]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Read ELF (Executable and Linking Format) object files for GDB. |
1bac305b | 2 | |
0b302171 | 3 | Copyright (C) 1991-2012 Free Software Foundation, Inc. |
1bac305b | 4 | |
c906108c SS |
5 | Written by Fred Fish at Cygnus Support. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "bfd.h" | |
24 | #include "gdb_string.h" | |
25 | #include "elf-bfd.h" | |
31d99776 DJ |
26 | #include "elf/common.h" |
27 | #include "elf/internal.h" | |
c906108c SS |
28 | #include "elf/mips.h" |
29 | #include "symtab.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
32 | #include "buildsym.h" | |
33 | #include "stabsread.h" | |
34 | #include "gdb-stabs.h" | |
35 | #include "complaints.h" | |
36 | #include "demangle.h" | |
ccefe4c4 | 37 | #include "psympriv.h" |
0ba1096a | 38 | #include "filenames.h" |
55aa24fb SDJ |
39 | #include "probe.h" |
40 | #include "arch-utils.h" | |
07be84bf JK |
41 | #include "gdbtypes.h" |
42 | #include "value.h" | |
43 | #include "infcall.h" | |
0e30163f JK |
44 | #include "gdbthread.h" |
45 | #include "regcache.h" | |
0af1e9a5 | 46 | #include "bcache.h" |
cbb099e8 | 47 | #include "gdb_bfd.h" |
c906108c | 48 | |
a14ed312 | 49 | extern void _initialize_elfread (void); |
392a587b | 50 | |
b11896a5 | 51 | /* Forward declarations. */ |
00b5771c | 52 | static const struct sym_fns elf_sym_fns_gdb_index; |
b11896a5 | 53 | static const struct sym_fns elf_sym_fns_lazy_psyms; |
9291a0cd | 54 | |
c906108c | 55 | /* The struct elfinfo is available only during ELF symbol table and |
6426a772 | 56 | psymtab reading. It is destroyed at the completion of psymtab-reading. |
c906108c SS |
57 | It's local to elf_symfile_read. */ |
58 | ||
c5aa993b JM |
59 | struct elfinfo |
60 | { | |
c5aa993b JM |
61 | asection *stabsect; /* Section pointer for .stab section */ |
62 | asection *stabindexsect; /* Section pointer for .stab.index section */ | |
63 | asection *mdebugsect; /* Section pointer for .mdebug section */ | |
64 | }; | |
c906108c | 65 | |
55aa24fb SDJ |
66 | /* Per-objfile data for probe info. */ |
67 | ||
68 | static const struct objfile_data *probe_key = NULL; | |
69 | ||
12b9c64f | 70 | static void free_elfinfo (void *); |
c906108c | 71 | |
07be84bf JK |
72 | /* Minimal symbols located at the GOT entries for .plt - that is the real |
73 | pointer where the given entry will jump to. It gets updated by the real | |
74 | function address during lazy ld.so resolving in the inferior. These | |
75 | minimal symbols are indexed for <tab>-completion. */ | |
76 | ||
77 | #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" | |
78 | ||
31d99776 DJ |
79 | /* Locate the segments in ABFD. */ |
80 | ||
81 | static struct symfile_segment_data * | |
82 | elf_symfile_segments (bfd *abfd) | |
83 | { | |
84 | Elf_Internal_Phdr *phdrs, **segments; | |
85 | long phdrs_size; | |
86 | int num_phdrs, num_segments, num_sections, i; | |
87 | asection *sect; | |
88 | struct symfile_segment_data *data; | |
89 | ||
90 | phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); | |
91 | if (phdrs_size == -1) | |
92 | return NULL; | |
93 | ||
94 | phdrs = alloca (phdrs_size); | |
95 | num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); | |
96 | if (num_phdrs == -1) | |
97 | return NULL; | |
98 | ||
99 | num_segments = 0; | |
100 | segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs); | |
101 | for (i = 0; i < num_phdrs; i++) | |
102 | if (phdrs[i].p_type == PT_LOAD) | |
103 | segments[num_segments++] = &phdrs[i]; | |
104 | ||
105 | if (num_segments == 0) | |
106 | return NULL; | |
107 | ||
108 | data = XZALLOC (struct symfile_segment_data); | |
109 | data->num_segments = num_segments; | |
110 | data->segment_bases = XCALLOC (num_segments, CORE_ADDR); | |
111 | data->segment_sizes = XCALLOC (num_segments, CORE_ADDR); | |
112 | ||
113 | for (i = 0; i < num_segments; i++) | |
114 | { | |
115 | data->segment_bases[i] = segments[i]->p_vaddr; | |
116 | data->segment_sizes[i] = segments[i]->p_memsz; | |
117 | } | |
118 | ||
119 | num_sections = bfd_count_sections (abfd); | |
120 | data->segment_info = XCALLOC (num_sections, int); | |
121 | ||
122 | for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) | |
123 | { | |
124 | int j; | |
125 | CORE_ADDR vma; | |
126 | ||
127 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
128 | continue; | |
129 | ||
130 | vma = bfd_get_section_vma (abfd, sect); | |
131 | ||
132 | for (j = 0; j < num_segments; j++) | |
133 | if (segments[j]->p_memsz > 0 | |
134 | && vma >= segments[j]->p_vaddr | |
a366c65a | 135 | && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz) |
31d99776 DJ |
136 | { |
137 | data->segment_info[i] = j + 1; | |
138 | break; | |
139 | } | |
140 | ||
ad09a548 DJ |
141 | /* We should have found a segment for every non-empty section. |
142 | If we haven't, we will not relocate this section by any | |
143 | offsets we apply to the segments. As an exception, do not | |
144 | warn about SHT_NOBITS sections; in normal ELF execution | |
145 | environments, SHT_NOBITS means zero-initialized and belongs | |
146 | in a segment, but in no-OS environments some tools (e.g. ARM | |
147 | RealView) use SHT_NOBITS for uninitialized data. Since it is | |
148 | uninitialized, it doesn't need a program header. Such | |
149 | binaries are not relocatable. */ | |
150 | if (bfd_get_section_size (sect) > 0 && j == num_segments | |
151 | && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0) | |
28ee876a | 152 | warning (_("Loadable section \"%s\" outside of ELF segments"), |
31d99776 DJ |
153 | bfd_section_name (abfd, sect)); |
154 | } | |
155 | ||
156 | return data; | |
157 | } | |
158 | ||
c906108c SS |
159 | /* We are called once per section from elf_symfile_read. We |
160 | need to examine each section we are passed, check to see | |
161 | if it is something we are interested in processing, and | |
162 | if so, stash away some access information for the section. | |
163 | ||
164 | For now we recognize the dwarf debug information sections and | |
165 | line number sections from matching their section names. The | |
166 | ELF definition is no real help here since it has no direct | |
167 | knowledge of DWARF (by design, so any debugging format can be | |
168 | used). | |
169 | ||
170 | We also recognize the ".stab" sections used by the Sun compilers | |
171 | released with Solaris 2. | |
172 | ||
173 | FIXME: The section names should not be hardwired strings (what | |
174 | should they be? I don't think most object file formats have enough | |
0963b4bd | 175 | section flags to specify what kind of debug section it is. |
c906108c SS |
176 | -kingdon). */ |
177 | ||
178 | static void | |
12b9c64f | 179 | elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip) |
c906108c | 180 | { |
52f0bd74 | 181 | struct elfinfo *ei; |
c906108c SS |
182 | |
183 | ei = (struct elfinfo *) eip; | |
7ce59000 | 184 | if (strcmp (sectp->name, ".stab") == 0) |
c906108c | 185 | { |
c5aa993b | 186 | ei->stabsect = sectp; |
c906108c | 187 | } |
6314a349 | 188 | else if (strcmp (sectp->name, ".stab.index") == 0) |
c906108c | 189 | { |
c5aa993b | 190 | ei->stabindexsect = sectp; |
c906108c | 191 | } |
6314a349 | 192 | else if (strcmp (sectp->name, ".mdebug") == 0) |
c906108c | 193 | { |
c5aa993b | 194 | ei->mdebugsect = sectp; |
c906108c SS |
195 | } |
196 | } | |
197 | ||
c906108c | 198 | static struct minimal_symbol * |
04a679b8 TT |
199 | record_minimal_symbol (const char *name, int name_len, int copy_name, |
200 | CORE_ADDR address, | |
f594e5e9 MC |
201 | enum minimal_symbol_type ms_type, |
202 | asection *bfd_section, struct objfile *objfile) | |
c906108c | 203 | { |
5e2b427d UW |
204 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
205 | ||
0875794a JK |
206 | if (ms_type == mst_text || ms_type == mst_file_text |
207 | || ms_type == mst_text_gnu_ifunc) | |
5e2b427d | 208 | address = gdbarch_smash_text_address (gdbarch, address); |
c906108c | 209 | |
04a679b8 TT |
210 | return prim_record_minimal_symbol_full (name, name_len, copy_name, address, |
211 | ms_type, bfd_section->index, | |
212 | bfd_section, objfile); | |
c906108c SS |
213 | } |
214 | ||
7f86f058 | 215 | /* Read the symbol table of an ELF file. |
c906108c | 216 | |
62553543 | 217 | Given an objfile, a symbol table, and a flag indicating whether the |
6f610d07 UW |
218 | symbol table contains regular, dynamic, or synthetic symbols, add all |
219 | the global function and data symbols to the minimal symbol table. | |
c906108c | 220 | |
c5aa993b JM |
221 | In stabs-in-ELF, as implemented by Sun, there are some local symbols |
222 | defined in the ELF symbol table, which can be used to locate | |
223 | the beginnings of sections from each ".o" file that was linked to | |
224 | form the executable objfile. We gather any such info and record it | |
7f86f058 | 225 | in data structures hung off the objfile's private data. */ |
c906108c | 226 | |
6f610d07 UW |
227 | #define ST_REGULAR 0 |
228 | #define ST_DYNAMIC 1 | |
229 | #define ST_SYNTHETIC 2 | |
230 | ||
c906108c | 231 | static void |
6f610d07 | 232 | elf_symtab_read (struct objfile *objfile, int type, |
04a679b8 TT |
233 | long number_of_symbols, asymbol **symbol_table, |
234 | int copy_names) | |
c906108c | 235 | { |
5e2b427d | 236 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c | 237 | asymbol *sym; |
c906108c | 238 | long i; |
c906108c | 239 | CORE_ADDR symaddr; |
d4f3574e | 240 | CORE_ADDR offset; |
c906108c SS |
241 | enum minimal_symbol_type ms_type; |
242 | /* If sectinfo is nonNULL, it contains section info that should end up | |
243 | filed in the objfile. */ | |
244 | struct stab_section_info *sectinfo = NULL; | |
245 | /* If filesym is nonzero, it points to a file symbol, but we haven't | |
246 | seen any section info for it yet. */ | |
247 | asymbol *filesym = 0; | |
1c9e8358 | 248 | /* Name of filesym. This is either a constant string or is saved on |
0af1e9a5 TT |
249 | the objfile's filename cache. */ |
250 | const char *filesymname = ""; | |
0a6ddd08 | 251 | struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info; |
d4f3574e | 252 | int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
c5aa993b | 253 | |
0cc7b392 | 254 | for (i = 0; i < number_of_symbols; i++) |
c906108c | 255 | { |
0cc7b392 DJ |
256 | sym = symbol_table[i]; |
257 | if (sym->name == NULL || *sym->name == '\0') | |
c906108c | 258 | { |
0cc7b392 | 259 | /* Skip names that don't exist (shouldn't happen), or names |
0963b4bd | 260 | that are null strings (may happen). */ |
0cc7b392 DJ |
261 | continue; |
262 | } | |
c906108c | 263 | |
74763737 DJ |
264 | /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
265 | symbols which do not correspond to objects in the symbol table, | |
266 | but have some other target-specific meaning. */ | |
267 | if (bfd_is_target_special_symbol (objfile->obfd, sym)) | |
60c5725c DJ |
268 | { |
269 | if (gdbarch_record_special_symbol_p (gdbarch)) | |
270 | gdbarch_record_special_symbol (gdbarch, objfile, sym); | |
271 | continue; | |
272 | } | |
74763737 | 273 | |
0cc7b392 | 274 | offset = ANOFFSET (objfile->section_offsets, sym->section->index); |
6f610d07 | 275 | if (type == ST_DYNAMIC |
45dfa85a | 276 | && sym->section == bfd_und_section_ptr |
0cc7b392 DJ |
277 | && (sym->flags & BSF_FUNCTION)) |
278 | { | |
279 | struct minimal_symbol *msym; | |
02c75f72 | 280 | bfd *abfd = objfile->obfd; |
dea91a5c | 281 | asection *sect; |
0cc7b392 DJ |
282 | |
283 | /* Symbol is a reference to a function defined in | |
284 | a shared library. | |
285 | If its value is non zero then it is usually the address | |
286 | of the corresponding entry in the procedure linkage table, | |
287 | plus the desired section offset. | |
288 | If its value is zero then the dynamic linker has to resolve | |
0963b4bd | 289 | the symbol. We are unable to find any meaningful address |
0cc7b392 DJ |
290 | for this symbol in the executable file, so we skip it. */ |
291 | symaddr = sym->value; | |
292 | if (symaddr == 0) | |
293 | continue; | |
02c75f72 UW |
294 | |
295 | /* sym->section is the undefined section. However, we want to | |
296 | record the section where the PLT stub resides with the | |
297 | minimal symbol. Search the section table for the one that | |
298 | covers the stub's address. */ | |
299 | for (sect = abfd->sections; sect != NULL; sect = sect->next) | |
300 | { | |
301 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
302 | continue; | |
303 | ||
304 | if (symaddr >= bfd_get_section_vma (abfd, sect) | |
305 | && symaddr < bfd_get_section_vma (abfd, sect) | |
306 | + bfd_get_section_size (sect)) | |
307 | break; | |
308 | } | |
309 | if (!sect) | |
310 | continue; | |
311 | ||
828cfa8d JB |
312 | /* On ia64-hpux, we have discovered that the system linker |
313 | adds undefined symbols with nonzero addresses that cannot | |
314 | be right (their address points inside the code of another | |
315 | function in the .text section). This creates problems | |
316 | when trying to determine which symbol corresponds to | |
317 | a given address. | |
318 | ||
319 | We try to detect those buggy symbols by checking which | |
320 | section we think they correspond to. Normally, PLT symbols | |
321 | are stored inside their own section, and the typical name | |
322 | for that section is ".plt". So, if there is a ".plt" | |
323 | section, and yet the section name of our symbol does not | |
324 | start with ".plt", we ignore that symbol. */ | |
325 | if (strncmp (sect->name, ".plt", 4) != 0 | |
326 | && bfd_get_section_by_name (abfd, ".plt") != NULL) | |
327 | continue; | |
328 | ||
02c75f72 UW |
329 | symaddr += ANOFFSET (objfile->section_offsets, sect->index); |
330 | ||
0cc7b392 | 331 | msym = record_minimal_symbol |
04a679b8 TT |
332 | (sym->name, strlen (sym->name), copy_names, |
333 | symaddr, mst_solib_trampoline, sect, objfile); | |
0cc7b392 DJ |
334 | if (msym != NULL) |
335 | msym->filename = filesymname; | |
0cc7b392 DJ |
336 | continue; |
337 | } | |
c906108c | 338 | |
0cc7b392 DJ |
339 | /* If it is a nonstripped executable, do not enter dynamic |
340 | symbols, as the dynamic symbol table is usually a subset | |
341 | of the main symbol table. */ | |
6f610d07 | 342 | if (type == ST_DYNAMIC && !stripped) |
0cc7b392 DJ |
343 | continue; |
344 | if (sym->flags & BSF_FILE) | |
345 | { | |
346 | /* STT_FILE debugging symbol that helps stabs-in-elf debugging. | |
347 | Chain any old one onto the objfile; remember new sym. */ | |
348 | if (sectinfo != NULL) | |
c906108c | 349 | { |
0cc7b392 DJ |
350 | sectinfo->next = dbx->stab_section_info; |
351 | dbx->stab_section_info = sectinfo; | |
352 | sectinfo = NULL; | |
353 | } | |
354 | filesym = sym; | |
0af1e9a5 | 355 | filesymname = bcache (filesym->name, strlen (filesym->name) + 1, |
706e3705 | 356 | objfile->per_bfd->filename_cache); |
0cc7b392 DJ |
357 | } |
358 | else if (sym->flags & BSF_SECTION_SYM) | |
359 | continue; | |
360 | else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK)) | |
361 | { | |
362 | struct minimal_symbol *msym; | |
363 | ||
364 | /* Select global/local/weak symbols. Note that bfd puts abs | |
365 | symbols in their own section, so all symbols we are | |
0963b4bd MS |
366 | interested in will have a section. */ |
367 | /* Bfd symbols are section relative. */ | |
0cc7b392 | 368 | symaddr = sym->value + sym->section->vma; |
45148c2e UW |
369 | /* Relocate all non-absolute and non-TLS symbols by the |
370 | section offset. */ | |
45dfa85a | 371 | if (sym->section != bfd_abs_section_ptr |
45148c2e | 372 | && !(sym->section->flags & SEC_THREAD_LOCAL)) |
0cc7b392 DJ |
373 | { |
374 | symaddr += offset; | |
c906108c | 375 | } |
0cc7b392 DJ |
376 | /* For non-absolute symbols, use the type of the section |
377 | they are relative to, to intuit text/data. Bfd provides | |
0963b4bd | 378 | no way of figuring this out for absolute symbols. */ |
45dfa85a | 379 | if (sym->section == bfd_abs_section_ptr) |
c906108c | 380 | { |
0cc7b392 DJ |
381 | /* This is a hack to get the minimal symbol type |
382 | right for Irix 5, which has absolute addresses | |
6f610d07 UW |
383 | with special section indices for dynamic symbols. |
384 | ||
385 | NOTE: uweigand-20071112: Synthetic symbols do not | |
386 | have an ELF-private part, so do not touch those. */ | |
dea91a5c | 387 | unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
0cc7b392 DJ |
388 | ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
389 | ||
390 | switch (shndx) | |
c906108c | 391 | { |
0cc7b392 DJ |
392 | case SHN_MIPS_TEXT: |
393 | ms_type = mst_text; | |
394 | break; | |
395 | case SHN_MIPS_DATA: | |
396 | ms_type = mst_data; | |
397 | break; | |
398 | case SHN_MIPS_ACOMMON: | |
399 | ms_type = mst_bss; | |
400 | break; | |
401 | default: | |
402 | ms_type = mst_abs; | |
403 | } | |
404 | ||
405 | /* If it is an Irix dynamic symbol, skip section name | |
0963b4bd | 406 | symbols, relocate all others by section offset. */ |
0cc7b392 DJ |
407 | if (ms_type != mst_abs) |
408 | { | |
409 | if (sym->name[0] == '.') | |
410 | continue; | |
d4f3574e | 411 | symaddr += offset; |
c906108c | 412 | } |
0cc7b392 DJ |
413 | } |
414 | else if (sym->section->flags & SEC_CODE) | |
415 | { | |
08232497 | 416 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK)) |
c906108c | 417 | { |
0875794a JK |
418 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
419 | ms_type = mst_text_gnu_ifunc; | |
420 | else | |
421 | ms_type = mst_text; | |
0cc7b392 | 422 | } |
90359a16 JK |
423 | /* The BSF_SYNTHETIC check is there to omit ppc64 function |
424 | descriptors mistaken for static functions starting with 'L'. | |
425 | */ | |
426 | else if ((sym->name[0] == '.' && sym->name[1] == 'L' | |
427 | && (sym->flags & BSF_SYNTHETIC) == 0) | |
0cc7b392 DJ |
428 | || ((sym->flags & BSF_LOCAL) |
429 | && sym->name[0] == '$' | |
430 | && sym->name[1] == 'L')) | |
431 | /* Looks like a compiler-generated label. Skip | |
432 | it. The assembler should be skipping these (to | |
433 | keep executables small), but apparently with | |
434 | gcc on the (deleted) delta m88k SVR4, it loses. | |
435 | So to have us check too should be harmless (but | |
436 | I encourage people to fix this in the assembler | |
437 | instead of adding checks here). */ | |
438 | continue; | |
439 | else | |
440 | { | |
441 | ms_type = mst_file_text; | |
c906108c | 442 | } |
0cc7b392 DJ |
443 | } |
444 | else if (sym->section->flags & SEC_ALLOC) | |
445 | { | |
446 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK)) | |
c906108c | 447 | { |
0cc7b392 | 448 | if (sym->section->flags & SEC_LOAD) |
c906108c | 449 | { |
0cc7b392 | 450 | ms_type = mst_data; |
c906108c | 451 | } |
c906108c SS |
452 | else |
453 | { | |
0cc7b392 | 454 | ms_type = mst_bss; |
c906108c SS |
455 | } |
456 | } | |
0cc7b392 | 457 | else if (sym->flags & BSF_LOCAL) |
c906108c | 458 | { |
0cc7b392 DJ |
459 | /* Named Local variable in a Data section. |
460 | Check its name for stabs-in-elf. */ | |
461 | int special_local_sect; | |
d7f9d729 | 462 | |
0cc7b392 DJ |
463 | if (strcmp ("Bbss.bss", sym->name) == 0) |
464 | special_local_sect = SECT_OFF_BSS (objfile); | |
465 | else if (strcmp ("Ddata.data", sym->name) == 0) | |
466 | special_local_sect = SECT_OFF_DATA (objfile); | |
467 | else if (strcmp ("Drodata.rodata", sym->name) == 0) | |
468 | special_local_sect = SECT_OFF_RODATA (objfile); | |
469 | else | |
470 | special_local_sect = -1; | |
471 | if (special_local_sect >= 0) | |
c906108c | 472 | { |
0cc7b392 DJ |
473 | /* Found a special local symbol. Allocate a |
474 | sectinfo, if needed, and fill it in. */ | |
475 | if (sectinfo == NULL) | |
c906108c | 476 | { |
0cc7b392 DJ |
477 | int max_index; |
478 | size_t size; | |
479 | ||
25c2f6ab PP |
480 | max_index = SECT_OFF_BSS (objfile); |
481 | if (objfile->sect_index_data > max_index) | |
482 | max_index = objfile->sect_index_data; | |
483 | if (objfile->sect_index_rodata > max_index) | |
484 | max_index = objfile->sect_index_rodata; | |
0cc7b392 DJ |
485 | |
486 | /* max_index is the largest index we'll | |
487 | use into this array, so we must | |
488 | allocate max_index+1 elements for it. | |
489 | However, 'struct stab_section_info' | |
490 | already includes one element, so we | |
491 | need to allocate max_index aadditional | |
492 | elements. */ | |
dea91a5c | 493 | size = (sizeof (struct stab_section_info) |
c05d19c5 | 494 | + (sizeof (CORE_ADDR) * max_index)); |
0cc7b392 DJ |
495 | sectinfo = (struct stab_section_info *) |
496 | xmalloc (size); | |
497 | memset (sectinfo, 0, size); | |
498 | sectinfo->num_sections = max_index; | |
499 | if (filesym == NULL) | |
c906108c | 500 | { |
0cc7b392 | 501 | complaint (&symfile_complaints, |
3e43a32a MS |
502 | _("elf/stab section information %s " |
503 | "without a preceding file symbol"), | |
0cc7b392 DJ |
504 | sym->name); |
505 | } | |
506 | else | |
507 | { | |
508 | sectinfo->filename = | |
509 | (char *) filesym->name; | |
c906108c | 510 | } |
c906108c | 511 | } |
0cc7b392 DJ |
512 | if (sectinfo->sections[special_local_sect] != 0) |
513 | complaint (&symfile_complaints, | |
3e43a32a MS |
514 | _("duplicated elf/stab section " |
515 | "information for %s"), | |
0cc7b392 DJ |
516 | sectinfo->filename); |
517 | /* BFD symbols are section relative. */ | |
518 | symaddr = sym->value + sym->section->vma; | |
519 | /* Relocate non-absolute symbols by the | |
520 | section offset. */ | |
45dfa85a | 521 | if (sym->section != bfd_abs_section_ptr) |
0cc7b392 DJ |
522 | symaddr += offset; |
523 | sectinfo->sections[special_local_sect] = symaddr; | |
524 | /* The special local symbols don't go in the | |
525 | minimal symbol table, so ignore this one. */ | |
526 | continue; | |
527 | } | |
528 | /* Not a special stabs-in-elf symbol, do regular | |
529 | symbol processing. */ | |
530 | if (sym->section->flags & SEC_LOAD) | |
531 | { | |
532 | ms_type = mst_file_data; | |
c906108c SS |
533 | } |
534 | else | |
535 | { | |
0cc7b392 | 536 | ms_type = mst_file_bss; |
c906108c SS |
537 | } |
538 | } | |
539 | else | |
540 | { | |
0cc7b392 | 541 | ms_type = mst_unknown; |
c906108c | 542 | } |
0cc7b392 DJ |
543 | } |
544 | else | |
545 | { | |
546 | /* FIXME: Solaris2 shared libraries include lots of | |
dea91a5c | 547 | odd "absolute" and "undefined" symbols, that play |
0cc7b392 DJ |
548 | hob with actions like finding what function the PC |
549 | is in. Ignore them if they aren't text, data, or bss. */ | |
550 | /* ms_type = mst_unknown; */ | |
0963b4bd | 551 | continue; /* Skip this symbol. */ |
0cc7b392 DJ |
552 | } |
553 | msym = record_minimal_symbol | |
04a679b8 | 554 | (sym->name, strlen (sym->name), copy_names, symaddr, |
0cc7b392 | 555 | ms_type, sym->section, objfile); |
6f610d07 | 556 | |
0cc7b392 DJ |
557 | if (msym) |
558 | { | |
559 | /* Pass symbol size field in via BFD. FIXME!!! */ | |
6f610d07 UW |
560 | elf_symbol_type *elf_sym; |
561 | ||
562 | /* NOTE: uweigand-20071112: A synthetic symbol does not have an | |
563 | ELF-private part. However, in some cases (e.g. synthetic | |
564 | 'dot' symbols on ppc64) the udata.p entry is set to point back | |
565 | to the original ELF symbol it was derived from. Get the size | |
dea91a5c | 566 | from that symbol. */ |
6f610d07 UW |
567 | if (type != ST_SYNTHETIC) |
568 | elf_sym = (elf_symbol_type *) sym; | |
569 | else | |
570 | elf_sym = (elf_symbol_type *) sym->udata.p; | |
571 | ||
572 | if (elf_sym) | |
573 | MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size; | |
dea91a5c | 574 | |
a103a963 DJ |
575 | msym->filename = filesymname; |
576 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
0cc7b392 | 577 | } |
2eaf8d2a DJ |
578 | |
579 | /* For @plt symbols, also record a trampoline to the | |
580 | destination symbol. The @plt symbol will be used in | |
581 | disassembly, and the trampoline will be used when we are | |
582 | trying to find the target. */ | |
583 | if (msym && ms_type == mst_text && type == ST_SYNTHETIC) | |
584 | { | |
585 | int len = strlen (sym->name); | |
586 | ||
587 | if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) | |
588 | { | |
2eaf8d2a DJ |
589 | struct minimal_symbol *mtramp; |
590 | ||
04a679b8 TT |
591 | mtramp = record_minimal_symbol (sym->name, len - 4, 1, |
592 | symaddr, | |
2eaf8d2a DJ |
593 | mst_solib_trampoline, |
594 | sym->section, objfile); | |
595 | if (mtramp) | |
596 | { | |
597 | MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym); | |
422d65e7 | 598 | mtramp->created_by_gdb = 1; |
2eaf8d2a DJ |
599 | mtramp->filename = filesymname; |
600 | gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp); | |
601 | } | |
602 | } | |
603 | } | |
c906108c | 604 | } |
c906108c SS |
605 | } |
606 | } | |
607 | ||
07be84bf JK |
608 | /* Build minimal symbols named `[email protected]' (see SYMBOL_GOT_PLT_SUFFIX) |
609 | for later look ups of which function to call when user requests | |
610 | a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target | |
611 | library defining `function' we cannot yet know while reading OBJFILE which | |
612 | of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later | |
613 | DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ | |
614 | ||
615 | static void | |
616 | elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table) | |
617 | { | |
618 | bfd *obfd = objfile->obfd; | |
619 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
620 | asection *plt, *relplt, *got_plt; | |
07be84bf JK |
621 | int plt_elf_idx; |
622 | bfd_size_type reloc_count, reloc; | |
623 | char *string_buffer = NULL; | |
624 | size_t string_buffer_size = 0; | |
625 | struct cleanup *back_to; | |
626 | struct gdbarch *gdbarch = objfile->gdbarch; | |
627 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | |
628 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
629 | ||
630 | if (objfile->separate_debug_objfile_backlink) | |
631 | return; | |
632 | ||
633 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
634 | if (plt == NULL) | |
635 | return; | |
636 | plt_elf_idx = elf_section_data (plt)->this_idx; | |
637 | ||
638 | got_plt = bfd_get_section_by_name (obfd, ".got.plt"); | |
639 | if (got_plt == NULL) | |
640 | return; | |
641 | ||
642 | /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ | |
643 | for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) | |
644 | if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx | |
645 | && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL | |
646 | || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA)) | |
647 | break; | |
648 | if (relplt == NULL) | |
649 | return; | |
650 | ||
651 | if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) | |
652 | return; | |
653 | ||
654 | back_to = make_cleanup (free_current_contents, &string_buffer); | |
655 | ||
656 | reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; | |
657 | for (reloc = 0; reloc < reloc_count; reloc++) | |
658 | { | |
22e048c9 | 659 | const char *name; |
07be84bf JK |
660 | struct minimal_symbol *msym; |
661 | CORE_ADDR address; | |
662 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
663 | size_t name_len; | |
664 | ||
665 | name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); | |
666 | name_len = strlen (name); | |
667 | address = relplt->relocation[reloc].address; | |
668 | ||
669 | /* Does the pointer reside in the .got.plt section? */ | |
670 | if (!(bfd_get_section_vma (obfd, got_plt) <= address | |
671 | && address < bfd_get_section_vma (obfd, got_plt) | |
672 | + bfd_get_section_size (got_plt))) | |
673 | continue; | |
674 | ||
675 | /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in | |
676 | OBJFILE the symbol is undefined and the objfile having NAME defined | |
677 | may not yet have been loaded. */ | |
678 | ||
3807f613 | 679 | if (string_buffer_size < name_len + got_suffix_len + 1) |
07be84bf JK |
680 | { |
681 | string_buffer_size = 2 * (name_len + got_suffix_len); | |
682 | string_buffer = xrealloc (string_buffer, string_buffer_size); | |
683 | } | |
684 | memcpy (string_buffer, name, name_len); | |
685 | memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX, | |
3807f613 | 686 | got_suffix_len + 1); |
07be84bf JK |
687 | |
688 | msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len, | |
689 | 1, address, mst_slot_got_plt, got_plt, | |
690 | objfile); | |
691 | if (msym) | |
692 | MSYMBOL_SIZE (msym) = ptr_size; | |
693 | } | |
694 | ||
695 | do_cleanups (back_to); | |
696 | } | |
697 | ||
698 | /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ | |
699 | ||
700 | static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data; | |
701 | ||
702 | /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ | |
703 | ||
704 | struct elf_gnu_ifunc_cache | |
705 | { | |
706 | /* This is always a function entry address, not a function descriptor. */ | |
707 | CORE_ADDR addr; | |
708 | ||
709 | char name[1]; | |
710 | }; | |
711 | ||
712 | /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ | |
713 | ||
714 | static hashval_t | |
715 | elf_gnu_ifunc_cache_hash (const void *a_voidp) | |
716 | { | |
717 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
718 | ||
719 | return htab_hash_string (a->name); | |
720 | } | |
721 | ||
722 | /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ | |
723 | ||
724 | static int | |
725 | elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) | |
726 | { | |
727 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
728 | const struct elf_gnu_ifunc_cache *b = b_voidp; | |
729 | ||
730 | return strcmp (a->name, b->name) == 0; | |
731 | } | |
732 | ||
733 | /* Record the target function address of a STT_GNU_IFUNC function NAME is the | |
734 | function entry address ADDR. Return 1 if NAME and ADDR are considered as | |
735 | valid and therefore they were successfully recorded, return 0 otherwise. | |
736 | ||
737 | Function does not expect a duplicate entry. Use | |
738 | elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already | |
739 | exists. */ | |
740 | ||
741 | static int | |
742 | elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) | |
743 | { | |
744 | struct minimal_symbol *msym; | |
745 | asection *sect; | |
746 | struct objfile *objfile; | |
747 | htab_t htab; | |
748 | struct elf_gnu_ifunc_cache entry_local, *entry_p; | |
749 | void **slot; | |
750 | ||
751 | msym = lookup_minimal_symbol_by_pc (addr); | |
752 | if (msym == NULL) | |
753 | return 0; | |
754 | if (SYMBOL_VALUE_ADDRESS (msym) != addr) | |
755 | return 0; | |
756 | /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */ | |
757 | sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section; | |
758 | objfile = SYMBOL_OBJ_SECTION (msym)->objfile; | |
759 | ||
760 | /* If .plt jumps back to .plt the symbol is still deferred for later | |
761 | resolution and it has no use for GDB. Besides ".text" this symbol can | |
762 | reside also in ".opd" for ppc64 function descriptor. */ | |
763 | if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0) | |
764 | return 0; | |
765 | ||
766 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
767 | if (htab == NULL) | |
768 | { | |
769 | htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash, | |
770 | elf_gnu_ifunc_cache_eq, | |
771 | NULL, &objfile->objfile_obstack, | |
772 | hashtab_obstack_allocate, | |
773 | dummy_obstack_deallocate); | |
774 | set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab); | |
775 | } | |
776 | ||
777 | entry_local.addr = addr; | |
778 | obstack_grow (&objfile->objfile_obstack, &entry_local, | |
779 | offsetof (struct elf_gnu_ifunc_cache, name)); | |
780 | obstack_grow_str0 (&objfile->objfile_obstack, name); | |
781 | entry_p = obstack_finish (&objfile->objfile_obstack); | |
782 | ||
783 | slot = htab_find_slot (htab, entry_p, INSERT); | |
784 | if (*slot != NULL) | |
785 | { | |
786 | struct elf_gnu_ifunc_cache *entry_found_p = *slot; | |
787 | struct gdbarch *gdbarch = objfile->gdbarch; | |
788 | ||
789 | if (entry_found_p->addr != addr) | |
790 | { | |
791 | /* This case indicates buggy inferior program, the resolved address | |
792 | should never change. */ | |
793 | ||
794 | warning (_("gnu-indirect-function \"%s\" has changed its resolved " | |
795 | "function_address from %s to %s"), | |
796 | name, paddress (gdbarch, entry_found_p->addr), | |
797 | paddress (gdbarch, addr)); | |
798 | } | |
799 | ||
800 | /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ | |
801 | } | |
802 | *slot = entry_p; | |
803 | ||
804 | return 1; | |
805 | } | |
806 | ||
807 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
808 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
809 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
810 | ||
811 | Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this | |
812 | function. */ | |
813 | ||
814 | static int | |
815 | elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) | |
816 | { | |
817 | struct objfile *objfile; | |
818 | ||
819 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
820 | { | |
821 | htab_t htab; | |
822 | struct elf_gnu_ifunc_cache *entry_p; | |
823 | void **slot; | |
824 | ||
825 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
826 | if (htab == NULL) | |
827 | continue; | |
828 | ||
829 | entry_p = alloca (sizeof (*entry_p) + strlen (name)); | |
830 | strcpy (entry_p->name, name); | |
831 | ||
832 | slot = htab_find_slot (htab, entry_p, NO_INSERT); | |
833 | if (slot == NULL) | |
834 | continue; | |
835 | entry_p = *slot; | |
836 | gdb_assert (entry_p != NULL); | |
837 | ||
838 | if (addr_p) | |
839 | *addr_p = entry_p->addr; | |
840 | return 1; | |
841 | } | |
842 | ||
843 | return 0; | |
844 | } | |
845 | ||
846 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
847 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
848 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
849 | ||
850 | Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. | |
851 | elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to | |
852 | prevent cache entries duplicates. */ | |
853 | ||
854 | static int | |
855 | elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) | |
856 | { | |
857 | char *name_got_plt; | |
858 | struct objfile *objfile; | |
859 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
860 | ||
861 | name_got_plt = alloca (strlen (name) + got_suffix_len + 1); | |
862 | sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); | |
863 | ||
864 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
865 | { | |
866 | bfd *obfd = objfile->obfd; | |
867 | struct gdbarch *gdbarch = objfile->gdbarch; | |
868 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | |
869 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
870 | CORE_ADDR pointer_address, addr; | |
871 | asection *plt; | |
872 | gdb_byte *buf = alloca (ptr_size); | |
873 | struct minimal_symbol *msym; | |
874 | ||
875 | msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); | |
876 | if (msym == NULL) | |
877 | continue; | |
878 | if (MSYMBOL_TYPE (msym) != mst_slot_got_plt) | |
879 | continue; | |
880 | pointer_address = SYMBOL_VALUE_ADDRESS (msym); | |
881 | ||
882 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
883 | if (plt == NULL) | |
884 | continue; | |
885 | ||
886 | if (MSYMBOL_SIZE (msym) != ptr_size) | |
887 | continue; | |
888 | if (target_read_memory (pointer_address, buf, ptr_size) != 0) | |
889 | continue; | |
890 | addr = extract_typed_address (buf, ptr_type); | |
891 | addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, | |
892 | ¤t_target); | |
893 | ||
894 | if (addr_p) | |
895 | *addr_p = addr; | |
896 | if (elf_gnu_ifunc_record_cache (name, addr)) | |
897 | return 1; | |
898 | } | |
899 | ||
900 | return 0; | |
901 | } | |
902 | ||
903 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
904 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
905 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
906 | ||
907 | Both the elf_objfile_gnu_ifunc_cache_data hash table and | |
908 | SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ | |
909 | ||
910 | static int | |
911 | elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) | |
912 | { | |
913 | if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) | |
914 | return 1; | |
dea91a5c | 915 | |
07be84bf JK |
916 | if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) |
917 | return 1; | |
918 | ||
919 | return 0; | |
920 | } | |
921 | ||
922 | /* Call STT_GNU_IFUNC - a function returning addresss of a real function to | |
923 | call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned | |
924 | is the entry point of the resolved STT_GNU_IFUNC target function to call. | |
925 | */ | |
926 | ||
927 | static CORE_ADDR | |
928 | elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) | |
929 | { | |
2c02bd72 | 930 | const char *name_at_pc; |
07be84bf JK |
931 | CORE_ADDR start_at_pc, address; |
932 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
933 | struct value *function, *address_val; | |
934 | ||
935 | /* Try first any non-intrusive methods without an inferior call. */ | |
936 | ||
937 | if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) | |
938 | && start_at_pc == pc) | |
939 | { | |
940 | if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) | |
941 | return address; | |
942 | } | |
943 | else | |
944 | name_at_pc = NULL; | |
945 | ||
946 | function = allocate_value (func_func_type); | |
947 | set_value_address (function, pc); | |
948 | ||
949 | /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the | |
950 | function entry address. ADDRESS may be a function descriptor. */ | |
951 | ||
952 | address_val = call_function_by_hand (function, 0, NULL); | |
953 | address = value_as_address (address_val); | |
954 | address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, | |
955 | ¤t_target); | |
956 | ||
957 | if (name_at_pc) | |
958 | elf_gnu_ifunc_record_cache (name_at_pc, address); | |
959 | ||
960 | return address; | |
961 | } | |
962 | ||
0e30163f JK |
963 | /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */ |
964 | ||
965 | static void | |
966 | elf_gnu_ifunc_resolver_stop (struct breakpoint *b) | |
967 | { | |
968 | struct breakpoint *b_return; | |
969 | struct frame_info *prev_frame = get_prev_frame (get_current_frame ()); | |
970 | struct frame_id prev_frame_id = get_stack_frame_id (prev_frame); | |
971 | CORE_ADDR prev_pc = get_frame_pc (prev_frame); | |
972 | int thread_id = pid_to_thread_id (inferior_ptid); | |
973 | ||
974 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
975 | ||
976 | for (b_return = b->related_breakpoint; b_return != b; | |
977 | b_return = b_return->related_breakpoint) | |
978 | { | |
979 | gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return); | |
980 | gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL); | |
981 | gdb_assert (frame_id_p (b_return->frame_id)); | |
982 | ||
983 | if (b_return->thread == thread_id | |
984 | && b_return->loc->requested_address == prev_pc | |
985 | && frame_id_eq (b_return->frame_id, prev_frame_id)) | |
986 | break; | |
987 | } | |
988 | ||
989 | if (b_return == b) | |
990 | { | |
991 | struct symtab_and_line sal; | |
992 | ||
993 | /* No need to call find_pc_line for symbols resolving as this is only | |
994 | a helper breakpointer never shown to the user. */ | |
995 | ||
996 | init_sal (&sal); | |
997 | sal.pspace = current_inferior ()->pspace; | |
998 | sal.pc = prev_pc; | |
999 | sal.section = find_pc_overlay (sal.pc); | |
1000 | sal.explicit_pc = 1; | |
1001 | b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal, | |
1002 | prev_frame_id, | |
1003 | bp_gnu_ifunc_resolver_return); | |
1004 | ||
c70a6932 JK |
1005 | /* set_momentary_breakpoint invalidates PREV_FRAME. */ |
1006 | prev_frame = NULL; | |
1007 | ||
0e30163f JK |
1008 | /* Add new b_return to the ring list b->related_breakpoint. */ |
1009 | gdb_assert (b_return->related_breakpoint == b_return); | |
1010 | b_return->related_breakpoint = b->related_breakpoint; | |
1011 | b->related_breakpoint = b_return; | |
1012 | } | |
1013 | } | |
1014 | ||
1015 | /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */ | |
1016 | ||
1017 | static void | |
1018 | elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b) | |
1019 | { | |
1020 | struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); | |
1021 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
1022 | struct type *value_type = TYPE_TARGET_TYPE (func_func_type); | |
1023 | struct regcache *regcache = get_thread_regcache (inferior_ptid); | |
6a3a010b | 1024 | struct value *func_func; |
0e30163f JK |
1025 | struct value *value; |
1026 | CORE_ADDR resolved_address, resolved_pc; | |
1027 | struct symtab_and_line sal; | |
f1310107 | 1028 | struct symtabs_and_lines sals, sals_end; |
0e30163f JK |
1029 | |
1030 | gdb_assert (b->type == bp_gnu_ifunc_resolver_return); | |
1031 | ||
0e30163f JK |
1032 | while (b->related_breakpoint != b) |
1033 | { | |
1034 | struct breakpoint *b_next = b->related_breakpoint; | |
1035 | ||
1036 | switch (b->type) | |
1037 | { | |
1038 | case bp_gnu_ifunc_resolver: | |
1039 | break; | |
1040 | case bp_gnu_ifunc_resolver_return: | |
1041 | delete_breakpoint (b); | |
1042 | break; | |
1043 | default: | |
1044 | internal_error (__FILE__, __LINE__, | |
1045 | _("handle_inferior_event: Invalid " | |
1046 | "gnu-indirect-function breakpoint type %d"), | |
1047 | (int) b->type); | |
1048 | } | |
1049 | b = b_next; | |
1050 | } | |
1051 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
6a3a010b MR |
1052 | gdb_assert (b->loc->next == NULL); |
1053 | ||
1054 | func_func = allocate_value (func_func_type); | |
1055 | set_value_address (func_func, b->loc->related_address); | |
1056 | ||
1057 | value = allocate_value (value_type); | |
1058 | gdbarch_return_value (gdbarch, func_func, value_type, regcache, | |
1059 | value_contents_raw (value), NULL); | |
1060 | resolved_address = value_as_address (value); | |
1061 | resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch, | |
1062 | resolved_address, | |
1063 | ¤t_target); | |
0e30163f | 1064 | |
f8eba3c6 | 1065 | gdb_assert (current_program_space == b->pspace || b->pspace == NULL); |
0e30163f JK |
1066 | elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc); |
1067 | ||
1068 | sal = find_pc_line (resolved_pc, 0); | |
1069 | sals.nelts = 1; | |
1070 | sals.sals = &sal; | |
f1310107 | 1071 | sals_end.nelts = 0; |
0e30163f JK |
1072 | |
1073 | b->type = bp_breakpoint; | |
f1310107 | 1074 | update_breakpoint_locations (b, sals, sals_end); |
0e30163f JK |
1075 | } |
1076 | ||
874f5765 TG |
1077 | struct build_id |
1078 | { | |
1079 | size_t size; | |
1080 | gdb_byte data[1]; | |
1081 | }; | |
1082 | ||
1083 | /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */ | |
1084 | ||
1085 | static struct build_id * | |
1086 | build_id_bfd_get (bfd *abfd) | |
1087 | { | |
1088 | struct build_id *retval; | |
1089 | ||
1090 | if (!bfd_check_format (abfd, bfd_object) | |
1091 | || bfd_get_flavour (abfd) != bfd_target_elf_flavour | |
1092 | || elf_tdata (abfd)->build_id == NULL) | |
1093 | return NULL; | |
1094 | ||
1095 | retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size); | |
1096 | retval->size = elf_tdata (abfd)->build_id_size; | |
1097 | memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size); | |
1098 | ||
1099 | return retval; | |
1100 | } | |
1101 | ||
1102 | /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */ | |
1103 | ||
1104 | static int | |
1105 | build_id_verify (const char *filename, struct build_id *check) | |
1106 | { | |
1107 | bfd *abfd; | |
1108 | struct build_id *found = NULL; | |
1109 | int retval = 0; | |
1110 | ||
1111 | /* We expect to be silent on the non-existing files. */ | |
08d2cd74 | 1112 | abfd = gdb_bfd_open_maybe_remote (filename); |
874f5765 TG |
1113 | if (abfd == NULL) |
1114 | return 0; | |
1115 | ||
1116 | found = build_id_bfd_get (abfd); | |
1117 | ||
1118 | if (found == NULL) | |
1119 | warning (_("File \"%s\" has no build-id, file skipped"), filename); | |
1120 | else if (found->size != check->size | |
1121 | || memcmp (found->data, check->data, found->size) != 0) | |
3e43a32a MS |
1122 | warning (_("File \"%s\" has a different build-id, file skipped"), |
1123 | filename); | |
874f5765 TG |
1124 | else |
1125 | retval = 1; | |
1126 | ||
cbb099e8 | 1127 | gdb_bfd_unref (abfd); |
874f5765 TG |
1128 | |
1129 | xfree (found); | |
1130 | ||
1131 | return retval; | |
1132 | } | |
1133 | ||
1134 | static char * | |
1135 | build_id_to_debug_filename (struct build_id *build_id) | |
1136 | { | |
1137 | char *link, *debugdir, *retval = NULL; | |
e4ab2fad JK |
1138 | VEC (char_ptr) *debugdir_vec; |
1139 | struct cleanup *back_to; | |
1140 | int ix; | |
874f5765 TG |
1141 | |
1142 | /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */ | |
1143 | link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1 | |
1144 | + 2 * build_id->size + (sizeof ".debug" - 1) + 1); | |
1145 | ||
1146 | /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will | |
1147 | cause "/.build-id/..." lookups. */ | |
1148 | ||
e4ab2fad JK |
1149 | debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory); |
1150 | back_to = make_cleanup_free_char_ptr_vec (debugdir_vec); | |
1151 | ||
1152 | for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix) | |
874f5765 | 1153 | { |
e4ab2fad | 1154 | size_t debugdir_len = strlen (debugdir); |
874f5765 TG |
1155 | gdb_byte *data = build_id->data; |
1156 | size_t size = build_id->size; | |
e4ab2fad | 1157 | char *s; |
874f5765 | 1158 | |
e4ab2fad JK |
1159 | memcpy (link, debugdir, debugdir_len); |
1160 | s = &link[debugdir_len]; | |
874f5765 TG |
1161 | s += sprintf (s, "/.build-id/"); |
1162 | if (size > 0) | |
1163 | { | |
1164 | size--; | |
1165 | s += sprintf (s, "%02x", (unsigned) *data++); | |
1166 | } | |
1167 | if (size > 0) | |
1168 | *s++ = '/'; | |
1169 | while (size-- > 0) | |
1170 | s += sprintf (s, "%02x", (unsigned) *data++); | |
1171 | strcpy (s, ".debug"); | |
1172 | ||
1173 | /* lrealpath() is expensive even for the usually non-existent files. */ | |
1174 | if (access (link, F_OK) == 0) | |
1175 | retval = lrealpath (link); | |
1176 | ||
1177 | if (retval != NULL && !build_id_verify (retval, build_id)) | |
1178 | { | |
1179 | xfree (retval); | |
1180 | retval = NULL; | |
1181 | } | |
1182 | ||
1183 | if (retval != NULL) | |
1184 | break; | |
874f5765 | 1185 | } |
874f5765 | 1186 | |
e4ab2fad | 1187 | do_cleanups (back_to); |
874f5765 TG |
1188 | return retval; |
1189 | } | |
1190 | ||
1191 | static char * | |
1192 | find_separate_debug_file_by_buildid (struct objfile *objfile) | |
1193 | { | |
874f5765 TG |
1194 | struct build_id *build_id; |
1195 | ||
1196 | build_id = build_id_bfd_get (objfile->obfd); | |
1197 | if (build_id != NULL) | |
1198 | { | |
1199 | char *build_id_name; | |
1200 | ||
1201 | build_id_name = build_id_to_debug_filename (build_id); | |
1202 | xfree (build_id); | |
1203 | /* Prevent looping on a stripped .debug file. */ | |
0ba1096a KT |
1204 | if (build_id_name != NULL |
1205 | && filename_cmp (build_id_name, objfile->name) == 0) | |
874f5765 TG |
1206 | { |
1207 | warning (_("\"%s\": separate debug info file has no debug info"), | |
1208 | build_id_name); | |
1209 | xfree (build_id_name); | |
1210 | } | |
1211 | else if (build_id_name != NULL) | |
1212 | return build_id_name; | |
1213 | } | |
1214 | return NULL; | |
1215 | } | |
1216 | ||
c906108c | 1217 | /* Scan and build partial symbols for a symbol file. |
dea91a5c | 1218 | We have been initialized by a call to elf_symfile_init, which |
c906108c SS |
1219 | currently does nothing. |
1220 | ||
1221 | SECTION_OFFSETS is a set of offsets to apply to relocate the symbols | |
1222 | in each section. We simplify it down to a single offset for all | |
1223 | symbols. FIXME. | |
1224 | ||
c906108c SS |
1225 | This function only does the minimum work necessary for letting the |
1226 | user "name" things symbolically; it does not read the entire symtab. | |
1227 | Instead, it reads the external and static symbols and puts them in partial | |
1228 | symbol tables. When more extensive information is requested of a | |
1229 | file, the corresponding partial symbol table is mutated into a full | |
1230 | fledged symbol table by going back and reading the symbols | |
1231 | for real. | |
1232 | ||
1233 | We look for sections with specific names, to tell us what debug | |
1234 | format to look for: FIXME!!! | |
1235 | ||
c906108c SS |
1236 | elfstab_build_psymtabs() handles STABS symbols; |
1237 | mdebug_build_psymtabs() handles ECOFF debugging information. | |
1238 | ||
1239 | Note that ELF files have a "minimal" symbol table, which looks a lot | |
1240 | like a COFF symbol table, but has only the minimal information necessary | |
1241 | for linking. We process this also, and use the information to | |
1242 | build gdb's minimal symbol table. This gives us some minimal debugging | |
1243 | capability even for files compiled without -g. */ | |
1244 | ||
1245 | static void | |
f4352531 | 1246 | elf_symfile_read (struct objfile *objfile, int symfile_flags) |
c906108c | 1247 | { |
63524580 | 1248 | bfd *synth_abfd, *abfd = objfile->obfd; |
c906108c SS |
1249 | struct elfinfo ei; |
1250 | struct cleanup *back_to; | |
62553543 EZ |
1251 | long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
1252 | asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; | |
1253 | asymbol *synthsyms; | |
c906108c | 1254 | |
45cfd468 DE |
1255 | if (symtab_create_debug) |
1256 | { | |
1257 | fprintf_unfiltered (gdb_stdlog, | |
1258 | "Reading minimal symbols of objfile %s ...\n", | |
1259 | objfile->name); | |
1260 | } | |
1261 | ||
c906108c | 1262 | init_minimal_symbol_collection (); |
56e290f4 | 1263 | back_to = make_cleanup_discard_minimal_symbols (); |
c906108c SS |
1264 | |
1265 | memset ((char *) &ei, 0, sizeof (ei)); | |
1266 | ||
0963b4bd | 1267 | /* Allocate struct to keep track of the symfile. */ |
0a6ddd08 | 1268 | objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *) |
7936743b | 1269 | xmalloc (sizeof (struct dbx_symfile_info)); |
3e43a32a MS |
1270 | memset ((char *) objfile->deprecated_sym_stab_info, |
1271 | 0, sizeof (struct dbx_symfile_info)); | |
12b9c64f | 1272 | make_cleanup (free_elfinfo, (void *) objfile); |
c906108c | 1273 | |
3e43a32a MS |
1274 | /* Process the normal ELF symbol table first. This may write some |
1275 | chain of info into the dbx_symfile_info in | |
1276 | objfile->deprecated_sym_stab_info, which can later be used by | |
1277 | elfstab_offset_sections. */ | |
c906108c | 1278 | |
62553543 EZ |
1279 | storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
1280 | if (storage_needed < 0) | |
3e43a32a MS |
1281 | error (_("Can't read symbols from %s: %s"), |
1282 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1283 | bfd_errmsg (bfd_get_error ())); |
1284 | ||
1285 | if (storage_needed > 0) | |
1286 | { | |
1287 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
1288 | make_cleanup (xfree, symbol_table); | |
1289 | symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); | |
1290 | ||
1291 | if (symcount < 0) | |
3e43a32a MS |
1292 | error (_("Can't read symbols from %s: %s"), |
1293 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1294 | bfd_errmsg (bfd_get_error ())); |
1295 | ||
04a679b8 | 1296 | elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0); |
62553543 | 1297 | } |
c906108c SS |
1298 | |
1299 | /* Add the dynamic symbols. */ | |
1300 | ||
62553543 EZ |
1301 | storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
1302 | ||
1303 | if (storage_needed > 0) | |
1304 | { | |
3f1eff0a JK |
1305 | /* Memory gets permanently referenced from ABFD after |
1306 | bfd_get_synthetic_symtab so it must not get freed before ABFD gets. | |
1307 | It happens only in the case when elf_slurp_reloc_table sees | |
1308 | asection->relocation NULL. Determining which section is asection is | |
1309 | done by _bfd_elf_get_synthetic_symtab which is all a bfd | |
1310 | implementation detail, though. */ | |
1311 | ||
1312 | dyn_symbol_table = bfd_alloc (abfd, storage_needed); | |
62553543 EZ |
1313 | dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
1314 | dyn_symbol_table); | |
1315 | ||
1316 | if (dynsymcount < 0) | |
3e43a32a MS |
1317 | error (_("Can't read symbols from %s: %s"), |
1318 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1319 | bfd_errmsg (bfd_get_error ())); |
1320 | ||
04a679b8 | 1321 | elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0); |
07be84bf JK |
1322 | |
1323 | elf_rel_plt_read (objfile, dyn_symbol_table); | |
62553543 EZ |
1324 | } |
1325 | ||
63524580 JK |
1326 | /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from |
1327 | elfutils (eu-strip) moves even the .symtab section into the .debug file. | |
1328 | ||
1329 | bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol | |
1330 | 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code | |
1331 | address. But with eu-strip files bfd_get_synthetic_symtab would fail to | |
1332 | read the code address from .opd while it reads the .symtab section from | |
1333 | a separate debug info file as the .opd section is SHT_NOBITS there. | |
1334 | ||
1335 | With SYNTH_ABFD the .opd section will be read from the original | |
1336 | backlinked binary where it is valid. */ | |
1337 | ||
1338 | if (objfile->separate_debug_objfile_backlink) | |
1339 | synth_abfd = objfile->separate_debug_objfile_backlink->obfd; | |
1340 | else | |
1341 | synth_abfd = abfd; | |
1342 | ||
62553543 EZ |
1343 | /* Add synthetic symbols - for instance, names for any PLT entries. */ |
1344 | ||
63524580 | 1345 | synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table, |
62553543 EZ |
1346 | dynsymcount, dyn_symbol_table, |
1347 | &synthsyms); | |
1348 | if (synthcount > 0) | |
1349 | { | |
1350 | asymbol **synth_symbol_table; | |
1351 | long i; | |
1352 | ||
1353 | make_cleanup (xfree, synthsyms); | |
1354 | synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount); | |
1355 | for (i = 0; i < synthcount; i++) | |
9f20e3da | 1356 | synth_symbol_table[i] = synthsyms + i; |
62553543 | 1357 | make_cleanup (xfree, synth_symbol_table); |
3e43a32a MS |
1358 | elf_symtab_read (objfile, ST_SYNTHETIC, synthcount, |
1359 | synth_symbol_table, 1); | |
62553543 | 1360 | } |
c906108c | 1361 | |
7134143f DJ |
1362 | /* Install any minimal symbols that have been collected as the current |
1363 | minimal symbols for this objfile. The debug readers below this point | |
1364 | should not generate new minimal symbols; if they do it's their | |
1365 | responsibility to install them. "mdebug" appears to be the only one | |
1366 | which will do this. */ | |
1367 | ||
1368 | install_minimal_symbols (objfile); | |
1369 | do_cleanups (back_to); | |
1370 | ||
c906108c | 1371 | /* Now process debugging information, which is contained in |
0963b4bd | 1372 | special ELF sections. */ |
c906108c | 1373 | |
0963b4bd | 1374 | /* We first have to find them... */ |
12b9c64f | 1375 | bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei); |
c906108c SS |
1376 | |
1377 | /* ELF debugging information is inserted into the psymtab in the | |
1378 | order of least informative first - most informative last. Since | |
1379 | the psymtab table is searched `most recent insertion first' this | |
1380 | increases the probability that more detailed debug information | |
1381 | for a section is found. | |
1382 | ||
1383 | For instance, an object file might contain both .mdebug (XCOFF) | |
1384 | and .debug_info (DWARF2) sections then .mdebug is inserted first | |
1385 | (searched last) and DWARF2 is inserted last (searched first). If | |
1386 | we don't do this then the XCOFF info is found first - for code in | |
0963b4bd | 1387 | an included file XCOFF info is useless. */ |
c906108c SS |
1388 | |
1389 | if (ei.mdebugsect) | |
1390 | { | |
1391 | const struct ecoff_debug_swap *swap; | |
1392 | ||
1393 | /* .mdebug section, presumably holding ECOFF debugging | |
c5aa993b | 1394 | information. */ |
c906108c SS |
1395 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1396 | if (swap) | |
d4f3574e | 1397 | elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
c906108c SS |
1398 | } |
1399 | if (ei.stabsect) | |
1400 | { | |
1401 | asection *str_sect; | |
1402 | ||
1403 | /* Stab sections have an associated string table that looks like | |
c5aa993b | 1404 | a separate section. */ |
c906108c SS |
1405 | str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
1406 | ||
1407 | /* FIXME should probably warn about a stab section without a stabstr. */ | |
1408 | if (str_sect) | |
1409 | elfstab_build_psymtabs (objfile, | |
086df311 | 1410 | ei.stabsect, |
c906108c SS |
1411 | str_sect->filepos, |
1412 | bfd_section_size (abfd, str_sect)); | |
1413 | } | |
9291a0cd | 1414 | |
251d32d9 | 1415 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 | 1416 | { |
3e03848b JK |
1417 | /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug |
1418 | information present in OBJFILE. If there is such debug info present | |
1419 | never use .gdb_index. */ | |
1420 | ||
1421 | if (!objfile_has_partial_symbols (objfile) | |
1422 | && dwarf2_initialize_objfile (objfile)) | |
b11896a5 TT |
1423 | objfile->sf = &elf_sym_fns_gdb_index; |
1424 | else | |
1425 | { | |
1426 | /* It is ok to do this even if the stabs reader made some | |
1427 | partial symbols, because OBJF_PSYMTABS_READ has not been | |
1428 | set, and so our lazy reader function will still be called | |
1429 | when needed. */ | |
1430 | objfile->sf = &elf_sym_fns_lazy_psyms; | |
1431 | } | |
1432 | } | |
3e43a32a MS |
1433 | /* If the file has its own symbol tables it has no separate debug |
1434 | info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to | |
1435 | SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with | |
1436 | `.note.gnu.build-id'. */ | |
b11896a5 | 1437 | else if (!objfile_has_partial_symbols (objfile)) |
9cce227f TG |
1438 | { |
1439 | char *debugfile; | |
1440 | ||
1441 | debugfile = find_separate_debug_file_by_buildid (objfile); | |
1442 | ||
1443 | if (debugfile == NULL) | |
1444 | debugfile = find_separate_debug_file_by_debuglink (objfile); | |
1445 | ||
1446 | if (debugfile) | |
1447 | { | |
8ac244b4 | 1448 | struct cleanup *cleanup = make_cleanup (xfree, debugfile); |
9cce227f | 1449 | bfd *abfd = symfile_bfd_open (debugfile); |
d7f9d729 | 1450 | |
8ac244b4 | 1451 | make_cleanup_bfd_unref (abfd); |
9cce227f | 1452 | symbol_file_add_separate (abfd, symfile_flags, objfile); |
8ac244b4 | 1453 | do_cleanups (cleanup); |
9cce227f TG |
1454 | } |
1455 | } | |
45cfd468 DE |
1456 | |
1457 | if (symtab_create_debug) | |
1458 | fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n"); | |
c906108c SS |
1459 | } |
1460 | ||
b11896a5 TT |
1461 | /* Callback to lazily read psymtabs. */ |
1462 | ||
1463 | static void | |
1464 | read_psyms (struct objfile *objfile) | |
1465 | { | |
251d32d9 | 1466 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 TT |
1467 | dwarf2_build_psymtabs (objfile); |
1468 | } | |
1469 | ||
0a6ddd08 AC |
1470 | /* This cleans up the objfile's deprecated_sym_stab_info pointer, and |
1471 | the chain of stab_section_info's, that might be dangling from | |
1472 | it. */ | |
c906108c SS |
1473 | |
1474 | static void | |
12b9c64f | 1475 | free_elfinfo (void *objp) |
c906108c | 1476 | { |
c5aa993b | 1477 | struct objfile *objfile = (struct objfile *) objp; |
0a6ddd08 | 1478 | struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info; |
c906108c SS |
1479 | struct stab_section_info *ssi, *nssi; |
1480 | ||
1481 | ssi = dbxinfo->stab_section_info; | |
1482 | while (ssi) | |
1483 | { | |
1484 | nssi = ssi->next; | |
2dc74dc1 | 1485 | xfree (ssi); |
c906108c SS |
1486 | ssi = nssi; |
1487 | } | |
1488 | ||
1489 | dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */ | |
1490 | } | |
1491 | ||
1492 | ||
1493 | /* Initialize anything that needs initializing when a completely new symbol | |
1494 | file is specified (not just adding some symbols from another file, e.g. a | |
1495 | shared library). | |
1496 | ||
3e43a32a MS |
1497 | We reinitialize buildsym, since we may be reading stabs from an ELF |
1498 | file. */ | |
c906108c SS |
1499 | |
1500 | static void | |
fba45db2 | 1501 | elf_new_init (struct objfile *ignore) |
c906108c SS |
1502 | { |
1503 | stabsread_new_init (); | |
1504 | buildsym_new_init (); | |
1505 | } | |
1506 | ||
1507 | /* Perform any local cleanups required when we are done with a particular | |
1508 | objfile. I.E, we are in the process of discarding all symbol information | |
1509 | for an objfile, freeing up all memory held for it, and unlinking the | |
0963b4bd | 1510 | objfile struct from the global list of known objfiles. */ |
c906108c SS |
1511 | |
1512 | static void | |
fba45db2 | 1513 | elf_symfile_finish (struct objfile *objfile) |
c906108c | 1514 | { |
0a6ddd08 | 1515 | if (objfile->deprecated_sym_stab_info != NULL) |
c906108c | 1516 | { |
0a6ddd08 | 1517 | xfree (objfile->deprecated_sym_stab_info); |
c906108c | 1518 | } |
fe3e1990 DJ |
1519 | |
1520 | dwarf2_free_objfile (objfile); | |
c906108c SS |
1521 | } |
1522 | ||
1523 | /* ELF specific initialization routine for reading symbols. | |
1524 | ||
1525 | It is passed a pointer to a struct sym_fns which contains, among other | |
1526 | things, the BFD for the file whose symbols are being read, and a slot for | |
1527 | a pointer to "private data" which we can fill with goodies. | |
1528 | ||
1529 | For now at least, we have nothing in particular to do, so this function is | |
0963b4bd | 1530 | just a stub. */ |
c906108c SS |
1531 | |
1532 | static void | |
fba45db2 | 1533 | elf_symfile_init (struct objfile *objfile) |
c906108c SS |
1534 | { |
1535 | /* ELF objects may be reordered, so set OBJF_REORDERED. If we | |
1536 | find this causes a significant slowdown in gdb then we could | |
1537 | set it in the debug symbol readers only when necessary. */ | |
1538 | objfile->flags |= OBJF_REORDERED; | |
1539 | } | |
1540 | ||
1541 | /* When handling an ELF file that contains Sun STABS debug info, | |
1542 | some of the debug info is relative to the particular chunk of the | |
1543 | section that was generated in its individual .o file. E.g. | |
1544 | offsets to static variables are relative to the start of the data | |
1545 | segment *for that module before linking*. This information is | |
1546 | painfully squirreled away in the ELF symbol table as local symbols | |
1547 | with wierd names. Go get 'em when needed. */ | |
1548 | ||
1549 | void | |
fba45db2 | 1550 | elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst) |
c906108c | 1551 | { |
72b9f47f | 1552 | const char *filename = pst->filename; |
0a6ddd08 | 1553 | struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info; |
c906108c SS |
1554 | struct stab_section_info *maybe = dbx->stab_section_info; |
1555 | struct stab_section_info *questionable = 0; | |
1556 | int i; | |
c906108c SS |
1557 | |
1558 | /* The ELF symbol info doesn't include path names, so strip the path | |
1559 | (if any) from the psymtab filename. */ | |
0ba1096a | 1560 | filename = lbasename (filename); |
c906108c SS |
1561 | |
1562 | /* FIXME: This linear search could speed up significantly | |
1563 | if it was chained in the right order to match how we search it, | |
0963b4bd | 1564 | and if we unchained when we found a match. */ |
c906108c SS |
1565 | for (; maybe; maybe = maybe->next) |
1566 | { | |
1567 | if (filename[0] == maybe->filename[0] | |
0ba1096a | 1568 | && filename_cmp (filename, maybe->filename) == 0) |
c906108c SS |
1569 | { |
1570 | /* We found a match. But there might be several source files | |
1571 | (from different directories) with the same name. */ | |
1572 | if (0 == maybe->found) | |
1573 | break; | |
c5aa993b | 1574 | questionable = maybe; /* Might use it later. */ |
c906108c SS |
1575 | } |
1576 | } | |
1577 | ||
1578 | if (maybe == 0 && questionable != 0) | |
1579 | { | |
23136709 | 1580 | complaint (&symfile_complaints, |
3e43a32a MS |
1581 | _("elf/stab section information questionable for %s"), |
1582 | filename); | |
c906108c SS |
1583 | maybe = questionable; |
1584 | } | |
1585 | ||
1586 | if (maybe) | |
1587 | { | |
1588 | /* Found it! Allocate a new psymtab struct, and fill it in. */ | |
1589 | maybe->found++; | |
1590 | pst->section_offsets = (struct section_offsets *) | |
dea91a5c | 1591 | obstack_alloc (&objfile->objfile_obstack, |
a39a16c4 MM |
1592 | SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); |
1593 | for (i = 0; i < maybe->num_sections; i++) | |
a4c8257b | 1594 | (pst->section_offsets)->offsets[i] = maybe->sections[i]; |
c906108c SS |
1595 | return; |
1596 | } | |
1597 | ||
1598 | /* We were unable to find any offsets for this file. Complain. */ | |
c5aa993b | 1599 | if (dbx->stab_section_info) /* If there *is* any info, */ |
23136709 | 1600 | complaint (&symfile_complaints, |
e2e0b3e5 | 1601 | _("elf/stab section information missing for %s"), filename); |
c906108c | 1602 | } |
55aa24fb SDJ |
1603 | |
1604 | /* Implementation of `sym_get_probes', as documented in symfile.h. */ | |
1605 | ||
1606 | static VEC (probe_p) * | |
1607 | elf_get_probes (struct objfile *objfile) | |
1608 | { | |
1609 | VEC (probe_p) *probes_per_objfile; | |
1610 | ||
1611 | /* Have we parsed this objfile's probes already? */ | |
1612 | probes_per_objfile = objfile_data (objfile, probe_key); | |
1613 | ||
1614 | if (!probes_per_objfile) | |
1615 | { | |
1616 | int ix; | |
1617 | const struct probe_ops *probe_ops; | |
1618 | ||
1619 | /* Here we try to gather information about all types of probes from the | |
1620 | objfile. */ | |
1621 | for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops); | |
1622 | ix++) | |
1623 | probe_ops->get_probes (&probes_per_objfile, objfile); | |
1624 | ||
1625 | if (probes_per_objfile == NULL) | |
1626 | { | |
1627 | VEC_reserve (probe_p, probes_per_objfile, 1); | |
1628 | gdb_assert (probes_per_objfile != NULL); | |
1629 | } | |
1630 | ||
1631 | set_objfile_data (objfile, probe_key, probes_per_objfile); | |
1632 | } | |
1633 | ||
1634 | return probes_per_objfile; | |
1635 | } | |
1636 | ||
1637 | /* Implementation of `sym_get_probe_argument_count', as documented in | |
1638 | symfile.h. */ | |
1639 | ||
1640 | static unsigned | |
6bac7473 | 1641 | elf_get_probe_argument_count (struct probe *probe) |
55aa24fb | 1642 | { |
6bac7473 | 1643 | return probe->pops->get_probe_argument_count (probe); |
55aa24fb SDJ |
1644 | } |
1645 | ||
1646 | /* Implementation of `sym_evaluate_probe_argument', as documented in | |
1647 | symfile.h. */ | |
1648 | ||
1649 | static struct value * | |
6bac7473 | 1650 | elf_evaluate_probe_argument (struct probe *probe, unsigned n) |
55aa24fb | 1651 | { |
6bac7473 | 1652 | return probe->pops->evaluate_probe_argument (probe, n); |
55aa24fb SDJ |
1653 | } |
1654 | ||
1655 | /* Implementation of `sym_compile_to_ax', as documented in symfile.h. */ | |
1656 | ||
1657 | static void | |
6bac7473 | 1658 | elf_compile_to_ax (struct probe *probe, |
55aa24fb SDJ |
1659 | struct agent_expr *expr, |
1660 | struct axs_value *value, | |
1661 | unsigned n) | |
1662 | { | |
6bac7473 | 1663 | probe->pops->compile_to_ax (probe, expr, value, n); |
55aa24fb SDJ |
1664 | } |
1665 | ||
1666 | /* Implementation of `sym_relocate_probe', as documented in symfile.h. */ | |
1667 | ||
1668 | static void | |
1669 | elf_symfile_relocate_probe (struct objfile *objfile, | |
1670 | struct section_offsets *new_offsets, | |
1671 | struct section_offsets *delta) | |
1672 | { | |
1673 | int ix; | |
1674 | VEC (probe_p) *probes = objfile_data (objfile, probe_key); | |
1675 | struct probe *probe; | |
1676 | ||
1677 | for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++) | |
1678 | probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile))); | |
1679 | } | |
1680 | ||
1681 | /* Helper function used to free the space allocated for storing SystemTap | |
1682 | probe information. */ | |
1683 | ||
1684 | static void | |
1685 | probe_key_free (struct objfile *objfile, void *d) | |
1686 | { | |
1687 | int ix; | |
1688 | VEC (probe_p) *probes = d; | |
1689 | struct probe *probe; | |
1690 | ||
1691 | for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++) | |
1692 | probe->pops->destroy (probe); | |
1693 | ||
1694 | VEC_free (probe_p, probes); | |
1695 | } | |
1696 | ||
c906108c | 1697 | \f |
55aa24fb SDJ |
1698 | |
1699 | /* Implementation `sym_probe_fns', as documented in symfile.h. */ | |
1700 | ||
1701 | static const struct sym_probe_fns elf_probe_fns = | |
1702 | { | |
1703 | elf_get_probes, /* sym_get_probes */ | |
1704 | elf_get_probe_argument_count, /* sym_get_probe_argument_count */ | |
1705 | elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */ | |
1706 | elf_compile_to_ax, /* sym_compile_to_ax */ | |
1707 | elf_symfile_relocate_probe, /* sym_relocate_probe */ | |
1708 | }; | |
1709 | ||
c906108c SS |
1710 | /* Register that we are able to handle ELF object file formats. */ |
1711 | ||
00b5771c | 1712 | static const struct sym_fns elf_sym_fns = |
c906108c SS |
1713 | { |
1714 | bfd_target_elf_flavour, | |
3e43a32a MS |
1715 | elf_new_init, /* init anything gbl to entire symtab */ |
1716 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1717 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 TT |
1718 | NULL, /* sym_read_psymbols */ |
1719 | elf_symfile_finish, /* finished with file, cleanup */ | |
1720 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1721 | elf_symfile_segments, /* Get segment information from a file. */ | |
1722 | NULL, | |
1723 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1724 | &elf_probe_fns, /* sym_probe_fns */ |
b11896a5 TT |
1725 | &psym_functions |
1726 | }; | |
1727 | ||
1728 | /* The same as elf_sym_fns, but not registered and lazily reads | |
1729 | psymbols. */ | |
1730 | ||
1731 | static const struct sym_fns elf_sym_fns_lazy_psyms = | |
1732 | { | |
1733 | bfd_target_elf_flavour, | |
1734 | elf_new_init, /* init anything gbl to entire symtab */ | |
1735 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1736 | elf_symfile_read, /* read a symbol file into symtab */ | |
1737 | read_psyms, /* sym_read_psymbols */ | |
3e43a32a MS |
1738 | elf_symfile_finish, /* finished with file, cleanup */ |
1739 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1740 | elf_symfile_segments, /* Get segment information from a file. */ | |
1741 | NULL, | |
1742 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1743 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1744 | &psym_functions |
c906108c SS |
1745 | }; |
1746 | ||
9291a0cd TT |
1747 | /* The same as elf_sym_fns, but not registered and uses the |
1748 | DWARF-specific GNU index rather than psymtab. */ | |
00b5771c | 1749 | static const struct sym_fns elf_sym_fns_gdb_index = |
9291a0cd TT |
1750 | { |
1751 | bfd_target_elf_flavour, | |
3e43a32a MS |
1752 | elf_new_init, /* init anything gbl to entire symab */ |
1753 | elf_symfile_init, /* read initial info, setup for sym_red() */ | |
1754 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 | 1755 | NULL, /* sym_read_psymbols */ |
3e43a32a MS |
1756 | elf_symfile_finish, /* finished with file, cleanup */ |
1757 | default_symfile_offsets, /* Translate ext. to int. relocatin */ | |
1758 | elf_symfile_segments, /* Get segment information from a file. */ | |
1759 | NULL, | |
1760 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1761 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1762 | &dwarf2_gdb_index_functions |
9291a0cd TT |
1763 | }; |
1764 | ||
07be84bf JK |
1765 | /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ |
1766 | ||
1767 | static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = | |
1768 | { | |
1769 | elf_gnu_ifunc_resolve_addr, | |
1770 | elf_gnu_ifunc_resolve_name, | |
0e30163f JK |
1771 | elf_gnu_ifunc_resolver_stop, |
1772 | elf_gnu_ifunc_resolver_return_stop | |
07be84bf JK |
1773 | }; |
1774 | ||
c906108c | 1775 | void |
fba45db2 | 1776 | _initialize_elfread (void) |
c906108c | 1777 | { |
55aa24fb | 1778 | probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free); |
c906108c | 1779 | add_symtab_fns (&elf_sym_fns); |
07be84bf JK |
1780 | |
1781 | elf_objfile_gnu_ifunc_cache_data = register_objfile_data (); | |
1782 | gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; | |
c906108c | 1783 | } |