]>
Commit | Line | Data |
---|---|---|
dd3b648e | 1 | /* Target-machine dependent code for the AMD 29000 |
7d9884b9 | 2 | Copyright 1990, 1991 Free Software Foundation, Inc. |
dd3b648e RP |
3 | Contributed by Cygnus Support. Written by Jim Kingdon. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e RP |
11 | |
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e RP |
20 | |
21 | #include "defs.h" | |
22 | #include "gdbcore.h" | |
dd3b648e RP |
23 | #include "frame.h" |
24 | #include "value.h" | |
d0b04c6a | 25 | /*#include <sys/param.h> */ |
dd3b648e RP |
26 | #include "symtab.h" |
27 | #include "inferior.h" | |
8f86a4e4 | 28 | #include "gdbcmd.h" |
dd3b648e | 29 | |
7730bd5a JG |
30 | extern CORE_ADDR text_start; /* FIXME, kludge... */ |
31 | ||
8f86a4e4 JG |
32 | /* The user-settable top of the register stack in virtual memory. We |
33 | won't attempt to access any stored registers above this address, if set | |
34 | nonzero. */ | |
35 | ||
36 | static CORE_ADDR rstack_high_address = UINT_MAX; | |
37 | ||
dd3b648e RP |
38 | /* Structure to hold cached info about function prologues. */ |
39 | struct prologue_info | |
40 | { | |
41 | CORE_ADDR pc; /* First addr after fn prologue */ | |
42 | unsigned rsize, msize; /* register stack frame size, mem stack ditto */ | |
43 | unsigned mfp_used : 1; /* memory frame pointer used */ | |
44 | unsigned rsize_valid : 1; /* Validity bits for the above */ | |
45 | unsigned msize_valid : 1; | |
46 | unsigned mfp_valid : 1; | |
47 | }; | |
48 | ||
49 | /* Examine the prologue of a function which starts at PC. Return | |
50 | the first addess past the prologue. If MSIZE is non-NULL, then | |
51 | set *MSIZE to the memory stack frame size. If RSIZE is non-NULL, | |
52 | then set *RSIZE to the register stack frame size (not including | |
53 | incoming arguments and the return address & frame pointer stored | |
54 | with them). If no prologue is found, *RSIZE is set to zero. | |
55 | If no prologue is found, or a prologue which doesn't involve | |
56 | allocating a memory stack frame, then set *MSIZE to zero. | |
57 | ||
58 | Note that both msize and rsize are in bytes. This is not consistent | |
59 | with the _User's Manual_ with respect to rsize, but it is much more | |
60 | convenient. | |
61 | ||
62 | If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory | |
63 | frame pointer is being used. */ | |
64 | CORE_ADDR | |
65 | examine_prologue (pc, rsize, msize, mfp_used) | |
66 | CORE_ADDR pc; | |
67 | unsigned *msize; | |
68 | unsigned *rsize; | |
69 | int *mfp_used; | |
70 | { | |
71 | long insn; | |
72 | CORE_ADDR p = pc; | |
1ab3bf1b | 73 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); |
dd3b648e RP |
74 | struct prologue_info *mi = 0; |
75 | ||
1ab3bf1b | 76 | if (msymbol != NULL) |
07df4831 | 77 | mi = (struct prologue_info *) msymbol -> info; |
dd3b648e RP |
78 | |
79 | if (mi != 0) | |
80 | { | |
81 | int valid = 1; | |
82 | if (rsize != NULL) | |
83 | { | |
84 | *rsize = mi->rsize; | |
85 | valid &= mi->rsize_valid; | |
86 | } | |
87 | if (msize != NULL) | |
88 | { | |
89 | *msize = mi->msize; | |
90 | valid &= mi->msize_valid; | |
91 | } | |
92 | if (mfp_used != NULL) | |
93 | { | |
94 | *mfp_used = mi->mfp_used; | |
95 | valid &= mi->mfp_valid; | |
96 | } | |
97 | if (valid) | |
98 | return mi->pc; | |
99 | } | |
100 | ||
101 | if (rsize != NULL) | |
102 | *rsize = 0; | |
103 | if (msize != NULL) | |
104 | *msize = 0; | |
105 | if (mfp_used != NULL) | |
106 | *mfp_used = 0; | |
107 | ||
108 | /* Prologue must start with subtracting a constant from gr1. | |
109 | Normally this is sub gr1,gr1,<rsize * 4>. */ | |
110 | insn = read_memory_integer (p, 4); | |
111 | if ((insn & 0xffffff00) != 0x25010100) | |
112 | { | |
113 | /* If the frame is large, instead of a single instruction it | |
114 | might be a pair of instructions: | |
115 | const <reg>, <rsize * 4> | |
116 | sub gr1,gr1,<reg> | |
117 | */ | |
118 | int reg; | |
119 | /* Possible value for rsize. */ | |
120 | unsigned int rsize0; | |
121 | ||
122 | if ((insn & 0xff000000) != 0x03000000) | |
123 | { | |
124 | p = pc; | |
125 | goto done; | |
126 | } | |
127 | reg = (insn >> 8) & 0xff; | |
128 | rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff)); | |
129 | p += 4; | |
130 | insn = read_memory_integer (p, 4); | |
131 | if ((insn & 0xffffff00) != 0x24010100 | |
132 | || (insn & 0xff) != reg) | |
133 | { | |
134 | p = pc; | |
135 | goto done; | |
136 | } | |
137 | if (rsize != NULL) | |
138 | *rsize = rsize0; | |
139 | } | |
140 | else | |
141 | { | |
142 | if (rsize != NULL) | |
143 | *rsize = (insn & 0xff); | |
144 | } | |
145 | p += 4; | |
146 | ||
d0b04c6a SG |
147 | /* Next instruction must be asgeu V_SPILL,gr1,rab. |
148 | * We don't check the vector number to allow for kernel debugging. The | |
149 | * kernel will use a different trap number. | |
150 | */ | |
dd3b648e | 151 | insn = read_memory_integer (p, 4); |
d0b04c6a | 152 | if ((insn & 0xff00ffff) != (0x5e000100|RAB_HW_REGNUM)) |
dd3b648e RP |
153 | { |
154 | p = pc; | |
155 | goto done; | |
156 | } | |
157 | p += 4; | |
158 | ||
159 | /* Next instruction usually sets the frame pointer (lr1) by adding | |
160 | <size * 4> from gr1. However, this can (and high C does) be | |
161 | deferred until anytime before the first function call. So it is | |
d0b04c6a SG |
162 | OK if we don't see anything which sets lr1. |
163 | To allow for alternate register sets (gcc -mkernel-registers) the msp | |
164 | register number is a compile time constant. */ | |
165 | ||
dd3b648e RP |
166 | /* Normally this is just add lr1,gr1,<size * 4>. */ |
167 | insn = read_memory_integer (p, 4); | |
168 | if ((insn & 0xffffff00) == 0x15810100) | |
169 | p += 4; | |
170 | else | |
171 | { | |
172 | /* However, for large frames it can be | |
173 | const <reg>, <size *4> | |
174 | add lr1,gr1,<reg> | |
175 | */ | |
176 | int reg; | |
177 | CORE_ADDR q; | |
178 | ||
179 | if ((insn & 0xff000000) == 0x03000000) | |
180 | { | |
181 | reg = (insn >> 8) & 0xff; | |
182 | q = p + 4; | |
183 | insn = read_memory_integer (q, 4); | |
184 | if ((insn & 0xffffff00) == 0x14810100 | |
185 | && (insn & 0xff) == reg) | |
186 | p = q; | |
187 | } | |
188 | } | |
189 | ||
190 | /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory | |
191 | frame pointer is in use. We just check for add lr<anything>,msp,0; | |
192 | we don't check this rsize against the first instruction, and | |
193 | we don't check that the trace-back tag indicates a memory frame pointer | |
194 | is in use. | |
d0b04c6a SG |
195 | To allow for alternate register sets (gcc -mkernel-registers) the msp |
196 | register number is a compile time constant. | |
dd3b648e RP |
197 | |
198 | The recommended instruction is actually "sll lr<whatever>,msp,0". | |
199 | We check for that, too. Originally Jim Kingdon's code seemed | |
200 | to be looking for a "sub" instruction here, but the mask was set | |
201 | up to lose all the time. */ | |
202 | insn = read_memory_integer (p, 4); | |
d0b04c6a SG |
203 | if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */ |
204 | || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */ | |
dd3b648e RP |
205 | { |
206 | p += 4; | |
207 | if (mfp_used != NULL) | |
208 | *mfp_used = 1; | |
209 | } | |
210 | ||
211 | /* Next comes a subtraction from msp to allocate a memory frame, | |
212 | but only if a memory frame is | |
213 | being used. We don't check msize against the trace-back tag. | |
214 | ||
d0b04c6a SG |
215 | To allow for alternate register sets (gcc -mkernel-registers) the msp |
216 | register number is a compile time constant. | |
217 | ||
dd3b648e RP |
218 | Normally this is just |
219 | sub msp,msp,<msize> | |
220 | */ | |
221 | insn = read_memory_integer (p, 4); | |
d0b04c6a SG |
222 | if ((insn & 0xffffff00) == |
223 | (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))) | |
dd3b648e RP |
224 | { |
225 | p += 4; | |
d0b04c6a | 226 | if (msize != NULL) |
dd3b648e RP |
227 | *msize = insn & 0xff; |
228 | } | |
229 | else | |
230 | { | |
231 | /* For large frames, instead of a single instruction it might | |
232 | be | |
233 | ||
234 | const <reg>, <msize> | |
235 | consth <reg>, <msize> ; optional | |
236 | sub msp,msp,<reg> | |
237 | */ | |
238 | int reg; | |
239 | unsigned msize0; | |
240 | CORE_ADDR q = p; | |
241 | ||
242 | if ((insn & 0xff000000) == 0x03000000) | |
243 | { | |
244 | reg = (insn >> 8) & 0xff; | |
245 | msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff); | |
246 | q += 4; | |
247 | insn = read_memory_integer (q, 4); | |
248 | /* Check for consth. */ | |
249 | if ((insn & 0xff000000) == 0x02000000 | |
250 | && (insn & 0x0000ff00) == reg) | |
251 | { | |
252 | msize0 |= (insn << 8) & 0xff000000; | |
253 | msize0 |= (insn << 16) & 0x00ff0000; | |
254 | q += 4; | |
255 | insn = read_memory_integer (q, 4); | |
256 | } | |
257 | /* Check for sub msp,msp,<reg>. */ | |
d0b04c6a SG |
258 | if ((insn & 0xffffff00) == |
259 | (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)) | |
dd3b648e RP |
260 | && (insn & 0xff) == reg) |
261 | { | |
262 | p = q + 4; | |
263 | if (msize != NULL) | |
264 | *msize = msize0; | |
265 | } | |
266 | } | |
267 | } | |
268 | ||
269 | done: | |
1ab3bf1b | 270 | if (msymbol != NULL) |
dd3b648e RP |
271 | { |
272 | if (mi == 0) | |
273 | { | |
274 | /* Add a new cache entry. */ | |
275 | mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info)); | |
07df4831 | 276 | msymbol -> info = (char *)mi; |
dd3b648e RP |
277 | mi->rsize_valid = 0; |
278 | mi->msize_valid = 0; | |
279 | mi->mfp_valid = 0; | |
280 | } | |
281 | /* else, cache entry exists, but info is incomplete. */ | |
282 | mi->pc = p; | |
283 | if (rsize != NULL) | |
284 | { | |
285 | mi->rsize = *rsize; | |
286 | mi->rsize_valid = 1; | |
287 | } | |
288 | if (msize != NULL) | |
289 | { | |
290 | mi->msize = *msize; | |
291 | mi->msize_valid = 1; | |
292 | } | |
293 | if (mfp_used != NULL) | |
294 | { | |
295 | mi->mfp_used = *mfp_used; | |
296 | mi->mfp_valid = 1; | |
297 | } | |
298 | } | |
299 | return p; | |
300 | } | |
301 | ||
302 | /* Advance PC across any function entry prologue instructions | |
303 | to reach some "real" code. */ | |
304 | ||
305 | CORE_ADDR | |
306 | skip_prologue (pc) | |
307 | CORE_ADDR pc; | |
308 | { | |
309 | return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL, | |
310 | (int *)NULL); | |
311 | } | |
d0b04c6a SG |
312 | /* |
313 | * Examine the one or two word tag at the beginning of a function. | |
314 | * The tag word is expect to be at 'p', if it is not there, we fail | |
315 | * by returning 0. The documentation for the tag word was taken from | |
316 | * page 7-15 of the 29050 User's Manual. We are assuming that the | |
317 | * m bit is in bit 22 of the tag word, which seems to be the agreed upon | |
318 | * convention today (1/15/92). | |
319 | * msize is return in bytes. | |
320 | */ | |
321 | static int /* 0/1 - failure/success of finding the tag word */ | |
322 | examine_tag(p, is_trans, argcount, msize, mfp_used) | |
323 | CORE_ADDR p; | |
324 | int *is_trans; | |
325 | int *argcount; | |
326 | unsigned *msize; | |
327 | int *mfp_used; | |
328 | { | |
329 | unsigned int tag1, tag2; | |
330 | ||
331 | tag1 = read_memory_integer (p, 4); | |
332 | if ((tag1 & 0xff000000) != 0) /* Not a tag word */ | |
333 | return 0; | |
334 | if (tag1 & (1<<23)) /* A two word tag */ | |
335 | { | |
336 | tag2 = read_memory_integer (p+4, 4); | |
337 | if (msize) | |
338 | *msize = tag2; | |
339 | } | |
340 | else /* A one word tag */ | |
341 | { | |
342 | if (msize) | |
343 | *msize = tag1 & 0x7ff; | |
344 | } | |
345 | if (is_trans) | |
346 | *is_trans = ((tag1 & (1<<21)) ? 1 : 0); | |
347 | if (argcount) | |
348 | *argcount = (tag1 >> 16) & 0x1f; | |
349 | if (mfp_used) | |
350 | *mfp_used = ((tag1 & (1<<22)) ? 1 : 0); | |
351 | return(1); | |
352 | } | |
dd3b648e RP |
353 | |
354 | /* Initialize the frame. In addition to setting "extra" frame info, | |
355 | we also set ->frame because we use it in a nonstandard way, and ->pc | |
356 | because we need to know it to get the other stuff. See the diagram | |
357 | of stacks and the frame cache in tm-29k.h for more detail. */ | |
358 | static void | |
359 | init_frame_info (innermost_frame, fci) | |
360 | int innermost_frame; | |
361 | struct frame_info *fci; | |
362 | { | |
363 | CORE_ADDR p; | |
364 | long insn; | |
365 | unsigned rsize; | |
366 | unsigned msize; | |
d0b04c6a | 367 | int mfp_used, trans; |
dd3b648e RP |
368 | struct symbol *func; |
369 | ||
370 | p = fci->pc; | |
371 | ||
372 | if (innermost_frame) | |
373 | fci->frame = read_register (GR1_REGNUM); | |
374 | else | |
375 | fci->frame = fci->next_frame + fci->next->rsize; | |
376 | ||
377 | #if CALL_DUMMY_LOCATION == ON_STACK | |
378 | This wont work; | |
379 | #else | |
380 | if (PC_IN_CALL_DUMMY (p, 0, 0)) | |
381 | #endif | |
382 | { | |
383 | fci->rsize = DUMMY_FRAME_RSIZE; | |
384 | /* This doesn't matter since we never try to get locals or args | |
385 | from a dummy frame. */ | |
386 | fci->msize = 0; | |
387 | /* Dummy frames always use a memory frame pointer. */ | |
388 | fci->saved_msp = | |
389 | read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4); | |
d0b04c6a | 390 | fci->flags |= (TRANSPARENT|MFP_USED); |
dd3b648e RP |
391 | return; |
392 | } | |
393 | ||
394 | func = find_pc_function (p); | |
395 | if (func != NULL) | |
396 | p = BLOCK_START (SYMBOL_BLOCK_VALUE (func)); | |
397 | else | |
398 | { | |
399 | /* Search backward to find the trace-back tag. However, | |
400 | do not trace back beyond the start of the text segment | |
401 | (just as a sanity check to avoid going into never-never land). */ | |
402 | while (p >= text_start | |
403 | && ((insn = read_memory_integer (p, 4)) & 0xff000000) != 0) | |
404 | p -= 4; | |
405 | ||
406 | if (p < text_start) | |
407 | { | |
408 | /* Couldn't find the trace-back tag. | |
409 | Something strange is going on. */ | |
410 | fci->saved_msp = 0; | |
411 | fci->rsize = 0; | |
412 | fci->msize = 0; | |
d0b04c6a | 413 | fci->flags = TRANSPARENT; |
dd3b648e RP |
414 | return; |
415 | } | |
416 | else | |
417 | /* Advance to the first word of the function, i.e. the word | |
418 | after the trace-back tag. */ | |
419 | p += 4; | |
420 | } | |
d0b04c6a SG |
421 | /* We've found the start of the function. |
422 | * Try looking for a tag word that indicates whether there is a | |
423 | * memory frame pointer and what the memory stack allocation is. | |
424 | * If one doesn't exist, try using a more exhaustive search of | |
425 | * the prologue. For now we don't care about the argcount or | |
426 | * whether or not the routine is transparent. | |
427 | */ | |
428 | if (examine_tag(p-4,&trans,NULL,&msize,&mfp_used)) /* Found a good tag */ | |
429 | examine_prologue (p, &rsize, 0, 0); | |
430 | else /* No tag try prologue */ | |
431 | examine_prologue (p, &rsize, &msize, &mfp_used); | |
432 | ||
dd3b648e RP |
433 | fci->rsize = rsize; |
434 | fci->msize = msize; | |
d0b04c6a SG |
435 | fci->flags = 0; |
436 | if (mfp_used) | |
437 | fci->flags |= MFP_USED; | |
438 | if (trans) | |
439 | fci->flags |= TRANSPARENT; | |
dd3b648e RP |
440 | if (innermost_frame) |
441 | { | |
442 | fci->saved_msp = read_register (MSP_REGNUM) + msize; | |
443 | } | |
444 | else | |
445 | { | |
446 | if (mfp_used) | |
d0b04c6a SG |
447 | fci->saved_msp = |
448 | read_register_stack_integer (fci->frame + rsize - 4, 4); | |
dd3b648e | 449 | else |
d0b04c6a | 450 | fci->saved_msp = fci->next->saved_msp + msize; |
dd3b648e RP |
451 | } |
452 | } | |
453 | ||
454 | void | |
455 | init_extra_frame_info (fci) | |
456 | struct frame_info *fci; | |
457 | { | |
458 | if (fci->next == 0) | |
459 | /* Assume innermost frame. May produce strange results for "info frame" | |
460 | but there isn't any way to tell the difference. */ | |
461 | init_frame_info (1, fci); | |
17f7e032 JG |
462 | else { |
463 | /* We're in get_prev_frame_info. | |
464 | Take care of everything in init_frame_pc. */ | |
465 | ; | |
466 | } | |
dd3b648e RP |
467 | } |
468 | ||
469 | void | |
470 | init_frame_pc (fromleaf, fci) | |
471 | int fromleaf; | |
472 | struct frame_info *fci; | |
473 | { | |
474 | fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) : | |
475 | fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ()); | |
d0b04c6a | 476 | init_frame_info (fromleaf, fci); |
dd3b648e RP |
477 | } |
478 | \f | |
479 | /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their | |
480 | offsets being relative to the memory stack pointer (high C) or | |
481 | saved_msp (gcc). */ | |
482 | ||
483 | CORE_ADDR | |
484 | frame_locals_address (fi) | |
485 | struct frame_info *fi; | |
486 | { | |
d0b04c6a | 487 | if (fi->flags & MFP_USED) |
dd3b648e RP |
488 | return fi->saved_msp; |
489 | else | |
490 | return fi->saved_msp - fi->msize; | |
491 | } | |
492 | \f | |
493 | /* Routines for reading the register stack. The caller gets to treat | |
494 | the register stack as a uniform stack in memory, from address $gr1 | |
495 | straight through $rfb and beyond. */ | |
496 | ||
497 | /* Analogous to read_memory except the length is understood to be 4. | |
498 | Also, myaddr can be NULL (meaning don't bother to read), and | |
499 | if actual_mem_addr is non-NULL, store there the address that it | |
500 | was fetched from (or if from a register the offset within | |
501 | registers). Set *LVAL to lval_memory or lval_register, depending | |
502 | on where it came from. */ | |
503 | void | |
504 | read_register_stack (memaddr, myaddr, actual_mem_addr, lval) | |
505 | CORE_ADDR memaddr; | |
506 | char *myaddr; | |
507 | CORE_ADDR *actual_mem_addr; | |
508 | enum lval_type *lval; | |
509 | { | |
510 | long rfb = read_register (RFB_REGNUM); | |
511 | long rsp = read_register (RSP_REGNUM); | |
d0b04c6a | 512 | |
d0b04c6a | 513 | /* If we don't do this 'info register' stops in the middle. */ |
8f86a4e4 | 514 | if (memaddr >= rstack_high_address) |
d0b04c6a | 515 | { |
6872cfda | 516 | int val = -1; /* a bogus value */ |
d0b04c6a SG |
517 | /* It's in a local register, but off the end of the stack. */ |
518 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
519 | if (myaddr != NULL) | |
520 | *(int*)myaddr = val; /* Provide bogusness */ | |
521 | supply_register(regnum,&val); /* More bogusness */ | |
522 | if (lval != NULL) | |
523 | *lval = lval_register; | |
524 | if (actual_mem_addr != NULL) | |
525 | *actual_mem_addr = REGISTER_BYTE (regnum); | |
526 | } | |
8f86a4e4 | 527 | else if (memaddr < rfb) |
dd3b648e RP |
528 | { |
529 | /* It's in a register. */ | |
530 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
531 | if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) | |
532 | error ("Attempt to read register stack out of range."); | |
533 | if (myaddr != NULL) | |
534 | read_register_gen (regnum, myaddr); | |
535 | if (lval != NULL) | |
536 | *lval = lval_register; | |
537 | if (actual_mem_addr != NULL) | |
538 | *actual_mem_addr = REGISTER_BYTE (regnum); | |
539 | } | |
540 | else | |
541 | { | |
542 | /* It's in the memory portion of the register stack. */ | |
d0b04c6a SG |
543 | if (myaddr != NULL) |
544 | read_memory (memaddr, myaddr, 4); | |
dd3b648e RP |
545 | if (lval != NULL) |
546 | *lval = lval_memory; | |
547 | if (actual_mem_addr != NULL) | |
17f7e032 | 548 | *actual_mem_addr = memaddr; |
dd3b648e RP |
549 | } |
550 | } | |
551 | ||
552 | /* Analogous to read_memory_integer | |
553 | except the length is understood to be 4. */ | |
554 | long | |
555 | read_register_stack_integer (memaddr, len) | |
556 | CORE_ADDR memaddr; | |
557 | int len; | |
558 | { | |
559 | long buf; | |
560 | read_register_stack (memaddr, &buf, NULL, NULL); | |
561 | SWAP_TARGET_AND_HOST (&buf, 4); | |
562 | return buf; | |
563 | } | |
564 | ||
565 | /* Copy 4 bytes from GDB memory at MYADDR into inferior memory | |
566 | at MEMADDR and put the actual address written into in | |
567 | *ACTUAL_MEM_ADDR. */ | |
568 | static void | |
569 | write_register_stack (memaddr, myaddr, actual_mem_addr) | |
570 | CORE_ADDR memaddr; | |
571 | char *myaddr; | |
572 | CORE_ADDR *actual_mem_addr; | |
573 | { | |
574 | long rfb = read_register (RFB_REGNUM); | |
575 | long rsp = read_register (RSP_REGNUM); | |
d0b04c6a | 576 | /* If we don't do this 'info register' stops in the middle. */ |
8f86a4e4 | 577 | if (memaddr >= rstack_high_address) |
d0b04c6a SG |
578 | { |
579 | /* It's in a register, but off the end of the stack. */ | |
580 | if (actual_mem_addr != NULL) | |
581 | *actual_mem_addr = NULL; | |
582 | } | |
8f86a4e4 | 583 | else if (memaddr < rfb) |
dd3b648e RP |
584 | { |
585 | /* It's in a register. */ | |
586 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
587 | if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) | |
588 | error ("Attempt to read register stack out of range."); | |
589 | if (myaddr != NULL) | |
590 | write_register (regnum, *(long *)myaddr); | |
591 | if (actual_mem_addr != NULL) | |
d0b04c6a | 592 | *actual_mem_addr = NULL; |
dd3b648e RP |
593 | } |
594 | else | |
595 | { | |
596 | /* It's in the memory portion of the register stack. */ | |
597 | if (myaddr != NULL) | |
598 | write_memory (memaddr, myaddr, 4); | |
599 | if (actual_mem_addr != NULL) | |
17f7e032 | 600 | *actual_mem_addr = memaddr; |
dd3b648e RP |
601 | } |
602 | } | |
603 | \f | |
604 | /* Find register number REGNUM relative to FRAME and put its | |
605 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
606 | was optimized out (and thus can't be fetched). If the variable | |
607 | was fetched from memory, set *ADDRP to where it was fetched from, | |
608 | otherwise it was fetched from a register. | |
609 | ||
610 | The argument RAW_BUFFER must point to aligned memory. */ | |
611 | void | |
612 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp) | |
613 | char *raw_buffer; | |
614 | int *optimized; | |
615 | CORE_ADDR *addrp; | |
616 | FRAME frame; | |
617 | int regnum; | |
618 | enum lval_type *lvalp; | |
619 | { | |
d0b04c6a | 620 | struct frame_info *fi; |
dd3b648e RP |
621 | CORE_ADDR addr; |
622 | enum lval_type lval; | |
623 | ||
d0b04c6a SG |
624 | if (frame == 0) |
625 | return; | |
626 | ||
627 | fi = get_frame_info (frame); | |
628 | ||
dd3b648e RP |
629 | /* Once something has a register number, it doesn't get optimized out. */ |
630 | if (optimized != NULL) | |
631 | *optimized = 0; | |
632 | if (regnum == RSP_REGNUM) | |
633 | { | |
634 | if (raw_buffer != NULL) | |
635 | *(CORE_ADDR *)raw_buffer = fi->frame; | |
636 | if (lvalp != NULL) | |
637 | *lvalp = not_lval; | |
638 | return; | |
639 | } | |
640 | else if (regnum == PC_REGNUM) | |
641 | { | |
642 | if (raw_buffer != NULL) | |
643 | *(CORE_ADDR *)raw_buffer = fi->pc; | |
644 | ||
645 | /* Not sure we have to do this. */ | |
646 | if (lvalp != NULL) | |
647 | *lvalp = not_lval; | |
648 | ||
649 | return; | |
650 | } | |
651 | else if (regnum == MSP_REGNUM) | |
652 | { | |
653 | if (raw_buffer != NULL) | |
654 | { | |
655 | if (fi->next != NULL) | |
656 | *(CORE_ADDR *)raw_buffer = fi->next->saved_msp; | |
657 | else | |
658 | *(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM); | |
659 | } | |
660 | /* The value may have been computed, not fetched. */ | |
661 | if (lvalp != NULL) | |
662 | *lvalp = not_lval; | |
663 | return; | |
664 | } | |
665 | else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128) | |
666 | { | |
667 | /* These registers are not saved over procedure calls, | |
668 | so just print out the current values. */ | |
669 | if (raw_buffer != NULL) | |
670 | *(CORE_ADDR *)raw_buffer = read_register (regnum); | |
671 | if (lvalp != NULL) | |
672 | *lvalp = lval_register; | |
673 | if (addrp != NULL) | |
674 | *addrp = REGISTER_BYTE (regnum); | |
675 | return; | |
676 | } | |
677 | ||
678 | addr = fi->frame + (regnum - LR0_REGNUM) * 4; | |
679 | if (raw_buffer != NULL) | |
680 | read_register_stack (addr, raw_buffer, &addr, &lval); | |
681 | if (lvalp != NULL) | |
682 | *lvalp = lval; | |
683 | if (addrp != NULL) | |
684 | *addrp = addr; | |
685 | } | |
686 | \f | |
d0b04c6a | 687 | |
dd3b648e RP |
688 | /* Discard from the stack the innermost frame, |
689 | restoring all saved registers. */ | |
690 | ||
691 | void | |
692 | pop_frame () | |
693 | { | |
694 | FRAME frame = get_current_frame (); | |
695 | struct frame_info *fi = get_frame_info (frame); | |
696 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
697 | CORE_ADDR gr1 = fi->frame + fi->rsize; | |
698 | CORE_ADDR lr1; | |
dd3b648e RP |
699 | int i; |
700 | ||
701 | /* If popping a dummy frame, need to restore registers. */ | |
702 | if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM), | |
703 | read_register (SP_REGNUM), | |
704 | FRAME_FP (fi))) | |
705 | { | |
d0b04c6a | 706 | int lrnum = LR0_REGNUM + DUMMY_ARG/4; |
dd3b648e | 707 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) |
d0b04c6a SG |
708 | write_register (SR_REGNUM (i + 128),read_register (lrnum++)); |
709 | for (i = 0; i < DUMMY_SAVE_SR160; ++i) | |
710 | write_register (SR_REGNUM(i+160), read_register (lrnum++)); | |
6093e5b0 | 711 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) |
d0b04c6a SG |
712 | write_register (RETURN_REGNUM + i, read_register (lrnum++)); |
713 | /* Restore the PCs. */ | |
714 | write_register(PC_REGNUM, read_register (lrnum++)); | |
715 | write_register(NPC_REGNUM, read_register (lrnum)); | |
dd3b648e RP |
716 | } |
717 | ||
718 | /* Restore the memory stack pointer. */ | |
719 | write_register (MSP_REGNUM, fi->saved_msp); | |
720 | /* Restore the register stack pointer. */ | |
721 | write_register (GR1_REGNUM, gr1); | |
722 | /* Check whether we need to fill registers. */ | |
723 | lr1 = read_register (LR0_REGNUM + 1); | |
724 | if (lr1 > rfb) | |
725 | { | |
726 | /* Fill. */ | |
727 | int num_bytes = lr1 - rfb; | |
728 | int i; | |
729 | long word; | |
730 | write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes); | |
731 | write_register (RFB_REGNUM, lr1); | |
732 | for (i = 0; i < num_bytes; i += 4) | |
733 | { | |
734 | /* Note: word is in host byte order. */ | |
735 | word = read_memory_integer (rfb + i, 4); | |
736 | write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word); | |
737 | } | |
738 | } | |
dd3b648e RP |
739 | flush_cached_frames (); |
740 | set_current_frame (create_new_frame (0, read_pc())); | |
741 | } | |
742 | ||
743 | /* Push an empty stack frame, to record the current PC, etc. */ | |
744 | ||
745 | void | |
746 | push_dummy_frame () | |
747 | { | |
748 | long w; | |
749 | CORE_ADDR rab, gr1; | |
750 | CORE_ADDR msp = read_register (MSP_REGNUM); | |
d0b04c6a | 751 | int lrnum, i, saved_lr0; |
dd3b648e | 752 | |
dd3b648e | 753 | |
d0b04c6a | 754 | /* Allocate the new frame. */ |
dd3b648e RP |
755 | gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE; |
756 | write_register (GR1_REGNUM, gr1); | |
757 | ||
758 | rab = read_register (RAB_REGNUM); | |
759 | if (gr1 < rab) | |
760 | { | |
761 | /* We need to spill registers. */ | |
762 | int num_bytes = rab - gr1; | |
763 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
764 | int i; | |
765 | long word; | |
766 | ||
767 | write_register (RFB_REGNUM, rfb - num_bytes); | |
768 | write_register (RAB_REGNUM, gr1); | |
769 | for (i = 0; i < num_bytes; i += 4) | |
770 | { | |
771 | /* Note: word is in target byte order. */ | |
b2f27f8e | 772 | read_register_gen (LR0_REGNUM + i / 4, &word); |
d0b04c6a | 773 | write_memory (rfb - num_bytes + i, &word, 4); |
dd3b648e RP |
774 | } |
775 | } | |
776 | ||
777 | /* There are no arguments in to the dummy frame, so we don't need | |
778 | more than rsize plus the return address and lr1. */ | |
779 | write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4); | |
780 | ||
781 | /* Set the memory frame pointer. */ | |
782 | write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp); | |
783 | ||
784 | /* Allocate arg_slop. */ | |
785 | write_register (MSP_REGNUM, msp - 16 * 4); | |
786 | ||
787 | /* Save registers. */ | |
d0b04c6a | 788 | lrnum = LR0_REGNUM + DUMMY_ARG/4; |
dd3b648e | 789 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) |
d0b04c6a SG |
790 | write_register (lrnum++, read_register (SR_REGNUM (i + 128))); |
791 | for (i = 0; i < DUMMY_SAVE_SR160; ++i) | |
792 | write_register (lrnum++, read_register (SR_REGNUM (i + 160))); | |
6093e5b0 | 793 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) |
d0b04c6a SG |
794 | write_register (lrnum++, read_register (RETURN_REGNUM + i)); |
795 | /* Save the PCs. */ | |
796 | write_register (lrnum++, read_register (PC_REGNUM)); | |
797 | write_register (lrnum, read_register (NPC_REGNUM)); | |
798 | } | |
799 | ||
800 | reginv_com (args, fromtty) | |
801 | char *args; | |
802 | int fromtty; | |
803 | { | |
804 | registers_changed(); | |
805 | if (fromtty) | |
806 | printf_filtered("Gdb's register cache invalidated.\n"); | |
dd3b648e | 807 | } |
d0b04c6a SG |
808 | |
809 | /* We use this mostly for debugging gdb */ | |
810 | void | |
811 | _initialize_29k() | |
812 | { | |
34517ebc JG |
813 | extern CORE_ADDR text_end; |
814 | ||
d0b04c6a SG |
815 | add_com ("reginv ", class_obscure, reginv_com, |
816 | "Invalidate gdb's internal register cache."); | |
d0b04c6a | 817 | |
8f86a4e4 JG |
818 | /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ |
819 | add_show_from_set | |
820 | (add_set_cmd ("rstack_high_address", class_support, var_uinteger, | |
821 | (char *)&rstack_high_address, | |
822 | "Set top address in memory of the register stack.\n\ | |
823 | Attempts to access registers saved above this address will be ignored\n\ | |
824 | or will produce the value -1.", &setlist), | |
825 | &showlist); | |
34517ebc JG |
826 | |
827 | /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ | |
828 | add_show_from_set | |
829 | (add_set_cmd ("call_scratch_address", class_support, var_uinteger, | |
830 | (char *)&text_end, | |
831 | "Set address in memory where small amounts of RAM can be used when\n\ | |
832 | making function calls into the inferior.", &setlist), | |
833 | &showlist); | |
8f86a4e4 | 834 | } |