]>
Commit | Line | Data |
---|---|---|
1f82754b JB |
1 | /* Native support code for PPC AIX, for GDB the GNU debugger. |
2 | ||
32d0add0 | 3 | Copyright (C) 2006-2015 Free Software Foundation, Inc. |
1f82754b JB |
4 | |
5 | Free Software Foundation, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
1f82754b JB |
12 | (at your option) any later version. |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
1f82754b JB |
21 | |
22 | #include "defs.h" | |
23 | #include "osabi.h" | |
7a61a01c UW |
24 | #include "regcache.h" |
25 | #include "regset.h" | |
4a7622d1 UW |
26 | #include "gdbtypes.h" |
27 | #include "gdbcore.h" | |
28 | #include "target.h" | |
29 | #include "value.h" | |
30 | #include "infcall.h" | |
31 | #include "objfiles.h" | |
32 | #include "breakpoint.h" | |
1f82754b | 33 | #include "rs6000-tdep.h" |
6f7f3f0d | 34 | #include "ppc-tdep.h" |
356a5233 | 35 | #include "rs6000-aix-tdep.h" |
d5367fe1 | 36 | #include "xcoffread.h" |
4d1eb6b4 JB |
37 | #include "solib.h" |
38 | #include "solib-aix.h" | |
356a5233 | 39 | #include "xml-utils.h" |
4a7622d1 UW |
40 | |
41 | /* If the kernel has to deliver a signal, it pushes a sigcontext | |
42 | structure on the stack and then calls the signal handler, passing | |
0df8b418 | 43 | the address of the sigcontext in an argument register. Usually |
4a7622d1 UW |
44 | the signal handler doesn't save this register, so we have to |
45 | access the sigcontext structure via an offset from the signal handler | |
46 | frame. | |
47 | The following constants were determined by experimentation on AIX 3.2. */ | |
48 | #define SIG_FRAME_PC_OFFSET 96 | |
49 | #define SIG_FRAME_LR_OFFSET 108 | |
50 | #define SIG_FRAME_FP_OFFSET 284 | |
51 | ||
7a61a01c UW |
52 | |
53 | /* Core file support. */ | |
54 | ||
55 | static struct ppc_reg_offsets rs6000_aix32_reg_offsets = | |
56 | { | |
57 | /* General-purpose registers. */ | |
58 | 208, /* r0_offset */ | |
f2db237a AM |
59 | 4, /* gpr_size */ |
60 | 4, /* xr_size */ | |
7a61a01c UW |
61 | 24, /* pc_offset */ |
62 | 28, /* ps_offset */ | |
63 | 32, /* cr_offset */ | |
64 | 36, /* lr_offset */ | |
65 | 40, /* ctr_offset */ | |
66 | 44, /* xer_offset */ | |
67 | 48, /* mq_offset */ | |
68 | ||
69 | /* Floating-point registers. */ | |
70 | 336, /* f0_offset */ | |
71 | 56, /* fpscr_offset */ | |
f2db237a | 72 | 4, /* fpscr_size */ |
7a61a01c UW |
73 | |
74 | /* AltiVec registers. */ | |
75 | -1, /* vr0_offset */ | |
76 | -1, /* vscr_offset */ | |
77 | -1 /* vrsave_offset */ | |
78 | }; | |
79 | ||
80 | static struct ppc_reg_offsets rs6000_aix64_reg_offsets = | |
81 | { | |
82 | /* General-purpose registers. */ | |
83 | 0, /* r0_offset */ | |
f2db237a AM |
84 | 8, /* gpr_size */ |
85 | 4, /* xr_size */ | |
7a61a01c UW |
86 | 264, /* pc_offset */ |
87 | 256, /* ps_offset */ | |
88 | 288, /* cr_offset */ | |
89 | 272, /* lr_offset */ | |
90 | 280, /* ctr_offset */ | |
91 | 292, /* xer_offset */ | |
92 | -1, /* mq_offset */ | |
93 | ||
94 | /* Floating-point registers. */ | |
95 | 312, /* f0_offset */ | |
96 | 296, /* fpscr_offset */ | |
f2db237a | 97 | 4, /* fpscr_size */ |
7a61a01c UW |
98 | |
99 | /* AltiVec registers. */ | |
100 | -1, /* vr0_offset */ | |
101 | -1, /* vscr_offset */ | |
102 | -1 /* vrsave_offset */ | |
103 | }; | |
104 | ||
105 | ||
106 | /* Supply register REGNUM in the general-purpose register set REGSET | |
107 | from the buffer specified by GREGS and LEN to register cache | |
108 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
109 | ||
110 | static void | |
111 | rs6000_aix_supply_regset (const struct regset *regset, | |
112 | struct regcache *regcache, int regnum, | |
113 | const void *gregs, size_t len) | |
114 | { | |
115 | ppc_supply_gregset (regset, regcache, regnum, gregs, len); | |
f2db237a | 116 | ppc_supply_fpregset (regset, regcache, regnum, gregs, len); |
7a61a01c UW |
117 | } |
118 | ||
119 | /* Collect register REGNUM in the general-purpose register set | |
0df8b418 | 120 | REGSET, from register cache REGCACHE into the buffer specified by |
7a61a01c UW |
121 | GREGS and LEN. If REGNUM is -1, do this for all registers in |
122 | REGSET. */ | |
123 | ||
124 | static void | |
125 | rs6000_aix_collect_regset (const struct regset *regset, | |
126 | const struct regcache *regcache, int regnum, | |
127 | void *gregs, size_t len) | |
128 | { | |
129 | ppc_collect_gregset (regset, regcache, regnum, gregs, len); | |
f2db237a | 130 | ppc_collect_fpregset (regset, regcache, regnum, gregs, len); |
7a61a01c UW |
131 | } |
132 | ||
133 | /* AIX register set. */ | |
134 | ||
3ca7dae4 | 135 | static const struct regset rs6000_aix32_regset = |
7a61a01c UW |
136 | { |
137 | &rs6000_aix32_reg_offsets, | |
138 | rs6000_aix_supply_regset, | |
139 | rs6000_aix_collect_regset, | |
140 | }; | |
141 | ||
3ca7dae4 | 142 | static const struct regset rs6000_aix64_regset = |
7a61a01c UW |
143 | { |
144 | &rs6000_aix64_reg_offsets, | |
145 | rs6000_aix_supply_regset, | |
146 | rs6000_aix_collect_regset, | |
147 | }; | |
148 | ||
23ea9aeb | 149 | /* Iterate over core file register note sections. */ |
7a61a01c | 150 | |
23ea9aeb AA |
151 | static void |
152 | rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch, | |
153 | iterate_over_regset_sections_cb *cb, | |
154 | void *cb_data, | |
155 | const struct regcache *regcache) | |
7a61a01c UW |
156 | { |
157 | if (gdbarch_tdep (gdbarch)->wordsize == 4) | |
23ea9aeb | 158 | cb (".reg", 592, &rs6000_aix32_regset, NULL, cb_data); |
7a61a01c | 159 | else |
23ea9aeb | 160 | cb (".reg", 576, &rs6000_aix64_regset, NULL, cb_data); |
7a61a01c UW |
161 | } |
162 | ||
163 | ||
0df8b418 | 164 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
4a7622d1 UW |
165 | the first eight words of the argument list (that might be less than |
166 | eight parameters if some parameters occupy more than one word) are | |
0df8b418 | 167 | passed in r3..r10 registers. Float and double parameters are |
4a7622d1 UW |
168 | passed in fpr's, in addition to that. Rest of the parameters if any |
169 | are passed in user stack. There might be cases in which half of the | |
170 | parameter is copied into registers, the other half is pushed into | |
171 | stack. | |
172 | ||
173 | Stack must be aligned on 64-bit boundaries when synthesizing | |
174 | function calls. | |
175 | ||
176 | If the function is returning a structure, then the return address is passed | |
177 | in r3, then the first 7 words of the parameters can be passed in registers, | |
178 | starting from r4. */ | |
179 | ||
180 | static CORE_ADDR | |
181 | rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
182 | struct regcache *regcache, CORE_ADDR bp_addr, | |
183 | int nargs, struct value **args, CORE_ADDR sp, | |
184 | int struct_return, CORE_ADDR struct_addr) | |
185 | { | |
186 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
e17a4113 | 187 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4a7622d1 UW |
188 | int ii; |
189 | int len = 0; | |
190 | int argno; /* current argument number */ | |
191 | int argbytes; /* current argument byte */ | |
192 | gdb_byte tmp_buffer[50]; | |
193 | int f_argno = 0; /* current floating point argno */ | |
194 | int wordsize = gdbarch_tdep (gdbarch)->wordsize; | |
195 | CORE_ADDR func_addr = find_function_addr (function, NULL); | |
196 | ||
197 | struct value *arg = 0; | |
198 | struct type *type; | |
199 | ||
200 | ULONGEST saved_sp; | |
201 | ||
202 | /* The calling convention this function implements assumes the | |
203 | processor has floating-point registers. We shouldn't be using it | |
204 | on PPC variants that lack them. */ | |
205 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); | |
206 | ||
207 | /* The first eight words of ther arguments are passed in registers. | |
208 | Copy them appropriately. */ | |
209 | ii = 0; | |
210 | ||
211 | /* If the function is returning a `struct', then the first word | |
212 | (which will be passed in r3) is used for struct return address. | |
213 | In that case we should advance one word and start from r4 | |
214 | register to copy parameters. */ | |
215 | if (struct_return) | |
216 | { | |
217 | regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
218 | struct_addr); | |
219 | ii++; | |
220 | } | |
221 | ||
0df8b418 | 222 | /* effectively indirect call... gcc does... |
4a7622d1 UW |
223 | |
224 | return_val example( float, int); | |
225 | ||
226 | eabi: | |
227 | float in fp0, int in r3 | |
228 | offset of stack on overflow 8/16 | |
229 | for varargs, must go by type. | |
230 | power open: | |
231 | float in r3&r4, int in r5 | |
232 | offset of stack on overflow different | |
233 | both: | |
234 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
0df8b418 | 235 | pay attention to arg promotion. |
4a7622d1 | 236 | User may have to cast\args to handle promotion correctly |
0df8b418 | 237 | since gdb won't know if prototype supplied or not. */ |
4a7622d1 UW |
238 | |
239 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) | |
240 | { | |
241 | int reg_size = register_size (gdbarch, ii + 3); | |
242 | ||
243 | arg = args[argno]; | |
244 | type = check_typedef (value_type (arg)); | |
245 | len = TYPE_LENGTH (type); | |
246 | ||
247 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
248 | { | |
4a7622d1 | 249 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
0df8b418 | 250 | There are 13 fpr's reserved for passing parameters. At this point |
36d1c68c JB |
251 | there is no way we would run out of them. |
252 | ||
253 | Always store the floating point value using the register's | |
254 | floating-point format. */ | |
255 | const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno; | |
256 | gdb_byte reg_val[MAX_REGISTER_SIZE]; | |
257 | struct type *reg_type = register_type (gdbarch, fp_regnum); | |
4a7622d1 UW |
258 | |
259 | gdb_assert (len <= 8); | |
260 | ||
36d1c68c JB |
261 | convert_typed_floating (value_contents (arg), type, |
262 | reg_val, reg_type); | |
263 | regcache_cooked_write (regcache, fp_regnum, reg_val); | |
4a7622d1 UW |
264 | ++f_argno; |
265 | } | |
266 | ||
267 | if (len > reg_size) | |
268 | { | |
269 | ||
270 | /* Argument takes more than one register. */ | |
271 | while (argbytes < len) | |
272 | { | |
273 | gdb_byte word[MAX_REGISTER_SIZE]; | |
274 | memset (word, 0, reg_size); | |
275 | memcpy (word, | |
276 | ((char *) value_contents (arg)) + argbytes, | |
277 | (len - argbytes) > reg_size | |
278 | ? reg_size : len - argbytes); | |
279 | regcache_cooked_write (regcache, | |
280 | tdep->ppc_gp0_regnum + 3 + ii, | |
281 | word); | |
282 | ++ii, argbytes += reg_size; | |
283 | ||
284 | if (ii >= 8) | |
285 | goto ran_out_of_registers_for_arguments; | |
286 | } | |
287 | argbytes = 0; | |
288 | --ii; | |
289 | } | |
290 | else | |
291 | { | |
292 | /* Argument can fit in one register. No problem. */ | |
293 | int adj = gdbarch_byte_order (gdbarch) | |
294 | == BFD_ENDIAN_BIG ? reg_size - len : 0; | |
295 | gdb_byte word[MAX_REGISTER_SIZE]; | |
296 | ||
297 | memset (word, 0, reg_size); | |
298 | memcpy (word, value_contents (arg), len); | |
299 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); | |
300 | } | |
301 | ++argno; | |
302 | } | |
303 | ||
304 | ran_out_of_registers_for_arguments: | |
305 | ||
306 | regcache_cooked_read_unsigned (regcache, | |
307 | gdbarch_sp_regnum (gdbarch), | |
308 | &saved_sp); | |
309 | ||
310 | /* Location for 8 parameters are always reserved. */ | |
311 | sp -= wordsize * 8; | |
312 | ||
313 | /* Another six words for back chain, TOC register, link register, etc. */ | |
314 | sp -= wordsize * 6; | |
315 | ||
316 | /* Stack pointer must be quadword aligned. */ | |
317 | sp &= -16; | |
318 | ||
319 | /* If there are more arguments, allocate space for them in | |
320 | the stack, then push them starting from the ninth one. */ | |
321 | ||
322 | if ((argno < nargs) || argbytes) | |
323 | { | |
324 | int space = 0, jj; | |
325 | ||
326 | if (argbytes) | |
327 | { | |
328 | space += ((len - argbytes + 3) & -4); | |
329 | jj = argno + 1; | |
330 | } | |
331 | else | |
332 | jj = argno; | |
333 | ||
334 | for (; jj < nargs; ++jj) | |
335 | { | |
336 | struct value *val = args[jj]; | |
337 | space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; | |
338 | } | |
339 | ||
340 | /* Add location required for the rest of the parameters. */ | |
341 | space = (space + 15) & -16; | |
342 | sp -= space; | |
343 | ||
344 | /* This is another instance we need to be concerned about | |
0df8b418 | 345 | securing our stack space. If we write anything underneath %sp |
4a7622d1 UW |
346 | (r1), we might conflict with the kernel who thinks he is free |
347 | to use this area. So, update %sp first before doing anything | |
348 | else. */ | |
349 | ||
350 | regcache_raw_write_signed (regcache, | |
351 | gdbarch_sp_regnum (gdbarch), sp); | |
352 | ||
353 | /* If the last argument copied into the registers didn't fit there | |
354 | completely, push the rest of it into stack. */ | |
355 | ||
356 | if (argbytes) | |
357 | { | |
358 | write_memory (sp + 24 + (ii * 4), | |
359 | value_contents (arg) + argbytes, | |
360 | len - argbytes); | |
361 | ++argno; | |
362 | ii += ((len - argbytes + 3) & -4) / 4; | |
363 | } | |
364 | ||
365 | /* Push the rest of the arguments into stack. */ | |
366 | for (; argno < nargs; ++argno) | |
367 | { | |
368 | ||
369 | arg = args[argno]; | |
370 | type = check_typedef (value_type (arg)); | |
371 | len = TYPE_LENGTH (type); | |
372 | ||
373 | ||
374 | /* Float types should be passed in fpr's, as well as in the | |
375 | stack. */ | |
376 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) | |
377 | { | |
378 | ||
379 | gdb_assert (len <= 8); | |
380 | ||
381 | regcache_cooked_write (regcache, | |
382 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
383 | value_contents (arg)); | |
384 | ++f_argno; | |
385 | } | |
386 | ||
387 | write_memory (sp + 24 + (ii * 4), value_contents (arg), len); | |
388 | ii += ((len + 3) & -4) / 4; | |
389 | } | |
390 | } | |
391 | ||
392 | /* Set the stack pointer. According to the ABI, the SP is meant to | |
393 | be set _before_ the corresponding stack space is used. On AIX, | |
394 | this even applies when the target has been completely stopped! | |
395 | Not doing this can lead to conflicts with the kernel which thinks | |
396 | that it still has control over this not-yet-allocated stack | |
397 | region. */ | |
398 | regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); | |
399 | ||
400 | /* Set back chain properly. */ | |
e17a4113 | 401 | store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp); |
4a7622d1 UW |
402 | write_memory (sp, tmp_buffer, wordsize); |
403 | ||
404 | /* Point the inferior function call's return address at the dummy's | |
405 | breakpoint. */ | |
406 | regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
407 | ||
4d1eb6b4 JB |
408 | /* Set the TOC register value. */ |
409 | regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, | |
410 | solib_aix_get_toc_value (func_addr)); | |
4a7622d1 UW |
411 | |
412 | target_store_registers (regcache, -1); | |
413 | return sp; | |
414 | } | |
415 | ||
416 | static enum return_value_convention | |
6a3a010b | 417 | rs6000_return_value (struct gdbarch *gdbarch, struct value *function, |
4a7622d1 UW |
418 | struct type *valtype, struct regcache *regcache, |
419 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
420 | { | |
421 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
e17a4113 | 422 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4a7622d1 UW |
423 | |
424 | /* The calling convention this function implements assumes the | |
425 | processor has floating-point registers. We shouldn't be using it | |
426 | on PowerPC variants that lack them. */ | |
427 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); | |
428 | ||
429 | /* AltiVec extension: Functions that declare a vector data type as a | |
430 | return value place that return value in VR2. */ | |
431 | if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype) | |
432 | && TYPE_LENGTH (valtype) == 16) | |
433 | { | |
434 | if (readbuf) | |
435 | regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); | |
436 | if (writebuf) | |
437 | regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); | |
438 | ||
439 | return RETURN_VALUE_REGISTER_CONVENTION; | |
440 | } | |
441 | ||
442 | /* If the called subprogram returns an aggregate, there exists an | |
443 | implicit first argument, whose value is the address of a caller- | |
444 | allocated buffer into which the callee is assumed to store its | |
0df8b418 | 445 | return value. All explicit parameters are appropriately |
4a7622d1 UW |
446 | relabeled. */ |
447 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
448 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
449 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
450 | return RETURN_VALUE_STRUCT_CONVENTION; | |
451 | ||
452 | /* Scalar floating-point values are returned in FPR1 for float or | |
453 | double, and in FPR1:FPR2 for quadword precision. Fortran | |
454 | complex*8 and complex*16 are returned in FPR1:FPR2, and | |
455 | complex*32 is returned in FPR1:FPR4. */ | |
456 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
457 | && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) | |
458 | { | |
459 | struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); | |
460 | gdb_byte regval[8]; | |
461 | ||
462 | /* FIXME: kettenis/2007-01-01: Add support for quadword | |
463 | precision and complex. */ | |
464 | ||
465 | if (readbuf) | |
466 | { | |
467 | regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
468 | convert_typed_floating (regval, regtype, readbuf, valtype); | |
469 | } | |
470 | if (writebuf) | |
471 | { | |
472 | convert_typed_floating (writebuf, valtype, regval, regtype); | |
473 | regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
474 | } | |
475 | ||
476 | return RETURN_VALUE_REGISTER_CONVENTION; | |
477 | } | |
478 | ||
479 | /* Values of the types int, long, short, pointer, and char (length | |
480 | is less than or equal to four bytes), as well as bit values of | |
481 | lengths less than or equal to 32 bits, must be returned right | |
482 | justified in GPR3 with signed values sign extended and unsigned | |
483 | values zero extended, as necessary. */ | |
484 | if (TYPE_LENGTH (valtype) <= tdep->wordsize) | |
485 | { | |
486 | if (readbuf) | |
487 | { | |
488 | ULONGEST regval; | |
489 | ||
490 | /* For reading we don't have to worry about sign extension. */ | |
491 | regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
492 | ®val); | |
e17a4113 UW |
493 | store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order, |
494 | regval); | |
4a7622d1 UW |
495 | } |
496 | if (writebuf) | |
497 | { | |
498 | /* For writing, use unpack_long since that should handle any | |
499 | required sign extension. */ | |
500 | regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
501 | unpack_long (valtype, writebuf)); | |
502 | } | |
503 | ||
504 | return RETURN_VALUE_REGISTER_CONVENTION; | |
505 | } | |
506 | ||
507 | /* Eight-byte non-floating-point scalar values must be returned in | |
508 | GPR3:GPR4. */ | |
509 | ||
510 | if (TYPE_LENGTH (valtype) == 8) | |
511 | { | |
512 | gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT); | |
513 | gdb_assert (tdep->wordsize == 4); | |
514 | ||
515 | if (readbuf) | |
516 | { | |
517 | gdb_byte regval[8]; | |
518 | ||
519 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval); | |
520 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, | |
521 | regval + 4); | |
522 | memcpy (readbuf, regval, 8); | |
523 | } | |
524 | if (writebuf) | |
525 | { | |
526 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); | |
527 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, | |
528 | writebuf + 4); | |
529 | } | |
530 | ||
531 | return RETURN_VALUE_REGISTER_CONVENTION; | |
532 | } | |
533 | ||
534 | return RETURN_VALUE_STRUCT_CONVENTION; | |
535 | } | |
536 | ||
537 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). | |
538 | ||
539 | Usually a function pointer's representation is simply the address | |
0df8b418 MS |
540 | of the function. On the RS/6000 however, a function pointer is |
541 | represented by a pointer to an OPD entry. This OPD entry contains | |
4a7622d1 UW |
542 | three words, the first word is the address of the function, the |
543 | second word is the TOC pointer (r2), and the third word is the | |
544 | static chain value. Throughout GDB it is currently assumed that a | |
545 | function pointer contains the address of the function, which is not | |
546 | easy to fix. In addition, the conversion of a function address to | |
547 | a function pointer would require allocation of an OPD entry in the | |
548 | inferior's memory space, with all its drawbacks. To be able to | |
549 | call C++ virtual methods in the inferior (which are called via | |
550 | function pointers), find_function_addr uses this function to get the | |
551 | function address from a function pointer. */ | |
552 | ||
553 | /* Return real function address if ADDR (a function pointer) is in the data | |
554 | space and is therefore a special function pointer. */ | |
555 | ||
556 | static CORE_ADDR | |
557 | rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, | |
558 | CORE_ADDR addr, | |
559 | struct target_ops *targ) | |
560 | { | |
e17a4113 UW |
561 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
562 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
4a7622d1 UW |
563 | struct obj_section *s; |
564 | ||
565 | s = find_pc_section (addr); | |
4a7622d1 | 566 | |
40adab56 JB |
567 | /* Normally, functions live inside a section that is executable. |
568 | So, if ADDR points to a non-executable section, then treat it | |
569 | as a function descriptor and return the target address iff | |
570 | the target address itself points to a section that is executable. */ | |
571 | if (s && (s->the_bfd_section->flags & SEC_CODE) == 0) | |
572 | { | |
57174f31 | 573 | CORE_ADDR pc = 0; |
2971b56b | 574 | struct obj_section *pc_section; |
bfd189b1 | 575 | volatile struct gdb_exception e; |
2971b56b JB |
576 | |
577 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
578 | { | |
579 | pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order); | |
580 | } | |
581 | if (e.reason < 0) | |
582 | { | |
583 | /* An error occured during reading. Probably a memory error | |
584 | due to the section not being loaded yet. This address | |
585 | cannot be a function descriptor. */ | |
586 | return addr; | |
587 | } | |
588 | pc_section = find_pc_section (pc); | |
40adab56 JB |
589 | |
590 | if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE)) | |
591 | return pc; | |
592 | } | |
593 | ||
594 | return addr; | |
4a7622d1 UW |
595 | } |
596 | ||
597 | ||
598 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ | |
599 | ||
600 | static CORE_ADDR | |
601 | branch_dest (struct frame_info *frame, int opcode, int instr, | |
602 | CORE_ADDR pc, CORE_ADDR safety) | |
603 | { | |
e17a4113 UW |
604 | struct gdbarch *gdbarch = get_frame_arch (frame); |
605 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
606 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
4a7622d1 UW |
607 | CORE_ADDR dest; |
608 | int immediate; | |
609 | int absolute; | |
610 | int ext_op; | |
611 | ||
612 | absolute = (int) ((instr >> 1) & 1); | |
613 | ||
614 | switch (opcode) | |
615 | { | |
616 | case 18: | |
617 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
618 | if (absolute) | |
619 | dest = immediate; | |
620 | else | |
621 | dest = pc + immediate; | |
622 | break; | |
623 | ||
624 | case 16: | |
625 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
626 | if (absolute) | |
627 | dest = immediate; | |
628 | else | |
629 | dest = pc + immediate; | |
630 | break; | |
631 | ||
632 | case 19: | |
633 | ext_op = (instr >> 1) & 0x3ff; | |
634 | ||
635 | if (ext_op == 16) /* br conditional register */ | |
636 | { | |
637 | dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; | |
638 | ||
639 | /* If we are about to return from a signal handler, dest is | |
640 | something like 0x3c90. The current frame is a signal handler | |
641 | caller frame, upon completion of the sigreturn system call | |
642 | execution will return to the saved PC in the frame. */ | |
643 | if (dest < AIX_TEXT_SEGMENT_BASE) | |
644 | dest = read_memory_unsigned_integer | |
645 | (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, | |
e17a4113 | 646 | tdep->wordsize, byte_order); |
4a7622d1 UW |
647 | } |
648 | ||
649 | else if (ext_op == 528) /* br cond to count reg */ | |
650 | { | |
0df8b418 MS |
651 | dest = get_frame_register_unsigned (frame, |
652 | tdep->ppc_ctr_regnum) & ~3; | |
4a7622d1 UW |
653 | |
654 | /* If we are about to execute a system call, dest is something | |
655 | like 0x22fc or 0x3b00. Upon completion the system call | |
656 | will return to the address in the link register. */ | |
657 | if (dest < AIX_TEXT_SEGMENT_BASE) | |
0df8b418 MS |
658 | dest = get_frame_register_unsigned (frame, |
659 | tdep->ppc_lr_regnum) & ~3; | |
4a7622d1 UW |
660 | } |
661 | else | |
662 | return -1; | |
663 | break; | |
664 | ||
665 | default: | |
666 | return -1; | |
667 | } | |
668 | return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest; | |
669 | } | |
670 | ||
671 | /* AIX does not support PT_STEP. Simulate it. */ | |
672 | ||
673 | static int | |
674 | rs6000_software_single_step (struct frame_info *frame) | |
675 | { | |
a6d9a66e | 676 | struct gdbarch *gdbarch = get_frame_arch (frame); |
6c95b8df | 677 | struct address_space *aspace = get_frame_address_space (frame); |
e17a4113 | 678 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4a7622d1 UW |
679 | int ii, insn; |
680 | CORE_ADDR loc; | |
681 | CORE_ADDR breaks[2]; | |
682 | int opcode; | |
683 | ||
684 | loc = get_frame_pc (frame); | |
685 | ||
e17a4113 | 686 | insn = read_memory_integer (loc, 4, byte_order); |
4a7622d1 UW |
687 | |
688 | if (ppc_deal_with_atomic_sequence (frame)) | |
689 | return 1; | |
690 | ||
691 | breaks[0] = loc + PPC_INSN_SIZE; | |
692 | opcode = insn >> 26; | |
693 | breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]); | |
694 | ||
0df8b418 | 695 | /* Don't put two breakpoints on the same address. */ |
4a7622d1 UW |
696 | if (breaks[1] == breaks[0]) |
697 | breaks[1] = -1; | |
698 | ||
699 | for (ii = 0; ii < 2; ++ii) | |
700 | { | |
0df8b418 | 701 | /* ignore invalid breakpoint. */ |
4a7622d1 UW |
702 | if (breaks[ii] == -1) |
703 | continue; | |
6c95b8df | 704 | insert_single_step_breakpoint (gdbarch, aspace, breaks[ii]); |
4a7622d1 UW |
705 | } |
706 | ||
0df8b418 | 707 | errno = 0; /* FIXME, don't ignore errors! */ |
4a7622d1 UW |
708 | /* What errors? {read,write}_memory call error(). */ |
709 | return 1; | |
710 | } | |
711 | ||
38a69d0a JB |
712 | /* Implement the "auto_wide_charset" gdbarch method for this platform. */ |
713 | ||
714 | static const char * | |
715 | rs6000_aix_auto_wide_charset (void) | |
716 | { | |
717 | return "UTF-16"; | |
718 | } | |
719 | ||
beb4b03c JB |
720 | /* Implement an osabi sniffer for RS6000/AIX. |
721 | ||
722 | This function assumes that ABFD's flavour is XCOFF. In other words, | |
723 | it should be registered as a sniffer for bfd_target_xcoff_flavour | |
724 | objfiles only. A failed assertion will be raised if this condition | |
725 | is not met. */ | |
726 | ||
1f82754b JB |
727 | static enum gdb_osabi |
728 | rs6000_aix_osabi_sniffer (bfd *abfd) | |
729 | { | |
beb4b03c | 730 | gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour); |
1f82754b | 731 | |
d5367fe1 JB |
732 | /* The only noticeable difference between Lynx178 XCOFF files and |
733 | AIX XCOFF files comes from the fact that there are no shared | |
734 | libraries on Lynx178. On AIX, we are betting that an executable | |
735 | linked with no shared library will never exist. */ | |
736 | if (xcoff_get_n_import_files (abfd) <= 0) | |
737 | return GDB_OSABI_UNKNOWN; | |
738 | ||
beb4b03c | 739 | return GDB_OSABI_AIX; |
1f82754b JB |
740 | } |
741 | ||
356a5233 JB |
742 | /* A structure encoding the offset and size of a field within |
743 | a struct. */ | |
744 | ||
745 | struct field_info | |
746 | { | |
747 | int offset; | |
748 | int size; | |
749 | }; | |
750 | ||
751 | /* A structure describing the layout of all the fields of interest | |
752 | in AIX's struct ld_info. Each field in this struct corresponds | |
753 | to the field of the same name in struct ld_info. */ | |
754 | ||
755 | struct ld_info_desc | |
756 | { | |
757 | struct field_info ldinfo_next; | |
758 | struct field_info ldinfo_fd; | |
759 | struct field_info ldinfo_textorg; | |
760 | struct field_info ldinfo_textsize; | |
761 | struct field_info ldinfo_dataorg; | |
762 | struct field_info ldinfo_datasize; | |
763 | struct field_info ldinfo_filename; | |
764 | }; | |
765 | ||
766 | /* The following data has been generated by compiling and running | |
767 | the following program on AIX 5.3. */ | |
768 | ||
769 | #if 0 | |
1c432e72 JB |
770 | #include <stddef.h> |
771 | #include <stdio.h> | |
772 | #define __LDINFO_PTRACE32__ | |
773 | #define __LDINFO_PTRACE64__ | |
774 | #include <sys/ldr.h> | |
775 | ||
776 | #define pinfo(type,member) \ | |
777 | { \ | |
778 | struct type ldi = {0}; \ | |
779 | \ | |
780 | printf (" {%d, %d},\t/* %s */\n", \ | |
781 | offsetof (struct type, member), \ | |
782 | sizeof (ldi.member), \ | |
783 | #member); \ | |
784 | } \ | |
785 | while (0) | |
786 | ||
787 | int | |
788 | main (void) | |
789 | { | |
790 | printf ("static const struct ld_info_desc ld_info32_desc =\n{\n"); | |
791 | pinfo (__ld_info32, ldinfo_next); | |
792 | pinfo (__ld_info32, ldinfo_fd); | |
793 | pinfo (__ld_info32, ldinfo_textorg); | |
794 | pinfo (__ld_info32, ldinfo_textsize); | |
795 | pinfo (__ld_info32, ldinfo_dataorg); | |
796 | pinfo (__ld_info32, ldinfo_datasize); | |
797 | pinfo (__ld_info32, ldinfo_filename); | |
798 | printf ("};\n"); | |
799 | ||
800 | printf ("\n"); | |
801 | ||
802 | printf ("static const struct ld_info_desc ld_info64_desc =\n{\n"); | |
803 | pinfo (__ld_info64, ldinfo_next); | |
804 | pinfo (__ld_info64, ldinfo_fd); | |
805 | pinfo (__ld_info64, ldinfo_textorg); | |
806 | pinfo (__ld_info64, ldinfo_textsize); | |
807 | pinfo (__ld_info64, ldinfo_dataorg); | |
808 | pinfo (__ld_info64, ldinfo_datasize); | |
809 | pinfo (__ld_info64, ldinfo_filename); | |
810 | printf ("};\n"); | |
811 | ||
812 | return 0; | |
813 | } | |
356a5233 JB |
814 | #endif /* 0 */ |
815 | ||
816 | /* Layout of the 32bit version of struct ld_info. */ | |
817 | ||
818 | static const struct ld_info_desc ld_info32_desc = | |
819 | { | |
820 | {0, 4}, /* ldinfo_next */ | |
821 | {4, 4}, /* ldinfo_fd */ | |
822 | {8, 4}, /* ldinfo_textorg */ | |
823 | {12, 4}, /* ldinfo_textsize */ | |
824 | {16, 4}, /* ldinfo_dataorg */ | |
825 | {20, 4}, /* ldinfo_datasize */ | |
826 | {24, 2}, /* ldinfo_filename */ | |
827 | }; | |
828 | ||
829 | /* Layout of the 64bit version of struct ld_info. */ | |
830 | ||
831 | static const struct ld_info_desc ld_info64_desc = | |
832 | { | |
833 | {0, 4}, /* ldinfo_next */ | |
834 | {8, 4}, /* ldinfo_fd */ | |
835 | {16, 8}, /* ldinfo_textorg */ | |
836 | {24, 8}, /* ldinfo_textsize */ | |
837 | {32, 8}, /* ldinfo_dataorg */ | |
838 | {40, 8}, /* ldinfo_datasize */ | |
839 | {48, 2}, /* ldinfo_filename */ | |
840 | }; | |
841 | ||
842 | /* A structured representation of one entry read from the ld_info | |
843 | binary data provided by the AIX loader. */ | |
844 | ||
845 | struct ld_info | |
846 | { | |
847 | ULONGEST next; | |
848 | int fd; | |
849 | CORE_ADDR textorg; | |
850 | ULONGEST textsize; | |
851 | CORE_ADDR dataorg; | |
852 | ULONGEST datasize; | |
853 | char *filename; | |
854 | char *member_name; | |
855 | }; | |
856 | ||
857 | /* Return a struct ld_info object corresponding to the entry at | |
858 | LDI_BUF. | |
859 | ||
860 | Note that the filename and member_name strings still point | |
861 | to the data in LDI_BUF. So LDI_BUF must not be deallocated | |
862 | while the struct ld_info object returned is in use. */ | |
863 | ||
864 | static struct ld_info | |
865 | rs6000_aix_extract_ld_info (struct gdbarch *gdbarch, | |
866 | const gdb_byte *ldi_buf) | |
867 | { | |
868 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
869 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
870 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | |
871 | const struct ld_info_desc desc | |
872 | = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc; | |
873 | struct ld_info info; | |
874 | ||
875 | info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset, | |
876 | desc.ldinfo_next.size, | |
877 | byte_order); | |
878 | info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset, | |
879 | desc.ldinfo_fd.size, | |
880 | byte_order); | |
881 | info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset, | |
882 | ptr_type); | |
883 | info.textsize | |
884 | = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset, | |
885 | desc.ldinfo_textsize.size, | |
886 | byte_order); | |
887 | info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset, | |
888 | ptr_type); | |
889 | info.datasize | |
890 | = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset, | |
891 | desc.ldinfo_datasize.size, | |
892 | byte_order); | |
893 | info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset; | |
894 | info.member_name = info.filename + strlen (info.filename) + 1; | |
895 | ||
896 | return info; | |
897 | } | |
898 | ||
899 | /* Append to OBJSTACK an XML string description of the shared library | |
900 | corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX | |
901 | format. */ | |
902 | ||
903 | static void | |
904 | rs6000_aix_shared_library_to_xml (struct ld_info *ldi, | |
905 | struct obstack *obstack) | |
906 | { | |
907 | char *p; | |
908 | ||
909 | obstack_grow_str (obstack, "<library name=\""); | |
910 | p = xml_escape_text (ldi->filename); | |
911 | obstack_grow_str (obstack, p); | |
912 | xfree (p); | |
913 | obstack_grow_str (obstack, "\""); | |
914 | ||
915 | if (ldi->member_name[0] != '\0') | |
916 | { | |
917 | obstack_grow_str (obstack, " member=\""); | |
918 | p = xml_escape_text (ldi->member_name); | |
919 | obstack_grow_str (obstack, p); | |
920 | xfree (p); | |
921 | obstack_grow_str (obstack, "\""); | |
922 | } | |
923 | ||
924 | obstack_grow_str (obstack, " text_addr=\""); | |
925 | obstack_grow_str (obstack, core_addr_to_string (ldi->textorg)); | |
926 | obstack_grow_str (obstack, "\""); | |
927 | ||
928 | obstack_grow_str (obstack, " text_size=\""); | |
929 | obstack_grow_str (obstack, pulongest (ldi->textsize)); | |
930 | obstack_grow_str (obstack, "\""); | |
931 | ||
932 | obstack_grow_str (obstack, " data_addr=\""); | |
933 | obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg)); | |
934 | obstack_grow_str (obstack, "\""); | |
935 | ||
936 | obstack_grow_str (obstack, " data_size=\""); | |
937 | obstack_grow_str (obstack, pulongest (ldi->datasize)); | |
938 | obstack_grow_str (obstack, "\""); | |
939 | ||
940 | obstack_grow_str (obstack, "></library>"); | |
941 | } | |
942 | ||
943 | /* Convert the ld_info binary data provided by the AIX loader into | |
944 | an XML representation following the TARGET_OBJECT_LIBRARIES_AIX | |
945 | format. | |
946 | ||
947 | LDI_BUF is a buffer containing the ld_info data. | |
948 | READBUF, OFFSET and LEN follow the same semantics as target_ops' | |
949 | to_xfer_partial target_ops method. | |
950 | ||
951 | If CLOSE_LDINFO_FD is nonzero, then this routine also closes | |
952 | the ldinfo_fd file descriptor. This is useful when the ldinfo | |
953 | data is obtained via ptrace, as ptrace opens a file descriptor | |
954 | for each and every entry; but we cannot use this descriptor | |
955 | as the consumer of the XML library list might live in a different | |
956 | process. */ | |
957 | ||
c09f20e4 | 958 | ULONGEST |
356a5233 | 959 | rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf, |
b55e14c7 | 960 | gdb_byte *readbuf, ULONGEST offset, ULONGEST len, |
356a5233 JB |
961 | int close_ldinfo_fd) |
962 | { | |
963 | struct obstack obstack; | |
964 | const char *buf; | |
c09f20e4 | 965 | ULONGEST len_avail; |
356a5233 JB |
966 | |
967 | obstack_init (&obstack); | |
968 | obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n"); | |
969 | ||
970 | while (1) | |
971 | { | |
972 | struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf); | |
973 | ||
974 | rs6000_aix_shared_library_to_xml (&ldi, &obstack); | |
975 | if (close_ldinfo_fd) | |
976 | close (ldi.fd); | |
977 | ||
978 | if (!ldi.next) | |
979 | break; | |
980 | ldi_buf = ldi_buf + ldi.next; | |
981 | } | |
982 | ||
983 | obstack_grow_str0 (&obstack, "</library-list-aix>\n"); | |
984 | ||
985 | buf = obstack_finish (&obstack); | |
986 | len_avail = strlen (buf); | |
987 | if (offset >= len_avail) | |
988 | len= 0; | |
989 | else | |
990 | { | |
991 | if (len > len_avail - offset) | |
992 | len = len_avail - offset; | |
993 | memcpy (readbuf, buf + offset, len); | |
994 | } | |
995 | ||
996 | obstack_free (&obstack, NULL); | |
997 | return len; | |
998 | } | |
999 | ||
1000 | /* Implement the core_xfer_shared_libraries_aix gdbarch method. */ | |
1001 | ||
c09f20e4 | 1002 | static ULONGEST |
356a5233 JB |
1003 | rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch, |
1004 | gdb_byte *readbuf, | |
1005 | ULONGEST offset, | |
7ec1862d | 1006 | ULONGEST len) |
356a5233 JB |
1007 | { |
1008 | struct bfd_section *ldinfo_sec; | |
1009 | int ldinfo_size; | |
1010 | gdb_byte *ldinfo_buf; | |
1011 | struct cleanup *cleanup; | |
1012 | LONGEST result; | |
1013 | ||
1014 | ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo"); | |
1015 | if (ldinfo_sec == NULL) | |
1016 | error (_("cannot find .ldinfo section from core file: %s"), | |
1017 | bfd_errmsg (bfd_get_error ())); | |
1018 | ldinfo_size = bfd_get_section_size (ldinfo_sec); | |
1019 | ||
1020 | ldinfo_buf = xmalloc (ldinfo_size); | |
1021 | cleanup = make_cleanup (xfree, ldinfo_buf); | |
1022 | ||
1023 | if (! bfd_get_section_contents (core_bfd, ldinfo_sec, | |
1024 | ldinfo_buf, 0, ldinfo_size)) | |
1025 | error (_("unable to read .ldinfo section from core file: %s"), | |
1026 | bfd_errmsg (bfd_get_error ())); | |
1027 | ||
1028 | result = rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf, readbuf, | |
1029 | offset, len, 0); | |
1030 | ||
1031 | do_cleanups (cleanup); | |
1032 | return result; | |
1033 | } | |
1034 | ||
1f82754b JB |
1035 | static void |
1036 | rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
1037 | { | |
4a7622d1 UW |
1038 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1039 | ||
1f82754b JB |
1040 | /* RS6000/AIX does not support PT_STEP. Has to be simulated. */ |
1041 | set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step); | |
6f7f3f0d | 1042 | |
2454a024 UW |
1043 | /* Displaced stepping is currently not supported in combination with |
1044 | software single-stepping. */ | |
1045 | set_gdbarch_displaced_step_copy_insn (gdbarch, NULL); | |
1046 | set_gdbarch_displaced_step_fixup (gdbarch, NULL); | |
1047 | set_gdbarch_displaced_step_free_closure (gdbarch, NULL); | |
1048 | set_gdbarch_displaced_step_location (gdbarch, NULL); | |
1049 | ||
4a7622d1 UW |
1050 | set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); |
1051 | set_gdbarch_return_value (gdbarch, rs6000_return_value); | |
1052 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1053 | ||
1054 | /* Handle RS/6000 function pointers (which are really function | |
1055 | descriptors). */ | |
1056 | set_gdbarch_convert_from_func_ptr_addr | |
1057 | (gdbarch, rs6000_convert_from_func_ptr_addr); | |
1058 | ||
7a61a01c | 1059 | /* Core file support. */ |
23ea9aeb AA |
1060 | set_gdbarch_iterate_over_regset_sections |
1061 | (gdbarch, rs6000_aix_iterate_over_regset_sections); | |
356a5233 JB |
1062 | set_gdbarch_core_xfer_shared_libraries_aix |
1063 | (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix); | |
7a61a01c | 1064 | |
4a7622d1 UW |
1065 | if (tdep->wordsize == 8) |
1066 | tdep->lr_frame_offset = 16; | |
1067 | else | |
1068 | tdep->lr_frame_offset = 8; | |
1069 | ||
1070 | if (tdep->wordsize == 4) | |
1071 | /* PowerOpen / AIX 32 bit. The saved area or red zone consists of | |
1072 | 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. | |
1073 | Problem is, 220 isn't frame (16 byte) aligned. Round it up to | |
1074 | 224. */ | |
1075 | set_gdbarch_frame_red_zone_size (gdbarch, 224); | |
1076 | else | |
1077 | set_gdbarch_frame_red_zone_size (gdbarch, 0); | |
38a69d0a JB |
1078 | |
1079 | set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset); | |
4d1eb6b4 JB |
1080 | |
1081 | set_solib_ops (gdbarch, &solib_aix_so_ops); | |
1f82754b JB |
1082 | } |
1083 | ||
63807e1d PA |
1084 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
1085 | extern initialize_file_ftype _initialize_rs6000_aix_tdep; | |
1086 | ||
1f82754b JB |
1087 | void |
1088 | _initialize_rs6000_aix_tdep (void) | |
1089 | { | |
1090 | gdbarch_register_osabi_sniffer (bfd_arch_rs6000, | |
1091 | bfd_target_xcoff_flavour, | |
1092 | rs6000_aix_osabi_sniffer); | |
7a61a01c UW |
1093 | gdbarch_register_osabi_sniffer (bfd_arch_powerpc, |
1094 | bfd_target_xcoff_flavour, | |
1095 | rs6000_aix_osabi_sniffer); | |
1f82754b JB |
1096 | |
1097 | gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX, | |
1098 | rs6000_aix_init_osabi); | |
7a61a01c UW |
1099 | gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX, |
1100 | rs6000_aix_init_osabi); | |
1f82754b JB |
1101 | } |
1102 |