]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger. |
0fd88904 | 2 | |
32d0add0 | 3 | Copyright (C) 1993-2015 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
615967cb | 21 | #include "doublest.h" |
c906108c | 22 | #include "frame.h" |
d2427a71 RH |
23 | #include "frame-unwind.h" |
24 | #include "frame-base.h" | |
baa490c4 | 25 | #include "dwarf2-frame.h" |
c906108c SS |
26 | #include "inferior.h" |
27 | #include "symtab.h" | |
28 | #include "value.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "gdbcore.h" | |
31 | #include "dis-asm.h" | |
32 | #include "symfile.h" | |
33 | #include "objfiles.h" | |
c5f0f3d0 | 34 | #include "linespec.h" |
4e052eda | 35 | #include "regcache.h" |
615967cb | 36 | #include "reggroups.h" |
dc129d82 | 37 | #include "arch-utils.h" |
4be87837 | 38 | #include "osabi.h" |
fe898f56 | 39 | #include "block.h" |
7d9b040b | 40 | #include "infcall.h" |
07ea644b | 41 | #include "trad-frame.h" |
dc129d82 JT |
42 | |
43 | #include "elf-bfd.h" | |
44 | ||
45 | #include "alpha-tdep.h" | |
46 | ||
3a48e6ff JG |
47 | /* Instruction decoding. The notations for registers, immediates and |
48 | opcodes are the same as the one used in Compaq's Alpha architecture | |
49 | handbook. */ | |
50 | ||
51 | #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26) | |
52 | ||
53 | /* Memory instruction format */ | |
54 | #define MEM_RA(insn) ((insn & 0x03e00000) >> 21) | |
55 | #define MEM_RB(insn) ((insn & 0x001f0000) >> 16) | |
56 | #define MEM_DISP(insn) \ | |
57 | (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff)) | |
58 | ||
59 | static const int lda_opcode = 0x08; | |
60 | static const int stq_opcode = 0x2d; | |
61 | ||
62 | /* Branch instruction format */ | |
63 | #define BR_RA(insn) MEM_RA(insn) | |
64 | ||
46ad3598 | 65 | static const int br_opcode = 0x30; |
3a48e6ff JG |
66 | static const int bne_opcode = 0x3d; |
67 | ||
68 | /* Operate instruction format */ | |
69 | #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5) | |
70 | #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000) | |
71 | #define OPR_RA(insn) MEM_RA(insn) | |
72 | #define OPR_RC(insn) ((insn & 0x1f)) | |
73 | #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13) | |
74 | ||
75 | static const int subq_opcode = 0x10; | |
76 | static const int subq_function = 0x29; | |
77 | ||
c906108c | 78 | \f |
515921d7 JB |
79 | /* Return the name of the REGNO register. |
80 | ||
81 | An empty name corresponds to a register number that used to | |
0963b4bd | 82 | be used for a virtual register. That virtual register has |
515921d7 JB |
83 | been removed, but the index is still reserved to maintain |
84 | compatibility with existing remote alpha targets. */ | |
85 | ||
fa88f677 | 86 | static const char * |
d93859e2 | 87 | alpha_register_name (struct gdbarch *gdbarch, int regno) |
636a6dfc | 88 | { |
5ab84872 | 89 | static const char * const register_names[] = |
636a6dfc JT |
90 | { |
91 | "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", | |
92 | "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp", | |
93 | "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", | |
94 | "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero", | |
95 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
96 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
97 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
98 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr", | |
44d88583 | 99 | "pc", "", "unique" |
636a6dfc JT |
100 | }; |
101 | ||
102 | if (regno < 0) | |
5ab84872 | 103 | return NULL; |
e8d2d628 | 104 | if (regno >= ARRAY_SIZE(register_names)) |
5ab84872 RH |
105 | return NULL; |
106 | return register_names[regno]; | |
636a6dfc | 107 | } |
d734c450 | 108 | |
dc129d82 | 109 | static int |
64a3914f | 110 | alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno) |
d734c450 | 111 | { |
4a1be8d2 | 112 | return (strlen (alpha_register_name (gdbarch, regno)) == 0); |
d734c450 JT |
113 | } |
114 | ||
dc129d82 | 115 | static int |
64a3914f | 116 | alpha_cannot_store_register (struct gdbarch *gdbarch, int regno) |
d734c450 | 117 | { |
515921d7 | 118 | return (regno == ALPHA_ZERO_REGNUM |
64a3914f | 119 | || strlen (alpha_register_name (gdbarch, regno)) == 0); |
d734c450 JT |
120 | } |
121 | ||
dc129d82 | 122 | static struct type * |
c483c494 | 123 | alpha_register_type (struct gdbarch *gdbarch, int regno) |
0d056799 | 124 | { |
72667056 | 125 | if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM) |
0dfff4cb | 126 | return builtin_type (gdbarch)->builtin_data_ptr; |
72667056 | 127 | if (regno == ALPHA_PC_REGNUM) |
0dfff4cb | 128 | return builtin_type (gdbarch)->builtin_func_ptr; |
72667056 RH |
129 | |
130 | /* Don't need to worry about little vs big endian until | |
131 | some jerk tries to port to alpha-unicosmk. */ | |
b38b6be2 | 132 | if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31) |
27067745 | 133 | return builtin_type (gdbarch)->builtin_double; |
72667056 | 134 | |
df4df182 | 135 | return builtin_type (gdbarch)->builtin_int64; |
0d056799 | 136 | } |
f8453e34 | 137 | |
615967cb RH |
138 | /* Is REGNUM a member of REGGROUP? */ |
139 | ||
140 | static int | |
141 | alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
142 | struct reggroup *group) | |
143 | { | |
144 | /* Filter out any registers eliminated, but whose regnum is | |
145 | reserved for backward compatibility, e.g. the vfp. */ | |
ec7cc0e8 UW |
146 | if (gdbarch_register_name (gdbarch, regnum) == NULL |
147 | || *gdbarch_register_name (gdbarch, regnum) == '\0') | |
615967cb RH |
148 | return 0; |
149 | ||
df4a182b RH |
150 | if (group == all_reggroup) |
151 | return 1; | |
152 | ||
153 | /* Zero should not be saved or restored. Technically it is a general | |
154 | register (just as $f31 would be a float if we represented it), but | |
155 | there's no point displaying it during "info regs", so leave it out | |
156 | of all groups except for "all". */ | |
157 | if (regnum == ALPHA_ZERO_REGNUM) | |
158 | return 0; | |
159 | ||
160 | /* All other registers are saved and restored. */ | |
161 | if (group == save_reggroup || group == restore_reggroup) | |
615967cb RH |
162 | return 1; |
163 | ||
164 | /* All other groups are non-overlapping. */ | |
165 | ||
166 | /* Since this is really a PALcode memory slot... */ | |
167 | if (regnum == ALPHA_UNIQUE_REGNUM) | |
168 | return group == system_reggroup; | |
169 | ||
170 | /* Force the FPCR to be considered part of the floating point state. */ | |
171 | if (regnum == ALPHA_FPCR_REGNUM) | |
172 | return group == float_reggroup; | |
173 | ||
174 | if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31) | |
175 | return group == float_reggroup; | |
176 | else | |
177 | return group == general_reggroup; | |
178 | } | |
179 | ||
c483c494 RH |
180 | /* The following represents exactly the conversion performed by |
181 | the LDS instruction. This applies to both single-precision | |
182 | floating point and 32-bit integers. */ | |
183 | ||
184 | static void | |
e17a4113 | 185 | alpha_lds (struct gdbarch *gdbarch, void *out, const void *in) |
c483c494 | 186 | { |
e17a4113 UW |
187 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
188 | ULONGEST mem = extract_unsigned_integer (in, 4, byte_order); | |
c483c494 RH |
189 | ULONGEST frac = (mem >> 0) & 0x7fffff; |
190 | ULONGEST sign = (mem >> 31) & 1; | |
191 | ULONGEST exp_msb = (mem >> 30) & 1; | |
192 | ULONGEST exp_low = (mem >> 23) & 0x7f; | |
193 | ULONGEST exp, reg; | |
194 | ||
195 | exp = (exp_msb << 10) | exp_low; | |
196 | if (exp_msb) | |
197 | { | |
198 | if (exp_low == 0x7f) | |
199 | exp = 0x7ff; | |
200 | } | |
201 | else | |
202 | { | |
203 | if (exp_low != 0x00) | |
204 | exp |= 0x380; | |
205 | } | |
206 | ||
207 | reg = (sign << 63) | (exp << 52) | (frac << 29); | |
e17a4113 | 208 | store_unsigned_integer (out, 8, byte_order, reg); |
c483c494 RH |
209 | } |
210 | ||
211 | /* Similarly, this represents exactly the conversion performed by | |
212 | the STS instruction. */ | |
213 | ||
39efb398 | 214 | static void |
e17a4113 | 215 | alpha_sts (struct gdbarch *gdbarch, void *out, const void *in) |
c483c494 | 216 | { |
e17a4113 | 217 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
c483c494 RH |
218 | ULONGEST reg, mem; |
219 | ||
e17a4113 | 220 | reg = extract_unsigned_integer (in, 8, byte_order); |
c483c494 | 221 | mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff); |
e17a4113 | 222 | store_unsigned_integer (out, 4, byte_order, mem); |
c483c494 RH |
223 | } |
224 | ||
d2427a71 RH |
225 | /* The alpha needs a conversion between register and memory format if the |
226 | register is a floating point register and memory format is float, as the | |
227 | register format must be double or memory format is an integer with 4 | |
228 | bytes or less, as the representation of integers in floating point | |
0963b4bd | 229 | registers is different. */ |
d2427a71 | 230 | |
c483c494 | 231 | static int |
0963b4bd MS |
232 | alpha_convert_register_p (struct gdbarch *gdbarch, int regno, |
233 | struct type *type) | |
14696584 | 234 | { |
83acabca DJ |
235 | return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31 |
236 | && TYPE_LENGTH (type) != 8); | |
14696584 RH |
237 | } |
238 | ||
8dccd430 | 239 | static int |
ff2e87ac | 240 | alpha_register_to_value (struct frame_info *frame, int regnum, |
8dccd430 PA |
241 | struct type *valtype, gdb_byte *out, |
242 | int *optimizedp, int *unavailablep) | |
5868c862 | 243 | { |
8dccd430 | 244 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2a1ce6ec MK |
245 | gdb_byte in[MAX_REGISTER_SIZE]; |
246 | ||
8dccd430 PA |
247 | /* Convert to TYPE. */ |
248 | if (!get_frame_register_bytes (frame, regnum, 0, | |
249 | register_size (gdbarch, regnum), | |
250 | in, optimizedp, unavailablep)) | |
251 | return 0; | |
252 | ||
253 | if (TYPE_LENGTH (valtype) == 4) | |
d2427a71 | 254 | { |
8dccd430 PA |
255 | alpha_sts (gdbarch, out, in); |
256 | *optimizedp = *unavailablep = 0; | |
257 | return 1; | |
d2427a71 | 258 | } |
8dccd430 PA |
259 | |
260 | error (_("Cannot retrieve value from floating point register")); | |
d2427a71 | 261 | } |
5868c862 | 262 | |
d2427a71 | 263 | static void |
ff2e87ac | 264 | alpha_value_to_register (struct frame_info *frame, int regnum, |
5b819568 | 265 | struct type *valtype, const gdb_byte *in) |
d2427a71 | 266 | { |
2a1ce6ec MK |
267 | gdb_byte out[MAX_REGISTER_SIZE]; |
268 | ||
c483c494 | 269 | switch (TYPE_LENGTH (valtype)) |
d2427a71 | 270 | { |
c483c494 | 271 | case 4: |
e17a4113 | 272 | alpha_lds (get_frame_arch (frame), out, in); |
c483c494 | 273 | break; |
c483c494 | 274 | default: |
323e0a4a | 275 | error (_("Cannot store value in floating point register")); |
d2427a71 | 276 | } |
ff2e87ac | 277 | put_frame_register (frame, regnum, out); |
5868c862 JT |
278 | } |
279 | ||
d2427a71 RH |
280 | \f |
281 | /* The alpha passes the first six arguments in the registers, the rest on | |
c88e30c0 RH |
282 | the stack. The register arguments are stored in ARG_REG_BUFFER, and |
283 | then moved into the register file; this simplifies the passing of a | |
284 | large struct which extends from the registers to the stack, plus avoids | |
285 | three ptrace invocations per word. | |
286 | ||
287 | We don't bother tracking which register values should go in integer | |
288 | regs or fp regs; we load the same values into both. | |
289 | ||
d2427a71 RH |
290 | If the called function is returning a structure, the address of the |
291 | structure to be returned is passed as a hidden first argument. */ | |
c906108c | 292 | |
d2427a71 | 293 | static CORE_ADDR |
7d9b040b | 294 | alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
c88e30c0 RH |
295 | struct regcache *regcache, CORE_ADDR bp_addr, |
296 | int nargs, struct value **args, CORE_ADDR sp, | |
297 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 298 | { |
e17a4113 | 299 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d2427a71 RH |
300 | int i; |
301 | int accumulate_size = struct_return ? 8 : 0; | |
d2427a71 | 302 | struct alpha_arg |
c906108c | 303 | { |
f42a0a33 | 304 | const gdb_byte *contents; |
d2427a71 RH |
305 | int len; |
306 | int offset; | |
307 | }; | |
c88e30c0 RH |
308 | struct alpha_arg *alpha_args |
309 | = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg)); | |
52f0bd74 | 310 | struct alpha_arg *m_arg; |
2a1ce6ec | 311 | gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS]; |
d2427a71 | 312 | int required_arg_regs; |
7d9b040b | 313 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 314 | |
c88e30c0 RH |
315 | /* The ABI places the address of the called function in T12. */ |
316 | regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr); | |
317 | ||
318 | /* Set the return address register to point to the entry point | |
319 | of the program, where a breakpoint lies in wait. */ | |
320 | regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr); | |
321 | ||
322 | /* Lay out the arguments in memory. */ | |
d2427a71 RH |
323 | for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++) |
324 | { | |
325 | struct value *arg = args[i]; | |
4991999e | 326 | struct type *arg_type = check_typedef (value_type (arg)); |
c88e30c0 | 327 | |
d2427a71 RH |
328 | /* Cast argument to long if necessary as the compiler does it too. */ |
329 | switch (TYPE_CODE (arg_type)) | |
c906108c | 330 | { |
d2427a71 RH |
331 | case TYPE_CODE_INT: |
332 | case TYPE_CODE_BOOL: | |
333 | case TYPE_CODE_CHAR: | |
334 | case TYPE_CODE_RANGE: | |
335 | case TYPE_CODE_ENUM: | |
0ede8eca | 336 | if (TYPE_LENGTH (arg_type) == 4) |
d2427a71 | 337 | { |
0ede8eca RH |
338 | /* 32-bit values must be sign-extended to 64 bits |
339 | even if the base data type is unsigned. */ | |
df4df182 | 340 | arg_type = builtin_type (gdbarch)->builtin_int32; |
0ede8eca RH |
341 | arg = value_cast (arg_type, arg); |
342 | } | |
343 | if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE) | |
344 | { | |
df4df182 | 345 | arg_type = builtin_type (gdbarch)->builtin_int64; |
d2427a71 RH |
346 | arg = value_cast (arg_type, arg); |
347 | } | |
348 | break; | |
7b5e1cb3 | 349 | |
c88e30c0 RH |
350 | case TYPE_CODE_FLT: |
351 | /* "float" arguments loaded in registers must be passed in | |
352 | register format, aka "double". */ | |
353 | if (accumulate_size < sizeof (arg_reg_buffer) | |
354 | && TYPE_LENGTH (arg_type) == 4) | |
355 | { | |
27067745 | 356 | arg_type = builtin_type (gdbarch)->builtin_double; |
c88e30c0 RH |
357 | arg = value_cast (arg_type, arg); |
358 | } | |
359 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
360 | invisible reference. No one else uses this data type. */ | |
361 | else if (TYPE_LENGTH (arg_type) == 16) | |
362 | { | |
363 | /* Allocate aligned storage. */ | |
364 | sp = (sp & -16) - 16; | |
365 | ||
366 | /* Write the real data into the stack. */ | |
0fd88904 | 367 | write_memory (sp, value_contents (arg), 16); |
c88e30c0 RH |
368 | |
369 | /* Construct the indirection. */ | |
370 | arg_type = lookup_pointer_type (arg_type); | |
371 | arg = value_from_pointer (arg_type, sp); | |
372 | } | |
373 | break; | |
7b5e1cb3 RH |
374 | |
375 | case TYPE_CODE_COMPLEX: | |
376 | /* ??? The ABI says that complex values are passed as two | |
377 | separate scalar values. This distinction only matters | |
378 | for complex float. However, GCC does not implement this. */ | |
379 | ||
380 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
381 | invisible reference. */ | |
382 | if (TYPE_LENGTH (arg_type) == 32) | |
383 | { | |
384 | /* Allocate aligned storage. */ | |
385 | sp = (sp & -16) - 16; | |
386 | ||
387 | /* Write the real data into the stack. */ | |
0fd88904 | 388 | write_memory (sp, value_contents (arg), 32); |
7b5e1cb3 RH |
389 | |
390 | /* Construct the indirection. */ | |
391 | arg_type = lookup_pointer_type (arg_type); | |
392 | arg = value_from_pointer (arg_type, sp); | |
393 | } | |
394 | break; | |
395 | ||
d2427a71 RH |
396 | default: |
397 | break; | |
c906108c | 398 | } |
d2427a71 RH |
399 | m_arg->len = TYPE_LENGTH (arg_type); |
400 | m_arg->offset = accumulate_size; | |
401 | accumulate_size = (accumulate_size + m_arg->len + 7) & ~7; | |
f42a0a33 | 402 | m_arg->contents = value_contents (arg); |
c906108c SS |
403 | } |
404 | ||
d2427a71 RH |
405 | /* Determine required argument register loads, loading an argument register |
406 | is expensive as it uses three ptrace calls. */ | |
407 | required_arg_regs = accumulate_size / 8; | |
408 | if (required_arg_regs > ALPHA_NUM_ARG_REGS) | |
409 | required_arg_regs = ALPHA_NUM_ARG_REGS; | |
c906108c | 410 | |
d2427a71 | 411 | /* Make room for the arguments on the stack. */ |
c88e30c0 RH |
412 | if (accumulate_size < sizeof(arg_reg_buffer)) |
413 | accumulate_size = 0; | |
414 | else | |
415 | accumulate_size -= sizeof(arg_reg_buffer); | |
d2427a71 | 416 | sp -= accumulate_size; |
c906108c | 417 | |
c88e30c0 | 418 | /* Keep sp aligned to a multiple of 16 as the ABI requires. */ |
d2427a71 | 419 | sp &= ~15; |
c906108c | 420 | |
d2427a71 RH |
421 | /* `Push' arguments on the stack. */ |
422 | for (i = nargs; m_arg--, --i >= 0;) | |
c906108c | 423 | { |
f42a0a33 | 424 | const gdb_byte *contents = m_arg->contents; |
c88e30c0 RH |
425 | int offset = m_arg->offset; |
426 | int len = m_arg->len; | |
427 | ||
428 | /* Copy the bytes destined for registers into arg_reg_buffer. */ | |
429 | if (offset < sizeof(arg_reg_buffer)) | |
430 | { | |
431 | if (offset + len <= sizeof(arg_reg_buffer)) | |
432 | { | |
433 | memcpy (arg_reg_buffer + offset, contents, len); | |
434 | continue; | |
435 | } | |
436 | else | |
437 | { | |
438 | int tlen = sizeof(arg_reg_buffer) - offset; | |
439 | memcpy (arg_reg_buffer + offset, contents, tlen); | |
440 | offset += tlen; | |
441 | contents += tlen; | |
442 | len -= tlen; | |
443 | } | |
444 | } | |
445 | ||
446 | /* Everything else goes to the stack. */ | |
447 | write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len); | |
c906108c | 448 | } |
c88e30c0 | 449 | if (struct_return) |
e17a4113 UW |
450 | store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, |
451 | byte_order, struct_addr); | |
c906108c | 452 | |
d2427a71 RH |
453 | /* Load the argument registers. */ |
454 | for (i = 0; i < required_arg_regs; i++) | |
455 | { | |
09cc52fd RH |
456 | regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i, |
457 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
458 | regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i, | |
459 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
d2427a71 | 460 | } |
c906108c | 461 | |
09cc52fd RH |
462 | /* Finally, update the stack pointer. */ |
463 | regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp); | |
464 | ||
c88e30c0 | 465 | return sp; |
c906108c SS |
466 | } |
467 | ||
5ec2bb99 RH |
468 | /* Extract from REGCACHE the value about to be returned from a function |
469 | and copy it into VALBUF. */ | |
d2427a71 | 470 | |
dc129d82 | 471 | static void |
5ec2bb99 | 472 | alpha_extract_return_value (struct type *valtype, struct regcache *regcache, |
5b819568 | 473 | gdb_byte *valbuf) |
140f9984 | 474 | { |
e17a4113 UW |
475 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
476 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2a1ce6ec | 477 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; |
5ec2bb99 RH |
478 | ULONGEST l; |
479 | ||
480 | switch (TYPE_CODE (valtype)) | |
481 | { | |
482 | case TYPE_CODE_FLT: | |
744a8059 | 483 | switch (TYPE_LENGTH (valtype)) |
5ec2bb99 RH |
484 | { |
485 | case 4: | |
486 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer); | |
e17a4113 | 487 | alpha_sts (gdbarch, valbuf, raw_buffer); |
5ec2bb99 RH |
488 | break; |
489 | ||
490 | case 8: | |
491 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
492 | break; | |
493 | ||
24064b5c RH |
494 | case 16: |
495 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
496 | read_memory (l, valbuf, 16); | |
497 | break; | |
498 | ||
5ec2bb99 | 499 | default: |
0963b4bd MS |
500 | internal_error (__FILE__, __LINE__, |
501 | _("unknown floating point width")); | |
5ec2bb99 RH |
502 | } |
503 | break; | |
504 | ||
7b5e1cb3 | 505 | case TYPE_CODE_COMPLEX: |
744a8059 | 506 | switch (TYPE_LENGTH (valtype)) |
7b5e1cb3 RH |
507 | { |
508 | case 8: | |
509 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
510 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
511 | break; | |
512 | ||
513 | case 16: | |
514 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
2a1ce6ec | 515 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8); |
7b5e1cb3 RH |
516 | break; |
517 | ||
518 | case 32: | |
a9933661 | 519 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); |
7b5e1cb3 RH |
520 | read_memory (l, valbuf, 32); |
521 | break; | |
522 | ||
523 | default: | |
0963b4bd MS |
524 | internal_error (__FILE__, __LINE__, |
525 | _("unknown floating point width")); | |
7b5e1cb3 RH |
526 | } |
527 | break; | |
528 | ||
5ec2bb99 RH |
529 | default: |
530 | /* Assume everything else degenerates to an integer. */ | |
531 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
744a8059 | 532 | store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l); |
5ec2bb99 RH |
533 | break; |
534 | } | |
140f9984 JT |
535 | } |
536 | ||
5ec2bb99 RH |
537 | /* Insert the given value into REGCACHE as if it was being |
538 | returned by a function. */ | |
0d056799 | 539 | |
d2427a71 | 540 | static void |
5ec2bb99 | 541 | alpha_store_return_value (struct type *valtype, struct regcache *regcache, |
5b819568 | 542 | const gdb_byte *valbuf) |
c906108c | 543 | { |
df4df182 | 544 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
2a1ce6ec | 545 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; |
5ec2bb99 | 546 | ULONGEST l; |
d2427a71 | 547 | |
5ec2bb99 | 548 | switch (TYPE_CODE (valtype)) |
c906108c | 549 | { |
5ec2bb99 | 550 | case TYPE_CODE_FLT: |
744a8059 | 551 | switch (TYPE_LENGTH (valtype)) |
5ec2bb99 RH |
552 | { |
553 | case 4: | |
e17a4113 | 554 | alpha_lds (gdbarch, raw_buffer, valbuf); |
f75d70cc RH |
555 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer); |
556 | break; | |
5ec2bb99 RH |
557 | |
558 | case 8: | |
559 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
560 | break; | |
561 | ||
24064b5c RH |
562 | case 16: |
563 | /* FIXME: 128-bit long doubles are returned like structures: | |
564 | by writing into indirect storage provided by the caller | |
565 | as the first argument. */ | |
323e0a4a | 566 | error (_("Cannot set a 128-bit long double return value.")); |
24064b5c | 567 | |
5ec2bb99 | 568 | default: |
0963b4bd MS |
569 | internal_error (__FILE__, __LINE__, |
570 | _("unknown floating point width")); | |
5ec2bb99 RH |
571 | } |
572 | break; | |
d2427a71 | 573 | |
7b5e1cb3 | 574 | case TYPE_CODE_COMPLEX: |
744a8059 | 575 | switch (TYPE_LENGTH (valtype)) |
7b5e1cb3 RH |
576 | { |
577 | case 8: | |
578 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
579 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
580 | break; | |
581 | ||
582 | case 16: | |
583 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
2a1ce6ec | 584 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8); |
7b5e1cb3 RH |
585 | break; |
586 | ||
587 | case 32: | |
588 | /* FIXME: 128-bit long doubles are returned like structures: | |
589 | by writing into indirect storage provided by the caller | |
590 | as the first argument. */ | |
323e0a4a | 591 | error (_("Cannot set a 128-bit long double return value.")); |
7b5e1cb3 RH |
592 | |
593 | default: | |
0963b4bd MS |
594 | internal_error (__FILE__, __LINE__, |
595 | _("unknown floating point width")); | |
7b5e1cb3 RH |
596 | } |
597 | break; | |
598 | ||
5ec2bb99 RH |
599 | default: |
600 | /* Assume everything else degenerates to an integer. */ | |
0ede8eca RH |
601 | /* 32-bit values must be sign-extended to 64 bits |
602 | even if the base data type is unsigned. */ | |
744a8059 | 603 | if (TYPE_LENGTH (valtype) == 4) |
df4df182 | 604 | valtype = builtin_type (gdbarch)->builtin_int32; |
5ec2bb99 RH |
605 | l = unpack_long (valtype, valbuf); |
606 | regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l); | |
607 | break; | |
608 | } | |
c906108c SS |
609 | } |
610 | ||
9823e921 | 611 | static enum return_value_convention |
6a3a010b | 612 | alpha_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
613 | struct type *type, struct regcache *regcache, |
614 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
9823e921 RH |
615 | { |
616 | enum type_code code = TYPE_CODE (type); | |
617 | ||
618 | if ((code == TYPE_CODE_STRUCT | |
619 | || code == TYPE_CODE_UNION | |
620 | || code == TYPE_CODE_ARRAY) | |
621 | && gdbarch_tdep (gdbarch)->return_in_memory (type)) | |
622 | { | |
623 | if (readbuf) | |
624 | { | |
625 | ULONGEST addr; | |
626 | regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr); | |
627 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
628 | } | |
629 | ||
630 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
631 | } | |
632 | ||
633 | if (readbuf) | |
634 | alpha_extract_return_value (type, regcache, readbuf); | |
635 | if (writebuf) | |
636 | alpha_store_return_value (type, regcache, writebuf); | |
637 | ||
638 | return RETURN_VALUE_REGISTER_CONVENTION; | |
639 | } | |
640 | ||
641 | static int | |
642 | alpha_return_in_memory_always (struct type *type) | |
643 | { | |
644 | return 1; | |
645 | } | |
d2427a71 | 646 | \f |
2a1ce6ec | 647 | static const gdb_byte * |
67d57894 | 648 | alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len) |
c906108c | 649 | { |
2a1ce6ec | 650 | static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */ |
c906108c | 651 | |
2a1ce6ec MK |
652 | *len = sizeof(break_insn); |
653 | return break_insn; | |
d2427a71 | 654 | } |
c906108c | 655 | |
d2427a71 RH |
656 | \f |
657 | /* This returns the PC of the first insn after the prologue. | |
658 | If we can't find the prologue, then return 0. */ | |
c906108c | 659 | |
d2427a71 RH |
660 | CORE_ADDR |
661 | alpha_after_prologue (CORE_ADDR pc) | |
c906108c | 662 | { |
d2427a71 RH |
663 | struct symtab_and_line sal; |
664 | CORE_ADDR func_addr, func_end; | |
c906108c | 665 | |
d2427a71 | 666 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c5aa993b | 667 | return 0; |
c906108c | 668 | |
d2427a71 RH |
669 | sal = find_pc_line (func_addr, 0); |
670 | if (sal.end < func_end) | |
671 | return sal.end; | |
c5aa993b | 672 | |
d2427a71 RH |
673 | /* The line after the prologue is after the end of the function. In this |
674 | case, tell the caller to find the prologue the hard way. */ | |
675 | return 0; | |
c906108c SS |
676 | } |
677 | ||
d2427a71 RH |
678 | /* Read an instruction from memory at PC, looking through breakpoints. */ |
679 | ||
680 | unsigned int | |
e17a4113 | 681 | alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 682 | { |
e17a4113 | 683 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e8d2d628 | 684 | gdb_byte buf[ALPHA_INSN_SIZE]; |
d2427a71 | 685 | int status; |
c5aa993b | 686 | |
8defab1a | 687 | status = target_read_memory (pc, buf, sizeof (buf)); |
d2427a71 RH |
688 | if (status) |
689 | memory_error (status, pc); | |
e17a4113 | 690 | return extract_unsigned_integer (buf, sizeof (buf), byte_order); |
d2427a71 | 691 | } |
c5aa993b | 692 | |
d2427a71 RH |
693 | /* To skip prologues, I use this predicate. Returns either PC itself |
694 | if the code at PC does not look like a function prologue; otherwise | |
695 | returns an address that (if we're lucky) follows the prologue. If | |
696 | LENIENT, then we must skip everything which is involved in setting | |
697 | up the frame (it's OK to skip more, just so long as we don't skip | |
698 | anything which might clobber the registers which are being saved. */ | |
c906108c | 699 | |
d2427a71 | 700 | static CORE_ADDR |
6093d2eb | 701 | alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
d2427a71 RH |
702 | { |
703 | unsigned long inst; | |
704 | int offset; | |
705 | CORE_ADDR post_prologue_pc; | |
e8d2d628 | 706 | gdb_byte buf[ALPHA_INSN_SIZE]; |
c906108c | 707 | |
d2427a71 RH |
708 | /* Silently return the unaltered pc upon memory errors. |
709 | This could happen on OSF/1 if decode_line_1 tries to skip the | |
710 | prologue for quickstarted shared library functions when the | |
711 | shared library is not yet mapped in. | |
712 | Reading target memory is slow over serial lines, so we perform | |
713 | this check only if the target has shared libraries (which all | |
714 | Alpha targets do). */ | |
e8d2d628 | 715 | if (target_read_memory (pc, buf, sizeof (buf))) |
d2427a71 | 716 | return pc; |
c906108c | 717 | |
d2427a71 RH |
718 | /* See if we can determine the end of the prologue via the symbol table. |
719 | If so, then return either PC, or the PC after the prologue, whichever | |
720 | is greater. */ | |
c906108c | 721 | |
d2427a71 RH |
722 | post_prologue_pc = alpha_after_prologue (pc); |
723 | if (post_prologue_pc != 0) | |
724 | return max (pc, post_prologue_pc); | |
c906108c | 725 | |
d2427a71 RH |
726 | /* Can't determine prologue from the symbol table, need to examine |
727 | instructions. */ | |
dc1b0db2 | 728 | |
0963b4bd | 729 | /* Skip the typical prologue instructions. These are the stack adjustment |
d2427a71 RH |
730 | instruction and the instructions that save registers on the stack |
731 | or in the gcc frame. */ | |
e8d2d628 | 732 | for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE) |
d2427a71 | 733 | { |
e17a4113 | 734 | inst = alpha_read_insn (gdbarch, pc + offset); |
c906108c | 735 | |
d2427a71 RH |
736 | if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */ |
737 | continue; | |
738 | if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */ | |
739 | continue; | |
740 | if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ | |
741 | continue; | |
742 | if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */ | |
743 | continue; | |
c906108c | 744 | |
d2427a71 RH |
745 | if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */ |
746 | || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */ | |
747 | && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */ | |
748 | continue; | |
c906108c | 749 | |
d2427a71 RH |
750 | if (inst == 0x47de040f) /* bis sp,sp,fp */ |
751 | continue; | |
752 | if (inst == 0x47fe040f) /* bis zero,sp,fp */ | |
753 | continue; | |
c906108c | 754 | |
d2427a71 | 755 | break; |
c906108c | 756 | } |
d2427a71 RH |
757 | return pc + offset; |
758 | } | |
c906108c | 759 | |
46ad3598 UW |
760 | \f |
761 | static const int ldl_l_opcode = 0x2a; | |
762 | static const int ldq_l_opcode = 0x2b; | |
763 | static const int stl_c_opcode = 0x2e; | |
764 | static const int stq_c_opcode = 0x2f; | |
765 | ||
766 | /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L | |
767 | instruction and ending with a STL_C/STQ_C instruction. If such a sequence | |
768 | is found, attempt to step through it. A breakpoint is placed at the end of | |
769 | the sequence. */ | |
770 | ||
693be288 | 771 | static int |
46ad3598 UW |
772 | alpha_deal_with_atomic_sequence (struct frame_info *frame) |
773 | { | |
774 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
775 | struct address_space *aspace = get_frame_address_space (frame); | |
776 | CORE_ADDR pc = get_frame_pc (frame); | |
777 | CORE_ADDR breaks[2] = {-1, -1}; | |
778 | CORE_ADDR loc = pc; | |
779 | CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */ | |
780 | unsigned int insn = alpha_read_insn (gdbarch, loc); | |
781 | int insn_count; | |
782 | int index; | |
783 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
784 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
785 | int bc_insn_count = 0; /* Conditional branch instruction count. */ | |
786 | ||
787 | /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */ | |
788 | if (INSN_OPCODE (insn) != ldl_l_opcode | |
789 | && INSN_OPCODE (insn) != ldq_l_opcode) | |
790 | return 0; | |
791 | ||
792 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
793 | instructions. */ | |
794 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
795 | { | |
796 | loc += ALPHA_INSN_SIZE; | |
797 | insn = alpha_read_insn (gdbarch, loc); | |
798 | ||
799 | /* Assume that there is at most one branch in the atomic | |
800 | sequence. If a branch is found, put a breakpoint in | |
801 | its destination address. */ | |
802 | if (INSN_OPCODE (insn) >= br_opcode) | |
803 | { | |
804 | int immediate = (insn & 0x001fffff) << 2; | |
805 | ||
806 | immediate = (immediate ^ 0x400000) - 0x400000; | |
807 | ||
808 | if (bc_insn_count >= 1) | |
809 | return 0; /* More than one branch found, fallback | |
810 | to the standard single-step code. */ | |
811 | ||
812 | breaks[1] = loc + ALPHA_INSN_SIZE + immediate; | |
813 | ||
814 | bc_insn_count++; | |
815 | last_breakpoint++; | |
816 | } | |
817 | ||
818 | if (INSN_OPCODE (insn) == stl_c_opcode | |
819 | || INSN_OPCODE (insn) == stq_c_opcode) | |
820 | break; | |
821 | } | |
822 | ||
823 | /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */ | |
824 | if (INSN_OPCODE (insn) != stl_c_opcode | |
825 | && INSN_OPCODE (insn) != stq_c_opcode) | |
826 | return 0; | |
827 | ||
828 | closing_insn = loc; | |
829 | loc += ALPHA_INSN_SIZE; | |
830 | ||
831 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
832 | breaks[0] = loc; | |
833 | ||
834 | /* Check for duplicated breakpoints. Check also for a breakpoint | |
835 | placed (branch instruction's destination) anywhere in sequence. */ | |
836 | if (last_breakpoint | |
837 | && (breaks[1] == breaks[0] | |
838 | || (breaks[1] >= pc && breaks[1] <= closing_insn))) | |
839 | last_breakpoint = 0; | |
840 | ||
841 | /* Effectively inserts the breakpoints. */ | |
842 | for (index = 0; index <= last_breakpoint; index++) | |
843 | insert_single_step_breakpoint (gdbarch, aspace, breaks[index]); | |
844 | ||
845 | return 1; | |
846 | } | |
847 | ||
d2427a71 RH |
848 | \f |
849 | /* Figure out where the longjmp will land. | |
850 | We expect the first arg to be a pointer to the jmp_buf structure from | |
851 | which we extract the PC (JB_PC) that we will land at. The PC is copied | |
852 | into the "pc". This routine returns true on success. */ | |
c906108c SS |
853 | |
854 | static int | |
60ade65d | 855 | alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
c906108c | 856 | { |
e17a4113 UW |
857 | struct gdbarch *gdbarch = get_frame_arch (frame); |
858 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
859 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
d2427a71 | 860 | CORE_ADDR jb_addr; |
2a1ce6ec | 861 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; |
c906108c | 862 | |
60ade65d | 863 | jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM); |
c906108c | 864 | |
d2427a71 RH |
865 | if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size), |
866 | raw_buffer, tdep->jb_elt_size)) | |
c906108c | 867 | return 0; |
d2427a71 | 868 | |
e17a4113 | 869 | *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order); |
d2427a71 | 870 | return 1; |
c906108c SS |
871 | } |
872 | ||
d2427a71 RH |
873 | \f |
874 | /* Frame unwinder for signal trampolines. We use alpha tdep bits that | |
875 | describe the location and shape of the sigcontext structure. After | |
876 | that, all registers are in memory, so it's easy. */ | |
877 | /* ??? Shouldn't we be able to do this generically, rather than with | |
878 | OSABI data specific to Alpha? */ | |
879 | ||
880 | struct alpha_sigtramp_unwind_cache | |
c906108c | 881 | { |
d2427a71 RH |
882 | CORE_ADDR sigcontext_addr; |
883 | }; | |
c906108c | 884 | |
d2427a71 | 885 | static struct alpha_sigtramp_unwind_cache * |
6834c9bb | 886 | alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame, |
d2427a71 RH |
887 | void **this_prologue_cache) |
888 | { | |
889 | struct alpha_sigtramp_unwind_cache *info; | |
890 | struct gdbarch_tdep *tdep; | |
c906108c | 891 | |
d2427a71 RH |
892 | if (*this_prologue_cache) |
893 | return *this_prologue_cache; | |
c906108c | 894 | |
d2427a71 RH |
895 | info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache); |
896 | *this_prologue_cache = info; | |
c906108c | 897 | |
6834c9bb JB |
898 | tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
899 | info->sigcontext_addr = tdep->sigcontext_addr (this_frame); | |
c906108c | 900 | |
d2427a71 | 901 | return info; |
c906108c SS |
902 | } |
903 | ||
138e7be5 MK |
904 | /* Return the address of REGNUM in a sigtramp frame. Since this is |
905 | all arithmetic, it doesn't seem worthwhile to cache it. */ | |
c5aa993b | 906 | |
d2427a71 | 907 | static CORE_ADDR |
be8626e0 MD |
908 | alpha_sigtramp_register_address (struct gdbarch *gdbarch, |
909 | CORE_ADDR sigcontext_addr, int regnum) | |
d2427a71 | 910 | { |
be8626e0 | 911 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
138e7be5 MK |
912 | |
913 | if (regnum >= 0 && regnum < 32) | |
914 | return sigcontext_addr + tdep->sc_regs_offset + regnum * 8; | |
915 | else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32) | |
916 | return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8; | |
917 | else if (regnum == ALPHA_PC_REGNUM) | |
918 | return sigcontext_addr + tdep->sc_pc_offset; | |
c5aa993b | 919 | |
d2427a71 | 920 | return 0; |
c906108c SS |
921 | } |
922 | ||
d2427a71 RH |
923 | /* Given a GDB frame, determine the address of the calling function's |
924 | frame. This will be used to create a new GDB frame struct. */ | |
140f9984 | 925 | |
dc129d82 | 926 | static void |
6834c9bb | 927 | alpha_sigtramp_frame_this_id (struct frame_info *this_frame, |
d2427a71 RH |
928 | void **this_prologue_cache, |
929 | struct frame_id *this_id) | |
c906108c | 930 | { |
6834c9bb | 931 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
be8626e0 | 932 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d2427a71 | 933 | struct alpha_sigtramp_unwind_cache *info |
6834c9bb | 934 | = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
d2427a71 RH |
935 | CORE_ADDR stack_addr, code_addr; |
936 | ||
937 | /* If the OSABI couldn't locate the sigcontext, give up. */ | |
938 | if (info->sigcontext_addr == 0) | |
939 | return; | |
940 | ||
941 | /* If we have dynamic signal trampolines, find their start. | |
942 | If we do not, then we must assume there is a symbol record | |
943 | that can provide the start address. */ | |
d2427a71 | 944 | if (tdep->dynamic_sigtramp_offset) |
c906108c | 945 | { |
d2427a71 | 946 | int offset; |
6834c9bb | 947 | code_addr = get_frame_pc (this_frame); |
e17a4113 | 948 | offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr); |
d2427a71 RH |
949 | if (offset >= 0) |
950 | code_addr -= offset; | |
c906108c | 951 | else |
d2427a71 | 952 | code_addr = 0; |
c906108c | 953 | } |
d2427a71 | 954 | else |
6834c9bb | 955 | code_addr = get_frame_func (this_frame); |
c906108c | 956 | |
d2427a71 | 957 | /* The stack address is trivially read from the sigcontext. */ |
be8626e0 | 958 | stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr, |
d2427a71 | 959 | ALPHA_SP_REGNUM); |
6834c9bb | 960 | stack_addr = get_frame_memory_unsigned (this_frame, stack_addr, |
b21fd293 | 961 | ALPHA_REGISTER_SIZE); |
c906108c | 962 | |
d2427a71 | 963 | *this_id = frame_id_build (stack_addr, code_addr); |
c906108c SS |
964 | } |
965 | ||
d2427a71 | 966 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
c906108c | 967 | |
6834c9bb JB |
968 | static struct value * |
969 | alpha_sigtramp_frame_prev_register (struct frame_info *this_frame, | |
970 | void **this_prologue_cache, int regnum) | |
c906108c | 971 | { |
d2427a71 | 972 | struct alpha_sigtramp_unwind_cache *info |
6834c9bb | 973 | = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
d2427a71 | 974 | CORE_ADDR addr; |
c906108c | 975 | |
d2427a71 | 976 | if (info->sigcontext_addr != 0) |
c906108c | 977 | { |
d2427a71 | 978 | /* All integer and fp registers are stored in memory. */ |
6834c9bb | 979 | addr = alpha_sigtramp_register_address (get_frame_arch (this_frame), |
be8626e0 | 980 | info->sigcontext_addr, regnum); |
d2427a71 | 981 | if (addr != 0) |
6834c9bb | 982 | return frame_unwind_got_memory (this_frame, regnum, addr); |
c906108c SS |
983 | } |
984 | ||
d2427a71 RH |
985 | /* This extra register may actually be in the sigcontext, but our |
986 | current description of it in alpha_sigtramp_frame_unwind_cache | |
987 | doesn't include it. Too bad. Fall back on whatever's in the | |
988 | outer frame. */ | |
6834c9bb | 989 | return frame_unwind_got_register (this_frame, regnum, regnum); |
d2427a71 | 990 | } |
c906108c | 991 | |
6834c9bb JB |
992 | static int |
993 | alpha_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
994 | struct frame_info *this_frame, | |
995 | void **this_prologue_cache) | |
d2427a71 | 996 | { |
6834c9bb JB |
997 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
998 | CORE_ADDR pc = get_frame_pc (this_frame); | |
2c02bd72 | 999 | const char *name; |
c906108c | 1000 | |
f2524b93 AC |
1001 | /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead |
1002 | look at tramp-frame.h and other simplier per-architecture | |
1003 | sigtramp unwinders. */ | |
1004 | ||
1005 | /* We shouldn't even bother to try if the OSABI didn't register a | |
1006 | sigcontext_addr handler or pc_in_sigtramp hander. */ | |
ec7cc0e8 | 1007 | if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL) |
6834c9bb | 1008 | return 0; |
ec7cc0e8 | 1009 | if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL) |
6834c9bb | 1010 | return 0; |
c906108c | 1011 | |
d2427a71 RH |
1012 | /* Otherwise we should be in a signal frame. */ |
1013 | find_pc_partial_function (pc, &name, NULL, NULL); | |
e17a4113 | 1014 | if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name)) |
6834c9bb | 1015 | return 1; |
c906108c | 1016 | |
6834c9bb | 1017 | return 0; |
c906108c | 1018 | } |
6834c9bb JB |
1019 | |
1020 | static const struct frame_unwind alpha_sigtramp_frame_unwind = { | |
1021 | SIGTRAMP_FRAME, | |
8fbca658 | 1022 | default_frame_unwind_stop_reason, |
6834c9bb JB |
1023 | alpha_sigtramp_frame_this_id, |
1024 | alpha_sigtramp_frame_prev_register, | |
1025 | NULL, | |
1026 | alpha_sigtramp_frame_sniffer | |
1027 | }; | |
1028 | ||
d2427a71 | 1029 | \f |
c906108c | 1030 | |
d2427a71 RH |
1031 | /* Heuristic_proc_start may hunt through the text section for a long |
1032 | time across a 2400 baud serial line. Allows the user to limit this | |
1033 | search. */ | |
44096aee | 1034 | static int heuristic_fence_post = 0; |
c906108c | 1035 | |
d2427a71 RH |
1036 | /* Attempt to locate the start of the function containing PC. We assume that |
1037 | the previous function ends with an about_to_return insn. Not foolproof by | |
1038 | any means, since gcc is happy to put the epilogue in the middle of a | |
1039 | function. But we're guessing anyway... */ | |
c906108c | 1040 | |
d2427a71 | 1041 | static CORE_ADDR |
be8626e0 | 1042 | alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc) |
d2427a71 | 1043 | { |
be8626e0 | 1044 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d2427a71 RH |
1045 | CORE_ADDR last_non_nop = pc; |
1046 | CORE_ADDR fence = pc - heuristic_fence_post; | |
1047 | CORE_ADDR orig_pc = pc; | |
fbe586ae | 1048 | CORE_ADDR func; |
d6b48e9c | 1049 | struct inferior *inf; |
9e0b60a8 | 1050 | |
d2427a71 RH |
1051 | if (pc == 0) |
1052 | return 0; | |
9e0b60a8 | 1053 | |
fbe586ae RH |
1054 | /* First see if we can find the start of the function from minimal |
1055 | symbol information. This can succeed with a binary that doesn't | |
1056 | have debug info, but hasn't been stripped. */ | |
1057 | func = get_pc_function_start (pc); | |
1058 | if (func) | |
1059 | return func; | |
1060 | ||
44096aee | 1061 | if (heuristic_fence_post == -1 |
d2427a71 RH |
1062 | || fence < tdep->vm_min_address) |
1063 | fence = tdep->vm_min_address; | |
c906108c | 1064 | |
d2427a71 RH |
1065 | /* Search back for previous return; also stop at a 0, which might be |
1066 | seen for instance before the start of a code section. Don't include | |
1067 | nops, since this usually indicates padding between functions. */ | |
e8d2d628 | 1068 | for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE) |
c906108c | 1069 | { |
e17a4113 | 1070 | unsigned int insn = alpha_read_insn (gdbarch, pc); |
d2427a71 | 1071 | switch (insn) |
c906108c | 1072 | { |
d2427a71 RH |
1073 | case 0: /* invalid insn */ |
1074 | case 0x6bfa8001: /* ret $31,($26),1 */ | |
1075 | return last_non_nop; | |
1076 | ||
1077 | case 0x2ffe0000: /* unop: ldq_u $31,0($30) */ | |
1078 | case 0x47ff041f: /* nop: bis $31,$31,$31 */ | |
1079 | break; | |
1080 | ||
1081 | default: | |
1082 | last_non_nop = pc; | |
1083 | break; | |
c906108c | 1084 | } |
d2427a71 | 1085 | } |
c906108c | 1086 | |
d6b48e9c PA |
1087 | inf = current_inferior (); |
1088 | ||
d2427a71 RH |
1089 | /* It's not clear to me why we reach this point when stopping quietly, |
1090 | but with this test, at least we don't print out warnings for every | |
1091 | child forked (eg, on decstation). 22apr93 [email protected]. */ | |
16c381f0 | 1092 | if (inf->control.stop_soon == NO_STOP_QUIETLY) |
d2427a71 RH |
1093 | { |
1094 | static int blurb_printed = 0; | |
c906108c | 1095 | |
d2427a71 | 1096 | if (fence == tdep->vm_min_address) |
323e0a4a | 1097 | warning (_("Hit beginning of text section without finding \ |
5af949e3 | 1098 | enclosing function for address %s"), paddress (gdbarch, orig_pc)); |
c906108c | 1099 | else |
323e0a4a | 1100 | warning (_("Hit heuristic-fence-post without finding \ |
5af949e3 | 1101 | enclosing function for address %s"), paddress (gdbarch, orig_pc)); |
c906108c | 1102 | |
d2427a71 RH |
1103 | if (!blurb_printed) |
1104 | { | |
323e0a4a | 1105 | printf_filtered (_("\ |
d2427a71 RH |
1106 | This warning occurs if you are debugging a function without any symbols\n\ |
1107 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
1108 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
1109 | \n\ | |
1110 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
323e0a4a | 1111 | (more likely) you have encountered a bug in GDB.\n")); |
d2427a71 RH |
1112 | blurb_printed = 1; |
1113 | } | |
1114 | } | |
c906108c | 1115 | |
d2427a71 RH |
1116 | return 0; |
1117 | } | |
c906108c | 1118 | |
07ea644b MD |
1119 | /* Fallback alpha frame unwinder. Uses instruction scanning and knows |
1120 | something about the traditional layout of alpha stack frames. */ | |
1121 | ||
1122 | struct alpha_heuristic_unwind_cache | |
1123 | { | |
1124 | CORE_ADDR vfp; | |
1125 | CORE_ADDR start_pc; | |
1126 | struct trad_frame_saved_reg *saved_regs; | |
1127 | int return_reg; | |
1128 | }; | |
1129 | ||
3a48e6ff JG |
1130 | /* If a probing loop sequence starts at PC, simulate it and compute |
1131 | FRAME_SIZE and PC after its execution. Otherwise, return with PC and | |
1132 | FRAME_SIZE unchanged. */ | |
1133 | ||
1134 | static void | |
1135 | alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc, | |
1136 | int *frame_size) | |
1137 | { | |
1138 | CORE_ADDR cur_pc = *pc; | |
1139 | int cur_frame_size = *frame_size; | |
1140 | int nb_of_iterations, reg_index, reg_probe; | |
1141 | unsigned int insn; | |
1142 | ||
1143 | /* The following pattern is recognized as a probing loop: | |
1144 | ||
1145 | lda REG_INDEX,NB_OF_ITERATIONS | |
1146 | lda REG_PROBE,<immediate>(sp) | |
1147 | ||
1148 | LOOP_START: | |
1149 | stq zero,<immediate>(REG_PROBE) | |
1150 | subq REG_INDEX,0x1,REG_INDEX | |
1151 | lda REG_PROBE,<immediate>(REG_PROBE) | |
1152 | bne REG_INDEX, LOOP_START | |
1153 | ||
1154 | lda sp,<immediate>(REG_PROBE) | |
1155 | ||
1156 | If anything different is found, the function returns without | |
1157 | changing PC and FRAME_SIZE. Otherwise, PC will point immediately | |
0963b4bd | 1158 | after this sequence, and FRAME_SIZE will be updated. */ |
3a48e6ff JG |
1159 | |
1160 | /* lda REG_INDEX,NB_OF_ITERATIONS */ | |
1161 | ||
1162 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1163 | if (INSN_OPCODE (insn) != lda_opcode) | |
1164 | return; | |
1165 | reg_index = MEM_RA (insn); | |
1166 | nb_of_iterations = MEM_DISP (insn); | |
1167 | ||
1168 | /* lda REG_PROBE,<immediate>(sp) */ | |
1169 | ||
1170 | cur_pc += ALPHA_INSN_SIZE; | |
1171 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1172 | if (INSN_OPCODE (insn) != lda_opcode | |
1173 | || MEM_RB (insn) != ALPHA_SP_REGNUM) | |
1174 | return; | |
1175 | reg_probe = MEM_RA (insn); | |
1176 | cur_frame_size -= MEM_DISP (insn); | |
1177 | ||
1178 | /* stq zero,<immediate>(REG_PROBE) */ | |
1179 | ||
1180 | cur_pc += ALPHA_INSN_SIZE; | |
1181 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1182 | if (INSN_OPCODE (insn) != stq_opcode | |
1183 | || MEM_RA (insn) != 0x1f | |
1184 | || MEM_RB (insn) != reg_probe) | |
1185 | return; | |
1186 | ||
1187 | /* subq REG_INDEX,0x1,REG_INDEX */ | |
1188 | ||
1189 | cur_pc += ALPHA_INSN_SIZE; | |
1190 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1191 | if (INSN_OPCODE (insn) != subq_opcode | |
1192 | || !OPR_HAS_IMMEDIATE (insn) | |
1193 | || OPR_FUNCTION (insn) != subq_function | |
1194 | || OPR_LIT(insn) != 1 | |
1195 | || OPR_RA (insn) != reg_index | |
1196 | || OPR_RC (insn) != reg_index) | |
1197 | return; | |
1198 | ||
1199 | /* lda REG_PROBE,<immediate>(REG_PROBE) */ | |
1200 | ||
1201 | cur_pc += ALPHA_INSN_SIZE; | |
1202 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1203 | if (INSN_OPCODE (insn) != lda_opcode | |
1204 | || MEM_RA (insn) != reg_probe | |
1205 | || MEM_RB (insn) != reg_probe) | |
1206 | return; | |
1207 | cur_frame_size -= MEM_DISP (insn) * nb_of_iterations; | |
1208 | ||
1209 | /* bne REG_INDEX, LOOP_START */ | |
1210 | ||
1211 | cur_pc += ALPHA_INSN_SIZE; | |
1212 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1213 | if (INSN_OPCODE (insn) != bne_opcode | |
1214 | || MEM_RA (insn) != reg_index) | |
1215 | return; | |
1216 | ||
1217 | /* lda sp,<immediate>(REG_PROBE) */ | |
1218 | ||
1219 | cur_pc += ALPHA_INSN_SIZE; | |
1220 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1221 | if (INSN_OPCODE (insn) != lda_opcode | |
1222 | || MEM_RA (insn) != ALPHA_SP_REGNUM | |
1223 | || MEM_RB (insn) != reg_probe) | |
1224 | return; | |
1225 | cur_frame_size -= MEM_DISP (insn); | |
1226 | ||
1227 | *pc = cur_pc; | |
1228 | *frame_size = cur_frame_size; | |
1229 | } | |
1230 | ||
fbe586ae | 1231 | static struct alpha_heuristic_unwind_cache * |
6834c9bb | 1232 | alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame, |
d2427a71 RH |
1233 | void **this_prologue_cache, |
1234 | CORE_ADDR start_pc) | |
1235 | { | |
6834c9bb | 1236 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
d2427a71 RH |
1237 | struct alpha_heuristic_unwind_cache *info; |
1238 | ULONGEST val; | |
1239 | CORE_ADDR limit_pc, cur_pc; | |
1240 | int frame_reg, frame_size, return_reg, reg; | |
c906108c | 1241 | |
d2427a71 RH |
1242 | if (*this_prologue_cache) |
1243 | return *this_prologue_cache; | |
c906108c | 1244 | |
d2427a71 RH |
1245 | info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache); |
1246 | *this_prologue_cache = info; | |
6834c9bb | 1247 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
c906108c | 1248 | |
6834c9bb | 1249 | limit_pc = get_frame_pc (this_frame); |
d2427a71 | 1250 | if (start_pc == 0) |
be8626e0 | 1251 | start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc); |
d2427a71 | 1252 | info->start_pc = start_pc; |
c906108c | 1253 | |
d2427a71 RH |
1254 | frame_reg = ALPHA_SP_REGNUM; |
1255 | frame_size = 0; | |
1256 | return_reg = -1; | |
c906108c | 1257 | |
d2427a71 RH |
1258 | /* If we've identified a likely place to start, do code scanning. */ |
1259 | if (start_pc != 0) | |
c5aa993b | 1260 | { |
d2427a71 RH |
1261 | /* Limit the forward search to 50 instructions. */ |
1262 | if (start_pc + 200 < limit_pc) | |
1263 | limit_pc = start_pc + 200; | |
c5aa993b | 1264 | |
e8d2d628 | 1265 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE) |
d2427a71 | 1266 | { |
e17a4113 | 1267 | unsigned int word = alpha_read_insn (gdbarch, cur_pc); |
c5aa993b | 1268 | |
d2427a71 RH |
1269 | if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ |
1270 | { | |
1271 | if (word & 0x8000) | |
1272 | { | |
1273 | /* Consider only the first stack allocation instruction | |
0963b4bd | 1274 | to contain the static size of the frame. */ |
d2427a71 RH |
1275 | if (frame_size == 0) |
1276 | frame_size = (-word) & 0xffff; | |
1277 | } | |
1278 | else | |
1279 | { | |
1280 | /* Exit loop if a positive stack adjustment is found, which | |
1281 | usually means that the stack cleanup code in the function | |
1282 | epilogue is reached. */ | |
1283 | break; | |
1284 | } | |
1285 | } | |
1286 | else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ | |
1287 | { | |
1288 | reg = (word & 0x03e00000) >> 21; | |
1289 | ||
d15bfd3a AC |
1290 | /* Ignore this instruction if we have already encountered |
1291 | an instruction saving the same register earlier in the | |
1292 | function code. The current instruction does not tell | |
1293 | us where the original value upon function entry is saved. | |
1294 | All it says is that the function we are scanning reused | |
1295 | that register for some computation of its own, and is now | |
1296 | saving its result. */ | |
07ea644b | 1297 | if (trad_frame_addr_p(info->saved_regs, reg)) |
d15bfd3a AC |
1298 | continue; |
1299 | ||
d2427a71 RH |
1300 | if (reg == 31) |
1301 | continue; | |
1302 | ||
1303 | /* Do not compute the address where the register was saved yet, | |
1304 | because we don't know yet if the offset will need to be | |
1305 | relative to $sp or $fp (we can not compute the address | |
1306 | relative to $sp if $sp is updated during the execution of | |
1307 | the current subroutine, for instance when doing some alloca). | |
1308 | So just store the offset for the moment, and compute the | |
1309 | address later when we know whether this frame has a frame | |
1310 | pointer or not. */ | |
1311 | /* Hack: temporarily add one, so that the offset is non-zero | |
1312 | and we can tell which registers have save offsets below. */ | |
07ea644b | 1313 | info->saved_regs[reg].addr = (word & 0xffff) + 1; |
d2427a71 RH |
1314 | |
1315 | /* Starting with OSF/1-3.2C, the system libraries are shipped | |
1316 | without local symbols, but they still contain procedure | |
1317 | descriptors without a symbol reference. GDB is currently | |
1318 | unable to find these procedure descriptors and uses | |
1319 | heuristic_proc_desc instead. | |
1320 | As some low level compiler support routines (__div*, __add*) | |
1321 | use a non-standard return address register, we have to | |
1322 | add some heuristics to determine the return address register, | |
1323 | or stepping over these routines will fail. | |
1324 | Usually the return address register is the first register | |
1325 | saved on the stack, but assembler optimization might | |
1326 | rearrange the register saves. | |
1327 | So we recognize only a few registers (t7, t9, ra) within | |
1328 | the procedure prologue as valid return address registers. | |
1329 | If we encounter a return instruction, we extract the | |
7a9dd1b2 | 1330 | return address register from it. |
d2427a71 RH |
1331 | |
1332 | FIXME: Rewriting GDB to access the procedure descriptors, | |
0963b4bd MS |
1333 | e.g. via the minimal symbol table, might obviate this |
1334 | hack. */ | |
d2427a71 RH |
1335 | if (return_reg == -1 |
1336 | && cur_pc < (start_pc + 80) | |
1337 | && (reg == ALPHA_T7_REGNUM | |
1338 | || reg == ALPHA_T9_REGNUM | |
1339 | || reg == ALPHA_RA_REGNUM)) | |
1340 | return_reg = reg; | |
1341 | } | |
1342 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1343 | return_reg = (word >> 16) & 0x1f; | |
1344 | else if (word == 0x47de040f) /* bis sp,sp,fp */ | |
1345 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1346 | else if (word == 0x47fe040f) /* bis zero,sp,fp */ | |
1347 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
3a48e6ff JG |
1348 | |
1349 | alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size); | |
d2427a71 | 1350 | } |
c5aa993b | 1351 | |
d2427a71 RH |
1352 | /* If we haven't found a valid return address register yet, keep |
1353 | searching in the procedure prologue. */ | |
1354 | if (return_reg == -1) | |
1355 | { | |
1356 | while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80)) | |
1357 | { | |
e17a4113 | 1358 | unsigned int word = alpha_read_insn (gdbarch, cur_pc); |
c5aa993b | 1359 | |
d2427a71 RH |
1360 | if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ |
1361 | { | |
1362 | reg = (word & 0x03e00000) >> 21; | |
1363 | if (reg == ALPHA_T7_REGNUM | |
1364 | || reg == ALPHA_T9_REGNUM | |
1365 | || reg == ALPHA_RA_REGNUM) | |
1366 | { | |
1367 | return_reg = reg; | |
1368 | break; | |
1369 | } | |
1370 | } | |
1371 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1372 | { | |
1373 | return_reg = (word >> 16) & 0x1f; | |
1374 | break; | |
1375 | } | |
85b32d22 | 1376 | |
e8d2d628 | 1377 | cur_pc += ALPHA_INSN_SIZE; |
d2427a71 RH |
1378 | } |
1379 | } | |
c906108c | 1380 | } |
c906108c | 1381 | |
d2427a71 RH |
1382 | /* Failing that, do default to the customary RA. */ |
1383 | if (return_reg == -1) | |
1384 | return_reg = ALPHA_RA_REGNUM; | |
1385 | info->return_reg = return_reg; | |
f8453e34 | 1386 | |
6834c9bb | 1387 | val = get_frame_register_unsigned (this_frame, frame_reg); |
d2427a71 | 1388 | info->vfp = val + frame_size; |
c906108c | 1389 | |
d2427a71 RH |
1390 | /* Convert offsets to absolute addresses. See above about adding |
1391 | one to the offsets to make all detected offsets non-zero. */ | |
1392 | for (reg = 0; reg < ALPHA_NUM_REGS; ++reg) | |
07ea644b MD |
1393 | if (trad_frame_addr_p(info->saved_regs, reg)) |
1394 | info->saved_regs[reg].addr += val - 1; | |
d2427a71 | 1395 | |
bfd66dd9 JB |
1396 | /* The stack pointer of the previous frame is computed by popping |
1397 | the current stack frame. */ | |
1398 | if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM)) | |
1399 | trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp); | |
1400 | ||
d2427a71 | 1401 | return info; |
c906108c | 1402 | } |
c906108c | 1403 | |
d2427a71 RH |
1404 | /* Given a GDB frame, determine the address of the calling function's |
1405 | frame. This will be used to create a new GDB frame struct. */ | |
1406 | ||
fbe586ae | 1407 | static void |
6834c9bb JB |
1408 | alpha_heuristic_frame_this_id (struct frame_info *this_frame, |
1409 | void **this_prologue_cache, | |
1410 | struct frame_id *this_id) | |
c906108c | 1411 | { |
d2427a71 | 1412 | struct alpha_heuristic_unwind_cache *info |
6834c9bb | 1413 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); |
c906108c | 1414 | |
d2427a71 | 1415 | *this_id = frame_id_build (info->vfp, info->start_pc); |
c906108c SS |
1416 | } |
1417 | ||
d2427a71 RH |
1418 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
1419 | ||
6834c9bb JB |
1420 | static struct value * |
1421 | alpha_heuristic_frame_prev_register (struct frame_info *this_frame, | |
1422 | void **this_prologue_cache, int regnum) | |
c906108c | 1423 | { |
d2427a71 | 1424 | struct alpha_heuristic_unwind_cache *info |
6834c9bb | 1425 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); |
d2427a71 RH |
1426 | |
1427 | /* The PC of the previous frame is stored in the link register of | |
1428 | the current frame. Frob regnum so that we pull the value from | |
1429 | the correct place. */ | |
1430 | if (regnum == ALPHA_PC_REGNUM) | |
1431 | regnum = info->return_reg; | |
1432 | ||
6834c9bb | 1433 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); |
95b80706 JT |
1434 | } |
1435 | ||
d2427a71 RH |
1436 | static const struct frame_unwind alpha_heuristic_frame_unwind = { |
1437 | NORMAL_FRAME, | |
8fbca658 | 1438 | default_frame_unwind_stop_reason, |
d2427a71 | 1439 | alpha_heuristic_frame_this_id, |
6834c9bb JB |
1440 | alpha_heuristic_frame_prev_register, |
1441 | NULL, | |
1442 | default_frame_sniffer | |
d2427a71 | 1443 | }; |
c906108c | 1444 | |
fbe586ae | 1445 | static CORE_ADDR |
6834c9bb | 1446 | alpha_heuristic_frame_base_address (struct frame_info *this_frame, |
d2427a71 | 1447 | void **this_prologue_cache) |
c906108c | 1448 | { |
d2427a71 | 1449 | struct alpha_heuristic_unwind_cache *info |
6834c9bb | 1450 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); |
c906108c | 1451 | |
d2427a71 | 1452 | return info->vfp; |
c906108c SS |
1453 | } |
1454 | ||
d2427a71 RH |
1455 | static const struct frame_base alpha_heuristic_frame_base = { |
1456 | &alpha_heuristic_frame_unwind, | |
1457 | alpha_heuristic_frame_base_address, | |
1458 | alpha_heuristic_frame_base_address, | |
1459 | alpha_heuristic_frame_base_address | |
1460 | }; | |
1461 | ||
c906108c | 1462 | /* Just like reinit_frame_cache, but with the right arguments to be |
d2427a71 | 1463 | callable as an sfunc. Used by the "set heuristic-fence-post" command. */ |
c906108c SS |
1464 | |
1465 | static void | |
fba45db2 | 1466 | reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c) |
c906108c SS |
1467 | { |
1468 | reinit_frame_cache (); | |
1469 | } | |
1470 | ||
d2427a71 | 1471 | \f |
d2427a71 RH |
1472 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
1473 | dummy frame. The frame ID's base needs to match the TOS value | |
1474 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1475 | breakpoint. */ | |
d734c450 | 1476 | |
d2427a71 | 1477 | static struct frame_id |
6834c9bb | 1478 | alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
0d056799 | 1479 | { |
d2427a71 | 1480 | ULONGEST base; |
6834c9bb JB |
1481 | base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM); |
1482 | return frame_id_build (base, get_frame_pc (this_frame)); | |
0d056799 JT |
1483 | } |
1484 | ||
dc129d82 | 1485 | static CORE_ADDR |
d2427a71 | 1486 | alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
accc6d1f | 1487 | { |
d2427a71 | 1488 | ULONGEST pc; |
11411de3 | 1489 | pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM); |
d2427a71 | 1490 | return pc; |
accc6d1f JT |
1491 | } |
1492 | ||
98a8e1e5 RH |
1493 | \f |
1494 | /* Helper routines for alpha*-nat.c files to move register sets to and | |
1495 | from core files. The UNIQUE pointer is allowed to be NULL, as most | |
1496 | targets don't supply this value in their core files. */ | |
1497 | ||
1498 | void | |
390c1522 UW |
1499 | alpha_supply_int_regs (struct regcache *regcache, int regno, |
1500 | const void *r0_r30, const void *pc, const void *unique) | |
98a8e1e5 | 1501 | { |
2a1ce6ec | 1502 | const gdb_byte *regs = r0_r30; |
98a8e1e5 RH |
1503 | int i; |
1504 | ||
1505 | for (i = 0; i < 31; ++i) | |
1506 | if (regno == i || regno == -1) | |
390c1522 | 1507 | regcache_raw_supply (regcache, i, regs + i * 8); |
98a8e1e5 RH |
1508 | |
1509 | if (regno == ALPHA_ZERO_REGNUM || regno == -1) | |
4a1be8d2 PA |
1510 | { |
1511 | const gdb_byte zero[8] = { 0 }; | |
1512 | ||
1513 | regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero); | |
1514 | } | |
98a8e1e5 RH |
1515 | |
1516 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
390c1522 | 1517 | regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc); |
98a8e1e5 RH |
1518 | |
1519 | if (regno == ALPHA_UNIQUE_REGNUM || regno == -1) | |
390c1522 | 1520 | regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique); |
98a8e1e5 RH |
1521 | } |
1522 | ||
1523 | void | |
390c1522 UW |
1524 | alpha_fill_int_regs (const struct regcache *regcache, |
1525 | int regno, void *r0_r30, void *pc, void *unique) | |
98a8e1e5 | 1526 | { |
2a1ce6ec | 1527 | gdb_byte *regs = r0_r30; |
98a8e1e5 RH |
1528 | int i; |
1529 | ||
1530 | for (i = 0; i < 31; ++i) | |
1531 | if (regno == i || regno == -1) | |
390c1522 | 1532 | regcache_raw_collect (regcache, i, regs + i * 8); |
98a8e1e5 RH |
1533 | |
1534 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
390c1522 | 1535 | regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc); |
98a8e1e5 RH |
1536 | |
1537 | if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1)) | |
390c1522 | 1538 | regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique); |
98a8e1e5 RH |
1539 | } |
1540 | ||
1541 | void | |
390c1522 UW |
1542 | alpha_supply_fp_regs (struct regcache *regcache, int regno, |
1543 | const void *f0_f30, const void *fpcr) | |
98a8e1e5 | 1544 | { |
2a1ce6ec | 1545 | const gdb_byte *regs = f0_f30; |
98a8e1e5 RH |
1546 | int i; |
1547 | ||
1548 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1549 | if (regno == i || regno == -1) | |
390c1522 | 1550 | regcache_raw_supply (regcache, i, |
2a1ce6ec | 1551 | regs + (i - ALPHA_FP0_REGNUM) * 8); |
98a8e1e5 RH |
1552 | |
1553 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
390c1522 | 1554 | regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr); |
98a8e1e5 RH |
1555 | } |
1556 | ||
1557 | void | |
390c1522 UW |
1558 | alpha_fill_fp_regs (const struct regcache *regcache, |
1559 | int regno, void *f0_f30, void *fpcr) | |
98a8e1e5 | 1560 | { |
2a1ce6ec | 1561 | gdb_byte *regs = f0_f30; |
98a8e1e5 RH |
1562 | int i; |
1563 | ||
1564 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1565 | if (regno == i || regno == -1) | |
390c1522 | 1566 | regcache_raw_collect (regcache, i, |
2a1ce6ec | 1567 | regs + (i - ALPHA_FP0_REGNUM) * 8); |
98a8e1e5 RH |
1568 | |
1569 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
390c1522 | 1570 | regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr); |
98a8e1e5 RH |
1571 | } |
1572 | ||
d2427a71 | 1573 | \f |
0de94d4b JB |
1574 | |
1575 | /* Return nonzero if the G_floating register value in REG is equal to | |
1576 | zero for FP control instructions. */ | |
1577 | ||
1578 | static int | |
1579 | fp_register_zero_p (LONGEST reg) | |
1580 | { | |
1581 | /* Check that all bits except the sign bit are zero. */ | |
1582 | const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1; | |
1583 | ||
1584 | return ((reg & zero_mask) == 0); | |
1585 | } | |
1586 | ||
1587 | /* Return the value of the sign bit for the G_floating register | |
1588 | value held in REG. */ | |
1589 | ||
1590 | static int | |
1591 | fp_register_sign_bit (LONGEST reg) | |
1592 | { | |
1593 | const LONGEST sign_mask = (LONGEST) 1 << 63; | |
1594 | ||
1595 | return ((reg & sign_mask) != 0); | |
1596 | } | |
1597 | ||
ec32e4be JT |
1598 | /* alpha_software_single_step() is called just before we want to resume |
1599 | the inferior, if we want to single-step it but there is no hardware | |
1600 | or kernel single-step support (NetBSD on Alpha, for example). We find | |
e0cd558a | 1601 | the target of the coming instruction and breakpoint it. */ |
ec32e4be JT |
1602 | |
1603 | static CORE_ADDR | |
0b1b3e42 | 1604 | alpha_next_pc (struct frame_info *frame, CORE_ADDR pc) |
ec32e4be | 1605 | { |
e17a4113 | 1606 | struct gdbarch *gdbarch = get_frame_arch (frame); |
ec32e4be JT |
1607 | unsigned int insn; |
1608 | unsigned int op; | |
551e4f2e | 1609 | int regno; |
ec32e4be JT |
1610 | int offset; |
1611 | LONGEST rav; | |
1612 | ||
e17a4113 | 1613 | insn = alpha_read_insn (gdbarch, pc); |
ec32e4be | 1614 | |
0963b4bd | 1615 | /* Opcode is top 6 bits. */ |
ec32e4be JT |
1616 | op = (insn >> 26) & 0x3f; |
1617 | ||
1618 | if (op == 0x1a) | |
1619 | { | |
1620 | /* Jump format: target PC is: | |
1621 | RB & ~3 */ | |
0b1b3e42 | 1622 | return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3); |
ec32e4be JT |
1623 | } |
1624 | ||
1625 | if ((op & 0x30) == 0x30) | |
1626 | { | |
1627 | /* Branch format: target PC is: | |
1628 | (new PC) + (4 * sext(displacement)) */ | |
f8bf5763 PM |
1629 | if (op == 0x30 /* BR */ |
1630 | || op == 0x34) /* BSR */ | |
ec32e4be JT |
1631 | { |
1632 | branch_taken: | |
1633 | offset = (insn & 0x001fffff); | |
1634 | if (offset & 0x00100000) | |
1635 | offset |= 0xffe00000; | |
e8d2d628 MK |
1636 | offset *= ALPHA_INSN_SIZE; |
1637 | return (pc + ALPHA_INSN_SIZE + offset); | |
ec32e4be JT |
1638 | } |
1639 | ||
1640 | /* Need to determine if branch is taken; read RA. */ | |
551e4f2e JB |
1641 | regno = (insn >> 21) & 0x1f; |
1642 | switch (op) | |
1643 | { | |
1644 | case 0x31: /* FBEQ */ | |
1645 | case 0x36: /* FBGE */ | |
1646 | case 0x37: /* FBGT */ | |
1647 | case 0x33: /* FBLE */ | |
1648 | case 0x32: /* FBLT */ | |
1649 | case 0x35: /* FBNE */ | |
e17a4113 | 1650 | regno += gdbarch_fp0_regnum (gdbarch); |
551e4f2e JB |
1651 | } |
1652 | ||
0b1b3e42 | 1653 | rav = get_frame_register_signed (frame, regno); |
0de94d4b | 1654 | |
ec32e4be JT |
1655 | switch (op) |
1656 | { | |
1657 | case 0x38: /* BLBC */ | |
1658 | if ((rav & 1) == 0) | |
1659 | goto branch_taken; | |
1660 | break; | |
1661 | case 0x3c: /* BLBS */ | |
1662 | if (rav & 1) | |
1663 | goto branch_taken; | |
1664 | break; | |
1665 | case 0x39: /* BEQ */ | |
1666 | if (rav == 0) | |
1667 | goto branch_taken; | |
1668 | break; | |
1669 | case 0x3d: /* BNE */ | |
1670 | if (rav != 0) | |
1671 | goto branch_taken; | |
1672 | break; | |
1673 | case 0x3a: /* BLT */ | |
1674 | if (rav < 0) | |
1675 | goto branch_taken; | |
1676 | break; | |
1677 | case 0x3b: /* BLE */ | |
1678 | if (rav <= 0) | |
1679 | goto branch_taken; | |
1680 | break; | |
1681 | case 0x3f: /* BGT */ | |
1682 | if (rav > 0) | |
1683 | goto branch_taken; | |
1684 | break; | |
1685 | case 0x3e: /* BGE */ | |
1686 | if (rav >= 0) | |
1687 | goto branch_taken; | |
1688 | break; | |
d2427a71 | 1689 | |
0de94d4b JB |
1690 | /* Floating point branches. */ |
1691 | ||
1692 | case 0x31: /* FBEQ */ | |
1693 | if (fp_register_zero_p (rav)) | |
1694 | goto branch_taken; | |
1695 | break; | |
1696 | case 0x36: /* FBGE */ | |
1697 | if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav)) | |
1698 | goto branch_taken; | |
1699 | break; | |
1700 | case 0x37: /* FBGT */ | |
1701 | if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav)) | |
1702 | goto branch_taken; | |
1703 | break; | |
1704 | case 0x33: /* FBLE */ | |
1705 | if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav)) | |
1706 | goto branch_taken; | |
1707 | break; | |
1708 | case 0x32: /* FBLT */ | |
1709 | if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav)) | |
1710 | goto branch_taken; | |
1711 | break; | |
1712 | case 0x35: /* FBNE */ | |
1713 | if (! fp_register_zero_p (rav)) | |
1714 | goto branch_taken; | |
1715 | break; | |
ec32e4be JT |
1716 | } |
1717 | } | |
1718 | ||
1719 | /* Not a branch or branch not taken; target PC is: | |
1720 | pc + 4 */ | |
e8d2d628 | 1721 | return (pc + ALPHA_INSN_SIZE); |
ec32e4be JT |
1722 | } |
1723 | ||
e6590a1b | 1724 | int |
0b1b3e42 | 1725 | alpha_software_single_step (struct frame_info *frame) |
ec32e4be | 1726 | { |
a6d9a66e | 1727 | struct gdbarch *gdbarch = get_frame_arch (frame); |
6c95b8df | 1728 | struct address_space *aspace = get_frame_address_space (frame); |
e0cd558a | 1729 | CORE_ADDR pc, next_pc; |
ec32e4be | 1730 | |
0b1b3e42 UW |
1731 | pc = get_frame_pc (frame); |
1732 | next_pc = alpha_next_pc (frame, pc); | |
ec32e4be | 1733 | |
6c95b8df | 1734 | insert_single_step_breakpoint (gdbarch, aspace, next_pc); |
e6590a1b | 1735 | return 1; |
c906108c SS |
1736 | } |
1737 | ||
dc129d82 | 1738 | \f |
dc129d82 JT |
1739 | /* Initialize the current architecture based on INFO. If possible, re-use an |
1740 | architecture from ARCHES, which is a list of architectures already created | |
1741 | during this debugging session. | |
1742 | ||
1743 | Called e.g. at program startup, when reading a core file, and when reading | |
1744 | a binary file. */ | |
1745 | ||
1746 | static struct gdbarch * | |
1747 | alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1748 | { | |
1749 | struct gdbarch_tdep *tdep; | |
1750 | struct gdbarch *gdbarch; | |
dc129d82 | 1751 | |
dc129d82 | 1752 | /* Find a candidate among extant architectures. */ |
4be87837 DJ |
1753 | arches = gdbarch_list_lookup_by_info (arches, &info); |
1754 | if (arches != NULL) | |
1755 | return arches->gdbarch; | |
dc129d82 JT |
1756 | |
1757 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
1758 | gdbarch = gdbarch_alloc (&info, tdep); | |
1759 | ||
d2427a71 RH |
1760 | /* Lowest text address. This is used by heuristic_proc_start() |
1761 | to decide when to stop looking. */ | |
594706e6 | 1762 | tdep->vm_min_address = (CORE_ADDR) 0x120000000LL; |
d9b023cc | 1763 | |
36a6271d | 1764 | tdep->dynamic_sigtramp_offset = NULL; |
5868c862 | 1765 | tdep->sigcontext_addr = NULL; |
138e7be5 MK |
1766 | tdep->sc_pc_offset = 2 * 8; |
1767 | tdep->sc_regs_offset = 4 * 8; | |
1768 | tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8; | |
36a6271d | 1769 | |
0963b4bd | 1770 | tdep->jb_pc = -1; /* longjmp support not enabled by default. */ |
accc6d1f | 1771 | |
9823e921 RH |
1772 | tdep->return_in_memory = alpha_return_in_memory_always; |
1773 | ||
dc129d82 JT |
1774 | /* Type sizes */ |
1775 | set_gdbarch_short_bit (gdbarch, 16); | |
1776 | set_gdbarch_int_bit (gdbarch, 32); | |
1777 | set_gdbarch_long_bit (gdbarch, 64); | |
1778 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1779 | set_gdbarch_float_bit (gdbarch, 32); | |
1780 | set_gdbarch_double_bit (gdbarch, 64); | |
1781 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1782 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1783 | ||
1784 | /* Register info */ | |
1785 | set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS); | |
1786 | set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM); | |
dc129d82 JT |
1787 | set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM); |
1788 | set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM); | |
1789 | ||
1790 | set_gdbarch_register_name (gdbarch, alpha_register_name); | |
c483c494 | 1791 | set_gdbarch_register_type (gdbarch, alpha_register_type); |
dc129d82 JT |
1792 | |
1793 | set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register); | |
1794 | set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register); | |
1795 | ||
c483c494 RH |
1796 | set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p); |
1797 | set_gdbarch_register_to_value (gdbarch, alpha_register_to_value); | |
1798 | set_gdbarch_value_to_register (gdbarch, alpha_value_to_register); | |
dc129d82 | 1799 | |
615967cb RH |
1800 | set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p); |
1801 | ||
d2427a71 | 1802 | /* Prologue heuristics. */ |
dc129d82 JT |
1803 | set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue); |
1804 | ||
5ef165c2 RH |
1805 | /* Disassembler. */ |
1806 | set_gdbarch_print_insn (gdbarch, print_insn_alpha); | |
1807 | ||
d2427a71 | 1808 | /* Call info. */ |
dc129d82 | 1809 | |
9823e921 | 1810 | set_gdbarch_return_value (gdbarch, alpha_return_value); |
dc129d82 JT |
1811 | |
1812 | /* Settings for calling functions in the inferior. */ | |
c88e30c0 | 1813 | set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call); |
d2427a71 RH |
1814 | |
1815 | /* Methods for saving / extracting a dummy frame's ID. */ | |
6834c9bb | 1816 | set_gdbarch_dummy_id (gdbarch, alpha_dummy_id); |
d2427a71 RH |
1817 | |
1818 | /* Return the unwound PC value. */ | |
1819 | set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc); | |
dc129d82 JT |
1820 | |
1821 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
36a6271d | 1822 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); |
dc129d82 | 1823 | |
95b80706 | 1824 | set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc); |
e8d2d628 | 1825 | set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE); |
9d519230 | 1826 | set_gdbarch_cannot_step_breakpoint (gdbarch, 1); |
95b80706 | 1827 | |
46ad3598 UW |
1828 | /* Handles single stepping of atomic sequences. */ |
1829 | set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence); | |
1830 | ||
44dffaac | 1831 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 1832 | gdbarch_init_osabi (info, gdbarch); |
44dffaac | 1833 | |
accc6d1f JT |
1834 | /* Now that we have tuned the configuration, set a few final things |
1835 | based on what the OS ABI has told us. */ | |
1836 | ||
1837 | if (tdep->jb_pc >= 0) | |
1838 | set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target); | |
1839 | ||
6834c9bb JB |
1840 | frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind); |
1841 | frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind); | |
dc129d82 | 1842 | |
d2427a71 | 1843 | frame_base_set_default (gdbarch, &alpha_heuristic_frame_base); |
accc6d1f | 1844 | |
d2427a71 | 1845 | return gdbarch; |
dc129d82 JT |
1846 | } |
1847 | ||
baa490c4 RH |
1848 | void |
1849 | alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
1850 | { | |
6834c9bb | 1851 | dwarf2_append_unwinders (gdbarch); |
336d1bba | 1852 | frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); |
baa490c4 RH |
1853 | } |
1854 | ||
a78f21af AC |
1855 | extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */ |
1856 | ||
c906108c | 1857 | void |
fba45db2 | 1858 | _initialize_alpha_tdep (void) |
c906108c SS |
1859 | { |
1860 | struct cmd_list_element *c; | |
1861 | ||
d2427a71 | 1862 | gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL); |
c906108c SS |
1863 | |
1864 | /* Let the user set the fence post for heuristic_proc_start. */ | |
1865 | ||
1866 | /* We really would like to have both "0" and "unlimited" work, but | |
1867 | command.c doesn't deal with that. So make it a var_zinteger | |
1868 | because the user can always use "999999" or some such for unlimited. */ | |
edefbb7c AC |
1869 | /* We need to throw away the frame cache when we set this, since it |
1870 | might change our ability to get backtraces. */ | |
1871 | add_setshow_zinteger_cmd ("heuristic-fence-post", class_support, | |
7915a72c AC |
1872 | &heuristic_fence_post, _("\ |
1873 | Set the distance searched for the start of a function."), _("\ | |
1874 | Show the distance searched for the start of a function."), _("\ | |
c906108c SS |
1875 | If you are debugging a stripped executable, GDB needs to search through the\n\ |
1876 | program for the start of a function. This command sets the distance of the\n\ | |
323e0a4a | 1877 | search. The only need to set it is when debugging a stripped executable."), |
2c5b56ce | 1878 | reinit_frame_cache_sfunc, |
0963b4bd MS |
1879 | NULL, /* FIXME: i18n: The distance searched for |
1880 | the start of a function is \"%d\". */ | |
edefbb7c | 1881 | &setlist, &showlist); |
c906108c | 1882 | } |