]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
0fb0cc75 JB |
3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
9 | (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
18 | |
19 | #include "defs.h" | |
a6c442d8 | 20 | #include "exceptions.h" |
8b93c638 JM |
21 | #include "value.h" |
22 | #include "expression.h" | |
23 | #include "frame.h" | |
8b93c638 JM |
24 | #include "language.h" |
25 | #include "wrapper.h" | |
26 | #include "gdbcmd.h" | |
d2353924 | 27 | #include "block.h" |
79a45b7d | 28 | #include "valprint.h" |
a6c442d8 MK |
29 | |
30 | #include "gdb_assert.h" | |
b66d6d2e | 31 | #include "gdb_string.h" |
8b93c638 JM |
32 | |
33 | #include "varobj.h" | |
28335dcc | 34 | #include "vec.h" |
6208b47d VP |
35 | #include "gdbthread.h" |
36 | #include "inferior.h" | |
8b93c638 JM |
37 | |
38 | /* Non-zero if we want to see trace of varobj level stuff. */ | |
39 | ||
40 | int varobjdebug = 0; | |
920d2a44 AC |
41 | static void |
42 | show_varobjdebug (struct ui_file *file, int from_tty, | |
43 | struct cmd_list_element *c, const char *value) | |
44 | { | |
45 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
46 | } | |
8b93c638 JM |
47 | |
48 | /* String representations of gdb's format codes */ | |
49 | char *varobj_format_string[] = | |
72330bd6 | 50 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 JM |
51 | |
52 | /* String representations of gdb's known languages */ | |
72330bd6 | 53 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 JM |
54 | |
55 | /* Data structures */ | |
56 | ||
57 | /* Every root variable has one of these structures saved in its | |
58 | varobj. Members which must be free'd are noted. */ | |
59 | struct varobj_root | |
72330bd6 | 60 | { |
8b93c638 | 61 | |
72330bd6 AC |
62 | /* Alloc'd expression for this parent. */ |
63 | struct expression *exp; | |
8b93c638 | 64 | |
72330bd6 AC |
65 | /* Block for which this expression is valid */ |
66 | struct block *valid_block; | |
8b93c638 | 67 | |
44a67aa7 VP |
68 | /* The frame for this expression. This field is set iff valid_block is |
69 | not NULL. */ | |
e64d9b3d | 70 | struct frame_id frame; |
8b93c638 | 71 | |
c5b48eac VP |
72 | /* The thread ID that this varobj_root belong to. This field |
73 | is only valid if valid_block is not NULL. | |
74 | When not 0, indicates which thread 'frame' belongs to. | |
75 | When 0, indicates that the thread list was empty when the varobj_root | |
76 | was created. */ | |
77 | int thread_id; | |
78 | ||
a5defcdc VP |
79 | /* If 1, the -var-update always recomputes the value in the |
80 | current thread and frame. Otherwise, variable object is | |
81 | always updated in the specific scope/thread/frame */ | |
82 | int floating; | |
73a93a32 | 83 | |
8756216b DP |
84 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
85 | to symbols that do not exist anymore. */ | |
86 | int is_valid; | |
87 | ||
72330bd6 AC |
88 | /* Language info for this variable and its children */ |
89 | struct language_specific *lang; | |
8b93c638 | 90 | |
72330bd6 AC |
91 | /* The varobj for this root node. */ |
92 | struct varobj *rootvar; | |
8b93c638 | 93 | |
72330bd6 AC |
94 | /* Next root variable */ |
95 | struct varobj_root *next; | |
96 | }; | |
8b93c638 JM |
97 | |
98 | /* Every variable in the system has a structure of this type defined | |
99 | for it. This structure holds all information necessary to manipulate | |
100 | a particular object variable. Members which must be freed are noted. */ | |
101 | struct varobj | |
72330bd6 | 102 | { |
8b93c638 | 103 | |
72330bd6 AC |
104 | /* Alloc'd name of the variable for this object.. If this variable is a |
105 | child, then this name will be the child's source name. | |
106 | (bar, not foo.bar) */ | |
107 | /* NOTE: This is the "expression" */ | |
108 | char *name; | |
8b93c638 | 109 | |
02142340 VP |
110 | /* Alloc'd expression for this child. Can be used to create a |
111 | root variable corresponding to this child. */ | |
112 | char *path_expr; | |
113 | ||
72330bd6 AC |
114 | /* The alloc'd name for this variable's object. This is here for |
115 | convenience when constructing this object's children. */ | |
116 | char *obj_name; | |
8b93c638 | 117 | |
72330bd6 AC |
118 | /* Index of this variable in its parent or -1 */ |
119 | int index; | |
8b93c638 | 120 | |
202ddcaa VP |
121 | /* The type of this variable. This can be NULL |
122 | for artifial variable objects -- currently, the "accessibility" | |
123 | variable objects in C++. */ | |
72330bd6 | 124 | struct type *type; |
8b93c638 | 125 | |
b20d8971 VP |
126 | /* The value of this expression or subexpression. A NULL value |
127 | indicates there was an error getting this value. | |
b2c2bd75 VP |
128 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
129 | the value is either NULL, or not lazy. */ | |
30b28db1 | 130 | struct value *value; |
8b93c638 | 131 | |
72330bd6 AC |
132 | /* The number of (immediate) children this variable has */ |
133 | int num_children; | |
8b93c638 | 134 | |
72330bd6 AC |
135 | /* If this object is a child, this points to its immediate parent. */ |
136 | struct varobj *parent; | |
8b93c638 | 137 | |
28335dcc VP |
138 | /* Children of this object. */ |
139 | VEC (varobj_p) *children; | |
8b93c638 | 140 | |
72330bd6 AC |
141 | /* Description of the root variable. Points to root variable for children. */ |
142 | struct varobj_root *root; | |
8b93c638 | 143 | |
72330bd6 AC |
144 | /* The format of the output for this object */ |
145 | enum varobj_display_formats format; | |
fb9b6b35 JJ |
146 | |
147 | /* Was this variable updated via a varobj_set_value operation */ | |
148 | int updated; | |
85265413 NR |
149 | |
150 | /* Last print value. */ | |
151 | char *print_value; | |
25d5ea92 VP |
152 | |
153 | /* Is this variable frozen. Frozen variables are never implicitly | |
154 | updated by -var-update * | |
155 | or -var-update <direct-or-indirect-parent>. */ | |
156 | int frozen; | |
157 | ||
158 | /* Is the value of this variable intentionally not fetched? It is | |
159 | not fetched if either the variable is frozen, or any parents is | |
160 | frozen. */ | |
161 | int not_fetched; | |
72330bd6 | 162 | }; |
8b93c638 | 163 | |
8b93c638 | 164 | struct cpstack |
72330bd6 AC |
165 | { |
166 | char *name; | |
167 | struct cpstack *next; | |
168 | }; | |
8b93c638 JM |
169 | |
170 | /* A list of varobjs */ | |
171 | ||
172 | struct vlist | |
72330bd6 AC |
173 | { |
174 | struct varobj *var; | |
175 | struct vlist *next; | |
176 | }; | |
8b93c638 JM |
177 | |
178 | /* Private function prototypes */ | |
179 | ||
180 | /* Helper functions for the above subcommands. */ | |
181 | ||
a14ed312 | 182 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 183 | |
a14ed312 KB |
184 | static void delete_variable_1 (struct cpstack **, int *, |
185 | struct varobj *, int, int); | |
8b93c638 | 186 | |
a14ed312 | 187 | static int install_variable (struct varobj *); |
8b93c638 | 188 | |
a14ed312 | 189 | static void uninstall_variable (struct varobj *); |
8b93c638 | 190 | |
a14ed312 | 191 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 192 | |
8b93c638 JM |
193 | /* Utility routines */ |
194 | ||
a14ed312 | 195 | static struct varobj *new_variable (void); |
8b93c638 | 196 | |
a14ed312 | 197 | static struct varobj *new_root_variable (void); |
8b93c638 | 198 | |
a14ed312 | 199 | static void free_variable (struct varobj *var); |
8b93c638 | 200 | |
74b7792f AC |
201 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
202 | ||
a14ed312 | 203 | static struct type *get_type (struct varobj *var); |
8b93c638 | 204 | |
6e2a9270 VP |
205 | static struct type *get_value_type (struct varobj *var); |
206 | ||
a14ed312 | 207 | static struct type *get_target_type (struct type *); |
8b93c638 | 208 | |
a14ed312 | 209 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 210 | |
a14ed312 | 211 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 212 | |
a14ed312 | 213 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 214 | |
acd65feb VP |
215 | static int install_new_value (struct varobj *var, struct value *value, |
216 | int initial); | |
217 | ||
8b93c638 JM |
218 | /* Language-specific routines. */ |
219 | ||
a14ed312 | 220 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 221 | |
a14ed312 | 222 | static int number_of_children (struct varobj *); |
8b93c638 | 223 | |
a14ed312 | 224 | static char *name_of_variable (struct varobj *); |
8b93c638 | 225 | |
a14ed312 | 226 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 227 | |
30b28db1 | 228 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 229 | |
30b28db1 | 230 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 231 | |
de051565 MK |
232 | static char *my_value_of_variable (struct varobj *var, |
233 | enum varobj_display_formats format); | |
8b93c638 | 234 | |
85265413 NR |
235 | static char *value_get_print_value (struct value *value, |
236 | enum varobj_display_formats format); | |
237 | ||
b2c2bd75 VP |
238 | static int varobj_value_is_changeable_p (struct varobj *var); |
239 | ||
240 | static int is_root_p (struct varobj *var); | |
8b93c638 JM |
241 | |
242 | /* C implementation */ | |
243 | ||
a14ed312 | 244 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 245 | |
a14ed312 | 246 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 247 | |
a14ed312 | 248 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 249 | |
02142340 VP |
250 | static char *c_path_expr_of_child (struct varobj *child); |
251 | ||
30b28db1 | 252 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 253 | |
30b28db1 | 254 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 255 | |
a14ed312 | 256 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 257 | |
de051565 MK |
258 | static char *c_value_of_variable (struct varobj *var, |
259 | enum varobj_display_formats format); | |
8b93c638 JM |
260 | |
261 | /* C++ implementation */ | |
262 | ||
a14ed312 | 263 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 264 | |
a14ed312 | 265 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 266 | |
a14ed312 | 267 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 268 | |
a14ed312 | 269 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 270 | |
02142340 VP |
271 | static char *cplus_path_expr_of_child (struct varobj *child); |
272 | ||
30b28db1 | 273 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 274 | |
30b28db1 | 275 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 276 | |
a14ed312 | 277 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 278 | |
de051565 MK |
279 | static char *cplus_value_of_variable (struct varobj *var, |
280 | enum varobj_display_formats format); | |
8b93c638 JM |
281 | |
282 | /* Java implementation */ | |
283 | ||
a14ed312 | 284 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 285 | |
a14ed312 | 286 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 287 | |
a14ed312 | 288 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 289 | |
02142340 VP |
290 | static char *java_path_expr_of_child (struct varobj *child); |
291 | ||
30b28db1 | 292 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 293 | |
30b28db1 | 294 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 295 | |
a14ed312 | 296 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 297 | |
de051565 MK |
298 | static char *java_value_of_variable (struct varobj *var, |
299 | enum varobj_display_formats format); | |
8b93c638 JM |
300 | |
301 | /* The language specific vector */ | |
302 | ||
303 | struct language_specific | |
72330bd6 | 304 | { |
8b93c638 | 305 | |
72330bd6 AC |
306 | /* The language of this variable */ |
307 | enum varobj_languages language; | |
8b93c638 | 308 | |
72330bd6 AC |
309 | /* The number of children of PARENT. */ |
310 | int (*number_of_children) (struct varobj * parent); | |
8b93c638 | 311 | |
72330bd6 AC |
312 | /* The name (expression) of a root varobj. */ |
313 | char *(*name_of_variable) (struct varobj * parent); | |
8b93c638 | 314 | |
72330bd6 AC |
315 | /* The name of the INDEX'th child of PARENT. */ |
316 | char *(*name_of_child) (struct varobj * parent, int index); | |
8b93c638 | 317 | |
02142340 VP |
318 | /* Returns the rooted expression of CHILD, which is a variable |
319 | obtain that has some parent. */ | |
320 | char *(*path_expr_of_child) (struct varobj * child); | |
321 | ||
30b28db1 AC |
322 | /* The ``struct value *'' of the root variable ROOT. */ |
323 | struct value *(*value_of_root) (struct varobj ** root_handle); | |
8b93c638 | 324 | |
30b28db1 AC |
325 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
326 | struct value *(*value_of_child) (struct varobj * parent, int index); | |
8b93c638 | 327 | |
72330bd6 AC |
328 | /* The type of the INDEX'th child of PARENT. */ |
329 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
8b93c638 | 330 | |
72330bd6 | 331 | /* The current value of VAR. */ |
de051565 MK |
332 | char *(*value_of_variable) (struct varobj * var, |
333 | enum varobj_display_formats format); | |
72330bd6 | 334 | }; |
8b93c638 JM |
335 | |
336 | /* Array of known source language routines. */ | |
d5d6fca5 | 337 | static struct language_specific languages[vlang_end] = { |
8b93c638 JM |
338 | /* Unknown (try treating as C */ |
339 | { | |
72330bd6 AC |
340 | vlang_unknown, |
341 | c_number_of_children, | |
342 | c_name_of_variable, | |
343 | c_name_of_child, | |
02142340 | 344 | c_path_expr_of_child, |
72330bd6 AC |
345 | c_value_of_root, |
346 | c_value_of_child, | |
347 | c_type_of_child, | |
72330bd6 | 348 | c_value_of_variable} |
8b93c638 JM |
349 | , |
350 | /* C */ | |
351 | { | |
72330bd6 AC |
352 | vlang_c, |
353 | c_number_of_children, | |
354 | c_name_of_variable, | |
355 | c_name_of_child, | |
02142340 | 356 | c_path_expr_of_child, |
72330bd6 AC |
357 | c_value_of_root, |
358 | c_value_of_child, | |
359 | c_type_of_child, | |
72330bd6 | 360 | c_value_of_variable} |
8b93c638 JM |
361 | , |
362 | /* C++ */ | |
363 | { | |
72330bd6 AC |
364 | vlang_cplus, |
365 | cplus_number_of_children, | |
366 | cplus_name_of_variable, | |
367 | cplus_name_of_child, | |
02142340 | 368 | cplus_path_expr_of_child, |
72330bd6 AC |
369 | cplus_value_of_root, |
370 | cplus_value_of_child, | |
371 | cplus_type_of_child, | |
72330bd6 | 372 | cplus_value_of_variable} |
8b93c638 JM |
373 | , |
374 | /* Java */ | |
375 | { | |
72330bd6 AC |
376 | vlang_java, |
377 | java_number_of_children, | |
378 | java_name_of_variable, | |
379 | java_name_of_child, | |
02142340 | 380 | java_path_expr_of_child, |
72330bd6 AC |
381 | java_value_of_root, |
382 | java_value_of_child, | |
383 | java_type_of_child, | |
72330bd6 | 384 | java_value_of_variable} |
8b93c638 JM |
385 | }; |
386 | ||
387 | /* A little convenience enum for dealing with C++/Java */ | |
388 | enum vsections | |
72330bd6 AC |
389 | { |
390 | v_public = 0, v_private, v_protected | |
391 | }; | |
8b93c638 JM |
392 | |
393 | /* Private data */ | |
394 | ||
395 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
72330bd6 | 396 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 JM |
397 | |
398 | /* Header of the list of root variable objects */ | |
399 | static struct varobj_root *rootlist; | |
400 | static int rootcount = 0; /* number of root varobjs in the list */ | |
401 | ||
402 | /* Prime number indicating the number of buckets in the hash table */ | |
403 | /* A prime large enough to avoid too many colisions */ | |
404 | #define VAROBJ_TABLE_SIZE 227 | |
405 | ||
406 | /* Pointer to the varobj hash table (built at run time) */ | |
407 | static struct vlist **varobj_table; | |
408 | ||
8b93c638 JM |
409 | /* Is the variable X one of our "fake" children? */ |
410 | #define CPLUS_FAKE_CHILD(x) \ | |
411 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
412 | \f | |
413 | ||
414 | /* API Implementation */ | |
b2c2bd75 VP |
415 | static int |
416 | is_root_p (struct varobj *var) | |
417 | { | |
418 | return (var->root->rootvar == var); | |
419 | } | |
8b93c638 JM |
420 | |
421 | /* Creates a varobj (not its children) */ | |
422 | ||
7d8547c9 AC |
423 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
424 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
425 | ||
426 | static struct frame_info * | |
427 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
428 | { | |
429 | struct frame_info *frame = NULL; | |
430 | ||
431 | if (frame_addr == (CORE_ADDR) 0) | |
432 | return NULL; | |
433 | ||
9d49bdc2 PA |
434 | for (frame = get_current_frame (); |
435 | frame != NULL; | |
436 | frame = get_prev_frame (frame)) | |
7d8547c9 | 437 | { |
eb5492fa | 438 | if (get_frame_base_address (frame) == frame_addr) |
7d8547c9 AC |
439 | return frame; |
440 | } | |
9d49bdc2 PA |
441 | |
442 | return NULL; | |
7d8547c9 AC |
443 | } |
444 | ||
8b93c638 JM |
445 | struct varobj * |
446 | varobj_create (char *objname, | |
72330bd6 | 447 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
448 | { |
449 | struct varobj *var; | |
2c67cb8b AC |
450 | struct frame_info *fi; |
451 | struct frame_info *old_fi = NULL; | |
8b93c638 JM |
452 | struct block *block; |
453 | struct cleanup *old_chain; | |
454 | ||
455 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
456 | var = new_root_variable (); | |
74b7792f | 457 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
458 | |
459 | if (expression != NULL) | |
460 | { | |
461 | char *p; | |
462 | enum varobj_languages lang; | |
e55dccf0 | 463 | struct value *value = NULL; |
02142340 | 464 | int expr_len; |
8b93c638 | 465 | |
9d49bdc2 PA |
466 | /* Parse and evaluate the expression, filling in as much of the |
467 | variable's data as possible. */ | |
468 | ||
469 | if (has_stack_frames ()) | |
470 | { | |
471 | /* Allow creator to specify context of variable */ | |
472 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) | |
473 | fi = get_selected_frame (NULL); | |
474 | else | |
475 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
476 | lookup using the frame ID and not just the frame's | |
477 | ``address''. This, of course, means an interface | |
478 | change. However, with out that interface change ISAs, | |
479 | such as the ia64 with its two stacks, won't work. | |
480 | Similar goes for the case where there is a frameless | |
481 | function. */ | |
482 | fi = find_frame_addr_in_frame_chain (frame); | |
483 | } | |
8b93c638 | 484 | else |
9d49bdc2 | 485 | fi = NULL; |
8b93c638 | 486 | |
73a93a32 JI |
487 | /* frame = -2 means always use selected frame */ |
488 | if (type == USE_SELECTED_FRAME) | |
a5defcdc | 489 | var->root->floating = 1; |
73a93a32 | 490 | |
8b93c638 JM |
491 | block = NULL; |
492 | if (fi != NULL) | |
ae767bfb | 493 | block = get_frame_block (fi, 0); |
8b93c638 JM |
494 | |
495 | p = expression; | |
496 | innermost_block = NULL; | |
73a93a32 JI |
497 | /* Wrap the call to parse expression, so we can |
498 | return a sensible error. */ | |
499 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
500 | { | |
501 | return NULL; | |
502 | } | |
8b93c638 JM |
503 | |
504 | /* Don't allow variables to be created for types. */ | |
505 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
506 | { | |
507 | do_cleanups (old_chain); | |
bc8332bb AC |
508 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
509 | " as an expression.\n"); | |
8b93c638 JM |
510 | return NULL; |
511 | } | |
512 | ||
513 | var->format = variable_default_display (var); | |
514 | var->root->valid_block = innermost_block; | |
02142340 VP |
515 | expr_len = strlen (expression); |
516 | var->name = savestring (expression, expr_len); | |
517 | /* For a root var, the name and the expr are the same. */ | |
518 | var->path_expr = savestring (expression, expr_len); | |
8b93c638 JM |
519 | |
520 | /* When the frame is different from the current frame, | |
521 | we must select the appropriate frame before parsing | |
522 | the expression, otherwise the value will not be current. | |
523 | Since select_frame is so benign, just call it for all cases. */ | |
44a67aa7 | 524 | if (innermost_block && fi != NULL) |
8b93c638 | 525 | { |
7a424e99 | 526 | var->root->frame = get_frame_id (fi); |
c5b48eac | 527 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
206415a3 | 528 | old_fi = get_selected_frame (NULL); |
c5b48eac | 529 | select_frame (fi); |
8b93c638 JM |
530 | } |
531 | ||
340a7723 | 532 | /* We definitely need to catch errors here. |
8b93c638 JM |
533 | If evaluate_expression succeeds we got the value we wanted. |
534 | But if it fails, we still go on with a call to evaluate_type() */ | |
acd65feb | 535 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
536 | { |
537 | /* Error getting the value. Try to at least get the | |
538 | right type. */ | |
539 | struct value *type_only_value = evaluate_type (var->root->exp); | |
540 | var->type = value_type (type_only_value); | |
541 | } | |
542 | else | |
543 | var->type = value_type (value); | |
acd65feb | 544 | |
acd65feb | 545 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
546 | |
547 | /* Set language info */ | |
548 | lang = variable_language (var); | |
d5d6fca5 | 549 | var->root->lang = &languages[lang]; |
8b93c638 JM |
550 | |
551 | /* Set ourselves as our root */ | |
552 | var->root->rootvar = var; | |
553 | ||
554 | /* Reset the selected frame */ | |
555 | if (fi != NULL) | |
0f7d239c | 556 | select_frame (old_fi); |
8b93c638 JM |
557 | } |
558 | ||
73a93a32 JI |
559 | /* If the variable object name is null, that means this |
560 | is a temporary variable, so don't install it. */ | |
561 | ||
562 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 JM |
563 | { |
564 | var->obj_name = savestring (objname, strlen (objname)); | |
565 | ||
566 | /* If a varobj name is duplicated, the install will fail so | |
567 | we must clenup */ | |
568 | if (!install_variable (var)) | |
569 | { | |
570 | do_cleanups (old_chain); | |
571 | return NULL; | |
572 | } | |
573 | } | |
574 | ||
575 | discard_cleanups (old_chain); | |
576 | return var; | |
577 | } | |
578 | ||
579 | /* Generates an unique name that can be used for a varobj */ | |
580 | ||
581 | char * | |
582 | varobj_gen_name (void) | |
583 | { | |
584 | static int id = 0; | |
e64d9b3d | 585 | char *obj_name; |
8b93c638 JM |
586 | |
587 | /* generate a name for this object */ | |
588 | id++; | |
b435e160 | 589 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 590 | |
e64d9b3d | 591 | return obj_name; |
8b93c638 JM |
592 | } |
593 | ||
594 | /* Given an "objname", returns the pointer to the corresponding varobj | |
595 | or NULL if not found */ | |
596 | ||
597 | struct varobj * | |
598 | varobj_get_handle (char *objname) | |
599 | { | |
600 | struct vlist *cv; | |
601 | const char *chp; | |
602 | unsigned int index = 0; | |
603 | unsigned int i = 1; | |
604 | ||
605 | for (chp = objname; *chp; chp++) | |
606 | { | |
607 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
608 | } | |
609 | ||
610 | cv = *(varobj_table + index); | |
611 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
612 | cv = cv->next; | |
613 | ||
614 | if (cv == NULL) | |
8a3fe4f8 | 615 | error (_("Variable object not found")); |
8b93c638 JM |
616 | |
617 | return cv->var; | |
618 | } | |
619 | ||
620 | /* Given the handle, return the name of the object */ | |
621 | ||
622 | char * | |
623 | varobj_get_objname (struct varobj *var) | |
624 | { | |
625 | return var->obj_name; | |
626 | } | |
627 | ||
628 | /* Given the handle, return the expression represented by the object */ | |
629 | ||
630 | char * | |
631 | varobj_get_expression (struct varobj *var) | |
632 | { | |
633 | return name_of_variable (var); | |
634 | } | |
635 | ||
636 | /* Deletes a varobj and all its children if only_children == 0, | |
637 | otherwise deletes only the children; returns a malloc'ed list of all the | |
638 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
639 | ||
640 | int | |
641 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
642 | { | |
643 | int delcount; | |
644 | int mycount; | |
645 | struct cpstack *result = NULL; | |
646 | char **cp; | |
647 | ||
648 | /* Initialize a stack for temporary results */ | |
649 | cppush (&result, NULL); | |
650 | ||
651 | if (only_children) | |
652 | /* Delete only the variable children */ | |
653 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
654 | else | |
655 | /* Delete the variable and all its children */ | |
656 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
657 | ||
658 | /* We may have been asked to return a list of what has been deleted */ | |
659 | if (dellist != NULL) | |
660 | { | |
661 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
662 | ||
663 | cp = *dellist; | |
664 | mycount = delcount; | |
665 | *cp = cppop (&result); | |
666 | while ((*cp != NULL) && (mycount > 0)) | |
667 | { | |
668 | mycount--; | |
669 | cp++; | |
670 | *cp = cppop (&result); | |
671 | } | |
672 | ||
673 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 674 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 675 | mycount); |
8b93c638 JM |
676 | } |
677 | ||
678 | return delcount; | |
679 | } | |
680 | ||
681 | /* Set/Get variable object display format */ | |
682 | ||
683 | enum varobj_display_formats | |
684 | varobj_set_display_format (struct varobj *var, | |
685 | enum varobj_display_formats format) | |
686 | { | |
687 | switch (format) | |
688 | { | |
689 | case FORMAT_NATURAL: | |
690 | case FORMAT_BINARY: | |
691 | case FORMAT_DECIMAL: | |
692 | case FORMAT_HEXADECIMAL: | |
693 | case FORMAT_OCTAL: | |
694 | var->format = format; | |
695 | break; | |
696 | ||
697 | default: | |
698 | var->format = variable_default_display (var); | |
699 | } | |
700 | ||
ae7d22a6 VP |
701 | if (varobj_value_is_changeable_p (var) |
702 | && var->value && !value_lazy (var->value)) | |
703 | { | |
6c761d9c | 704 | xfree (var->print_value); |
ae7d22a6 VP |
705 | var->print_value = value_get_print_value (var->value, var->format); |
706 | } | |
707 | ||
8b93c638 JM |
708 | return var->format; |
709 | } | |
710 | ||
711 | enum varobj_display_formats | |
712 | varobj_get_display_format (struct varobj *var) | |
713 | { | |
714 | return var->format; | |
715 | } | |
716 | ||
c5b48eac VP |
717 | /* If the variable object is bound to a specific thread, that |
718 | is its evaluation can always be done in context of a frame | |
719 | inside that thread, returns GDB id of the thread -- which | |
720 | is always positive. Otherwise, returns -1. */ | |
721 | int | |
722 | varobj_get_thread_id (struct varobj *var) | |
723 | { | |
724 | if (var->root->valid_block && var->root->thread_id > 0) | |
725 | return var->root->thread_id; | |
726 | else | |
727 | return -1; | |
728 | } | |
729 | ||
25d5ea92 VP |
730 | void |
731 | varobj_set_frozen (struct varobj *var, int frozen) | |
732 | { | |
733 | /* When a variable is unfrozen, we don't fetch its value. | |
734 | The 'not_fetched' flag remains set, so next -var-update | |
735 | won't complain. | |
736 | ||
737 | We don't fetch the value, because for structures the client | |
738 | should do -var-update anyway. It would be bad to have different | |
739 | client-size logic for structure and other types. */ | |
740 | var->frozen = frozen; | |
741 | } | |
742 | ||
743 | int | |
744 | varobj_get_frozen (struct varobj *var) | |
745 | { | |
746 | return var->frozen; | |
747 | } | |
748 | ||
749 | ||
8b93c638 JM |
750 | int |
751 | varobj_get_num_children (struct varobj *var) | |
752 | { | |
753 | if (var->num_children == -1) | |
754 | var->num_children = number_of_children (var); | |
755 | ||
756 | return var->num_children; | |
757 | } | |
758 | ||
759 | /* Creates a list of the immediate children of a variable object; | |
760 | the return code is the number of such children or -1 on error */ | |
761 | ||
d56d46f5 VP |
762 | VEC (varobj_p)* |
763 | varobj_list_children (struct varobj *var) | |
8b93c638 JM |
764 | { |
765 | struct varobj *child; | |
766 | char *name; | |
767 | int i; | |
768 | ||
8b93c638 JM |
769 | if (var->num_children == -1) |
770 | var->num_children = number_of_children (var); | |
771 | ||
74a44383 DJ |
772 | /* If that failed, give up. */ |
773 | if (var->num_children == -1) | |
d56d46f5 | 774 | return var->children; |
74a44383 | 775 | |
28335dcc VP |
776 | /* If we're called when the list of children is not yet initialized, |
777 | allocate enough elements in it. */ | |
778 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
779 | VEC_safe_push (varobj_p, var->children, NULL); | |
780 | ||
8b93c638 JM |
781 | for (i = 0; i < var->num_children; i++) |
782 | { | |
d56d46f5 | 783 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
784 | |
785 | if (existing == NULL) | |
786 | { | |
787 | /* Either it's the first call to varobj_list_children for | |
788 | this variable object, and the child was never created, | |
789 | or it was explicitly deleted by the client. */ | |
790 | name = name_of_child (var, i); | |
791 | existing = create_child (var, i, name); | |
792 | VEC_replace (varobj_p, var->children, i, existing); | |
793 | } | |
8b93c638 JM |
794 | } |
795 | ||
d56d46f5 | 796 | return var->children; |
8b93c638 JM |
797 | } |
798 | ||
799 | /* Obtain the type of an object Variable as a string similar to the one gdb | |
800 | prints on the console */ | |
801 | ||
802 | char * | |
803 | varobj_get_type (struct varobj *var) | |
804 | { | |
30b28db1 | 805 | struct value *val; |
8b93c638 JM |
806 | struct cleanup *old_chain; |
807 | struct ui_file *stb; | |
808 | char *thetype; | |
809 | long length; | |
810 | ||
811 | /* For the "fake" variables, do not return a type. (It's type is | |
8756216b DP |
812 | NULL, too.) |
813 | Do not return a type for invalid variables as well. */ | |
814 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
815 | return NULL; |
816 | ||
817 | stb = mem_fileopen (); | |
818 | old_chain = make_cleanup_ui_file_delete (stb); | |
819 | ||
30b28db1 | 820 | /* To print the type, we simply create a zero ``struct value *'' and |
8b93c638 JM |
821 | cast it to our type. We then typeprint this variable. */ |
822 | val = value_zero (var->type, not_lval); | |
df407dfe | 823 | type_print (value_type (val), "", stb, -1); |
8b93c638 JM |
824 | |
825 | thetype = ui_file_xstrdup (stb, &length); | |
826 | do_cleanups (old_chain); | |
827 | return thetype; | |
828 | } | |
829 | ||
1ecb4ee0 DJ |
830 | /* Obtain the type of an object variable. */ |
831 | ||
832 | struct type * | |
833 | varobj_get_gdb_type (struct varobj *var) | |
834 | { | |
835 | return var->type; | |
836 | } | |
837 | ||
02142340 VP |
838 | /* Return a pointer to the full rooted expression of varobj VAR. |
839 | If it has not been computed yet, compute it. */ | |
840 | char * | |
841 | varobj_get_path_expr (struct varobj *var) | |
842 | { | |
843 | if (var->path_expr != NULL) | |
844 | return var->path_expr; | |
845 | else | |
846 | { | |
847 | /* For root varobjs, we initialize path_expr | |
848 | when creating varobj, so here it should be | |
849 | child varobj. */ | |
850 | gdb_assert (!is_root_p (var)); | |
851 | return (*var->root->lang->path_expr_of_child) (var); | |
852 | } | |
853 | } | |
854 | ||
8b93c638 JM |
855 | enum varobj_languages |
856 | varobj_get_language (struct varobj *var) | |
857 | { | |
858 | return variable_language (var); | |
859 | } | |
860 | ||
861 | int | |
862 | varobj_get_attributes (struct varobj *var) | |
863 | { | |
864 | int attributes = 0; | |
865 | ||
340a7723 | 866 | if (varobj_editable_p (var)) |
8b93c638 JM |
867 | /* FIXME: define masks for attributes */ |
868 | attributes |= 0x00000001; /* Editable */ | |
869 | ||
870 | return attributes; | |
871 | } | |
872 | ||
de051565 MK |
873 | char * |
874 | varobj_get_formatted_value (struct varobj *var, | |
875 | enum varobj_display_formats format) | |
876 | { | |
877 | return my_value_of_variable (var, format); | |
878 | } | |
879 | ||
8b93c638 JM |
880 | char * |
881 | varobj_get_value (struct varobj *var) | |
882 | { | |
de051565 | 883 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
884 | } |
885 | ||
886 | /* Set the value of an object variable (if it is editable) to the | |
887 | value of the given expression */ | |
888 | /* Note: Invokes functions that can call error() */ | |
889 | ||
890 | int | |
891 | varobj_set_value (struct varobj *var, char *expression) | |
892 | { | |
30b28db1 | 893 | struct value *val; |
8b93c638 | 894 | int offset = 0; |
a6c442d8 | 895 | int error = 0; |
8b93c638 JM |
896 | |
897 | /* The argument "expression" contains the variable's new value. | |
898 | We need to first construct a legal expression for this -- ugh! */ | |
899 | /* Does this cover all the bases? */ | |
900 | struct expression *exp; | |
30b28db1 | 901 | struct value *value; |
8b93c638 | 902 | int saved_input_radix = input_radix; |
340a7723 NR |
903 | char *s = expression; |
904 | int i; | |
8b93c638 | 905 | |
340a7723 | 906 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 907 | |
340a7723 NR |
908 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ |
909 | exp = parse_exp_1 (&s, 0, 0); | |
910 | if (!gdb_evaluate_expression (exp, &value)) | |
911 | { | |
912 | /* We cannot proceed without a valid expression. */ | |
913 | xfree (exp); | |
914 | return 0; | |
8b93c638 JM |
915 | } |
916 | ||
340a7723 NR |
917 | /* All types that are editable must also be changeable. */ |
918 | gdb_assert (varobj_value_is_changeable_p (var)); | |
919 | ||
920 | /* The value of a changeable variable object must not be lazy. */ | |
921 | gdb_assert (!value_lazy (var->value)); | |
922 | ||
923 | /* Need to coerce the input. We want to check if the | |
924 | value of the variable object will be different | |
925 | after assignment, and the first thing value_assign | |
926 | does is coerce the input. | |
927 | For example, if we are assigning an array to a pointer variable we | |
928 | should compare the pointer with the the array's address, not with the | |
929 | array's content. */ | |
930 | value = coerce_array (value); | |
931 | ||
932 | /* The new value may be lazy. gdb_value_assign, or | |
933 | rather value_contents, will take care of this. | |
934 | If fetching of the new value will fail, gdb_value_assign | |
935 | with catch the exception. */ | |
936 | if (!gdb_value_assign (var->value, value, &val)) | |
937 | return 0; | |
938 | ||
939 | /* If the value has changed, record it, so that next -var-update can | |
940 | report this change. If a variable had a value of '1', we've set it | |
941 | to '333' and then set again to '1', when -var-update will report this | |
942 | variable as changed -- because the first assignment has set the | |
943 | 'updated' flag. There's no need to optimize that, because return value | |
944 | of -var-update should be considered an approximation. */ | |
945 | var->updated = install_new_value (var, val, 0 /* Compare values. */); | |
946 | input_radix = saved_input_radix; | |
947 | return 1; | |
8b93c638 JM |
948 | } |
949 | ||
950 | /* Returns a malloc'ed list with all root variable objects */ | |
951 | int | |
952 | varobj_list (struct varobj ***varlist) | |
953 | { | |
954 | struct varobj **cv; | |
955 | struct varobj_root *croot; | |
956 | int mycount = rootcount; | |
957 | ||
958 | /* Alloc (rootcount + 1) entries for the result */ | |
959 | *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *)); | |
960 | ||
961 | cv = *varlist; | |
962 | croot = rootlist; | |
963 | while ((croot != NULL) && (mycount > 0)) | |
964 | { | |
965 | *cv = croot->rootvar; | |
966 | mycount--; | |
967 | cv++; | |
968 | croot = croot->next; | |
969 | } | |
970 | /* Mark the end of the list */ | |
971 | *cv = NULL; | |
972 | ||
973 | if (mycount || (croot != NULL)) | |
72330bd6 AC |
974 | warning |
975 | ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)", | |
976 | rootcount, mycount); | |
8b93c638 JM |
977 | |
978 | return rootcount; | |
979 | } | |
980 | ||
acd65feb VP |
981 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
982 | this is the first assignement after the variable object was just | |
983 | created, or changed type. In that case, just assign the value | |
984 | and return 0. | |
985 | Otherwise, assign the value and if type_changeable returns non-zero, | |
986 | find if the new value is different from the current value. | |
b26ed50d VP |
987 | Return 1 if so, and 0 if the values are equal. |
988 | ||
989 | The VALUE parameter should not be released -- the function will | |
990 | take care of releasing it when needed. */ | |
acd65feb VP |
991 | static int |
992 | install_new_value (struct varobj *var, struct value *value, int initial) | |
993 | { | |
994 | int changeable; | |
995 | int need_to_fetch; | |
996 | int changed = 0; | |
25d5ea92 | 997 | int intentionally_not_fetched = 0; |
7a4d50bf | 998 | char *print_value = NULL; |
acd65feb | 999 | |
acd65feb VP |
1000 | /* We need to know the varobj's type to decide if the value should |
1001 | be fetched or not. C++ fake children (public/protected/private) don't have | |
1002 | a type. */ | |
1003 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); | |
b2c2bd75 | 1004 | changeable = varobj_value_is_changeable_p (var); |
acd65feb VP |
1005 | need_to_fetch = changeable; |
1006 | ||
b26ed50d VP |
1007 | /* We are not interested in the address of references, and given |
1008 | that in C++ a reference is not rebindable, it cannot | |
1009 | meaningfully change. So, get hold of the real value. */ | |
1010 | if (value) | |
1011 | { | |
1012 | value = coerce_ref (value); | |
1013 | release_value (value); | |
1014 | } | |
1015 | ||
acd65feb VP |
1016 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1017 | /* For unions, we need to fetch the value implicitly because | |
1018 | of implementation of union member fetch. When gdb | |
1019 | creates a value for a field and the value of the enclosing | |
1020 | structure is not lazy, it immediately copies the necessary | |
1021 | bytes from the enclosing values. If the enclosing value is | |
1022 | lazy, the call to value_fetch_lazy on the field will read | |
1023 | the data from memory. For unions, that means we'll read the | |
1024 | same memory more than once, which is not desirable. So | |
1025 | fetch now. */ | |
1026 | need_to_fetch = 1; | |
1027 | ||
1028 | /* The new value might be lazy. If the type is changeable, | |
1029 | that is we'll be comparing values of this type, fetch the | |
1030 | value now. Otherwise, on the next update the old value | |
1031 | will be lazy, which means we've lost that old value. */ | |
1032 | if (need_to_fetch && value && value_lazy (value)) | |
1033 | { | |
25d5ea92 VP |
1034 | struct varobj *parent = var->parent; |
1035 | int frozen = var->frozen; | |
1036 | for (; !frozen && parent; parent = parent->parent) | |
1037 | frozen |= parent->frozen; | |
1038 | ||
1039 | if (frozen && initial) | |
1040 | { | |
1041 | /* For variables that are frozen, or are children of frozen | |
1042 | variables, we don't do fetch on initial assignment. | |
1043 | For non-initial assignemnt we do the fetch, since it means we're | |
1044 | explicitly asked to compare the new value with the old one. */ | |
1045 | intentionally_not_fetched = 1; | |
1046 | } | |
1047 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 1048 | { |
acd65feb VP |
1049 | /* Set the value to NULL, so that for the next -var-update, |
1050 | we don't try to compare the new value with this value, | |
1051 | that we couldn't even read. */ | |
1052 | value = NULL; | |
1053 | } | |
acd65feb VP |
1054 | } |
1055 | ||
7a4d50bf VP |
1056 | /* Below, we'll be comparing string rendering of old and new |
1057 | values. Don't get string rendering if the value is | |
1058 | lazy -- if it is, the code above has decided that the value | |
1059 | should not be fetched. */ | |
1060 | if (value && !value_lazy (value)) | |
1061 | print_value = value_get_print_value (value, var->format); | |
1062 | ||
acd65feb VP |
1063 | /* If the type is changeable, compare the old and the new values. |
1064 | If this is the initial assignment, we don't have any old value | |
1065 | to compare with. */ | |
7a4d50bf | 1066 | if (!initial && changeable) |
acd65feb VP |
1067 | { |
1068 | /* If the value of the varobj was changed by -var-set-value, then the | |
1069 | value in the varobj and in the target is the same. However, that value | |
1070 | is different from the value that the varobj had after the previous | |
57e66780 | 1071 | -var-update. So need to the varobj as changed. */ |
acd65feb | 1072 | if (var->updated) |
57e66780 | 1073 | { |
57e66780 DJ |
1074 | changed = 1; |
1075 | } | |
acd65feb VP |
1076 | else |
1077 | { | |
1078 | /* Try to compare the values. That requires that both | |
1079 | values are non-lazy. */ | |
25d5ea92 VP |
1080 | if (var->not_fetched && value_lazy (var->value)) |
1081 | { | |
1082 | /* This is a frozen varobj and the value was never read. | |
1083 | Presumably, UI shows some "never read" indicator. | |
1084 | Now that we've fetched the real value, we need to report | |
1085 | this varobj as changed so that UI can show the real | |
1086 | value. */ | |
1087 | changed = 1; | |
1088 | } | |
1089 | else if (var->value == NULL && value == NULL) | |
acd65feb VP |
1090 | /* Equal. */ |
1091 | ; | |
1092 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1093 | { |
57e66780 DJ |
1094 | changed = 1; |
1095 | } | |
acd65feb VP |
1096 | else |
1097 | { | |
1098 | gdb_assert (!value_lazy (var->value)); | |
1099 | gdb_assert (!value_lazy (value)); | |
85265413 | 1100 | |
57e66780 | 1101 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1102 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1103 | changed = 1; |
acd65feb VP |
1104 | } |
1105 | } | |
1106 | } | |
85265413 | 1107 | |
acd65feb | 1108 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1109 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1110 | value_free (var->value); |
1111 | var->value = value; | |
7a4d50bf VP |
1112 | if (var->print_value) |
1113 | xfree (var->print_value); | |
1114 | var->print_value = print_value; | |
25d5ea92 VP |
1115 | if (value && value_lazy (value) && intentionally_not_fetched) |
1116 | var->not_fetched = 1; | |
1117 | else | |
1118 | var->not_fetched = 0; | |
acd65feb | 1119 | var->updated = 0; |
85265413 | 1120 | |
b26ed50d | 1121 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1122 | |
1123 | return changed; | |
1124 | } | |
acd65feb | 1125 | |
8b93c638 JM |
1126 | /* Update the values for a variable and its children. This is a |
1127 | two-pronged attack. First, re-parse the value for the root's | |
1128 | expression to see if it's changed. Then go all the way | |
1129 | through its children, reconstructing them and noting if they've | |
1130 | changed. | |
1131 | ||
25d5ea92 VP |
1132 | The EXPLICIT parameter specifies if this call is result |
1133 | of MI request to update this specific variable, or | |
1134 | result of implicit -var-update *. For implicit request, we don't | |
1135 | update frozen variables. | |
705da579 KS |
1136 | |
1137 | NOTE: This function may delete the caller's varobj. If it | |
8756216b DP |
1138 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1139 | to point to the new varobj. */ | |
8b93c638 | 1140 | |
f7f9ae2c | 1141 | VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit) |
8b93c638 JM |
1142 | { |
1143 | int changed = 0; | |
25d5ea92 | 1144 | int type_changed = 0; |
8b93c638 JM |
1145 | int i; |
1146 | int vleft; | |
8b93c638 JM |
1147 | struct varobj *v; |
1148 | struct varobj **cv; | |
2c67cb8b | 1149 | struct varobj **templist = NULL; |
30b28db1 | 1150 | struct value *new; |
28335dcc | 1151 | VEC (varobj_p) *stack = NULL; |
f7f9ae2c | 1152 | VEC (varobj_update_result) *result = NULL; |
e64d9b3d | 1153 | struct frame_info *fi; |
8b93c638 | 1154 | |
25d5ea92 VP |
1155 | /* Frozen means frozen -- we don't check for any change in |
1156 | this varobj, including its going out of scope, or | |
1157 | changing type. One use case for frozen varobjs is | |
1158 | retaining previously evaluated expressions, and we don't | |
1159 | want them to be reevaluated at all. */ | |
1160 | if (!explicit && (*varp)->frozen) | |
f7f9ae2c | 1161 | return result; |
8756216b DP |
1162 | |
1163 | if (!(*varp)->root->is_valid) | |
f7f9ae2c VP |
1164 | { |
1165 | varobj_update_result r = {*varp}; | |
1166 | r.status = VAROBJ_INVALID; | |
1167 | VEC_safe_push (varobj_update_result, result, &r); | |
1168 | return result; | |
1169 | } | |
8b93c638 | 1170 | |
25d5ea92 | 1171 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1172 | { |
f7f9ae2c VP |
1173 | varobj_update_result r = {*varp}; |
1174 | r.status = VAROBJ_IN_SCOPE; | |
1175 | ||
25d5ea92 VP |
1176 | /* Update the root variable. value_of_root can return NULL |
1177 | if the variable is no longer around, i.e. we stepped out of | |
1178 | the frame in which a local existed. We are letting the | |
1179 | value_of_root variable dispose of the varobj if the type | |
1180 | has changed. */ | |
25d5ea92 | 1181 | new = value_of_root (varp, &type_changed); |
f7f9ae2c VP |
1182 | r.varobj = *varp; |
1183 | ||
1184 | r.type_changed = type_changed; | |
ea56f9c2 | 1185 | if (install_new_value ((*varp), new, type_changed)) |
f7f9ae2c | 1186 | r.changed = 1; |
ea56f9c2 | 1187 | |
25d5ea92 | 1188 | if (new == NULL) |
f7f9ae2c VP |
1189 | r.status = VAROBJ_NOT_IN_SCOPE; |
1190 | ||
1191 | if (r.type_changed || r.changed) | |
1192 | VEC_safe_push (varobj_update_result, result, &r); | |
1193 | ||
1194 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
1195 | return result; | |
b20d8971 VP |
1196 | } |
1197 | ||
28335dcc | 1198 | VEC_safe_push (varobj_p, stack, *varp); |
8b93c638 | 1199 | |
8756216b | 1200 | /* Walk through the children, reconstructing them all. */ |
28335dcc | 1201 | while (!VEC_empty (varobj_p, stack)) |
8b93c638 | 1202 | { |
28335dcc VP |
1203 | v = VEC_pop (varobj_p, stack); |
1204 | ||
1205 | /* Push any children. Use reverse order so that the first | |
1206 | child is popped from the work stack first, and so | |
1207 | will be added to result first. This does not | |
1208 | affect correctness, just "nicer". */ | |
1209 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1210 | { |
28335dcc VP |
1211 | varobj_p c = VEC_index (varobj_p, v->children, i); |
1212 | /* Child may be NULL if explicitly deleted by -var-delete. */ | |
25d5ea92 | 1213 | if (c != NULL && !c->frozen) |
28335dcc | 1214 | VEC_safe_push (varobj_p, stack, c); |
8b93c638 JM |
1215 | } |
1216 | ||
28335dcc VP |
1217 | /* Update this variable, unless it's a root, which is already |
1218 | updated. */ | |
25d5ea92 | 1219 | if (v->root->rootvar != v) |
28335dcc VP |
1220 | { |
1221 | new = value_of_child (v->parent, v->index); | |
1222 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1223 | { | |
1224 | /* Note that it's changed */ | |
f7f9ae2c VP |
1225 | varobj_update_result r = {v}; |
1226 | r.changed = 1; | |
1227 | VEC_safe_push (varobj_update_result, result, &r); | |
28335dcc VP |
1228 | v->updated = 0; |
1229 | } | |
8b93c638 | 1230 | } |
8b93c638 JM |
1231 | } |
1232 | ||
93b979d6 | 1233 | VEC_free (varobj_p, stack); |
f7f9ae2c | 1234 | return result; |
8b93c638 JM |
1235 | } |
1236 | \f | |
1237 | ||
1238 | /* Helper functions */ | |
1239 | ||
1240 | /* | |
1241 | * Variable object construction/destruction | |
1242 | */ | |
1243 | ||
1244 | static int | |
fba45db2 KB |
1245 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1246 | int only_children_p) | |
8b93c638 JM |
1247 | { |
1248 | int delcount = 0; | |
1249 | ||
1250 | delete_variable_1 (resultp, &delcount, var, | |
1251 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1252 | ||
1253 | return delcount; | |
1254 | } | |
1255 | ||
1256 | /* Delete the variable object VAR and its children */ | |
1257 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1258 | and the parent is not removed we dump core. It must be always | |
1259 | initially called with remove_from_parent_p set */ | |
1260 | static void | |
72330bd6 AC |
1261 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1262 | struct varobj *var, int only_children_p, | |
1263 | int remove_from_parent_p) | |
8b93c638 | 1264 | { |
28335dcc | 1265 | int i; |
8b93c638 JM |
1266 | |
1267 | /* Delete any children of this variable, too. */ | |
28335dcc VP |
1268 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1269 | { | |
1270 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
214270ab VP |
1271 | if (!child) |
1272 | continue; | |
8b93c638 | 1273 | if (!remove_from_parent_p) |
28335dcc VP |
1274 | child->parent = NULL; |
1275 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1276 | } |
28335dcc | 1277 | VEC_free (varobj_p, var->children); |
8b93c638 JM |
1278 | |
1279 | /* if we were called to delete only the children we are done here */ | |
1280 | if (only_children_p) | |
1281 | return; | |
1282 | ||
1283 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
73a93a32 JI |
1284 | /* If the name is null, this is a temporary variable, that has not |
1285 | yet been installed, don't report it, it belongs to the caller... */ | |
1286 | if (var->obj_name != NULL) | |
8b93c638 | 1287 | { |
5b616ba1 | 1288 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1289 | *delcountp = *delcountp + 1; |
1290 | } | |
1291 | ||
1292 | /* If this variable has a parent, remove it from its parent's list */ | |
1293 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1294 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1295 | expensive list search to find the element to remove when we are | |
1296 | discarding the list afterwards */ | |
72330bd6 | 1297 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1298 | { |
28335dcc | 1299 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1300 | } |
72330bd6 | 1301 | |
73a93a32 JI |
1302 | if (var->obj_name != NULL) |
1303 | uninstall_variable (var); | |
8b93c638 JM |
1304 | |
1305 | /* Free memory associated with this variable */ | |
1306 | free_variable (var); | |
1307 | } | |
1308 | ||
1309 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1310 | static int | |
fba45db2 | 1311 | install_variable (struct varobj *var) |
8b93c638 JM |
1312 | { |
1313 | struct vlist *cv; | |
1314 | struct vlist *newvl; | |
1315 | const char *chp; | |
1316 | unsigned int index = 0; | |
1317 | unsigned int i = 1; | |
1318 | ||
1319 | for (chp = var->obj_name; *chp; chp++) | |
1320 | { | |
1321 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1322 | } | |
1323 | ||
1324 | cv = *(varobj_table + index); | |
1325 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1326 | cv = cv->next; | |
1327 | ||
1328 | if (cv != NULL) | |
8a3fe4f8 | 1329 | error (_("Duplicate variable object name")); |
8b93c638 JM |
1330 | |
1331 | /* Add varobj to hash table */ | |
1332 | newvl = xmalloc (sizeof (struct vlist)); | |
1333 | newvl->next = *(varobj_table + index); | |
1334 | newvl->var = var; | |
1335 | *(varobj_table + index) = newvl; | |
1336 | ||
1337 | /* If root, add varobj to root list */ | |
b2c2bd75 | 1338 | if (is_root_p (var)) |
8b93c638 JM |
1339 | { |
1340 | /* Add to list of root variables */ | |
1341 | if (rootlist == NULL) | |
1342 | var->root->next = NULL; | |
1343 | else | |
1344 | var->root->next = rootlist; | |
1345 | rootlist = var->root; | |
1346 | rootcount++; | |
1347 | } | |
1348 | ||
1349 | return 1; /* OK */ | |
1350 | } | |
1351 | ||
1352 | /* Unistall the object VAR. */ | |
1353 | static void | |
fba45db2 | 1354 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
1355 | { |
1356 | struct vlist *cv; | |
1357 | struct vlist *prev; | |
1358 | struct varobj_root *cr; | |
1359 | struct varobj_root *prer; | |
1360 | const char *chp; | |
1361 | unsigned int index = 0; | |
1362 | unsigned int i = 1; | |
1363 | ||
1364 | /* Remove varobj from hash table */ | |
1365 | for (chp = var->obj_name; *chp; chp++) | |
1366 | { | |
1367 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1368 | } | |
1369 | ||
1370 | cv = *(varobj_table + index); | |
1371 | prev = NULL; | |
1372 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1373 | { | |
1374 | prev = cv; | |
1375 | cv = cv->next; | |
1376 | } | |
1377 | ||
1378 | if (varobjdebug) | |
1379 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
1380 | ||
1381 | if (cv == NULL) | |
1382 | { | |
72330bd6 AC |
1383 | warning |
1384 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
1385 | var->obj_name); | |
8b93c638 JM |
1386 | return; |
1387 | } | |
1388 | ||
1389 | if (prev == NULL) | |
1390 | *(varobj_table + index) = cv->next; | |
1391 | else | |
1392 | prev->next = cv->next; | |
1393 | ||
b8c9b27d | 1394 | xfree (cv); |
8b93c638 JM |
1395 | |
1396 | /* If root, remove varobj from root list */ | |
b2c2bd75 | 1397 | if (is_root_p (var)) |
8b93c638 JM |
1398 | { |
1399 | /* Remove from list of root variables */ | |
1400 | if (rootlist == var->root) | |
1401 | rootlist = var->root->next; | |
1402 | else | |
1403 | { | |
1404 | prer = NULL; | |
1405 | cr = rootlist; | |
1406 | while ((cr != NULL) && (cr->rootvar != var)) | |
1407 | { | |
1408 | prer = cr; | |
1409 | cr = cr->next; | |
1410 | } | |
1411 | if (cr == NULL) | |
1412 | { | |
72330bd6 AC |
1413 | warning |
1414 | ("Assertion failed: Could not find varobj \"%s\" in root list", | |
1415 | var->obj_name); | |
8b93c638 JM |
1416 | return; |
1417 | } | |
1418 | if (prer == NULL) | |
1419 | rootlist = NULL; | |
1420 | else | |
1421 | prer->next = cr->next; | |
1422 | } | |
1423 | rootcount--; | |
1424 | } | |
1425 | ||
1426 | } | |
1427 | ||
8b93c638 JM |
1428 | /* Create and install a child of the parent of the given name */ |
1429 | static struct varobj * | |
fba45db2 | 1430 | create_child (struct varobj *parent, int index, char *name) |
8b93c638 JM |
1431 | { |
1432 | struct varobj *child; | |
1433 | char *childs_name; | |
acd65feb | 1434 | struct value *value; |
8b93c638 JM |
1435 | |
1436 | child = new_variable (); | |
1437 | ||
1438 | /* name is allocated by name_of_child */ | |
1439 | child->name = name; | |
1440 | child->index = index; | |
acd65feb | 1441 | value = value_of_child (parent, index); |
8b93c638 JM |
1442 | child->parent = parent; |
1443 | child->root = parent->root; | |
b435e160 | 1444 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
1445 | child->obj_name = childs_name; |
1446 | install_variable (child); | |
1447 | ||
acd65feb VP |
1448 | /* Compute the type of the child. Must do this before |
1449 | calling install_new_value. */ | |
1450 | if (value != NULL) | |
1451 | /* If the child had no evaluation errors, var->value | |
1452 | will be non-NULL and contain a valid type. */ | |
1453 | child->type = value_type (value); | |
1454 | else | |
1455 | /* Otherwise, we must compute the type. */ | |
1456 | child->type = (*child->root->lang->type_of_child) (child->parent, | |
1457 | child->index); | |
1458 | install_new_value (child, value, 1); | |
1459 | ||
8b93c638 JM |
1460 | return child; |
1461 | } | |
8b93c638 JM |
1462 | \f |
1463 | ||
1464 | /* | |
1465 | * Miscellaneous utility functions. | |
1466 | */ | |
1467 | ||
1468 | /* Allocate memory and initialize a new variable */ | |
1469 | static struct varobj * | |
1470 | new_variable (void) | |
1471 | { | |
1472 | struct varobj *var; | |
1473 | ||
1474 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
1475 | var->name = NULL; | |
02142340 | 1476 | var->path_expr = NULL; |
8b93c638 JM |
1477 | var->obj_name = NULL; |
1478 | var->index = -1; | |
1479 | var->type = NULL; | |
1480 | var->value = NULL; | |
8b93c638 JM |
1481 | var->num_children = -1; |
1482 | var->parent = NULL; | |
1483 | var->children = NULL; | |
1484 | var->format = 0; | |
1485 | var->root = NULL; | |
fb9b6b35 | 1486 | var->updated = 0; |
85265413 | 1487 | var->print_value = NULL; |
25d5ea92 VP |
1488 | var->frozen = 0; |
1489 | var->not_fetched = 0; | |
8b93c638 JM |
1490 | |
1491 | return var; | |
1492 | } | |
1493 | ||
1494 | /* Allocate memory and initialize a new root variable */ | |
1495 | static struct varobj * | |
1496 | new_root_variable (void) | |
1497 | { | |
1498 | struct varobj *var = new_variable (); | |
1499 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; | |
1500 | var->root->lang = NULL; | |
1501 | var->root->exp = NULL; | |
1502 | var->root->valid_block = NULL; | |
7a424e99 | 1503 | var->root->frame = null_frame_id; |
a5defcdc | 1504 | var->root->floating = 0; |
8b93c638 | 1505 | var->root->rootvar = NULL; |
8756216b | 1506 | var->root->is_valid = 1; |
8b93c638 JM |
1507 | |
1508 | return var; | |
1509 | } | |
1510 | ||
1511 | /* Free any allocated memory associated with VAR. */ | |
1512 | static void | |
fba45db2 | 1513 | free_variable (struct varobj *var) |
8b93c638 JM |
1514 | { |
1515 | /* Free the expression if this is a root variable. */ | |
b2c2bd75 | 1516 | if (is_root_p (var)) |
8b93c638 | 1517 | { |
96c1eda2 | 1518 | free_current_contents (&var->root->exp); |
8038e1e2 | 1519 | xfree (var->root); |
8b93c638 JM |
1520 | } |
1521 | ||
8038e1e2 AC |
1522 | xfree (var->name); |
1523 | xfree (var->obj_name); | |
85265413 | 1524 | xfree (var->print_value); |
02142340 | 1525 | xfree (var->path_expr); |
8038e1e2 | 1526 | xfree (var); |
8b93c638 JM |
1527 | } |
1528 | ||
74b7792f AC |
1529 | static void |
1530 | do_free_variable_cleanup (void *var) | |
1531 | { | |
1532 | free_variable (var); | |
1533 | } | |
1534 | ||
1535 | static struct cleanup * | |
1536 | make_cleanup_free_variable (struct varobj *var) | |
1537 | { | |
1538 | return make_cleanup (do_free_variable_cleanup, var); | |
1539 | } | |
1540 | ||
6766a268 DJ |
1541 | /* This returns the type of the variable. It also skips past typedefs |
1542 | to return the real type of the variable. | |
94b66fa7 KS |
1543 | |
1544 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1545 | except within get_target_type and get_type. */ | |
8b93c638 | 1546 | static struct type * |
fba45db2 | 1547 | get_type (struct varobj *var) |
8b93c638 JM |
1548 | { |
1549 | struct type *type; | |
1550 | type = var->type; | |
1551 | ||
6766a268 DJ |
1552 | if (type != NULL) |
1553 | type = check_typedef (type); | |
8b93c638 JM |
1554 | |
1555 | return type; | |
1556 | } | |
1557 | ||
6e2a9270 VP |
1558 | /* Return the type of the value that's stored in VAR, |
1559 | or that would have being stored there if the | |
1560 | value were accessible. | |
1561 | ||
1562 | This differs from VAR->type in that VAR->type is always | |
1563 | the true type of the expession in the source language. | |
1564 | The return value of this function is the type we're | |
1565 | actually storing in varobj, and using for displaying | |
1566 | the values and for comparing previous and new values. | |
1567 | ||
1568 | For example, top-level references are always stripped. */ | |
1569 | static struct type * | |
1570 | get_value_type (struct varobj *var) | |
1571 | { | |
1572 | struct type *type; | |
1573 | ||
1574 | if (var->value) | |
1575 | type = value_type (var->value); | |
1576 | else | |
1577 | type = var->type; | |
1578 | ||
1579 | type = check_typedef (type); | |
1580 | ||
1581 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
1582 | type = get_target_type (type); | |
1583 | ||
1584 | type = check_typedef (type); | |
1585 | ||
1586 | return type; | |
1587 | } | |
1588 | ||
8b93c638 | 1589 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
1590 | past typedefs, just like get_type (). |
1591 | ||
1592 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1593 | except within get_target_type and get_type. */ | |
8b93c638 | 1594 | static struct type * |
fba45db2 | 1595 | get_target_type (struct type *type) |
8b93c638 JM |
1596 | { |
1597 | if (type != NULL) | |
1598 | { | |
1599 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
1600 | if (type != NULL) |
1601 | type = check_typedef (type); | |
8b93c638 JM |
1602 | } |
1603 | ||
1604 | return type; | |
1605 | } | |
1606 | ||
1607 | /* What is the default display for this variable? We assume that | |
1608 | everything is "natural". Any exceptions? */ | |
1609 | static enum varobj_display_formats | |
fba45db2 | 1610 | variable_default_display (struct varobj *var) |
8b93c638 JM |
1611 | { |
1612 | return FORMAT_NATURAL; | |
1613 | } | |
1614 | ||
8b93c638 JM |
1615 | /* FIXME: The following should be generic for any pointer */ |
1616 | static void | |
fba45db2 | 1617 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
1618 | { |
1619 | struct cpstack *s; | |
1620 | ||
1621 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
1622 | s->name = name; | |
1623 | s->next = *pstack; | |
1624 | *pstack = s; | |
1625 | } | |
1626 | ||
1627 | /* FIXME: The following should be generic for any pointer */ | |
1628 | static char * | |
fba45db2 | 1629 | cppop (struct cpstack **pstack) |
8b93c638 JM |
1630 | { |
1631 | struct cpstack *s; | |
1632 | char *v; | |
1633 | ||
1634 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
1635 | return NULL; | |
1636 | ||
1637 | s = *pstack; | |
1638 | v = s->name; | |
1639 | *pstack = (*pstack)->next; | |
b8c9b27d | 1640 | xfree (s); |
8b93c638 JM |
1641 | |
1642 | return v; | |
1643 | } | |
1644 | \f | |
1645 | /* | |
1646 | * Language-dependencies | |
1647 | */ | |
1648 | ||
1649 | /* Common entry points */ | |
1650 | ||
1651 | /* Get the language of variable VAR. */ | |
1652 | static enum varobj_languages | |
fba45db2 | 1653 | variable_language (struct varobj *var) |
8b93c638 JM |
1654 | { |
1655 | enum varobj_languages lang; | |
1656 | ||
1657 | switch (var->root->exp->language_defn->la_language) | |
1658 | { | |
1659 | default: | |
1660 | case language_c: | |
1661 | lang = vlang_c; | |
1662 | break; | |
1663 | case language_cplus: | |
1664 | lang = vlang_cplus; | |
1665 | break; | |
1666 | case language_java: | |
1667 | lang = vlang_java; | |
1668 | break; | |
1669 | } | |
1670 | ||
1671 | return lang; | |
1672 | } | |
1673 | ||
1674 | /* Return the number of children for a given variable. | |
1675 | The result of this function is defined by the language | |
1676 | implementation. The number of children returned by this function | |
1677 | is the number of children that the user will see in the variable | |
1678 | display. */ | |
1679 | static int | |
fba45db2 | 1680 | number_of_children (struct varobj *var) |
8b93c638 JM |
1681 | { |
1682 | return (*var->root->lang->number_of_children) (var);; | |
1683 | } | |
1684 | ||
1685 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
1686 | static char * | |
fba45db2 | 1687 | name_of_variable (struct varobj *var) |
8b93c638 JM |
1688 | { |
1689 | return (*var->root->lang->name_of_variable) (var); | |
1690 | } | |
1691 | ||
1692 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
1693 | static char * | |
fba45db2 | 1694 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
1695 | { |
1696 | return (*var->root->lang->name_of_child) (var, index); | |
1697 | } | |
1698 | ||
a5defcdc VP |
1699 | /* What is the ``struct value *'' of the root variable VAR? |
1700 | For floating variable object, evaluation can get us a value | |
1701 | of different type from what is stored in varobj already. In | |
1702 | that case: | |
1703 | - *type_changed will be set to 1 | |
1704 | - old varobj will be freed, and new one will be | |
1705 | created, with the same name. | |
1706 | - *var_handle will be set to the new varobj | |
1707 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 1708 | static struct value * |
fba45db2 | 1709 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 1710 | { |
73a93a32 JI |
1711 | struct varobj *var; |
1712 | ||
1713 | if (var_handle == NULL) | |
1714 | return NULL; | |
1715 | ||
1716 | var = *var_handle; | |
1717 | ||
1718 | /* This should really be an exception, since this should | |
1719 | only get called with a root variable. */ | |
1720 | ||
b2c2bd75 | 1721 | if (!is_root_p (var)) |
73a93a32 JI |
1722 | return NULL; |
1723 | ||
a5defcdc | 1724 | if (var->root->floating) |
73a93a32 JI |
1725 | { |
1726 | struct varobj *tmp_var; | |
1727 | char *old_type, *new_type; | |
6225abfa | 1728 | |
73a93a32 JI |
1729 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
1730 | USE_SELECTED_FRAME); | |
1731 | if (tmp_var == NULL) | |
1732 | { | |
1733 | return NULL; | |
1734 | } | |
6225abfa | 1735 | old_type = varobj_get_type (var); |
73a93a32 | 1736 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 1737 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 1738 | { |
fcacd99f VP |
1739 | /* The expression presently stored inside var->root->exp |
1740 | remembers the locations of local variables relatively to | |
1741 | the frame where the expression was created (in DWARF location | |
1742 | button, for example). Naturally, those locations are not | |
1743 | correct in other frames, so update the expression. */ | |
1744 | ||
1745 | struct expression *tmp_exp = var->root->exp; | |
1746 | var->root->exp = tmp_var->root->exp; | |
1747 | tmp_var->root->exp = tmp_exp; | |
1748 | ||
73a93a32 JI |
1749 | varobj_delete (tmp_var, NULL, 0); |
1750 | *type_changed = 0; | |
1751 | } | |
1752 | else | |
1753 | { | |
a5defcdc VP |
1754 | tmp_var->obj_name = |
1755 | savestring (var->obj_name, strlen (var->obj_name)); | |
1756 | varobj_delete (var, NULL, 0); | |
1757 | ||
73a93a32 JI |
1758 | install_variable (tmp_var); |
1759 | *var_handle = tmp_var; | |
705da579 | 1760 | var = *var_handle; |
73a93a32 JI |
1761 | *type_changed = 1; |
1762 | } | |
74dddad3 MS |
1763 | xfree (old_type); |
1764 | xfree (new_type); | |
73a93a32 JI |
1765 | } |
1766 | else | |
1767 | { | |
1768 | *type_changed = 0; | |
1769 | } | |
1770 | ||
1771 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
1772 | } |
1773 | ||
30b28db1 AC |
1774 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
1775 | static struct value * | |
fba45db2 | 1776 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 1777 | { |
30b28db1 | 1778 | struct value *value; |
8b93c638 JM |
1779 | |
1780 | value = (*parent->root->lang->value_of_child) (parent, index); | |
1781 | ||
8b93c638 JM |
1782 | return value; |
1783 | } | |
1784 | ||
8b93c638 JM |
1785 | /* GDB already has a command called "value_of_variable". Sigh. */ |
1786 | static char * | |
de051565 | 1787 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 1788 | { |
8756216b | 1789 | if (var->root->is_valid) |
de051565 | 1790 | return (*var->root->lang->value_of_variable) (var, format); |
8756216b DP |
1791 | else |
1792 | return NULL; | |
8b93c638 JM |
1793 | } |
1794 | ||
85265413 NR |
1795 | static char * |
1796 | value_get_print_value (struct value *value, enum varobj_display_formats format) | |
1797 | { | |
1798 | long dummy; | |
57e66780 DJ |
1799 | struct ui_file *stb; |
1800 | struct cleanup *old_chain; | |
85265413 | 1801 | char *thevalue; |
79a45b7d | 1802 | struct value_print_options opts; |
57e66780 DJ |
1803 | |
1804 | if (value == NULL) | |
1805 | return NULL; | |
1806 | ||
1807 | stb = mem_fileopen (); | |
1808 | old_chain = make_cleanup_ui_file_delete (stb); | |
1809 | ||
79a45b7d TT |
1810 | get_formatted_print_options (&opts, format_code[(int) format]); |
1811 | opts.deref_ref = 0; | |
1812 | common_val_print (value, stb, 0, &opts, current_language); | |
85265413 | 1813 | thevalue = ui_file_xstrdup (stb, &dummy); |
57e66780 | 1814 | |
85265413 NR |
1815 | do_cleanups (old_chain); |
1816 | return thevalue; | |
1817 | } | |
1818 | ||
340a7723 NR |
1819 | int |
1820 | varobj_editable_p (struct varobj *var) | |
1821 | { | |
1822 | struct type *type; | |
1823 | struct value *value; | |
1824 | ||
1825 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
1826 | return 0; | |
1827 | ||
1828 | type = get_value_type (var); | |
1829 | ||
1830 | switch (TYPE_CODE (type)) | |
1831 | { | |
1832 | case TYPE_CODE_STRUCT: | |
1833 | case TYPE_CODE_UNION: | |
1834 | case TYPE_CODE_ARRAY: | |
1835 | case TYPE_CODE_FUNC: | |
1836 | case TYPE_CODE_METHOD: | |
1837 | return 0; | |
1838 | break; | |
1839 | ||
1840 | default: | |
1841 | return 1; | |
1842 | break; | |
1843 | } | |
1844 | } | |
1845 | ||
acd65feb VP |
1846 | /* Return non-zero if changes in value of VAR |
1847 | must be detected and reported by -var-update. | |
1848 | Return zero is -var-update should never report | |
1849 | changes of such values. This makes sense for structures | |
1850 | (since the changes in children values will be reported separately), | |
1851 | or for artifical objects (like 'public' pseudo-field in C++). | |
1852 | ||
1853 | Return value of 0 means that gdb need not call value_fetch_lazy | |
1854 | for the value of this variable object. */ | |
8b93c638 | 1855 | static int |
b2c2bd75 | 1856 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
1857 | { |
1858 | int r; | |
1859 | struct type *type; | |
1860 | ||
1861 | if (CPLUS_FAKE_CHILD (var)) | |
1862 | return 0; | |
1863 | ||
6e2a9270 | 1864 | type = get_value_type (var); |
8b93c638 JM |
1865 | |
1866 | switch (TYPE_CODE (type)) | |
1867 | { | |
72330bd6 AC |
1868 | case TYPE_CODE_STRUCT: |
1869 | case TYPE_CODE_UNION: | |
1870 | case TYPE_CODE_ARRAY: | |
1871 | r = 0; | |
1872 | break; | |
8b93c638 | 1873 | |
72330bd6 AC |
1874 | default: |
1875 | r = 1; | |
8b93c638 JM |
1876 | } |
1877 | ||
1878 | return r; | |
1879 | } | |
1880 | ||
5a413362 VP |
1881 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
1882 | selected frame, and not bound to thread/frame. Such variable objects | |
1883 | are created using '@' as frame specifier to -var-create. */ | |
1884 | int | |
1885 | varobj_floating_p (struct varobj *var) | |
1886 | { | |
1887 | return var->root->floating; | |
1888 | } | |
1889 | ||
2024f65a VP |
1890 | /* Given the value and the type of a variable object, |
1891 | adjust the value and type to those necessary | |
1892 | for getting children of the variable object. | |
1893 | This includes dereferencing top-level references | |
1894 | to all types and dereferencing pointers to | |
1895 | structures. | |
1896 | ||
1897 | Both TYPE and *TYPE should be non-null. VALUE | |
1898 | can be null if we want to only translate type. | |
1899 | *VALUE can be null as well -- if the parent | |
02142340 VP |
1900 | value is not known. |
1901 | ||
1902 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
1903 | depending on whether pointer was deferenced | |
1904 | in this function. */ | |
2024f65a VP |
1905 | static void |
1906 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
1907 | struct type **type, |
1908 | int *was_ptr) | |
2024f65a VP |
1909 | { |
1910 | gdb_assert (type && *type); | |
1911 | ||
02142340 VP |
1912 | if (was_ptr) |
1913 | *was_ptr = 0; | |
1914 | ||
2024f65a VP |
1915 | *type = check_typedef (*type); |
1916 | ||
1917 | /* The type of value stored in varobj, that is passed | |
1918 | to us, is already supposed to be | |
1919 | reference-stripped. */ | |
1920 | ||
1921 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
1922 | ||
1923 | /* Pointers to structures are treated just like | |
1924 | structures when accessing children. Don't | |
1925 | dererences pointers to other types. */ | |
1926 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
1927 | { | |
1928 | struct type *target_type = get_target_type (*type); | |
1929 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
1930 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
1931 | { | |
1932 | if (value && *value) | |
3f4178d6 DJ |
1933 | { |
1934 | int success = gdb_value_ind (*value, value); | |
1935 | if (!success) | |
1936 | *value = NULL; | |
1937 | } | |
2024f65a | 1938 | *type = target_type; |
02142340 VP |
1939 | if (was_ptr) |
1940 | *was_ptr = 1; | |
2024f65a VP |
1941 | } |
1942 | } | |
1943 | ||
1944 | /* The 'get_target_type' function calls check_typedef on | |
1945 | result, so we can immediately check type code. No | |
1946 | need to call check_typedef here. */ | |
1947 | } | |
1948 | ||
8b93c638 JM |
1949 | /* C */ |
1950 | static int | |
fba45db2 | 1951 | c_number_of_children (struct varobj *var) |
8b93c638 | 1952 | { |
2024f65a VP |
1953 | struct type *type = get_value_type (var); |
1954 | int children = 0; | |
8b93c638 | 1955 | struct type *target; |
8b93c638 | 1956 | |
02142340 | 1957 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 1958 | target = get_target_type (type); |
8b93c638 JM |
1959 | |
1960 | switch (TYPE_CODE (type)) | |
1961 | { | |
1962 | case TYPE_CODE_ARRAY: | |
1963 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
d78df370 | 1964 | && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
8b93c638 JM |
1965 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
1966 | else | |
74a44383 DJ |
1967 | /* If we don't know how many elements there are, don't display |
1968 | any. */ | |
1969 | children = 0; | |
8b93c638 JM |
1970 | break; |
1971 | ||
1972 | case TYPE_CODE_STRUCT: | |
1973 | case TYPE_CODE_UNION: | |
1974 | children = TYPE_NFIELDS (type); | |
1975 | break; | |
1976 | ||
1977 | case TYPE_CODE_PTR: | |
2024f65a VP |
1978 | /* The type here is a pointer to non-struct. Typically, pointers |
1979 | have one child, except for function ptrs, which have no children, | |
1980 | and except for void*, as we don't know what to show. | |
1981 | ||
0755e6c1 FN |
1982 | We can show char* so we allow it to be dereferenced. If you decide |
1983 | to test for it, please mind that a little magic is necessary to | |
1984 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
1985 | TYPE_NAME == "char" */ | |
2024f65a VP |
1986 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
1987 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
1988 | children = 0; | |
1989 | else | |
1990 | children = 1; | |
8b93c638 JM |
1991 | break; |
1992 | ||
1993 | default: | |
1994 | /* Other types have no children */ | |
1995 | break; | |
1996 | } | |
1997 | ||
1998 | return children; | |
1999 | } | |
2000 | ||
2001 | static char * | |
fba45db2 | 2002 | c_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2003 | { |
2004 | return savestring (parent->name, strlen (parent->name)); | |
2005 | } | |
2006 | ||
bbec2603 VP |
2007 | /* Return the value of element TYPE_INDEX of a structure |
2008 | value VALUE. VALUE's type should be a structure, | |
2009 | or union, or a typedef to struct/union. | |
2010 | ||
2011 | Returns NULL if getting the value fails. Never throws. */ | |
2012 | static struct value * | |
2013 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 2014 | { |
bbec2603 VP |
2015 | struct value *result = NULL; |
2016 | volatile struct gdb_exception e; | |
8b93c638 | 2017 | |
bbec2603 VP |
2018 | struct type *type = value_type (value); |
2019 | type = check_typedef (type); | |
2020 | ||
2021 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2022 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2023 | |
bbec2603 VP |
2024 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2025 | { | |
d6a843b5 | 2026 | if (field_is_static (&TYPE_FIELD (type, type_index))) |
bbec2603 VP |
2027 | result = value_static_field (type, type_index); |
2028 | else | |
2029 | result = value_primitive_field (value, 0, type_index, type); | |
2030 | } | |
2031 | if (e.reason < 0) | |
2032 | { | |
2033 | return NULL; | |
2034 | } | |
2035 | else | |
2036 | { | |
2037 | return result; | |
2038 | } | |
2039 | } | |
2040 | ||
2041 | /* Obtain the information about child INDEX of the variable | |
2042 | object PARENT. | |
2043 | If CNAME is not null, sets *CNAME to the name of the child relative | |
2044 | to the parent. | |
2045 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2046 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2047 | ||
2048 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2049 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2050 | to NULL. */ | |
2051 | static void | |
2052 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2053 | char **cname, struct value **cvalue, struct type **ctype, |
2054 | char **cfull_expression) | |
bbec2603 VP |
2055 | { |
2056 | struct value *value = parent->value; | |
2024f65a | 2057 | struct type *type = get_value_type (parent); |
02142340 VP |
2058 | char *parent_expression = NULL; |
2059 | int was_ptr; | |
bbec2603 VP |
2060 | |
2061 | if (cname) | |
2062 | *cname = NULL; | |
2063 | if (cvalue) | |
2064 | *cvalue = NULL; | |
2065 | if (ctype) | |
2066 | *ctype = NULL; | |
02142340 VP |
2067 | if (cfull_expression) |
2068 | { | |
2069 | *cfull_expression = NULL; | |
2070 | parent_expression = varobj_get_path_expr (parent); | |
2071 | } | |
2072 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2073 | |
8b93c638 JM |
2074 | switch (TYPE_CODE (type)) |
2075 | { | |
2076 | case TYPE_CODE_ARRAY: | |
bbec2603 VP |
2077 | if (cname) |
2078 | *cname = xstrprintf ("%d", index | |
2079 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2080 | ||
2081 | if (cvalue && value) | |
2082 | { | |
2083 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
2084 | struct value *indval = | |
6d84d3d8 | 2085 | value_from_longest (builtin_type_int32, (LONGEST) real_index); |
bbec2603 VP |
2086 | gdb_value_subscript (value, indval, cvalue); |
2087 | } | |
2088 | ||
2089 | if (ctype) | |
2090 | *ctype = get_target_type (type); | |
2091 | ||
02142340 VP |
2092 | if (cfull_expression) |
2093 | *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression, | |
2094 | index | |
2095 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2096 | ||
2097 | ||
8b93c638 JM |
2098 | break; |
2099 | ||
2100 | case TYPE_CODE_STRUCT: | |
2101 | case TYPE_CODE_UNION: | |
bbec2603 VP |
2102 | if (cname) |
2103 | { | |
2104 | char *string = TYPE_FIELD_NAME (type, index); | |
2105 | *cname = savestring (string, strlen (string)); | |
2106 | } | |
2107 | ||
2108 | if (cvalue && value) | |
2109 | { | |
2110 | /* For C, varobj index is the same as type index. */ | |
2111 | *cvalue = value_struct_element_index (value, index); | |
2112 | } | |
2113 | ||
2114 | if (ctype) | |
2115 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2116 | ||
02142340 VP |
2117 | if (cfull_expression) |
2118 | { | |
2119 | char *join = was_ptr ? "->" : "."; | |
2120 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, | |
2121 | TYPE_FIELD_NAME (type, index)); | |
2122 | } | |
2123 | ||
8b93c638 JM |
2124 | break; |
2125 | ||
2126 | case TYPE_CODE_PTR: | |
bbec2603 VP |
2127 | if (cname) |
2128 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 2129 | |
bbec2603 | 2130 | if (cvalue && value) |
3f4178d6 DJ |
2131 | { |
2132 | int success = gdb_value_ind (value, cvalue); | |
2133 | if (!success) | |
2134 | *cvalue = NULL; | |
2135 | } | |
bbec2603 | 2136 | |
2024f65a VP |
2137 | /* Don't use get_target_type because it calls |
2138 | check_typedef and here, we want to show the true | |
2139 | declared type of the variable. */ | |
bbec2603 | 2140 | if (ctype) |
2024f65a | 2141 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
2142 | |
2143 | if (cfull_expression) | |
2144 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 2145 | |
8b93c638 JM |
2146 | break; |
2147 | ||
2148 | default: | |
2149 | /* This should not happen */ | |
bbec2603 VP |
2150 | if (cname) |
2151 | *cname = xstrdup ("???"); | |
02142340 VP |
2152 | if (cfull_expression) |
2153 | *cfull_expression = xstrdup ("???"); | |
bbec2603 | 2154 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 2155 | } |
bbec2603 | 2156 | } |
8b93c638 | 2157 | |
bbec2603 VP |
2158 | static char * |
2159 | c_name_of_child (struct varobj *parent, int index) | |
2160 | { | |
2161 | char *name; | |
02142340 | 2162 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2163 | return name; |
2164 | } | |
2165 | ||
02142340 VP |
2166 | static char * |
2167 | c_path_expr_of_child (struct varobj *child) | |
2168 | { | |
2169 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2170 | &child->path_expr); | |
2171 | return child->path_expr; | |
2172 | } | |
2173 | ||
c5b48eac VP |
2174 | /* If frame associated with VAR can be found, switch |
2175 | to it and return 1. Otherwise, return 0. */ | |
2176 | static int | |
2177 | check_scope (struct varobj *var) | |
2178 | { | |
2179 | struct frame_info *fi; | |
2180 | int scope; | |
2181 | ||
2182 | fi = frame_find_by_id (var->root->frame); | |
2183 | scope = fi != NULL; | |
2184 | ||
2185 | if (fi) | |
2186 | { | |
2187 | CORE_ADDR pc = get_frame_pc (fi); | |
2188 | if (pc < BLOCK_START (var->root->valid_block) || | |
2189 | pc >= BLOCK_END (var->root->valid_block)) | |
2190 | scope = 0; | |
2191 | else | |
2192 | select_frame (fi); | |
2193 | } | |
2194 | return scope; | |
2195 | } | |
2196 | ||
30b28db1 | 2197 | static struct value * |
fba45db2 | 2198 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 2199 | { |
5e572bb4 | 2200 | struct value *new_val = NULL; |
73a93a32 | 2201 | struct varobj *var = *var_handle; |
8b93c638 | 2202 | struct frame_info *fi; |
c5b48eac | 2203 | int within_scope = 0; |
6208b47d VP |
2204 | struct cleanup *back_to; |
2205 | ||
73a93a32 | 2206 | /* Only root variables can be updated... */ |
b2c2bd75 | 2207 | if (!is_root_p (var)) |
73a93a32 JI |
2208 | /* Not a root var */ |
2209 | return NULL; | |
2210 | ||
4f8d22e3 | 2211 | back_to = make_cleanup_restore_current_thread (); |
72330bd6 | 2212 | |
8b93c638 | 2213 | /* Determine whether the variable is still around. */ |
a5defcdc | 2214 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 2215 | within_scope = 1; |
c5b48eac VP |
2216 | else if (var->root->thread_id == 0) |
2217 | { | |
2218 | /* The program was single-threaded when the variable object was | |
2219 | created. Technically, it's possible that the program became | |
2220 | multi-threaded since then, but we don't support such | |
2221 | scenario yet. */ | |
2222 | within_scope = check_scope (var); | |
2223 | } | |
8b93c638 JM |
2224 | else |
2225 | { | |
c5b48eac VP |
2226 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
2227 | if (in_thread_list (ptid)) | |
d2353924 | 2228 | { |
c5b48eac VP |
2229 | switch_to_thread (ptid); |
2230 | within_scope = check_scope (var); | |
2231 | } | |
8b93c638 | 2232 | } |
72330bd6 | 2233 | |
8b93c638 JM |
2234 | if (within_scope) |
2235 | { | |
73a93a32 | 2236 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
2237 | expression fails we want to just return NULL. */ |
2238 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
2239 | return new_val; |
2240 | } | |
2241 | ||
6208b47d VP |
2242 | do_cleanups (back_to); |
2243 | ||
8b93c638 JM |
2244 | return NULL; |
2245 | } | |
2246 | ||
30b28db1 | 2247 | static struct value * |
fba45db2 | 2248 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2249 | { |
bbec2603 | 2250 | struct value *value = NULL; |
02142340 | 2251 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
2252 | |
2253 | return value; | |
2254 | } | |
2255 | ||
2256 | static struct type * | |
fba45db2 | 2257 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2258 | { |
bbec2603 | 2259 | struct type *type = NULL; |
02142340 | 2260 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
2261 | return type; |
2262 | } | |
2263 | ||
8b93c638 | 2264 | static char * |
de051565 | 2265 | c_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2266 | { |
14b3d9c9 JB |
2267 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
2268 | it will print out its children instead of "{...}". So we need to | |
2269 | catch that case explicitly. */ | |
2270 | struct type *type = get_type (var); | |
e64d9b3d | 2271 | |
14b3d9c9 JB |
2272 | /* Strip top-level references. */ |
2273 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
2274 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
2275 | ||
2276 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
2277 | { |
2278 | case TYPE_CODE_STRUCT: | |
2279 | case TYPE_CODE_UNION: | |
2280 | return xstrdup ("{...}"); | |
2281 | /* break; */ | |
2282 | ||
2283 | case TYPE_CODE_ARRAY: | |
2284 | { | |
e64d9b3d | 2285 | char *number; |
b435e160 | 2286 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 2287 | return (number); |
8b93c638 JM |
2288 | } |
2289 | /* break; */ | |
2290 | ||
2291 | default: | |
2292 | { | |
575bbeb6 KS |
2293 | if (var->value == NULL) |
2294 | { | |
2295 | /* This can happen if we attempt to get the value of a struct | |
2296 | member when the parent is an invalid pointer. This is an | |
2297 | error condition, so we should tell the caller. */ | |
2298 | return NULL; | |
2299 | } | |
2300 | else | |
2301 | { | |
25d5ea92 VP |
2302 | if (var->not_fetched && value_lazy (var->value)) |
2303 | /* Frozen variable and no value yet. We don't | |
2304 | implicitly fetch the value. MI response will | |
2305 | use empty string for the value, which is OK. */ | |
2306 | return NULL; | |
2307 | ||
b2c2bd75 | 2308 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 2309 | gdb_assert (!value_lazy (var->value)); |
de051565 MK |
2310 | |
2311 | /* If the specified format is the current one, | |
2312 | we can reuse print_value */ | |
2313 | if (format == var->format) | |
2314 | return xstrdup (var->print_value); | |
2315 | else | |
2316 | return value_get_print_value (var->value, format); | |
85265413 | 2317 | } |
e64d9b3d | 2318 | } |
8b93c638 JM |
2319 | } |
2320 | } | |
2321 | \f | |
2322 | ||
2323 | /* C++ */ | |
2324 | ||
2325 | static int | |
fba45db2 | 2326 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
2327 | { |
2328 | struct type *type; | |
2329 | int children, dont_know; | |
2330 | ||
2331 | dont_know = 1; | |
2332 | children = 0; | |
2333 | ||
2334 | if (!CPLUS_FAKE_CHILD (var)) | |
2335 | { | |
2024f65a | 2336 | type = get_value_type (var); |
02142340 | 2337 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
2338 | |
2339 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 2340 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
2341 | { |
2342 | int kids[3]; | |
2343 | ||
2344 | cplus_class_num_children (type, kids); | |
2345 | if (kids[v_public] != 0) | |
2346 | children++; | |
2347 | if (kids[v_private] != 0) | |
2348 | children++; | |
2349 | if (kids[v_protected] != 0) | |
2350 | children++; | |
2351 | ||
2352 | /* Add any baseclasses */ | |
2353 | children += TYPE_N_BASECLASSES (type); | |
2354 | dont_know = 0; | |
2355 | ||
2356 | /* FIXME: save children in var */ | |
2357 | } | |
2358 | } | |
2359 | else | |
2360 | { | |
2361 | int kids[3]; | |
2362 | ||
2024f65a | 2363 | type = get_value_type (var->parent); |
02142340 | 2364 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
2365 | |
2366 | cplus_class_num_children (type, kids); | |
6e382aa3 | 2367 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 2368 | children = kids[v_public]; |
6e382aa3 | 2369 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
2370 | children = kids[v_private]; |
2371 | else | |
2372 | children = kids[v_protected]; | |
2373 | dont_know = 0; | |
2374 | } | |
2375 | ||
2376 | if (dont_know) | |
2377 | children = c_number_of_children (var); | |
2378 | ||
2379 | return children; | |
2380 | } | |
2381 | ||
2382 | /* Compute # of public, private, and protected variables in this class. | |
2383 | That means we need to descend into all baseclasses and find out | |
2384 | how many are there, too. */ | |
2385 | static void | |
1669605f | 2386 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 JM |
2387 | { |
2388 | int i; | |
2389 | ||
2390 | children[v_public] = 0; | |
2391 | children[v_private] = 0; | |
2392 | children[v_protected] = 0; | |
2393 | ||
2394 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) | |
2395 | { | |
2396 | /* If we have a virtual table pointer, omit it. */ | |
72330bd6 | 2397 | if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i) |
8b93c638 JM |
2398 | continue; |
2399 | ||
2400 | if (TYPE_FIELD_PROTECTED (type, i)) | |
2401 | children[v_protected]++; | |
2402 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
2403 | children[v_private]++; | |
2404 | else | |
2405 | children[v_public]++; | |
2406 | } | |
2407 | } | |
2408 | ||
2409 | static char * | |
fba45db2 | 2410 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2411 | { |
2412 | return c_name_of_variable (parent); | |
2413 | } | |
2414 | ||
2024f65a VP |
2415 | enum accessibility { private_field, protected_field, public_field }; |
2416 | ||
2417 | /* Check if field INDEX of TYPE has the specified accessibility. | |
2418 | Return 0 if so and 1 otherwise. */ | |
2419 | static int | |
2420 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 2421 | { |
2024f65a VP |
2422 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
2423 | return 1; | |
2424 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
2425 | return 1; | |
2426 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
2427 | && !TYPE_FIELD_PROTECTED (type, index)) | |
2428 | return 1; | |
2429 | else | |
2430 | return 0; | |
2431 | } | |
2432 | ||
2433 | static void | |
2434 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2435 | char **cname, struct value **cvalue, struct type **ctype, |
2436 | char **cfull_expression) | |
2024f65a | 2437 | { |
348144ba | 2438 | char *name = NULL; |
2024f65a | 2439 | struct value *value; |
8b93c638 | 2440 | struct type *type; |
02142340 VP |
2441 | int was_ptr; |
2442 | char *parent_expression = NULL; | |
8b93c638 | 2443 | |
2024f65a VP |
2444 | if (cname) |
2445 | *cname = NULL; | |
2446 | if (cvalue) | |
2447 | *cvalue = NULL; | |
2448 | if (ctype) | |
2449 | *ctype = NULL; | |
02142340 VP |
2450 | if (cfull_expression) |
2451 | *cfull_expression = NULL; | |
2024f65a | 2452 | |
8b93c638 JM |
2453 | if (CPLUS_FAKE_CHILD (parent)) |
2454 | { | |
2024f65a VP |
2455 | value = parent->parent->value; |
2456 | type = get_value_type (parent->parent); | |
02142340 VP |
2457 | if (cfull_expression) |
2458 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
2459 | } |
2460 | else | |
2024f65a VP |
2461 | { |
2462 | value = parent->value; | |
2463 | type = get_value_type (parent); | |
02142340 VP |
2464 | if (cfull_expression) |
2465 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 2466 | } |
8b93c638 | 2467 | |
02142340 | 2468 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
2469 | |
2470 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 2471 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 2472 | { |
02142340 | 2473 | char *join = was_ptr ? "->" : "."; |
8b93c638 JM |
2474 | if (CPLUS_FAKE_CHILD (parent)) |
2475 | { | |
6e382aa3 JJ |
2476 | /* The fields of the class type are ordered as they |
2477 | appear in the class. We are given an index for a | |
2478 | particular access control type ("public","protected", | |
2479 | or "private"). We must skip over fields that don't | |
2480 | have the access control we are looking for to properly | |
2481 | find the indexed field. */ | |
2482 | int type_index = TYPE_N_BASECLASSES (type); | |
2024f65a | 2483 | enum accessibility acc = public_field; |
6e382aa3 | 2484 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 2485 | acc = private_field; |
6e382aa3 | 2486 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
2487 | acc = protected_field; |
2488 | ||
2489 | while (index >= 0) | |
6e382aa3 | 2490 | { |
2024f65a VP |
2491 | if (TYPE_VPTR_BASETYPE (type) == type |
2492 | && type_index == TYPE_VPTR_FIELDNO (type)) | |
2493 | ; /* ignore vptr */ | |
2494 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
2495 | --index; |
2496 | ++type_index; | |
6e382aa3 | 2497 | } |
2024f65a VP |
2498 | --type_index; |
2499 | ||
2500 | if (cname) | |
2501 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
2502 | ||
2503 | if (cvalue && value) | |
2504 | *cvalue = value_struct_element_index (value, type_index); | |
2505 | ||
2506 | if (ctype) | |
2507 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
2508 | |
2509 | if (cfull_expression) | |
2510 | *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression, | |
2511 | join, | |
2512 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
2513 | } |
2514 | else if (index < TYPE_N_BASECLASSES (type)) | |
2515 | { | |
2516 | /* This is a baseclass. */ | |
2517 | if (cname) | |
2518 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
2519 | ||
2520 | if (cvalue && value) | |
6e382aa3 | 2521 | { |
2024f65a | 2522 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
02142340 | 2523 | release_value (*cvalue); |
6e382aa3 JJ |
2524 | } |
2525 | ||
2024f65a VP |
2526 | if (ctype) |
2527 | { | |
2528 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2529 | } | |
02142340 VP |
2530 | |
2531 | if (cfull_expression) | |
2532 | { | |
2533 | char *ptr = was_ptr ? "*" : ""; | |
2534 | /* Cast the parent to the base' type. Note that in gdb, | |
2535 | expression like | |
2536 | (Base1)d | |
2537 | will create an lvalue, for all appearences, so we don't | |
2538 | need to use more fancy: | |
2539 | *(Base1*)(&d) | |
2540 | construct. */ | |
2541 | *cfull_expression = xstrprintf ("(%s(%s%s) %s)", | |
2542 | ptr, | |
2543 | TYPE_FIELD_NAME (type, index), | |
2544 | ptr, | |
2545 | parent_expression); | |
2546 | } | |
8b93c638 | 2547 | } |
8b93c638 JM |
2548 | else |
2549 | { | |
348144ba | 2550 | char *access = NULL; |
6e382aa3 | 2551 | int children[3]; |
2024f65a | 2552 | cplus_class_num_children (type, children); |
6e382aa3 | 2553 | |
8b93c638 | 2554 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
2555 | only be "public", "private", or "protected" |
2556 | ||
2557 | The special "fake" children are always output by varobj in | |
2558 | this order. So if INDEX == 2, it MUST be "protected". */ | |
8b93c638 JM |
2559 | index -= TYPE_N_BASECLASSES (type); |
2560 | switch (index) | |
2561 | { | |
2562 | case 0: | |
6e382aa3 | 2563 | if (children[v_public] > 0) |
2024f65a | 2564 | access = "public"; |
6e382aa3 | 2565 | else if (children[v_private] > 0) |
2024f65a | 2566 | access = "private"; |
6e382aa3 | 2567 | else |
2024f65a | 2568 | access = "protected"; |
6e382aa3 | 2569 | break; |
8b93c638 | 2570 | case 1: |
6e382aa3 | 2571 | if (children[v_public] > 0) |
8b93c638 | 2572 | { |
6e382aa3 | 2573 | if (children[v_private] > 0) |
2024f65a | 2574 | access = "private"; |
6e382aa3 | 2575 | else |
2024f65a | 2576 | access = "protected"; |
8b93c638 | 2577 | } |
6e382aa3 | 2578 | else if (children[v_private] > 0) |
2024f65a | 2579 | access = "protected"; |
6e382aa3 | 2580 | break; |
8b93c638 | 2581 | case 2: |
6e382aa3 | 2582 | /* Must be protected */ |
2024f65a | 2583 | access = "protected"; |
6e382aa3 | 2584 | break; |
8b93c638 JM |
2585 | default: |
2586 | /* error! */ | |
2587 | break; | |
2588 | } | |
348144ba MS |
2589 | |
2590 | gdb_assert (access); | |
2024f65a VP |
2591 | if (cname) |
2592 | *cname = xstrdup (access); | |
8b93c638 | 2593 | |
02142340 | 2594 | /* Value and type and full expression are null here. */ |
2024f65a | 2595 | } |
8b93c638 | 2596 | } |
8b93c638 JM |
2597 | else |
2598 | { | |
02142340 | 2599 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
2600 | } |
2601 | } | |
8b93c638 | 2602 | |
2024f65a VP |
2603 | static char * |
2604 | cplus_name_of_child (struct varobj *parent, int index) | |
2605 | { | |
2606 | char *name = NULL; | |
02142340 | 2607 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2608 | return name; |
2609 | } | |
2610 | ||
02142340 VP |
2611 | static char * |
2612 | cplus_path_expr_of_child (struct varobj *child) | |
2613 | { | |
2614 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2615 | &child->path_expr); | |
2616 | return child->path_expr; | |
2617 | } | |
2618 | ||
30b28db1 | 2619 | static struct value * |
fba45db2 | 2620 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 2621 | { |
73a93a32 | 2622 | return c_value_of_root (var_handle); |
8b93c638 JM |
2623 | } |
2624 | ||
30b28db1 | 2625 | static struct value * |
fba45db2 | 2626 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2627 | { |
2024f65a | 2628 | struct value *value = NULL; |
02142340 | 2629 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
2630 | return value; |
2631 | } | |
2632 | ||
2633 | static struct type * | |
fba45db2 | 2634 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2635 | { |
2024f65a | 2636 | struct type *type = NULL; |
02142340 | 2637 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
2638 | return type; |
2639 | } | |
2640 | ||
8b93c638 | 2641 | static char * |
de051565 | 2642 | cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 JM |
2643 | { |
2644 | ||
2645 | /* If we have one of our special types, don't print out | |
2646 | any value. */ | |
2647 | if (CPLUS_FAKE_CHILD (var)) | |
2648 | return xstrdup (""); | |
2649 | ||
de051565 | 2650 | return c_value_of_variable (var, format); |
8b93c638 JM |
2651 | } |
2652 | \f | |
2653 | /* Java */ | |
2654 | ||
2655 | static int | |
fba45db2 | 2656 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
2657 | { |
2658 | return cplus_number_of_children (var); | |
2659 | } | |
2660 | ||
2661 | static char * | |
fba45db2 | 2662 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2663 | { |
2664 | char *p, *name; | |
2665 | ||
2666 | name = cplus_name_of_variable (parent); | |
2667 | /* If the name has "-" in it, it is because we | |
2668 | needed to escape periods in the name... */ | |
2669 | p = name; | |
2670 | ||
2671 | while (*p != '\000') | |
2672 | { | |
2673 | if (*p == '-') | |
2674 | *p = '.'; | |
2675 | p++; | |
2676 | } | |
2677 | ||
2678 | return name; | |
2679 | } | |
2680 | ||
2681 | static char * | |
fba45db2 | 2682 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2683 | { |
2684 | char *name, *p; | |
2685 | ||
2686 | name = cplus_name_of_child (parent, index); | |
2687 | /* Escape any periods in the name... */ | |
2688 | p = name; | |
2689 | ||
2690 | while (*p != '\000') | |
2691 | { | |
2692 | if (*p == '.') | |
2693 | *p = '-'; | |
2694 | p++; | |
2695 | } | |
2696 | ||
2697 | return name; | |
2698 | } | |
2699 | ||
02142340 VP |
2700 | static char * |
2701 | java_path_expr_of_child (struct varobj *child) | |
2702 | { | |
2703 | return NULL; | |
2704 | } | |
2705 | ||
30b28db1 | 2706 | static struct value * |
fba45db2 | 2707 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 2708 | { |
73a93a32 | 2709 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
2710 | } |
2711 | ||
30b28db1 | 2712 | static struct value * |
fba45db2 | 2713 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2714 | { |
2715 | return cplus_value_of_child (parent, index); | |
2716 | } | |
2717 | ||
2718 | static struct type * | |
fba45db2 | 2719 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2720 | { |
2721 | return cplus_type_of_child (parent, index); | |
2722 | } | |
2723 | ||
8b93c638 | 2724 | static char * |
de051565 | 2725 | java_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2726 | { |
de051565 | 2727 | return cplus_value_of_variable (var, format); |
8b93c638 JM |
2728 | } |
2729 | \f | |
2730 | extern void _initialize_varobj (void); | |
2731 | void | |
2732 | _initialize_varobj (void) | |
2733 | { | |
2734 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
2735 | ||
2736 | varobj_table = xmalloc (sizeof_table); | |
2737 | memset (varobj_table, 0, sizeof_table); | |
2738 | ||
85c07804 AC |
2739 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
2740 | &varobjdebug, _("\ | |
2741 | Set varobj debugging."), _("\ | |
2742 | Show varobj debugging."), _("\ | |
2743 | When non-zero, varobj debugging is enabled."), | |
2744 | NULL, | |
920d2a44 | 2745 | show_varobjdebug, |
85c07804 | 2746 | &setlist, &showlist); |
8b93c638 | 2747 | } |
8756216b DP |
2748 | |
2749 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
2750 | are defined on globals. | |
2751 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
2752 | void | |
2753 | varobj_invalidate (void) | |
2754 | { | |
2755 | struct varobj **all_rootvarobj; | |
2756 | struct varobj **varp; | |
2757 | ||
2758 | if (varobj_list (&all_rootvarobj) > 0) | |
2759 | { | |
2760 | varp = all_rootvarobj; | |
2761 | while (*varp != NULL) | |
2762 | { | |
603ba1de VP |
2763 | /* Floating varobjs are reparsed on each stop, so we don't care if |
2764 | the presently parsed expression refers to something that's gone. */ | |
2765 | if ((*varp)->root->floating) | |
2766 | continue; | |
2767 | ||
8756216b DP |
2768 | /* global var must be re-evaluated. */ |
2769 | if ((*varp)->root->valid_block == NULL) | |
2770 | { | |
2771 | struct varobj *tmp_var; | |
2772 | ||
2773 | /* Try to create a varobj with same expression. If we succeed replace | |
2774 | the old varobj, otherwise invalidate it. */ | |
2775 | tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, USE_CURRENT_FRAME); | |
2776 | if (tmp_var != NULL) | |
2777 | { | |
2778 | tmp_var->obj_name = xstrdup ((*varp)->obj_name); | |
2779 | varobj_delete (*varp, NULL, 0); | |
2780 | install_variable (tmp_var); | |
2781 | } | |
2782 | else | |
2783 | (*varp)->root->is_valid = 0; | |
2784 | } | |
2785 | else /* locals must be invalidated. */ | |
2786 | (*varp)->root->is_valid = 0; | |
2787 | ||
2788 | varp++; | |
2789 | } | |
8756216b | 2790 | } |
f7545552 | 2791 | xfree (all_rootvarobj); |
8756216b DP |
2792 | return; |
2793 | } |