]>
Commit | Line | Data |
---|---|---|
1f82754b JB |
1 | /* Native support code for PPC AIX, for GDB the GNU debugger. |
2 | ||
0fb0cc75 | 3 | Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
1f82754b JB |
4 | |
5 | Free Software Foundation, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
1f82754b JB |
12 | (at your option) any later version. |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
1f82754b JB |
21 | |
22 | #include "defs.h" | |
7a61a01c | 23 | #include "gdb_string.h" |
4a7622d1 | 24 | #include "gdb_assert.h" |
1f82754b | 25 | #include "osabi.h" |
7a61a01c UW |
26 | #include "regcache.h" |
27 | #include "regset.h" | |
4a7622d1 UW |
28 | #include "gdbtypes.h" |
29 | #include "gdbcore.h" | |
30 | #include "target.h" | |
31 | #include "value.h" | |
32 | #include "infcall.h" | |
33 | #include "objfiles.h" | |
34 | #include "breakpoint.h" | |
1f82754b | 35 | #include "rs6000-tdep.h" |
6f7f3f0d | 36 | #include "ppc-tdep.h" |
1f82754b | 37 | |
4a7622d1 UW |
38 | /* Hook for determining the TOC address when calling functions in the |
39 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
40 | this hook to point to find_toc_address. */ | |
41 | ||
42 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; | |
43 | ||
44 | /* If the kernel has to deliver a signal, it pushes a sigcontext | |
45 | structure on the stack and then calls the signal handler, passing | |
46 | the address of the sigcontext in an argument register. Usually | |
47 | the signal handler doesn't save this register, so we have to | |
48 | access the sigcontext structure via an offset from the signal handler | |
49 | frame. | |
50 | The following constants were determined by experimentation on AIX 3.2. */ | |
51 | #define SIG_FRAME_PC_OFFSET 96 | |
52 | #define SIG_FRAME_LR_OFFSET 108 | |
53 | #define SIG_FRAME_FP_OFFSET 284 | |
54 | ||
7a61a01c UW |
55 | |
56 | /* Core file support. */ | |
57 | ||
58 | static struct ppc_reg_offsets rs6000_aix32_reg_offsets = | |
59 | { | |
60 | /* General-purpose registers. */ | |
61 | 208, /* r0_offset */ | |
f2db237a AM |
62 | 4, /* gpr_size */ |
63 | 4, /* xr_size */ | |
7a61a01c UW |
64 | 24, /* pc_offset */ |
65 | 28, /* ps_offset */ | |
66 | 32, /* cr_offset */ | |
67 | 36, /* lr_offset */ | |
68 | 40, /* ctr_offset */ | |
69 | 44, /* xer_offset */ | |
70 | 48, /* mq_offset */ | |
71 | ||
72 | /* Floating-point registers. */ | |
73 | 336, /* f0_offset */ | |
74 | 56, /* fpscr_offset */ | |
f2db237a | 75 | 4, /* fpscr_size */ |
7a61a01c UW |
76 | |
77 | /* AltiVec registers. */ | |
78 | -1, /* vr0_offset */ | |
79 | -1, /* vscr_offset */ | |
80 | -1 /* vrsave_offset */ | |
81 | }; | |
82 | ||
83 | static struct ppc_reg_offsets rs6000_aix64_reg_offsets = | |
84 | { | |
85 | /* General-purpose registers. */ | |
86 | 0, /* r0_offset */ | |
f2db237a AM |
87 | 8, /* gpr_size */ |
88 | 4, /* xr_size */ | |
7a61a01c UW |
89 | 264, /* pc_offset */ |
90 | 256, /* ps_offset */ | |
91 | 288, /* cr_offset */ | |
92 | 272, /* lr_offset */ | |
93 | 280, /* ctr_offset */ | |
94 | 292, /* xer_offset */ | |
95 | -1, /* mq_offset */ | |
96 | ||
97 | /* Floating-point registers. */ | |
98 | 312, /* f0_offset */ | |
99 | 296, /* fpscr_offset */ | |
f2db237a | 100 | 4, /* fpscr_size */ |
7a61a01c UW |
101 | |
102 | /* AltiVec registers. */ | |
103 | -1, /* vr0_offset */ | |
104 | -1, /* vscr_offset */ | |
105 | -1 /* vrsave_offset */ | |
106 | }; | |
107 | ||
108 | ||
109 | /* Supply register REGNUM in the general-purpose register set REGSET | |
110 | from the buffer specified by GREGS and LEN to register cache | |
111 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
112 | ||
113 | static void | |
114 | rs6000_aix_supply_regset (const struct regset *regset, | |
115 | struct regcache *regcache, int regnum, | |
116 | const void *gregs, size_t len) | |
117 | { | |
118 | ppc_supply_gregset (regset, regcache, regnum, gregs, len); | |
f2db237a | 119 | ppc_supply_fpregset (regset, regcache, regnum, gregs, len); |
7a61a01c UW |
120 | } |
121 | ||
122 | /* Collect register REGNUM in the general-purpose register set | |
123 | REGSET. from register cache REGCACHE into the buffer specified by | |
124 | GREGS and LEN. If REGNUM is -1, do this for all registers in | |
125 | REGSET. */ | |
126 | ||
127 | static void | |
128 | rs6000_aix_collect_regset (const struct regset *regset, | |
129 | const struct regcache *regcache, int regnum, | |
130 | void *gregs, size_t len) | |
131 | { | |
132 | ppc_collect_gregset (regset, regcache, regnum, gregs, len); | |
f2db237a | 133 | ppc_collect_fpregset (regset, regcache, regnum, gregs, len); |
7a61a01c UW |
134 | } |
135 | ||
136 | /* AIX register set. */ | |
137 | ||
138 | static struct regset rs6000_aix32_regset = | |
139 | { | |
140 | &rs6000_aix32_reg_offsets, | |
141 | rs6000_aix_supply_regset, | |
142 | rs6000_aix_collect_regset, | |
143 | }; | |
144 | ||
145 | static struct regset rs6000_aix64_regset = | |
146 | { | |
147 | &rs6000_aix64_reg_offsets, | |
148 | rs6000_aix_supply_regset, | |
149 | rs6000_aix_collect_regset, | |
150 | }; | |
151 | ||
152 | /* Return the appropriate register set for the core section identified | |
153 | by SECT_NAME and SECT_SIZE. */ | |
154 | ||
155 | static const struct regset * | |
156 | rs6000_aix_regset_from_core_section (struct gdbarch *gdbarch, | |
157 | const char *sect_name, size_t sect_size) | |
158 | { | |
159 | if (gdbarch_tdep (gdbarch)->wordsize == 4) | |
160 | { | |
161 | if (strcmp (sect_name, ".reg") == 0 && sect_size >= 592) | |
162 | return &rs6000_aix32_regset; | |
163 | } | |
164 | else | |
165 | { | |
166 | if (strcmp (sect_name, ".reg") == 0 && sect_size >= 576) | |
167 | return &rs6000_aix64_regset; | |
168 | } | |
169 | ||
170 | return NULL; | |
171 | } | |
172 | ||
173 | ||
4a7622d1 UW |
174 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
175 | the first eight words of the argument list (that might be less than | |
176 | eight parameters if some parameters occupy more than one word) are | |
177 | passed in r3..r10 registers. float and double parameters are | |
178 | passed in fpr's, in addition to that. Rest of the parameters if any | |
179 | are passed in user stack. There might be cases in which half of the | |
180 | parameter is copied into registers, the other half is pushed into | |
181 | stack. | |
182 | ||
183 | Stack must be aligned on 64-bit boundaries when synthesizing | |
184 | function calls. | |
185 | ||
186 | If the function is returning a structure, then the return address is passed | |
187 | in r3, then the first 7 words of the parameters can be passed in registers, | |
188 | starting from r4. */ | |
189 | ||
190 | static CORE_ADDR | |
191 | rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
192 | struct regcache *regcache, CORE_ADDR bp_addr, | |
193 | int nargs, struct value **args, CORE_ADDR sp, | |
194 | int struct_return, CORE_ADDR struct_addr) | |
195 | { | |
196 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
e17a4113 | 197 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4a7622d1 UW |
198 | int ii; |
199 | int len = 0; | |
200 | int argno; /* current argument number */ | |
201 | int argbytes; /* current argument byte */ | |
202 | gdb_byte tmp_buffer[50]; | |
203 | int f_argno = 0; /* current floating point argno */ | |
204 | int wordsize = gdbarch_tdep (gdbarch)->wordsize; | |
205 | CORE_ADDR func_addr = find_function_addr (function, NULL); | |
206 | ||
207 | struct value *arg = 0; | |
208 | struct type *type; | |
209 | ||
210 | ULONGEST saved_sp; | |
211 | ||
212 | /* The calling convention this function implements assumes the | |
213 | processor has floating-point registers. We shouldn't be using it | |
214 | on PPC variants that lack them. */ | |
215 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); | |
216 | ||
217 | /* The first eight words of ther arguments are passed in registers. | |
218 | Copy them appropriately. */ | |
219 | ii = 0; | |
220 | ||
221 | /* If the function is returning a `struct', then the first word | |
222 | (which will be passed in r3) is used for struct return address. | |
223 | In that case we should advance one word and start from r4 | |
224 | register to copy parameters. */ | |
225 | if (struct_return) | |
226 | { | |
227 | regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
228 | struct_addr); | |
229 | ii++; | |
230 | } | |
231 | ||
232 | /* | |
233 | effectively indirect call... gcc does... | |
234 | ||
235 | return_val example( float, int); | |
236 | ||
237 | eabi: | |
238 | float in fp0, int in r3 | |
239 | offset of stack on overflow 8/16 | |
240 | for varargs, must go by type. | |
241 | power open: | |
242 | float in r3&r4, int in r5 | |
243 | offset of stack on overflow different | |
244 | both: | |
245 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
246 | pay attention to arg promotion. | |
247 | User may have to cast\args to handle promotion correctly | |
248 | since gdb won't know if prototype supplied or not. | |
249 | */ | |
250 | ||
251 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) | |
252 | { | |
253 | int reg_size = register_size (gdbarch, ii + 3); | |
254 | ||
255 | arg = args[argno]; | |
256 | type = check_typedef (value_type (arg)); | |
257 | len = TYPE_LENGTH (type); | |
258 | ||
259 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
260 | { | |
261 | ||
262 | /* Floating point arguments are passed in fpr's, as well as gpr's. | |
263 | There are 13 fpr's reserved for passing parameters. At this point | |
264 | there is no way we would run out of them. */ | |
265 | ||
266 | gdb_assert (len <= 8); | |
267 | ||
268 | regcache_cooked_write (regcache, | |
269 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
270 | value_contents (arg)); | |
271 | ++f_argno; | |
272 | } | |
273 | ||
274 | if (len > reg_size) | |
275 | { | |
276 | ||
277 | /* Argument takes more than one register. */ | |
278 | while (argbytes < len) | |
279 | { | |
280 | gdb_byte word[MAX_REGISTER_SIZE]; | |
281 | memset (word, 0, reg_size); | |
282 | memcpy (word, | |
283 | ((char *) value_contents (arg)) + argbytes, | |
284 | (len - argbytes) > reg_size | |
285 | ? reg_size : len - argbytes); | |
286 | regcache_cooked_write (regcache, | |
287 | tdep->ppc_gp0_regnum + 3 + ii, | |
288 | word); | |
289 | ++ii, argbytes += reg_size; | |
290 | ||
291 | if (ii >= 8) | |
292 | goto ran_out_of_registers_for_arguments; | |
293 | } | |
294 | argbytes = 0; | |
295 | --ii; | |
296 | } | |
297 | else | |
298 | { | |
299 | /* Argument can fit in one register. No problem. */ | |
300 | int adj = gdbarch_byte_order (gdbarch) | |
301 | == BFD_ENDIAN_BIG ? reg_size - len : 0; | |
302 | gdb_byte word[MAX_REGISTER_SIZE]; | |
303 | ||
304 | memset (word, 0, reg_size); | |
305 | memcpy (word, value_contents (arg), len); | |
306 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); | |
307 | } | |
308 | ++argno; | |
309 | } | |
310 | ||
311 | ran_out_of_registers_for_arguments: | |
312 | ||
313 | regcache_cooked_read_unsigned (regcache, | |
314 | gdbarch_sp_regnum (gdbarch), | |
315 | &saved_sp); | |
316 | ||
317 | /* Location for 8 parameters are always reserved. */ | |
318 | sp -= wordsize * 8; | |
319 | ||
320 | /* Another six words for back chain, TOC register, link register, etc. */ | |
321 | sp -= wordsize * 6; | |
322 | ||
323 | /* Stack pointer must be quadword aligned. */ | |
324 | sp &= -16; | |
325 | ||
326 | /* If there are more arguments, allocate space for them in | |
327 | the stack, then push them starting from the ninth one. */ | |
328 | ||
329 | if ((argno < nargs) || argbytes) | |
330 | { | |
331 | int space = 0, jj; | |
332 | ||
333 | if (argbytes) | |
334 | { | |
335 | space += ((len - argbytes + 3) & -4); | |
336 | jj = argno + 1; | |
337 | } | |
338 | else | |
339 | jj = argno; | |
340 | ||
341 | for (; jj < nargs; ++jj) | |
342 | { | |
343 | struct value *val = args[jj]; | |
344 | space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; | |
345 | } | |
346 | ||
347 | /* Add location required for the rest of the parameters. */ | |
348 | space = (space + 15) & -16; | |
349 | sp -= space; | |
350 | ||
351 | /* This is another instance we need to be concerned about | |
352 | securing our stack space. If we write anything underneath %sp | |
353 | (r1), we might conflict with the kernel who thinks he is free | |
354 | to use this area. So, update %sp first before doing anything | |
355 | else. */ | |
356 | ||
357 | regcache_raw_write_signed (regcache, | |
358 | gdbarch_sp_regnum (gdbarch), sp); | |
359 | ||
360 | /* If the last argument copied into the registers didn't fit there | |
361 | completely, push the rest of it into stack. */ | |
362 | ||
363 | if (argbytes) | |
364 | { | |
365 | write_memory (sp + 24 + (ii * 4), | |
366 | value_contents (arg) + argbytes, | |
367 | len - argbytes); | |
368 | ++argno; | |
369 | ii += ((len - argbytes + 3) & -4) / 4; | |
370 | } | |
371 | ||
372 | /* Push the rest of the arguments into stack. */ | |
373 | for (; argno < nargs; ++argno) | |
374 | { | |
375 | ||
376 | arg = args[argno]; | |
377 | type = check_typedef (value_type (arg)); | |
378 | len = TYPE_LENGTH (type); | |
379 | ||
380 | ||
381 | /* Float types should be passed in fpr's, as well as in the | |
382 | stack. */ | |
383 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) | |
384 | { | |
385 | ||
386 | gdb_assert (len <= 8); | |
387 | ||
388 | regcache_cooked_write (regcache, | |
389 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
390 | value_contents (arg)); | |
391 | ++f_argno; | |
392 | } | |
393 | ||
394 | write_memory (sp + 24 + (ii * 4), value_contents (arg), len); | |
395 | ii += ((len + 3) & -4) / 4; | |
396 | } | |
397 | } | |
398 | ||
399 | /* Set the stack pointer. According to the ABI, the SP is meant to | |
400 | be set _before_ the corresponding stack space is used. On AIX, | |
401 | this even applies when the target has been completely stopped! | |
402 | Not doing this can lead to conflicts with the kernel which thinks | |
403 | that it still has control over this not-yet-allocated stack | |
404 | region. */ | |
405 | regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); | |
406 | ||
407 | /* Set back chain properly. */ | |
e17a4113 | 408 | store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp); |
4a7622d1 UW |
409 | write_memory (sp, tmp_buffer, wordsize); |
410 | ||
411 | /* Point the inferior function call's return address at the dummy's | |
412 | breakpoint. */ | |
413 | regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
414 | ||
415 | /* Set the TOC register, get the value from the objfile reader | |
416 | which, in turn, gets it from the VMAP table. */ | |
417 | if (rs6000_find_toc_address_hook != NULL) | |
418 | { | |
419 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); | |
420 | regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); | |
421 | } | |
422 | ||
423 | target_store_registers (regcache, -1); | |
424 | return sp; | |
425 | } | |
426 | ||
427 | static enum return_value_convention | |
428 | rs6000_return_value (struct gdbarch *gdbarch, struct type *func_type, | |
429 | struct type *valtype, struct regcache *regcache, | |
430 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
431 | { | |
432 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
e17a4113 | 433 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4a7622d1 UW |
434 | gdb_byte buf[8]; |
435 | ||
436 | /* The calling convention this function implements assumes the | |
437 | processor has floating-point registers. We shouldn't be using it | |
438 | on PowerPC variants that lack them. */ | |
439 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); | |
440 | ||
441 | /* AltiVec extension: Functions that declare a vector data type as a | |
442 | return value place that return value in VR2. */ | |
443 | if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype) | |
444 | && TYPE_LENGTH (valtype) == 16) | |
445 | { | |
446 | if (readbuf) | |
447 | regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); | |
448 | if (writebuf) | |
449 | regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); | |
450 | ||
451 | return RETURN_VALUE_REGISTER_CONVENTION; | |
452 | } | |
453 | ||
454 | /* If the called subprogram returns an aggregate, there exists an | |
455 | implicit first argument, whose value is the address of a caller- | |
456 | allocated buffer into which the callee is assumed to store its | |
457 | return value. All explicit parameters are appropriately | |
458 | relabeled. */ | |
459 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
460 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
461 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
462 | return RETURN_VALUE_STRUCT_CONVENTION; | |
463 | ||
464 | /* Scalar floating-point values are returned in FPR1 for float or | |
465 | double, and in FPR1:FPR2 for quadword precision. Fortran | |
466 | complex*8 and complex*16 are returned in FPR1:FPR2, and | |
467 | complex*32 is returned in FPR1:FPR4. */ | |
468 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
469 | && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) | |
470 | { | |
471 | struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); | |
472 | gdb_byte regval[8]; | |
473 | ||
474 | /* FIXME: kettenis/2007-01-01: Add support for quadword | |
475 | precision and complex. */ | |
476 | ||
477 | if (readbuf) | |
478 | { | |
479 | regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
480 | convert_typed_floating (regval, regtype, readbuf, valtype); | |
481 | } | |
482 | if (writebuf) | |
483 | { | |
484 | convert_typed_floating (writebuf, valtype, regval, regtype); | |
485 | regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
486 | } | |
487 | ||
488 | return RETURN_VALUE_REGISTER_CONVENTION; | |
489 | } | |
490 | ||
491 | /* Values of the types int, long, short, pointer, and char (length | |
492 | is less than or equal to four bytes), as well as bit values of | |
493 | lengths less than or equal to 32 bits, must be returned right | |
494 | justified in GPR3 with signed values sign extended and unsigned | |
495 | values zero extended, as necessary. */ | |
496 | if (TYPE_LENGTH (valtype) <= tdep->wordsize) | |
497 | { | |
498 | if (readbuf) | |
499 | { | |
500 | ULONGEST regval; | |
501 | ||
502 | /* For reading we don't have to worry about sign extension. */ | |
503 | regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
504 | ®val); | |
e17a4113 UW |
505 | store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order, |
506 | regval); | |
4a7622d1 UW |
507 | } |
508 | if (writebuf) | |
509 | { | |
510 | /* For writing, use unpack_long since that should handle any | |
511 | required sign extension. */ | |
512 | regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
513 | unpack_long (valtype, writebuf)); | |
514 | } | |
515 | ||
516 | return RETURN_VALUE_REGISTER_CONVENTION; | |
517 | } | |
518 | ||
519 | /* Eight-byte non-floating-point scalar values must be returned in | |
520 | GPR3:GPR4. */ | |
521 | ||
522 | if (TYPE_LENGTH (valtype) == 8) | |
523 | { | |
524 | gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT); | |
525 | gdb_assert (tdep->wordsize == 4); | |
526 | ||
527 | if (readbuf) | |
528 | { | |
529 | gdb_byte regval[8]; | |
530 | ||
531 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval); | |
532 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, | |
533 | regval + 4); | |
534 | memcpy (readbuf, regval, 8); | |
535 | } | |
536 | if (writebuf) | |
537 | { | |
538 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); | |
539 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, | |
540 | writebuf + 4); | |
541 | } | |
542 | ||
543 | return RETURN_VALUE_REGISTER_CONVENTION; | |
544 | } | |
545 | ||
546 | return RETURN_VALUE_STRUCT_CONVENTION; | |
547 | } | |
548 | ||
549 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). | |
550 | ||
551 | Usually a function pointer's representation is simply the address | |
552 | of the function. On the RS/6000 however, a function pointer is | |
553 | represented by a pointer to an OPD entry. This OPD entry contains | |
554 | three words, the first word is the address of the function, the | |
555 | second word is the TOC pointer (r2), and the third word is the | |
556 | static chain value. Throughout GDB it is currently assumed that a | |
557 | function pointer contains the address of the function, which is not | |
558 | easy to fix. In addition, the conversion of a function address to | |
559 | a function pointer would require allocation of an OPD entry in the | |
560 | inferior's memory space, with all its drawbacks. To be able to | |
561 | call C++ virtual methods in the inferior (which are called via | |
562 | function pointers), find_function_addr uses this function to get the | |
563 | function address from a function pointer. */ | |
564 | ||
565 | /* Return real function address if ADDR (a function pointer) is in the data | |
566 | space and is therefore a special function pointer. */ | |
567 | ||
568 | static CORE_ADDR | |
569 | rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, | |
570 | CORE_ADDR addr, | |
571 | struct target_ops *targ) | |
572 | { | |
e17a4113 UW |
573 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
574 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
4a7622d1 UW |
575 | struct obj_section *s; |
576 | ||
577 | s = find_pc_section (addr); | |
4a7622d1 | 578 | |
40adab56 JB |
579 | /* Normally, functions live inside a section that is executable. |
580 | So, if ADDR points to a non-executable section, then treat it | |
581 | as a function descriptor and return the target address iff | |
582 | the target address itself points to a section that is executable. */ | |
583 | if (s && (s->the_bfd_section->flags & SEC_CODE) == 0) | |
584 | { | |
585 | CORE_ADDR pc = | |
e17a4113 | 586 | read_memory_unsigned_integer (addr, tdep->wordsize, byte_order); |
40adab56 JB |
587 | struct obj_section *pc_section = find_pc_section (pc); |
588 | ||
589 | if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE)) | |
590 | return pc; | |
591 | } | |
592 | ||
593 | return addr; | |
4a7622d1 UW |
594 | } |
595 | ||
596 | ||
597 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ | |
598 | ||
599 | static CORE_ADDR | |
600 | branch_dest (struct frame_info *frame, int opcode, int instr, | |
601 | CORE_ADDR pc, CORE_ADDR safety) | |
602 | { | |
e17a4113 UW |
603 | struct gdbarch *gdbarch = get_frame_arch (frame); |
604 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
605 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
4a7622d1 UW |
606 | CORE_ADDR dest; |
607 | int immediate; | |
608 | int absolute; | |
609 | int ext_op; | |
610 | ||
611 | absolute = (int) ((instr >> 1) & 1); | |
612 | ||
613 | switch (opcode) | |
614 | { | |
615 | case 18: | |
616 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
617 | if (absolute) | |
618 | dest = immediate; | |
619 | else | |
620 | dest = pc + immediate; | |
621 | break; | |
622 | ||
623 | case 16: | |
624 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
625 | if (absolute) | |
626 | dest = immediate; | |
627 | else | |
628 | dest = pc + immediate; | |
629 | break; | |
630 | ||
631 | case 19: | |
632 | ext_op = (instr >> 1) & 0x3ff; | |
633 | ||
634 | if (ext_op == 16) /* br conditional register */ | |
635 | { | |
636 | dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; | |
637 | ||
638 | /* If we are about to return from a signal handler, dest is | |
639 | something like 0x3c90. The current frame is a signal handler | |
640 | caller frame, upon completion of the sigreturn system call | |
641 | execution will return to the saved PC in the frame. */ | |
642 | if (dest < AIX_TEXT_SEGMENT_BASE) | |
643 | dest = read_memory_unsigned_integer | |
644 | (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, | |
e17a4113 | 645 | tdep->wordsize, byte_order); |
4a7622d1 UW |
646 | } |
647 | ||
648 | else if (ext_op == 528) /* br cond to count reg */ | |
649 | { | |
650 | dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3; | |
651 | ||
652 | /* If we are about to execute a system call, dest is something | |
653 | like 0x22fc or 0x3b00. Upon completion the system call | |
654 | will return to the address in the link register. */ | |
655 | if (dest < AIX_TEXT_SEGMENT_BASE) | |
656 | dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; | |
657 | } | |
658 | else | |
659 | return -1; | |
660 | break; | |
661 | ||
662 | default: | |
663 | return -1; | |
664 | } | |
665 | return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest; | |
666 | } | |
667 | ||
668 | /* AIX does not support PT_STEP. Simulate it. */ | |
669 | ||
670 | static int | |
671 | rs6000_software_single_step (struct frame_info *frame) | |
672 | { | |
a6d9a66e | 673 | struct gdbarch *gdbarch = get_frame_arch (frame); |
e17a4113 | 674 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4a7622d1 UW |
675 | int ii, insn; |
676 | CORE_ADDR loc; | |
677 | CORE_ADDR breaks[2]; | |
678 | int opcode; | |
679 | ||
680 | loc = get_frame_pc (frame); | |
681 | ||
e17a4113 | 682 | insn = read_memory_integer (loc, 4, byte_order); |
4a7622d1 UW |
683 | |
684 | if (ppc_deal_with_atomic_sequence (frame)) | |
685 | return 1; | |
686 | ||
687 | breaks[0] = loc + PPC_INSN_SIZE; | |
688 | opcode = insn >> 26; | |
689 | breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]); | |
690 | ||
691 | /* Don't put two breakpoints on the same address. */ | |
692 | if (breaks[1] == breaks[0]) | |
693 | breaks[1] = -1; | |
694 | ||
695 | for (ii = 0; ii < 2; ++ii) | |
696 | { | |
697 | /* ignore invalid breakpoint. */ | |
698 | if (breaks[ii] == -1) | |
699 | continue; | |
a6d9a66e | 700 | insert_single_step_breakpoint (gdbarch, breaks[ii]); |
4a7622d1 UW |
701 | } |
702 | ||
703 | errno = 0; /* FIXME, don't ignore errors! */ | |
704 | /* What errors? {read,write}_memory call error(). */ | |
705 | return 1; | |
706 | } | |
707 | ||
1f82754b JB |
708 | static enum gdb_osabi |
709 | rs6000_aix_osabi_sniffer (bfd *abfd) | |
710 | { | |
711 | ||
712 | if (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour); | |
713 | return GDB_OSABI_AIX; | |
714 | ||
715 | return GDB_OSABI_UNKNOWN; | |
716 | } | |
717 | ||
718 | static void | |
719 | rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
720 | { | |
4a7622d1 UW |
721 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
722 | ||
1f82754b JB |
723 | /* RS6000/AIX does not support PT_STEP. Has to be simulated. */ |
724 | set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step); | |
6f7f3f0d | 725 | |
2454a024 UW |
726 | /* Displaced stepping is currently not supported in combination with |
727 | software single-stepping. */ | |
728 | set_gdbarch_displaced_step_copy_insn (gdbarch, NULL); | |
729 | set_gdbarch_displaced_step_fixup (gdbarch, NULL); | |
730 | set_gdbarch_displaced_step_free_closure (gdbarch, NULL); | |
731 | set_gdbarch_displaced_step_location (gdbarch, NULL); | |
732 | ||
4a7622d1 UW |
733 | set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); |
734 | set_gdbarch_return_value (gdbarch, rs6000_return_value); | |
735 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
736 | ||
737 | /* Handle RS/6000 function pointers (which are really function | |
738 | descriptors). */ | |
739 | set_gdbarch_convert_from_func_ptr_addr | |
740 | (gdbarch, rs6000_convert_from_func_ptr_addr); | |
741 | ||
7a61a01c UW |
742 | /* Core file support. */ |
743 | set_gdbarch_regset_from_core_section | |
744 | (gdbarch, rs6000_aix_regset_from_core_section); | |
745 | ||
4a7622d1 UW |
746 | if (tdep->wordsize == 8) |
747 | tdep->lr_frame_offset = 16; | |
748 | else | |
749 | tdep->lr_frame_offset = 8; | |
750 | ||
751 | if (tdep->wordsize == 4) | |
752 | /* PowerOpen / AIX 32 bit. The saved area or red zone consists of | |
753 | 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. | |
754 | Problem is, 220 isn't frame (16 byte) aligned. Round it up to | |
755 | 224. */ | |
756 | set_gdbarch_frame_red_zone_size (gdbarch, 224); | |
757 | else | |
758 | set_gdbarch_frame_red_zone_size (gdbarch, 0); | |
1f82754b JB |
759 | } |
760 | ||
63807e1d PA |
761 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
762 | extern initialize_file_ftype _initialize_rs6000_aix_tdep; | |
763 | ||
1f82754b JB |
764 | void |
765 | _initialize_rs6000_aix_tdep (void) | |
766 | { | |
767 | gdbarch_register_osabi_sniffer (bfd_arch_rs6000, | |
768 | bfd_target_xcoff_flavour, | |
769 | rs6000_aix_osabi_sniffer); | |
7a61a01c UW |
770 | gdbarch_register_osabi_sniffer (bfd_arch_powerpc, |
771 | bfd_target_xcoff_flavour, | |
772 | rs6000_aix_osabi_sniffer); | |
1f82754b JB |
773 | |
774 | gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX, | |
775 | rs6000_aix_init_osabi); | |
7a61a01c UW |
776 | gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX, |
777 | rs6000_aix_init_osabi); | |
1f82754b JB |
778 | } |
779 |