]>
Commit | Line | Data |
---|---|---|
a91a6192 | 1 | /* Support for printing Fortran values for GDB, the GNU debugger. |
a1a0d974 | 2 | Copyright 1993, 1994, 1995 Free Software Foundation, Inc. |
a91a6192 SS |
3 | Contributed by Motorola. Adapted from the C definitions by Farooq Butt |
4 | ([email protected]), additionally worked over by Stan Shebs. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
6c9638b4 | 20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
a91a6192 SS |
21 | |
22 | #include "defs.h" | |
2b576293 | 23 | #include "gdb_string.h" |
a91a6192 SS |
24 | #include "symtab.h" |
25 | #include "gdbtypes.h" | |
26 | #include "expression.h" | |
27 | #include "value.h" | |
28 | #include "demangle.h" | |
29 | #include "valprint.h" | |
30 | #include "language.h" | |
31 | #include "f-lang.h" | |
32 | #include "frame.h" | |
22d7f91e SS |
33 | #include "gdbcore.h" |
34 | #include "command.h" | |
a91a6192 | 35 | |
b607efe7 FF |
36 | #if 0 |
37 | static int there_is_a_visible_common_named PARAMS ((char *)); | |
38 | #endif | |
39 | ||
40 | static void info_common_command PARAMS ((char *, int)); | |
41 | static void list_all_visible_commons PARAMS ((char *)); | |
42 | static void f77_print_array PARAMS ((struct type *, char *, CORE_ADDR, | |
43 | FILE *, int, int, int, | |
44 | enum val_prettyprint)); | |
45 | static void f77_print_array_1 PARAMS ((int, int, struct type *, char *, | |
46 | CORE_ADDR, FILE *, int, int, int, | |
47 | enum val_prettyprint)); | |
48 | static void f77_create_arrayprint_offset_tbl PARAMS ((struct type *, FILE *)); | |
49 | static void f77_get_dynamic_length_of_aggregate PARAMS ((struct type *)); | |
22d7f91e | 50 | |
a91a6192 SS |
51 | int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2]; |
52 | ||
53 | /* Array which holds offsets to be applied to get a row's elements | |
54 | for a given array. Array also holds the size of each subarray. */ | |
55 | ||
56 | /* The following macro gives us the size of the nth dimension, Where | |
57 | n is 1 based. */ | |
58 | ||
59 | #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1]) | |
60 | ||
61 | /* The following gives us the offset for row n where n is 1-based. */ | |
62 | ||
63 | #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0]) | |
64 | ||
65 | int | |
66 | f77_get_dynamic_lowerbound (type, lower_bound) | |
67 | struct type *type; | |
68 | int *lower_bound; | |
69 | { | |
70 | CORE_ADDR current_frame_addr; | |
71 | CORE_ADDR ptr_to_lower_bound; | |
72 | ||
73 | switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type)) | |
74 | { | |
75 | case BOUND_BY_VALUE_ON_STACK: | |
76 | current_frame_addr = selected_frame->frame; | |
77 | if (current_frame_addr > 0) | |
78 | { | |
79 | *lower_bound = | |
80 | read_memory_integer (current_frame_addr + | |
22d7f91e SS |
81 | TYPE_ARRAY_LOWER_BOUND_VALUE (type), |
82 | 4); | |
a91a6192 SS |
83 | } |
84 | else | |
85 | { | |
86 | *lower_bound = DEFAULT_LOWER_BOUND; | |
87 | return BOUND_FETCH_ERROR; | |
88 | } | |
89 | break; | |
90 | ||
91 | case BOUND_SIMPLE: | |
92 | *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type); | |
93 | break; | |
94 | ||
95 | case BOUND_CANNOT_BE_DETERMINED: | |
22d7f91e | 96 | error ("Lower bound may not be '*' in F77"); |
a91a6192 SS |
97 | break; |
98 | ||
99 | case BOUND_BY_REF_ON_STACK: | |
100 | current_frame_addr = selected_frame->frame; | |
101 | if (current_frame_addr > 0) | |
102 | { | |
103 | ptr_to_lower_bound = | |
104 | read_memory_integer (current_frame_addr + | |
105 | TYPE_ARRAY_LOWER_BOUND_VALUE (type), | |
106 | 4); | |
22d7f91e | 107 | *lower_bound = read_memory_integer (ptr_to_lower_bound, 4); |
a91a6192 SS |
108 | } |
109 | else | |
110 | { | |
111 | *lower_bound = DEFAULT_LOWER_BOUND; | |
112 | return BOUND_FETCH_ERROR; | |
113 | } | |
114 | break; | |
115 | ||
116 | case BOUND_BY_REF_IN_REG: | |
117 | case BOUND_BY_VALUE_IN_REG: | |
118 | default: | |
119 | error ("??? unhandled dynamic array bound type ???"); | |
120 | break; | |
121 | } | |
122 | return BOUND_FETCH_OK; | |
123 | } | |
124 | ||
125 | int | |
126 | f77_get_dynamic_upperbound (type, upper_bound) | |
127 | struct type *type; | |
128 | int *upper_bound; | |
129 | { | |
130 | CORE_ADDR current_frame_addr = 0; | |
131 | CORE_ADDR ptr_to_upper_bound; | |
132 | ||
133 | switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type)) | |
134 | { | |
135 | case BOUND_BY_VALUE_ON_STACK: | |
136 | current_frame_addr = selected_frame->frame; | |
137 | if (current_frame_addr > 0) | |
138 | { | |
139 | *upper_bound = | |
140 | read_memory_integer (current_frame_addr + | |
22d7f91e SS |
141 | TYPE_ARRAY_UPPER_BOUND_VALUE (type), |
142 | 4); | |
a91a6192 SS |
143 | } |
144 | else | |
145 | { | |
146 | *upper_bound = DEFAULT_UPPER_BOUND; | |
147 | return BOUND_FETCH_ERROR; | |
148 | } | |
149 | break; | |
150 | ||
151 | case BOUND_SIMPLE: | |
152 | *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type); | |
153 | break; | |
154 | ||
155 | case BOUND_CANNOT_BE_DETERMINED: | |
156 | /* we have an assumed size array on our hands. Assume that | |
157 | upper_bound == lower_bound so that we show at least | |
158 | 1 element.If the user wants to see more elements, let | |
159 | him manually ask for 'em and we'll subscript the | |
160 | array and show him */ | |
22d7f91e | 161 | f77_get_dynamic_lowerbound (type, upper_bound); |
a91a6192 SS |
162 | break; |
163 | ||
164 | case BOUND_BY_REF_ON_STACK: | |
165 | current_frame_addr = selected_frame->frame; | |
166 | if (current_frame_addr > 0) | |
167 | { | |
168 | ptr_to_upper_bound = | |
169 | read_memory_integer (current_frame_addr + | |
170 | TYPE_ARRAY_UPPER_BOUND_VALUE (type), | |
171 | 4); | |
22d7f91e | 172 | *upper_bound = read_memory_integer(ptr_to_upper_bound, 4); |
a91a6192 SS |
173 | } |
174 | else | |
175 | { | |
176 | *upper_bound = DEFAULT_UPPER_BOUND; | |
177 | return BOUND_FETCH_ERROR; | |
178 | } | |
179 | break; | |
180 | ||
181 | case BOUND_BY_REF_IN_REG: | |
182 | case BOUND_BY_VALUE_IN_REG: | |
183 | default: | |
184 | error ("??? unhandled dynamic array bound type ???"); | |
185 | break; | |
186 | } | |
187 | return BOUND_FETCH_OK; | |
188 | } | |
189 | ||
190 | /* Obtain F77 adjustable array dimensions */ | |
191 | ||
b607efe7 | 192 | static void |
a91a6192 SS |
193 | f77_get_dynamic_length_of_aggregate (type) |
194 | struct type *type; | |
195 | { | |
196 | int upper_bound = -1; | |
197 | int lower_bound = 1; | |
a91a6192 SS |
198 | int retcode; |
199 | ||
22d7f91e SS |
200 | /* Recursively go all the way down into a possibly multi-dimensional |
201 | F77 array and get the bounds. For simple arrays, this is pretty | |
202 | easy but when the bounds are dynamic, we must be very careful | |
a91a6192 SS |
203 | to add up all the lengths correctly. Not doing this right |
204 | will lead to horrendous-looking arrays in parameter lists. | |
205 | ||
206 | This function also works for strings which behave very | |
207 | similarly to arrays. */ | |
208 | ||
209 | if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY | |
210 | || TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING) | |
211 | f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type)); | |
212 | ||
213 | /* Recursion ends here, start setting up lengths. */ | |
214 | retcode = f77_get_dynamic_lowerbound (type, &lower_bound); | |
215 | if (retcode == BOUND_FETCH_ERROR) | |
216 | error ("Cannot obtain valid array lower bound"); | |
217 | ||
218 | retcode = f77_get_dynamic_upperbound (type, &upper_bound); | |
219 | if (retcode == BOUND_FETCH_ERROR) | |
220 | error ("Cannot obtain valid array upper bound"); | |
221 | ||
222 | /* Patch in a valid length value. */ | |
223 | ||
224 | TYPE_LENGTH (type) = | |
940d5967 | 225 | (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type))); |
a91a6192 SS |
226 | } |
227 | ||
a91a6192 | 228 | /* Function that sets up the array offset,size table for the array |
22d7f91e | 229 | type "type". */ |
a91a6192 | 230 | |
b607efe7 | 231 | static void |
a91a6192 SS |
232 | f77_create_arrayprint_offset_tbl (type, stream) |
233 | struct type *type; | |
234 | FILE *stream; | |
235 | { | |
236 | struct type *tmp_type; | |
8a329002 | 237 | int eltlen; |
a91a6192 SS |
238 | int ndimen = 1; |
239 | int upper, lower, retcode; | |
240 | ||
241 | tmp_type = type; | |
242 | ||
243 | while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)) | |
244 | { | |
245 | if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED) | |
246 | fprintf_filtered (stream, "<assumed size array> "); | |
247 | ||
248 | retcode = f77_get_dynamic_upperbound (tmp_type, &upper); | |
249 | if (retcode == BOUND_FETCH_ERROR) | |
250 | error ("Cannot obtain dynamic upper bound"); | |
251 | ||
252 | retcode = f77_get_dynamic_lowerbound(tmp_type,&lower); | |
253 | if (retcode == BOUND_FETCH_ERROR) | |
254 | error("Cannot obtain dynamic lower bound"); | |
255 | ||
256 | F77_DIM_SIZE (ndimen) = upper - lower + 1; | |
257 | ||
a91a6192 SS |
258 | tmp_type = TYPE_TARGET_TYPE (tmp_type); |
259 | ndimen++; | |
260 | } | |
261 | ||
a91a6192 SS |
262 | /* Now we multiply eltlen by all the offsets, so that later we |
263 | can print out array elements correctly. Up till now we | |
264 | know an offset to apply to get the item but we also | |
265 | have to know how much to add to get to the next item */ | |
266 | ||
8a329002 PB |
267 | ndimen--; |
268 | eltlen = TYPE_LENGTH (tmp_type); | |
269 | F77_DIM_OFFSET (ndimen) = eltlen; | |
270 | while (--ndimen > 0) | |
a91a6192 | 271 | { |
8a329002 PB |
272 | eltlen *= F77_DIM_SIZE (ndimen + 1); |
273 | F77_DIM_OFFSET (ndimen) = eltlen; | |
a91a6192 SS |
274 | } |
275 | } | |
276 | ||
277 | /* Actual function which prints out F77 arrays, Valaddr == address in | |
278 | the superior. Address == the address in the inferior. */ | |
279 | ||
b607efe7 | 280 | static void |
a91a6192 SS |
281 | f77_print_array_1 (nss, ndimensions, type, valaddr, address, |
282 | stream, format, deref_ref, recurse, pretty) | |
283 | int nss; | |
284 | int ndimensions; | |
a91a6192 | 285 | struct type *type; |
b607efe7 | 286 | char *valaddr; |
a91a6192 SS |
287 | CORE_ADDR address; |
288 | FILE *stream; | |
289 | int format; | |
290 | int deref_ref; | |
291 | int recurse; | |
292 | enum val_prettyprint pretty; | |
293 | { | |
294 | int i; | |
295 | ||
296 | if (nss != ndimensions) | |
297 | { | |
298 | for (i = 0; i< F77_DIM_SIZE(nss); i++) | |
299 | { | |
300 | fprintf_filtered (stream, "( "); | |
301 | f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type), | |
302 | valaddr + i * F77_DIM_OFFSET (nss), | |
303 | address + i * F77_DIM_OFFSET (nss), | |
b607efe7 | 304 | stream, format, deref_ref, recurse, pretty); |
a91a6192 SS |
305 | fprintf_filtered (stream, ") "); |
306 | } | |
307 | } | |
308 | else | |
309 | { | |
310 | for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++) | |
311 | { | |
312 | val_print (TYPE_TARGET_TYPE (type), | |
313 | valaddr + i * F77_DIM_OFFSET (ndimensions), | |
314 | address + i * F77_DIM_OFFSET (ndimensions), | |
315 | stream, format, deref_ref, recurse, pretty); | |
316 | ||
317 | if (i != (F77_DIM_SIZE (nss) - 1)) | |
318 | fprintf_filtered (stream, ", "); | |
319 | ||
320 | if (i == print_max - 1) | |
321 | fprintf_filtered (stream, "..."); | |
322 | } | |
323 | } | |
324 | } | |
325 | ||
326 | /* This function gets called to print an F77 array, we set up some | |
327 | stuff and then immediately call f77_print_array_1() */ | |
328 | ||
b607efe7 | 329 | static void |
a91a6192 SS |
330 | f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse, |
331 | pretty) | |
332 | struct type *type; | |
333 | char *valaddr; | |
334 | CORE_ADDR address; | |
335 | FILE *stream; | |
336 | int format; | |
337 | int deref_ref; | |
338 | int recurse; | |
339 | enum val_prettyprint pretty; | |
340 | { | |
a91a6192 SS |
341 | int ndimensions; |
342 | ||
343 | ndimensions = calc_f77_array_dims (type); | |
344 | ||
345 | if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0) | |
346 | error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)", | |
347 | ndimensions, MAX_FORTRAN_DIMS); | |
348 | ||
349 | /* Since F77 arrays are stored column-major, we set up an | |
350 | offset table to get at the various row's elements. The | |
351 | offset table contains entries for both offset and subarray size. */ | |
352 | ||
353 | f77_create_arrayprint_offset_tbl (type, stream); | |
354 | ||
355 | f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format, | |
356 | deref_ref, recurse, pretty); | |
357 | } | |
358 | ||
359 | \f | |
360 | /* Print data of type TYPE located at VALADDR (within GDB), which came from | |
361 | the inferior at address ADDRESS, onto stdio stream STREAM according to | |
362 | FORMAT (a letter or 0 for natural format). The data at VALADDR is in | |
363 | target byte order. | |
364 | ||
365 | If the data are a string pointer, returns the number of string characters | |
366 | printed. | |
367 | ||
368 | If DEREF_REF is nonzero, then dereference references, otherwise just print | |
369 | them like pointers. | |
370 | ||
371 | The PRETTY parameter controls prettyprinting. */ | |
372 | ||
373 | int | |
374 | f_val_print (type, valaddr, address, stream, format, deref_ref, recurse, | |
375 | pretty) | |
376 | struct type *type; | |
377 | char *valaddr; | |
378 | CORE_ADDR address; | |
379 | FILE *stream; | |
380 | int format; | |
381 | int deref_ref; | |
382 | int recurse; | |
383 | enum val_prettyprint pretty; | |
384 | { | |
385 | register unsigned int i = 0; /* Number of characters printed */ | |
a91a6192 | 386 | struct type *elttype; |
a91a6192 | 387 | LONGEST val; |
a91a6192 SS |
388 | CORE_ADDR addr; |
389 | ||
940d5967 | 390 | CHECK_TYPEDEF (type); |
a91a6192 SS |
391 | switch (TYPE_CODE (type)) |
392 | { | |
a91a6192 SS |
393 | case TYPE_CODE_STRING: |
394 | f77_get_dynamic_length_of_aggregate (type); | |
ead95f8a | 395 | LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 0); |
a91a6192 SS |
396 | break; |
397 | ||
398 | case TYPE_CODE_ARRAY: | |
399 | fprintf_filtered (stream, "("); | |
400 | f77_print_array (type, valaddr, address, stream, format, | |
401 | deref_ref, recurse, pretty); | |
402 | fprintf_filtered (stream, ")"); | |
403 | break; | |
404 | #if 0 | |
405 | /* Array of unspecified length: treat like pointer to first elt. */ | |
406 | valaddr = (char *) &address; | |
407 | /* FALL THROUGH */ | |
408 | #endif | |
409 | case TYPE_CODE_PTR: | |
410 | if (format && format != 's') | |
411 | { | |
412 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
413 | break; | |
414 | } | |
415 | else | |
416 | { | |
417 | addr = unpack_pointer (type, valaddr); | |
940d5967 | 418 | elttype = check_typedef (TYPE_TARGET_TYPE (type)); |
a91a6192 SS |
419 | |
420 | if (TYPE_CODE (elttype) == TYPE_CODE_FUNC) | |
421 | { | |
422 | /* Try to print what function it points to. */ | |
423 | print_address_demangle (addr, stream, demangle); | |
424 | /* Return value is irrelevant except for string pointers. */ | |
425 | return 0; | |
426 | } | |
427 | ||
428 | if (addressprint && format != 's') | |
429 | fprintf_filtered (stream, "0x%x", addr); | |
430 | ||
431 | /* For a pointer to char or unsigned char, also print the string | |
432 | pointed to, unless pointer is null. */ | |
433 | if (TYPE_LENGTH (elttype) == 1 | |
434 | && TYPE_CODE (elttype) == TYPE_CODE_INT | |
435 | && (format == 0 || format == 's') | |
436 | && addr != 0) | |
437 | i = val_print_string (addr, 0, stream); | |
438 | ||
439 | /* Return number of characters printed, plus one for the | |
440 | terminating null if we have "reached the end". */ | |
441 | return (i + (print_max && i != print_max)); | |
442 | } | |
443 | break; | |
444 | ||
445 | case TYPE_CODE_FUNC: | |
446 | if (format) | |
447 | { | |
448 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
449 | break; | |
450 | } | |
451 | /* FIXME, we should consider, at least for ANSI C language, eliminating | |
452 | the distinction made between FUNCs and POINTERs to FUNCs. */ | |
453 | fprintf_filtered (stream, "{"); | |
454 | type_print (type, "", stream, -1); | |
455 | fprintf_filtered (stream, "} "); | |
456 | /* Try to print what function it points to, and its address. */ | |
457 | print_address_demangle (address, stream, demangle); | |
458 | break; | |
459 | ||
460 | case TYPE_CODE_INT: | |
461 | format = format ? format : output_format; | |
462 | if (format) | |
463 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
464 | else | |
465 | { | |
466 | val_print_type_code_int (type, valaddr, stream); | |
467 | /* C and C++ has no single byte int type, char is used instead. | |
468 | Since we don't know whether the value is really intended to | |
469 | be used as an integer or a character, print the character | |
470 | equivalent as well. */ | |
471 | if (TYPE_LENGTH (type) == 1) | |
472 | { | |
473 | fputs_filtered (" ", stream); | |
474 | LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr), | |
475 | stream); | |
476 | } | |
477 | } | |
478 | break; | |
479 | ||
480 | case TYPE_CODE_FLT: | |
481 | if (format) | |
482 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
483 | else | |
484 | print_floating (valaddr, type, stream); | |
485 | break; | |
486 | ||
487 | case TYPE_CODE_VOID: | |
488 | fprintf_filtered (stream, "VOID"); | |
489 | break; | |
490 | ||
491 | case TYPE_CODE_ERROR: | |
492 | fprintf_filtered (stream, "<error type>"); | |
493 | break; | |
494 | ||
495 | case TYPE_CODE_RANGE: | |
496 | /* FIXME, we should not ever have to print one of these yet. */ | |
497 | fprintf_filtered (stream, "<range type>"); | |
498 | break; | |
499 | ||
500 | case TYPE_CODE_BOOL: | |
501 | format = format ? format : output_format; | |
502 | if (format) | |
503 | print_scalar_formatted (valaddr, type, format, 0, stream); | |
504 | else | |
505 | { | |
506 | val = 0; | |
507 | switch (TYPE_LENGTH(type)) | |
508 | { | |
509 | case 1: | |
510 | val = unpack_long (builtin_type_f_logical_s1, valaddr); | |
511 | break ; | |
512 | ||
513 | case 2: | |
514 | val = unpack_long (builtin_type_f_logical_s2, valaddr); | |
515 | break ; | |
516 | ||
517 | case 4: | |
518 | val = unpack_long (builtin_type_f_logical, valaddr); | |
519 | break ; | |
520 | ||
521 | default: | |
522 | error ("Logicals of length %d bytes not supported", | |
523 | TYPE_LENGTH (type)); | |
524 | ||
525 | } | |
526 | ||
527 | if (val == 0) | |
528 | fprintf_filtered (stream, ".FALSE."); | |
529 | else | |
530 | if (val == 1) | |
531 | fprintf_filtered (stream, ".TRUE."); | |
532 | else | |
533 | /* Not a legitimate logical type, print as an integer. */ | |
534 | { | |
535 | /* Bash the type code temporarily. */ | |
536 | TYPE_CODE (type) = TYPE_CODE_INT; | |
537 | f_val_print (type, valaddr, address, stream, format, | |
538 | deref_ref, recurse, pretty); | |
539 | /* Restore the type code so later uses work as intended. */ | |
540 | TYPE_CODE (type) = TYPE_CODE_BOOL; | |
541 | } | |
542 | } | |
543 | break; | |
544 | ||
a91a6192 SS |
545 | case TYPE_CODE_COMPLEX: |
546 | switch (TYPE_LENGTH (type)) | |
547 | { | |
ead95f8a PB |
548 | case 8: type = builtin_type_f_real; break; |
549 | case 16: type = builtin_type_f_real_s8; break; | |
550 | case 32: type = builtin_type_f_real_s16; break; | |
a91a6192 SS |
551 | default: |
552 | error ("Cannot print out complex*%d variables", TYPE_LENGTH(type)); | |
553 | } | |
ead95f8a PB |
554 | fputs_filtered ("(", stream); |
555 | print_floating (valaddr, type, stream); | |
556 | fputs_filtered (",", stream); | |
557 | print_floating (valaddr, type, stream); | |
558 | fputs_filtered (")", stream); | |
a91a6192 SS |
559 | break; |
560 | ||
561 | case TYPE_CODE_UNDEF: | |
562 | /* This happens (without TYPE_FLAG_STUB set) on systems which don't use | |
563 | dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar" | |
564 | and no complete type for struct foo in that file. */ | |
565 | fprintf_filtered (stream, "<incomplete type>"); | |
566 | break; | |
567 | ||
568 | default: | |
569 | error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type)); | |
570 | } | |
571 | fflush (stream); | |
572 | return 0; | |
573 | } | |
574 | ||
b607efe7 | 575 | static void |
a91a6192 SS |
576 | list_all_visible_commons (funname) |
577 | char *funname; | |
578 | { | |
579 | SAVED_F77_COMMON_PTR tmp; | |
580 | ||
581 | tmp = head_common_list; | |
582 | ||
583 | printf_filtered ("All COMMON blocks visible at this level:\n\n"); | |
584 | ||
585 | while (tmp != NULL) | |
586 | { | |
587 | if (STREQ(tmp->owning_function,funname)) | |
588 | printf_filtered ("%s\n", tmp->name); | |
589 | ||
590 | tmp = tmp->next; | |
591 | } | |
592 | } | |
593 | ||
594 | /* This function is used to print out the values in a given COMMON | |
595 | block. It will always use the most local common block of the | |
596 | given name */ | |
597 | ||
598 | static void | |
599 | info_common_command (comname, from_tty) | |
600 | char *comname; | |
601 | int from_tty; | |
602 | { | |
603 | SAVED_F77_COMMON_PTR the_common; | |
604 | COMMON_ENTRY_PTR entry; | |
605 | struct frame_info *fi; | |
606 | register char *funname = 0; | |
607 | struct symbol *func; | |
a91a6192 SS |
608 | |
609 | /* We have been told to display the contents of F77 COMMON | |
610 | block supposedly visible in this function. Let us | |
611 | first make sure that it is visible and if so, let | |
612 | us display its contents */ | |
613 | ||
614 | fi = selected_frame; | |
615 | ||
616 | if (fi == NULL) | |
617 | error ("No frame selected"); | |
618 | ||
619 | /* The following is generally ripped off from stack.c's routine | |
620 | print_frame_info() */ | |
621 | ||
622 | func = find_pc_function (fi->pc); | |
623 | if (func) | |
624 | { | |
625 | /* In certain pathological cases, the symtabs give the wrong | |
626 | function (when we are in the first function in a file which | |
627 | is compiled without debugging symbols, the previous function | |
628 | is compiled with debugging symbols, and the "foo.o" symbol | |
629 | that is supposed to tell us where the file with debugging symbols | |
630 | ends has been truncated by ar because it is longer than 15 | |
631 | characters). | |
632 | ||
633 | So look in the minimal symbol tables as well, and if it comes | |
634 | up with a larger address for the function use that instead. | |
635 | I don't think this can ever cause any problems; there shouldn't | |
636 | be any minimal symbols in the middle of a function. | |
637 | FIXME: (Not necessarily true. What about text labels) */ | |
638 | ||
639 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc); | |
640 | ||
641 | if (msymbol != NULL | |
642 | && (SYMBOL_VALUE_ADDRESS (msymbol) | |
643 | > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) | |
644 | funname = SYMBOL_NAME (msymbol); | |
645 | else | |
646 | funname = SYMBOL_NAME (func); | |
647 | } | |
648 | else | |
649 | { | |
650 | register struct minimal_symbol *msymbol = | |
651 | lookup_minimal_symbol_by_pc (fi->pc); | |
652 | ||
653 | if (msymbol != NULL) | |
654 | funname = SYMBOL_NAME (msymbol); | |
655 | } | |
656 | ||
4c664b8d | 657 | /* If comname is NULL, we assume the user wishes to see the |
a91a6192 SS |
658 | which COMMON blocks are visible here and then return */ |
659 | ||
4c664b8d | 660 | if (comname == 0) |
a91a6192 SS |
661 | { |
662 | list_all_visible_commons (funname); | |
663 | return; | |
664 | } | |
665 | ||
666 | the_common = find_common_for_function (comname,funname); | |
667 | ||
668 | if (the_common) | |
669 | { | |
670 | if (STREQ(comname,BLANK_COMMON_NAME_LOCAL)) | |
671 | printf_filtered ("Contents of blank COMMON block:\n"); | |
672 | else | |
673 | printf_filtered ("Contents of F77 COMMON block '%s':\n",comname); | |
674 | ||
675 | printf_filtered ("\n"); | |
676 | entry = the_common->entries; | |
677 | ||
678 | while (entry != NULL) | |
679 | { | |
680 | printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol)); | |
681 | print_variable_value (entry->symbol,fi,stdout); | |
682 | printf_filtered ("\n"); | |
683 | entry = entry->next; | |
684 | } | |
685 | } | |
686 | else | |
687 | printf_filtered ("Cannot locate the common block %s in function '%s'\n", | |
688 | comname, funname); | |
689 | } | |
690 | ||
691 | /* This function is used to determine whether there is a | |
692 | F77 common block visible at the current scope called 'comname'. */ | |
693 | ||
b607efe7 FF |
694 | #if 0 |
695 | static int | |
a91a6192 SS |
696 | there_is_a_visible_common_named (comname) |
697 | char *comname; | |
698 | { | |
699 | SAVED_F77_COMMON_PTR the_common; | |
a91a6192 SS |
700 | struct frame_info *fi; |
701 | register char *funname = 0; | |
702 | struct symbol *func; | |
703 | ||
704 | if (comname == NULL) | |
705 | error ("Cannot deal with NULL common name!"); | |
706 | ||
707 | fi = selected_frame; | |
708 | ||
709 | if (fi == NULL) | |
710 | error ("No frame selected"); | |
711 | ||
712 | /* The following is generally ripped off from stack.c's routine | |
713 | print_frame_info() */ | |
714 | ||
715 | func = find_pc_function (fi->pc); | |
716 | if (func) | |
717 | { | |
718 | /* In certain pathological cases, the symtabs give the wrong | |
719 | function (when we are in the first function in a file which | |
720 | is compiled without debugging symbols, the previous function | |
721 | is compiled with debugging symbols, and the "foo.o" symbol | |
722 | that is supposed to tell us where the file with debugging symbols | |
723 | ends has been truncated by ar because it is longer than 15 | |
724 | characters). | |
725 | ||
726 | So look in the minimal symbol tables as well, and if it comes | |
727 | up with a larger address for the function use that instead. | |
728 | I don't think this can ever cause any problems; there shouldn't | |
729 | be any minimal symbols in the middle of a function. | |
730 | FIXME: (Not necessarily true. What about text labels) */ | |
731 | ||
732 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc); | |
733 | ||
734 | if (msymbol != NULL | |
735 | && (SYMBOL_VALUE_ADDRESS (msymbol) | |
736 | > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) | |
737 | funname = SYMBOL_NAME (msymbol); | |
738 | else | |
739 | funname = SYMBOL_NAME (func); | |
740 | } | |
741 | else | |
742 | { | |
743 | register struct minimal_symbol *msymbol = | |
744 | lookup_minimal_symbol_by_pc (fi->pc); | |
745 | ||
746 | if (msymbol != NULL) | |
747 | funname = SYMBOL_NAME (msymbol); | |
748 | } | |
749 | ||
750 | the_common = find_common_for_function (comname, funname); | |
751 | ||
752 | return (the_common ? 1 : 0); | |
753 | } | |
b607efe7 | 754 | #endif |
a91a6192 SS |
755 | |
756 | void | |
757 | _initialize_f_valprint () | |
758 | { | |
759 | add_info ("common", info_common_command, | |
760 | "Print out the values contained in a Fortran COMMON block."); | |
761 | } |