEST | |
693 | extract_typed_floating (const void *addr, const struct type *type) | |
694 | { | |
695 | DOUBLEST retval; | |
87ffba60 | 696 | |
96d2f608 | 697 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
87ffba60 | 698 | |
96d2f608 | 699 | if (TYPE_FLOATFORMAT (type) == NULL) |
87ffba60 MK |
700 | return extract_floating (addr, TYPE_LENGTH (type)); |
701 | ||
702 | floatformat_to_doublest (TYPE_FLOATFORMAT (type), addr, &retval); | |
96d2f608 AC |
703 | return retval; |
704 | } | |
705 | ||
87ffba60 MK |
706 | /* Store VAL as a floating-point number of type TYPE to a target-order |
707 | byte-stream at ADDR. */ | |
708 | ||
96d2f608 AC |
709 | void |
710 | store_typed_floating (void *addr, const struct type *type, DOUBLEST val) | |
711 | { | |
712 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
87ffba60 MK |
713 | |
714 | /* FIXME: kettenis/2001-10-28: It is debatable whether we should | |
715 | zero out any remaining bytes in the target buffer when TYPE is | |
716 | longer than the actual underlying floating-point format. Perhaps | |
717 | we should store a fixed bitpattern in those remaining bytes, | |
718 | instead of zero, or perhaps we shouldn't touch those remaining | |
719 | bytes at all. | |
720 | ||
721 | NOTE: cagney/2001-10-28: With the way things currently work, it | |
722 | isn't a good idea to leave the end bits undefined. This is | |
723 | because GDB writes out the entire sizeof(<floating>) bits of the | |
724 | floating-point type even though the value might only be stored | |
725 | in, and the target processor may only refer to, the first N < | |
726 | TYPE_LENGTH (type) bits. If the end of the buffer wasn't | |
727 | initialized, GDB would write undefined data to the target. An | |
728 | errant program, refering to that undefined data, would then | |
43686d64 MK |
729 | become non-deterministic. |
730 | ||
731 | See also the function convert_typed_floating below. */ | |
96d2f608 | 732 | memset (addr, 0, TYPE_LENGTH (type)); |
87ffba60 | 733 | |
96d2f608 | 734 | if (TYPE_FLOATFORMAT (type) == NULL) |
0b87a11d MK |
735 | store_floating (addr, TYPE_LENGTH (type), val); |
736 | else | |
737 | floatformat_from_doublest (TYPE_FLOATFORMAT (type), &val, addr); | |
96d2f608 | 738 | } |
43686d64 MK |
739 | |
740 | /* Convert a floating-point number of type FROM_TYPE from a | |
741 | target-order byte-stream at FROM to a floating-point number of type | |
742 | TO_TYPE, and store it to a target-order byte-stream at TO. */ | |
743 | ||
744 | void | |
745 | convert_typed_floating (const void *from, const struct type *from_type, | |
746 | void *to, const struct type *to_type) | |
747 | { | |
c2f05ac9 AC |
748 | const struct floatformat *from_fmt = floatformat_from_type (from_type); |
749 | const struct floatformat *to_fmt = floatformat_from_type (to_type); | |
43686d64 MK |
750 | |
751 | gdb_assert (TYPE_CODE (from_type) == TYPE_CODE_FLT); | |
752 | gdb_assert (TYPE_CODE (to_type) == TYPE_CODE_FLT); | |
753 | ||
43686d64 MK |
754 | if (from_fmt == NULL || to_fmt == NULL) |
755 | { | |
756 | /* If we don't know the floating-point format of FROM_TYPE or | |
757 | TO_TYPE, there's not much we can do. We might make the | |
758 | assumption that if the length of FROM_TYPE and TO_TYPE match, | |
759 | their floating-point format would match too, but that | |
760 | assumption might be wrong on targets that support | |
761 | floating-point types that only differ in endianness for | |
762 | example. So we warn instead, and zero out the target buffer. */ | |
763 | warning ("Can't convert floating-point number to desired type."); | |
764 | memset (to, 0, TYPE_LENGTH (to_type)); | |
765 | } | |
766 | else if (from_fmt == to_fmt) | |
767 | { | |
768 | /* We're in business. The floating-point format of FROM_TYPE | |
769 | and TO_TYPE match. However, even though the floating-point | |
770 | format matches, the length of the type might still be | |
771 | different. Make sure we don't overrun any buffers. See | |
772 | comment in store_typed_floating for a discussion about | |
773 | zeroing out remaining bytes in the target buffer. */ | |
774 | memset (to, 0, TYPE_LENGTH (to_type)); | |
775 | memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type))); | |
776 | } | |
777 | else | |
778 | { | |
779 | /* The floating-point types don't match. The best we can do | |
780 | (aport from simulating the target FPU) is converting to the | |
781 | widest floating-point type supported by the host, and then | |
782 | again to the desired type. */ | |
783 | DOUBLEST d; | |
784 | ||
785 | floatformat_to_doublest (from_fmt, from, &d); | |
786 | floatformat_from_doublest (to_fmt, &d, to); | |
787 | } | |
788 | } |