]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Perform non-arithmetic operations on values, for GDB. |
2 | Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
33 | ||
34 | #include <errno.h> | |
35 | #include "gdb_string.h" | |
36 | ||
c906108c SS |
37 | /* Flag indicating HP compilers were used; needed to correctly handle some |
38 | value operations with HP aCC code/runtime. */ | |
39 | extern int hp_som_som_object_present; | |
40 | ||
070ad9f0 | 41 | extern int overload_debug; |
c906108c SS |
42 | /* Local functions. */ |
43 | ||
c5aa993b | 44 | static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[])); |
c906108c | 45 | |
c906108c SS |
46 | static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **)); |
47 | static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int)); | |
c906108c SS |
48 | |
49 | ||
c906108c | 50 | static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr)); |
c906108c SS |
51 | |
52 | static value_ptr search_struct_field PARAMS ((char *, value_ptr, int, | |
53 | struct type *, int)); | |
54 | ||
c906108c SS |
55 | static value_ptr search_struct_method PARAMS ((char *, value_ptr *, |
56 | value_ptr *, | |
57 | int, int *, struct type *)); | |
58 | ||
59 | static int check_field_in PARAMS ((struct type *, const char *)); | |
60 | ||
61 | static CORE_ADDR allocate_space_in_inferior PARAMS ((int)); | |
62 | ||
63 | static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr)); | |
64 | ||
c5aa993b | 65 | static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset)); |
7a292a7a | 66 | |
c906108c SS |
67 | void _initialize_valops PARAMS ((void)); |
68 | ||
69 | #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL) | |
70 | ||
71 | /* Flag for whether we want to abandon failed expression evals by default. */ | |
72 | ||
73 | #if 0 | |
74 | static int auto_abandon = 0; | |
75 | #endif | |
76 | ||
77 | int overload_resolution = 0; | |
242bfc55 FN |
78 | |
79 | /* This boolean tells what gdb should do if a signal is received while in | |
80 | a function called from gdb (call dummy). If set, gdb unwinds the stack | |
81 | and restore the context to what as it was before the call. | |
82 | The default is to stop in the frame where the signal was received. */ | |
83 | ||
84 | int unwind_on_signal_p = 0; | |
c5aa993b | 85 | \f |
c906108c SS |
86 | |
87 | ||
c906108c SS |
88 | /* Find the address of function name NAME in the inferior. */ |
89 | ||
90 | value_ptr | |
91 | find_function_in_inferior (name) | |
92 | char *name; | |
93 | { | |
94 | register struct symbol *sym; | |
95 | sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL); | |
96 | if (sym != NULL) | |
97 | { | |
98 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
99 | { | |
100 | error ("\"%s\" exists in this program but is not a function.", | |
101 | name); | |
102 | } | |
103 | return value_of_variable (sym, NULL); | |
104 | } | |
105 | else | |
106 | { | |
c5aa993b | 107 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
108 | if (msymbol != NULL) |
109 | { | |
110 | struct type *type; | |
4478b372 | 111 | CORE_ADDR maddr; |
c906108c SS |
112 | type = lookup_pointer_type (builtin_type_char); |
113 | type = lookup_function_type (type); | |
114 | type = lookup_pointer_type (type); | |
4478b372 JB |
115 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
116 | return value_from_pointer (type, maddr); | |
c906108c SS |
117 | } |
118 | else | |
119 | { | |
c5aa993b | 120 | if (!target_has_execution) |
c906108c | 121 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 122 | else |
c906108c SS |
123 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
124 | } | |
125 | } | |
126 | } | |
127 | ||
128 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
129 | and return a value that is a pointer to the allocated space. */ | |
130 | ||
131 | value_ptr | |
132 | value_allocate_space_in_inferior (len) | |
133 | int len; | |
134 | { | |
135 | value_ptr blocklen; | |
136 | register value_ptr val = find_function_in_inferior ("malloc"); | |
137 | ||
138 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
139 | val = call_function_by_hand (val, 1, &blocklen); | |
140 | if (value_logical_not (val)) | |
141 | { | |
142 | if (!target_has_execution) | |
c5aa993b JM |
143 | error ("No memory available to program now: you need to start the target first"); |
144 | else | |
145 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
146 | } |
147 | return val; | |
148 | } | |
149 | ||
150 | static CORE_ADDR | |
151 | allocate_space_in_inferior (len) | |
152 | int len; | |
153 | { | |
154 | return value_as_long (value_allocate_space_in_inferior (len)); | |
155 | } | |
156 | ||
157 | /* Cast value ARG2 to type TYPE and return as a value. | |
158 | More general than a C cast: accepts any two types of the same length, | |
159 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
160 | /* In C++, casts may change pointer or object representations. */ | |
161 | ||
162 | value_ptr | |
163 | value_cast (type, arg2) | |
164 | struct type *type; | |
165 | register value_ptr arg2; | |
166 | { | |
167 | register enum type_code code1; | |
168 | register enum type_code code2; | |
169 | register int scalar; | |
170 | struct type *type2; | |
171 | ||
172 | int convert_to_boolean = 0; | |
c5aa993b | 173 | |
c906108c SS |
174 | if (VALUE_TYPE (arg2) == type) |
175 | return arg2; | |
176 | ||
177 | CHECK_TYPEDEF (type); | |
178 | code1 = TYPE_CODE (type); | |
c5aa993b | 179 | COERCE_REF (arg2); |
c906108c SS |
180 | type2 = check_typedef (VALUE_TYPE (arg2)); |
181 | ||
182 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
183 | is treated like a cast to (TYPE [N])OBJECT, | |
184 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
185 | if (code1 == TYPE_CODE_ARRAY) | |
186 | { | |
187 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
188 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
189 | if (element_length > 0 | |
c5aa993b | 190 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
191 | { |
192 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
193 | int val_length = TYPE_LENGTH (type2); | |
194 | LONGEST low_bound, high_bound, new_length; | |
195 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
196 | low_bound = 0, high_bound = 0; | |
197 | new_length = val_length / element_length; | |
198 | if (val_length % element_length != 0) | |
c5aa993b | 199 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
200 | /* FIXME-type-allocation: need a way to free this type when we are |
201 | done with it. */ | |
202 | range_type = create_range_type ((struct type *) NULL, | |
203 | TYPE_TARGET_TYPE (range_type), | |
204 | low_bound, | |
205 | new_length + low_bound - 1); | |
206 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
207 | element_type, range_type); | |
208 | return arg2; | |
209 | } | |
210 | } | |
211 | ||
212 | if (current_language->c_style_arrays | |
213 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
214 | arg2 = value_coerce_array (arg2); | |
215 | ||
216 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
217 | arg2 = value_coerce_function (arg2); | |
218 | ||
219 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
220 | COERCE_VARYING_ARRAY (arg2, type2); | |
221 | code2 = TYPE_CODE (type2); | |
222 | ||
223 | if (code1 == TYPE_CODE_COMPLEX) | |
224 | return cast_into_complex (type, arg2); | |
225 | if (code1 == TYPE_CODE_BOOL) | |
226 | { | |
227 | code1 = TYPE_CODE_INT; | |
228 | convert_to_boolean = 1; | |
229 | } | |
230 | if (code1 == TYPE_CODE_CHAR) | |
231 | code1 = TYPE_CODE_INT; | |
232 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
233 | code2 = TYPE_CODE_INT; | |
234 | ||
235 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
236 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
237 | ||
c5aa993b | 238 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
239 | && code2 == TYPE_CODE_STRUCT |
240 | && TYPE_NAME (type) != 0) | |
241 | { | |
242 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
243 | type of the target as a superclass. If so, we'll need to |
244 | offset the object in addition to changing its type. */ | |
c906108c SS |
245 | value_ptr v = search_struct_field (type_name_no_tag (type), |
246 | arg2, 0, type2, 1); | |
247 | if (v) | |
248 | { | |
249 | VALUE_TYPE (v) = type; | |
250 | return v; | |
251 | } | |
252 | } | |
253 | if (code1 == TYPE_CODE_FLT && scalar) | |
254 | return value_from_double (type, value_as_double (arg2)); | |
255 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
256 | || code1 == TYPE_CODE_RANGE) | |
257 | && (scalar || code2 == TYPE_CODE_PTR)) | |
258 | { | |
259 | LONGEST longest; | |
c5aa993b JM |
260 | |
261 | if (hp_som_som_object_present && /* if target compiled by HP aCC */ | |
262 | (code2 == TYPE_CODE_PTR)) | |
263 | { | |
264 | unsigned int *ptr; | |
265 | value_ptr retvalp; | |
266 | ||
267 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
268 | { | |
269 | /* With HP aCC, pointers to data members have a bias */ | |
270 | case TYPE_CODE_MEMBER: | |
271 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
272 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */ | |
273 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ | |
274 | return retvalp; | |
275 | ||
276 | /* While pointers to methods don't really point to a function */ | |
277 | case TYPE_CODE_METHOD: | |
278 | error ("Pointers to methods not supported with HP aCC"); | |
279 | ||
280 | default: | |
281 | break; /* fall out and go to normal handling */ | |
282 | } | |
283 | } | |
c906108c SS |
284 | longest = value_as_long (arg2); |
285 | return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest); | |
286 | } | |
287 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) | |
288 | { | |
289 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
290 | { | |
291 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
292 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 293 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
294 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
295 | && !value_logical_not (arg2)) | |
296 | { | |
297 | value_ptr v; | |
298 | ||
299 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
300 | type of the target as a superclass. If so, we'll need to |
301 | offset the pointer rather than just change its type. */ | |
c906108c SS |
302 | if (TYPE_NAME (t1) != NULL) |
303 | { | |
304 | v = search_struct_field (type_name_no_tag (t1), | |
305 | value_ind (arg2), 0, t2, 1); | |
306 | if (v) | |
307 | { | |
308 | v = value_addr (v); | |
309 | VALUE_TYPE (v) = type; | |
310 | return v; | |
311 | } | |
312 | } | |
313 | ||
314 | /* Look in the type of the target to see if it contains the | |
7b83ea04 AC |
315 | type of the source as a superclass. If so, we'll need to |
316 | offset the pointer rather than just change its type. | |
317 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
318 | if (TYPE_NAME (t2) != NULL) |
319 | { | |
320 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 321 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
322 | if (v) |
323 | { | |
324 | value_ptr v2 = value_ind (arg2); | |
325 | VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v) | |
c5aa993b | 326 | + VALUE_OFFSET (v); |
070ad9f0 DB |
327 | |
328 | /* JYG: adjust the new pointer value and | |
329 | embedded offset. */ | |
330 | v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v); | |
331 | VALUE_EMBEDDED_OFFSET (v2) = 0; | |
332 | ||
c906108c SS |
333 | v2 = value_addr (v2); |
334 | VALUE_TYPE (v2) = type; | |
335 | return v2; | |
336 | } | |
337 | } | |
338 | } | |
339 | /* No superclass found, just fall through to change ptr type. */ | |
340 | } | |
341 | VALUE_TYPE (arg2) = type; | |
c5aa993b JM |
342 | VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */ |
343 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ | |
c906108c SS |
344 | return arg2; |
345 | } | |
346 | else if (chill_varying_type (type)) | |
347 | { | |
348 | struct type *range1, *range2, *eltype1, *eltype2; | |
349 | value_ptr val; | |
350 | int count1, count2; | |
351 | LONGEST low_bound, high_bound; | |
352 | char *valaddr, *valaddr_data; | |
353 | /* For lint warning about eltype2 possibly uninitialized: */ | |
354 | eltype2 = NULL; | |
355 | if (code2 == TYPE_CODE_BITSTRING) | |
356 | error ("not implemented: converting bitstring to varying type"); | |
357 | if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) | |
358 | || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), | |
359 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), | |
360 | (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) | |
c5aa993b | 361 | /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ ))) |
c906108c SS |
362 | error ("Invalid conversion to varying type"); |
363 | range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); | |
364 | range2 = TYPE_FIELD_TYPE (type2, 0); | |
365 | if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) | |
366 | count1 = -1; | |
367 | else | |
368 | count1 = high_bound - low_bound + 1; | |
369 | if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) | |
c5aa993b | 370 | count1 = -1, count2 = 0; /* To force error before */ |
c906108c SS |
371 | else |
372 | count2 = high_bound - low_bound + 1; | |
373 | if (count2 > count1) | |
374 | error ("target varying type is too small"); | |
375 | val = allocate_value (type); | |
376 | valaddr = VALUE_CONTENTS_RAW (val); | |
377 | valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; | |
378 | /* Set val's __var_length field to count2. */ | |
379 | store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), | |
380 | count2); | |
381 | /* Set the __var_data field to count2 elements copied from arg2. */ | |
382 | memcpy (valaddr_data, VALUE_CONTENTS (arg2), | |
383 | count2 * TYPE_LENGTH (eltype2)); | |
384 | /* Zero the rest of the __var_data field of val. */ | |
385 | memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', | |
386 | (count1 - count2) * TYPE_LENGTH (eltype2)); | |
387 | return val; | |
388 | } | |
389 | else if (VALUE_LVAL (arg2) == lval_memory) | |
390 | { | |
391 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
392 | VALUE_BFD_SECTION (arg2)); | |
393 | } | |
394 | else if (code1 == TYPE_CODE_VOID) | |
395 | { | |
396 | return value_zero (builtin_type_void, not_lval); | |
397 | } | |
398 | else | |
399 | { | |
400 | error ("Invalid cast."); | |
401 | return 0; | |
402 | } | |
403 | } | |
404 | ||
405 | /* Create a value of type TYPE that is zero, and return it. */ | |
406 | ||
407 | value_ptr | |
408 | value_zero (type, lv) | |
409 | struct type *type; | |
410 | enum lval_type lv; | |
411 | { | |
412 | register value_ptr val = allocate_value (type); | |
413 | ||
414 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
415 | VALUE_LVAL (val) = lv; | |
416 | ||
417 | return val; | |
418 | } | |
419 | ||
070ad9f0 | 420 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
421 | |
422 | Call value_at only if the data needs to be fetched immediately; | |
423 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
424 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 DB |
425 | the data and sets the lazy-evaluation-required flag. The lazy flag |
426 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
427 | the contents are actually required. | |
c906108c SS |
428 | |
429 | Note: value_at does *NOT* handle embedded offsets; perform such | |
430 | adjustments before or after calling it. */ | |
431 | ||
432 | value_ptr | |
433 | value_at (type, addr, sect) | |
434 | struct type *type; | |
435 | CORE_ADDR addr; | |
436 | asection *sect; | |
437 | { | |
438 | register value_ptr val; | |
439 | ||
440 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
441 | error ("Attempt to dereference a generic pointer."); | |
442 | ||
443 | val = allocate_value (type); | |
444 | ||
7a292a7a SS |
445 | if (GDB_TARGET_IS_D10V |
446 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
c906108c SS |
447 | && TYPE_TARGET_TYPE (type) |
448 | && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) | |
449 | { | |
450 | /* pointer to function */ | |
451 | unsigned long num; | |
452 | unsigned short snum; | |
453 | snum = read_memory_unsigned_integer (addr, 2); | |
7a292a7a SS |
454 | num = D10V_MAKE_IADDR (snum); |
455 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 456 | } |
7a292a7a | 457 | else if (GDB_TARGET_IS_D10V |
c5aa993b | 458 | && TYPE_CODE (type) == TYPE_CODE_PTR) |
c906108c SS |
459 | { |
460 | /* pointer to data */ | |
461 | unsigned long num; | |
462 | unsigned short snum; | |
463 | snum = read_memory_unsigned_integer (addr, 2); | |
7a292a7a | 464 | num = D10V_MAKE_DADDR (snum); |
c5aa993b | 465 | store_address (VALUE_CONTENTS_RAW (val), 4, num); |
c906108c SS |
466 | } |
467 | else | |
c906108c SS |
468 | read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect); |
469 | ||
470 | VALUE_LVAL (val) = lval_memory; | |
471 | VALUE_ADDRESS (val) = addr; | |
472 | VALUE_BFD_SECTION (val) = sect; | |
473 | ||
474 | return val; | |
475 | } | |
476 | ||
477 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
478 | ||
479 | value_ptr | |
480 | value_at_lazy (type, addr, sect) | |
481 | struct type *type; | |
482 | CORE_ADDR addr; | |
483 | asection *sect; | |
484 | { | |
485 | register value_ptr val; | |
486 | ||
487 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
488 | error ("Attempt to dereference a generic pointer."); | |
489 | ||
490 | val = allocate_value (type); | |
491 | ||
492 | VALUE_LVAL (val) = lval_memory; | |
493 | VALUE_ADDRESS (val) = addr; | |
494 | VALUE_LAZY (val) = 1; | |
495 | VALUE_BFD_SECTION (val) = sect; | |
496 | ||
497 | return val; | |
498 | } | |
499 | ||
070ad9f0 DB |
500 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, |
501 | if the current data for a variable needs to be loaded into | |
502 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
c906108c SS |
503 | clears the lazy flag to indicate that the data in the buffer is valid. |
504 | ||
505 | If the value is zero-length, we avoid calling read_memory, which would | |
506 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
507 | ||
508 | This function returns a value because it is used in the VALUE_CONTENTS | |
509 | macro as part of an expression, where a void would not work. The | |
510 | value is ignored. */ | |
511 | ||
512 | int | |
513 | value_fetch_lazy (val) | |
514 | register value_ptr val; | |
515 | { | |
516 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
517 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
518 | ||
c5aa993b | 519 | struct type *type = VALUE_TYPE (val); |
7a292a7a SS |
520 | if (GDB_TARGET_IS_D10V |
521 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
c906108c SS |
522 | && TYPE_TARGET_TYPE (type) |
523 | && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) | |
524 | { | |
525 | /* pointer to function */ | |
526 | unsigned long num; | |
527 | unsigned short snum; | |
528 | snum = read_memory_unsigned_integer (addr, 2); | |
c5aa993b JM |
529 | num = D10V_MAKE_IADDR (snum); |
530 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 531 | } |
7a292a7a | 532 | else if (GDB_TARGET_IS_D10V |
c5aa993b | 533 | && TYPE_CODE (type) == TYPE_CODE_PTR) |
c906108c SS |
534 | { |
535 | /* pointer to data */ | |
536 | unsigned long num; | |
537 | unsigned short snum; | |
538 | snum = read_memory_unsigned_integer (addr, 2); | |
c5aa993b JM |
539 | num = D10V_MAKE_DADDR (snum); |
540 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 541 | } |
7a292a7a | 542 | else if (length) |
c906108c SS |
543 | read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length, |
544 | VALUE_BFD_SECTION (val)); | |
545 | VALUE_LAZY (val) = 0; | |
546 | return 0; | |
547 | } | |
548 | ||
549 | ||
550 | /* Store the contents of FROMVAL into the location of TOVAL. | |
551 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
552 | ||
553 | value_ptr | |
554 | value_assign (toval, fromval) | |
555 | register value_ptr toval, fromval; | |
556 | { | |
557 | register struct type *type; | |
558 | register value_ptr val; | |
559 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
560 | int use_buffer = 0; | |
561 | ||
562 | if (!toval->modifiable) | |
563 | error ("Left operand of assignment is not a modifiable lvalue."); | |
564 | ||
565 | COERCE_REF (toval); | |
566 | ||
567 | type = VALUE_TYPE (toval); | |
568 | if (VALUE_LVAL (toval) != lval_internalvar) | |
569 | fromval = value_cast (type, fromval); | |
570 | else | |
571 | COERCE_ARRAY (fromval); | |
572 | CHECK_TYPEDEF (type); | |
573 | ||
574 | /* If TOVAL is a special machine register requiring conversion | |
575 | of program values to a special raw format, | |
576 | convert FROMVAL's contents now, with result in `raw_buffer', | |
577 | and set USE_BUFFER to the number of bytes to write. */ | |
578 | ||
ac9a91a7 | 579 | if (VALUE_REGNO (toval) >= 0) |
c906108c SS |
580 | { |
581 | int regno = VALUE_REGNO (toval); | |
582 | if (REGISTER_CONVERTIBLE (regno)) | |
583 | { | |
584 | struct type *fromtype = check_typedef (VALUE_TYPE (fromval)); | |
585 | REGISTER_CONVERT_TO_RAW (fromtype, regno, | |
586 | VALUE_CONTENTS (fromval), raw_buffer); | |
587 | use_buffer = REGISTER_RAW_SIZE (regno); | |
588 | } | |
589 | } | |
c906108c SS |
590 | |
591 | switch (VALUE_LVAL (toval)) | |
592 | { | |
593 | case lval_internalvar: | |
594 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
595 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
596 | VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval); | |
597 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); | |
598 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
599 | return val; | |
600 | ||
601 | case lval_internalvar_component: | |
602 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
603 | VALUE_OFFSET (toval), | |
604 | VALUE_BITPOS (toval), | |
605 | VALUE_BITSIZE (toval), | |
606 | fromval); | |
607 | break; | |
608 | ||
609 | case lval_memory: | |
610 | { | |
611 | char *dest_buffer; | |
c5aa993b JM |
612 | CORE_ADDR changed_addr; |
613 | int changed_len; | |
c906108c | 614 | |
c5aa993b JM |
615 | if (VALUE_BITSIZE (toval)) |
616 | { | |
c906108c SS |
617 | char buffer[sizeof (LONGEST)]; |
618 | /* We assume that the argument to read_memory is in units of | |
619 | host chars. FIXME: Is that correct? */ | |
620 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
621 | + VALUE_BITSIZE (toval) |
622 | + HOST_CHAR_BIT - 1) | |
623 | / HOST_CHAR_BIT; | |
c906108c SS |
624 | |
625 | if (changed_len > (int) sizeof (LONGEST)) | |
626 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
627 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
628 | ||
629 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
630 | buffer, changed_len); | |
631 | modify_field (buffer, value_as_long (fromval), | |
632 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
633 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
634 | dest_buffer = buffer; | |
635 | } | |
636 | else if (use_buffer) | |
637 | { | |
638 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
639 | changed_len = use_buffer; | |
640 | dest_buffer = raw_buffer; | |
641 | } | |
642 | else | |
643 | { | |
644 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
645 | changed_len = TYPE_LENGTH (type); | |
646 | dest_buffer = VALUE_CONTENTS (fromval); | |
647 | } | |
648 | ||
649 | write_memory (changed_addr, dest_buffer, changed_len); | |
650 | if (memory_changed_hook) | |
651 | memory_changed_hook (changed_addr, changed_len); | |
652 | } | |
653 | break; | |
654 | ||
655 | case lval_register: | |
656 | if (VALUE_BITSIZE (toval)) | |
657 | { | |
658 | char buffer[sizeof (LONGEST)]; | |
c5aa993b | 659 | int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval)); |
c906108c SS |
660 | |
661 | if (len > (int) sizeof (LONGEST)) | |
662 | error ("Can't handle bitfields in registers larger than %d bits.", | |
663 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
664 | ||
665 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
666 | > len * HOST_CHAR_BIT) | |
667 | /* Getting this right would involve being very careful about | |
668 | byte order. */ | |
c2d11a7d JM |
669 | error ("Can't assign to bitfields that cross register " |
670 | "boundaries."); | |
c906108c | 671 | |
c5aa993b JM |
672 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
673 | buffer, len); | |
674 | modify_field (buffer, value_as_long (fromval), | |
675 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
676 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
677 | buffer, len); | |
c906108c SS |
678 | } |
679 | else if (use_buffer) | |
680 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
681 | raw_buffer, use_buffer); | |
682 | else | |
c5aa993b | 683 | { |
c906108c SS |
684 | /* Do any conversion necessary when storing this type to more |
685 | than one register. */ | |
686 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
687 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
c5aa993b | 688 | REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer); |
c906108c SS |
689 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
690 | raw_buffer, TYPE_LENGTH (type)); | |
691 | #else | |
692 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
c5aa993b | 693 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); |
c906108c SS |
694 | #endif |
695 | } | |
696 | /* Assigning to the stack pointer, frame pointer, and other | |
7b83ea04 AC |
697 | (architecture and calling convention specific) registers may |
698 | cause the frame cache to be out of date. We just do this | |
699 | on all assignments to registers for simplicity; I doubt the slowdown | |
700 | matters. */ | |
c906108c SS |
701 | reinit_frame_cache (); |
702 | break; | |
703 | ||
704 | case lval_reg_frame_relative: | |
705 | { | |
706 | /* value is stored in a series of registers in the frame | |
707 | specified by the structure. Copy that value out, modify | |
708 | it, and copy it back in. */ | |
709 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
710 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
711 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
712 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
713 | int amount_copied; | |
714 | ||
715 | /* Make the buffer large enough in all cases. */ | |
716 | char *buffer = (char *) alloca (amount_to_copy | |
717 | + sizeof (LONGEST) | |
718 | + MAX_REGISTER_RAW_SIZE); | |
719 | ||
720 | int regno; | |
721 | struct frame_info *frame; | |
722 | ||
723 | /* Figure out which frame this is in currently. */ | |
724 | for (frame = get_current_frame (); | |
725 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
726 | frame = get_prev_frame (frame)) | |
727 | ; | |
728 | ||
729 | if (!frame) | |
730 | error ("Value being assigned to is no longer active."); | |
731 | ||
732 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
733 | ||
734 | /* Copy it out. */ | |
735 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
736 | amount_copied = 0); | |
737 | amount_copied < amount_to_copy; | |
738 | amount_copied += reg_size, regno++) | |
739 | { | |
740 | get_saved_register (buffer + amount_copied, | |
c5aa993b JM |
741 | (int *) NULL, (CORE_ADDR *) NULL, |
742 | frame, regno, (enum lval_type *) NULL); | |
c906108c SS |
743 | } |
744 | ||
745 | /* Modify what needs to be modified. */ | |
746 | if (VALUE_BITSIZE (toval)) | |
747 | modify_field (buffer + byte_offset, | |
748 | value_as_long (fromval), | |
749 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
750 | else if (use_buffer) | |
751 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); | |
752 | else | |
753 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), | |
754 | TYPE_LENGTH (type)); | |
755 | ||
756 | /* Copy it back. */ | |
757 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
758 | amount_copied = 0); | |
759 | amount_copied < amount_to_copy; | |
760 | amount_copied += reg_size, regno++) | |
761 | { | |
762 | enum lval_type lval; | |
763 | CORE_ADDR addr; | |
764 | int optim; | |
765 | ||
766 | /* Just find out where to put it. */ | |
c5aa993b JM |
767 | get_saved_register ((char *) NULL, |
768 | &optim, &addr, frame, regno, &lval); | |
769 | ||
c906108c SS |
770 | if (optim) |
771 | error ("Attempt to assign to a value that was optimized out."); | |
772 | if (lval == lval_memory) | |
773 | write_memory (addr, buffer + amount_copied, reg_size); | |
774 | else if (lval == lval_register) | |
775 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
776 | else | |
777 | error ("Attempt to assign to an unmodifiable value."); | |
778 | } | |
779 | ||
780 | if (register_changed_hook) | |
781 | register_changed_hook (-1); | |
782 | } | |
783 | break; | |
c5aa993b | 784 | |
c906108c SS |
785 | |
786 | default: | |
787 | error ("Left operand of assignment is not an lvalue."); | |
788 | } | |
789 | ||
790 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
791 | If the field is signed, and is negative, then sign extend. */ | |
792 | if ((VALUE_BITSIZE (toval) > 0) | |
793 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
794 | { | |
795 | LONGEST fieldval = value_as_long (fromval); | |
796 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
797 | ||
798 | fieldval &= valmask; | |
799 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
800 | fieldval |= ~valmask; | |
801 | ||
802 | fromval = value_from_longest (type, fieldval); | |
803 | } | |
804 | ||
805 | val = value_copy (toval); | |
806 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
807 | TYPE_LENGTH (type)); | |
808 | VALUE_TYPE (val) = type; | |
809 | VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval); | |
810 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); | |
811 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 812 | |
c906108c SS |
813 | return val; |
814 | } | |
815 | ||
816 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
817 | ||
818 | value_ptr | |
819 | value_repeat (arg1, count) | |
820 | value_ptr arg1; | |
821 | int count; | |
822 | { | |
823 | register value_ptr val; | |
824 | ||
825 | if (VALUE_LVAL (arg1) != lval_memory) | |
826 | error ("Only values in memory can be extended with '@'."); | |
827 | if (count < 1) | |
828 | error ("Invalid number %d of repetitions.", count); | |
829 | ||
830 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
831 | ||
832 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
833 | VALUE_CONTENTS_ALL_RAW (val), | |
834 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
835 | VALUE_LVAL (val) = lval_memory; | |
836 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
837 | ||
838 | return val; | |
839 | } | |
840 | ||
841 | value_ptr | |
842 | value_of_variable (var, b) | |
843 | struct symbol *var; | |
844 | struct block *b; | |
845 | { | |
846 | value_ptr val; | |
847 | struct frame_info *frame = NULL; | |
848 | ||
849 | if (!b) | |
850 | frame = NULL; /* Use selected frame. */ | |
851 | else if (symbol_read_needs_frame (var)) | |
852 | { | |
853 | frame = block_innermost_frame (b); | |
854 | if (!frame) | |
c5aa993b | 855 | { |
c906108c SS |
856 | if (BLOCK_FUNCTION (b) |
857 | && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))) | |
858 | error ("No frame is currently executing in block %s.", | |
859 | SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))); | |
860 | else | |
861 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 862 | } |
c906108c SS |
863 | } |
864 | ||
865 | val = read_var_value (var, frame); | |
866 | if (!val) | |
867 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); | |
868 | ||
869 | return val; | |
870 | } | |
871 | ||
872 | /* Given a value which is an array, return a value which is a pointer to its | |
873 | first element, regardless of whether or not the array has a nonzero lower | |
874 | bound. | |
875 | ||
876 | FIXME: A previous comment here indicated that this routine should be | |
877 | substracting the array's lower bound. It's not clear to me that this | |
878 | is correct. Given an array subscripting operation, it would certainly | |
879 | work to do the adjustment here, essentially computing: | |
880 | ||
881 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
882 | ||
883 | However I believe a more appropriate and logical place to account for | |
884 | the lower bound is to do so in value_subscript, essentially computing: | |
885 | ||
886 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
887 | ||
888 | As further evidence consider what would happen with operations other | |
889 | than array subscripting, where the caller would get back a value that | |
890 | had an address somewhere before the actual first element of the array, | |
891 | and the information about the lower bound would be lost because of | |
892 | the coercion to pointer type. | |
c5aa993b | 893 | */ |
c906108c SS |
894 | |
895 | value_ptr | |
896 | value_coerce_array (arg1) | |
897 | value_ptr arg1; | |
898 | { | |
899 | register struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
900 | ||
901 | if (VALUE_LVAL (arg1) != lval_memory) | |
902 | error ("Attempt to take address of value not located in memory."); | |
903 | ||
4478b372 JB |
904 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
905 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
906 | } |
907 | ||
908 | /* Given a value which is a function, return a value which is a pointer | |
909 | to it. */ | |
910 | ||
911 | value_ptr | |
912 | value_coerce_function (arg1) | |
913 | value_ptr arg1; | |
914 | { | |
915 | value_ptr retval; | |
916 | ||
917 | if (VALUE_LVAL (arg1) != lval_memory) | |
918 | error ("Attempt to take address of value not located in memory."); | |
919 | ||
4478b372 JB |
920 | retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
921 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
922 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
923 | return retval; | |
c5aa993b | 924 | } |
c906108c SS |
925 | |
926 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
927 | ||
928 | value_ptr | |
929 | value_addr (arg1) | |
930 | value_ptr arg1; | |
931 | { | |
932 | value_ptr arg2; | |
933 | ||
934 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
935 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
936 | { | |
937 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
938 | We keep the same location information, which is efficient, |
939 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
940 | arg2 = value_copy (arg1); |
941 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
942 | return arg2; | |
943 | } | |
944 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
945 | return value_coerce_function (arg1); | |
946 | ||
947 | if (VALUE_LVAL (arg1) != lval_memory) | |
948 | error ("Attempt to take address of value not located in memory."); | |
949 | ||
c5aa993b | 950 | /* Get target memory address */ |
4478b372 JB |
951 | arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
952 | (VALUE_ADDRESS (arg1) | |
953 | + VALUE_OFFSET (arg1) | |
954 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
955 | |
956 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 957 | full derived object's type ... */ |
c906108c | 958 | VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)); |
c5aa993b JM |
959 | /* ... and also the relative position of the subobject in the full object */ |
960 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
961 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
962 | return arg2; | |
963 | } | |
964 | ||
965 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
966 | ||
967 | value_ptr | |
968 | value_ind (arg1) | |
969 | value_ptr arg1; | |
970 | { | |
971 | struct type *base_type; | |
972 | value_ptr arg2; | |
c906108c SS |
973 | |
974 | COERCE_ARRAY (arg1); | |
975 | ||
976 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
977 | ||
978 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
979 | error ("not implemented: member types in value_ind"); | |
980 | ||
981 | /* Allow * on an integer so we can cast it to whatever we want. | |
982 | This returns an int, which seems like the most C-like thing | |
983 | to do. "long long" variables are rare enough that | |
984 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
985 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
986 | return value_at (builtin_type_int, | |
987 | (CORE_ADDR) value_as_long (arg1), | |
988 | VALUE_BFD_SECTION (arg1)); | |
989 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) | |
990 | { | |
991 | struct type *enc_type; | |
992 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 993 | /* Get the real type of the enclosing object */ |
c906108c SS |
994 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
995 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
996 | /* Retrieve the enclosing object pointed to */ |
997 | arg2 = value_at_lazy (enc_type, | |
998 | value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1), | |
999 | VALUE_BFD_SECTION (arg1)); | |
1000 | /* Re-adjust type */ | |
c906108c SS |
1001 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
1002 | /* Add embedding info */ | |
1003 | VALUE_ENCLOSING_TYPE (arg2) = enc_type; | |
1004 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); | |
1005 | ||
1006 | /* We may be pointing to an object of some derived type */ | |
1007 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
1008 | return arg2; | |
1009 | } | |
1010 | ||
1011 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 1012 | return 0; /* For lint -- never reached */ |
c906108c SS |
1013 | } |
1014 | \f | |
1015 | /* Pushing small parts of stack frames. */ | |
1016 | ||
1017 | /* Push one word (the size of object that a register holds). */ | |
1018 | ||
1019 | CORE_ADDR | |
1020 | push_word (sp, word) | |
1021 | CORE_ADDR sp; | |
1022 | ULONGEST word; | |
1023 | { | |
1024 | register int len = REGISTER_SIZE; | |
1025 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
1026 | ||
1027 | store_unsigned_integer (buffer, len, word); | |
1028 | if (INNER_THAN (1, 2)) | |
1029 | { | |
1030 | /* stack grows downward */ | |
1031 | sp -= len; | |
1032 | write_memory (sp, buffer, len); | |
1033 | } | |
1034 | else | |
1035 | { | |
1036 | /* stack grows upward */ | |
1037 | write_memory (sp, buffer, len); | |
1038 | sp += len; | |
1039 | } | |
1040 | ||
1041 | return sp; | |
1042 | } | |
1043 | ||
1044 | /* Push LEN bytes with data at BUFFER. */ | |
1045 | ||
1046 | CORE_ADDR | |
1047 | push_bytes (sp, buffer, len) | |
1048 | CORE_ADDR sp; | |
1049 | char *buffer; | |
1050 | int len; | |
1051 | { | |
1052 | if (INNER_THAN (1, 2)) | |
1053 | { | |
1054 | /* stack grows downward */ | |
1055 | sp -= len; | |
1056 | write_memory (sp, buffer, len); | |
1057 | } | |
1058 | else | |
1059 | { | |
1060 | /* stack grows upward */ | |
1061 | write_memory (sp, buffer, len); | |
1062 | sp += len; | |
1063 | } | |
1064 | ||
1065 | return sp; | |
1066 | } | |
1067 | ||
2df3850c JM |
1068 | #ifndef PARM_BOUNDARY |
1069 | #define PARM_BOUNDARY (0) | |
1070 | #endif | |
1071 | ||
1072 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1073 | it to be an argument to a function. */ | |
c906108c | 1074 | |
c906108c SS |
1075 | static CORE_ADDR |
1076 | value_push (sp, arg) | |
1077 | register CORE_ADDR sp; | |
1078 | value_ptr arg; | |
1079 | { | |
1080 | register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
917317f4 | 1081 | register int container_len = len; |
2df3850c JM |
1082 | register int offset; |
1083 | ||
1084 | /* How big is the container we're going to put this value in? */ | |
1085 | if (PARM_BOUNDARY) | |
1086 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1087 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1088 | ||
1089 | /* Are we going to put it at the high or low end of the container? */ | |
1090 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
1091 | offset = container_len - len; | |
1092 | else | |
1093 | offset = 0; | |
c906108c SS |
1094 | |
1095 | if (INNER_THAN (1, 2)) | |
1096 | { | |
1097 | /* stack grows downward */ | |
2df3850c JM |
1098 | sp -= container_len; |
1099 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1100 | } |
1101 | else | |
1102 | { | |
1103 | /* stack grows upward */ | |
2df3850c JM |
1104 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1105 | sp += container_len; | |
c906108c SS |
1106 | } |
1107 | ||
1108 | return sp; | |
1109 | } | |
1110 | ||
392a587b JM |
1111 | #ifndef PUSH_ARGUMENTS |
1112 | #define PUSH_ARGUMENTS default_push_arguments | |
1113 | #endif | |
1114 | ||
1115 | CORE_ADDR | |
ac9a91a7 | 1116 | default_push_arguments (nargs, args, sp, struct_return, struct_addr) |
392a587b JM |
1117 | int nargs; |
1118 | value_ptr *args; | |
392a587b | 1119 | CORE_ADDR sp; |
ac9a91a7 | 1120 | int struct_return; |
392a587b JM |
1121 | CORE_ADDR struct_addr; |
1122 | { | |
1123 | /* ASSERT ( !struct_return); */ | |
1124 | int i; | |
1125 | for (i = nargs - 1; i >= 0; i--) | |
1126 | sp = value_push (sp, args[i]); | |
1127 | return sp; | |
1128 | } | |
1129 | ||
c906108c | 1130 | |
b9a8e3bf JB |
1131 | /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only |
1132 | when we don't have any type for the argument at hand. This occurs | |
1133 | when we have no debug info, or when passing varargs. | |
1134 | ||
1135 | This is an annoying default: the rule the compiler follows is to do | |
1136 | the standard promotions whenever there is no prototype in scope, | |
1137 | and almost all targets want this behavior. But there are some old | |
1138 | architectures which want this odd behavior. If you want to go | |
1139 | through them all and fix them, please do. Modern gdbarch-style | |
1140 | targets may find it convenient to use standard_coerce_float_to_double. */ | |
1141 | int | |
1142 | default_coerce_float_to_double (struct type *formal, struct type *actual) | |
1143 | { | |
1144 | return formal == NULL; | |
1145 | } | |
1146 | ||
1147 | ||
1148 | /* Always coerce floats to doubles when there is no prototype in scope. | |
1149 | If your architecture follows the standard type promotion rules for | |
1150 | calling unprototyped functions, your gdbarch init function can pass | |
1151 | this function to set_gdbarch_coerce_float_to_double to use its logic. */ | |
1152 | int | |
1153 | standard_coerce_float_to_double (struct type *formal, struct type *actual) | |
1154 | { | |
1155 | return 1; | |
1156 | } | |
1157 | ||
1158 | ||
c906108c SS |
1159 | /* Perform the standard coercions that are specified |
1160 | for arguments to be passed to C functions. | |
1161 | ||
1162 | If PARAM_TYPE is non-NULL, it is the expected parameter type. | |
1163 | IS_PROTOTYPED is non-zero if the function declaration is prototyped. */ | |
1164 | ||
1165 | static value_ptr | |
1166 | value_arg_coerce (arg, param_type, is_prototyped) | |
1167 | value_ptr arg; | |
1168 | struct type *param_type; | |
1169 | int is_prototyped; | |
1170 | { | |
1171 | register struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1172 | register struct type *type | |
c5aa993b | 1173 | = param_type ? check_typedef (param_type) : arg_type; |
c906108c SS |
1174 | |
1175 | switch (TYPE_CODE (type)) | |
1176 | { | |
1177 | case TYPE_CODE_REF: | |
1178 | if (TYPE_CODE (arg_type) != TYPE_CODE_REF) | |
1179 | { | |
1180 | arg = value_addr (arg); | |
1181 | VALUE_TYPE (arg) = param_type; | |
1182 | return arg; | |
1183 | } | |
1184 | break; | |
1185 | case TYPE_CODE_INT: | |
1186 | case TYPE_CODE_CHAR: | |
1187 | case TYPE_CODE_BOOL: | |
1188 | case TYPE_CODE_ENUM: | |
1189 | /* If we don't have a prototype, coerce to integer type if necessary. */ | |
1190 | if (!is_prototyped) | |
1191 | { | |
1192 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1193 | type = builtin_type_int; | |
1194 | } | |
1195 | /* Currently all target ABIs require at least the width of an integer | |
7b83ea04 AC |
1196 | type for an argument. We may have to conditionalize the following |
1197 | type coercion for future targets. */ | |
c906108c SS |
1198 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1199 | type = builtin_type_int; | |
1200 | break; | |
1201 | case TYPE_CODE_FLT: | |
1202 | /* FIXME: We should always convert floats to doubles in the | |
7b83ea04 AC |
1203 | non-prototyped case. As many debugging formats include |
1204 | no information about prototyping, we have to live with | |
1205 | COERCE_FLOAT_TO_DOUBLE for now. */ | |
b9a8e3bf | 1206 | if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type)) |
c906108c SS |
1207 | { |
1208 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
1209 | type = builtin_type_double; | |
1210 | else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double)) | |
1211 | type = builtin_type_long_double; | |
1212 | } | |
1213 | break; | |
1214 | case TYPE_CODE_FUNC: | |
1215 | type = lookup_pointer_type (type); | |
1216 | break; | |
1217 | case TYPE_CODE_ARRAY: | |
1218 | if (current_language->c_style_arrays) | |
1219 | type = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
1220 | break; | |
1221 | case TYPE_CODE_UNDEF: | |
1222 | case TYPE_CODE_PTR: | |
1223 | case TYPE_CODE_STRUCT: | |
1224 | case TYPE_CODE_UNION: | |
1225 | case TYPE_CODE_VOID: | |
1226 | case TYPE_CODE_SET: | |
1227 | case TYPE_CODE_RANGE: | |
1228 | case TYPE_CODE_STRING: | |
1229 | case TYPE_CODE_BITSTRING: | |
1230 | case TYPE_CODE_ERROR: | |
1231 | case TYPE_CODE_MEMBER: | |
1232 | case TYPE_CODE_METHOD: | |
1233 | case TYPE_CODE_COMPLEX: | |
1234 | default: | |
1235 | break; | |
1236 | } | |
1237 | ||
1238 | return value_cast (type, arg); | |
1239 | } | |
1240 | ||
070ad9f0 | 1241 | /* Determine a function's address and its return type from its value. |
c906108c SS |
1242 | Calls error() if the function is not valid for calling. */ |
1243 | ||
1244 | static CORE_ADDR | |
1245 | find_function_addr (function, retval_type) | |
1246 | value_ptr function; | |
1247 | struct type **retval_type; | |
1248 | { | |
1249 | register struct type *ftype = check_typedef (VALUE_TYPE (function)); | |
1250 | register enum type_code code = TYPE_CODE (ftype); | |
1251 | struct type *value_type; | |
1252 | CORE_ADDR funaddr; | |
1253 | ||
1254 | /* If it's a member function, just look at the function | |
1255 | part of it. */ | |
1256 | ||
1257 | /* Determine address to call. */ | |
1258 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
1259 | { | |
1260 | funaddr = VALUE_ADDRESS (function); | |
1261 | value_type = TYPE_TARGET_TYPE (ftype); | |
1262 | } | |
1263 | else if (code == TYPE_CODE_PTR) | |
1264 | { | |
1265 | funaddr = value_as_pointer (function); | |
1266 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
1267 | if (TYPE_CODE (ftype) == TYPE_CODE_FUNC | |
1268 | || TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1269 | { | |
1270 | #ifdef CONVERT_FROM_FUNC_PTR_ADDR | |
1271 | /* FIXME: This is a workaround for the unusual function | |
1272 | pointer representation on the RS/6000, see comment | |
1273 | in config/rs6000/tm-rs6000.h */ | |
1274 | funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr); | |
1275 | #endif | |
1276 | value_type = TYPE_TARGET_TYPE (ftype); | |
1277 | } | |
1278 | else | |
1279 | value_type = builtin_type_int; | |
1280 | } | |
1281 | else if (code == TYPE_CODE_INT) | |
1282 | { | |
1283 | /* Handle the case of functions lacking debugging info. | |
7b83ea04 | 1284 | Their values are characters since their addresses are char */ |
c906108c SS |
1285 | if (TYPE_LENGTH (ftype) == 1) |
1286 | funaddr = value_as_pointer (value_addr (function)); | |
1287 | else | |
1288 | /* Handle integer used as address of a function. */ | |
1289 | funaddr = (CORE_ADDR) value_as_long (function); | |
1290 | ||
1291 | value_type = builtin_type_int; | |
1292 | } | |
1293 | else | |
1294 | error ("Invalid data type for function to be called."); | |
1295 | ||
1296 | *retval_type = value_type; | |
1297 | return funaddr; | |
1298 | } | |
1299 | ||
1300 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
1301 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
1302 | frame which looks just like a real frame is so that if you call a | |
1303 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
1304 | will look right. Whether the backtrace needs to actually show the | |
1305 | stack at the time the inferior function was called is debatable, but | |
1306 | it certainly needs to not display garbage. So if you are contemplating | |
1307 | making dummy frames be different from normal frames, consider that. */ | |
1308 | ||
1309 | /* Perform a function call in the inferior. | |
1310 | ARGS is a vector of values of arguments (NARGS of them). | |
1311 | FUNCTION is a value, the function to be called. | |
1312 | Returns a value representing what the function returned. | |
1313 | May fail to return, if a breakpoint or signal is hit | |
1314 | during the execution of the function. | |
1315 | ||
1316 | ARGS is modified to contain coerced values. */ | |
1317 | ||
c5aa993b | 1318 | static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args)); |
7a292a7a SS |
1319 | static value_ptr |
1320 | hand_function_call (function, nargs, args) | |
c906108c SS |
1321 | value_ptr function; |
1322 | int nargs; | |
1323 | value_ptr *args; | |
1324 | { | |
1325 | register CORE_ADDR sp; | |
1326 | register int i; | |
da59e081 | 1327 | int rc; |
c906108c SS |
1328 | CORE_ADDR start_sp; |
1329 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word | |
1330 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
1331 | and remove any extra bytes which might exist because ULONGEST is | |
070ad9f0 | 1332 | bigger than REGISTER_SIZE. |
c906108c SS |
1333 | |
1334 | NOTE: This is pretty wierd, as the call dummy is actually a | |
c5aa993b JM |
1335 | sequence of instructions. But CISC machines will have |
1336 | to pack the instructions into REGISTER_SIZE units (and | |
1337 | so will RISC machines for which INSTRUCTION_SIZE is not | |
1338 | REGISTER_SIZE). | |
7a292a7a SS |
1339 | |
1340 | NOTE: This is pretty stupid. CALL_DUMMY should be in strict | |
c5aa993b | 1341 | target byte order. */ |
c906108c | 1342 | |
7a292a7a SS |
1343 | static ULONGEST *dummy; |
1344 | int sizeof_dummy1; | |
1345 | char *dummy1; | |
c906108c SS |
1346 | CORE_ADDR old_sp; |
1347 | struct type *value_type; | |
1348 | unsigned char struct_return; | |
1349 | CORE_ADDR struct_addr = 0; | |
7a292a7a | 1350 | struct inferior_status *inf_status; |
c906108c SS |
1351 | struct cleanup *old_chain; |
1352 | CORE_ADDR funaddr; | |
c5aa993b | 1353 | int using_gcc; /* Set to version of gcc in use, or zero if not gcc */ |
c906108c SS |
1354 | CORE_ADDR real_pc; |
1355 | struct type *param_type = NULL; | |
1356 | struct type *ftype = check_typedef (SYMBOL_TYPE (function)); | |
1357 | ||
7a292a7a SS |
1358 | dummy = alloca (SIZEOF_CALL_DUMMY_WORDS); |
1359 | sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST); | |
1360 | dummy1 = alloca (sizeof_dummy1); | |
1361 | memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS); | |
1362 | ||
c906108c | 1363 | if (!target_has_execution) |
c5aa993b | 1364 | noprocess (); |
c906108c | 1365 | |
7a292a7a | 1366 | inf_status = save_inferior_status (1); |
c5aa993b JM |
1367 | old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status, |
1368 | inf_status); | |
c906108c SS |
1369 | |
1370 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
1371 | (and POP_FRAME for restoring them). (At least on most machines) | |
1372 | they are saved on the stack in the inferior. */ | |
1373 | PUSH_DUMMY_FRAME; | |
1374 | ||
1375 | old_sp = sp = read_sp (); | |
1376 | ||
1377 | if (INNER_THAN (1, 2)) | |
1378 | { | |
1379 | /* Stack grows down */ | |
7a292a7a | 1380 | sp -= sizeof_dummy1; |
c906108c SS |
1381 | start_sp = sp; |
1382 | } | |
1383 | else | |
1384 | { | |
1385 | /* Stack grows up */ | |
1386 | start_sp = sp; | |
7a292a7a | 1387 | sp += sizeof_dummy1; |
c906108c SS |
1388 | } |
1389 | ||
1390 | funaddr = find_function_addr (function, &value_type); | |
1391 | CHECK_TYPEDEF (value_type); | |
1392 | ||
1393 | { | |
1394 | struct block *b = block_for_pc (funaddr); | |
1395 | /* If compiled without -g, assume GCC 2. */ | |
1396 | using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b)); | |
1397 | } | |
1398 | ||
1399 | /* Are we returning a value using a structure return or a normal | |
1400 | value return? */ | |
1401 | ||
1402 | struct_return = using_struct_return (function, funaddr, value_type, | |
1403 | using_gcc); | |
1404 | ||
1405 | /* Create a call sequence customized for this function | |
1406 | and the number of arguments for it. */ | |
7a292a7a | 1407 | for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++) |
c906108c SS |
1408 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], |
1409 | REGISTER_SIZE, | |
c5aa993b | 1410 | (ULONGEST) dummy[i]); |
c906108c SS |
1411 | |
1412 | #ifdef GDB_TARGET_IS_HPPA | |
1413 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1414 | value_type, using_gcc); | |
1415 | #else | |
1416 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1417 | value_type, using_gcc); | |
1418 | real_pc = start_sp; | |
1419 | #endif | |
1420 | ||
7a292a7a SS |
1421 | if (CALL_DUMMY_LOCATION == ON_STACK) |
1422 | { | |
c5aa993b | 1423 | write_memory (start_sp, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1424 | } |
c906108c | 1425 | |
7a292a7a SS |
1426 | if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END) |
1427 | { | |
1428 | /* Convex Unix prohibits executing in the stack segment. */ | |
1429 | /* Hope there is empty room at the top of the text segment. */ | |
1430 | extern CORE_ADDR text_end; | |
392a587b | 1431 | static int checked = 0; |
7a292a7a SS |
1432 | if (!checked) |
1433 | for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp) | |
1434 | if (read_memory_integer (start_sp, 1) != 0) | |
1435 | error ("text segment full -- no place to put call"); | |
1436 | checked = 1; | |
1437 | sp = old_sp; | |
1438 | real_pc = text_end - sizeof_dummy1; | |
c5aa993b | 1439 | write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1440 | } |
c5aa993b | 1441 | |
7a292a7a SS |
1442 | if (CALL_DUMMY_LOCATION == AFTER_TEXT_END) |
1443 | { | |
1444 | extern CORE_ADDR text_end; | |
1445 | int errcode; | |
1446 | sp = old_sp; | |
1447 | real_pc = text_end; | |
c5aa993b | 1448 | errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a SS |
1449 | if (errcode != 0) |
1450 | error ("Cannot write text segment -- call_function failed"); | |
1451 | } | |
c906108c | 1452 | |
7a292a7a SS |
1453 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
1454 | { | |
1455 | real_pc = funaddr; | |
1456 | } | |
c906108c SS |
1457 | |
1458 | #ifdef lint | |
c5aa993b | 1459 | sp = old_sp; /* It really is used, for some ifdef's... */ |
c906108c SS |
1460 | #endif |
1461 | ||
1462 | if (nargs < TYPE_NFIELDS (ftype)) | |
1463 | error ("too few arguments in function call"); | |
1464 | ||
1465 | for (i = nargs - 1; i >= 0; i--) | |
1466 | { | |
1467 | /* If we're off the end of the known arguments, do the standard | |
7b83ea04 AC |
1468 | promotions. FIXME: if we had a prototype, this should only |
1469 | be allowed if ... were present. */ | |
c906108c SS |
1470 | if (i >= TYPE_NFIELDS (ftype)) |
1471 | args[i] = value_arg_coerce (args[i], NULL, 0); | |
1472 | ||
c5aa993b | 1473 | else |
c906108c SS |
1474 | { |
1475 | int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED; | |
1476 | param_type = TYPE_FIELD_TYPE (ftype, i); | |
1477 | ||
1478 | args[i] = value_arg_coerce (args[i], param_type, is_prototyped); | |
1479 | } | |
1480 | ||
070ad9f0 DB |
1481 | /*elz: this code is to handle the case in which the function to be called |
1482 | has a pointer to function as parameter and the corresponding actual argument | |
7b83ea04 AC |
1483 | is the address of a function and not a pointer to function variable. |
1484 | In aCC compiled code, the calls through pointers to functions (in the body | |
1485 | of the function called by hand) are made via $$dyncall_external which | |
070ad9f0 DB |
1486 | requires some registers setting, this is taken care of if we call |
1487 | via a function pointer variable, but not via a function address. | |
7b83ea04 | 1488 | In cc this is not a problem. */ |
c906108c SS |
1489 | |
1490 | if (using_gcc == 0) | |
1491 | if (param_type) | |
c5aa993b | 1492 | /* if this parameter is a pointer to function */ |
c906108c SS |
1493 | if (TYPE_CODE (param_type) == TYPE_CODE_PTR) |
1494 | if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC) | |
070ad9f0 | 1495 | /* elz: FIXME here should go the test about the compiler used |
7b83ea04 | 1496 | to compile the target. We want to issue the error |
070ad9f0 DB |
1497 | message only if the compiler used was HP's aCC. |
1498 | If we used HP's cc, then there is no problem and no need | |
7b83ea04 | 1499 | to return at this point */ |
c5aa993b | 1500 | if (using_gcc == 0) /* && compiler == aCC */ |
c906108c | 1501 | /* go see if the actual parameter is a variable of type |
c5aa993b | 1502 | pointer to function or just a function */ |
c906108c SS |
1503 | if (args[i]->lval == not_lval) |
1504 | { | |
1505 | char *arg_name; | |
c5aa993b JM |
1506 | if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL)) |
1507 | error ("\ | |
c906108c SS |
1508 | You cannot use function <%s> as argument. \n\ |
1509 | You must use a pointer to function type variable. Command ignored.", arg_name); | |
c5aa993b | 1510 | } |
c906108c SS |
1511 | } |
1512 | ||
1513 | #if defined (REG_STRUCT_HAS_ADDR) | |
1514 | { | |
1515 | /* This is a machine like the sparc, where we may need to pass a pointer | |
1516 | to the structure, not the structure itself. */ | |
1517 | for (i = nargs - 1; i >= 0; i--) | |
1518 | { | |
1519 | struct type *arg_type = check_typedef (VALUE_TYPE (args[i])); | |
1520 | if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT | |
1521 | || TYPE_CODE (arg_type) == TYPE_CODE_UNION | |
1522 | || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY | |
1523 | || TYPE_CODE (arg_type) == TYPE_CODE_STRING | |
1524 | || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING | |
1525 | || TYPE_CODE (arg_type) == TYPE_CODE_SET | |
1526 | || (TYPE_CODE (arg_type) == TYPE_CODE_FLT | |
1527 | && TYPE_LENGTH (arg_type) > 8) | |
c5aa993b JM |
1528 | ) |
1529 | && REG_STRUCT_HAS_ADDR (using_gcc, arg_type)) | |
c906108c SS |
1530 | { |
1531 | CORE_ADDR addr; | |
c5aa993b JM |
1532 | int len; /* = TYPE_LENGTH (arg_type); */ |
1533 | int aligned_len; | |
1534 | arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i])); | |
1535 | len = TYPE_LENGTH (arg_type); | |
c906108c | 1536 | |
2ada493a AC |
1537 | if (STACK_ALIGN_P ()) |
1538 | /* MVS 11/22/96: I think at least some of this | |
1539 | stack_align code is really broken. Better to let | |
1540 | PUSH_ARGUMENTS adjust the stack in a target-defined | |
1541 | manner. */ | |
1542 | aligned_len = STACK_ALIGN (len); | |
1543 | else | |
1544 | aligned_len = len; | |
c906108c SS |
1545 | if (INNER_THAN (1, 2)) |
1546 | { | |
1547 | /* stack grows downward */ | |
1548 | sp -= aligned_len; | |
1549 | } | |
1550 | else | |
1551 | { | |
1552 | /* The stack grows up, so the address of the thing we push | |
1553 | is the stack pointer before we push it. */ | |
1554 | addr = sp; | |
1555 | } | |
1556 | /* Push the structure. */ | |
1557 | write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len); | |
1558 | if (INNER_THAN (1, 2)) | |
1559 | { | |
1560 | /* The stack grows down, so the address of the thing we push | |
1561 | is the stack pointer after we push it. */ | |
1562 | addr = sp; | |
1563 | } | |
1564 | else | |
1565 | { | |
1566 | /* stack grows upward */ | |
1567 | sp += aligned_len; | |
1568 | } | |
1569 | /* The value we're going to pass is the address of the thing | |
1570 | we just pushed. */ | |
1571 | /*args[i] = value_from_longest (lookup_pointer_type (value_type), | |
c5aa993b | 1572 | (LONGEST) addr); */ |
4478b372 JB |
1573 | args[i] = value_from_pointer (lookup_pointer_type (arg_type), |
1574 | addr); | |
c906108c SS |
1575 | } |
1576 | } | |
1577 | } | |
1578 | #endif /* REG_STRUCT_HAS_ADDR. */ | |
1579 | ||
1580 | /* Reserve space for the return structure to be written on the | |
1581 | stack, if necessary */ | |
1582 | ||
1583 | if (struct_return) | |
1584 | { | |
1585 | int len = TYPE_LENGTH (value_type); | |
2ada493a AC |
1586 | if (STACK_ALIGN_P ()) |
1587 | /* MVS 11/22/96: I think at least some of this stack_align | |
1588 | code is really broken. Better to let PUSH_ARGUMENTS adjust | |
1589 | the stack in a target-defined manner. */ | |
1590 | len = STACK_ALIGN (len); | |
c906108c SS |
1591 | if (INNER_THAN (1, 2)) |
1592 | { | |
1593 | /* stack grows downward */ | |
1594 | sp -= len; | |
1595 | struct_addr = sp; | |
1596 | } | |
1597 | else | |
1598 | { | |
1599 | /* stack grows upward */ | |
1600 | struct_addr = sp; | |
1601 | sp += len; | |
1602 | } | |
1603 | } | |
1604 | ||
1605 | /* elz: on HPPA no need for this extra alignment, maybe it is needed | |
1606 | on other architectures. This is because all the alignment is taken care | |
070ad9f0 | 1607 | of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in |
c5aa993b | 1608 | hppa_push_arguments */ |
c906108c SS |
1609 | #ifndef NO_EXTRA_ALIGNMENT_NEEDED |
1610 | ||
c906108c SS |
1611 | /* MVS 11/22/96: I think at least some of this stack_align code is |
1612 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1613 | a target-defined manner. */ | |
2ada493a | 1614 | if (STACK_ALIGN_P () && INNER_THAN (1, 2)) |
c906108c SS |
1615 | { |
1616 | /* If stack grows down, we must leave a hole at the top. */ | |
1617 | int len = 0; | |
1618 | ||
1619 | for (i = nargs - 1; i >= 0; i--) | |
1620 | len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); | |
7a292a7a SS |
1621 | if (CALL_DUMMY_STACK_ADJUST_P) |
1622 | len += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1623 | sp -= STACK_ALIGN (len) - len; |
1624 | } | |
c906108c SS |
1625 | #endif /* NO_EXTRA_ALIGNMENT_NEEDED */ |
1626 | ||
392a587b | 1627 | sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr); |
c906108c SS |
1628 | |
1629 | #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */ | |
1630 | /* There are a number of targets now which actually don't write any | |
1631 | CALL_DUMMY instructions into the target, but instead just save the | |
1632 | machine state, push the arguments, and jump directly to the callee | |
1633 | function. Since this doesn't actually involve executing a JSR/BSR | |
1634 | instruction, the return address must be set up by hand, either by | |
1635 | pushing onto the stack or copying into a return-address register | |
070ad9f0 | 1636 | as appropriate. Formerly this has been done in PUSH_ARGUMENTS, |
c906108c SS |
1637 | but that's overloading its functionality a bit, so I'm making it |
1638 | explicit to do it here. */ | |
c5aa993b JM |
1639 | sp = PUSH_RETURN_ADDRESS (real_pc, sp); |
1640 | #endif /* PUSH_RETURN_ADDRESS */ | |
c906108c | 1641 | |
2ada493a | 1642 | if (STACK_ALIGN_P () && !INNER_THAN (1, 2)) |
c906108c SS |
1643 | { |
1644 | /* If stack grows up, we must leave a hole at the bottom, note | |
7b83ea04 | 1645 | that sp already has been advanced for the arguments! */ |
7a292a7a SS |
1646 | if (CALL_DUMMY_STACK_ADJUST_P) |
1647 | sp += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1648 | sp = STACK_ALIGN (sp); |
1649 | } | |
c906108c SS |
1650 | |
1651 | /* XXX This seems wrong. For stacks that grow down we shouldn't do | |
1652 | anything here! */ | |
1653 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1654 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1655 | a target-defined manner. */ | |
7a292a7a SS |
1656 | if (CALL_DUMMY_STACK_ADJUST_P) |
1657 | if (INNER_THAN (1, 2)) | |
1658 | { | |
1659 | /* stack grows downward */ | |
1660 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1661 | } | |
c906108c SS |
1662 | |
1663 | /* Store the address at which the structure is supposed to be | |
1664 | written. Note that this (and the code which reserved the space | |
1665 | above) assumes that gcc was used to compile this function. Since | |
1666 | it doesn't cost us anything but space and if the function is pcc | |
1667 | it will ignore this value, we will make that assumption. | |
1668 | ||
070ad9f0 | 1669 | Also note that on some machines (like the sparc) pcc uses a |
c906108c SS |
1670 | convention like gcc's. */ |
1671 | ||
1672 | if (struct_return) | |
1673 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1674 | ||
1675 | /* Write the stack pointer. This is here because the statements above | |
1676 | might fool with it. On SPARC, this write also stores the register | |
1677 | window into the right place in the new stack frame, which otherwise | |
1678 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ | |
1679 | write_sp (sp); | |
1680 | ||
43ff13b4 JM |
1681 | #ifdef SAVE_DUMMY_FRAME_TOS |
1682 | SAVE_DUMMY_FRAME_TOS (sp); | |
1683 | #endif | |
1684 | ||
c906108c SS |
1685 | { |
1686 | char retbuf[REGISTER_BYTES]; | |
1687 | char *name; | |
1688 | struct symbol *symbol; | |
1689 | ||
1690 | name = NULL; | |
1691 | symbol = find_pc_function (funaddr); | |
1692 | if (symbol) | |
1693 | { | |
1694 | name = SYMBOL_SOURCE_NAME (symbol); | |
1695 | } | |
1696 | else | |
1697 | { | |
1698 | /* Try the minimal symbols. */ | |
1699 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1700 | ||
1701 | if (msymbol) | |
1702 | { | |
1703 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1704 | } | |
1705 | } | |
1706 | if (name == NULL) | |
1707 | { | |
1708 | char format[80]; | |
1709 | sprintf (format, "at %s", local_hex_format ()); | |
1710 | name = alloca (80); | |
1711 | /* FIXME-32x64: assumes funaddr fits in a long. */ | |
1712 | sprintf (name, format, (unsigned long) funaddr); | |
1713 | } | |
1714 | ||
1715 | /* Execute the stack dummy routine, calling FUNCTION. | |
1716 | When it is done, discard the empty frame | |
1717 | after storing the contents of all regs into retbuf. */ | |
da59e081 JM |
1718 | rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf); |
1719 | ||
1720 | if (rc == 1) | |
1721 | { | |
1722 | /* We stopped inside the FUNCTION because of a random signal. | |
1723 | Further execution of the FUNCTION is not allowed. */ | |
1724 | ||
7b83ea04 | 1725 | if (unwind_on_signal_p) |
242bfc55 FN |
1726 | { |
1727 | /* The user wants the context restored. */ | |
da59e081 | 1728 | |
7b83ea04 AC |
1729 | /* We must get back to the frame we were before the dummy call. */ |
1730 | POP_FRAME; | |
242bfc55 FN |
1731 | |
1732 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1733 | a C++ name with arguments and stuff. */ | |
1734 | error ("\ | |
1735 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1736 | GDB has restored the context to what it was before the call.\n\ | |
1737 | To change this behavior use \"set unwindonsignal off\"\n\ | |
da59e081 | 1738 | Evaluation of the expression containing the function (%s) will be abandoned.", |
242bfc55 FN |
1739 | name); |
1740 | } | |
1741 | else | |
1742 | { | |
1743 | /* The user wants to stay in the frame where we stopped (default).*/ | |
1744 | ||
1745 | /* If we did the cleanups, we would print a spurious error | |
1746 | message (Unable to restore previously selected frame), | |
1747 | would write the registers from the inf_status (which is | |
1748 | wrong), and would do other wrong things. */ | |
1749 | discard_cleanups (old_chain); | |
1750 | discard_inferior_status (inf_status); | |
1751 | ||
1752 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1753 | a C++ name with arguments and stuff. */ | |
1754 | error ("\ | |
1755 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1756 | GDB remains in the frame where the signal was received.\n\ | |
1757 | To change this behavior use \"set unwindonsignal on\"\n\ | |
1758 | Evaluation of the expression containing the function (%s) will be abandoned.", | |
1759 | name); | |
1760 | } | |
da59e081 JM |
1761 | } |
1762 | ||
1763 | if (rc == 2) | |
c906108c | 1764 | { |
da59e081 | 1765 | /* We hit a breakpoint inside the FUNCTION. */ |
c906108c | 1766 | |
7a292a7a SS |
1767 | /* If we did the cleanups, we would print a spurious error |
1768 | message (Unable to restore previously selected frame), | |
1769 | would write the registers from the inf_status (which is | |
1770 | wrong), and would do other wrong things. */ | |
c906108c | 1771 | discard_cleanups (old_chain); |
7a292a7a | 1772 | discard_inferior_status (inf_status); |
c906108c SS |
1773 | |
1774 | /* The following error message used to say "The expression | |
1775 | which contained the function call has been discarded." It | |
1776 | is a hard concept to explain in a few words. Ideally, GDB | |
1777 | would be able to resume evaluation of the expression when | |
1778 | the function finally is done executing. Perhaps someday | |
1779 | this will be implemented (it would not be easy). */ | |
1780 | ||
1781 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1782 | a C++ name with arguments and stuff. */ | |
1783 | error ("\ | |
1784 | The program being debugged stopped while in a function called from GDB.\n\ | |
1785 | When the function (%s) is done executing, GDB will silently\n\ | |
1786 | stop (instead of continuing to evaluate the expression containing\n\ | |
1787 | the function call).", name); | |
1788 | } | |
1789 | ||
da59e081 | 1790 | /* If we get here the called FUNCTION run to completion. */ |
c906108c SS |
1791 | do_cleanups (old_chain); |
1792 | ||
1793 | /* Figure out the value returned by the function. */ | |
1794 | /* elz: I defined this new macro for the hppa architecture only. | |
1795 | this gives us a way to get the value returned by the function from the stack, | |
1796 | at the same address we told the function to put it. | |
1797 | We cannot assume on the pa that r28 still contains the address of the returned | |
1798 | structure. Usually this will be overwritten by the callee. | |
1799 | I don't know about other architectures, so I defined this macro | |
c5aa993b | 1800 | */ |
c906108c SS |
1801 | |
1802 | #ifdef VALUE_RETURNED_FROM_STACK | |
1803 | if (struct_return) | |
1804 | return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr); | |
1805 | #endif | |
1806 | ||
1807 | return value_being_returned (value_type, retbuf, struct_return); | |
1808 | } | |
1809 | } | |
7a292a7a | 1810 | |
c906108c SS |
1811 | value_ptr |
1812 | call_function_by_hand (function, nargs, args) | |
1813 | value_ptr function; | |
1814 | int nargs; | |
1815 | value_ptr *args; | |
1816 | { | |
7a292a7a SS |
1817 | if (CALL_DUMMY_P) |
1818 | { | |
1819 | return hand_function_call (function, nargs, args); | |
1820 | } | |
1821 | else | |
1822 | { | |
1823 | error ("Cannot invoke functions on this machine."); | |
1824 | } | |
c906108c | 1825 | } |
c5aa993b | 1826 | \f |
7a292a7a | 1827 | |
c906108c | 1828 | |
c906108c SS |
1829 | /* Create a value for an array by allocating space in the inferior, copying |
1830 | the data into that space, and then setting up an array value. | |
1831 | ||
1832 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1833 | populated from the values passed in ELEMVEC. | |
1834 | ||
1835 | The element type of the array is inherited from the type of the | |
1836 | first element, and all elements must have the same size (though we | |
1837 | don't currently enforce any restriction on their types). */ | |
1838 | ||
1839 | value_ptr | |
1840 | value_array (lowbound, highbound, elemvec) | |
1841 | int lowbound; | |
1842 | int highbound; | |
1843 | value_ptr *elemvec; | |
1844 | { | |
1845 | int nelem; | |
1846 | int idx; | |
1847 | unsigned int typelength; | |
1848 | value_ptr val; | |
1849 | struct type *rangetype; | |
1850 | struct type *arraytype; | |
1851 | CORE_ADDR addr; | |
1852 | ||
1853 | /* Validate that the bounds are reasonable and that each of the elements | |
1854 | have the same size. */ | |
1855 | ||
1856 | nelem = highbound - lowbound + 1; | |
1857 | if (nelem <= 0) | |
1858 | { | |
1859 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1860 | } | |
1861 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1862 | for (idx = 1; idx < nelem; idx++) | |
1863 | { | |
1864 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1865 | { | |
1866 | error ("array elements must all be the same size"); | |
1867 | } | |
1868 | } | |
1869 | ||
1870 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1871 | lowbound, highbound); | |
c5aa993b JM |
1872 | arraytype = create_array_type ((struct type *) NULL, |
1873 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1874 | |
1875 | if (!current_language->c_style_arrays) | |
1876 | { | |
1877 | val = allocate_value (arraytype); | |
1878 | for (idx = 0; idx < nelem; idx++) | |
1879 | { | |
1880 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1881 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1882 | typelength); | |
1883 | } | |
1884 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1885 | return val; | |
1886 | } | |
1887 | ||
1888 | /* Allocate space to store the array in the inferior, and then initialize | |
1889 | it by copying in each element. FIXME: Is it worth it to create a | |
1890 | local buffer in which to collect each value and then write all the | |
1891 | bytes in one operation? */ | |
1892 | ||
1893 | addr = allocate_space_in_inferior (nelem * typelength); | |
1894 | for (idx = 0; idx < nelem; idx++) | |
1895 | { | |
1896 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1897 | typelength); | |
1898 | } | |
1899 | ||
1900 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1901 | ||
1902 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1903 | return (val); | |
1904 | } | |
1905 | ||
1906 | /* Create a value for a string constant by allocating space in the inferior, | |
1907 | copying the data into that space, and returning the address with type | |
1908 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1909 | of characters. | |
1910 | Note that string types are like array of char types with a lower bound of | |
1911 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1912 | embedded null bytes. */ | |
1913 | ||
1914 | value_ptr | |
1915 | value_string (ptr, len) | |
1916 | char *ptr; | |
1917 | int len; | |
1918 | { | |
1919 | value_ptr val; | |
1920 | int lowbound = current_language->string_lower_bound; | |
1921 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1922 | builtin_type_int, | |
1923 | lowbound, len + lowbound - 1); | |
1924 | struct type *stringtype | |
c5aa993b | 1925 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1926 | CORE_ADDR addr; |
1927 | ||
1928 | if (current_language->c_style_arrays == 0) | |
1929 | { | |
1930 | val = allocate_value (stringtype); | |
1931 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1932 | return val; | |
1933 | } | |
1934 | ||
1935 | ||
1936 | /* Allocate space to store the string in the inferior, and then | |
1937 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1938 | ||
1939 | addr = allocate_space_in_inferior (len); | |
1940 | write_memory (addr, ptr, len); | |
1941 | ||
1942 | val = value_at_lazy (stringtype, addr, NULL); | |
1943 | return (val); | |
1944 | } | |
1945 | ||
1946 | value_ptr | |
1947 | value_bitstring (ptr, len) | |
1948 | char *ptr; | |
1949 | int len; | |
1950 | { | |
1951 | value_ptr val; | |
1952 | struct type *domain_type = create_range_type (NULL, builtin_type_int, | |
1953 | 0, len - 1); | |
c5aa993b | 1954 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1955 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1956 | val = allocate_value (type); | |
1957 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1958 | return val; | |
1959 | } | |
1960 | \f | |
1961 | /* See if we can pass arguments in T2 to a function which takes arguments | |
1962 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1963 | arguments need coercion of some sort, then the coerced values are written | |
1964 | into T2. Return value is 0 if the arguments could be matched, or the | |
1965 | position at which they differ if not. | |
1966 | ||
1967 | STATICP is nonzero if the T1 argument list came from a | |
1968 | static member function. | |
1969 | ||
1970 | For non-static member functions, we ignore the first argument, | |
1971 | which is the type of the instance variable. This is because we want | |
1972 | to handle calls with objects from derived classes. This is not | |
1973 | entirely correct: we should actually check to make sure that a | |
1974 | requested operation is type secure, shouldn't we? FIXME. */ | |
1975 | ||
1976 | static int | |
1977 | typecmp (staticp, t1, t2) | |
1978 | int staticp; | |
1979 | struct type *t1[]; | |
1980 | value_ptr t2[]; | |
1981 | { | |
1982 | int i; | |
1983 | ||
1984 | if (t2 == 0) | |
1985 | return 1; | |
1986 | if (staticp && t1 == 0) | |
1987 | return t2[1] != 0; | |
1988 | if (t1 == 0) | |
1989 | return 1; | |
c5aa993b JM |
1990 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) |
1991 | return 0; | |
1992 | if (t1[!staticp] == 0) | |
1993 | return 0; | |
c906108c SS |
1994 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) |
1995 | { | |
c5aa993b JM |
1996 | struct type *tt1, *tt2; |
1997 | if (!t2[i]) | |
1998 | return i + 1; | |
c906108c | 1999 | tt1 = check_typedef (t1[i]); |
c5aa993b | 2000 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
c906108c | 2001 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 2002 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
2003 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
2004 | { | |
2005 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
2006 | t2[i] = value_coerce_array (t2[i]); | |
2007 | else | |
2008 | t2[i] = value_addr (t2[i]); | |
2009 | continue; | |
2010 | } | |
2011 | ||
2012 | while (TYPE_CODE (tt1) == TYPE_CODE_PTR | |
c5aa993b JM |
2013 | && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY |
2014 | || TYPE_CODE (tt2) == TYPE_CODE_PTR)) | |
c906108c | 2015 | { |
c5aa993b JM |
2016 | tt1 = check_typedef (TYPE_TARGET_TYPE (tt1)); |
2017 | tt2 = check_typedef (TYPE_TARGET_TYPE (tt2)); | |
c906108c | 2018 | } |
c5aa993b JM |
2019 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
2020 | continue; | |
c906108c SS |
2021 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
2022 | ||
2023 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
2024 | of the ARM), but as a quick kludge, just check for the same type |
2025 | code. */ | |
c906108c | 2026 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 2027 | return i + 1; |
c906108c | 2028 | } |
c5aa993b JM |
2029 | if (!t1[i]) |
2030 | return 0; | |
2031 | return t2[i] ? i + 1 : 0; | |
c906108c SS |
2032 | } |
2033 | ||
2034 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2035 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2036 | and search in it assuming it has (class) type TYPE. | |
2037 | If found, return value, else return NULL. | |
2038 | ||
2039 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
2040 | look for a baseclass named NAME. */ | |
2041 | ||
2042 | static value_ptr | |
2043 | search_struct_field (name, arg1, offset, type, looking_for_baseclass) | |
2044 | char *name; | |
2045 | register value_ptr arg1; | |
2046 | int offset; | |
2047 | register struct type *type; | |
2048 | int looking_for_baseclass; | |
2049 | { | |
2050 | int i; | |
2051 | int nbases = TYPE_N_BASECLASSES (type); | |
2052 | ||
2053 | CHECK_TYPEDEF (type); | |
2054 | ||
c5aa993b | 2055 | if (!looking_for_baseclass) |
c906108c SS |
2056 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2057 | { | |
2058 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2059 | ||
db577aea | 2060 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2061 | { |
2062 | value_ptr v; | |
2063 | if (TYPE_FIELD_STATIC (type, i)) | |
2064 | v = value_static_field (type, i); | |
2065 | else | |
2066 | v = value_primitive_field (arg1, offset, i, type); | |
2067 | if (v == 0) | |
c5aa993b | 2068 | error ("there is no field named %s", name); |
c906108c SS |
2069 | return v; |
2070 | } | |
2071 | ||
2072 | if (t_field_name | |
2073 | && (t_field_name[0] == '\0' | |
2074 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 2075 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
2076 | { |
2077 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
2078 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
2079 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2080 | { | |
2081 | /* Look for a match through the fields of an anonymous union, | |
2082 | or anonymous struct. C++ provides anonymous unions. | |
2083 | ||
2084 | In the GNU Chill implementation of variant record types, | |
2085 | each <alternative field> has an (anonymous) union type, | |
2086 | each member of the union represents a <variant alternative>. | |
2087 | Each <variant alternative> is represented as a struct, | |
2088 | with a member for each <variant field>. */ | |
c5aa993b | 2089 | |
c906108c SS |
2090 | value_ptr v; |
2091 | int new_offset = offset; | |
2092 | ||
2093 | /* This is pretty gross. In G++, the offset in an anonymous | |
2094 | union is relative to the beginning of the enclosing struct. | |
2095 | In the GNU Chill implementation of variant records, | |
2096 | the bitpos is zero in an anonymous union field, so we | |
2097 | have to add the offset of the union here. */ | |
2098 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT | |
2099 | || (TYPE_NFIELDS (field_type) > 0 | |
2100 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2101 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2102 | ||
2103 | v = search_struct_field (name, arg1, new_offset, field_type, | |
2104 | looking_for_baseclass); | |
2105 | if (v) | |
2106 | return v; | |
2107 | } | |
2108 | } | |
2109 | } | |
2110 | ||
c5aa993b | 2111 | for (i = 0; i < nbases; i++) |
c906108c SS |
2112 | { |
2113 | value_ptr v; | |
2114 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
2115 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
2116 | hit them. But it could happen that the base part's member name |
2117 | is not yet filled in. */ | |
c906108c SS |
2118 | int found_baseclass = (looking_for_baseclass |
2119 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 2120 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
2121 | |
2122 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2123 | { | |
2124 | int boffset; | |
2125 | value_ptr v2 = allocate_value (basetype); | |
2126 | ||
2127 | boffset = baseclass_offset (type, i, | |
2128 | VALUE_CONTENTS (arg1) + offset, | |
2129 | VALUE_ADDRESS (arg1) | |
c5aa993b | 2130 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
2131 | if (boffset == -1) |
2132 | error ("virtual baseclass botch"); | |
2133 | ||
2134 | /* The virtual base class pointer might have been clobbered by the | |
2135 | user program. Make sure that it still points to a valid memory | |
2136 | location. */ | |
2137 | ||
2138 | boffset += offset; | |
2139 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
2140 | { | |
2141 | CORE_ADDR base_addr; | |
c5aa993b | 2142 | |
c906108c SS |
2143 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
2144 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
2145 | TYPE_LENGTH (basetype)) != 0) | |
2146 | error ("virtual baseclass botch"); | |
2147 | VALUE_LVAL (v2) = lval_memory; | |
2148 | VALUE_ADDRESS (v2) = base_addr; | |
2149 | } | |
2150 | else | |
2151 | { | |
2152 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
2153 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
2154 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
2155 | if (VALUE_LAZY (arg1)) | |
2156 | VALUE_LAZY (v2) = 1; | |
2157 | else | |
2158 | memcpy (VALUE_CONTENTS_RAW (v2), | |
2159 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
2160 | TYPE_LENGTH (basetype)); | |
2161 | } | |
2162 | ||
2163 | if (found_baseclass) | |
2164 | return v2; | |
2165 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
2166 | looking_for_baseclass); | |
2167 | } | |
2168 | else if (found_baseclass) | |
2169 | v = value_primitive_field (arg1, offset, i, type); | |
2170 | else | |
2171 | v = search_struct_field (name, arg1, | |
c5aa993b | 2172 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 2173 | basetype, looking_for_baseclass); |
c5aa993b JM |
2174 | if (v) |
2175 | return v; | |
c906108c SS |
2176 | } |
2177 | return NULL; | |
2178 | } | |
2179 | ||
2180 | ||
2181 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
2182 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
2183 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
2184 | * looking (in case VALADDR is the contents of an enclosing object). | |
2185 | * | |
2186 | * This routine recurses on the primary base of the derived class because | |
2187 | * the virtual base entries of the primary base appear before the other | |
2188 | * virtual base entries. | |
2189 | * | |
2190 | * If the virtual base is not found, a negative integer is returned. | |
2191 | * The magnitude of the negative integer is the number of entries in | |
2192 | * the virtual table to skip over (entries corresponding to various | |
2193 | * ancestral classes in the chain of primary bases). | |
2194 | * | |
2195 | * Important: This assumes the HP / Taligent C++ runtime | |
2196 | * conventions. Use baseclass_offset() instead to deal with g++ | |
2197 | * conventions. */ | |
2198 | ||
2199 | void | |
c5aa993b JM |
2200 | find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p) |
2201 | struct type *type; | |
2202 | struct type *basetype; | |
2203 | char *valaddr; | |
2204 | int offset; | |
2205 | int *boffset_p; | |
2206 | int *skip_p; | |
c906108c | 2207 | { |
c5aa993b JM |
2208 | int boffset; /* offset of virtual base */ |
2209 | int index; /* displacement to use in virtual table */ | |
c906108c | 2210 | int skip; |
c5aa993b JM |
2211 | |
2212 | value_ptr vp; | |
2213 | CORE_ADDR vtbl; /* the virtual table pointer */ | |
2214 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
2215 | |
2216 | /* Look for the virtual base recursively in the primary base, first. | |
2217 | * This is because the derived class object and its primary base | |
2218 | * subobject share the primary virtual table. */ | |
c5aa993b | 2219 | |
c906108c | 2220 | boffset = 0; |
c5aa993b | 2221 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
2222 | if (pbc) |
2223 | { | |
2224 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
2225 | if (skip < 0) | |
c5aa993b JM |
2226 | { |
2227 | *boffset_p = boffset; | |
2228 | *skip_p = -1; | |
2229 | return; | |
2230 | } | |
c906108c SS |
2231 | } |
2232 | else | |
2233 | skip = 0; | |
2234 | ||
2235 | ||
2236 | /* Find the index of the virtual base according to HP/Taligent | |
2237 | runtime spec. (Depth-first, left-to-right.) */ | |
2238 | index = virtual_base_index_skip_primaries (basetype, type); | |
2239 | ||
c5aa993b JM |
2240 | if (index < 0) |
2241 | { | |
2242 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
2243 | *boffset_p = 0; | |
2244 | return; | |
2245 | } | |
c906108c | 2246 | |
c5aa993b | 2247 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 2248 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 2249 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 2250 | |
c5aa993b | 2251 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
2252 | if (vtbl == 0) |
2253 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
2254 | ||
2255 | ||
2256 | /* Find virtual base's offset -- jump over entries for primary base | |
2257 | * ancestors, then use the index computed above. But also adjust by | |
2258 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
2259 | * virtual base entries. Offset is negative -- virtual base entries | |
2260 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 2261 | |
070ad9f0 | 2262 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 2263 | & use long type */ |
c906108c SS |
2264 | |
2265 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 2266 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
2267 | boffset = value_as_long (vp); |
2268 | *skip_p = -1; | |
2269 | *boffset_p = boffset; | |
2270 | return; | |
2271 | } | |
2272 | ||
2273 | ||
2274 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2275 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2276 | and search in it assuming it has (class) type TYPE. | |
2277 | If found, return value, else if name matched and args not return (value)-1, | |
2278 | else return NULL. */ | |
2279 | ||
2280 | static value_ptr | |
2281 | search_struct_method (name, arg1p, args, offset, static_memfuncp, type) | |
2282 | char *name; | |
2283 | register value_ptr *arg1p, *args; | |
2284 | int offset, *static_memfuncp; | |
2285 | register struct type *type; | |
2286 | { | |
2287 | int i; | |
2288 | value_ptr v; | |
2289 | int name_matched = 0; | |
2290 | char dem_opname[64]; | |
2291 | ||
2292 | CHECK_TYPEDEF (type); | |
2293 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2294 | { | |
2295 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2296 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
2297 | if (strncmp (t_field_name, "__", 2) == 0 || |
2298 | strncmp (t_field_name, "op", 2) == 0 || | |
2299 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2300 | { |
c5aa993b JM |
2301 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2302 | t_field_name = dem_opname; | |
2303 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2304 | t_field_name = dem_opname; |
c906108c | 2305 | } |
db577aea | 2306 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2307 | { |
2308 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2309 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 2310 | name_matched = 1; |
c906108c SS |
2311 | |
2312 | if (j > 0 && args == 0) | |
2313 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
2314 | while (j >= 0) | |
2315 | { | |
2316 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2317 | check_stub_method (type, i, j); | |
2318 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
2319 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
2320 | { | |
2321 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
2322 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
2323 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
2324 | *static_memfuncp = 1; | |
2325 | v = value_fn_field (arg1p, f, j, type, offset); | |
c5aa993b JM |
2326 | if (v != NULL) |
2327 | return v; | |
c906108c SS |
2328 | } |
2329 | j--; | |
2330 | } | |
2331 | } | |
2332 | } | |
2333 | ||
2334 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2335 | { | |
2336 | int base_offset; | |
2337 | ||
2338 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2339 | { | |
c5aa993b JM |
2340 | if (TYPE_HAS_VTABLE (type)) |
2341 | { | |
2342 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 2343 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
2344 | int skip; |
2345 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2346 | VALUE_CONTENTS_ALL (*arg1p), | |
2347 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
2348 | &base_offset, &skip); | |
2349 | if (skip >= 0) | |
2350 | error ("Virtual base class offset not found in vtable"); | |
2351 | } | |
2352 | else | |
2353 | { | |
2354 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
2355 | char *base_valaddr; | |
2356 | ||
2357 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
2358 | user program. Make sure that it still points to a valid memory |
2359 | location. */ | |
c5aa993b JM |
2360 | |
2361 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
2362 | { | |
2363 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
2364 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
2365 | + VALUE_OFFSET (*arg1p) + offset, | |
2366 | base_valaddr, | |
2367 | TYPE_LENGTH (baseclass)) != 0) | |
2368 | error ("virtual baseclass botch"); | |
2369 | } | |
2370 | else | |
2371 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
2372 | ||
2373 | base_offset = | |
2374 | baseclass_offset (type, i, base_valaddr, | |
2375 | VALUE_ADDRESS (*arg1p) | |
2376 | + VALUE_OFFSET (*arg1p) + offset); | |
2377 | if (base_offset == -1) | |
2378 | error ("virtual baseclass botch"); | |
2379 | } | |
2380 | } | |
c906108c SS |
2381 | else |
2382 | { | |
2383 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2384 | } |
c906108c SS |
2385 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2386 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
c5aa993b | 2387 | if (v == (value_ptr) - 1) |
c906108c SS |
2388 | { |
2389 | name_matched = 1; | |
2390 | } | |
2391 | else if (v) | |
2392 | { | |
2393 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 2394 | /* *arg1p = arg1_tmp; */ |
c906108c | 2395 | return v; |
c5aa993b | 2396 | } |
c906108c | 2397 | } |
c5aa993b JM |
2398 | if (name_matched) |
2399 | return (value_ptr) - 1; | |
2400 | else | |
2401 | return NULL; | |
c906108c SS |
2402 | } |
2403 | ||
2404 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
2405 | extract the component named NAME from the ultimate target structure/union | |
2406 | and return it as a value with its appropriate type. | |
2407 | ERR is used in the error message if *ARGP's type is wrong. | |
2408 | ||
2409 | C++: ARGS is a list of argument types to aid in the selection of | |
2410 | an appropriate method. Also, handle derived types. | |
2411 | ||
2412 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2413 | where the truthvalue of whether the function that was resolved was | |
2414 | a static member function or not is stored. | |
2415 | ||
2416 | ERR is an error message to be printed in case the field is not found. */ | |
2417 | ||
2418 | value_ptr | |
2419 | value_struct_elt (argp, args, name, static_memfuncp, err) | |
2420 | register value_ptr *argp, *args; | |
2421 | char *name; | |
2422 | int *static_memfuncp; | |
2423 | char *err; | |
2424 | { | |
2425 | register struct type *t; | |
2426 | value_ptr v; | |
2427 | ||
2428 | COERCE_ARRAY (*argp); | |
2429 | ||
2430 | t = check_typedef (VALUE_TYPE (*argp)); | |
2431 | ||
2432 | /* Follow pointers until we get to a non-pointer. */ | |
2433 | ||
2434 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2435 | { | |
2436 | *argp = value_ind (*argp); | |
2437 | /* Don't coerce fn pointer to fn and then back again! */ | |
2438 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2439 | COERCE_ARRAY (*argp); | |
2440 | t = check_typedef (VALUE_TYPE (*argp)); | |
2441 | } | |
2442 | ||
2443 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2444 | error ("not implemented: member type in value_struct_elt"); | |
2445 | ||
c5aa993b | 2446 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2447 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2448 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
2449 | ||
2450 | /* Assume it's not, unless we see that it is. */ | |
2451 | if (static_memfuncp) | |
c5aa993b | 2452 | *static_memfuncp = 0; |
c906108c SS |
2453 | |
2454 | if (!args) | |
2455 | { | |
2456 | /* if there are no arguments ...do this... */ | |
2457 | ||
2458 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 2459 | is less work to be done. */ |
c906108c SS |
2460 | v = search_struct_field (name, *argp, 0, t, 0); |
2461 | if (v) | |
2462 | return v; | |
2463 | ||
2464 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2465 | return it as a pointer to a method. */ |
c906108c SS |
2466 | |
2467 | if (destructor_name_p (name, t)) | |
2468 | error ("Cannot get value of destructor"); | |
2469 | ||
2470 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2471 | ||
c5aa993b | 2472 | if (v == (value_ptr) - 1) |
c906108c SS |
2473 | error ("Cannot take address of a method"); |
2474 | else if (v == 0) | |
2475 | { | |
2476 | if (TYPE_NFN_FIELDS (t)) | |
2477 | error ("There is no member or method named %s.", name); | |
2478 | else | |
2479 | error ("There is no member named %s.", name); | |
2480 | } | |
2481 | return v; | |
2482 | } | |
2483 | ||
2484 | if (destructor_name_p (name, t)) | |
2485 | { | |
2486 | if (!args[1]) | |
2487 | { | |
2488 | /* Destructors are a special case. */ | |
2489 | int m_index, f_index; | |
2490 | ||
2491 | v = NULL; | |
2492 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
2493 | { | |
2494 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
2495 | f_index, NULL, 0); | |
2496 | } | |
2497 | if (v == NULL) | |
2498 | error ("could not find destructor function named %s.", name); | |
2499 | else | |
2500 | return v; | |
2501 | } | |
2502 | else | |
2503 | { | |
2504 | error ("destructor should not have any argument"); | |
2505 | } | |
2506 | } | |
2507 | else | |
2508 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2509 | ||
c5aa993b | 2510 | if (v == (value_ptr) - 1) |
c906108c | 2511 | { |
c5aa993b | 2512 | error ("Argument list of %s mismatch with component in the structure.", name); |
c906108c SS |
2513 | } |
2514 | else if (v == 0) | |
2515 | { | |
2516 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
2517 | hand it back. If it's not callable (i.e., a pointer to function), |
2518 | gdb should give an error. */ | |
c906108c SS |
2519 | v = search_struct_field (name, *argp, 0, t, 0); |
2520 | } | |
2521 | ||
2522 | if (!v) | |
2523 | error ("Structure has no component named %s.", name); | |
2524 | return v; | |
2525 | } | |
2526 | ||
2527 | /* Search through the methods of an object (and its bases) | |
2528 | * to find a specified method. Return the pointer to the | |
2529 | * fn_field list of overloaded instances. | |
2530 | * Helper function for value_find_oload_list. | |
2531 | * ARGP is a pointer to a pointer to a value (the object) | |
2532 | * METHOD is a string containing the method name | |
2533 | * OFFSET is the offset within the value | |
2534 | * STATIC_MEMFUNCP is set if the method is static | |
2535 | * TYPE is the assumed type of the object | |
2536 | * NUM_FNS is the number of overloaded instances | |
2537 | * BASETYPE is set to the actual type of the subobject where the method is found | |
2538 | * BOFFSET is the offset of the base subobject where the method is found */ | |
2539 | ||
7a292a7a | 2540 | static struct fn_field * |
c906108c | 2541 | find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset) |
7a292a7a | 2542 | value_ptr *argp; |
c5aa993b | 2543 | char *method; |
7a292a7a | 2544 | int offset; |
c5aa993b JM |
2545 | int *static_memfuncp; |
2546 | struct type *type; | |
2547 | int *num_fns; | |
2548 | struct type **basetype; | |
2549 | int *boffset; | |
c906108c SS |
2550 | { |
2551 | int i; | |
c5aa993b | 2552 | struct fn_field *f; |
c906108c SS |
2553 | CHECK_TYPEDEF (type); |
2554 | ||
2555 | *num_fns = 0; | |
2556 | ||
c5aa993b JM |
2557 | /* First check in object itself */ |
2558 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
2559 | { |
2560 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 2561 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 2562 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b JM |
2563 | { |
2564 | *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
2565 | *basetype = type; | |
2566 | *boffset = offset; | |
2567 | return TYPE_FN_FIELDLIST1 (type, i); | |
2568 | } | |
2569 | } | |
2570 | ||
c906108c SS |
2571 | /* Not found in object, check in base subobjects */ |
2572 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2573 | { | |
2574 | int base_offset; | |
2575 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2576 | { | |
c5aa993b JM |
2577 | if (TYPE_HAS_VTABLE (type)) |
2578 | { | |
2579 | /* HP aCC compiled type, search for virtual base offset | |
2580 | * according to HP/Taligent runtime spec. */ | |
2581 | int skip; | |
2582 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2583 | VALUE_CONTENTS_ALL (*argp), | |
2584 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
2585 | &base_offset, &skip); | |
2586 | if (skip >= 0) | |
2587 | error ("Virtual base class offset not found in vtable"); | |
2588 | } | |
2589 | else | |
2590 | { | |
2591 | /* probably g++ runtime model */ | |
2592 | base_offset = VALUE_OFFSET (*argp) + offset; | |
2593 | base_offset = | |
2594 | baseclass_offset (type, i, | |
2595 | VALUE_CONTENTS (*argp) + base_offset, | |
2596 | VALUE_ADDRESS (*argp) + base_offset); | |
2597 | if (base_offset == -1) | |
2598 | error ("virtual baseclass botch"); | |
2599 | } | |
2600 | } | |
2601 | else | |
2602 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
2603 | { |
2604 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2605 | } |
c906108c | 2606 | f = find_method_list (argp, method, base_offset + offset, |
c5aa993b | 2607 | static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset); |
c906108c | 2608 | if (f) |
c5aa993b | 2609 | return f; |
c906108c | 2610 | } |
c5aa993b | 2611 | return NULL; |
c906108c SS |
2612 | } |
2613 | ||
2614 | /* Return the list of overloaded methods of a specified name. | |
2615 | * ARGP is a pointer to a pointer to a value (the object) | |
2616 | * METHOD is the method name | |
2617 | * OFFSET is the offset within the value contents | |
2618 | * STATIC_MEMFUNCP is set if the method is static | |
2619 | * NUM_FNS is the number of overloaded instances | |
2620 | * BASETYPE is set to the type of the base subobject that defines the method | |
2621 | * BOFFSET is the offset of the base subobject which defines the method */ | |
2622 | ||
2623 | struct fn_field * | |
2624 | value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset) | |
c5aa993b JM |
2625 | value_ptr *argp; |
2626 | char *method; | |
2627 | int offset; | |
2628 | int *static_memfuncp; | |
2629 | int *num_fns; | |
2630 | struct type **basetype; | |
2631 | int *boffset; | |
c906108c | 2632 | { |
c5aa993b | 2633 | struct type *t; |
c906108c SS |
2634 | |
2635 | t = check_typedef (VALUE_TYPE (*argp)); | |
2636 | ||
c5aa993b | 2637 | /* code snarfed from value_struct_elt */ |
c906108c SS |
2638 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2639 | { | |
2640 | *argp = value_ind (*argp); | |
2641 | /* Don't coerce fn pointer to fn and then back again! */ | |
2642 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2643 | COERCE_ARRAY (*argp); | |
2644 | t = check_typedef (VALUE_TYPE (*argp)); | |
2645 | } | |
c5aa993b | 2646 | |
c906108c SS |
2647 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
2648 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
2649 | |
2650 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2651 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 2652 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 2653 | |
c906108c SS |
2654 | /* Assume it's not static, unless we see that it is. */ |
2655 | if (static_memfuncp) | |
c5aa993b | 2656 | *static_memfuncp = 0; |
c906108c SS |
2657 | |
2658 | return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset); | |
c5aa993b | 2659 | |
c906108c SS |
2660 | } |
2661 | ||
2662 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2663 | entry for "this" in the case of C++ methods), the number of | |
2664 | arguments NARGS, the NAME of a function whether it's a method or | |
2665 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2666 | overload resolution rules in ANSI C++, find the best function that | |
2667 | matches on the argument types according to the overload resolution | |
2668 | rules. | |
2669 | ||
2670 | In the case of class methods, the parameter OBJ is an object value | |
2671 | in which to search for overloaded methods. | |
2672 | ||
2673 | In the case of non-method functions, the parameter FSYM is a symbol | |
2674 | corresponding to one of the overloaded functions. | |
2675 | ||
2676 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2677 | non-standard coercions, 100 -> incompatible. | |
2678 | ||
2679 | If a method is being searched for, VALP will hold the value. | |
2680 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
2681 | ||
2682 | If a method is being searched for, and it is a static method, | |
2683 | then STATICP will point to a non-zero value. | |
2684 | ||
2685 | Note: This function does *not* check the value of | |
2686 | overload_resolution. Caller must check it to see whether overload | |
2687 | resolution is permitted. | |
c5aa993b | 2688 | */ |
c906108c SS |
2689 | |
2690 | int | |
2691 | find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp) | |
c5aa993b JM |
2692 | struct type **arg_types; |
2693 | int nargs; | |
2694 | char *name; | |
2695 | int method; | |
2696 | int lax; | |
2697 | value_ptr obj; | |
2698 | struct symbol *fsym; | |
2699 | value_ptr *valp; | |
2700 | struct symbol **symp; | |
2701 | int *staticp; | |
c906108c SS |
2702 | { |
2703 | int nparms; | |
c5aa993b | 2704 | struct type **parm_types; |
c906108c | 2705 | int champ_nparms = 0; |
c5aa993b JM |
2706 | |
2707 | short oload_champ = -1; /* Index of best overloaded function */ | |
2708 | short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2709 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2710 | short oload_ambig_champ = -1; /* 2nd contender for best match */ | |
2711 | short oload_non_standard = 0; /* did we have to use non-standard conversions? */ | |
2712 | short oload_incompatible = 0; /* are args supplied incompatible with any function? */ | |
2713 | ||
2714 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2715 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
2716 | ||
c906108c | 2717 | value_ptr temp = obj; |
c5aa993b JM |
2718 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
2719 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
2720 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
2721 | struct type *basetype = NULL; | |
c906108c SS |
2722 | int boffset; |
2723 | register int jj; | |
2724 | register int ix; | |
2725 | ||
c5aa993b JM |
2726 | char *obj_type_name = NULL; |
2727 | char *func_name = NULL; | |
c906108c SS |
2728 | |
2729 | /* Get the list of overloaded methods or functions */ | |
2730 | if (method) | |
2731 | { | |
db577aea AC |
2732 | int i; |
2733 | int len; | |
2734 | struct type *domain; | |
c906108c SS |
2735 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); |
2736 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
7b83ea04 | 2737 | value rather than the object itself, so try again */ |
c906108c | 2738 | if ((!obj_type_name || !*obj_type_name) && |
c5aa993b JM |
2739 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
2740 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
2741 | |
2742 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
2743 | staticp, |
2744 | &num_fns, | |
2745 | &basetype, &boffset); | |
c906108c | 2746 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
2747 | error ("Couldn't find method %s%s%s", |
2748 | obj_type_name, | |
2749 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2750 | name); | |
db577aea AC |
2751 | domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type); |
2752 | len = TYPE_NFN_FIELDS (domain); | |
2753 | /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't | |
2754 | give us the info we need directly in the types. We have to | |
2755 | use the method stub conversion to get it. Be aware that this | |
2756 | is by no means perfect, and if you use STABS, please move to | |
2757 | DWARF-2, or something like it, because trying to improve | |
2758 | overloading using STABS is really a waste of time. */ | |
2759 | for (i = 0; i < len; i++) | |
2760 | { | |
2761 | int j; | |
2762 | struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i); | |
2763 | int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); | |
2764 | ||
2765 | for (j = 0; j < len2; j++) | |
2766 | { | |
070ad9f0 | 2767 | if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name))) |
db577aea AC |
2768 | check_stub_method (domain, i, j); |
2769 | } | |
2770 | } | |
c906108c SS |
2771 | } |
2772 | else | |
2773 | { | |
2774 | int i = -1; | |
2775 | func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS); | |
2776 | ||
917317f4 | 2777 | /* If the name is NULL this must be a C-style function. |
7b83ea04 | 2778 | Just return the same symbol. */ |
917317f4 | 2779 | if (!func_name) |
7b83ea04 | 2780 | { |
917317f4 | 2781 | *symp = fsym; |
7b83ea04 AC |
2782 | return 0; |
2783 | } | |
917317f4 | 2784 | |
c906108c SS |
2785 | oload_syms = make_symbol_overload_list (fsym); |
2786 | while (oload_syms[++i]) | |
c5aa993b | 2787 | num_fns++; |
c906108c | 2788 | if (!num_fns) |
c5aa993b | 2789 | error ("Couldn't find function %s", func_name); |
c906108c | 2790 | } |
c5aa993b | 2791 | |
c906108c SS |
2792 | oload_champ_bv = NULL; |
2793 | ||
c5aa993b | 2794 | /* Consider each candidate in turn */ |
c906108c SS |
2795 | for (ix = 0; ix < num_fns; ix++) |
2796 | { | |
db577aea AC |
2797 | if (method) |
2798 | { | |
2799 | /* For static member functions, we won't have a this pointer, but nothing | |
2800 | else seems to handle them right now, so we just pretend ourselves */ | |
2801 | nparms=0; | |
2802 | ||
2803 | if (TYPE_FN_FIELD_ARGS(fns_ptr,ix)) | |
2804 | { | |
2805 | while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID) | |
2806 | nparms++; | |
2807 | } | |
2808 | } | |
2809 | else | |
2810 | { | |
2811 | /* If it's not a method, this is the proper place */ | |
2812 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2813 | } | |
c906108c | 2814 | |
c5aa993b | 2815 | /* Prepare array of parameter types */ |
c906108c SS |
2816 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2817 | for (jj = 0; jj < nparms; jj++) | |
db577aea AC |
2818 | parm_types[jj] = (method |
2819 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj]) | |
2820 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); | |
c906108c SS |
2821 | |
2822 | /* Compare parameter types to supplied argument types */ | |
2823 | bv = rank_function (parm_types, nparms, arg_types, nargs); | |
c5aa993b | 2824 | |
c906108c | 2825 | if (!oload_champ_bv) |
c5aa993b JM |
2826 | { |
2827 | oload_champ_bv = bv; | |
2828 | oload_champ = 0; | |
2829 | champ_nparms = nparms; | |
2830 | } | |
c906108c | 2831 | else |
c5aa993b JM |
2832 | /* See whether current candidate is better or worse than previous best */ |
2833 | switch (compare_badness (bv, oload_champ_bv)) | |
2834 | { | |
2835 | case 0: | |
2836 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2837 | oload_ambig_champ = ix; | |
2838 | break; | |
2839 | case 1: | |
2840 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2841 | oload_ambig_champ = ix; | |
2842 | break; | |
2843 | case 2: | |
2844 | oload_champ_bv = bv; /* new champion, record details */ | |
2845 | oload_ambiguous = 0; | |
2846 | oload_champ = ix; | |
2847 | oload_ambig_champ = -1; | |
2848 | champ_nparms = nparms; | |
2849 | break; | |
2850 | case 3: | |
2851 | default: | |
2852 | break; | |
2853 | } | |
c906108c | 2854 | free (parm_types); |
070ad9f0 DB |
2855 | if (overload_debug) |
2856 | { | |
c906108c | 2857 | if (method) |
070ad9f0 | 2858 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); |
c906108c | 2859 | else |
070ad9f0 | 2860 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); |
db577aea | 2861 | for (jj = 0; jj < nargs; jj++) |
070ad9f0 DB |
2862 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2863 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2864 | } | |
c5aa993b | 2865 | } /* end loop over all candidates */ |
db577aea AC |
2866 | /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one |
2867 | if they have the exact same goodness. This is because there is no | |
2868 | way to differentiate based on return type, which we need to in | |
2869 | cases like overloads of .begin() <It's both const and non-const> */ | |
2870 | #if 0 | |
c906108c SS |
2871 | if (oload_ambiguous) |
2872 | { | |
2873 | if (method) | |
c5aa993b JM |
2874 | error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature", |
2875 | obj_type_name, | |
2876 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2877 | name); | |
c906108c | 2878 | else |
c5aa993b JM |
2879 | error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature", |
2880 | func_name); | |
c906108c | 2881 | } |
db577aea | 2882 | #endif |
c906108c | 2883 | |
c5aa993b | 2884 | /* Check how bad the best match is */ |
c906108c SS |
2885 | for (ix = 1; ix <= nargs; ix++) |
2886 | { | |
2887 | switch (oload_champ_bv->rank[ix]) | |
c5aa993b JM |
2888 | { |
2889 | case 10: | |
2890 | oload_non_standard = 1; /* non-standard type conversions needed */ | |
2891 | break; | |
2892 | case 100: | |
2893 | oload_incompatible = 1; /* truly mismatched types */ | |
2894 | break; | |
2895 | } | |
c906108c SS |
2896 | } |
2897 | if (oload_incompatible) | |
2898 | { | |
2899 | if (method) | |
c5aa993b JM |
2900 | error ("Cannot resolve method %s%s%s to any overloaded instance", |
2901 | obj_type_name, | |
2902 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2903 | name); | |
c906108c | 2904 | else |
c5aa993b JM |
2905 | error ("Cannot resolve function %s to any overloaded instance", |
2906 | func_name); | |
c906108c SS |
2907 | } |
2908 | else if (oload_non_standard) | |
2909 | { | |
2910 | if (method) | |
c5aa993b JM |
2911 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", |
2912 | obj_type_name, | |
2913 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2914 | name); | |
c906108c | 2915 | else |
c5aa993b JM |
2916 | warning ("Using non-standard conversion to match function %s to supplied arguments", |
2917 | func_name); | |
c906108c SS |
2918 | } |
2919 | ||
2920 | if (method) | |
2921 | { | |
2922 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
c5aa993b | 2923 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c | 2924 | else |
c5aa993b | 2925 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c SS |
2926 | } |
2927 | else | |
2928 | { | |
2929 | *symp = oload_syms[oload_champ]; | |
2930 | free (func_name); | |
2931 | } | |
2932 | ||
2933 | return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0); | |
2934 | } | |
2935 | ||
2936 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2937 | of type TYPE. If TYPE does not have a destructor, or | |
2938 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2939 | int | |
2940 | destructor_name_p (name, type) | |
2941 | const char *name; | |
2942 | const struct type *type; | |
2943 | { | |
2944 | /* destructors are a special case. */ | |
2945 | ||
2946 | if (name[0] == '~') | |
2947 | { | |
2948 | char *dname = type_name_no_tag (type); | |
2949 | char *cp = strchr (dname, '<'); | |
2950 | unsigned int len; | |
2951 | ||
2952 | /* Do not compare the template part for template classes. */ | |
2953 | if (cp == NULL) | |
2954 | len = strlen (dname); | |
2955 | else | |
2956 | len = cp - dname; | |
2957 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
2958 | error ("name of destructor must equal name of class"); | |
2959 | else | |
2960 | return 1; | |
2961 | } | |
2962 | return 0; | |
2963 | } | |
2964 | ||
2965 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2966 | return 1 if the component named NAME from the ultimate | |
2967 | target structure/union is defined, otherwise, return 0. */ | |
2968 | ||
2969 | static int | |
2970 | check_field_in (type, name) | |
2971 | register struct type *type; | |
2972 | const char *name; | |
2973 | { | |
2974 | register int i; | |
2975 | ||
2976 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2977 | { | |
2978 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2979 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2980 | return 1; |
2981 | } | |
2982 | ||
2983 | /* C++: If it was not found as a data field, then try to | |
2984 | return it as a pointer to a method. */ | |
2985 | ||
2986 | /* Destructors are a special case. */ | |
2987 | if (destructor_name_p (name, type)) | |
2988 | { | |
2989 | int m_index, f_index; | |
2990 | ||
2991 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2992 | } | |
2993 | ||
2994 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2995 | { | |
db577aea | 2996 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2997 | return 1; |
2998 | } | |
2999 | ||
3000 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
3001 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
3002 | return 1; | |
c5aa993b | 3003 | |
c906108c SS |
3004 | return 0; |
3005 | } | |
3006 | ||
3007 | ||
3008 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
3009 | return 1 if the component named NAME from the ultimate | |
3010 | target structure/union is defined, otherwise, return 0. */ | |
3011 | ||
3012 | int | |
3013 | check_field (arg1, name) | |
3014 | register value_ptr arg1; | |
3015 | const char *name; | |
3016 | { | |
3017 | register struct type *t; | |
3018 | ||
3019 | COERCE_ARRAY (arg1); | |
3020 | ||
3021 | t = VALUE_TYPE (arg1); | |
3022 | ||
3023 | /* Follow pointers until we get to a non-pointer. */ | |
3024 | ||
3025 | for (;;) | |
3026 | { | |
3027 | CHECK_TYPEDEF (t); | |
3028 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
3029 | break; | |
3030 | t = TYPE_TARGET_TYPE (t); | |
3031 | } | |
3032 | ||
3033 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
3034 | error ("not implemented: member type in check_field"); | |
3035 | ||
c5aa993b | 3036 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
3037 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3038 | error ("Internal error: `this' is not an aggregate"); | |
3039 | ||
3040 | return check_field_in (t, name); | |
3041 | } | |
3042 | ||
3043 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
3044 | return the address of this member as a "pointer to member" | |
3045 | type. If INTYPE is non-null, then it will be the type | |
3046 | of the member we are looking for. This will help us resolve | |
3047 | "pointers to member functions". This function is used | |
3048 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
3049 | ||
3050 | value_ptr | |
3051 | value_struct_elt_for_reference (domain, offset, curtype, name, intype) | |
3052 | struct type *domain, *curtype, *intype; | |
3053 | int offset; | |
3054 | char *name; | |
3055 | { | |
3056 | register struct type *t = curtype; | |
3057 | register int i; | |
3058 | value_ptr v; | |
3059 | ||
c5aa993b | 3060 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
3061 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3062 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
3063 | ||
3064 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3065 | { | |
3066 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 3067 | |
c906108c SS |
3068 | if (t_field_name && STREQ (t_field_name, name)) |
3069 | { | |
3070 | if (TYPE_FIELD_STATIC (t, i)) | |
3071 | { | |
3072 | v = value_static_field (t, i); | |
3073 | if (v == NULL) | |
3074 | error ("Internal error: could not find static variable %s", | |
3075 | name); | |
3076 | return v; | |
3077 | } | |
3078 | if (TYPE_FIELD_PACKED (t, i)) | |
3079 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 3080 | |
c906108c SS |
3081 | return value_from_longest |
3082 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
3083 | domain)), | |
3084 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3085 | } | |
3086 | } | |
3087 | ||
3088 | /* C++: If it was not found as a data field, then try to | |
3089 | return it as a pointer to a method. */ | |
3090 | ||
3091 | /* Destructors are a special case. */ | |
3092 | if (destructor_name_p (name, t)) | |
3093 | { | |
3094 | error ("member pointers to destructors not implemented yet"); | |
3095 | } | |
3096 | ||
3097 | /* Perform all necessary dereferencing. */ | |
3098 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3099 | intype = TYPE_TARGET_TYPE (intype); | |
3100 | ||
3101 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3102 | { | |
3103 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3104 | char dem_opname[64]; | |
3105 | ||
c5aa993b JM |
3106 | if (strncmp (t_field_name, "__", 2) == 0 || |
3107 | strncmp (t_field_name, "op", 2) == 0 || | |
3108 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3109 | { |
c5aa993b JM |
3110 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
3111 | t_field_name = dem_opname; | |
3112 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 3113 | t_field_name = dem_opname; |
c906108c SS |
3114 | } |
3115 | if (t_field_name && STREQ (t_field_name, name)) | |
3116 | { | |
3117 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
3118 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 3119 | |
c906108c SS |
3120 | if (intype == 0 && j > 1) |
3121 | error ("non-unique member `%s' requires type instantiation", name); | |
3122 | if (intype) | |
3123 | { | |
3124 | while (j--) | |
3125 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
3126 | break; | |
3127 | if (j < 0) | |
3128 | error ("no member function matches that type instantiation"); | |
3129 | } | |
3130 | else | |
3131 | j = 0; | |
c5aa993b | 3132 | |
c906108c SS |
3133 | if (TYPE_FN_FIELD_STUB (f, j)) |
3134 | check_stub_method (t, i, j); | |
3135 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
3136 | { | |
3137 | return value_from_longest | |
3138 | (lookup_reference_type | |
3139 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3140 | domain)), | |
3141 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
3142 | } | |
3143 | else | |
3144 | { | |
3145 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
3146 | 0, VAR_NAMESPACE, 0, NULL); | |
3147 | if (s == NULL) | |
3148 | { | |
3149 | v = 0; | |
3150 | } | |
3151 | else | |
3152 | { | |
3153 | v = read_var_value (s, 0); | |
3154 | #if 0 | |
3155 | VALUE_TYPE (v) = lookup_reference_type | |
3156 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3157 | domain)); | |
3158 | #endif | |
3159 | } | |
3160 | return v; | |
3161 | } | |
3162 | } | |
3163 | } | |
3164 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3165 | { | |
3166 | value_ptr v; | |
3167 | int base_offset; | |
3168 | ||
3169 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3170 | base_offset = 0; | |
3171 | else | |
3172 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3173 | v = value_struct_elt_for_reference (domain, | |
3174 | offset + base_offset, | |
3175 | TYPE_BASECLASS (t, i), | |
3176 | name, | |
3177 | intype); | |
3178 | if (v) | |
3179 | return v; | |
3180 | } | |
3181 | return 0; | |
3182 | } | |
3183 | ||
3184 | ||
3185 | /* Find the real run-time type of a value using RTTI. | |
3186 | * V is a pointer to the value. | |
3187 | * A pointer to the struct type entry of the run-time type | |
3188 | * is returneed. | |
3189 | * FULL is a flag that is set only if the value V includes | |
3190 | * the entire contents of an object of the RTTI type. | |
3191 | * TOP is the offset to the top of the enclosing object of | |
3192 | * the real run-time type. This offset may be for the embedded | |
3193 | * object, or for the enclosing object of V. | |
3194 | * USING_ENC is the flag that distinguishes the two cases. | |
3195 | * If it is 1, then the offset is for the enclosing object, | |
3196 | * otherwise for the embedded object. | |
070ad9f0 DB |
3197 | * |
3198 | */ | |
c906108c SS |
3199 | |
3200 | struct type * | |
3201 | value_rtti_type (v, full, top, using_enc) | |
c5aa993b JM |
3202 | value_ptr v; |
3203 | int *full; | |
3204 | int *top; | |
3205 | int *using_enc; | |
c906108c | 3206 | { |
c5aa993b JM |
3207 | struct type *known_type; |
3208 | struct type *rtti_type; | |
c906108c SS |
3209 | CORE_ADDR coreptr; |
3210 | value_ptr vp; | |
3211 | int using_enclosing = 0; | |
3212 | long top_offset = 0; | |
3213 | char rtti_type_name[256]; | |
3214 | ||
3215 | if (full) | |
3216 | *full = 0; | |
3217 | if (top) | |
3218 | *top = -1; | |
3219 | if (using_enc) | |
3220 | *using_enc = 0; | |
3221 | ||
c5aa993b | 3222 | /* Get declared type */ |
c906108c SS |
3223 | known_type = VALUE_TYPE (v); |
3224 | CHECK_TYPEDEF (known_type); | |
c5aa993b | 3225 | /* RTTI works only or class objects */ |
c906108c SS |
3226 | if (TYPE_CODE (known_type) != TYPE_CODE_CLASS) |
3227 | return NULL; | |
070ad9f0 DB |
3228 | if (TYPE_HAS_VTABLE(known_type)) |
3229 | { | |
3230 | /* If neither the declared type nor the enclosing type of the | |
3231 | * value structure has a HP ANSI C++ style virtual table, | |
3232 | * we can't do anything. */ | |
3233 | if (!TYPE_HAS_VTABLE (known_type)) | |
3234 | { | |
3235 | known_type = VALUE_ENCLOSING_TYPE (v); | |
3236 | CHECK_TYPEDEF (known_type); | |
3237 | if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) || | |
3238 | !TYPE_HAS_VTABLE (known_type)) | |
3239 | return NULL; /* No RTTI, or not HP-compiled types */ | |
3240 | CHECK_TYPEDEF (known_type); | |
3241 | using_enclosing = 1; | |
3242 | } | |
c906108c | 3243 | |
070ad9f0 DB |
3244 | if (using_enclosing && using_enc) |
3245 | *using_enc = 1; | |
3246 | ||
3247 | /* First get the virtual table address */ | |
3248 | coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v)) | |
3249 | + VALUE_OFFSET (v) | |
3250 | + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v))); | |
3251 | if (coreptr == 0) | |
3252 | return NULL; /* return silently -- maybe called on gdb-generated value */ | |
3253 | ||
3254 | /* Fetch the top offset of the object */ | |
3255 | /* FIXME possible 32x64 problem with pointer size & arithmetic */ | |
3256 | vp = value_at (builtin_type_int, | |
3257 | coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET, | |
3258 | VALUE_BFD_SECTION (v)); | |
3259 | top_offset = value_as_long (vp); | |
3260 | if (top) | |
3261 | *top = top_offset; | |
3262 | ||
3263 | /* Fetch the typeinfo pointer */ | |
3264 | /* FIXME possible 32x64 problem with pointer size & arithmetic */ | |
3265 | vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v)); | |
3266 | /* Indirect through the typeinfo pointer and retrieve the pointer | |
3267 | * to the string name */ | |
3268 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); | |
3269 | if (!coreptr) | |
3270 | error ("Retrieved null typeinfo pointer in trying to determine run-time type"); | |
3271 | vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */ | |
3272 | /* FIXME possible 32x64 problem */ | |
3273 | ||
3274 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); | |
3275 | ||
3276 | read_memory_string (coreptr, rtti_type_name, 256); | |
3277 | ||
3278 | if (strlen (rtti_type_name) == 0) | |
3279 | error ("Retrieved null type name from typeinfo"); | |
3280 | ||
3281 | /* search for type */ | |
3282 | rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1); | |
3283 | ||
3284 | if (!rtti_type) | |
3285 | error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name); | |
3286 | CHECK_TYPEDEF (rtti_type); | |
3287 | #if 0 | |
3288 | printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1); | |
3289 | #endif | |
3290 | /* Check whether we have the entire object */ | |
3291 | if (full /* Non-null pointer passed */ | |
3292 | && | |
3293 | /* Either we checked on the whole object in hand and found the | |
3294 | top offset to be zero */ | |
3295 | (((top_offset == 0) && | |
3296 | using_enclosing && | |
3297 | TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type)) | |
3298 | || | |
3299 | /* Or we checked on the embedded object and top offset was the | |
3300 | same as the embedded offset */ | |
3301 | ((top_offset == VALUE_EMBEDDED_OFFSET (v)) && | |
3302 | !using_enclosing && | |
3303 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type)))) | |
3304 | ||
3305 | *full = 1; | |
3306 | } | |
3307 | else | |
3308 | /* | |
3309 | Right now this is G++ RTTI. Plan on this changing in the | |
3310 | future as i get around to setting the vtables properly for G++ | |
3311 | compiled stuff. Also, i'll be using the type info functions, | |
3312 | which are always right. Deal with it until then. | |
3313 | */ | |
3314 | { | |
3315 | CORE_ADDR vtbl; | |
3316 | struct minimal_symbol *minsym; | |
3317 | struct symbol *sym; | |
3318 | char *demangled_name; | |
3319 | struct type *btype; | |
3320 | /* If the type has no vptr fieldno, try to get it filled in */ | |
3321 | if (TYPE_VPTR_FIELDNO(known_type) < 0) | |
3322 | fill_in_vptr_fieldno(known_type); | |
3323 | ||
3324 | /* If we still can't find one, give up */ | |
3325 | if (TYPE_VPTR_FIELDNO(known_type) < 0) | |
3326 | return NULL; | |
c5aa993b | 3327 | |
070ad9f0 DB |
3328 | /* Make sure our basetype and known type match, otherwise, cast |
3329 | so we can get at the vtable properly. | |
3330 | */ | |
3331 | btype = TYPE_VPTR_BASETYPE (known_type); | |
3332 | CHECK_TYPEDEF (btype); | |
3333 | if (btype != known_type ) | |
3334 | { | |
3335 | v = value_cast (btype, v); | |
3336 | if (using_enc) | |
3337 | *using_enc=1; | |
3338 | } | |
3339 | /* | |
3340 | We can't use value_ind here, because it would want to use RTTI, and | |
3341 | we'd waste a bunch of time figuring out we already know the type. | |
3342 | Besides, we don't care about the type, just the actual pointer | |
3343 | */ | |
85c9a9d5 | 3344 | if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0) |
070ad9f0 | 3345 | return NULL; |
c5aa993b | 3346 | |
070ad9f0 DB |
3347 | /* |
3348 | If we are enclosed by something that isn't us, adjust the | |
3349 | address properly and set using_enclosing. | |
3350 | */ | |
3351 | if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v)) | |
3352 | { | |
3353 | value_ptr tempval; | |
3354 | tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type)); | |
3355 | VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8); | |
3356 | vtbl=value_as_pointer(tempval); | |
3357 | using_enclosing=1; | |
3358 | } | |
3359 | else | |
3360 | { | |
3361 | vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type))); | |
3362 | using_enclosing=0; | |
3363 | } | |
c906108c | 3364 | |
070ad9f0 DB |
3365 | /* Try to find a symbol that is the vtable */ |
3366 | minsym=lookup_minimal_symbol_by_pc(vtbl); | |
3367 | if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name)) | |
3368 | return NULL; | |
c906108c | 3369 | |
070ad9f0 DB |
3370 | /* If we just skip the prefix, we get screwed by namespaces */ |
3371 | demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI); | |
3372 | *(strchr(demangled_name,' '))=0; | |
c906108c | 3373 | |
070ad9f0 DB |
3374 | /* Lookup the type for the name */ |
3375 | rtti_type=lookup_typename(demangled_name, (struct block *)0,1); | |
c5aa993b | 3376 | |
070ad9f0 DB |
3377 | if (rtti_type==NULL) |
3378 | return NULL; | |
c5aa993b | 3379 | |
070ad9f0 DB |
3380 | if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1) |
3381 | { | |
3382 | if (top) | |
3383 | *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8; | |
3384 | if (top && ((*top) >0)) | |
3385 | { | |
3386 | if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type)) | |
3387 | { | |
3388 | if (full) | |
3389 | *full=0; | |
3390 | } | |
3391 | else | |
3392 | { | |
3393 | if (full) | |
3394 | *full=1; | |
3395 | } | |
3396 | } | |
3397 | } | |
3398 | else | |
3399 | { | |
3400 | if (full) | |
3401 | *full=1; | |
3402 | } | |
3403 | if (using_enc) | |
3404 | *using_enc=using_enclosing; | |
3405 | } | |
c906108c SS |
3406 | return rtti_type; |
3407 | } | |
3408 | ||
3409 | /* Given a pointer value V, find the real (RTTI) type | |
3410 | of the object it points to. | |
3411 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
3412 | and refer to the values computed for the object pointed to. */ | |
3413 | ||
3414 | struct type * | |
3415 | value_rtti_target_type (v, full, top, using_enc) | |
c5aa993b JM |
3416 | value_ptr v; |
3417 | int *full; | |
3418 | int *top; | |
3419 | int *using_enc; | |
c906108c SS |
3420 | { |
3421 | value_ptr target; | |
3422 | ||
3423 | target = value_ind (v); | |
3424 | ||
3425 | return value_rtti_type (target, full, top, using_enc); | |
3426 | } | |
3427 | ||
3428 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3429 | if that is different from the enclosing type, create a new value | |
3430 | using the real run-time type as the enclosing type (and of the same | |
3431 | type as ARGP) and return it, with the embedded offset adjusted to | |
3432 | be the correct offset to the enclosed object | |
3433 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
3434 | parameters, computed by value_rtti_type(). If these are available, | |
3435 | they can be supplied and a second call to value_rtti_type() is avoided. | |
3436 | (Pass RTYPE == NULL if they're not available */ | |
3437 | ||
3438 | value_ptr | |
3439 | value_full_object (argp, rtype, xfull, xtop, xusing_enc) | |
c5aa993b JM |
3440 | value_ptr argp; |
3441 | struct type *rtype; | |
3442 | int xfull; | |
3443 | int xtop; | |
3444 | int xusing_enc; | |
3445 | ||
c906108c | 3446 | { |
c5aa993b | 3447 | struct type *real_type; |
c906108c SS |
3448 | int full = 0; |
3449 | int top = -1; | |
3450 | int using_enc = 0; | |
3451 | value_ptr new_val; | |
3452 | ||
3453 | if (rtype) | |
3454 | { | |
3455 | real_type = rtype; | |
3456 | full = xfull; | |
3457 | top = xtop; | |
3458 | using_enc = xusing_enc; | |
3459 | } | |
3460 | else | |
3461 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3462 | ||
3463 | /* If no RTTI data, or if object is already complete, do nothing */ | |
3464 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
3465 | return argp; | |
3466 | ||
3467 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 3468 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
3469 | if (full) |
3470 | { | |
3471 | VALUE_ENCLOSING_TYPE (argp) = real_type; | |
3472 | return argp; | |
3473 | } | |
3474 | ||
3475 | /* Check if object is in memory */ | |
3476 | if (VALUE_LVAL (argp) != lval_memory) | |
3477 | { | |
3478 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 3479 | |
c906108c SS |
3480 | return argp; |
3481 | } | |
c5aa993b | 3482 | |
c906108c SS |
3483 | /* All other cases -- retrieve the complete object */ |
3484 | /* Go back by the computed top_offset from the beginning of the object, | |
3485 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
3486 | used for its computation. */ | |
3487 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
3488 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
3489 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
3490 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
3491 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
3492 | return new_val; | |
3493 | } | |
3494 | ||
3495 | ||
3496 | ||
3497 | ||
3498 | /* C++: return the value of the class instance variable, if one exists. | |
3499 | Flag COMPLAIN signals an error if the request is made in an | |
3500 | inappropriate context. */ | |
3501 | ||
3502 | value_ptr | |
3503 | value_of_this (complain) | |
3504 | int complain; | |
3505 | { | |
3506 | struct symbol *func, *sym; | |
3507 | struct block *b; | |
3508 | int i; | |
3509 | static const char funny_this[] = "this"; | |
3510 | value_ptr this; | |
3511 | ||
3512 | if (selected_frame == 0) | |
3513 | { | |
3514 | if (complain) | |
c5aa993b JM |
3515 | error ("no frame selected"); |
3516 | else | |
3517 | return 0; | |
c906108c SS |
3518 | } |
3519 | ||
3520 | func = get_frame_function (selected_frame); | |
3521 | if (!func) | |
3522 | { | |
3523 | if (complain) | |
3524 | error ("no `this' in nameless context"); | |
c5aa993b JM |
3525 | else |
3526 | return 0; | |
c906108c SS |
3527 | } |
3528 | ||
3529 | b = SYMBOL_BLOCK_VALUE (func); | |
3530 | i = BLOCK_NSYMS (b); | |
3531 | if (i <= 0) | |
3532 | { | |
3533 | if (complain) | |
c5aa993b JM |
3534 | error ("no args, no `this'"); |
3535 | else | |
3536 | return 0; | |
c906108c SS |
3537 | } |
3538 | ||
3539 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3540 | symbol instead of the LOC_ARG one (if both exist). */ | |
3541 | sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE); | |
3542 | if (sym == NULL) | |
3543 | { | |
3544 | if (complain) | |
3545 | error ("current stack frame not in method"); | |
3546 | else | |
3547 | return NULL; | |
3548 | } | |
3549 | ||
3550 | this = read_var_value (sym, selected_frame); | |
3551 | if (this == 0 && complain) | |
3552 | error ("`this' argument at unknown address"); | |
3553 | return this; | |
3554 | } | |
3555 | ||
3556 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
3557 | long, starting at LOWBOUND. The result has the same lower bound as | |
3558 | the original ARRAY. */ | |
3559 | ||
3560 | value_ptr | |
3561 | value_slice (array, lowbound, length) | |
3562 | value_ptr array; | |
3563 | int lowbound, length; | |
3564 | { | |
3565 | struct type *slice_range_type, *slice_type, *range_type; | |
3566 | LONGEST lowerbound, upperbound, offset; | |
3567 | value_ptr slice; | |
3568 | struct type *array_type; | |
3569 | array_type = check_typedef (VALUE_TYPE (array)); | |
3570 | COERCE_VARYING_ARRAY (array, array_type); | |
3571 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
3572 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3573 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
3574 | error ("cannot take slice of non-array"); | |
3575 | range_type = TYPE_INDEX_TYPE (array_type); | |
3576 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
3577 | error ("slice from bad array or bitstring"); | |
3578 | if (lowbound < lowerbound || length < 0 | |
3579 | || lowbound + length - 1 > upperbound | |
c5aa993b | 3580 | /* Chill allows zero-length strings but not arrays. */ |
c906108c SS |
3581 | || (current_language->la_language == language_chill |
3582 | && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) | |
3583 | error ("slice out of range"); | |
3584 | /* FIXME-type-allocation: need a way to free this type when we are | |
3585 | done with it. */ | |
c5aa993b | 3586 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
3587 | TYPE_TARGET_TYPE (range_type), |
3588 | lowbound, lowbound + length - 1); | |
3589 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
3590 | { | |
3591 | int i; | |
c5aa993b | 3592 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
3593 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3594 | slice = value_zero (slice_type, not_lval); | |
3595 | for (i = 0; i < length; i++) | |
3596 | { | |
3597 | int element = value_bit_index (array_type, | |
3598 | VALUE_CONTENTS (array), | |
3599 | lowbound + i); | |
3600 | if (element < 0) | |
3601 | error ("internal error accessing bitstring"); | |
3602 | else if (element > 0) | |
3603 | { | |
3604 | int j = i % TARGET_CHAR_BIT; | |
3605 | if (BITS_BIG_ENDIAN) | |
3606 | j = TARGET_CHAR_BIT - 1 - j; | |
3607 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
3608 | } | |
3609 | } | |
3610 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
3611 | can be used on the LHS, but that may require extensions to |
3612 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
3613 | } |
3614 | else | |
3615 | { | |
3616 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
3617 | offset | |
3618 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
c5aa993b | 3619 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
3620 | slice_range_type); |
3621 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
3622 | slice = allocate_value (slice_type); | |
3623 | if (VALUE_LAZY (array)) | |
3624 | VALUE_LAZY (slice) = 1; | |
3625 | else | |
3626 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
3627 | TYPE_LENGTH (slice_type)); | |
3628 | if (VALUE_LVAL (array) == lval_internalvar) | |
3629 | VALUE_LVAL (slice) = lval_internalvar_component; | |
3630 | else | |
3631 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
3632 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
3633 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
3634 | } | |
3635 | return slice; | |
3636 | } | |
3637 | ||
3638 | /* Assuming chill_varying_type (VARRAY) is true, return an equivalent | |
3639 | value as a fixed-length array. */ | |
3640 | ||
3641 | value_ptr | |
3642 | varying_to_slice (varray) | |
3643 | value_ptr varray; | |
3644 | { | |
3645 | struct type *vtype = check_typedef (VALUE_TYPE (varray)); | |
3646 | LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0), | |
3647 | VALUE_CONTENTS (varray) | |
3648 | + TYPE_FIELD_BITPOS (vtype, 0) / 8); | |
3649 | return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length); | |
3650 | } | |
3651 | ||
070ad9f0 DB |
3652 | /* Create a value for a FORTRAN complex number. Currently most of |
3653 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
3654 | composed of 2 doubles. This really should be a smarter routine | |
3655 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 3656 | doubles. FIXME: fmb */ |
c906108c SS |
3657 | |
3658 | value_ptr | |
3659 | value_literal_complex (arg1, arg2, type) | |
3660 | value_ptr arg1; | |
3661 | value_ptr arg2; | |
3662 | struct type *type; | |
3663 | { | |
3664 | register value_ptr val; | |
3665 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3666 | ||
3667 | val = allocate_value (type); | |
3668 | arg1 = value_cast (real_type, arg1); | |
3669 | arg2 = value_cast (real_type, arg2); | |
3670 | ||
3671 | memcpy (VALUE_CONTENTS_RAW (val), | |
3672 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
3673 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
3674 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
3675 | return val; | |
3676 | } | |
3677 | ||
3678 | /* Cast a value into the appropriate complex data type. */ | |
3679 | ||
3680 | static value_ptr | |
3681 | cast_into_complex (type, val) | |
3682 | struct type *type; | |
3683 | register value_ptr val; | |
3684 | { | |
3685 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3686 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
3687 | { | |
3688 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
3689 | value_ptr re_val = allocate_value (val_real_type); | |
3690 | value_ptr im_val = allocate_value (val_real_type); | |
3691 | ||
3692 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
3693 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
3694 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
3695 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 3696 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3697 | |
3698 | return value_literal_complex (re_val, im_val, type); | |
3699 | } | |
3700 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
3701 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
3702 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
3703 | else | |
3704 | error ("cannot cast non-number to complex"); | |
3705 | } | |
3706 | ||
3707 | void | |
3708 | _initialize_valops () | |
3709 | { | |
3710 | #if 0 | |
3711 | add_show_from_set | |
c5aa993b | 3712 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
3713 | "Set automatic abandonment of expressions upon failure.", |
3714 | &setlist), | |
3715 | &showlist); | |
3716 | #endif | |
3717 | ||
3718 | add_show_from_set | |
c5aa993b | 3719 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
3720 | "Set overload resolution in evaluating C++ functions.", |
3721 | &setlist), | |
3722 | &showlist); | |
3723 | overload_resolution = 1; | |
3724 | ||
242bfc55 FN |
3725 | add_show_from_set ( |
3726 | add_set_cmd ("unwindonsignal", no_class, var_boolean, | |
3727 | (char *) &unwind_on_signal_p, | |
3728 | "Set unwinding of stack if a signal is received while in a call dummy.\n\ | |
3729 | The unwindonsignal lets the user determine what gdb should do if a signal\n\ | |
3730 | is received while in a function called from gdb (call dummy). If set, gdb\n\ | |
3731 | unwinds the stack and restore the context to what as it was before the call.\n\ | |
3732 | The default is to stop in the frame where the signal was received.", &setlist), | |
3733 | &showlist); | |
c906108c | 3734 | } |