]>
Commit | Line | Data |
---|---|---|
252b5132 RH |
1 | /* itbl-ops.c |
2 | Copyright (C) 1997, 1998 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GAS, the GNU Assembler. | |
5 | ||
6 | GAS is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GAS is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GAS; see the file COPYING. If not, write to the Free | |
18 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA | |
19 | 02111-1307, USA. */ | |
20 | ||
21 | /*======================================================================*/ | |
22 | /* | |
23 | * Herein lies the support for dynamic specification of processor | |
24 | * instructions and registers. Mnemonics, values, and formats for each | |
25 | * instruction and register are specified in an ascii file consisting of | |
26 | * table entries. The grammar for the table is defined in the document | |
27 | * "Processor instruction table specification". | |
28 | * | |
29 | * Instructions use the gnu assembler syntax, with the addition of | |
30 | * allowing mnemonics for register. | |
31 | * Eg. "func $2,reg3,0x100,symbol ; comment" | |
32 | * func - opcode name | |
33 | * $n - register n | |
34 | * reg3 - mnemonic for processor's register defined in table | |
35 | * 0xddd..d - immediate value | |
36 | * symbol - address of label or external symbol | |
37 | * | |
38 | * First, itbl_parse reads in the table of register and instruction | |
39 | * names and formats, and builds a list of entries for each | |
40 | * processor/type combination. lex and yacc are used to parse | |
41 | * the entries in the table and call functions defined here to | |
42 | * add each entry to our list. | |
43 | * | |
44 | * Then, when assembling or disassembling, these functions are called to | |
45 | * 1) get information on a processor's registers and | |
46 | * 2) assemble/disassemble an instruction. | |
47 | * To assemble(disassemble) an instruction, the function | |
48 | * itbl_assemble(itbl_disassemble) is called to search the list of | |
49 | * instruction entries, and if a match is found, uses the format | |
50 | * described in the instruction entry structure to complete the action. | |
51 | * | |
52 | * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2" | |
53 | * and we want to define function "pig" which takes two operands. | |
54 | * | |
55 | * Given the table entries: | |
56 | * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0" | |
57 | * "p3 dreg d2 0x2" | |
58 | * and that the instruction encoding for coprocessor pz has encoding: | |
59 | * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25) | |
60 | * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum) | |
61 | * | |
62 | * a structure to describe the instruction might look something like: | |
63 | * struct itbl_entry = { | |
64 | * e_processor processor = e_p3 | |
65 | * e_type type = e_insn | |
66 | * char *name = "pig" | |
67 | * uint value = 0x1 | |
68 | * uint flags = 0 | |
69 | * struct itbl_range range = 24-21 | |
70 | * struct itbl_field *field = { | |
71 | * e_type type = e_dreg | |
72 | * struct itbl_range range = 20-16 | |
73 | * struct itbl_field *next = { | |
74 | * e_type type = e_immed | |
75 | * struct itbl_range range = 15-0 | |
76 | * struct itbl_field *next = 0 | |
77 | * }; | |
78 | * }; | |
79 | * struct itbl_entry *next = 0 | |
80 | * }; | |
81 | * | |
82 | * And the assembler instructions: | |
83 | * "pig d2,0x100" | |
84 | * "pig $2,0x100" | |
85 | * | |
86 | * would both assemble to the hex value: | |
87 | * "0x4e220100" | |
88 | * | |
89 | */ | |
90 | ||
91 | #include <stdio.h> | |
92 | #include <stdlib.h> | |
93 | #include <string.h> | |
94 | #include "itbl-ops.h" | |
95 | #include "itbl-parse.h" | |
96 | ||
97 | /* #define DEBUG */ | |
98 | ||
99 | #ifdef DEBUG | |
100 | #include <assert.h> | |
101 | #define ASSERT(x) assert(x) | |
102 | #define DBG(x) printf x | |
103 | #else | |
104 | #define ASSERT(x) | |
105 | #define DBG(x) | |
106 | #endif | |
107 | ||
108 | #ifndef min | |
109 | #define min(a,b) (a<b?a:b) | |
110 | #endif | |
111 | ||
112 | int itbl_have_entries = 0; | |
113 | ||
114 | /*======================================================================*/ | |
115 | /* structures for keeping itbl format entries */ | |
116 | ||
117 | struct itbl_range | |
118 | { | |
119 | int sbit; /* mask starting bit position */ | |
120 | int ebit; /* mask ending bit position */ | |
121 | }; | |
122 | ||
123 | struct itbl_field | |
124 | { | |
125 | e_type type; /* dreg/creg/greg/immed/symb */ | |
126 | struct itbl_range range; /* field's bitfield range within instruction */ | |
127 | unsigned long flags; /* field flags */ | |
128 | struct itbl_field *next; /* next field in list */ | |
129 | }; | |
130 | ||
131 | ||
132 | /* These structures define the instructions and registers for a processor. | |
133 | * If the type is an instruction, the structure defines the format of an | |
134 | * instruction where the fields are the list of operands. | |
135 | * The flags field below uses the same values as those defined in the | |
136 | * gnu assembler and are machine specific. */ | |
137 | struct itbl_entry | |
138 | { | |
139 | e_processor processor; /* processor number */ | |
140 | e_type type; /* dreg/creg/greg/insn */ | |
141 | char *name; /* mnemionic name for insn/register */ | |
142 | unsigned long value; /* opcode/instruction mask/register number */ | |
143 | unsigned long flags; /* effects of the instruction */ | |
144 | struct itbl_range range; /* bit range within instruction for value */ | |
145 | struct itbl_field *fields; /* list of operand definitions (if any) */ | |
146 | struct itbl_entry *next; /* next entry */ | |
147 | }; | |
148 | ||
149 | ||
150 | /* local data and structures */ | |
151 | ||
152 | static int itbl_num_opcodes = 0; | |
153 | /* Array of entries for each processor and entry type */ | |
154 | static struct itbl_entry *entries[e_nprocs][e_ntypes] = | |
155 | { | |
156 | {0, 0, 0, 0, 0, 0}, | |
157 | {0, 0, 0, 0, 0, 0}, | |
158 | {0, 0, 0, 0, 0, 0}, | |
159 | {0, 0, 0, 0, 0, 0} | |
160 | }; | |
161 | ||
162 | /* local prototypes */ | |
163 | static unsigned long build_opcode PARAMS ((struct itbl_entry *e)); | |
164 | static e_type get_type PARAMS ((int yytype)); | |
165 | static e_processor get_processor PARAMS ((int yyproc)); | |
166 | static struct itbl_entry **get_entries PARAMS ((e_processor processor, | |
167 | e_type type)); | |
168 | static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor, | |
169 | e_type type, char *name)); | |
170 | static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor, | |
171 | e_type type, unsigned long val, struct itbl_range *r)); | |
172 | static struct itbl_entry *alloc_entry PARAMS ((e_processor processor, | |
173 | e_type type, char *name, unsigned long value)); | |
174 | static unsigned long apply_range PARAMS ((unsigned long value, | |
175 | struct itbl_range r)); | |
176 | static unsigned long extract_range PARAMS ((unsigned long value, | |
177 | struct itbl_range r)); | |
178 | static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit, | |
179 | int ebit, unsigned long flags)); | |
180 | ||
181 | ||
182 | /*======================================================================*/ | |
183 | /* Interfaces to the parser */ | |
184 | ||
185 | ||
186 | /* Open the table and use lex and yacc to parse the entries. | |
187 | * Return 1 for failure; 0 for success. */ | |
188 | ||
189 | int | |
190 | itbl_parse (char *insntbl) | |
191 | { | |
192 | extern FILE *yyin; | |
193 | extern int yyparse (void); | |
194 | yyin = fopen (insntbl, "r"); | |
195 | if (yyin == 0) | |
196 | { | |
197 | printf ("Can't open processor instruction specification file \"%s\"\n", | |
198 | insntbl); | |
199 | return 1; | |
200 | } | |
201 | else | |
202 | { | |
203 | while (yyparse ()); | |
204 | } | |
205 | fclose (yyin); | |
206 | itbl_have_entries = 1; | |
207 | return 0; | |
208 | } | |
209 | ||
210 | /* Add a register entry */ | |
211 | ||
212 | struct itbl_entry * | |
213 | itbl_add_reg (int yyprocessor, int yytype, char *regname, | |
214 | int regnum) | |
215 | { | |
216 | #if 0 | |
217 | #include "as.h" | |
218 | #include "symbols.h" | |
219 | /* Since register names don't have a prefix, we put them in the symbol table so | |
220 | they can't be used as symbols. This also simplifies argument parsing as | |
221 | we can let gas parse registers for us. The recorded register number is | |
222 | regnum. */ | |
223 | /* Use symbol_create here instead of symbol_new so we don't try to | |
224 | output registers into the object file's symbol table. */ | |
225 | symbol_table_insert (symbol_create (regname, reg_section, | |
226 | regnum, &zero_address_frag)); | |
227 | #endif | |
228 | return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname, | |
229 | (unsigned long) regnum); | |
230 | } | |
231 | ||
232 | /* Add an instruction entry */ | |
233 | ||
234 | struct itbl_entry * | |
235 | itbl_add_insn (int yyprocessor, char *name, unsigned long value, | |
236 | int sbit, int ebit, unsigned long flags) | |
237 | { | |
238 | struct itbl_entry *e; | |
239 | e = alloc_entry (get_processor (yyprocessor), e_insn, name, value); | |
240 | if (e) | |
241 | { | |
242 | e->range.sbit = sbit; | |
243 | e->range.ebit = ebit; | |
244 | e->flags = flags; | |
245 | itbl_num_opcodes++; | |
246 | } | |
247 | return e; | |
248 | } | |
249 | ||
250 | /* Add an operand to an instruction entry */ | |
251 | ||
252 | struct itbl_field * | |
253 | itbl_add_operand (struct itbl_entry *e, int yytype, int sbit, | |
254 | int ebit, unsigned long flags) | |
255 | { | |
256 | struct itbl_field *f, **last_f; | |
257 | if (!e) | |
258 | return 0; | |
259 | /* Add to end of fields' list. */ | |
260 | f = alloc_field (get_type (yytype), sbit, ebit, flags); | |
261 | if (f) | |
262 | { | |
263 | last_f = &e->fields; | |
264 | while (*last_f) | |
265 | last_f = &(*last_f)->next; | |
266 | *last_f = f; | |
267 | f->next = 0; | |
268 | } | |
269 | return f; | |
270 | } | |
271 | ||
272 | ||
273 | /*======================================================================*/ | |
274 | /* Interfaces for assembler and disassembler */ | |
275 | ||
276 | #ifndef STAND_ALONE | |
277 | #include "as.h" | |
278 | #include "symbols.h" | |
279 | static void append_insns_as_macros (void); | |
280 | ||
281 | /* initialize for gas */ | |
282 | void | |
283 | itbl_init (void) | |
284 | { | |
285 | struct itbl_entry *e, **es; | |
286 | e_processor procn; | |
287 | e_type type; | |
288 | ||
289 | if (!itbl_have_entries) | |
290 | return; | |
291 | ||
292 | /* Since register names don't have a prefix, put them in the symbol table so | |
293 | they can't be used as symbols. This simplifies argument parsing as | |
294 | we can let gas parse registers for us. */ | |
295 | /* Use symbol_create instead of symbol_new so we don't try to | |
296 | output registers into the object file's symbol table. */ | |
297 | ||
298 | for (type = e_regtype0; type < e_nregtypes; type++) | |
299 | for (procn = e_p0; procn < e_nprocs; procn++) | |
300 | { | |
301 | es = get_entries (procn, type); | |
302 | for (e = *es; e; e = e->next) | |
303 | { | |
304 | symbol_table_insert (symbol_create (e->name, reg_section, | |
305 | e->value, &zero_address_frag)); | |
306 | } | |
307 | } | |
308 | append_insns_as_macros (); | |
309 | } | |
310 | ||
311 | ||
312 | /* Append insns to opcodes table and increase number of opcodes | |
313 | * Structure of opcodes table: | |
314 | * struct itbl_opcode | |
315 | * { | |
316 | * const char *name; | |
317 | * const char *args; - string describing the arguments. | |
318 | * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO | |
319 | * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO | |
320 | * unsigned long pinfo; - insn flags, or INSN_MACRO | |
321 | * }; | |
322 | * examples: | |
323 | * {"li", "t,i", 0x34000000, 0xffe00000, WR_t }, | |
324 | * {"li", "t,I", 0, (int) M_LI, INSN_MACRO }, | |
325 | */ | |
326 | ||
327 | static char *form_args (struct itbl_entry *e); | |
328 | static void | |
329 | append_insns_as_macros (void) | |
330 | { | |
331 | struct ITBL_OPCODE_STRUCT *new_opcodes, *o; | |
332 | struct itbl_entry *e, **es; | |
333 | int n, id, size, new_size, new_num_opcodes; | |
334 | ||
335 | if (!itbl_have_entries) | |
336 | return; | |
337 | ||
338 | if (!itbl_num_opcodes) /* no new instructions to add! */ | |
339 | { | |
340 | return; | |
341 | } | |
342 | DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES)); | |
343 | ||
344 | new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes; | |
345 | ASSERT (new_num_opcodes >= itbl_num_opcodes); | |
346 | ||
347 | size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES; | |
348 | ASSERT (size >= 0); | |
349 | DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0]))); | |
350 | ||
351 | new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes; | |
352 | ASSERT (new_size > size); | |
353 | ||
354 | /* FIXME since ITBL_OPCODES culd be a static table, | |
355 | we can't realloc or delete the old memory. */ | |
356 | new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size); | |
357 | if (!new_opcodes) | |
358 | { | |
359 | printf (_("Unable to allocate memory for new instructions\n")); | |
360 | return; | |
361 | } | |
362 | if (size) /* copy prexisting opcodes table */ | |
363 | memcpy (new_opcodes, ITBL_OPCODES, size); | |
364 | ||
365 | /* FIXME! some NUMOPCODES are calculated expressions. | |
366 | These need to be changed before itbls can be supported. */ | |
367 | ||
368 | id = ITBL_NUM_MACROS; /* begin the next macro id after the last */ | |
369 | o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */ | |
370 | for (n = e_p0; n < e_nprocs; n++) | |
371 | { | |
372 | es = get_entries (n, e_insn); | |
373 | for (e = *es; e; e = e->next) | |
374 | { | |
375 | /* name, args, mask, match, pinfo | |
376 | * {"li", "t,i", 0x34000000, 0xffe00000, WR_t }, | |
377 | * {"li", "t,I", 0, (int) M_LI, INSN_MACRO }, | |
378 | * Construct args from itbl_fields. | |
379 | */ | |
380 | o->name = e->name; | |
381 | o->args = strdup (form_args (e)); | |
382 | o->mask = apply_range (e->value, e->range); | |
383 | /* FIXME how to catch durring assembly? */ | |
384 | /* mask to identify this insn */ | |
385 | o->match = apply_range (e->value, e->range); | |
386 | o->pinfo = 0; | |
387 | ||
388 | #ifdef USE_MACROS | |
389 | o->mask = id++; /* FIXME how to catch durring assembly? */ | |
390 | o->match = 0; /* for macros, the insn_isa number */ | |
391 | o->pinfo = INSN_MACRO; | |
392 | #endif | |
393 | ||
394 | /* Don't add instructions which caused an error */ | |
395 | if (o->args) | |
396 | o++; | |
397 | else | |
398 | new_num_opcodes--; | |
399 | } | |
400 | } | |
401 | ITBL_OPCODES = new_opcodes; | |
402 | ITBL_NUM_OPCODES = new_num_opcodes; | |
403 | ||
404 | /* FIXME | |
405 | At this point, we can free the entries, as they should have | |
406 | been added to the assembler's tables. | |
407 | Don't free name though, since name is being used by the new | |
408 | opcodes table. | |
409 | ||
410 | Eventually, we should also free the new opcodes table itself | |
411 | on exit. | |
412 | */ | |
413 | } | |
414 | ||
415 | static char * | |
416 | form_args (struct itbl_entry *e) | |
417 | { | |
418 | static char s[31]; | |
419 | char c = 0, *p = s; | |
420 | struct itbl_field *f; | |
421 | ||
422 | ASSERT (e); | |
423 | for (f = e->fields; f; f = f->next) | |
424 | { | |
425 | switch (f->type) | |
426 | { | |
427 | case e_dreg: | |
428 | c = 'd'; | |
429 | break; | |
430 | case e_creg: | |
431 | c = 't'; | |
432 | break; | |
433 | case e_greg: | |
434 | c = 's'; | |
435 | break; | |
436 | case e_immed: | |
437 | c = 'i'; | |
438 | break; | |
439 | case e_addr: | |
440 | c = 'a'; | |
441 | break; | |
442 | default: | |
443 | c = 0; /* ignore; unknown field type */ | |
444 | } | |
445 | if (c) | |
446 | { | |
447 | if (p != s) | |
448 | *p++ = ','; | |
449 | *p++ = c; | |
450 | } | |
451 | } | |
452 | *p = 0; | |
453 | return s; | |
454 | } | |
455 | #endif /* !STAND_ALONE */ | |
456 | ||
457 | ||
458 | /* Get processor's register name from val */ | |
459 | ||
460 | unsigned long | |
461 | itbl_get_reg_val (char *name) | |
462 | { | |
463 | e_type t; | |
464 | e_processor p; | |
465 | int r = 0; | |
466 | for (p = e_p0; p < e_nprocs; p++) | |
467 | for (t = e_regtype0; t < e_nregtypes; t++) | |
468 | { | |
469 | if (r = itbl_get_val (p, t, name), r) | |
470 | return r; | |
471 | } | |
472 | return 0; | |
473 | } | |
474 | ||
475 | char * | |
476 | itbl_get_name (e_processor processor, e_type type, unsigned long val) | |
477 | { | |
478 | struct itbl_entry *r; | |
479 | /* type depends on instruction passed */ | |
480 | r = find_entry_byval (processor, type, val, 0); | |
481 | if (r) | |
482 | return r->name; | |
483 | else | |
484 | return 0; /* error; invalid operand */ | |
485 | } | |
486 | ||
487 | /* Get processor's register value from name */ | |
488 | ||
489 | unsigned long | |
490 | itbl_get_val (e_processor processor, e_type type, char *name) | |
491 | { | |
492 | struct itbl_entry *r; | |
493 | /* type depends on instruction passed */ | |
494 | r = find_entry_byname (processor, type, name); | |
495 | if (r) | |
496 | return r->value; | |
497 | else | |
498 | return 0; /* error; invalid operand */ | |
499 | } | |
500 | ||
501 | ||
502 | /* Assemble instruction "name" with operands "s". | |
503 | * name - name of instruction | |
504 | * s - operands | |
505 | * returns - long word for assembled instruction */ | |
506 | ||
507 | unsigned long | |
508 | itbl_assemble (char *name, char *s) | |
509 | { | |
510 | unsigned long opcode; | |
511 | struct itbl_entry *e; | |
512 | struct itbl_field *f; | |
513 | char *n; | |
514 | int processor; | |
515 | ||
516 | if (!name || !*name) | |
517 | return 0; /* error! must have a opcode name/expr */ | |
518 | ||
519 | /* find entry in list of instructions for all processors */ | |
520 | for (processor = 0; processor < e_nprocs; processor++) | |
521 | { | |
522 | e = find_entry_byname (processor, e_insn, name); | |
523 | if (e) | |
524 | break; | |
525 | } | |
526 | if (!e) | |
527 | return 0; /* opcode not in table; invalid instrustion */ | |
528 | opcode = build_opcode (e); | |
529 | ||
530 | /* parse opcode's args (if any) */ | |
531 | for (f = e->fields; f; f = f->next) /* for each arg, ... */ | |
532 | { | |
533 | struct itbl_entry *r; | |
534 | unsigned long value; | |
535 | if (!s || !*s) | |
536 | return 0; /* error - not enough operands */ | |
537 | n = itbl_get_field (&s); | |
538 | /* n should be in form $n or 0xhhh (are symbol names valid?? */ | |
539 | switch (f->type) | |
540 | { | |
541 | case e_dreg: | |
542 | case e_creg: | |
543 | case e_greg: | |
544 | /* Accept either a string name | |
545 | * or '$' followed by the register number */ | |
546 | if (*n == '$') | |
547 | { | |
548 | n++; | |
549 | value = strtol (n, 0, 10); | |
550 | /* FIXME! could have "0l"... then what?? */ | |
551 | if (value == 0 && *n != '0') | |
552 | return 0; /* error; invalid operand */ | |
553 | } | |
554 | else | |
555 | { | |
556 | r = find_entry_byname (e->processor, f->type, n); | |
557 | if (r) | |
558 | value = r->value; | |
559 | else | |
560 | return 0; /* error; invalid operand */ | |
561 | } | |
562 | break; | |
563 | case e_addr: | |
564 | /* use assembler's symbol table to find symbol */ | |
565 | /* FIXME!! Do we need this? | |
566 | if so, what about relocs?? | |
567 | my_getExpression (&imm_expr, s); | |
568 | return 0; /-* error; invalid operand *-/ | |
569 | break; | |
570 | */ | |
571 | /* If not a symbol, fall thru to IMMED */ | |
572 | case e_immed: | |
573 | if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */ | |
574 | { | |
575 | n += 2; | |
576 | value = strtol (n, 0, 16); | |
577 | /* FIXME! could have "0xl"... then what?? */ | |
578 | } | |
579 | else | |
580 | { | |
581 | value = strtol (n, 0, 10); | |
582 | /* FIXME! could have "0l"... then what?? */ | |
583 | if (value == 0 && *n != '0') | |
584 | return 0; /* error; invalid operand */ | |
585 | } | |
586 | break; | |
587 | default: | |
588 | return 0; /* error; invalid field spec */ | |
589 | } | |
590 | opcode |= apply_range (value, f->range); | |
591 | } | |
592 | if (s && *s) | |
593 | return 0; /* error - too many operands */ | |
594 | return opcode; /* done! */ | |
595 | } | |
596 | ||
597 | /* Disassemble instruction "insn". | |
598 | * insn - instruction | |
599 | * s - buffer to hold disassembled instruction | |
600 | * returns - 1 if succeeded; 0 if failed | |
601 | */ | |
602 | ||
603 | int | |
604 | itbl_disassemble (char *s, unsigned long insn) | |
605 | { | |
606 | e_processor processor; | |
607 | struct itbl_entry *e; | |
608 | struct itbl_field *f; | |
609 | ||
610 | if (!ITBL_IS_INSN (insn)) | |
611 | return 0; /* error*/ | |
612 | processor = get_processor (ITBL_DECODE_PNUM (insn)); | |
613 | ||
614 | /* find entry in list */ | |
615 | e = find_entry_byval (processor, e_insn, insn, 0); | |
616 | if (!e) | |
617 | return 0; /* opcode not in table; invalid instrustion */ | |
618 | strcpy (s, e->name); | |
619 | ||
620 | /* parse insn's args (if any) */ | |
621 | for (f = e->fields; f; f = f->next) /* for each arg, ... */ | |
622 | { | |
623 | struct itbl_entry *r; | |
624 | unsigned long value; | |
625 | ||
626 | if (f == e->fields) /* first operand is preceeded by tab */ | |
627 | strcat (s, "\t"); | |
628 | else /* ','s separate following operands */ | |
629 | strcat (s, ","); | |
630 | value = extract_range (insn, f->range); | |
631 | /* n should be in form $n or 0xhhh (are symbol names valid?? */ | |
632 | switch (f->type) | |
633 | { | |
634 | case e_dreg: | |
635 | case e_creg: | |
636 | case e_greg: | |
637 | /* Accept either a string name | |
638 | * or '$' followed by the register number */ | |
639 | r = find_entry_byval (e->processor, f->type, value, &f->range); | |
640 | if (r) | |
641 | strcat (s, r->name); | |
642 | else | |
643 | sprintf (s, "%s$%d", s, value); | |
644 | break; | |
645 | case e_addr: | |
646 | /* use assembler's symbol table to find symbol */ | |
647 | /* FIXME!! Do we need this? | |
648 | * if so, what about relocs?? | |
649 | */ | |
650 | /* If not a symbol, fall thru to IMMED */ | |
651 | case e_immed: | |
652 | sprintf (s, "%s0x%x", s, value); | |
653 | break; | |
654 | default: | |
655 | return 0; /* error; invalid field spec */ | |
656 | } | |
657 | } | |
658 | return 1; /* done! */ | |
659 | } | |
660 | ||
661 | /*======================================================================*/ | |
662 | /* | |
663 | * Local functions for manipulating private structures containing | |
664 | * the names and format for the new instructions and registers | |
665 | * for each processor. | |
666 | */ | |
667 | ||
668 | /* Calculate instruction's opcode and function values from entry */ | |
669 | ||
670 | static unsigned long | |
671 | build_opcode (struct itbl_entry *e) | |
672 | { | |
673 | unsigned long opcode; | |
674 | ||
675 | opcode = apply_range (e->value, e->range); | |
676 | opcode |= ITBL_ENCODE_PNUM (e->processor); | |
677 | return opcode; | |
678 | } | |
679 | ||
680 | /* Calculate absolute value given the relative value and bit position range | |
681 | * within the instruction. | |
682 | * The range is inclusive where 0 is least significant bit. | |
683 | * A range of { 24, 20 } will have a mask of | |
684 | * bit 3 2 1 | |
685 | * pos: 1098 7654 3210 9876 5432 1098 7654 3210 | |
686 | * bin: 0000 0001 1111 0000 0000 0000 0000 0000 | |
687 | * hex: 0 1 f 0 0 0 0 0 | |
688 | * mask: 0x01f00000. | |
689 | */ | |
690 | ||
691 | static unsigned long | |
692 | apply_range (unsigned long rval, struct itbl_range r) | |
693 | { | |
694 | unsigned long mask; | |
695 | unsigned long aval; | |
696 | int len = MAX_BITPOS - r.sbit; | |
697 | ||
698 | ASSERT (r.sbit >= r.ebit); | |
699 | ASSERT (MAX_BITPOS >= r.sbit); | |
700 | ASSERT (r.ebit >= 0); | |
701 | ||
702 | /* create mask by truncating 1s by shifting */ | |
703 | mask = 0xffffffff << len; | |
704 | mask = mask >> len; | |
705 | mask = mask >> r.ebit; | |
706 | mask = mask << r.ebit; | |
707 | ||
708 | aval = (rval << r.ebit) & mask; | |
709 | return aval; | |
710 | } | |
711 | ||
712 | /* Calculate relative value given the absolute value and bit position range | |
713 | * within the instruction. */ | |
714 | ||
715 | static unsigned long | |
716 | extract_range (unsigned long aval, struct itbl_range r) | |
717 | { | |
718 | unsigned long mask; | |
719 | unsigned long rval; | |
720 | int len = MAX_BITPOS - r.sbit; | |
721 | ||
722 | /* create mask by truncating 1s by shifting */ | |
723 | mask = 0xffffffff << len; | |
724 | mask = mask >> len; | |
725 | mask = mask >> r.ebit; | |
726 | mask = mask << r.ebit; | |
727 | ||
728 | rval = (aval & mask) >> r.ebit; | |
729 | return rval; | |
730 | } | |
731 | ||
732 | /* Extract processor's assembly instruction field name from s; | |
733 | * forms are "n args" "n,args" or "n" */ | |
734 | /* Return next argument from string pointer "s" and advance s. | |
735 | * delimiters are " ,\0" */ | |
736 | ||
737 | char * | |
738 | itbl_get_field (char **S) | |
739 | { | |
740 | static char n[128]; | |
741 | char *p, *ps, *s; | |
742 | int len; | |
743 | ||
744 | s = *S; | |
745 | if (!s || !*s) | |
746 | return 0; | |
747 | p = s + strlen (s); | |
748 | if (ps = strchr (s, ','), ps) | |
749 | p = ps; | |
750 | if (ps = strchr (s, ' '), ps) | |
751 | p = min (p, ps); | |
752 | if (ps = strchr (s, '\0'), ps) | |
753 | p = min (p, ps); | |
754 | if (p == 0) | |
755 | return 0; /* error! */ | |
756 | len = p - s; | |
757 | ASSERT (128 > len + 1); | |
758 | strncpy (n, s, len); | |
759 | n[len] = 0; | |
760 | if (s[len] == '\0') | |
761 | s = 0; /* no more args */ | |
762 | else | |
763 | s += len + 1; /* advance to next arg */ | |
764 | ||
765 | *S = s; | |
766 | return n; | |
767 | } | |
768 | ||
769 | /* Search entries for a given processor and type | |
770 | * to find one matching the name "n". | |
771 | * Return a pointer to the entry */ | |
772 | ||
773 | static struct itbl_entry * | |
774 | find_entry_byname (e_processor processor, | |
775 | e_type type, char *n) | |
776 | { | |
777 | struct itbl_entry *e, **es; | |
778 | ||
779 | es = get_entries (processor, type); | |
780 | for (e = *es; e; e = e->next) /* for each entry, ... */ | |
781 | { | |
782 | if (!strcmp (e->name, n)) | |
783 | return e; | |
784 | } | |
785 | return 0; | |
786 | } | |
787 | ||
788 | /* Search entries for a given processor and type | |
789 | * to find one matching the value "val" for the range "r". | |
790 | * Return a pointer to the entry. | |
791 | * This function is used for disassembling fields of an instruction. | |
792 | */ | |
793 | ||
794 | static struct itbl_entry * | |
795 | find_entry_byval (e_processor processor, e_type type, | |
796 | unsigned long val, struct itbl_range *r) | |
797 | { | |
798 | struct itbl_entry *e, **es; | |
799 | unsigned long eval; | |
800 | ||
801 | es = get_entries (processor, type); | |
802 | for (e = *es; e; e = e->next) /* for each entry, ... */ | |
803 | { | |
804 | if (processor != e->processor) | |
805 | continue; | |
806 | /* For insns, we might not know the range of the opcode, | |
807 | * so a range of 0 will allow this routine to match against | |
808 | * the range of the entry to be compared with. | |
809 | * This could cause ambiguities. | |
810 | * For operands, we get an extracted value and a range. | |
811 | */ | |
812 | /* if range is 0, mask val against the range of the compared entry. */ | |
813 | if (r == 0) /* if no range passed, must be whole 32-bits | |
814 | * so create 32-bit value from entry's range */ | |
815 | { | |
816 | eval = apply_range (e->value, e->range); | |
817 | val &= apply_range (0xffffffff, e->range); | |
818 | } | |
819 | else if (r->sbit == e->range.sbit && r->ebit == e->range.ebit | |
820 | || e->range.sbit == 0 && e->range.ebit == 0) | |
821 | { | |
822 | eval = apply_range (e->value, *r); | |
823 | val = apply_range (val, *r); | |
824 | } | |
825 | else | |
826 | continue; | |
827 | if (val == eval) | |
828 | return e; | |
829 | } | |
830 | return 0; | |
831 | } | |
832 | ||
833 | /* Return a pointer to the list of entries for a given processor and type. */ | |
834 | ||
835 | static struct itbl_entry ** | |
836 | get_entries (e_processor processor, e_type type) | |
837 | { | |
838 | return &entries[processor][type]; | |
839 | } | |
840 | ||
841 | /* Return an integral value for the processor passed from yyparse. */ | |
842 | ||
843 | static e_processor | |
844 | get_processor (int yyproc) | |
845 | { | |
846 | /* translate from yacc's processor to enum */ | |
847 | if (yyproc >= e_p0 && yyproc < e_nprocs) | |
848 | return (e_processor) yyproc; | |
849 | return e_invproc; /* error; invalid processor */ | |
850 | } | |
851 | ||
852 | /* Return an integral value for the entry type passed from yyparse. */ | |
853 | ||
854 | static e_type | |
855 | get_type (int yytype) | |
856 | { | |
857 | switch (yytype) | |
858 | { | |
859 | /* translate from yacc's type to enum */ | |
860 | case INSN: | |
861 | return e_insn; | |
862 | case DREG: | |
863 | return e_dreg; | |
864 | case CREG: | |
865 | return e_creg; | |
866 | case GREG: | |
867 | return e_greg; | |
868 | case ADDR: | |
869 | return e_addr; | |
870 | case IMMED: | |
871 | return e_immed; | |
872 | default: | |
873 | return e_invtype; /* error; invalid type */ | |
874 | } | |
875 | } | |
876 | ||
877 | ||
878 | /* Allocate and initialize an entry */ | |
879 | ||
880 | static struct itbl_entry * | |
881 | alloc_entry (e_processor processor, e_type type, | |
882 | char *name, unsigned long value) | |
883 | { | |
884 | struct itbl_entry *e, **es; | |
885 | if (!name) | |
886 | return 0; | |
887 | e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry)); | |
888 | if (e) | |
889 | { | |
890 | memset (e, 0, sizeof (struct itbl_entry)); | |
891 | e->name = (char *) malloc (sizeof (strlen (name)) + 1); | |
892 | if (e->name) | |
893 | strcpy (e->name, name); | |
894 | e->processor = processor; | |
895 | e->type = type; | |
896 | e->value = value; | |
897 | es = get_entries (e->processor, e->type); | |
898 | e->next = *es; | |
899 | *es = e; | |
900 | } | |
901 | return e; | |
902 | } | |
903 | ||
904 | /* Allocate and initialize an entry's field */ | |
905 | ||
906 | static struct itbl_field * | |
907 | alloc_field (e_type type, int sbit, int ebit, | |
908 | unsigned long flags) | |
909 | { | |
910 | struct itbl_field *f; | |
911 | f = (struct itbl_field *) malloc (sizeof (struct itbl_field)); | |
912 | if (f) | |
913 | { | |
914 | memset (f, 0, sizeof (struct itbl_field)); | |
915 | f->type = type; | |
916 | f->range.sbit = sbit; | |
917 | f->range.ebit = ebit; | |
918 | f->flags = flags; | |
919 | } | |
920 | return f; | |
921 | } |