]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating objfiles. |
b6ba6518 | 2 | Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 |
8e65ff28 | 3 | Free Software Foundation, Inc. |
c906108c SS |
4 | Contributed by Cygnus Support, using pieces from other GDB modules. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | /* This file contains support routines for creating, manipulating, and | |
24 | destroying objfile structures. */ | |
25 | ||
26 | #include "defs.h" | |
27 | #include "bfd.h" /* Binary File Description */ | |
28 | #include "symtab.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdb-stabs.h" | |
32 | #include "target.h" | |
33 | ||
34 | #include <sys/types.h> | |
35 | #include "gdb_stat.h" | |
36 | #include <fcntl.h> | |
37 | #include "obstack.h" | |
38 | #include "gdb_string.h" | |
39 | ||
7a292a7a SS |
40 | #include "breakpoint.h" |
41 | ||
c906108c SS |
42 | /* Prototypes for local functions */ |
43 | ||
44 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
45 | ||
ed1801df AC |
46 | #include "mmalloc.h" |
47 | ||
a14ed312 | 48 | static int open_existing_mapped_file (char *, long, int); |
c906108c | 49 | |
a14ed312 | 50 | static int open_mapped_file (char *filename, long mtime, int flags); |
c906108c | 51 | |
a14ed312 | 52 | static PTR map_to_file (int); |
c906108c | 53 | |
c5aa993b | 54 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c | 55 | |
a14ed312 | 56 | static void add_to_objfile_sections (bfd *, sec_ptr, PTR); |
c906108c SS |
57 | |
58 | /* Externally visible variables that are owned by this module. | |
59 | See declarations in objfile.h for more info. */ | |
60 | ||
c5aa993b | 61 | struct objfile *object_files; /* Linked list of all objfiles */ |
c906108c SS |
62 | struct objfile *current_objfile; /* For symbol file being read in */ |
63 | struct objfile *symfile_objfile; /* Main symbol table loaded from */ | |
64 | struct objfile *rt_common_objfile; /* For runtime common symbols */ | |
65 | ||
c5aa993b | 66 | int mapped_symbol_files; /* Try to use mapped symbol files */ |
c906108c SS |
67 | |
68 | /* Locate all mappable sections of a BFD file. | |
69 | objfile_p_char is a char * to get it through | |
70 | bfd_map_over_sections; we cast it back to its proper type. */ | |
71 | ||
72 | #ifndef TARGET_KEEP_SECTION | |
73 | #define TARGET_KEEP_SECTION(ASECT) 0 | |
74 | #endif | |
75 | ||
96baa820 JM |
76 | /* Called via bfd_map_over_sections to build up the section table that |
77 | the objfile references. The objfile contains pointers to the start | |
78 | of the table (objfile->sections) and to the first location after | |
79 | the end of the table (objfile->sections_end). */ | |
80 | ||
c906108c | 81 | static void |
fba45db2 | 82 | add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char) |
c906108c SS |
83 | { |
84 | struct objfile *objfile = (struct objfile *) objfile_p_char; | |
85 | struct obj_section section; | |
86 | flagword aflag; | |
87 | ||
88 | aflag = bfd_get_section_flags (abfd, asect); | |
89 | ||
c5aa993b | 90 | if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect))) |
c906108c SS |
91 | return; |
92 | ||
93 | if (0 == bfd_section_size (abfd, asect)) | |
94 | return; | |
95 | section.offset = 0; | |
96 | section.objfile = objfile; | |
97 | section.the_bfd_section = asect; | |
98 | section.ovly_mapped = 0; | |
99 | section.addr = bfd_section_vma (abfd, asect); | |
100 | section.endaddr = section.addr + bfd_section_size (abfd, asect); | |
c5aa993b | 101 | obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof (section)); |
c906108c SS |
102 | objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); |
103 | } | |
104 | ||
105 | /* Builds a section table for OBJFILE. | |
106 | Returns 0 if OK, 1 on error (in which case bfd_error contains the | |
96baa820 JM |
107 | error). |
108 | ||
109 | Note that while we are building the table, which goes into the | |
110 | psymbol obstack, we hijack the sections_end pointer to instead hold | |
111 | a count of the number of sections. When bfd_map_over_sections | |
112 | returns, this count is used to compute the pointer to the end of | |
113 | the sections table, which then overwrites the count. | |
114 | ||
115 | Also note that the OFFSET and OVLY_MAPPED in each table entry | |
116 | are initialized to zero. | |
117 | ||
118 | Also note that if anything else writes to the psymbol obstack while | |
119 | we are building the table, we're pretty much hosed. */ | |
c906108c SS |
120 | |
121 | int | |
fba45db2 | 122 | build_objfile_section_table (struct objfile *objfile) |
c906108c SS |
123 | { |
124 | /* objfile->sections can be already set when reading a mapped symbol | |
125 | file. I believe that we do need to rebuild the section table in | |
126 | this case (we rebuild other things derived from the bfd), but we | |
127 | can't free the old one (it's in the psymbol_obstack). So we just | |
128 | waste some memory. */ | |
129 | ||
130 | objfile->sections_end = 0; | |
c5aa993b | 131 | bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile); |
c906108c SS |
132 | objfile->sections = (struct obj_section *) |
133 | obstack_finish (&objfile->psymbol_obstack); | |
134 | objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; | |
c5aa993b | 135 | return (0); |
c906108c SS |
136 | } |
137 | ||
2df3850c JM |
138 | /* Given a pointer to an initialized bfd (ABFD) and some flag bits |
139 | allocate a new objfile struct, fill it in as best we can, link it | |
140 | into the list of all known objfiles, and return a pointer to the | |
141 | new objfile struct. | |
c906108c | 142 | |
2df3850c JM |
143 | The FLAGS word contains various bits (OBJF_*) that can be taken as |
144 | requests for specific operations, like trying to open a mapped | |
145 | version of the objfile (OBJF_MAPPED). Other bits like | |
146 | OBJF_SHARED are simply copied through to the new objfile flags | |
147 | member. */ | |
c906108c SS |
148 | |
149 | struct objfile * | |
fba45db2 | 150 | allocate_objfile (bfd *abfd, int flags) |
c906108c SS |
151 | { |
152 | struct objfile *objfile = NULL; | |
153 | struct objfile *last_one = NULL; | |
154 | ||
2df3850c JM |
155 | if (mapped_symbol_files) |
156 | flags |= OBJF_MAPPED; | |
c906108c SS |
157 | |
158 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
159 | if (abfd != NULL) | |
c5aa993b | 160 | { |
c906108c | 161 | |
c5aa993b JM |
162 | /* If we can support mapped symbol files, try to open/reopen the |
163 | mapped file that corresponds to the file from which we wish to | |
164 | read symbols. If the objfile is to be mapped, we must malloc | |
165 | the structure itself using the mmap version, and arrange that | |
166 | all memory allocation for the objfile uses the mmap routines. | |
167 | If we are reusing an existing mapped file, from which we get | |
168 | our objfile pointer, we have to make sure that we update the | |
169 | pointers to the alloc/free functions in the obstack, in case | |
170 | these functions have moved within the current gdb. */ | |
171 | ||
172 | int fd; | |
173 | ||
174 | fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), | |
2df3850c | 175 | flags); |
c5aa993b JM |
176 | if (fd >= 0) |
177 | { | |
178 | PTR md; | |
c906108c | 179 | |
c5aa993b JM |
180 | if ((md = map_to_file (fd)) == NULL) |
181 | { | |
182 | close (fd); | |
183 | } | |
184 | else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) | |
185 | { | |
186 | /* Update memory corruption handler function addresses. */ | |
187 | init_malloc (md); | |
188 | objfile->md = md; | |
189 | objfile->mmfd = fd; | |
190 | /* Update pointers to functions to *our* copies */ | |
191 | obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc); | |
aac7f4ea | 192 | obstack_freefun (&objfile->psymbol_cache.cache, xmfree); |
99d9066e JB |
193 | obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc); |
194 | obstack_freefun (&objfile->macro_cache.cache, xmfree); | |
c5aa993b | 195 | obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc); |
aac7f4ea | 196 | obstack_freefun (&objfile->psymbol_obstack, xmfree); |
c5aa993b | 197 | obstack_chunkfun (&objfile->symbol_obstack, xmmalloc); |
aac7f4ea | 198 | obstack_freefun (&objfile->symbol_obstack, xmfree); |
c5aa993b | 199 | obstack_chunkfun (&objfile->type_obstack, xmmalloc); |
aac7f4ea | 200 | obstack_freefun (&objfile->type_obstack, xmfree); |
c5aa993b JM |
201 | /* If already in objfile list, unlink it. */ |
202 | unlink_objfile (objfile); | |
203 | /* Forget things specific to a particular gdb, may have changed. */ | |
204 | objfile->sf = NULL; | |
205 | } | |
206 | else | |
207 | { | |
c906108c | 208 | |
c5aa993b JM |
209 | /* Set up to detect internal memory corruption. MUST be |
210 | done before the first malloc. See comments in | |
211 | init_malloc() and mmcheck(). */ | |
212 | ||
213 | init_malloc (md); | |
214 | ||
215 | objfile = (struct objfile *) | |
216 | xmmalloc (md, sizeof (struct objfile)); | |
217 | memset (objfile, 0, sizeof (struct objfile)); | |
218 | objfile->md = md; | |
219 | objfile->mmfd = fd; | |
220 | objfile->flags |= OBJF_MAPPED; | |
221 | mmalloc_setkey (objfile->md, 0, objfile); | |
222 | obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache, | |
aac7f4ea | 223 | 0, 0, xmmalloc, xmfree, |
c5aa993b | 224 | objfile->md); |
99d9066e JB |
225 | obstack_specify_allocation_with_arg (&objfile->macro_cache.cache, |
226 | 0, 0, xmmalloc, xmfree, | |
227 | objfile->md); | |
c5aa993b | 228 | obstack_specify_allocation_with_arg (&objfile->psymbol_obstack, |
aac7f4ea | 229 | 0, 0, xmmalloc, xmfree, |
c5aa993b JM |
230 | objfile->md); |
231 | obstack_specify_allocation_with_arg (&objfile->symbol_obstack, | |
aac7f4ea | 232 | 0, 0, xmmalloc, xmfree, |
c5aa993b JM |
233 | objfile->md); |
234 | obstack_specify_allocation_with_arg (&objfile->type_obstack, | |
aac7f4ea | 235 | 0, 0, xmmalloc, xmfree, |
c5aa993b JM |
236 | objfile->md); |
237 | } | |
238 | } | |
c906108c | 239 | |
2df3850c | 240 | if ((flags & OBJF_MAPPED) && (objfile == NULL)) |
c5aa993b JM |
241 | { |
242 | warning ("symbol table for '%s' will not be mapped", | |
243 | bfd_get_filename (abfd)); | |
2df3850c | 244 | flags &= ~OBJF_MAPPED; |
c5aa993b JM |
245 | } |
246 | } | |
247 | #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */ | |
c906108c | 248 | |
2df3850c | 249 | if (flags & OBJF_MAPPED) |
c906108c SS |
250 | { |
251 | warning ("mapped symbol tables are not supported on this machine; missing or broken mmap()."); | |
252 | ||
253 | /* Turn off the global flag so we don't try to do mapped symbol tables | |
c5aa993b JM |
254 | any more, which shuts up gdb unless the user specifically gives the |
255 | "mapped" keyword again. */ | |
c906108c SS |
256 | |
257 | mapped_symbol_files = 0; | |
2df3850c | 258 | flags &= ~OBJF_MAPPED; |
c906108c SS |
259 | } |
260 | ||
c5aa993b | 261 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
262 | |
263 | /* If we don't support mapped symbol files, didn't ask for the file to be | |
264 | mapped, or failed to open the mapped file for some reason, then revert | |
265 | back to an unmapped objfile. */ | |
266 | ||
267 | if (objfile == NULL) | |
268 | { | |
269 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
270 | memset (objfile, 0, sizeof (struct objfile)); | |
c5aa993b JM |
271 | objfile->md = NULL; |
272 | obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0, | |
b8c9b27d | 273 | xmalloc, xfree); |
99d9066e JB |
274 | obstack_specify_allocation (&objfile->macro_cache.cache, 0, 0, |
275 | xmalloc, xfree); | |
c5aa993b | 276 | obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc, |
b8c9b27d | 277 | xfree); |
c5aa993b | 278 | obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc, |
b8c9b27d | 279 | xfree); |
c5aa993b | 280 | obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc, |
b8c9b27d | 281 | xfree); |
2df3850c | 282 | flags &= ~OBJF_MAPPED; |
c906108c SS |
283 | } |
284 | ||
285 | /* Update the per-objfile information that comes from the bfd, ensuring | |
286 | that any data that is reference is saved in the per-objfile data | |
287 | region. */ | |
288 | ||
c5aa993b JM |
289 | objfile->obfd = abfd; |
290 | if (objfile->name != NULL) | |
c906108c | 291 | { |
aac7f4ea | 292 | xmfree (objfile->md, objfile->name); |
c906108c SS |
293 | } |
294 | if (abfd != NULL) | |
295 | { | |
c5aa993b JM |
296 | objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd)); |
297 | objfile->mtime = bfd_get_mtime (abfd); | |
c906108c SS |
298 | |
299 | /* Build section table. */ | |
300 | ||
301 | if (build_objfile_section_table (objfile)) | |
302 | { | |
c5aa993b JM |
303 | error ("Can't find the file sections in `%s': %s", |
304 | objfile->name, bfd_errmsg (bfd_get_error ())); | |
c906108c SS |
305 | } |
306 | } | |
307 | ||
b8fbeb18 EZ |
308 | /* Initialize the section indexes for this objfile, so that we can |
309 | later detect if they are used w/o being properly assigned to. */ | |
310 | ||
311 | objfile->sect_index_text = -1; | |
312 | objfile->sect_index_data = -1; | |
313 | objfile->sect_index_bss = -1; | |
314 | objfile->sect_index_rodata = -1; | |
315 | ||
c906108c SS |
316 | /* Add this file onto the tail of the linked list of other such files. */ |
317 | ||
c5aa993b | 318 | objfile->next = NULL; |
c906108c SS |
319 | if (object_files == NULL) |
320 | object_files = objfile; | |
321 | else | |
322 | { | |
323 | for (last_one = object_files; | |
c5aa993b JM |
324 | last_one->next; |
325 | last_one = last_one->next); | |
326 | last_one->next = objfile; | |
c906108c SS |
327 | } |
328 | ||
2df3850c JM |
329 | /* Save passed in flag bits. */ |
330 | objfile->flags |= flags; | |
c906108c SS |
331 | |
332 | return (objfile); | |
333 | } | |
334 | ||
335 | /* Put OBJFILE at the front of the list. */ | |
336 | ||
337 | void | |
fba45db2 | 338 | objfile_to_front (struct objfile *objfile) |
c906108c SS |
339 | { |
340 | struct objfile **objp; | |
341 | for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) | |
342 | { | |
343 | if (*objp == objfile) | |
344 | { | |
345 | /* Unhook it from where it is. */ | |
346 | *objp = objfile->next; | |
347 | /* Put it in the front. */ | |
348 | objfile->next = object_files; | |
349 | object_files = objfile; | |
350 | break; | |
351 | } | |
352 | } | |
353 | } | |
354 | ||
355 | /* Unlink OBJFILE from the list of known objfiles, if it is found in the | |
356 | list. | |
357 | ||
358 | It is not a bug, or error, to call this function if OBJFILE is not known | |
359 | to be in the current list. This is done in the case of mapped objfiles, | |
360 | for example, just to ensure that the mapped objfile doesn't appear twice | |
361 | in the list. Since the list is threaded, linking in a mapped objfile | |
362 | twice would create a circular list. | |
363 | ||
364 | If OBJFILE turns out to be in the list, we zap it's NEXT pointer after | |
365 | unlinking it, just to ensure that we have completely severed any linkages | |
366 | between the OBJFILE and the list. */ | |
367 | ||
368 | void | |
fba45db2 | 369 | unlink_objfile (struct objfile *objfile) |
c906108c | 370 | { |
c5aa993b | 371 | struct objfile **objpp; |
c906108c | 372 | |
c5aa993b | 373 | for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) |
c906108c | 374 | { |
c5aa993b | 375 | if (*objpp == objfile) |
c906108c | 376 | { |
c5aa993b JM |
377 | *objpp = (*objpp)->next; |
378 | objfile->next = NULL; | |
07cd4b97 | 379 | return; |
c906108c SS |
380 | } |
381 | } | |
07cd4b97 | 382 | |
8e65ff28 AC |
383 | internal_error (__FILE__, __LINE__, |
384 | "unlink_objfile: objfile already unlinked"); | |
c906108c SS |
385 | } |
386 | ||
387 | ||
388 | /* Destroy an objfile and all the symtabs and psymtabs under it. Note | |
389 | that as much as possible is allocated on the symbol_obstack and | |
390 | psymbol_obstack, so that the memory can be efficiently freed. | |
391 | ||
392 | Things which we do NOT free because they are not in malloc'd memory | |
393 | or not in memory specific to the objfile include: | |
394 | ||
c5aa993b | 395 | objfile -> sf |
c906108c SS |
396 | |
397 | FIXME: If the objfile is using reusable symbol information (via mmalloc), | |
398 | then we need to take into account the fact that more than one process | |
399 | may be using the symbol information at the same time (when mmalloc is | |
400 | extended to support cooperative locking). When more than one process | |
401 | is using the mapped symbol info, we need to be more careful about when | |
402 | we free objects in the reusable area. */ | |
403 | ||
404 | void | |
fba45db2 | 405 | free_objfile (struct objfile *objfile) |
c906108c SS |
406 | { |
407 | /* First do any symbol file specific actions required when we are | |
408 | finished with a particular symbol file. Note that if the objfile | |
409 | is using reusable symbol information (via mmalloc) then each of | |
410 | these routines is responsible for doing the correct thing, either | |
411 | freeing things which are valid only during this particular gdb | |
412 | execution, or leaving them to be reused during the next one. */ | |
413 | ||
c5aa993b | 414 | if (objfile->sf != NULL) |
c906108c | 415 | { |
c5aa993b | 416 | (*objfile->sf->sym_finish) (objfile); |
c906108c SS |
417 | } |
418 | ||
419 | /* We always close the bfd. */ | |
420 | ||
c5aa993b | 421 | if (objfile->obfd != NULL) |
c906108c SS |
422 | { |
423 | char *name = bfd_get_filename (objfile->obfd); | |
c5aa993b | 424 | if (!bfd_close (objfile->obfd)) |
c906108c SS |
425 | warning ("cannot close \"%s\": %s", |
426 | name, bfd_errmsg (bfd_get_error ())); | |
b8c9b27d | 427 | xfree (name); |
c906108c SS |
428 | } |
429 | ||
430 | /* Remove it from the chain of all objfiles. */ | |
431 | ||
432 | unlink_objfile (objfile); | |
433 | ||
434 | /* If we are going to free the runtime common objfile, mark it | |
435 | as unallocated. */ | |
436 | ||
437 | if (objfile == rt_common_objfile) | |
438 | rt_common_objfile = NULL; | |
439 | ||
440 | /* Before the symbol table code was redone to make it easier to | |
441 | selectively load and remove information particular to a specific | |
442 | linkage unit, gdb used to do these things whenever the monolithic | |
443 | symbol table was blown away. How much still needs to be done | |
444 | is unknown, but we play it safe for now and keep each action until | |
445 | it is shown to be no longer needed. */ | |
c5aa993b | 446 | |
c906108c SS |
447 | /* I *think* all our callers call clear_symtab_users. If so, no need |
448 | to call this here. */ | |
449 | clear_pc_function_cache (); | |
450 | ||
451 | /* The last thing we do is free the objfile struct itself for the | |
aac7f4ea AC |
452 | non-reusable case, or detach from the mapped file for the |
453 | reusable case. Note that the mmalloc_detach or the xmfree() is | |
454 | the last thing we can do with this objfile. */ | |
c906108c SS |
455 | |
456 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
457 | ||
c5aa993b | 458 | if (objfile->flags & OBJF_MAPPED) |
c906108c SS |
459 | { |
460 | /* Remember the fd so we can close it. We can't close it before | |
c5aa993b | 461 | doing the detach, and after the detach the objfile is gone. */ |
c906108c SS |
462 | int mmfd; |
463 | ||
c5aa993b JM |
464 | mmfd = objfile->mmfd; |
465 | mmalloc_detach (objfile->md); | |
c906108c SS |
466 | objfile = NULL; |
467 | close (mmfd); | |
468 | } | |
469 | ||
c5aa993b | 470 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
471 | |
472 | /* If we still have an objfile, then either we don't support reusable | |
473 | objfiles or this one was not reusable. So free it normally. */ | |
474 | ||
475 | if (objfile != NULL) | |
476 | { | |
c5aa993b | 477 | if (objfile->name != NULL) |
c906108c | 478 | { |
aac7f4ea | 479 | xmfree (objfile->md, objfile->name); |
c906108c SS |
480 | } |
481 | if (objfile->global_psymbols.list) | |
aac7f4ea | 482 | xmfree (objfile->md, objfile->global_psymbols.list); |
c906108c | 483 | if (objfile->static_psymbols.list) |
aac7f4ea | 484 | xmfree (objfile->md, objfile->static_psymbols.list); |
c906108c | 485 | /* Free the obstacks for non-reusable objfiles */ |
c2d11a7d | 486 | free_bcache (&objfile->psymbol_cache); |
99d9066e | 487 | free_bcache (&objfile->macro_cache); |
c5aa993b JM |
488 | obstack_free (&objfile->psymbol_obstack, 0); |
489 | obstack_free (&objfile->symbol_obstack, 0); | |
490 | obstack_free (&objfile->type_obstack, 0); | |
aac7f4ea | 491 | xmfree (objfile->md, objfile); |
c906108c SS |
492 | objfile = NULL; |
493 | } | |
494 | } | |
495 | ||
74b7792f AC |
496 | static void |
497 | do_free_objfile_cleanup (void *obj) | |
498 | { | |
499 | free_objfile (obj); | |
500 | } | |
501 | ||
502 | struct cleanup * | |
503 | make_cleanup_free_objfile (struct objfile *obj) | |
504 | { | |
505 | return make_cleanup (do_free_objfile_cleanup, obj); | |
506 | } | |
c906108c SS |
507 | |
508 | /* Free all the object files at once and clean up their users. */ | |
509 | ||
510 | void | |
fba45db2 | 511 | free_all_objfiles (void) |
c906108c SS |
512 | { |
513 | struct objfile *objfile, *temp; | |
514 | ||
515 | ALL_OBJFILES_SAFE (objfile, temp) | |
c5aa993b JM |
516 | { |
517 | free_objfile (objfile); | |
518 | } | |
c906108c SS |
519 | clear_symtab_users (); |
520 | } | |
521 | \f | |
522 | /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS | |
523 | entries in new_offsets. */ | |
524 | void | |
fba45db2 | 525 | objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets) |
c906108c | 526 | { |
d4f3574e SS |
527 | struct section_offsets *delta = |
528 | (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS); | |
c906108c SS |
529 | |
530 | { | |
531 | int i; | |
532 | int something_changed = 0; | |
533 | for (i = 0; i < objfile->num_sections; ++i) | |
534 | { | |
a4c8257b | 535 | delta->offsets[i] = |
c906108c SS |
536 | ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); |
537 | if (ANOFFSET (delta, i) != 0) | |
538 | something_changed = 1; | |
539 | } | |
540 | if (!something_changed) | |
541 | return; | |
542 | } | |
543 | ||
544 | /* OK, get all the symtabs. */ | |
545 | { | |
546 | struct symtab *s; | |
547 | ||
548 | ALL_OBJFILE_SYMTABS (objfile, s) | |
c5aa993b JM |
549 | { |
550 | struct linetable *l; | |
551 | struct blockvector *bv; | |
552 | int i; | |
553 | ||
554 | /* First the line table. */ | |
555 | l = LINETABLE (s); | |
556 | if (l) | |
557 | { | |
558 | for (i = 0; i < l->nitems; ++i) | |
559 | l->item[i].pc += ANOFFSET (delta, s->block_line_section); | |
560 | } | |
c906108c | 561 | |
c5aa993b JM |
562 | /* Don't relocate a shared blockvector more than once. */ |
563 | if (!s->primary) | |
564 | continue; | |
c906108c | 565 | |
c5aa993b JM |
566 | bv = BLOCKVECTOR (s); |
567 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) | |
568 | { | |
569 | struct block *b; | |
e88c90f2 | 570 | struct symbol *sym; |
c5aa993b JM |
571 | int j; |
572 | ||
573 | b = BLOCKVECTOR_BLOCK (bv, i); | |
574 | BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); | |
575 | BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); | |
576 | ||
e88c90f2 | 577 | ALL_BLOCK_SYMBOLS (b, j, sym) |
c5aa993b | 578 | { |
7a78d0ee KB |
579 | fixup_symbol_section (sym, objfile); |
580 | ||
c5aa993b JM |
581 | /* The RS6000 code from which this was taken skipped |
582 | any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. | |
583 | But I'm leaving out that test, on the theory that | |
584 | they can't possibly pass the tests below. */ | |
585 | if ((SYMBOL_CLASS (sym) == LOC_LABEL | |
586 | || SYMBOL_CLASS (sym) == LOC_STATIC | |
587 | || SYMBOL_CLASS (sym) == LOC_INDIRECT) | |
588 | && SYMBOL_SECTION (sym) >= 0) | |
589 | { | |
590 | SYMBOL_VALUE_ADDRESS (sym) += | |
591 | ANOFFSET (delta, SYMBOL_SECTION (sym)); | |
592 | } | |
c906108c | 593 | #ifdef MIPS_EFI_SYMBOL_NAME |
c5aa993b | 594 | /* Relocate Extra Function Info for ecoff. */ |
c906108c | 595 | |
c5aa993b JM |
596 | else if (SYMBOL_CLASS (sym) == LOC_CONST |
597 | && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE | |
494b7ec9 | 598 | && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) |
c5aa993b | 599 | ecoff_relocate_efi (sym, ANOFFSET (delta, |
c906108c SS |
600 | s->block_line_section)); |
601 | #endif | |
c5aa993b JM |
602 | } |
603 | } | |
604 | } | |
c906108c SS |
605 | } |
606 | ||
607 | { | |
608 | struct partial_symtab *p; | |
609 | ||
610 | ALL_OBJFILE_PSYMTABS (objfile, p) | |
c5aa993b | 611 | { |
b8fbeb18 EZ |
612 | p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
613 | p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c5aa993b | 614 | } |
c906108c SS |
615 | } |
616 | ||
617 | { | |
618 | struct partial_symbol **psym; | |
619 | ||
620 | for (psym = objfile->global_psymbols.list; | |
621 | psym < objfile->global_psymbols.next; | |
622 | psym++) | |
7a78d0ee KB |
623 | { |
624 | fixup_psymbol_section (*psym, objfile); | |
625 | if (SYMBOL_SECTION (*psym) >= 0) | |
626 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, | |
627 | SYMBOL_SECTION (*psym)); | |
628 | } | |
c906108c SS |
629 | for (psym = objfile->static_psymbols.list; |
630 | psym < objfile->static_psymbols.next; | |
631 | psym++) | |
7a78d0ee KB |
632 | { |
633 | fixup_psymbol_section (*psym, objfile); | |
634 | if (SYMBOL_SECTION (*psym) >= 0) | |
635 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, | |
636 | SYMBOL_SECTION (*psym)); | |
637 | } | |
c906108c SS |
638 | } |
639 | ||
640 | { | |
641 | struct minimal_symbol *msym; | |
642 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
643 | if (SYMBOL_SECTION (msym) >= 0) | |
c5aa993b | 644 | SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); |
c906108c SS |
645 | } |
646 | /* Relocating different sections by different amounts may cause the symbols | |
647 | to be out of order. */ | |
648 | msymbols_sort (objfile); | |
649 | ||
650 | { | |
651 | int i; | |
652 | for (i = 0; i < objfile->num_sections; ++i) | |
a4c8257b | 653 | (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i); |
c906108c SS |
654 | } |
655 | ||
36b0c0e0 PS |
656 | if (objfile->ei.entry_point != ~(CORE_ADDR) 0) |
657 | { | |
658 | /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT | |
659 | only as a fallback. */ | |
660 | struct obj_section *s; | |
661 | s = find_pc_section (objfile->ei.entry_point); | |
662 | if (s) | |
663 | objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index); | |
664 | else | |
665 | objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
666 | } | |
667 | ||
c906108c SS |
668 | { |
669 | struct obj_section *s; | |
670 | bfd *abfd; | |
671 | ||
672 | abfd = objfile->obfd; | |
673 | ||
96baa820 | 674 | ALL_OBJFILE_OSECTIONS (objfile, s) |
c906108c | 675 | { |
78f0949b KB |
676 | int idx = s->the_bfd_section->index; |
677 | ||
678 | s->addr += ANOFFSET (delta, idx); | |
679 | s->endaddr += ANOFFSET (delta, idx); | |
c906108c SS |
680 | } |
681 | } | |
682 | ||
c906108c SS |
683 | if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) |
684 | { | |
b8fbeb18 EZ |
685 | objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
686 | objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
687 | } |
688 | ||
689 | if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) | |
690 | { | |
b8fbeb18 EZ |
691 | objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
692 | objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
693 | } |
694 | ||
695 | if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) | |
696 | { | |
b8fbeb18 EZ |
697 | objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
698 | objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
699 | } |
700 | ||
701 | /* Relocate breakpoints as necessary, after things are relocated. */ | |
702 | breakpoint_re_set (); | |
703 | } | |
704 | \f | |
705 | /* Many places in gdb want to test just to see if we have any partial | |
706 | symbols available. This function returns zero if none are currently | |
707 | available, nonzero otherwise. */ | |
708 | ||
709 | int | |
fba45db2 | 710 | have_partial_symbols (void) |
c906108c SS |
711 | { |
712 | struct objfile *ofp; | |
713 | ||
714 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
715 | { |
716 | if (ofp->psymtabs != NULL) | |
717 | { | |
718 | return 1; | |
719 | } | |
720 | } | |
c906108c SS |
721 | return 0; |
722 | } | |
723 | ||
724 | /* Many places in gdb want to test just to see if we have any full | |
725 | symbols available. This function returns zero if none are currently | |
726 | available, nonzero otherwise. */ | |
727 | ||
728 | int | |
fba45db2 | 729 | have_full_symbols (void) |
c906108c SS |
730 | { |
731 | struct objfile *ofp; | |
732 | ||
733 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
734 | { |
735 | if (ofp->symtabs != NULL) | |
736 | { | |
737 | return 1; | |
738 | } | |
739 | } | |
c906108c SS |
740 | return 0; |
741 | } | |
742 | ||
743 | ||
744 | /* This operations deletes all objfile entries that represent solibs that | |
745 | weren't explicitly loaded by the user, via e.g., the add-symbol-file | |
746 | command. | |
c5aa993b | 747 | */ |
c906108c | 748 | void |
fba45db2 | 749 | objfile_purge_solibs (void) |
c906108c | 750 | { |
c5aa993b JM |
751 | struct objfile *objf; |
752 | struct objfile *temp; | |
c906108c SS |
753 | |
754 | ALL_OBJFILES_SAFE (objf, temp) | |
755 | { | |
756 | /* We assume that the solib package has been purged already, or will | |
757 | be soon. | |
c5aa993b | 758 | */ |
2df3850c | 759 | if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) |
c906108c SS |
760 | free_objfile (objf); |
761 | } | |
762 | } | |
763 | ||
764 | ||
765 | /* Many places in gdb want to test just to see if we have any minimal | |
766 | symbols available. This function returns zero if none are currently | |
767 | available, nonzero otherwise. */ | |
768 | ||
769 | int | |
fba45db2 | 770 | have_minimal_symbols (void) |
c906108c SS |
771 | { |
772 | struct objfile *ofp; | |
773 | ||
774 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
775 | { |
776 | if (ofp->msymbols != NULL) | |
777 | { | |
778 | return 1; | |
779 | } | |
780 | } | |
c906108c SS |
781 | return 0; |
782 | } | |
783 | ||
784 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
785 | ||
786 | /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp | |
787 | of the corresponding symbol file in MTIME, try to open an existing file | |
788 | with the name SYMSFILENAME and verify it is more recent than the base | |
789 | file by checking it's timestamp against MTIME. | |
790 | ||
791 | If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. | |
792 | ||
793 | If SYMSFILENAME does exist, but is out of date, we check to see if the | |
794 | user has specified creation of a mapped file. If so, we don't issue | |
795 | any warning message because we will be creating a new mapped file anyway, | |
796 | overwriting the old one. If not, then we issue a warning message so that | |
797 | the user will know why we aren't using this existing mapped symbol file. | |
798 | In either case, we return -1. | |
799 | ||
800 | If SYMSFILENAME does exist and is not out of date, but can't be opened for | |
801 | some reason, then prints an appropriate system error message and returns -1. | |
802 | ||
803 | Otherwise, returns the open file descriptor. */ | |
804 | ||
805 | static int | |
fba45db2 | 806 | open_existing_mapped_file (char *symsfilename, long mtime, int flags) |
c906108c SS |
807 | { |
808 | int fd = -1; | |
809 | struct stat sbuf; | |
810 | ||
811 | if (stat (symsfilename, &sbuf) == 0) | |
812 | { | |
813 | if (sbuf.st_mtime < mtime) | |
814 | { | |
2df3850c | 815 | if (!(flags & OBJF_MAPPED)) |
c906108c SS |
816 | { |
817 | warning ("mapped symbol file `%s' is out of date, ignored it", | |
818 | symsfilename); | |
819 | } | |
820 | } | |
821 | else if ((fd = open (symsfilename, O_RDWR)) < 0) | |
822 | { | |
823 | if (error_pre_print) | |
824 | { | |
825 | printf_unfiltered (error_pre_print); | |
826 | } | |
827 | print_sys_errmsg (symsfilename, errno); | |
828 | } | |
829 | } | |
830 | return (fd); | |
831 | } | |
832 | ||
833 | /* Look for a mapped symbol file that corresponds to FILENAME and is more | |
834 | recent than MTIME. If MAPPED is nonzero, the user has asked that gdb | |
835 | use a mapped symbol file for this file, so create a new one if one does | |
836 | not currently exist. | |
837 | ||
838 | If found, then return an open file descriptor for the file, otherwise | |
839 | return -1. | |
840 | ||
841 | This routine is responsible for implementing the policy that generates | |
842 | the name of the mapped symbol file from the name of a file containing | |
843 | symbols that gdb would like to read. Currently this policy is to append | |
844 | ".syms" to the name of the file. | |
845 | ||
846 | This routine is also responsible for implementing the policy that | |
847 | determines where the mapped symbol file is found (the search path). | |
848 | This policy is that when reading an existing mapped file, a file of | |
849 | the correct name in the current directory takes precedence over a | |
850 | file of the correct name in the same directory as the symbol file. | |
851 | When creating a new mapped file, it is always created in the current | |
852 | directory. This helps to minimize the chances of a user unknowingly | |
853 | creating big mapped files in places like /bin and /usr/local/bin, and | |
854 | allows a local copy to override a manually installed global copy (in | |
855 | /bin for example). */ | |
856 | ||
857 | static int | |
fba45db2 | 858 | open_mapped_file (char *filename, long mtime, int flags) |
c906108c SS |
859 | { |
860 | int fd; | |
861 | char *symsfilename; | |
862 | ||
863 | /* First try to open an existing file in the current directory, and | |
864 | then try the directory where the symbol file is located. */ | |
865 | ||
bdda63b0 | 866 | symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL); |
2df3850c | 867 | if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0) |
c906108c | 868 | { |
b8c9b27d | 869 | xfree (symsfilename); |
c906108c | 870 | symsfilename = concat (filename, ".syms", (char *) NULL); |
2fc18c15 | 871 | fd = open_existing_mapped_file (symsfilename, mtime, flags); |
c906108c SS |
872 | } |
873 | ||
874 | /* If we don't have an open file by now, then either the file does not | |
875 | already exist, or the base file has changed since it was created. In | |
876 | either case, if the user has specified use of a mapped file, then | |
877 | create a new mapped file, truncating any existing one. If we can't | |
878 | create one, print a system error message saying why we can't. | |
879 | ||
880 | By default the file is rw for everyone, with the user's umask taking | |
881 | care of turning off the permissions the user wants off. */ | |
882 | ||
2fc18c15 | 883 | if ((fd < 0) && (flags & OBJF_MAPPED)) |
c906108c | 884 | { |
b8c9b27d | 885 | xfree (symsfilename); |
bdda63b0 | 886 | symsfilename = concat ("./", lbasename (filename), ".syms", |
c906108c SS |
887 | (char *) NULL); |
888 | if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) | |
889 | { | |
890 | if (error_pre_print) | |
891 | { | |
892 | printf_unfiltered (error_pre_print); | |
893 | } | |
894 | print_sys_errmsg (symsfilename, errno); | |
895 | } | |
896 | } | |
897 | ||
b8c9b27d | 898 | xfree (symsfilename); |
c906108c SS |
899 | return (fd); |
900 | } | |
901 | ||
902 | static PTR | |
fba45db2 | 903 | map_to_file (int fd) |
c906108c SS |
904 | { |
905 | PTR md; | |
906 | CORE_ADDR mapto; | |
907 | ||
908 | md = mmalloc_attach (fd, (PTR) 0); | |
909 | if (md != NULL) | |
910 | { | |
911 | mapto = (CORE_ADDR) mmalloc_getkey (md, 1); | |
912 | md = mmalloc_detach (md); | |
913 | if (md != NULL) | |
914 | { | |
915 | /* FIXME: should figure out why detach failed */ | |
916 | md = NULL; | |
917 | } | |
918 | else if (mapto != (CORE_ADDR) NULL) | |
919 | { | |
920 | /* This mapping file needs to be remapped at "mapto" */ | |
921 | md = mmalloc_attach (fd, (PTR) mapto); | |
922 | } | |
923 | else | |
924 | { | |
925 | /* This is a freshly created mapping file. */ | |
926 | mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024); | |
927 | if (mapto != 0) | |
928 | { | |
929 | /* To avoid reusing the freshly created mapping file, at the | |
c5aa993b JM |
930 | address selected by mmap, we must truncate it before trying |
931 | to do an attach at the address we want. */ | |
c906108c SS |
932 | ftruncate (fd, 0); |
933 | md = mmalloc_attach (fd, (PTR) mapto); | |
934 | if (md != NULL) | |
935 | { | |
936 | mmalloc_setkey (md, 1, (PTR) mapto); | |
937 | } | |
938 | } | |
939 | } | |
940 | } | |
941 | return (md); | |
942 | } | |
943 | ||
c5aa993b | 944 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
945 | |
946 | /* Returns a section whose range includes PC and SECTION, | |
947 | or NULL if none found. Note the distinction between the return type, | |
948 | struct obj_section (which is defined in gdb), and the input type | |
949 | struct sec (which is a bfd-defined data type). The obj_section | |
950 | contains a pointer to the bfd struct sec section. */ | |
951 | ||
952 | struct obj_section * | |
fba45db2 | 953 | find_pc_sect_section (CORE_ADDR pc, struct sec *section) |
c906108c SS |
954 | { |
955 | struct obj_section *s; | |
956 | struct objfile *objfile; | |
c5aa993b | 957 | |
96baa820 | 958 | ALL_OBJSECTIONS (objfile, s) |
c5aa993b JM |
959 | if ((section == 0 || section == s->the_bfd_section) && |
960 | s->addr <= pc && pc < s->endaddr) | |
c5aa993b | 961 | return (s); |
c906108c | 962 | |
c5aa993b | 963 | return (NULL); |
c906108c SS |
964 | } |
965 | ||
966 | /* Returns a section whose range includes PC or NULL if none found. | |
967 | Backward compatibility, no section. */ | |
968 | ||
969 | struct obj_section * | |
fba45db2 | 970 | find_pc_section (CORE_ADDR pc) |
c906108c SS |
971 | { |
972 | return find_pc_sect_section (pc, find_pc_mapped_section (pc)); | |
973 | } | |
c5aa993b | 974 | |
c906108c SS |
975 | |
976 | /* In SVR4, we recognize a trampoline by it's section name. | |
977 | That is, if the pc is in a section named ".plt" then we are in | |
978 | a trampoline. */ | |
979 | ||
980 | int | |
fba45db2 | 981 | in_plt_section (CORE_ADDR pc, char *name) |
c906108c SS |
982 | { |
983 | struct obj_section *s; | |
984 | int retval = 0; | |
c5aa993b JM |
985 | |
986 | s = find_pc_section (pc); | |
987 | ||
c906108c SS |
988 | retval = (s != NULL |
989 | && s->the_bfd_section->name != NULL | |
990 | && STREQ (s->the_bfd_section->name, ".plt")); | |
c5aa993b | 991 | return (retval); |
c906108c | 992 | } |
7be570e7 JM |
993 | |
994 | /* Return nonzero if NAME is in the import list of OBJFILE. Else | |
995 | return zero. */ | |
996 | ||
997 | int | |
fba45db2 | 998 | is_in_import_list (char *name, struct objfile *objfile) |
7be570e7 JM |
999 | { |
1000 | register int i; | |
1001 | ||
1002 | if (!objfile || !name || !*name) | |
1003 | return 0; | |
1004 | ||
1005 | for (i = 0; i < objfile->import_list_size; i++) | |
1006 | if (objfile->import_list[i] && STREQ (name, objfile->import_list[i])) | |
1007 | return 1; | |
1008 | return 0; | |
1009 | } | |
1010 |