]>
Commit | Line | Data |
---|---|---|
dd3b648e | 1 | /* Target-machine dependent code for the AMD 29000 |
19327ea5 | 2 | Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc. |
dd3b648e RP |
3 | Contributed by Cygnus Support. Written by Jim Kingdon. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e RP |
11 | |
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e RP |
20 | |
21 | #include "defs.h" | |
22 | #include "gdbcore.h" | |
dd3b648e RP |
23 | #include "frame.h" |
24 | #include "value.h" | |
dd3b648e RP |
25 | #include "symtab.h" |
26 | #include "inferior.h" | |
8f86a4e4 | 27 | #include "gdbcmd.h" |
dd3b648e | 28 | |
946f014b JG |
29 | /* If all these bits in an instruction word are zero, it is a "tag word" |
30 | which precedes a function entry point and gives stack traceback info. | |
31 | This used to be defined as 0xff000000, but that treated 0x00000deb as | |
32 | a tag word, while it is really used as a breakpoint. */ | |
33 | #define TAGWORD_ZERO_MASK 0xff00f800 | |
34 | ||
7730bd5a JG |
35 | extern CORE_ADDR text_start; /* FIXME, kludge... */ |
36 | ||
8f86a4e4 JG |
37 | /* The user-settable top of the register stack in virtual memory. We |
38 | won't attempt to access any stored registers above this address, if set | |
39 | nonzero. */ | |
40 | ||
41 | static CORE_ADDR rstack_high_address = UINT_MAX; | |
42 | ||
dd3b648e RP |
43 | /* Structure to hold cached info about function prologues. */ |
44 | struct prologue_info | |
45 | { | |
46 | CORE_ADDR pc; /* First addr after fn prologue */ | |
47 | unsigned rsize, msize; /* register stack frame size, mem stack ditto */ | |
48 | unsigned mfp_used : 1; /* memory frame pointer used */ | |
49 | unsigned rsize_valid : 1; /* Validity bits for the above */ | |
50 | unsigned msize_valid : 1; | |
51 | unsigned mfp_valid : 1; | |
52 | }; | |
53 | ||
54 | /* Examine the prologue of a function which starts at PC. Return | |
55 | the first addess past the prologue. If MSIZE is non-NULL, then | |
56 | set *MSIZE to the memory stack frame size. If RSIZE is non-NULL, | |
57 | then set *RSIZE to the register stack frame size (not including | |
58 | incoming arguments and the return address & frame pointer stored | |
59 | with them). If no prologue is found, *RSIZE is set to zero. | |
60 | If no prologue is found, or a prologue which doesn't involve | |
61 | allocating a memory stack frame, then set *MSIZE to zero. | |
62 | ||
63 | Note that both msize and rsize are in bytes. This is not consistent | |
64 | with the _User's Manual_ with respect to rsize, but it is much more | |
65 | convenient. | |
66 | ||
67 | If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory | |
68 | frame pointer is being used. */ | |
69 | CORE_ADDR | |
70 | examine_prologue (pc, rsize, msize, mfp_used) | |
71 | CORE_ADDR pc; | |
72 | unsigned *msize; | |
73 | unsigned *rsize; | |
74 | int *mfp_used; | |
75 | { | |
76 | long insn; | |
77 | CORE_ADDR p = pc; | |
1ab3bf1b | 78 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); |
dd3b648e RP |
79 | struct prologue_info *mi = 0; |
80 | ||
1ab3bf1b | 81 | if (msymbol != NULL) |
07df4831 | 82 | mi = (struct prologue_info *) msymbol -> info; |
dd3b648e RP |
83 | |
84 | if (mi != 0) | |
85 | { | |
86 | int valid = 1; | |
87 | if (rsize != NULL) | |
88 | { | |
89 | *rsize = mi->rsize; | |
90 | valid &= mi->rsize_valid; | |
91 | } | |
92 | if (msize != NULL) | |
93 | { | |
94 | *msize = mi->msize; | |
95 | valid &= mi->msize_valid; | |
96 | } | |
97 | if (mfp_used != NULL) | |
98 | { | |
99 | *mfp_used = mi->mfp_used; | |
100 | valid &= mi->mfp_valid; | |
101 | } | |
102 | if (valid) | |
103 | return mi->pc; | |
104 | } | |
105 | ||
106 | if (rsize != NULL) | |
107 | *rsize = 0; | |
108 | if (msize != NULL) | |
109 | *msize = 0; | |
110 | if (mfp_used != NULL) | |
111 | *mfp_used = 0; | |
112 | ||
113 | /* Prologue must start with subtracting a constant from gr1. | |
114 | Normally this is sub gr1,gr1,<rsize * 4>. */ | |
115 | insn = read_memory_integer (p, 4); | |
116 | if ((insn & 0xffffff00) != 0x25010100) | |
117 | { | |
118 | /* If the frame is large, instead of a single instruction it | |
119 | might be a pair of instructions: | |
120 | const <reg>, <rsize * 4> | |
121 | sub gr1,gr1,<reg> | |
122 | */ | |
123 | int reg; | |
124 | /* Possible value for rsize. */ | |
125 | unsigned int rsize0; | |
126 | ||
127 | if ((insn & 0xff000000) != 0x03000000) | |
128 | { | |
129 | p = pc; | |
130 | goto done; | |
131 | } | |
132 | reg = (insn >> 8) & 0xff; | |
133 | rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff)); | |
134 | p += 4; | |
135 | insn = read_memory_integer (p, 4); | |
136 | if ((insn & 0xffffff00) != 0x24010100 | |
137 | || (insn & 0xff) != reg) | |
138 | { | |
139 | p = pc; | |
140 | goto done; | |
141 | } | |
142 | if (rsize != NULL) | |
143 | *rsize = rsize0; | |
144 | } | |
145 | else | |
146 | { | |
147 | if (rsize != NULL) | |
148 | *rsize = (insn & 0xff); | |
149 | } | |
150 | p += 4; | |
151 | ||
d0b04c6a SG |
152 | /* Next instruction must be asgeu V_SPILL,gr1,rab. |
153 | * We don't check the vector number to allow for kernel debugging. The | |
154 | * kernel will use a different trap number. | |
155 | */ | |
dd3b648e | 156 | insn = read_memory_integer (p, 4); |
d0b04c6a | 157 | if ((insn & 0xff00ffff) != (0x5e000100|RAB_HW_REGNUM)) |
dd3b648e RP |
158 | { |
159 | p = pc; | |
160 | goto done; | |
161 | } | |
162 | p += 4; | |
163 | ||
164 | /* Next instruction usually sets the frame pointer (lr1) by adding | |
165 | <size * 4> from gr1. However, this can (and high C does) be | |
166 | deferred until anytime before the first function call. So it is | |
d0b04c6a SG |
167 | OK if we don't see anything which sets lr1. |
168 | To allow for alternate register sets (gcc -mkernel-registers) the msp | |
169 | register number is a compile time constant. */ | |
170 | ||
dd3b648e RP |
171 | /* Normally this is just add lr1,gr1,<size * 4>. */ |
172 | insn = read_memory_integer (p, 4); | |
173 | if ((insn & 0xffffff00) == 0x15810100) | |
174 | p += 4; | |
175 | else | |
176 | { | |
177 | /* However, for large frames it can be | |
178 | const <reg>, <size *4> | |
179 | add lr1,gr1,<reg> | |
180 | */ | |
181 | int reg; | |
182 | CORE_ADDR q; | |
183 | ||
184 | if ((insn & 0xff000000) == 0x03000000) | |
185 | { | |
186 | reg = (insn >> 8) & 0xff; | |
187 | q = p + 4; | |
188 | insn = read_memory_integer (q, 4); | |
189 | if ((insn & 0xffffff00) == 0x14810100 | |
190 | && (insn & 0xff) == reg) | |
191 | p = q; | |
192 | } | |
193 | } | |
194 | ||
195 | /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory | |
196 | frame pointer is in use. We just check for add lr<anything>,msp,0; | |
197 | we don't check this rsize against the first instruction, and | |
198 | we don't check that the trace-back tag indicates a memory frame pointer | |
199 | is in use. | |
d0b04c6a SG |
200 | To allow for alternate register sets (gcc -mkernel-registers) the msp |
201 | register number is a compile time constant. | |
dd3b648e RP |
202 | |
203 | The recommended instruction is actually "sll lr<whatever>,msp,0". | |
204 | We check for that, too. Originally Jim Kingdon's code seemed | |
205 | to be looking for a "sub" instruction here, but the mask was set | |
206 | up to lose all the time. */ | |
207 | insn = read_memory_integer (p, 4); | |
d0b04c6a SG |
208 | if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */ |
209 | || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */ | |
dd3b648e RP |
210 | { |
211 | p += 4; | |
212 | if (mfp_used != NULL) | |
213 | *mfp_used = 1; | |
214 | } | |
215 | ||
216 | /* Next comes a subtraction from msp to allocate a memory frame, | |
217 | but only if a memory frame is | |
218 | being used. We don't check msize against the trace-back tag. | |
219 | ||
d0b04c6a SG |
220 | To allow for alternate register sets (gcc -mkernel-registers) the msp |
221 | register number is a compile time constant. | |
222 | ||
dd3b648e RP |
223 | Normally this is just |
224 | sub msp,msp,<msize> | |
225 | */ | |
226 | insn = read_memory_integer (p, 4); | |
d0b04c6a SG |
227 | if ((insn & 0xffffff00) == |
228 | (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))) | |
dd3b648e RP |
229 | { |
230 | p += 4; | |
d0b04c6a | 231 | if (msize != NULL) |
dd3b648e RP |
232 | *msize = insn & 0xff; |
233 | } | |
234 | else | |
235 | { | |
236 | /* For large frames, instead of a single instruction it might | |
237 | be | |
238 | ||
239 | const <reg>, <msize> | |
240 | consth <reg>, <msize> ; optional | |
241 | sub msp,msp,<reg> | |
242 | */ | |
243 | int reg; | |
244 | unsigned msize0; | |
245 | CORE_ADDR q = p; | |
246 | ||
247 | if ((insn & 0xff000000) == 0x03000000) | |
248 | { | |
249 | reg = (insn >> 8) & 0xff; | |
250 | msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff); | |
251 | q += 4; | |
252 | insn = read_memory_integer (q, 4); | |
253 | /* Check for consth. */ | |
254 | if ((insn & 0xff000000) == 0x02000000 | |
255 | && (insn & 0x0000ff00) == reg) | |
256 | { | |
257 | msize0 |= (insn << 8) & 0xff000000; | |
258 | msize0 |= (insn << 16) & 0x00ff0000; | |
259 | q += 4; | |
260 | insn = read_memory_integer (q, 4); | |
261 | } | |
262 | /* Check for sub msp,msp,<reg>. */ | |
d0b04c6a SG |
263 | if ((insn & 0xffffff00) == |
264 | (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)) | |
dd3b648e RP |
265 | && (insn & 0xff) == reg) |
266 | { | |
267 | p = q + 4; | |
268 | if (msize != NULL) | |
269 | *msize = msize0; | |
270 | } | |
271 | } | |
272 | } | |
273 | ||
274 | done: | |
1ab3bf1b | 275 | if (msymbol != NULL) |
dd3b648e RP |
276 | { |
277 | if (mi == 0) | |
278 | { | |
279 | /* Add a new cache entry. */ | |
280 | mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info)); | |
07df4831 | 281 | msymbol -> info = (char *)mi; |
dd3b648e RP |
282 | mi->rsize_valid = 0; |
283 | mi->msize_valid = 0; | |
284 | mi->mfp_valid = 0; | |
285 | } | |
286 | /* else, cache entry exists, but info is incomplete. */ | |
287 | mi->pc = p; | |
288 | if (rsize != NULL) | |
289 | { | |
290 | mi->rsize = *rsize; | |
291 | mi->rsize_valid = 1; | |
292 | } | |
293 | if (msize != NULL) | |
294 | { | |
295 | mi->msize = *msize; | |
296 | mi->msize_valid = 1; | |
297 | } | |
298 | if (mfp_used != NULL) | |
299 | { | |
300 | mi->mfp_used = *mfp_used; | |
301 | mi->mfp_valid = 1; | |
302 | } | |
303 | } | |
304 | return p; | |
305 | } | |
306 | ||
307 | /* Advance PC across any function entry prologue instructions | |
308 | to reach some "real" code. */ | |
309 | ||
310 | CORE_ADDR | |
311 | skip_prologue (pc) | |
312 | CORE_ADDR pc; | |
313 | { | |
314 | return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL, | |
315 | (int *)NULL); | |
316 | } | |
d0b04c6a SG |
317 | /* |
318 | * Examine the one or two word tag at the beginning of a function. | |
319 | * The tag word is expect to be at 'p', if it is not there, we fail | |
320 | * by returning 0. The documentation for the tag word was taken from | |
321 | * page 7-15 of the 29050 User's Manual. We are assuming that the | |
322 | * m bit is in bit 22 of the tag word, which seems to be the agreed upon | |
323 | * convention today (1/15/92). | |
324 | * msize is return in bytes. | |
325 | */ | |
326 | static int /* 0/1 - failure/success of finding the tag word */ | |
327 | examine_tag(p, is_trans, argcount, msize, mfp_used) | |
328 | CORE_ADDR p; | |
329 | int *is_trans; | |
330 | int *argcount; | |
331 | unsigned *msize; | |
332 | int *mfp_used; | |
333 | { | |
334 | unsigned int tag1, tag2; | |
335 | ||
336 | tag1 = read_memory_integer (p, 4); | |
946f014b | 337 | if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */ |
d0b04c6a SG |
338 | return 0; |
339 | if (tag1 & (1<<23)) /* A two word tag */ | |
340 | { | |
341 | tag2 = read_memory_integer (p+4, 4); | |
342 | if (msize) | |
343 | *msize = tag2; | |
344 | } | |
345 | else /* A one word tag */ | |
346 | { | |
347 | if (msize) | |
348 | *msize = tag1 & 0x7ff; | |
349 | } | |
350 | if (is_trans) | |
351 | *is_trans = ((tag1 & (1<<21)) ? 1 : 0); | |
352 | if (argcount) | |
353 | *argcount = (tag1 >> 16) & 0x1f; | |
354 | if (mfp_used) | |
355 | *mfp_used = ((tag1 & (1<<22)) ? 1 : 0); | |
356 | return(1); | |
357 | } | |
dd3b648e RP |
358 | |
359 | /* Initialize the frame. In addition to setting "extra" frame info, | |
360 | we also set ->frame because we use it in a nonstandard way, and ->pc | |
361 | because we need to know it to get the other stuff. See the diagram | |
d7d35f00 | 362 | of stacks and the frame cache in tm-a29k.h for more detail. */ |
dd3b648e RP |
363 | static void |
364 | init_frame_info (innermost_frame, fci) | |
365 | int innermost_frame; | |
366 | struct frame_info *fci; | |
367 | { | |
368 | CORE_ADDR p; | |
369 | long insn; | |
370 | unsigned rsize; | |
371 | unsigned msize; | |
d0b04c6a | 372 | int mfp_used, trans; |
dd3b648e RP |
373 | struct symbol *func; |
374 | ||
375 | p = fci->pc; | |
376 | ||
377 | if (innermost_frame) | |
378 | fci->frame = read_register (GR1_REGNUM); | |
379 | else | |
23a8e291 | 380 | fci->frame = fci->next->frame + fci->next->rsize; |
dd3b648e RP |
381 | |
382 | #if CALL_DUMMY_LOCATION == ON_STACK | |
383 | This wont work; | |
384 | #else | |
385 | if (PC_IN_CALL_DUMMY (p, 0, 0)) | |
386 | #endif | |
387 | { | |
388 | fci->rsize = DUMMY_FRAME_RSIZE; | |
389 | /* This doesn't matter since we never try to get locals or args | |
390 | from a dummy frame. */ | |
391 | fci->msize = 0; | |
392 | /* Dummy frames always use a memory frame pointer. */ | |
393 | fci->saved_msp = | |
394 | read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4); | |
d0b04c6a | 395 | fci->flags |= (TRANSPARENT|MFP_USED); |
dd3b648e RP |
396 | return; |
397 | } | |
398 | ||
399 | func = find_pc_function (p); | |
400 | if (func != NULL) | |
401 | p = BLOCK_START (SYMBOL_BLOCK_VALUE (func)); | |
402 | else | |
403 | { | |
404 | /* Search backward to find the trace-back tag. However, | |
405 | do not trace back beyond the start of the text segment | |
406 | (just as a sanity check to avoid going into never-never land). */ | |
407 | while (p >= text_start | |
946f014b | 408 | && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0) |
dd3b648e RP |
409 | p -= 4; |
410 | ||
411 | if (p < text_start) | |
412 | { | |
413 | /* Couldn't find the trace-back tag. | |
414 | Something strange is going on. */ | |
415 | fci->saved_msp = 0; | |
416 | fci->rsize = 0; | |
417 | fci->msize = 0; | |
d0b04c6a | 418 | fci->flags = TRANSPARENT; |
dd3b648e RP |
419 | return; |
420 | } | |
421 | else | |
422 | /* Advance to the first word of the function, i.e. the word | |
423 | after the trace-back tag. */ | |
424 | p += 4; | |
425 | } | |
d0b04c6a SG |
426 | /* We've found the start of the function. |
427 | * Try looking for a tag word that indicates whether there is a | |
428 | * memory frame pointer and what the memory stack allocation is. | |
429 | * If one doesn't exist, try using a more exhaustive search of | |
430 | * the prologue. For now we don't care about the argcount or | |
431 | * whether or not the routine is transparent. | |
432 | */ | |
433 | if (examine_tag(p-4,&trans,NULL,&msize,&mfp_used)) /* Found a good tag */ | |
434 | examine_prologue (p, &rsize, 0, 0); | |
435 | else /* No tag try prologue */ | |
436 | examine_prologue (p, &rsize, &msize, &mfp_used); | |
437 | ||
dd3b648e RP |
438 | fci->rsize = rsize; |
439 | fci->msize = msize; | |
d0b04c6a SG |
440 | fci->flags = 0; |
441 | if (mfp_used) | |
442 | fci->flags |= MFP_USED; | |
443 | if (trans) | |
444 | fci->flags |= TRANSPARENT; | |
dd3b648e RP |
445 | if (innermost_frame) |
446 | { | |
447 | fci->saved_msp = read_register (MSP_REGNUM) + msize; | |
448 | } | |
449 | else | |
450 | { | |
451 | if (mfp_used) | |
d0b04c6a SG |
452 | fci->saved_msp = |
453 | read_register_stack_integer (fci->frame + rsize - 4, 4); | |
dd3b648e | 454 | else |
d0b04c6a | 455 | fci->saved_msp = fci->next->saved_msp + msize; |
dd3b648e RP |
456 | } |
457 | } | |
458 | ||
459 | void | |
460 | init_extra_frame_info (fci) | |
461 | struct frame_info *fci; | |
462 | { | |
463 | if (fci->next == 0) | |
464 | /* Assume innermost frame. May produce strange results for "info frame" | |
465 | but there isn't any way to tell the difference. */ | |
466 | init_frame_info (1, fci); | |
17f7e032 JG |
467 | else { |
468 | /* We're in get_prev_frame_info. | |
469 | Take care of everything in init_frame_pc. */ | |
470 | ; | |
471 | } | |
dd3b648e RP |
472 | } |
473 | ||
474 | void | |
475 | init_frame_pc (fromleaf, fci) | |
476 | int fromleaf; | |
477 | struct frame_info *fci; | |
478 | { | |
479 | fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) : | |
480 | fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ()); | |
d0b04c6a | 481 | init_frame_info (fromleaf, fci); |
dd3b648e RP |
482 | } |
483 | \f | |
484 | /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their | |
485 | offsets being relative to the memory stack pointer (high C) or | |
486 | saved_msp (gcc). */ | |
487 | ||
488 | CORE_ADDR | |
489 | frame_locals_address (fi) | |
490 | struct frame_info *fi; | |
491 | { | |
d0b04c6a | 492 | if (fi->flags & MFP_USED) |
dd3b648e RP |
493 | return fi->saved_msp; |
494 | else | |
495 | return fi->saved_msp - fi->msize; | |
496 | } | |
497 | \f | |
498 | /* Routines for reading the register stack. The caller gets to treat | |
499 | the register stack as a uniform stack in memory, from address $gr1 | |
500 | straight through $rfb and beyond. */ | |
501 | ||
502 | /* Analogous to read_memory except the length is understood to be 4. | |
503 | Also, myaddr can be NULL (meaning don't bother to read), and | |
504 | if actual_mem_addr is non-NULL, store there the address that it | |
505 | was fetched from (or if from a register the offset within | |
506 | registers). Set *LVAL to lval_memory or lval_register, depending | |
4d50f90a JK |
507 | on where it came from. The contents written into MYADDR are in |
508 | target format. */ | |
dd3b648e RP |
509 | void |
510 | read_register_stack (memaddr, myaddr, actual_mem_addr, lval) | |
511 | CORE_ADDR memaddr; | |
512 | char *myaddr; | |
513 | CORE_ADDR *actual_mem_addr; | |
514 | enum lval_type *lval; | |
515 | { | |
516 | long rfb = read_register (RFB_REGNUM); | |
517 | long rsp = read_register (RSP_REGNUM); | |
d0b04c6a | 518 | |
d0b04c6a | 519 | /* If we don't do this 'info register' stops in the middle. */ |
8f86a4e4 | 520 | if (memaddr >= rstack_high_address) |
d0b04c6a | 521 | { |
4d50f90a | 522 | /* a bogus value */ |
85494909 | 523 | static char val[] = {~0, ~0, ~0, ~0}; |
d0b04c6a SG |
524 | /* It's in a local register, but off the end of the stack. */ |
525 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
526 | if (myaddr != NULL) | |
4d50f90a JK |
527 | { |
528 | /* Provide bogusness */ | |
529 | memcpy (myaddr, val, 4); | |
530 | } | |
531 | supply_register(regnum, val); /* More bogusness */ | |
d0b04c6a SG |
532 | if (lval != NULL) |
533 | *lval = lval_register; | |
534 | if (actual_mem_addr != NULL) | |
535 | *actual_mem_addr = REGISTER_BYTE (regnum); | |
536 | } | |
946f014b JG |
537 | /* If it's in the part of the register stack that's in real registers, |
538 | get the value from the registers. If it's anywhere else in memory | |
539 | (e.g. in another thread's saved stack), skip this part and get | |
540 | it from real live memory. */ | |
541 | else if (memaddr < rfb && memaddr >= rsp) | |
dd3b648e RP |
542 | { |
543 | /* It's in a register. */ | |
544 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
946f014b | 545 | if (regnum > LR0_REGNUM + 127) |
dd3b648e RP |
546 | error ("Attempt to read register stack out of range."); |
547 | if (myaddr != NULL) | |
548 | read_register_gen (regnum, myaddr); | |
549 | if (lval != NULL) | |
550 | *lval = lval_register; | |
551 | if (actual_mem_addr != NULL) | |
552 | *actual_mem_addr = REGISTER_BYTE (regnum); | |
553 | } | |
554 | else | |
555 | { | |
556 | /* It's in the memory portion of the register stack. */ | |
d0b04c6a | 557 | if (myaddr != NULL) |
4d50f90a | 558 | read_memory (memaddr, myaddr, 4); |
dd3b648e RP |
559 | if (lval != NULL) |
560 | *lval = lval_memory; | |
561 | if (actual_mem_addr != NULL) | |
17f7e032 | 562 | *actual_mem_addr = memaddr; |
dd3b648e RP |
563 | } |
564 | } | |
565 | ||
566 | /* Analogous to read_memory_integer | |
567 | except the length is understood to be 4. */ | |
568 | long | |
569 | read_register_stack_integer (memaddr, len) | |
570 | CORE_ADDR memaddr; | |
571 | int len; | |
572 | { | |
34df79fc JK |
573 | char buf[4]; |
574 | read_register_stack (memaddr, buf, NULL, NULL); | |
575 | return extract_signed_integer (buf, 4); | |
dd3b648e RP |
576 | } |
577 | ||
578 | /* Copy 4 bytes from GDB memory at MYADDR into inferior memory | |
579 | at MEMADDR and put the actual address written into in | |
580 | *ACTUAL_MEM_ADDR. */ | |
581 | static void | |
582 | write_register_stack (memaddr, myaddr, actual_mem_addr) | |
583 | CORE_ADDR memaddr; | |
584 | char *myaddr; | |
585 | CORE_ADDR *actual_mem_addr; | |
586 | { | |
587 | long rfb = read_register (RFB_REGNUM); | |
588 | long rsp = read_register (RSP_REGNUM); | |
d0b04c6a | 589 | /* If we don't do this 'info register' stops in the middle. */ |
8f86a4e4 | 590 | if (memaddr >= rstack_high_address) |
d0b04c6a SG |
591 | { |
592 | /* It's in a register, but off the end of the stack. */ | |
593 | if (actual_mem_addr != NULL) | |
b9163d1a | 594 | *actual_mem_addr = 0; |
d0b04c6a | 595 | } |
8f86a4e4 | 596 | else if (memaddr < rfb) |
dd3b648e RP |
597 | { |
598 | /* It's in a register. */ | |
599 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
600 | if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) | |
601 | error ("Attempt to read register stack out of range."); | |
602 | if (myaddr != NULL) | |
603 | write_register (regnum, *(long *)myaddr); | |
604 | if (actual_mem_addr != NULL) | |
b9163d1a | 605 | *actual_mem_addr = 0; |
dd3b648e RP |
606 | } |
607 | else | |
608 | { | |
609 | /* It's in the memory portion of the register stack. */ | |
610 | if (myaddr != NULL) | |
611 | write_memory (memaddr, myaddr, 4); | |
612 | if (actual_mem_addr != NULL) | |
17f7e032 | 613 | *actual_mem_addr = memaddr; |
dd3b648e RP |
614 | } |
615 | } | |
616 | \f | |
617 | /* Find register number REGNUM relative to FRAME and put its | |
618 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
619 | was optimized out (and thus can't be fetched). If the variable | |
620 | was fetched from memory, set *ADDRP to where it was fetched from, | |
621 | otherwise it was fetched from a register. | |
622 | ||
623 | The argument RAW_BUFFER must point to aligned memory. */ | |
624 | void | |
625 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp) | |
626 | char *raw_buffer; | |
627 | int *optimized; | |
628 | CORE_ADDR *addrp; | |
629 | FRAME frame; | |
630 | int regnum; | |
631 | enum lval_type *lvalp; | |
632 | { | |
d0b04c6a | 633 | struct frame_info *fi; |
dd3b648e RP |
634 | CORE_ADDR addr; |
635 | enum lval_type lval; | |
636 | ||
d0b04c6a SG |
637 | if (frame == 0) |
638 | return; | |
639 | ||
640 | fi = get_frame_info (frame); | |
641 | ||
dd3b648e RP |
642 | /* Once something has a register number, it doesn't get optimized out. */ |
643 | if (optimized != NULL) | |
644 | *optimized = 0; | |
645 | if (regnum == RSP_REGNUM) | |
646 | { | |
647 | if (raw_buffer != NULL) | |
4d50f90a | 648 | { |
968dca8d | 649 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->frame); |
4d50f90a | 650 | } |
dd3b648e RP |
651 | if (lvalp != NULL) |
652 | *lvalp = not_lval; | |
653 | return; | |
654 | } | |
655 | else if (regnum == PC_REGNUM) | |
656 | { | |
657 | if (raw_buffer != NULL) | |
4d50f90a | 658 | { |
968dca8d | 659 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->pc); |
4d50f90a | 660 | } |
dd3b648e RP |
661 | |
662 | /* Not sure we have to do this. */ | |
663 | if (lvalp != NULL) | |
664 | *lvalp = not_lval; | |
665 | ||
666 | return; | |
667 | } | |
668 | else if (regnum == MSP_REGNUM) | |
669 | { | |
670 | if (raw_buffer != NULL) | |
671 | { | |
672 | if (fi->next != NULL) | |
4d50f90a | 673 | { |
968dca8d | 674 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), |
34df79fc | 675 | fi->next->saved_msp); |
4d50f90a | 676 | } |
dd3b648e | 677 | else |
4d50f90a | 678 | read_register_gen (MSP_REGNUM, raw_buffer); |
dd3b648e RP |
679 | } |
680 | /* The value may have been computed, not fetched. */ | |
681 | if (lvalp != NULL) | |
682 | *lvalp = not_lval; | |
683 | return; | |
684 | } | |
685 | else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128) | |
686 | { | |
687 | /* These registers are not saved over procedure calls, | |
688 | so just print out the current values. */ | |
689 | if (raw_buffer != NULL) | |
4d50f90a | 690 | read_register_gen (regnum, raw_buffer); |
dd3b648e RP |
691 | if (lvalp != NULL) |
692 | *lvalp = lval_register; | |
693 | if (addrp != NULL) | |
694 | *addrp = REGISTER_BYTE (regnum); | |
695 | return; | |
696 | } | |
697 | ||
698 | addr = fi->frame + (regnum - LR0_REGNUM) * 4; | |
699 | if (raw_buffer != NULL) | |
700 | read_register_stack (addr, raw_buffer, &addr, &lval); | |
701 | if (lvalp != NULL) | |
702 | *lvalp = lval; | |
703 | if (addrp != NULL) | |
704 | *addrp = addr; | |
705 | } | |
706 | \f | |
d0b04c6a | 707 | |
dd3b648e RP |
708 | /* Discard from the stack the innermost frame, |
709 | restoring all saved registers. */ | |
710 | ||
711 | void | |
712 | pop_frame () | |
713 | { | |
714 | FRAME frame = get_current_frame (); | |
715 | struct frame_info *fi = get_frame_info (frame); | |
716 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
717 | CORE_ADDR gr1 = fi->frame + fi->rsize; | |
718 | CORE_ADDR lr1; | |
dd3b648e RP |
719 | int i; |
720 | ||
721 | /* If popping a dummy frame, need to restore registers. */ | |
722 | if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM), | |
723 | read_register (SP_REGNUM), | |
724 | FRAME_FP (fi))) | |
725 | { | |
d0b04c6a | 726 | int lrnum = LR0_REGNUM + DUMMY_ARG/4; |
dd3b648e | 727 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) |
d0b04c6a SG |
728 | write_register (SR_REGNUM (i + 128),read_register (lrnum++)); |
729 | for (i = 0; i < DUMMY_SAVE_SR160; ++i) | |
730 | write_register (SR_REGNUM(i+160), read_register (lrnum++)); | |
6093e5b0 | 731 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) |
d0b04c6a SG |
732 | write_register (RETURN_REGNUM + i, read_register (lrnum++)); |
733 | /* Restore the PCs. */ | |
734 | write_register(PC_REGNUM, read_register (lrnum++)); | |
735 | write_register(NPC_REGNUM, read_register (lrnum)); | |
dd3b648e RP |
736 | } |
737 | ||
738 | /* Restore the memory stack pointer. */ | |
739 | write_register (MSP_REGNUM, fi->saved_msp); | |
740 | /* Restore the register stack pointer. */ | |
741 | write_register (GR1_REGNUM, gr1); | |
742 | /* Check whether we need to fill registers. */ | |
743 | lr1 = read_register (LR0_REGNUM + 1); | |
744 | if (lr1 > rfb) | |
745 | { | |
746 | /* Fill. */ | |
747 | int num_bytes = lr1 - rfb; | |
748 | int i; | |
749 | long word; | |
750 | write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes); | |
751 | write_register (RFB_REGNUM, lr1); | |
752 | for (i = 0; i < num_bytes; i += 4) | |
753 | { | |
754 | /* Note: word is in host byte order. */ | |
755 | word = read_memory_integer (rfb + i, 4); | |
946f014b | 756 | write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word); |
dd3b648e RP |
757 | } |
758 | } | |
dd3b648e RP |
759 | flush_cached_frames (); |
760 | set_current_frame (create_new_frame (0, read_pc())); | |
761 | } | |
762 | ||
763 | /* Push an empty stack frame, to record the current PC, etc. */ | |
764 | ||
765 | void | |
766 | push_dummy_frame () | |
767 | { | |
768 | long w; | |
769 | CORE_ADDR rab, gr1; | |
770 | CORE_ADDR msp = read_register (MSP_REGNUM); | |
d0b04c6a | 771 | int lrnum, i, saved_lr0; |
dd3b648e | 772 | |
dd3b648e | 773 | |
d0b04c6a | 774 | /* Allocate the new frame. */ |
dd3b648e RP |
775 | gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE; |
776 | write_register (GR1_REGNUM, gr1); | |
777 | ||
778 | rab = read_register (RAB_REGNUM); | |
779 | if (gr1 < rab) | |
780 | { | |
781 | /* We need to spill registers. */ | |
782 | int num_bytes = rab - gr1; | |
783 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
784 | int i; | |
785 | long word; | |
786 | ||
787 | write_register (RFB_REGNUM, rfb - num_bytes); | |
788 | write_register (RAB_REGNUM, gr1); | |
789 | for (i = 0; i < num_bytes; i += 4) | |
790 | { | |
791 | /* Note: word is in target byte order. */ | |
b9163d1a SG |
792 | read_register_gen (LR0_REGNUM + i / 4, (char *) &word); |
793 | write_memory (rfb - num_bytes + i, (char *) &word, 4); | |
dd3b648e RP |
794 | } |
795 | } | |
796 | ||
797 | /* There are no arguments in to the dummy frame, so we don't need | |
798 | more than rsize plus the return address and lr1. */ | |
799 | write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4); | |
800 | ||
801 | /* Set the memory frame pointer. */ | |
802 | write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp); | |
803 | ||
804 | /* Allocate arg_slop. */ | |
805 | write_register (MSP_REGNUM, msp - 16 * 4); | |
806 | ||
807 | /* Save registers. */ | |
d0b04c6a | 808 | lrnum = LR0_REGNUM + DUMMY_ARG/4; |
dd3b648e | 809 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) |
d0b04c6a SG |
810 | write_register (lrnum++, read_register (SR_REGNUM (i + 128))); |
811 | for (i = 0; i < DUMMY_SAVE_SR160; ++i) | |
812 | write_register (lrnum++, read_register (SR_REGNUM (i + 160))); | |
6093e5b0 | 813 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) |
d0b04c6a SG |
814 | write_register (lrnum++, read_register (RETURN_REGNUM + i)); |
815 | /* Save the PCs. */ | |
816 | write_register (lrnum++, read_register (PC_REGNUM)); | |
817 | write_register (lrnum, read_register (NPC_REGNUM)); | |
818 | } | |
819 | ||
ca0622e7 JK |
820 | enum a29k_processor_types processor_type = a29k_unknown; |
821 | ||
822 | void | |
823 | a29k_get_processor_type () | |
824 | { | |
825 | unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM); | |
826 | ||
827 | /* Most of these don't have freeze mode. */ | |
828 | processor_type = a29k_no_freeze_mode; | |
829 | ||
830 | switch ((cfg_reg >> 28) & 0xf) | |
831 | { | |
832 | case 0: | |
199b2450 | 833 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29000"); |
ca0622e7 JK |
834 | break; |
835 | case 1: | |
199b2450 | 836 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29005"); |
ca0622e7 JK |
837 | break; |
838 | case 2: | |
199b2450 | 839 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29050"); |
ca0622e7 JK |
840 | processor_type = a29k_freeze_mode; |
841 | break; | |
842 | case 3: | |
199b2450 | 843 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29035"); |
ca0622e7 JK |
844 | break; |
845 | case 4: | |
199b2450 | 846 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29030"); |
ca0622e7 JK |
847 | break; |
848 | case 5: | |
199b2450 | 849 | fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*"); |
ca0622e7 JK |
850 | break; |
851 | case 6: | |
199b2450 | 852 | fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*"); |
ca0622e7 JK |
853 | break; |
854 | case 7: | |
199b2450 | 855 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29040"); |
ca0622e7 JK |
856 | break; |
857 | default: | |
199b2450 | 858 | fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n"); |
ca0622e7 JK |
859 | /* Don't bother to print the revision. */ |
860 | return; | |
861 | } | |
199b2450 | 862 | fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f)); |
ca0622e7 | 863 | } |
946f014b | 864 | |
d0b04c6a SG |
865 | void |
866 | _initialize_29k() | |
867 | { | |
34517ebc JG |
868 | extern CORE_ADDR text_end; |
869 | ||
8f86a4e4 JG |
870 | /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ |
871 | add_show_from_set | |
872 | (add_set_cmd ("rstack_high_address", class_support, var_uinteger, | |
873 | (char *)&rstack_high_address, | |
874 | "Set top address in memory of the register stack.\n\ | |
875 | Attempts to access registers saved above this address will be ignored\n\ | |
876 | or will produce the value -1.", &setlist), | |
877 | &showlist); | |
34517ebc JG |
878 | |
879 | /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ | |
880 | add_show_from_set | |
881 | (add_set_cmd ("call_scratch_address", class_support, var_uinteger, | |
882 | (char *)&text_end, | |
19327ea5 JG |
883 | "Set address in memory where small amounts of RAM can be used\n\ |
884 | when making function calls into the inferior.", &setlist), | |
34517ebc | 885 | &showlist); |
8f86a4e4 | 886 | } |