]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating objfiles. |
af5f3db6 AC |
2 | |
3 | Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, | |
4 | 2001, 2002 Free Software Foundation, Inc. | |
5 | ||
c906108c SS |
6 | Contributed by Cygnus Support, using pieces from other GDB modules. |
7 | ||
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, | |
23 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
24 | |
25 | /* This file contains support routines for creating, manipulating, and | |
26 | destroying objfile structures. */ | |
27 | ||
28 | #include "defs.h" | |
29 | #include "bfd.h" /* Binary File Description */ | |
30 | #include "symtab.h" | |
31 | #include "symfile.h" | |
32 | #include "objfiles.h" | |
33 | #include "gdb-stabs.h" | |
34 | #include "target.h" | |
af5f3db6 | 35 | #include "bcache.h" |
c906108c SS |
36 | |
37 | #include <sys/types.h> | |
38 | #include "gdb_stat.h" | |
39 | #include <fcntl.h> | |
04ea0df1 | 40 | #include "gdb_obstack.h" |
c906108c SS |
41 | #include "gdb_string.h" |
42 | ||
7a292a7a SS |
43 | #include "breakpoint.h" |
44 | ||
c906108c SS |
45 | /* Prototypes for local functions */ |
46 | ||
47 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
48 | ||
ed1801df AC |
49 | #include "mmalloc.h" |
50 | ||
a14ed312 | 51 | static int open_existing_mapped_file (char *, long, int); |
c906108c | 52 | |
a14ed312 | 53 | static int open_mapped_file (char *filename, long mtime, int flags); |
c906108c | 54 | |
4efb68b1 | 55 | static void *map_to_file (int); |
c906108c | 56 | |
c5aa993b | 57 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c | 58 | |
4efb68b1 | 59 | static void add_to_objfile_sections (bfd *, sec_ptr, void *); |
c906108c SS |
60 | |
61 | /* Externally visible variables that are owned by this module. | |
62 | See declarations in objfile.h for more info. */ | |
63 | ||
c5aa993b | 64 | struct objfile *object_files; /* Linked list of all objfiles */ |
c906108c SS |
65 | struct objfile *current_objfile; /* For symbol file being read in */ |
66 | struct objfile *symfile_objfile; /* Main symbol table loaded from */ | |
67 | struct objfile *rt_common_objfile; /* For runtime common symbols */ | |
68 | ||
c5aa993b | 69 | int mapped_symbol_files; /* Try to use mapped symbol files */ |
c906108c SS |
70 | |
71 | /* Locate all mappable sections of a BFD file. | |
72 | objfile_p_char is a char * to get it through | |
73 | bfd_map_over_sections; we cast it back to its proper type. */ | |
74 | ||
75 | #ifndef TARGET_KEEP_SECTION | |
76 | #define TARGET_KEEP_SECTION(ASECT) 0 | |
77 | #endif | |
78 | ||
96baa820 JM |
79 | /* Called via bfd_map_over_sections to build up the section table that |
80 | the objfile references. The objfile contains pointers to the start | |
81 | of the table (objfile->sections) and to the first location after | |
82 | the end of the table (objfile->sections_end). */ | |
83 | ||
c906108c | 84 | static void |
4efb68b1 | 85 | add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char) |
c906108c SS |
86 | { |
87 | struct objfile *objfile = (struct objfile *) objfile_p_char; | |
88 | struct obj_section section; | |
89 | flagword aflag; | |
90 | ||
91 | aflag = bfd_get_section_flags (abfd, asect); | |
92 | ||
c5aa993b | 93 | if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect))) |
c906108c SS |
94 | return; |
95 | ||
96 | if (0 == bfd_section_size (abfd, asect)) | |
97 | return; | |
98 | section.offset = 0; | |
99 | section.objfile = objfile; | |
100 | section.the_bfd_section = asect; | |
101 | section.ovly_mapped = 0; | |
102 | section.addr = bfd_section_vma (abfd, asect); | |
103 | section.endaddr = section.addr + bfd_section_size (abfd, asect); | |
c5aa993b | 104 | obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof (section)); |
c906108c SS |
105 | objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); |
106 | } | |
107 | ||
108 | /* Builds a section table for OBJFILE. | |
109 | Returns 0 if OK, 1 on error (in which case bfd_error contains the | |
96baa820 JM |
110 | error). |
111 | ||
112 | Note that while we are building the table, which goes into the | |
113 | psymbol obstack, we hijack the sections_end pointer to instead hold | |
114 | a count of the number of sections. When bfd_map_over_sections | |
115 | returns, this count is used to compute the pointer to the end of | |
116 | the sections table, which then overwrites the count. | |
117 | ||
118 | Also note that the OFFSET and OVLY_MAPPED in each table entry | |
119 | are initialized to zero. | |
120 | ||
121 | Also note that if anything else writes to the psymbol obstack while | |
122 | we are building the table, we're pretty much hosed. */ | |
c906108c SS |
123 | |
124 | int | |
fba45db2 | 125 | build_objfile_section_table (struct objfile *objfile) |
c906108c SS |
126 | { |
127 | /* objfile->sections can be already set when reading a mapped symbol | |
128 | file. I believe that we do need to rebuild the section table in | |
129 | this case (we rebuild other things derived from the bfd), but we | |
130 | can't free the old one (it's in the psymbol_obstack). So we just | |
131 | waste some memory. */ | |
132 | ||
133 | objfile->sections_end = 0; | |
c5aa993b | 134 | bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile); |
c906108c SS |
135 | objfile->sections = (struct obj_section *) |
136 | obstack_finish (&objfile->psymbol_obstack); | |
137 | objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; | |
c5aa993b | 138 | return (0); |
c906108c SS |
139 | } |
140 | ||
2df3850c JM |
141 | /* Given a pointer to an initialized bfd (ABFD) and some flag bits |
142 | allocate a new objfile struct, fill it in as best we can, link it | |
143 | into the list of all known objfiles, and return a pointer to the | |
144 | new objfile struct. | |
c906108c | 145 | |
2df3850c JM |
146 | The FLAGS word contains various bits (OBJF_*) that can be taken as |
147 | requests for specific operations, like trying to open a mapped | |
148 | version of the objfile (OBJF_MAPPED). Other bits like | |
149 | OBJF_SHARED are simply copied through to the new objfile flags | |
150 | member. */ | |
c906108c SS |
151 | |
152 | struct objfile * | |
fba45db2 | 153 | allocate_objfile (bfd *abfd, int flags) |
c906108c SS |
154 | { |
155 | struct objfile *objfile = NULL; | |
156 | struct objfile *last_one = NULL; | |
157 | ||
2df3850c JM |
158 | if (mapped_symbol_files) |
159 | flags |= OBJF_MAPPED; | |
c906108c SS |
160 | |
161 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
162 | if (abfd != NULL) | |
c5aa993b | 163 | { |
c906108c | 164 | |
c5aa993b JM |
165 | /* If we can support mapped symbol files, try to open/reopen the |
166 | mapped file that corresponds to the file from which we wish to | |
167 | read symbols. If the objfile is to be mapped, we must malloc | |
168 | the structure itself using the mmap version, and arrange that | |
169 | all memory allocation for the objfile uses the mmap routines. | |
170 | If we are reusing an existing mapped file, from which we get | |
171 | our objfile pointer, we have to make sure that we update the | |
172 | pointers to the alloc/free functions in the obstack, in case | |
173 | these functions have moved within the current gdb. */ | |
174 | ||
175 | int fd; | |
176 | ||
177 | fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), | |
2df3850c | 178 | flags); |
c5aa993b JM |
179 | if (fd >= 0) |
180 | { | |
4efb68b1 | 181 | void *md; |
c906108c | 182 | |
c5aa993b JM |
183 | if ((md = map_to_file (fd)) == NULL) |
184 | { | |
185 | close (fd); | |
186 | } | |
187 | else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) | |
188 | { | |
189 | /* Update memory corruption handler function addresses. */ | |
190 | init_malloc (md); | |
191 | objfile->md = md; | |
192 | objfile->mmfd = fd; | |
193 | /* Update pointers to functions to *our* copies */ | |
194 | obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc); | |
aac7f4ea | 195 | obstack_freefun (&objfile->psymbol_cache.cache, xmfree); |
99d9066e JB |
196 | obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc); |
197 | obstack_freefun (&objfile->macro_cache.cache, xmfree); | |
c5aa993b | 198 | obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc); |
aac7f4ea | 199 | obstack_freefun (&objfile->psymbol_obstack, xmfree); |
c5aa993b | 200 | obstack_chunkfun (&objfile->symbol_obstack, xmmalloc); |
aac7f4ea | 201 | obstack_freefun (&objfile->symbol_obstack, xmfree); |
c5aa993b | 202 | obstack_chunkfun (&objfile->type_obstack, xmmalloc); |
aac7f4ea | 203 | obstack_freefun (&objfile->type_obstack, xmfree); |
c5aa993b JM |
204 | /* If already in objfile list, unlink it. */ |
205 | unlink_objfile (objfile); | |
206 | /* Forget things specific to a particular gdb, may have changed. */ | |
207 | objfile->sf = NULL; | |
208 | } | |
209 | else | |
210 | { | |
c906108c | 211 | |
c5aa993b JM |
212 | /* Set up to detect internal memory corruption. MUST be |
213 | done before the first malloc. See comments in | |
214 | init_malloc() and mmcheck(). */ | |
215 | ||
216 | init_malloc (md); | |
217 | ||
218 | objfile = (struct objfile *) | |
219 | xmmalloc (md, sizeof (struct objfile)); | |
220 | memset (objfile, 0, sizeof (struct objfile)); | |
221 | objfile->md = md; | |
222 | objfile->mmfd = fd; | |
223 | objfile->flags |= OBJF_MAPPED; | |
224 | mmalloc_setkey (objfile->md, 0, objfile); | |
225 | obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache, | |
aac7f4ea | 226 | 0, 0, xmmalloc, xmfree, |
c5aa993b | 227 | objfile->md); |
99d9066e JB |
228 | obstack_specify_allocation_with_arg (&objfile->macro_cache.cache, |
229 | 0, 0, xmmalloc, xmfree, | |
230 | objfile->md); | |
c5aa993b | 231 | obstack_specify_allocation_with_arg (&objfile->psymbol_obstack, |
aac7f4ea | 232 | 0, 0, xmmalloc, xmfree, |
c5aa993b JM |
233 | objfile->md); |
234 | obstack_specify_allocation_with_arg (&objfile->symbol_obstack, | |
aac7f4ea | 235 | 0, 0, xmmalloc, xmfree, |
c5aa993b JM |
236 | objfile->md); |
237 | obstack_specify_allocation_with_arg (&objfile->type_obstack, | |
aac7f4ea | 238 | 0, 0, xmmalloc, xmfree, |
c5aa993b JM |
239 | objfile->md); |
240 | } | |
241 | } | |
c906108c | 242 | |
2df3850c | 243 | if ((flags & OBJF_MAPPED) && (objfile == NULL)) |
c5aa993b JM |
244 | { |
245 | warning ("symbol table for '%s' will not be mapped", | |
246 | bfd_get_filename (abfd)); | |
2df3850c | 247 | flags &= ~OBJF_MAPPED; |
c5aa993b JM |
248 | } |
249 | } | |
250 | #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */ | |
c906108c | 251 | |
2df3850c | 252 | if (flags & OBJF_MAPPED) |
c906108c SS |
253 | { |
254 | warning ("mapped symbol tables are not supported on this machine; missing or broken mmap()."); | |
255 | ||
256 | /* Turn off the global flag so we don't try to do mapped symbol tables | |
c5aa993b JM |
257 | any more, which shuts up gdb unless the user specifically gives the |
258 | "mapped" keyword again. */ | |
c906108c SS |
259 | |
260 | mapped_symbol_files = 0; | |
2df3850c | 261 | flags &= ~OBJF_MAPPED; |
c906108c SS |
262 | } |
263 | ||
c5aa993b | 264 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
265 | |
266 | /* If we don't support mapped symbol files, didn't ask for the file to be | |
267 | mapped, or failed to open the mapped file for some reason, then revert | |
268 | back to an unmapped objfile. */ | |
269 | ||
270 | if (objfile == NULL) | |
271 | { | |
272 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
273 | memset (objfile, 0, sizeof (struct objfile)); | |
c5aa993b | 274 | objfile->md = NULL; |
af5f3db6 AC |
275 | objfile->psymbol_cache = bcache_xmalloc (); |
276 | objfile->macro_cache = bcache_xmalloc (); | |
c5aa993b | 277 | obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc, |
b8c9b27d | 278 | xfree); |
c5aa993b | 279 | obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc, |
b8c9b27d | 280 | xfree); |
c5aa993b | 281 | obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc, |
b8c9b27d | 282 | xfree); |
2df3850c | 283 | flags &= ~OBJF_MAPPED; |
c906108c SS |
284 | } |
285 | ||
286 | /* Update the per-objfile information that comes from the bfd, ensuring | |
287 | that any data that is reference is saved in the per-objfile data | |
288 | region. */ | |
289 | ||
c5aa993b JM |
290 | objfile->obfd = abfd; |
291 | if (objfile->name != NULL) | |
c906108c | 292 | { |
aac7f4ea | 293 | xmfree (objfile->md, objfile->name); |
c906108c SS |
294 | } |
295 | if (abfd != NULL) | |
296 | { | |
c5aa993b JM |
297 | objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd)); |
298 | objfile->mtime = bfd_get_mtime (abfd); | |
c906108c SS |
299 | |
300 | /* Build section table. */ | |
301 | ||
302 | if (build_objfile_section_table (objfile)) | |
303 | { | |
c5aa993b JM |
304 | error ("Can't find the file sections in `%s': %s", |
305 | objfile->name, bfd_errmsg (bfd_get_error ())); | |
c906108c SS |
306 | } |
307 | } | |
308 | ||
b8fbeb18 EZ |
309 | /* Initialize the section indexes for this objfile, so that we can |
310 | later detect if they are used w/o being properly assigned to. */ | |
311 | ||
312 | objfile->sect_index_text = -1; | |
313 | objfile->sect_index_data = -1; | |
314 | objfile->sect_index_bss = -1; | |
315 | objfile->sect_index_rodata = -1; | |
316 | ||
c906108c SS |
317 | /* Add this file onto the tail of the linked list of other such files. */ |
318 | ||
c5aa993b | 319 | objfile->next = NULL; |
c906108c SS |
320 | if (object_files == NULL) |
321 | object_files = objfile; | |
322 | else | |
323 | { | |
324 | for (last_one = object_files; | |
c5aa993b JM |
325 | last_one->next; |
326 | last_one = last_one->next); | |
327 | last_one->next = objfile; | |
c906108c SS |
328 | } |
329 | ||
2df3850c JM |
330 | /* Save passed in flag bits. */ |
331 | objfile->flags |= flags; | |
c906108c SS |
332 | |
333 | return (objfile); | |
334 | } | |
335 | ||
336 | /* Put OBJFILE at the front of the list. */ | |
337 | ||
338 | void | |
fba45db2 | 339 | objfile_to_front (struct objfile *objfile) |
c906108c SS |
340 | { |
341 | struct objfile **objp; | |
342 | for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) | |
343 | { | |
344 | if (*objp == objfile) | |
345 | { | |
346 | /* Unhook it from where it is. */ | |
347 | *objp = objfile->next; | |
348 | /* Put it in the front. */ | |
349 | objfile->next = object_files; | |
350 | object_files = objfile; | |
351 | break; | |
352 | } | |
353 | } | |
354 | } | |
355 | ||
356 | /* Unlink OBJFILE from the list of known objfiles, if it is found in the | |
357 | list. | |
358 | ||
359 | It is not a bug, or error, to call this function if OBJFILE is not known | |
360 | to be in the current list. This is done in the case of mapped objfiles, | |
361 | for example, just to ensure that the mapped objfile doesn't appear twice | |
362 | in the list. Since the list is threaded, linking in a mapped objfile | |
363 | twice would create a circular list. | |
364 | ||
365 | If OBJFILE turns out to be in the list, we zap it's NEXT pointer after | |
366 | unlinking it, just to ensure that we have completely severed any linkages | |
367 | between the OBJFILE and the list. */ | |
368 | ||
369 | void | |
fba45db2 | 370 | unlink_objfile (struct objfile *objfile) |
c906108c | 371 | { |
c5aa993b | 372 | struct objfile **objpp; |
c906108c | 373 | |
c5aa993b | 374 | for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) |
c906108c | 375 | { |
c5aa993b | 376 | if (*objpp == objfile) |
c906108c | 377 | { |
c5aa993b JM |
378 | *objpp = (*objpp)->next; |
379 | objfile->next = NULL; | |
07cd4b97 | 380 | return; |
c906108c SS |
381 | } |
382 | } | |
07cd4b97 | 383 | |
8e65ff28 AC |
384 | internal_error (__FILE__, __LINE__, |
385 | "unlink_objfile: objfile already unlinked"); | |
c906108c SS |
386 | } |
387 | ||
388 | ||
389 | /* Destroy an objfile and all the symtabs and psymtabs under it. Note | |
390 | that as much as possible is allocated on the symbol_obstack and | |
391 | psymbol_obstack, so that the memory can be efficiently freed. | |
392 | ||
393 | Things which we do NOT free because they are not in malloc'd memory | |
394 | or not in memory specific to the objfile include: | |
395 | ||
c5aa993b | 396 | objfile -> sf |
c906108c SS |
397 | |
398 | FIXME: If the objfile is using reusable symbol information (via mmalloc), | |
399 | then we need to take into account the fact that more than one process | |
400 | may be using the symbol information at the same time (when mmalloc is | |
401 | extended to support cooperative locking). When more than one process | |
402 | is using the mapped symbol info, we need to be more careful about when | |
403 | we free objects in the reusable area. */ | |
404 | ||
405 | void | |
fba45db2 | 406 | free_objfile (struct objfile *objfile) |
c906108c SS |
407 | { |
408 | /* First do any symbol file specific actions required when we are | |
409 | finished with a particular symbol file. Note that if the objfile | |
410 | is using reusable symbol information (via mmalloc) then each of | |
411 | these routines is responsible for doing the correct thing, either | |
412 | freeing things which are valid only during this particular gdb | |
413 | execution, or leaving them to be reused during the next one. */ | |
414 | ||
c5aa993b | 415 | if (objfile->sf != NULL) |
c906108c | 416 | { |
c5aa993b | 417 | (*objfile->sf->sym_finish) (objfile); |
c906108c SS |
418 | } |
419 | ||
420 | /* We always close the bfd. */ | |
421 | ||
c5aa993b | 422 | if (objfile->obfd != NULL) |
c906108c SS |
423 | { |
424 | char *name = bfd_get_filename (objfile->obfd); | |
c5aa993b | 425 | if (!bfd_close (objfile->obfd)) |
c906108c SS |
426 | warning ("cannot close \"%s\": %s", |
427 | name, bfd_errmsg (bfd_get_error ())); | |
b8c9b27d | 428 | xfree (name); |
c906108c SS |
429 | } |
430 | ||
431 | /* Remove it from the chain of all objfiles. */ | |
432 | ||
433 | unlink_objfile (objfile); | |
434 | ||
435 | /* If we are going to free the runtime common objfile, mark it | |
436 | as unallocated. */ | |
437 | ||
438 | if (objfile == rt_common_objfile) | |
439 | rt_common_objfile = NULL; | |
440 | ||
441 | /* Before the symbol table code was redone to make it easier to | |
442 | selectively load and remove information particular to a specific | |
443 | linkage unit, gdb used to do these things whenever the monolithic | |
444 | symbol table was blown away. How much still needs to be done | |
445 | is unknown, but we play it safe for now and keep each action until | |
446 | it is shown to be no longer needed. */ | |
c5aa993b | 447 | |
c906108c SS |
448 | /* I *think* all our callers call clear_symtab_users. If so, no need |
449 | to call this here. */ | |
450 | clear_pc_function_cache (); | |
451 | ||
452 | /* The last thing we do is free the objfile struct itself for the | |
aac7f4ea AC |
453 | non-reusable case, or detach from the mapped file for the |
454 | reusable case. Note that the mmalloc_detach or the xmfree() is | |
455 | the last thing we can do with this objfile. */ | |
c906108c SS |
456 | |
457 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
458 | ||
c5aa993b | 459 | if (objfile->flags & OBJF_MAPPED) |
c906108c SS |
460 | { |
461 | /* Remember the fd so we can close it. We can't close it before | |
c5aa993b | 462 | doing the detach, and after the detach the objfile is gone. */ |
c906108c SS |
463 | int mmfd; |
464 | ||
c5aa993b JM |
465 | mmfd = objfile->mmfd; |
466 | mmalloc_detach (objfile->md); | |
c906108c SS |
467 | objfile = NULL; |
468 | close (mmfd); | |
469 | } | |
470 | ||
c5aa993b | 471 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
472 | |
473 | /* If we still have an objfile, then either we don't support reusable | |
474 | objfiles or this one was not reusable. So free it normally. */ | |
475 | ||
476 | if (objfile != NULL) | |
477 | { | |
c5aa993b | 478 | if (objfile->name != NULL) |
c906108c | 479 | { |
aac7f4ea | 480 | xmfree (objfile->md, objfile->name); |
c906108c SS |
481 | } |
482 | if (objfile->global_psymbols.list) | |
aac7f4ea | 483 | xmfree (objfile->md, objfile->global_psymbols.list); |
c906108c | 484 | if (objfile->static_psymbols.list) |
aac7f4ea | 485 | xmfree (objfile->md, objfile->static_psymbols.list); |
c906108c | 486 | /* Free the obstacks for non-reusable objfiles */ |
af5f3db6 AC |
487 | bcache_xfree (objfile->psymbol_cache); |
488 | bcache_xfree (objfile->macro_cache); | |
c5aa993b JM |
489 | obstack_free (&objfile->psymbol_obstack, 0); |
490 | obstack_free (&objfile->symbol_obstack, 0); | |
491 | obstack_free (&objfile->type_obstack, 0); | |
aac7f4ea | 492 | xmfree (objfile->md, objfile); |
c906108c SS |
493 | objfile = NULL; |
494 | } | |
495 | } | |
496 | ||
74b7792f AC |
497 | static void |
498 | do_free_objfile_cleanup (void *obj) | |
499 | { | |
500 | free_objfile (obj); | |
501 | } | |
502 | ||
503 | struct cleanup * | |
504 | make_cleanup_free_objfile (struct objfile *obj) | |
505 | { | |
506 | return make_cleanup (do_free_objfile_cleanup, obj); | |
507 | } | |
c906108c SS |
508 | |
509 | /* Free all the object files at once and clean up their users. */ | |
510 | ||
511 | void | |
fba45db2 | 512 | free_all_objfiles (void) |
c906108c SS |
513 | { |
514 | struct objfile *objfile, *temp; | |
515 | ||
516 | ALL_OBJFILES_SAFE (objfile, temp) | |
c5aa993b JM |
517 | { |
518 | free_objfile (objfile); | |
519 | } | |
c906108c SS |
520 | clear_symtab_users (); |
521 | } | |
522 | \f | |
523 | /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS | |
524 | entries in new_offsets. */ | |
525 | void | |
fba45db2 | 526 | objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets) |
c906108c | 527 | { |
d4f3574e SS |
528 | struct section_offsets *delta = |
529 | (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS); | |
c906108c SS |
530 | |
531 | { | |
532 | int i; | |
533 | int something_changed = 0; | |
534 | for (i = 0; i < objfile->num_sections; ++i) | |
535 | { | |
a4c8257b | 536 | delta->offsets[i] = |
c906108c SS |
537 | ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); |
538 | if (ANOFFSET (delta, i) != 0) | |
539 | something_changed = 1; | |
540 | } | |
541 | if (!something_changed) | |
542 | return; | |
543 | } | |
544 | ||
545 | /* OK, get all the symtabs. */ | |
546 | { | |
547 | struct symtab *s; | |
548 | ||
549 | ALL_OBJFILE_SYMTABS (objfile, s) | |
c5aa993b JM |
550 | { |
551 | struct linetable *l; | |
552 | struct blockvector *bv; | |
553 | int i; | |
554 | ||
555 | /* First the line table. */ | |
556 | l = LINETABLE (s); | |
557 | if (l) | |
558 | { | |
559 | for (i = 0; i < l->nitems; ++i) | |
560 | l->item[i].pc += ANOFFSET (delta, s->block_line_section); | |
561 | } | |
c906108c | 562 | |
c5aa993b JM |
563 | /* Don't relocate a shared blockvector more than once. */ |
564 | if (!s->primary) | |
565 | continue; | |
c906108c | 566 | |
c5aa993b JM |
567 | bv = BLOCKVECTOR (s); |
568 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) | |
569 | { | |
570 | struct block *b; | |
e88c90f2 | 571 | struct symbol *sym; |
c5aa993b JM |
572 | int j; |
573 | ||
574 | b = BLOCKVECTOR_BLOCK (bv, i); | |
575 | BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); | |
576 | BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); | |
577 | ||
e88c90f2 | 578 | ALL_BLOCK_SYMBOLS (b, j, sym) |
c5aa993b | 579 | { |
7a78d0ee KB |
580 | fixup_symbol_section (sym, objfile); |
581 | ||
c5aa993b JM |
582 | /* The RS6000 code from which this was taken skipped |
583 | any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. | |
584 | But I'm leaving out that test, on the theory that | |
585 | they can't possibly pass the tests below. */ | |
586 | if ((SYMBOL_CLASS (sym) == LOC_LABEL | |
587 | || SYMBOL_CLASS (sym) == LOC_STATIC | |
588 | || SYMBOL_CLASS (sym) == LOC_INDIRECT) | |
589 | && SYMBOL_SECTION (sym) >= 0) | |
590 | { | |
591 | SYMBOL_VALUE_ADDRESS (sym) += | |
592 | ANOFFSET (delta, SYMBOL_SECTION (sym)); | |
593 | } | |
c906108c | 594 | #ifdef MIPS_EFI_SYMBOL_NAME |
c5aa993b | 595 | /* Relocate Extra Function Info for ecoff. */ |
c906108c | 596 | |
c5aa993b JM |
597 | else if (SYMBOL_CLASS (sym) == LOC_CONST |
598 | && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE | |
494b7ec9 | 599 | && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) |
c5aa993b | 600 | ecoff_relocate_efi (sym, ANOFFSET (delta, |
c906108c SS |
601 | s->block_line_section)); |
602 | #endif | |
c5aa993b JM |
603 | } |
604 | } | |
605 | } | |
c906108c SS |
606 | } |
607 | ||
608 | { | |
609 | struct partial_symtab *p; | |
610 | ||
611 | ALL_OBJFILE_PSYMTABS (objfile, p) | |
c5aa993b | 612 | { |
b8fbeb18 EZ |
613 | p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
614 | p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c5aa993b | 615 | } |
c906108c SS |
616 | } |
617 | ||
618 | { | |
619 | struct partial_symbol **psym; | |
620 | ||
621 | for (psym = objfile->global_psymbols.list; | |
622 | psym < objfile->global_psymbols.next; | |
623 | psym++) | |
7a78d0ee KB |
624 | { |
625 | fixup_psymbol_section (*psym, objfile); | |
626 | if (SYMBOL_SECTION (*psym) >= 0) | |
627 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, | |
628 | SYMBOL_SECTION (*psym)); | |
629 | } | |
c906108c SS |
630 | for (psym = objfile->static_psymbols.list; |
631 | psym < objfile->static_psymbols.next; | |
632 | psym++) | |
7a78d0ee KB |
633 | { |
634 | fixup_psymbol_section (*psym, objfile); | |
635 | if (SYMBOL_SECTION (*psym) >= 0) | |
636 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, | |
637 | SYMBOL_SECTION (*psym)); | |
638 | } | |
c906108c SS |
639 | } |
640 | ||
641 | { | |
642 | struct minimal_symbol *msym; | |
643 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
644 | if (SYMBOL_SECTION (msym) >= 0) | |
c5aa993b | 645 | SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); |
c906108c SS |
646 | } |
647 | /* Relocating different sections by different amounts may cause the symbols | |
648 | to be out of order. */ | |
649 | msymbols_sort (objfile); | |
650 | ||
651 | { | |
652 | int i; | |
653 | for (i = 0; i < objfile->num_sections; ++i) | |
a4c8257b | 654 | (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i); |
c906108c SS |
655 | } |
656 | ||
36b0c0e0 PS |
657 | if (objfile->ei.entry_point != ~(CORE_ADDR) 0) |
658 | { | |
659 | /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT | |
660 | only as a fallback. */ | |
661 | struct obj_section *s; | |
662 | s = find_pc_section (objfile->ei.entry_point); | |
663 | if (s) | |
664 | objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index); | |
665 | else | |
666 | objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
667 | } | |
668 | ||
c906108c SS |
669 | { |
670 | struct obj_section *s; | |
671 | bfd *abfd; | |
672 | ||
673 | abfd = objfile->obfd; | |
674 | ||
96baa820 | 675 | ALL_OBJFILE_OSECTIONS (objfile, s) |
c906108c | 676 | { |
78f0949b KB |
677 | int idx = s->the_bfd_section->index; |
678 | ||
679 | s->addr += ANOFFSET (delta, idx); | |
680 | s->endaddr += ANOFFSET (delta, idx); | |
c906108c SS |
681 | } |
682 | } | |
683 | ||
c906108c SS |
684 | if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) |
685 | { | |
b8fbeb18 EZ |
686 | objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
687 | objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
688 | } |
689 | ||
690 | if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) | |
691 | { | |
b8fbeb18 EZ |
692 | objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
693 | objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
694 | } |
695 | ||
696 | if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) | |
697 | { | |
b8fbeb18 EZ |
698 | objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
699 | objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
700 | } |
701 | ||
702 | /* Relocate breakpoints as necessary, after things are relocated. */ | |
703 | breakpoint_re_set (); | |
704 | } | |
705 | \f | |
706 | /* Many places in gdb want to test just to see if we have any partial | |
707 | symbols available. This function returns zero if none are currently | |
708 | available, nonzero otherwise. */ | |
709 | ||
710 | int | |
fba45db2 | 711 | have_partial_symbols (void) |
c906108c SS |
712 | { |
713 | struct objfile *ofp; | |
714 | ||
715 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
716 | { |
717 | if (ofp->psymtabs != NULL) | |
718 | { | |
719 | return 1; | |
720 | } | |
721 | } | |
c906108c SS |
722 | return 0; |
723 | } | |
724 | ||
725 | /* Many places in gdb want to test just to see if we have any full | |
726 | symbols available. This function returns zero if none are currently | |
727 | available, nonzero otherwise. */ | |
728 | ||
729 | int | |
fba45db2 | 730 | have_full_symbols (void) |
c906108c SS |
731 | { |
732 | struct objfile *ofp; | |
733 | ||
734 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
735 | { |
736 | if (ofp->symtabs != NULL) | |
737 | { | |
738 | return 1; | |
739 | } | |
740 | } | |
c906108c SS |
741 | return 0; |
742 | } | |
743 | ||
744 | ||
745 | /* This operations deletes all objfile entries that represent solibs that | |
746 | weren't explicitly loaded by the user, via e.g., the add-symbol-file | |
747 | command. | |
c5aa993b | 748 | */ |
c906108c | 749 | void |
fba45db2 | 750 | objfile_purge_solibs (void) |
c906108c | 751 | { |
c5aa993b JM |
752 | struct objfile *objf; |
753 | struct objfile *temp; | |
c906108c SS |
754 | |
755 | ALL_OBJFILES_SAFE (objf, temp) | |
756 | { | |
757 | /* We assume that the solib package has been purged already, or will | |
758 | be soon. | |
c5aa993b | 759 | */ |
2df3850c | 760 | if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) |
c906108c SS |
761 | free_objfile (objf); |
762 | } | |
763 | } | |
764 | ||
765 | ||
766 | /* Many places in gdb want to test just to see if we have any minimal | |
767 | symbols available. This function returns zero if none are currently | |
768 | available, nonzero otherwise. */ | |
769 | ||
770 | int | |
fba45db2 | 771 | have_minimal_symbols (void) |
c906108c SS |
772 | { |
773 | struct objfile *ofp; | |
774 | ||
775 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
776 | { |
777 | if (ofp->msymbols != NULL) | |
778 | { | |
779 | return 1; | |
780 | } | |
781 | } | |
c906108c SS |
782 | return 0; |
783 | } | |
784 | ||
785 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
786 | ||
787 | /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp | |
788 | of the corresponding symbol file in MTIME, try to open an existing file | |
789 | with the name SYMSFILENAME and verify it is more recent than the base | |
790 | file by checking it's timestamp against MTIME. | |
791 | ||
792 | If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. | |
793 | ||
794 | If SYMSFILENAME does exist, but is out of date, we check to see if the | |
795 | user has specified creation of a mapped file. If so, we don't issue | |
796 | any warning message because we will be creating a new mapped file anyway, | |
797 | overwriting the old one. If not, then we issue a warning message so that | |
798 | the user will know why we aren't using this existing mapped symbol file. | |
799 | In either case, we return -1. | |
800 | ||
801 | If SYMSFILENAME does exist and is not out of date, but can't be opened for | |
802 | some reason, then prints an appropriate system error message and returns -1. | |
803 | ||
804 | Otherwise, returns the open file descriptor. */ | |
805 | ||
806 | static int | |
fba45db2 | 807 | open_existing_mapped_file (char *symsfilename, long mtime, int flags) |
c906108c SS |
808 | { |
809 | int fd = -1; | |
810 | struct stat sbuf; | |
811 | ||
812 | if (stat (symsfilename, &sbuf) == 0) | |
813 | { | |
814 | if (sbuf.st_mtime < mtime) | |
815 | { | |
2df3850c | 816 | if (!(flags & OBJF_MAPPED)) |
c906108c SS |
817 | { |
818 | warning ("mapped symbol file `%s' is out of date, ignored it", | |
819 | symsfilename); | |
820 | } | |
821 | } | |
822 | else if ((fd = open (symsfilename, O_RDWR)) < 0) | |
823 | { | |
824 | if (error_pre_print) | |
825 | { | |
826 | printf_unfiltered (error_pre_print); | |
827 | } | |
828 | print_sys_errmsg (symsfilename, errno); | |
829 | } | |
830 | } | |
831 | return (fd); | |
832 | } | |
833 | ||
834 | /* Look for a mapped symbol file that corresponds to FILENAME and is more | |
835 | recent than MTIME. If MAPPED is nonzero, the user has asked that gdb | |
836 | use a mapped symbol file for this file, so create a new one if one does | |
837 | not currently exist. | |
838 | ||
839 | If found, then return an open file descriptor for the file, otherwise | |
840 | return -1. | |
841 | ||
842 | This routine is responsible for implementing the policy that generates | |
843 | the name of the mapped symbol file from the name of a file containing | |
844 | symbols that gdb would like to read. Currently this policy is to append | |
845 | ".syms" to the name of the file. | |
846 | ||
847 | This routine is also responsible for implementing the policy that | |
848 | determines where the mapped symbol file is found (the search path). | |
849 | This policy is that when reading an existing mapped file, a file of | |
850 | the correct name in the current directory takes precedence over a | |
851 | file of the correct name in the same directory as the symbol file. | |
852 | When creating a new mapped file, it is always created in the current | |
853 | directory. This helps to minimize the chances of a user unknowingly | |
854 | creating big mapped files in places like /bin and /usr/local/bin, and | |
855 | allows a local copy to override a manually installed global copy (in | |
856 | /bin for example). */ | |
857 | ||
858 | static int | |
fba45db2 | 859 | open_mapped_file (char *filename, long mtime, int flags) |
c906108c SS |
860 | { |
861 | int fd; | |
862 | char *symsfilename; | |
863 | ||
864 | /* First try to open an existing file in the current directory, and | |
865 | then try the directory where the symbol file is located. */ | |
866 | ||
bdda63b0 | 867 | symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL); |
2df3850c | 868 | if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0) |
c906108c | 869 | { |
b8c9b27d | 870 | xfree (symsfilename); |
c906108c | 871 | symsfilename = concat (filename, ".syms", (char *) NULL); |
2fc18c15 | 872 | fd = open_existing_mapped_file (symsfilename, mtime, flags); |
c906108c SS |
873 | } |
874 | ||
875 | /* If we don't have an open file by now, then either the file does not | |
876 | already exist, or the base file has changed since it was created. In | |
877 | either case, if the user has specified use of a mapped file, then | |
878 | create a new mapped file, truncating any existing one. If we can't | |
879 | create one, print a system error message saying why we can't. | |
880 | ||
881 | By default the file is rw for everyone, with the user's umask taking | |
882 | care of turning off the permissions the user wants off. */ | |
883 | ||
2fc18c15 | 884 | if ((fd < 0) && (flags & OBJF_MAPPED)) |
c906108c | 885 | { |
b8c9b27d | 886 | xfree (symsfilename); |
bdda63b0 | 887 | symsfilename = concat ("./", lbasename (filename), ".syms", |
c906108c SS |
888 | (char *) NULL); |
889 | if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) | |
890 | { | |
891 | if (error_pre_print) | |
892 | { | |
893 | printf_unfiltered (error_pre_print); | |
894 | } | |
895 | print_sys_errmsg (symsfilename, errno); | |
896 | } | |
897 | } | |
898 | ||
b8c9b27d | 899 | xfree (symsfilename); |
c906108c SS |
900 | return (fd); |
901 | } | |
902 | ||
4efb68b1 | 903 | static void * |
fba45db2 | 904 | map_to_file (int fd) |
c906108c | 905 | { |
4efb68b1 | 906 | void *md; |
c906108c SS |
907 | CORE_ADDR mapto; |
908 | ||
4efb68b1 | 909 | md = mmalloc_attach (fd, 0); |
c906108c SS |
910 | if (md != NULL) |
911 | { | |
912 | mapto = (CORE_ADDR) mmalloc_getkey (md, 1); | |
913 | md = mmalloc_detach (md); | |
914 | if (md != NULL) | |
915 | { | |
916 | /* FIXME: should figure out why detach failed */ | |
917 | md = NULL; | |
918 | } | |
919 | else if (mapto != (CORE_ADDR) NULL) | |
920 | { | |
921 | /* This mapping file needs to be remapped at "mapto" */ | |
4efb68b1 | 922 | md = mmalloc_attach (fd, mapto); |
c906108c SS |
923 | } |
924 | else | |
925 | { | |
926 | /* This is a freshly created mapping file. */ | |
927 | mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024); | |
928 | if (mapto != 0) | |
929 | { | |
930 | /* To avoid reusing the freshly created mapping file, at the | |
c5aa993b JM |
931 | address selected by mmap, we must truncate it before trying |
932 | to do an attach at the address we want. */ | |
c906108c | 933 | ftruncate (fd, 0); |
4efb68b1 | 934 | md = mmalloc_attach (fd, mapto); |
c906108c SS |
935 | if (md != NULL) |
936 | { | |
4efb68b1 | 937 | mmalloc_setkey (md, 1, mapto); |
c906108c SS |
938 | } |
939 | } | |
940 | } | |
941 | } | |
942 | return (md); | |
943 | } | |
944 | ||
c5aa993b | 945 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
946 | |
947 | /* Returns a section whose range includes PC and SECTION, | |
948 | or NULL if none found. Note the distinction between the return type, | |
949 | struct obj_section (which is defined in gdb), and the input type | |
950 | struct sec (which is a bfd-defined data type). The obj_section | |
951 | contains a pointer to the bfd struct sec section. */ | |
952 | ||
953 | struct obj_section * | |
fba45db2 | 954 | find_pc_sect_section (CORE_ADDR pc, struct sec *section) |
c906108c SS |
955 | { |
956 | struct obj_section *s; | |
957 | struct objfile *objfile; | |
c5aa993b | 958 | |
96baa820 | 959 | ALL_OBJSECTIONS (objfile, s) |
c5aa993b JM |
960 | if ((section == 0 || section == s->the_bfd_section) && |
961 | s->addr <= pc && pc < s->endaddr) | |
c5aa993b | 962 | return (s); |
c906108c | 963 | |
c5aa993b | 964 | return (NULL); |
c906108c SS |
965 | } |
966 | ||
967 | /* Returns a section whose range includes PC or NULL if none found. | |
968 | Backward compatibility, no section. */ | |
969 | ||
970 | struct obj_section * | |
fba45db2 | 971 | find_pc_section (CORE_ADDR pc) |
c906108c SS |
972 | { |
973 | return find_pc_sect_section (pc, find_pc_mapped_section (pc)); | |
974 | } | |
c5aa993b | 975 | |
c906108c SS |
976 | |
977 | /* In SVR4, we recognize a trampoline by it's section name. | |
978 | That is, if the pc is in a section named ".plt" then we are in | |
979 | a trampoline. */ | |
980 | ||
981 | int | |
fba45db2 | 982 | in_plt_section (CORE_ADDR pc, char *name) |
c906108c SS |
983 | { |
984 | struct obj_section *s; | |
985 | int retval = 0; | |
c5aa993b JM |
986 | |
987 | s = find_pc_section (pc); | |
988 | ||
c906108c SS |
989 | retval = (s != NULL |
990 | && s->the_bfd_section->name != NULL | |
991 | && STREQ (s->the_bfd_section->name, ".plt")); | |
c5aa993b | 992 | return (retval); |
c906108c | 993 | } |
7be570e7 JM |
994 | |
995 | /* Return nonzero if NAME is in the import list of OBJFILE. Else | |
996 | return zero. */ | |
997 | ||
998 | int | |
fba45db2 | 999 | is_in_import_list (char *name, struct objfile *objfile) |
7be570e7 JM |
1000 | { |
1001 | register int i; | |
1002 | ||
1003 | if (!objfile || !name || !*name) | |
1004 | return 0; | |
1005 | ||
1006 | for (i = 0; i < objfile->import_list_size; i++) | |
1007 | if (objfile->import_list[i] && STREQ (name, objfile->import_list[i])) | |
1008 | return 1; | |
1009 | return 0; | |
1010 | } | |
1011 |