]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
f23631e4 | 2 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
1e698235 | 3 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 |
f23631e4 | 4 | Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "frame.h" | |
28 | #include "inferior.h" | |
29 | #include "gdbcore.h" | |
30 | #include "target.h" | |
31 | #include "demangle.h" | |
32 | #include "language.h" | |
33 | #include "gdbcmd.h" | |
4e052eda | 34 | #include "regcache.h" |
015a42b4 | 35 | #include "cp-abi.h" |
fe898f56 | 36 | #include "block.h" |
04714b91 | 37 | #include "infcall.h" |
c906108c SS |
38 | |
39 | #include <errno.h> | |
40 | #include "gdb_string.h" | |
4a1970e4 | 41 | #include "gdb_assert.h" |
c906108c | 42 | |
c906108c SS |
43 | /* Flag indicating HP compilers were used; needed to correctly handle some |
44 | value operations with HP aCC code/runtime. */ | |
45 | extern int hp_som_som_object_present; | |
46 | ||
070ad9f0 | 47 | extern int overload_debug; |
c906108c SS |
48 | /* Local functions. */ |
49 | ||
ad2f7632 DJ |
50 | static int typecmp (int staticp, int varargs, int nargs, |
51 | struct field t1[], struct value *t2[]); | |
c906108c | 52 | |
f23631e4 | 53 | static CORE_ADDR value_push (CORE_ADDR, struct value *); |
c906108c | 54 | |
f23631e4 | 55 | static struct value *search_struct_field (char *, struct value *, int, |
a14ed312 | 56 | struct type *, int); |
c906108c | 57 | |
f23631e4 AC |
58 | static struct value *search_struct_method (char *, struct value **, |
59 | struct value **, | |
a14ed312 | 60 | int, int *, struct type *); |
c906108c | 61 | |
a14ed312 | 62 | static int check_field_in (struct type *, const char *); |
c906108c | 63 | |
a14ed312 | 64 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 65 | |
f23631e4 | 66 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 67 | |
f23631e4 | 68 | static struct fn_field *find_method_list (struct value ** argp, char *method, |
4a1970e4 | 69 | int offset, |
a14ed312 KB |
70 | struct type *type, int *num_fns, |
71 | struct type **basetype, | |
72 | int *boffset); | |
7a292a7a | 73 | |
a14ed312 | 74 | void _initialize_valops (void); |
c906108c | 75 | |
c906108c SS |
76 | /* Flag for whether we want to abandon failed expression evals by default. */ |
77 | ||
78 | #if 0 | |
79 | static int auto_abandon = 0; | |
80 | #endif | |
81 | ||
82 | int overload_resolution = 0; | |
242bfc55 | 83 | |
c906108c SS |
84 | /* Find the address of function name NAME in the inferior. */ |
85 | ||
f23631e4 | 86 | struct value * |
3bada2a2 | 87 | find_function_in_inferior (const char *name) |
c906108c SS |
88 | { |
89 | register struct symbol *sym; | |
176620f1 | 90 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
91 | if (sym != NULL) |
92 | { | |
93 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
94 | { | |
95 | error ("\"%s\" exists in this program but is not a function.", | |
96 | name); | |
97 | } | |
98 | return value_of_variable (sym, NULL); | |
99 | } | |
100 | else | |
101 | { | |
c5aa993b | 102 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
103 | if (msymbol != NULL) |
104 | { | |
105 | struct type *type; | |
4478b372 | 106 | CORE_ADDR maddr; |
c906108c SS |
107 | type = lookup_pointer_type (builtin_type_char); |
108 | type = lookup_function_type (type); | |
109 | type = lookup_pointer_type (type); | |
4478b372 JB |
110 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
111 | return value_from_pointer (type, maddr); | |
c906108c SS |
112 | } |
113 | else | |
114 | { | |
c5aa993b | 115 | if (!target_has_execution) |
c906108c | 116 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 117 | else |
c906108c SS |
118 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
119 | } | |
120 | } | |
121 | } | |
122 | ||
123 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
124 | and return a value that is a pointer to the allocated space. */ | |
125 | ||
f23631e4 | 126 | struct value * |
fba45db2 | 127 | value_allocate_space_in_inferior (int len) |
c906108c | 128 | { |
f23631e4 | 129 | struct value *blocklen; |
5720643c | 130 | struct value *val = find_function_in_inferior (NAME_OF_MALLOC); |
c906108c SS |
131 | |
132 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
133 | val = call_function_by_hand (val, 1, &blocklen); | |
134 | if (value_logical_not (val)) | |
135 | { | |
136 | if (!target_has_execution) | |
c5aa993b JM |
137 | error ("No memory available to program now: you need to start the target first"); |
138 | else | |
139 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
140 | } |
141 | return val; | |
142 | } | |
143 | ||
144 | static CORE_ADDR | |
fba45db2 | 145 | allocate_space_in_inferior (int len) |
c906108c SS |
146 | { |
147 | return value_as_long (value_allocate_space_in_inferior (len)); | |
148 | } | |
149 | ||
150 | /* Cast value ARG2 to type TYPE and return as a value. | |
151 | More general than a C cast: accepts any two types of the same length, | |
152 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
153 | /* In C++, casts may change pointer or object representations. */ | |
154 | ||
f23631e4 AC |
155 | struct value * |
156 | value_cast (struct type *type, struct value *arg2) | |
c906108c SS |
157 | { |
158 | register enum type_code code1; | |
159 | register enum type_code code2; | |
160 | register int scalar; | |
161 | struct type *type2; | |
162 | ||
163 | int convert_to_boolean = 0; | |
c5aa993b | 164 | |
c906108c SS |
165 | if (VALUE_TYPE (arg2) == type) |
166 | return arg2; | |
167 | ||
168 | CHECK_TYPEDEF (type); | |
169 | code1 = TYPE_CODE (type); | |
c5aa993b | 170 | COERCE_REF (arg2); |
c906108c SS |
171 | type2 = check_typedef (VALUE_TYPE (arg2)); |
172 | ||
173 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
174 | is treated like a cast to (TYPE [N])OBJECT, | |
175 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
176 | if (code1 == TYPE_CODE_ARRAY) | |
177 | { | |
178 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
179 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
180 | if (element_length > 0 | |
c5aa993b | 181 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
182 | { |
183 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
184 | int val_length = TYPE_LENGTH (type2); | |
185 | LONGEST low_bound, high_bound, new_length; | |
186 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
187 | low_bound = 0, high_bound = 0; | |
188 | new_length = val_length / element_length; | |
189 | if (val_length % element_length != 0) | |
c5aa993b | 190 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
191 | /* FIXME-type-allocation: need a way to free this type when we are |
192 | done with it. */ | |
193 | range_type = create_range_type ((struct type *) NULL, | |
194 | TYPE_TARGET_TYPE (range_type), | |
195 | low_bound, | |
196 | new_length + low_bound - 1); | |
197 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
198 | element_type, range_type); | |
199 | return arg2; | |
200 | } | |
201 | } | |
202 | ||
203 | if (current_language->c_style_arrays | |
204 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
205 | arg2 = value_coerce_array (arg2); | |
206 | ||
207 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
208 | arg2 = value_coerce_function (arg2); | |
209 | ||
210 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
211 | COERCE_VARYING_ARRAY (arg2, type2); | |
212 | code2 = TYPE_CODE (type2); | |
213 | ||
214 | if (code1 == TYPE_CODE_COMPLEX) | |
215 | return cast_into_complex (type, arg2); | |
216 | if (code1 == TYPE_CODE_BOOL) | |
217 | { | |
218 | code1 = TYPE_CODE_INT; | |
219 | convert_to_boolean = 1; | |
220 | } | |
221 | if (code1 == TYPE_CODE_CHAR) | |
222 | code1 = TYPE_CODE_INT; | |
223 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
224 | code2 = TYPE_CODE_INT; | |
225 | ||
226 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
227 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
228 | ||
c5aa993b | 229 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
230 | && code2 == TYPE_CODE_STRUCT |
231 | && TYPE_NAME (type) != 0) | |
232 | { | |
233 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
234 | type of the target as a superclass. If so, we'll need to |
235 | offset the object in addition to changing its type. */ | |
f23631e4 | 236 | struct value *v = search_struct_field (type_name_no_tag (type), |
c906108c SS |
237 | arg2, 0, type2, 1); |
238 | if (v) | |
239 | { | |
240 | VALUE_TYPE (v) = type; | |
241 | return v; | |
242 | } | |
243 | } | |
244 | if (code1 == TYPE_CODE_FLT && scalar) | |
245 | return value_from_double (type, value_as_double (arg2)); | |
246 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
247 | || code1 == TYPE_CODE_RANGE) | |
248 | && (scalar || code2 == TYPE_CODE_PTR)) | |
249 | { | |
250 | LONGEST longest; | |
c5aa993b JM |
251 | |
252 | if (hp_som_som_object_present && /* if target compiled by HP aCC */ | |
253 | (code2 == TYPE_CODE_PTR)) | |
254 | { | |
255 | unsigned int *ptr; | |
f23631e4 | 256 | struct value *retvalp; |
c5aa993b JM |
257 | |
258 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
259 | { | |
260 | /* With HP aCC, pointers to data members have a bias */ | |
261 | case TYPE_CODE_MEMBER: | |
262 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
716c501e | 263 | /* force evaluation */ |
802db21b | 264 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); |
c5aa993b JM |
265 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ |
266 | return retvalp; | |
267 | ||
268 | /* While pointers to methods don't really point to a function */ | |
269 | case TYPE_CODE_METHOD: | |
270 | error ("Pointers to methods not supported with HP aCC"); | |
271 | ||
272 | default: | |
273 | break; /* fall out and go to normal handling */ | |
274 | } | |
275 | } | |
2bf1f4a1 JB |
276 | |
277 | /* When we cast pointers to integers, we mustn't use | |
278 | POINTER_TO_ADDRESS to find the address the pointer | |
279 | represents, as value_as_long would. GDB should evaluate | |
280 | expressions just as the compiler would --- and the compiler | |
281 | sees a cast as a simple reinterpretation of the pointer's | |
282 | bits. */ | |
283 | if (code2 == TYPE_CODE_PTR) | |
284 | longest = extract_unsigned_integer (VALUE_CONTENTS (arg2), | |
285 | TYPE_LENGTH (type2)); | |
286 | else | |
287 | longest = value_as_long (arg2); | |
802db21b | 288 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 289 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 290 | } |
802db21b | 291 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || |
23e04971 MS |
292 | code2 == TYPE_CODE_ENUM || |
293 | code2 == TYPE_CODE_RANGE)) | |
634acd5f | 294 | { |
4603e466 DT |
295 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
296 | want the length of an address! -- we are really dealing with | |
297 | addresses (i.e., gdb representations) not pointers (i.e., | |
298 | target representations) here. | |
299 | ||
300 | This allows things like "print *(int *)0x01000234" to work | |
301 | without printing a misleading message -- which would | |
302 | otherwise occur when dealing with a target having two byte | |
303 | pointers and four byte addresses. */ | |
304 | ||
305 | int addr_bit = TARGET_ADDR_BIT; | |
306 | ||
634acd5f | 307 | LONGEST longest = value_as_long (arg2); |
4603e466 | 308 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 309 | { |
4603e466 DT |
310 | if (longest >= ((LONGEST) 1 << addr_bit) |
311 | || longest <= -((LONGEST) 1 << addr_bit)) | |
634acd5f AC |
312 | warning ("value truncated"); |
313 | } | |
314 | return value_from_longest (type, longest); | |
315 | } | |
c906108c SS |
316 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
317 | { | |
318 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
319 | { | |
320 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
321 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 322 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
323 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
324 | && !value_logical_not (arg2)) | |
325 | { | |
f23631e4 | 326 | struct value *v; |
c906108c SS |
327 | |
328 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
329 | type of the target as a superclass. If so, we'll need to |
330 | offset the pointer rather than just change its type. */ | |
c906108c SS |
331 | if (TYPE_NAME (t1) != NULL) |
332 | { | |
333 | v = search_struct_field (type_name_no_tag (t1), | |
334 | value_ind (arg2), 0, t2, 1); | |
335 | if (v) | |
336 | { | |
337 | v = value_addr (v); | |
338 | VALUE_TYPE (v) = type; | |
339 | return v; | |
340 | } | |
341 | } | |
342 | ||
343 | /* Look in the type of the target to see if it contains the | |
7b83ea04 AC |
344 | type of the source as a superclass. If so, we'll need to |
345 | offset the pointer rather than just change its type. | |
346 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
347 | if (TYPE_NAME (t2) != NULL) |
348 | { | |
349 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 350 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
351 | if (v) |
352 | { | |
d174216d JB |
353 | CORE_ADDR addr2 = value_as_address (arg2); |
354 | addr2 -= (VALUE_ADDRESS (v) | |
355 | + VALUE_OFFSET (v) | |
356 | + VALUE_EMBEDDED_OFFSET (v)); | |
357 | return value_from_pointer (type, addr2); | |
c906108c SS |
358 | } |
359 | } | |
360 | } | |
361 | /* No superclass found, just fall through to change ptr type. */ | |
362 | } | |
363 | VALUE_TYPE (arg2) = type; | |
2b127877 | 364 | arg2 = value_change_enclosing_type (arg2, type); |
c5aa993b | 365 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ |
c906108c SS |
366 | return arg2; |
367 | } | |
c906108c SS |
368 | else if (VALUE_LVAL (arg2) == lval_memory) |
369 | { | |
370 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
371 | VALUE_BFD_SECTION (arg2)); | |
372 | } | |
373 | else if (code1 == TYPE_CODE_VOID) | |
374 | { | |
375 | return value_zero (builtin_type_void, not_lval); | |
376 | } | |
377 | else | |
378 | { | |
379 | error ("Invalid cast."); | |
380 | return 0; | |
381 | } | |
382 | } | |
383 | ||
384 | /* Create a value of type TYPE that is zero, and return it. */ | |
385 | ||
f23631e4 | 386 | struct value * |
fba45db2 | 387 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 388 | { |
f23631e4 | 389 | struct value *val = allocate_value (type); |
c906108c SS |
390 | |
391 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
392 | VALUE_LVAL (val) = lv; | |
393 | ||
394 | return val; | |
395 | } | |
396 | ||
070ad9f0 | 397 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
398 | |
399 | Call value_at only if the data needs to be fetched immediately; | |
400 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
401 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 DB |
402 | the data and sets the lazy-evaluation-required flag. The lazy flag |
403 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
404 | the contents are actually required. | |
c906108c SS |
405 | |
406 | Note: value_at does *NOT* handle embedded offsets; perform such | |
407 | adjustments before or after calling it. */ | |
408 | ||
f23631e4 | 409 | struct value * |
fba45db2 | 410 | value_at (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 411 | { |
f23631e4 | 412 | struct value *val; |
c906108c SS |
413 | |
414 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
415 | error ("Attempt to dereference a generic pointer."); | |
416 | ||
417 | val = allocate_value (type); | |
418 | ||
75af7f68 | 419 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type)); |
c906108c SS |
420 | |
421 | VALUE_LVAL (val) = lval_memory; | |
422 | VALUE_ADDRESS (val) = addr; | |
423 | VALUE_BFD_SECTION (val) = sect; | |
424 | ||
425 | return val; | |
426 | } | |
427 | ||
428 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
429 | ||
f23631e4 | 430 | struct value * |
fba45db2 | 431 | value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 432 | { |
f23631e4 | 433 | struct value *val; |
c906108c SS |
434 | |
435 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
436 | error ("Attempt to dereference a generic pointer."); | |
437 | ||
438 | val = allocate_value (type); | |
439 | ||
440 | VALUE_LVAL (val) = lval_memory; | |
441 | VALUE_ADDRESS (val) = addr; | |
442 | VALUE_LAZY (val) = 1; | |
443 | VALUE_BFD_SECTION (val) = sect; | |
444 | ||
445 | return val; | |
446 | } | |
447 | ||
070ad9f0 DB |
448 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, |
449 | if the current data for a variable needs to be loaded into | |
450 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
c906108c SS |
451 | clears the lazy flag to indicate that the data in the buffer is valid. |
452 | ||
453 | If the value is zero-length, we avoid calling read_memory, which would | |
454 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
455 | ||
456 | This function returns a value because it is used in the VALUE_CONTENTS | |
457 | macro as part of an expression, where a void would not work. The | |
458 | value is ignored. */ | |
459 | ||
460 | int | |
f23631e4 | 461 | value_fetch_lazy (struct value *val) |
c906108c SS |
462 | { |
463 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
464 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
465 | ||
c5aa993b | 466 | struct type *type = VALUE_TYPE (val); |
75af7f68 | 467 | if (length) |
d4b2399a | 468 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length); |
802db21b | 469 | |
c906108c SS |
470 | VALUE_LAZY (val) = 0; |
471 | return 0; | |
472 | } | |
473 | ||
474 | ||
475 | /* Store the contents of FROMVAL into the location of TOVAL. | |
476 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
477 | ||
f23631e4 AC |
478 | struct value * |
479 | value_assign (struct value *toval, struct value *fromval) | |
c906108c SS |
480 | { |
481 | register struct type *type; | |
f23631e4 | 482 | struct value *val; |
d9d9c31f | 483 | char raw_buffer[MAX_REGISTER_SIZE]; |
c906108c | 484 | int use_buffer = 0; |
cb741690 | 485 | struct frame_id old_frame; |
c906108c SS |
486 | |
487 | if (!toval->modifiable) | |
488 | error ("Left operand of assignment is not a modifiable lvalue."); | |
489 | ||
490 | COERCE_REF (toval); | |
491 | ||
492 | type = VALUE_TYPE (toval); | |
493 | if (VALUE_LVAL (toval) != lval_internalvar) | |
494 | fromval = value_cast (type, fromval); | |
495 | else | |
496 | COERCE_ARRAY (fromval); | |
497 | CHECK_TYPEDEF (type); | |
498 | ||
499 | /* If TOVAL is a special machine register requiring conversion | |
500 | of program values to a special raw format, | |
501 | convert FROMVAL's contents now, with result in `raw_buffer', | |
502 | and set USE_BUFFER to the number of bytes to write. */ | |
503 | ||
ac9a91a7 | 504 | if (VALUE_REGNO (toval) >= 0) |
c906108c SS |
505 | { |
506 | int regno = VALUE_REGNO (toval); | |
13d01224 | 507 | if (CONVERT_REGISTER_P (regno)) |
c906108c SS |
508 | { |
509 | struct type *fromtype = check_typedef (VALUE_TYPE (fromval)); | |
13d01224 | 510 | VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer); |
c906108c SS |
511 | use_buffer = REGISTER_RAW_SIZE (regno); |
512 | } | |
513 | } | |
c906108c | 514 | |
cb741690 DJ |
515 | /* Since modifying a register can trash the frame chain, and modifying memory |
516 | can trash the frame cache, we save the old frame and then restore the new | |
517 | frame afterwards. */ | |
518 | old_frame = get_frame_id (deprecated_selected_frame); | |
519 | ||
c906108c SS |
520 | switch (VALUE_LVAL (toval)) |
521 | { | |
522 | case lval_internalvar: | |
523 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
524 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
2b127877 | 525 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
526 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
527 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
528 | return val; | |
529 | ||
530 | case lval_internalvar_component: | |
531 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
532 | VALUE_OFFSET (toval), | |
533 | VALUE_BITPOS (toval), | |
534 | VALUE_BITSIZE (toval), | |
535 | fromval); | |
536 | break; | |
537 | ||
538 | case lval_memory: | |
539 | { | |
540 | char *dest_buffer; | |
c5aa993b JM |
541 | CORE_ADDR changed_addr; |
542 | int changed_len; | |
c906108c | 543 | |
c5aa993b JM |
544 | if (VALUE_BITSIZE (toval)) |
545 | { | |
c906108c SS |
546 | char buffer[sizeof (LONGEST)]; |
547 | /* We assume that the argument to read_memory is in units of | |
548 | host chars. FIXME: Is that correct? */ | |
549 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
550 | + VALUE_BITSIZE (toval) |
551 | + HOST_CHAR_BIT - 1) | |
552 | / HOST_CHAR_BIT; | |
c906108c SS |
553 | |
554 | if (changed_len > (int) sizeof (LONGEST)) | |
555 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
baa6f10b | 556 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c SS |
557 | |
558 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
559 | buffer, changed_len); | |
560 | modify_field (buffer, value_as_long (fromval), | |
561 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
562 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
563 | dest_buffer = buffer; | |
564 | } | |
565 | else if (use_buffer) | |
566 | { | |
567 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
568 | changed_len = use_buffer; | |
569 | dest_buffer = raw_buffer; | |
570 | } | |
571 | else | |
572 | { | |
573 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
574 | changed_len = TYPE_LENGTH (type); | |
575 | dest_buffer = VALUE_CONTENTS (fromval); | |
576 | } | |
577 | ||
578 | write_memory (changed_addr, dest_buffer, changed_len); | |
579 | if (memory_changed_hook) | |
580 | memory_changed_hook (changed_addr, changed_len); | |
e23792cc | 581 | target_changed_event (); |
c906108c SS |
582 | } |
583 | break; | |
584 | ||
c906108c | 585 | case lval_reg_frame_relative: |
492254e9 | 586 | case lval_register: |
c906108c SS |
587 | { |
588 | /* value is stored in a series of registers in the frame | |
589 | specified by the structure. Copy that value out, modify | |
590 | it, and copy it back in. */ | |
c906108c | 591 | int amount_copied; |
492254e9 AC |
592 | int amount_to_copy; |
593 | char *buffer; | |
594 | int value_reg; | |
595 | int reg_offset; | |
596 | int byte_offset; | |
c906108c SS |
597 | int regno; |
598 | struct frame_info *frame; | |
599 | ||
600 | /* Figure out which frame this is in currently. */ | |
492254e9 AC |
601 | if (VALUE_LVAL (toval) == lval_register) |
602 | { | |
603 | frame = get_current_frame (); | |
604 | value_reg = VALUE_REGNO (toval); | |
605 | } | |
606 | else | |
607 | { | |
608 | for (frame = get_current_frame (); | |
c193f6ac | 609 | frame && get_frame_base (frame) != VALUE_FRAME (toval); |
492254e9 AC |
610 | frame = get_prev_frame (frame)) |
611 | ; | |
612 | value_reg = VALUE_FRAME_REGNUM (toval); | |
613 | } | |
c906108c SS |
614 | |
615 | if (!frame) | |
616 | error ("Value being assigned to is no longer active."); | |
617 | ||
492254e9 AC |
618 | /* Locate the first register that falls in the value that |
619 | needs to be transfered. Compute the offset of the value in | |
620 | that register. */ | |
621 | { | |
622 | int offset; | |
623 | for (reg_offset = value_reg, offset = 0; | |
624 | offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval); | |
625 | reg_offset++); | |
626 | byte_offset = VALUE_OFFSET (toval) - offset; | |
627 | } | |
628 | ||
629 | /* Compute the number of register aligned values that need to | |
630 | be copied. */ | |
631 | if (VALUE_BITSIZE (toval)) | |
632 | amount_to_copy = byte_offset + 1; | |
633 | else | |
634 | amount_to_copy = byte_offset + TYPE_LENGTH (type); | |
635 | ||
636 | /* And a bounce buffer. Be slightly over generous. */ | |
d9d9c31f | 637 | buffer = (char *) alloca (amount_to_copy + MAX_REGISTER_SIZE); |
c906108c | 638 | |
492254e9 AC |
639 | /* Copy it in. */ |
640 | for (regno = reg_offset, amount_copied = 0; | |
c906108c | 641 | amount_copied < amount_to_copy; |
492254e9 | 642 | amount_copied += REGISTER_RAW_SIZE (regno), regno++) |
c906108c | 643 | { |
492254e9 | 644 | frame_register_read (frame, regno, buffer + amount_copied); |
c906108c | 645 | } |
492254e9 | 646 | |
c906108c SS |
647 | /* Modify what needs to be modified. */ |
648 | if (VALUE_BITSIZE (toval)) | |
492254e9 AC |
649 | { |
650 | modify_field (buffer + byte_offset, | |
651 | value_as_long (fromval), | |
652 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
653 | } | |
c906108c | 654 | else if (use_buffer) |
492254e9 AC |
655 | { |
656 | memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer); | |
657 | } | |
c906108c | 658 | else |
492254e9 AC |
659 | { |
660 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), | |
661 | TYPE_LENGTH (type)); | |
662 | /* Do any conversion necessary when storing this type to | |
663 | more than one register. */ | |
664 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
665 | REGISTER_CONVERT_FROM_TYPE (value_reg, type, | |
666 | (buffer + byte_offset)); | |
667 | #endif | |
668 | } | |
c906108c | 669 | |
492254e9 AC |
670 | /* Copy it out. */ |
671 | for (regno = reg_offset, amount_copied = 0; | |
c906108c | 672 | amount_copied < amount_to_copy; |
492254e9 | 673 | amount_copied += REGISTER_RAW_SIZE (regno), regno++) |
c906108c SS |
674 | { |
675 | enum lval_type lval; | |
676 | CORE_ADDR addr; | |
677 | int optim; | |
492254e9 AC |
678 | int realnum; |
679 | ||
c906108c | 680 | /* Just find out where to put it. */ |
492254e9 AC |
681 | frame_register (frame, regno, &optim, &lval, &addr, &realnum, |
682 | NULL); | |
683 | ||
c906108c SS |
684 | if (optim) |
685 | error ("Attempt to assign to a value that was optimized out."); | |
686 | if (lval == lval_memory) | |
492254e9 AC |
687 | write_memory (addr, buffer + amount_copied, |
688 | REGISTER_RAW_SIZE (regno)); | |
c906108c | 689 | else if (lval == lval_register) |
492254e9 AC |
690 | regcache_cooked_write (current_regcache, realnum, |
691 | (buffer + amount_copied)); | |
c906108c SS |
692 | else |
693 | error ("Attempt to assign to an unmodifiable value."); | |
694 | } | |
695 | ||
696 | if (register_changed_hook) | |
697 | register_changed_hook (-1); | |
e23792cc | 698 | target_changed_event (); |
492254e9 | 699 | |
c906108c SS |
700 | } |
701 | break; | |
492254e9 AC |
702 | |
703 | ||
c906108c SS |
704 | default: |
705 | error ("Left operand of assignment is not an lvalue."); | |
706 | } | |
707 | ||
cb741690 DJ |
708 | /* Assigning to the stack pointer, frame pointer, and other |
709 | (architecture and calling convention specific) registers may | |
710 | cause the frame cache to be out of date. Assigning to memory | |
711 | also can. We just do this on all assignments to registers or | |
712 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
713 | switch (VALUE_LVAL (toval)) | |
714 | { | |
715 | case lval_memory: | |
716 | case lval_register: | |
717 | case lval_reg_frame_relative: | |
718 | ||
719 | reinit_frame_cache (); | |
720 | ||
721 | /* Having destoroyed the frame cache, restore the selected frame. */ | |
722 | ||
723 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
724 | doing this. Instead of constantly saving/restoring the | |
725 | frame. Why not create a get_selected_frame() function that, | |
726 | having saved the selected frame's ID can automatically | |
727 | re-find the previously selected frame automatically. */ | |
728 | ||
729 | { | |
730 | struct frame_info *fi = frame_find_by_id (old_frame); | |
731 | if (fi != NULL) | |
732 | select_frame (fi); | |
733 | } | |
734 | ||
735 | break; | |
736 | default: | |
737 | break; | |
738 | } | |
739 | ||
c906108c SS |
740 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
741 | If the field is signed, and is negative, then sign extend. */ | |
742 | if ((VALUE_BITSIZE (toval) > 0) | |
743 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
744 | { | |
745 | LONGEST fieldval = value_as_long (fromval); | |
746 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
747 | ||
748 | fieldval &= valmask; | |
749 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
750 | fieldval |= ~valmask; | |
751 | ||
752 | fromval = value_from_longest (type, fieldval); | |
753 | } | |
754 | ||
755 | val = value_copy (toval); | |
756 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
757 | TYPE_LENGTH (type)); | |
758 | VALUE_TYPE (val) = type; | |
2b127877 | 759 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
760 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
761 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 762 | |
c906108c SS |
763 | return val; |
764 | } | |
765 | ||
766 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
767 | ||
f23631e4 AC |
768 | struct value * |
769 | value_repeat (struct value *arg1, int count) | |
c906108c | 770 | { |
f23631e4 | 771 | struct value *val; |
c906108c SS |
772 | |
773 | if (VALUE_LVAL (arg1) != lval_memory) | |
774 | error ("Only values in memory can be extended with '@'."); | |
775 | if (count < 1) | |
776 | error ("Invalid number %d of repetitions.", count); | |
777 | ||
778 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
779 | ||
780 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
781 | VALUE_CONTENTS_ALL_RAW (val), | |
782 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
783 | VALUE_LVAL (val) = lval_memory; | |
784 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
785 | ||
786 | return val; | |
787 | } | |
788 | ||
f23631e4 | 789 | struct value * |
fba45db2 | 790 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 791 | { |
f23631e4 | 792 | struct value *val; |
c906108c SS |
793 | struct frame_info *frame = NULL; |
794 | ||
795 | if (!b) | |
796 | frame = NULL; /* Use selected frame. */ | |
797 | else if (symbol_read_needs_frame (var)) | |
798 | { | |
799 | frame = block_innermost_frame (b); | |
800 | if (!frame) | |
c5aa993b | 801 | { |
c906108c | 802 | if (BLOCK_FUNCTION (b) |
de5ad195 | 803 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
c906108c | 804 | error ("No frame is currently executing in block %s.", |
de5ad195 | 805 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c SS |
806 | else |
807 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 808 | } |
c906108c SS |
809 | } |
810 | ||
811 | val = read_var_value (var, frame); | |
812 | if (!val) | |
de5ad195 | 813 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var)); |
c906108c SS |
814 | |
815 | return val; | |
816 | } | |
817 | ||
818 | /* Given a value which is an array, return a value which is a pointer to its | |
819 | first element, regardless of whether or not the array has a nonzero lower | |
820 | bound. | |
821 | ||
822 | FIXME: A previous comment here indicated that this routine should be | |
823 | substracting the array's lower bound. It's not clear to me that this | |
824 | is correct. Given an array subscripting operation, it would certainly | |
825 | work to do the adjustment here, essentially computing: | |
826 | ||
827 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
828 | ||
829 | However I believe a more appropriate and logical place to account for | |
830 | the lower bound is to do so in value_subscript, essentially computing: | |
831 | ||
832 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
833 | ||
834 | As further evidence consider what would happen with operations other | |
835 | than array subscripting, where the caller would get back a value that | |
836 | had an address somewhere before the actual first element of the array, | |
837 | and the information about the lower bound would be lost because of | |
838 | the coercion to pointer type. | |
c5aa993b | 839 | */ |
c906108c | 840 | |
f23631e4 AC |
841 | struct value * |
842 | value_coerce_array (struct value *arg1) | |
c906108c SS |
843 | { |
844 | register struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
845 | ||
846 | if (VALUE_LVAL (arg1) != lval_memory) | |
847 | error ("Attempt to take address of value not located in memory."); | |
848 | ||
4478b372 JB |
849 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
850 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
851 | } |
852 | ||
853 | /* Given a value which is a function, return a value which is a pointer | |
854 | to it. */ | |
855 | ||
f23631e4 AC |
856 | struct value * |
857 | value_coerce_function (struct value *arg1) | |
c906108c | 858 | { |
f23631e4 | 859 | struct value *retval; |
c906108c SS |
860 | |
861 | if (VALUE_LVAL (arg1) != lval_memory) | |
862 | error ("Attempt to take address of value not located in memory."); | |
863 | ||
4478b372 JB |
864 | retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
865 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
866 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
867 | return retval; | |
c5aa993b | 868 | } |
c906108c SS |
869 | |
870 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
871 | ||
f23631e4 AC |
872 | struct value * |
873 | value_addr (struct value *arg1) | |
c906108c | 874 | { |
f23631e4 | 875 | struct value *arg2; |
c906108c SS |
876 | |
877 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
878 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
879 | { | |
880 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
881 | We keep the same location information, which is efficient, |
882 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
883 | arg2 = value_copy (arg1); |
884 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
885 | return arg2; | |
886 | } | |
887 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
888 | return value_coerce_function (arg1); | |
889 | ||
890 | if (VALUE_LVAL (arg1) != lval_memory) | |
891 | error ("Attempt to take address of value not located in memory."); | |
892 | ||
c5aa993b | 893 | /* Get target memory address */ |
4478b372 JB |
894 | arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
895 | (VALUE_ADDRESS (arg1) | |
896 | + VALUE_OFFSET (arg1) | |
897 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
898 | |
899 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 900 | full derived object's type ... */ |
2b127877 | 901 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1))); |
c5aa993b JM |
902 | /* ... and also the relative position of the subobject in the full object */ |
903 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
904 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
905 | return arg2; | |
906 | } | |
907 | ||
908 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
909 | ||
f23631e4 AC |
910 | struct value * |
911 | value_ind (struct value *arg1) | |
c906108c SS |
912 | { |
913 | struct type *base_type; | |
f23631e4 | 914 | struct value *arg2; |
c906108c SS |
915 | |
916 | COERCE_ARRAY (arg1); | |
917 | ||
918 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
919 | ||
920 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
921 | error ("not implemented: member types in value_ind"); | |
922 | ||
923 | /* Allow * on an integer so we can cast it to whatever we want. | |
924 | This returns an int, which seems like the most C-like thing | |
925 | to do. "long long" variables are rare enough that | |
926 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
927 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
56468235 DH |
928 | return value_at_lazy (builtin_type_int, |
929 | (CORE_ADDR) value_as_long (arg1), | |
930 | VALUE_BFD_SECTION (arg1)); | |
c906108c SS |
931 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
932 | { | |
933 | struct type *enc_type; | |
934 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 935 | /* Get the real type of the enclosing object */ |
c906108c SS |
936 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
937 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
938 | /* Retrieve the enclosing object pointed to */ |
939 | arg2 = value_at_lazy (enc_type, | |
1aa20aa8 | 940 | value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1), |
c5aa993b JM |
941 | VALUE_BFD_SECTION (arg1)); |
942 | /* Re-adjust type */ | |
c906108c SS |
943 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
944 | /* Add embedding info */ | |
2b127877 | 945 | arg2 = value_change_enclosing_type (arg2, enc_type); |
c906108c SS |
946 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); |
947 | ||
948 | /* We may be pointing to an object of some derived type */ | |
949 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
950 | return arg2; | |
951 | } | |
952 | ||
953 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 954 | return 0; /* For lint -- never reached */ |
c906108c SS |
955 | } |
956 | \f | |
957 | /* Pushing small parts of stack frames. */ | |
958 | ||
959 | /* Push one word (the size of object that a register holds). */ | |
960 | ||
961 | CORE_ADDR | |
fba45db2 | 962 | push_word (CORE_ADDR sp, ULONGEST word) |
c906108c | 963 | { |
b1e29e33 | 964 | register int len = DEPRECATED_REGISTER_SIZE; |
eb294659 | 965 | char buffer[MAX_REGISTER_SIZE]; |
c906108c SS |
966 | |
967 | store_unsigned_integer (buffer, len, word); | |
968 | if (INNER_THAN (1, 2)) | |
969 | { | |
970 | /* stack grows downward */ | |
971 | sp -= len; | |
972 | write_memory (sp, buffer, len); | |
973 | } | |
974 | else | |
975 | { | |
976 | /* stack grows upward */ | |
977 | write_memory (sp, buffer, len); | |
978 | sp += len; | |
979 | } | |
980 | ||
981 | return sp; | |
982 | } | |
983 | ||
984 | /* Push LEN bytes with data at BUFFER. */ | |
985 | ||
986 | CORE_ADDR | |
fba45db2 | 987 | push_bytes (CORE_ADDR sp, char *buffer, int len) |
c906108c SS |
988 | { |
989 | if (INNER_THAN (1, 2)) | |
990 | { | |
991 | /* stack grows downward */ | |
992 | sp -= len; | |
993 | write_memory (sp, buffer, len); | |
994 | } | |
995 | else | |
996 | { | |
997 | /* stack grows upward */ | |
998 | write_memory (sp, buffer, len); | |
999 | sp += len; | |
1000 | } | |
1001 | ||
1002 | return sp; | |
1003 | } | |
1004 | ||
2df3850c JM |
1005 | #ifndef PARM_BOUNDARY |
1006 | #define PARM_BOUNDARY (0) | |
1007 | #endif | |
1008 | ||
1009 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1010 | it to be an argument to a function. */ | |
c906108c | 1011 | |
c906108c | 1012 | static CORE_ADDR |
f23631e4 | 1013 | value_push (register CORE_ADDR sp, struct value *arg) |
c906108c SS |
1014 | { |
1015 | register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
917317f4 | 1016 | register int container_len = len; |
2df3850c JM |
1017 | register int offset; |
1018 | ||
1019 | /* How big is the container we're going to put this value in? */ | |
1020 | if (PARM_BOUNDARY) | |
1021 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1022 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1023 | ||
1024 | /* Are we going to put it at the high or low end of the container? */ | |
d7449b42 | 1025 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
2df3850c JM |
1026 | offset = container_len - len; |
1027 | else | |
1028 | offset = 0; | |
c906108c SS |
1029 | |
1030 | if (INNER_THAN (1, 2)) | |
1031 | { | |
1032 | /* stack grows downward */ | |
2df3850c JM |
1033 | sp -= container_len; |
1034 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1035 | } |
1036 | else | |
1037 | { | |
1038 | /* stack grows upward */ | |
2df3850c JM |
1039 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1040 | sp += container_len; | |
c906108c SS |
1041 | } |
1042 | ||
1043 | return sp; | |
1044 | } | |
1045 | ||
392a587b | 1046 | CORE_ADDR |
b81774d8 AC |
1047 | legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
1048 | int struct_return, CORE_ADDR struct_addr) | |
392a587b JM |
1049 | { |
1050 | /* ASSERT ( !struct_return); */ | |
1051 | int i; | |
1052 | for (i = nargs - 1; i >= 0; i--) | |
1053 | sp = value_push (sp, args[i]); | |
1054 | return sp; | |
1055 | } | |
1056 | ||
c906108c SS |
1057 | /* Create a value for an array by allocating space in the inferior, copying |
1058 | the data into that space, and then setting up an array value. | |
1059 | ||
1060 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1061 | populated from the values passed in ELEMVEC. | |
1062 | ||
1063 | The element type of the array is inherited from the type of the | |
1064 | first element, and all elements must have the same size (though we | |
1065 | don't currently enforce any restriction on their types). */ | |
1066 | ||
f23631e4 AC |
1067 | struct value * |
1068 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1069 | { |
1070 | int nelem; | |
1071 | int idx; | |
1072 | unsigned int typelength; | |
f23631e4 | 1073 | struct value *val; |
c906108c SS |
1074 | struct type *rangetype; |
1075 | struct type *arraytype; | |
1076 | CORE_ADDR addr; | |
1077 | ||
1078 | /* Validate that the bounds are reasonable and that each of the elements | |
1079 | have the same size. */ | |
1080 | ||
1081 | nelem = highbound - lowbound + 1; | |
1082 | if (nelem <= 0) | |
1083 | { | |
1084 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1085 | } | |
1086 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1087 | for (idx = 1; idx < nelem; idx++) | |
1088 | { | |
1089 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1090 | { | |
1091 | error ("array elements must all be the same size"); | |
1092 | } | |
1093 | } | |
1094 | ||
1095 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1096 | lowbound, highbound); | |
c5aa993b JM |
1097 | arraytype = create_array_type ((struct type *) NULL, |
1098 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1099 | |
1100 | if (!current_language->c_style_arrays) | |
1101 | { | |
1102 | val = allocate_value (arraytype); | |
1103 | for (idx = 0; idx < nelem; idx++) | |
1104 | { | |
1105 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1106 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1107 | typelength); | |
1108 | } | |
1109 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1110 | return val; | |
1111 | } | |
1112 | ||
1113 | /* Allocate space to store the array in the inferior, and then initialize | |
1114 | it by copying in each element. FIXME: Is it worth it to create a | |
1115 | local buffer in which to collect each value and then write all the | |
1116 | bytes in one operation? */ | |
1117 | ||
1118 | addr = allocate_space_in_inferior (nelem * typelength); | |
1119 | for (idx = 0; idx < nelem; idx++) | |
1120 | { | |
1121 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1122 | typelength); | |
1123 | } | |
1124 | ||
1125 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1126 | ||
1127 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1128 | return (val); | |
1129 | } | |
1130 | ||
1131 | /* Create a value for a string constant by allocating space in the inferior, | |
1132 | copying the data into that space, and returning the address with type | |
1133 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1134 | of characters. | |
1135 | Note that string types are like array of char types with a lower bound of | |
1136 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1137 | embedded null bytes. */ | |
1138 | ||
f23631e4 | 1139 | struct value * |
fba45db2 | 1140 | value_string (char *ptr, int len) |
c906108c | 1141 | { |
f23631e4 | 1142 | struct value *val; |
c906108c SS |
1143 | int lowbound = current_language->string_lower_bound; |
1144 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1145 | builtin_type_int, | |
1146 | lowbound, len + lowbound - 1); | |
1147 | struct type *stringtype | |
c5aa993b | 1148 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1149 | CORE_ADDR addr; |
1150 | ||
1151 | if (current_language->c_style_arrays == 0) | |
1152 | { | |
1153 | val = allocate_value (stringtype); | |
1154 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1155 | return val; | |
1156 | } | |
1157 | ||
1158 | ||
1159 | /* Allocate space to store the string in the inferior, and then | |
1160 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1161 | ||
1162 | addr = allocate_space_in_inferior (len); | |
1163 | write_memory (addr, ptr, len); | |
1164 | ||
1165 | val = value_at_lazy (stringtype, addr, NULL); | |
1166 | return (val); | |
1167 | } | |
1168 | ||
f23631e4 | 1169 | struct value * |
fba45db2 | 1170 | value_bitstring (char *ptr, int len) |
c906108c | 1171 | { |
f23631e4 | 1172 | struct value *val; |
c906108c SS |
1173 | struct type *domain_type = create_range_type (NULL, builtin_type_int, |
1174 | 0, len - 1); | |
c5aa993b | 1175 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1176 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1177 | val = allocate_value (type); | |
1178 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1179 | return val; | |
1180 | } | |
1181 | \f | |
1182 | /* See if we can pass arguments in T2 to a function which takes arguments | |
ad2f7632 DJ |
1183 | of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated |
1184 | vector. If some arguments need coercion of some sort, then the coerced | |
1185 | values are written into T2. Return value is 0 if the arguments could be | |
1186 | matched, or the position at which they differ if not. | |
c906108c SS |
1187 | |
1188 | STATICP is nonzero if the T1 argument list came from a | |
ad2f7632 DJ |
1189 | static member function. T2 will still include the ``this'' pointer, |
1190 | but it will be skipped. | |
c906108c SS |
1191 | |
1192 | For non-static member functions, we ignore the first argument, | |
1193 | which is the type of the instance variable. This is because we want | |
1194 | to handle calls with objects from derived classes. This is not | |
1195 | entirely correct: we should actually check to make sure that a | |
1196 | requested operation is type secure, shouldn't we? FIXME. */ | |
1197 | ||
1198 | static int | |
ad2f7632 DJ |
1199 | typecmp (int staticp, int varargs, int nargs, |
1200 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1201 | { |
1202 | int i; | |
1203 | ||
1204 | if (t2 == 0) | |
ad2f7632 DJ |
1205 | internal_error (__FILE__, __LINE__, "typecmp: no argument list"); |
1206 | ||
4a1970e4 DJ |
1207 | /* Skip ``this'' argument if applicable. T2 will always include THIS. */ |
1208 | if (staticp) | |
ad2f7632 DJ |
1209 | t2 ++; |
1210 | ||
1211 | for (i = 0; | |
1212 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1213 | i++) | |
c906108c | 1214 | { |
c5aa993b | 1215 | struct type *tt1, *tt2; |
ad2f7632 | 1216 | |
c5aa993b JM |
1217 | if (!t2[i]) |
1218 | return i + 1; | |
ad2f7632 DJ |
1219 | |
1220 | tt1 = check_typedef (t1[i].type); | |
c5aa993b | 1221 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
ad2f7632 | 1222 | |
c906108c | 1223 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1224 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1225 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1226 | { | |
1227 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1228 | t2[i] = value_coerce_array (t2[i]); | |
1229 | else | |
1230 | t2[i] = value_addr (t2[i]); | |
1231 | continue; | |
1232 | } | |
1233 | ||
802db21b DB |
1234 | /* djb - 20000715 - Until the new type structure is in the |
1235 | place, and we can attempt things like implicit conversions, | |
1236 | we need to do this so you can take something like a map<const | |
1237 | char *>, and properly access map["hello"], because the | |
1238 | argument to [] will be a reference to a pointer to a char, | |
7168a814 | 1239 | and the argument will be a pointer to a char. */ |
802db21b DB |
1240 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || |
1241 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
1242 | { | |
1243 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1244 | } | |
1245 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
1246 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
1247 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1248 | { |
802db21b | 1249 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); |
c906108c | 1250 | } |
c5aa993b JM |
1251 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1252 | continue; | |
c906108c SS |
1253 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
1254 | ||
1255 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
1256 | of the ARM), but as a quick kludge, just check for the same type |
1257 | code. */ | |
ad2f7632 | 1258 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 1259 | return i + 1; |
c906108c | 1260 | } |
ad2f7632 | 1261 | if (varargs || t2[i] == NULL) |
c5aa993b | 1262 | return 0; |
ad2f7632 | 1263 | return i + 1; |
c906108c SS |
1264 | } |
1265 | ||
1266 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1267 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1268 | and search in it assuming it has (class) type TYPE. | |
1269 | If found, return value, else return NULL. | |
1270 | ||
1271 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1272 | look for a baseclass named NAME. */ | |
1273 | ||
f23631e4 AC |
1274 | static struct value * |
1275 | search_struct_field (char *name, struct value *arg1, int offset, | |
fba45db2 | 1276 | register struct type *type, int looking_for_baseclass) |
c906108c SS |
1277 | { |
1278 | int i; | |
1279 | int nbases = TYPE_N_BASECLASSES (type); | |
1280 | ||
1281 | CHECK_TYPEDEF (type); | |
1282 | ||
c5aa993b | 1283 | if (!looking_for_baseclass) |
c906108c SS |
1284 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1285 | { | |
1286 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1287 | ||
db577aea | 1288 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1289 | { |
f23631e4 | 1290 | struct value *v; |
c906108c | 1291 | if (TYPE_FIELD_STATIC (type, i)) |
2c2738a0 DC |
1292 | { |
1293 | v = value_static_field (type, i); | |
1294 | if (v == 0) | |
1295 | error ("field %s is nonexistent or has been optimised out", | |
1296 | name); | |
1297 | } | |
c906108c | 1298 | else |
2c2738a0 DC |
1299 | { |
1300 | v = value_primitive_field (arg1, offset, i, type); | |
1301 | if (v == 0) | |
1302 | error ("there is no field named %s", name); | |
1303 | } | |
c906108c SS |
1304 | return v; |
1305 | } | |
1306 | ||
1307 | if (t_field_name | |
1308 | && (t_field_name[0] == '\0' | |
1309 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 1310 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
1311 | { |
1312 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
1313 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
1314 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1315 | { | |
1316 | /* Look for a match through the fields of an anonymous union, | |
1317 | or anonymous struct. C++ provides anonymous unions. | |
1318 | ||
1b831c93 AC |
1319 | In the GNU Chill (now deleted from GDB) |
1320 | implementation of variant record types, each | |
1321 | <alternative field> has an (anonymous) union type, | |
1322 | each member of the union represents a <variant | |
1323 | alternative>. Each <variant alternative> is | |
1324 | represented as a struct, with a member for each | |
1325 | <variant field>. */ | |
c5aa993b | 1326 | |
f23631e4 | 1327 | struct value *v; |
c906108c SS |
1328 | int new_offset = offset; |
1329 | ||
db034ac5 AC |
1330 | /* This is pretty gross. In G++, the offset in an |
1331 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1332 | enclosing struct. In the GNU Chill (now deleted |
1333 | from GDB) implementation of variant records, the | |
1334 | bitpos is zero in an anonymous union field, so we | |
1335 | have to add the offset of the union here. */ | |
c906108c SS |
1336 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1337 | || (TYPE_NFIELDS (field_type) > 0 | |
1338 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1339 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1340 | ||
1341 | v = search_struct_field (name, arg1, new_offset, field_type, | |
1342 | looking_for_baseclass); | |
1343 | if (v) | |
1344 | return v; | |
1345 | } | |
1346 | } | |
1347 | } | |
1348 | ||
c5aa993b | 1349 | for (i = 0; i < nbases; i++) |
c906108c | 1350 | { |
f23631e4 | 1351 | struct value *v; |
c906108c SS |
1352 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
1353 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
1354 | hit them. But it could happen that the base part's member name |
1355 | is not yet filled in. */ | |
c906108c SS |
1356 | int found_baseclass = (looking_for_baseclass |
1357 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 1358 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
1359 | |
1360 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1361 | { | |
1362 | int boffset; | |
f23631e4 | 1363 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
1364 | |
1365 | boffset = baseclass_offset (type, i, | |
1366 | VALUE_CONTENTS (arg1) + offset, | |
1367 | VALUE_ADDRESS (arg1) | |
c5aa993b | 1368 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
1369 | if (boffset == -1) |
1370 | error ("virtual baseclass botch"); | |
1371 | ||
1372 | /* The virtual base class pointer might have been clobbered by the | |
1373 | user program. Make sure that it still points to a valid memory | |
1374 | location. */ | |
1375 | ||
1376 | boffset += offset; | |
1377 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
1378 | { | |
1379 | CORE_ADDR base_addr; | |
c5aa993b | 1380 | |
c906108c SS |
1381 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
1382 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
1383 | TYPE_LENGTH (basetype)) != 0) | |
1384 | error ("virtual baseclass botch"); | |
1385 | VALUE_LVAL (v2) = lval_memory; | |
1386 | VALUE_ADDRESS (v2) = base_addr; | |
1387 | } | |
1388 | else | |
1389 | { | |
1390 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
1391 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
1392 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
1393 | if (VALUE_LAZY (arg1)) | |
1394 | VALUE_LAZY (v2) = 1; | |
1395 | else | |
1396 | memcpy (VALUE_CONTENTS_RAW (v2), | |
1397 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
1398 | TYPE_LENGTH (basetype)); | |
1399 | } | |
1400 | ||
1401 | if (found_baseclass) | |
1402 | return v2; | |
1403 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
1404 | looking_for_baseclass); | |
1405 | } | |
1406 | else if (found_baseclass) | |
1407 | v = value_primitive_field (arg1, offset, i, type); | |
1408 | else | |
1409 | v = search_struct_field (name, arg1, | |
c5aa993b | 1410 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 1411 | basetype, looking_for_baseclass); |
c5aa993b JM |
1412 | if (v) |
1413 | return v; | |
c906108c SS |
1414 | } |
1415 | return NULL; | |
1416 | } | |
1417 | ||
1418 | ||
1419 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
1420 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
1421 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
1422 | * looking (in case VALADDR is the contents of an enclosing object). | |
1423 | * | |
1424 | * This routine recurses on the primary base of the derived class because | |
1425 | * the virtual base entries of the primary base appear before the other | |
1426 | * virtual base entries. | |
1427 | * | |
1428 | * If the virtual base is not found, a negative integer is returned. | |
1429 | * The magnitude of the negative integer is the number of entries in | |
1430 | * the virtual table to skip over (entries corresponding to various | |
1431 | * ancestral classes in the chain of primary bases). | |
1432 | * | |
1433 | * Important: This assumes the HP / Taligent C++ runtime | |
1434 | * conventions. Use baseclass_offset() instead to deal with g++ | |
1435 | * conventions. */ | |
1436 | ||
1437 | void | |
fba45db2 KB |
1438 | find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr, |
1439 | int offset, int *boffset_p, int *skip_p) | |
c906108c | 1440 | { |
c5aa993b JM |
1441 | int boffset; /* offset of virtual base */ |
1442 | int index; /* displacement to use in virtual table */ | |
c906108c | 1443 | int skip; |
c5aa993b | 1444 | |
f23631e4 | 1445 | struct value *vp; |
c5aa993b JM |
1446 | CORE_ADDR vtbl; /* the virtual table pointer */ |
1447 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
1448 | |
1449 | /* Look for the virtual base recursively in the primary base, first. | |
1450 | * This is because the derived class object and its primary base | |
1451 | * subobject share the primary virtual table. */ | |
c5aa993b | 1452 | |
c906108c | 1453 | boffset = 0; |
c5aa993b | 1454 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
1455 | if (pbc) |
1456 | { | |
1457 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
1458 | if (skip < 0) | |
c5aa993b JM |
1459 | { |
1460 | *boffset_p = boffset; | |
1461 | *skip_p = -1; | |
1462 | return; | |
1463 | } | |
c906108c SS |
1464 | } |
1465 | else | |
1466 | skip = 0; | |
1467 | ||
1468 | ||
1469 | /* Find the index of the virtual base according to HP/Taligent | |
1470 | runtime spec. (Depth-first, left-to-right.) */ | |
1471 | index = virtual_base_index_skip_primaries (basetype, type); | |
1472 | ||
c5aa993b JM |
1473 | if (index < 0) |
1474 | { | |
1475 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
1476 | *boffset_p = 0; | |
1477 | return; | |
1478 | } | |
c906108c | 1479 | |
c5aa993b | 1480 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 1481 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 1482 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 1483 | |
c5aa993b | 1484 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
1485 | if (vtbl == 0) |
1486 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
1487 | ||
1488 | ||
1489 | /* Find virtual base's offset -- jump over entries for primary base | |
1490 | * ancestors, then use the index computed above. But also adjust by | |
1491 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
1492 | * virtual base entries. Offset is negative -- virtual base entries | |
1493 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 1494 | |
070ad9f0 | 1495 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 1496 | & use long type */ |
c906108c SS |
1497 | |
1498 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 1499 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
1500 | boffset = value_as_long (vp); |
1501 | *skip_p = -1; | |
1502 | *boffset_p = boffset; | |
1503 | return; | |
1504 | } | |
1505 | ||
1506 | ||
1507 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1508 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1509 | and search in it assuming it has (class) type TYPE. | |
1510 | If found, return value, else if name matched and args not return (value)-1, | |
1511 | else return NULL. */ | |
1512 | ||
f23631e4 AC |
1513 | static struct value * |
1514 | search_struct_method (char *name, struct value **arg1p, | |
1515 | struct value **args, int offset, | |
fba45db2 | 1516 | int *static_memfuncp, register struct type *type) |
c906108c SS |
1517 | { |
1518 | int i; | |
f23631e4 | 1519 | struct value *v; |
c906108c SS |
1520 | int name_matched = 0; |
1521 | char dem_opname[64]; | |
1522 | ||
1523 | CHECK_TYPEDEF (type); | |
1524 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1525 | { | |
1526 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1527 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
1528 | if (strncmp (t_field_name, "__", 2) == 0 || |
1529 | strncmp (t_field_name, "op", 2) == 0 || | |
1530 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 1531 | { |
c5aa993b JM |
1532 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
1533 | t_field_name = dem_opname; | |
1534 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 1535 | t_field_name = dem_opname; |
c906108c | 1536 | } |
db577aea | 1537 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1538 | { |
1539 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1540 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 1541 | name_matched = 1; |
c906108c | 1542 | |
de17c821 | 1543 | check_stub_method_group (type, i); |
c906108c SS |
1544 | if (j > 0 && args == 0) |
1545 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
acf5ed49 | 1546 | else if (j == 0 && args == 0) |
c906108c | 1547 | { |
acf5ed49 DJ |
1548 | v = value_fn_field (arg1p, f, j, type, offset); |
1549 | if (v != NULL) | |
1550 | return v; | |
c906108c | 1551 | } |
acf5ed49 DJ |
1552 | else |
1553 | while (j >= 0) | |
1554 | { | |
acf5ed49 | 1555 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
1556 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
1557 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
1558 | TYPE_FN_FIELD_ARGS (f, j), args)) |
1559 | { | |
1560 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1561 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
1562 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
1563 | *static_memfuncp = 1; | |
1564 | v = value_fn_field (arg1p, f, j, type, offset); | |
1565 | if (v != NULL) | |
1566 | return v; | |
1567 | } | |
1568 | j--; | |
1569 | } | |
c906108c SS |
1570 | } |
1571 | } | |
1572 | ||
1573 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1574 | { | |
1575 | int base_offset; | |
1576 | ||
1577 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1578 | { | |
c5aa993b JM |
1579 | if (TYPE_HAS_VTABLE (type)) |
1580 | { | |
1581 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 1582 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
1583 | int skip; |
1584 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
1585 | VALUE_CONTENTS_ALL (*arg1p), | |
1586 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
1587 | &base_offset, &skip); | |
1588 | if (skip >= 0) | |
1589 | error ("Virtual base class offset not found in vtable"); | |
1590 | } | |
1591 | else | |
1592 | { | |
1593 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
1594 | char *base_valaddr; | |
1595 | ||
1596 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
1597 | user program. Make sure that it still points to a valid memory |
1598 | location. */ | |
c5aa993b JM |
1599 | |
1600 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
1601 | { | |
1602 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
1603 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
1604 | + VALUE_OFFSET (*arg1p) + offset, | |
1605 | base_valaddr, | |
1606 | TYPE_LENGTH (baseclass)) != 0) | |
1607 | error ("virtual baseclass botch"); | |
1608 | } | |
1609 | else | |
1610 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
1611 | ||
1612 | base_offset = | |
1613 | baseclass_offset (type, i, base_valaddr, | |
1614 | VALUE_ADDRESS (*arg1p) | |
1615 | + VALUE_OFFSET (*arg1p) + offset); | |
1616 | if (base_offset == -1) | |
1617 | error ("virtual baseclass botch"); | |
1618 | } | |
1619 | } | |
c906108c SS |
1620 | else |
1621 | { | |
1622 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1623 | } |
c906108c SS |
1624 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
1625 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 1626 | if (v == (struct value *) - 1) |
c906108c SS |
1627 | { |
1628 | name_matched = 1; | |
1629 | } | |
1630 | else if (v) | |
1631 | { | |
1632 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 1633 | /* *arg1p = arg1_tmp; */ |
c906108c | 1634 | return v; |
c5aa993b | 1635 | } |
c906108c | 1636 | } |
c5aa993b | 1637 | if (name_matched) |
f23631e4 | 1638 | return (struct value *) - 1; |
c5aa993b JM |
1639 | else |
1640 | return NULL; | |
c906108c SS |
1641 | } |
1642 | ||
1643 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1644 | extract the component named NAME from the ultimate target structure/union | |
1645 | and return it as a value with its appropriate type. | |
1646 | ERR is used in the error message if *ARGP's type is wrong. | |
1647 | ||
1648 | C++: ARGS is a list of argument types to aid in the selection of | |
1649 | an appropriate method. Also, handle derived types. | |
1650 | ||
1651 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1652 | where the truthvalue of whether the function that was resolved was | |
1653 | a static member function or not is stored. | |
1654 | ||
1655 | ERR is an error message to be printed in case the field is not found. */ | |
1656 | ||
f23631e4 AC |
1657 | struct value * |
1658 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 1659 | char *name, int *static_memfuncp, char *err) |
c906108c SS |
1660 | { |
1661 | register struct type *t; | |
f23631e4 | 1662 | struct value *v; |
c906108c SS |
1663 | |
1664 | COERCE_ARRAY (*argp); | |
1665 | ||
1666 | t = check_typedef (VALUE_TYPE (*argp)); | |
1667 | ||
1668 | /* Follow pointers until we get to a non-pointer. */ | |
1669 | ||
1670 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1671 | { | |
1672 | *argp = value_ind (*argp); | |
1673 | /* Don't coerce fn pointer to fn and then back again! */ | |
1674 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
1675 | COERCE_ARRAY (*argp); | |
1676 | t = check_typedef (VALUE_TYPE (*argp)); | |
1677 | } | |
1678 | ||
1679 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1680 | error ("not implemented: member type in value_struct_elt"); | |
1681 | ||
c5aa993b | 1682 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
1683 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1684 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
1685 | ||
1686 | /* Assume it's not, unless we see that it is. */ | |
1687 | if (static_memfuncp) | |
c5aa993b | 1688 | *static_memfuncp = 0; |
c906108c SS |
1689 | |
1690 | if (!args) | |
1691 | { | |
1692 | /* if there are no arguments ...do this... */ | |
1693 | ||
1694 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 1695 | is less work to be done. */ |
c906108c SS |
1696 | v = search_struct_field (name, *argp, 0, t, 0); |
1697 | if (v) | |
1698 | return v; | |
1699 | ||
1700 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 1701 | return it as a pointer to a method. */ |
c906108c SS |
1702 | |
1703 | if (destructor_name_p (name, t)) | |
1704 | error ("Cannot get value of destructor"); | |
1705 | ||
1706 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
1707 | ||
f23631e4 | 1708 | if (v == (struct value *) - 1) |
c906108c SS |
1709 | error ("Cannot take address of a method"); |
1710 | else if (v == 0) | |
1711 | { | |
1712 | if (TYPE_NFN_FIELDS (t)) | |
1713 | error ("There is no member or method named %s.", name); | |
1714 | else | |
1715 | error ("There is no member named %s.", name); | |
1716 | } | |
1717 | return v; | |
1718 | } | |
1719 | ||
1720 | if (destructor_name_p (name, t)) | |
1721 | { | |
1722 | if (!args[1]) | |
1723 | { | |
1724 | /* Destructors are a special case. */ | |
1725 | int m_index, f_index; | |
1726 | ||
1727 | v = NULL; | |
1728 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
1729 | { | |
1730 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
1731 | f_index, NULL, 0); | |
1732 | } | |
1733 | if (v == NULL) | |
1734 | error ("could not find destructor function named %s.", name); | |
1735 | else | |
1736 | return v; | |
1737 | } | |
1738 | else | |
1739 | { | |
1740 | error ("destructor should not have any argument"); | |
1741 | } | |
1742 | } | |
1743 | else | |
1744 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
7168a814 | 1745 | |
f23631e4 | 1746 | if (v == (struct value *) - 1) |
c906108c | 1747 | { |
7168a814 | 1748 | error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name); |
c906108c SS |
1749 | } |
1750 | else if (v == 0) | |
1751 | { | |
1752 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
1753 | hand it back. If it's not callable (i.e., a pointer to function), |
1754 | gdb should give an error. */ | |
c906108c SS |
1755 | v = search_struct_field (name, *argp, 0, t, 0); |
1756 | } | |
1757 | ||
1758 | if (!v) | |
1759 | error ("Structure has no component named %s.", name); | |
1760 | return v; | |
1761 | } | |
1762 | ||
1763 | /* Search through the methods of an object (and its bases) | |
1764 | * to find a specified method. Return the pointer to the | |
1765 | * fn_field list of overloaded instances. | |
1766 | * Helper function for value_find_oload_list. | |
1767 | * ARGP is a pointer to a pointer to a value (the object) | |
1768 | * METHOD is a string containing the method name | |
1769 | * OFFSET is the offset within the value | |
c906108c SS |
1770 | * TYPE is the assumed type of the object |
1771 | * NUM_FNS is the number of overloaded instances | |
1772 | * BASETYPE is set to the actual type of the subobject where the method is found | |
1773 | * BOFFSET is the offset of the base subobject where the method is found */ | |
1774 | ||
7a292a7a | 1775 | static struct fn_field * |
f23631e4 | 1776 | find_method_list (struct value **argp, char *method, int offset, |
4a1970e4 | 1777 | struct type *type, int *num_fns, |
fba45db2 | 1778 | struct type **basetype, int *boffset) |
c906108c SS |
1779 | { |
1780 | int i; | |
c5aa993b | 1781 | struct fn_field *f; |
c906108c SS |
1782 | CHECK_TYPEDEF (type); |
1783 | ||
1784 | *num_fns = 0; | |
1785 | ||
c5aa993b JM |
1786 | /* First check in object itself */ |
1787 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
1788 | { |
1789 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 1790 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 1791 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 1792 | { |
4a1970e4 DJ |
1793 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
1794 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
1795 | |
1796 | *num_fns = len; | |
c5aa993b JM |
1797 | *basetype = type; |
1798 | *boffset = offset; | |
4a1970e4 | 1799 | |
de17c821 DJ |
1800 | /* Resolve any stub methods. */ |
1801 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
1802 | |
1803 | return f; | |
c5aa993b JM |
1804 | } |
1805 | } | |
1806 | ||
c906108c SS |
1807 | /* Not found in object, check in base subobjects */ |
1808 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1809 | { | |
1810 | int base_offset; | |
1811 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1812 | { | |
c5aa993b JM |
1813 | if (TYPE_HAS_VTABLE (type)) |
1814 | { | |
1815 | /* HP aCC compiled type, search for virtual base offset | |
1816 | * according to HP/Taligent runtime spec. */ | |
1817 | int skip; | |
1818 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
1819 | VALUE_CONTENTS_ALL (*argp), | |
1820 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
1821 | &base_offset, &skip); | |
1822 | if (skip >= 0) | |
1823 | error ("Virtual base class offset not found in vtable"); | |
1824 | } | |
1825 | else | |
1826 | { | |
1827 | /* probably g++ runtime model */ | |
1828 | base_offset = VALUE_OFFSET (*argp) + offset; | |
1829 | base_offset = | |
1830 | baseclass_offset (type, i, | |
1831 | VALUE_CONTENTS (*argp) + base_offset, | |
1832 | VALUE_ADDRESS (*argp) + base_offset); | |
1833 | if (base_offset == -1) | |
1834 | error ("virtual baseclass botch"); | |
1835 | } | |
1836 | } | |
1837 | else | |
1838 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
1839 | { |
1840 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1841 | } |
c906108c | 1842 | f = find_method_list (argp, method, base_offset + offset, |
4a1970e4 DJ |
1843 | TYPE_BASECLASS (type, i), num_fns, basetype, |
1844 | boffset); | |
c906108c | 1845 | if (f) |
c5aa993b | 1846 | return f; |
c906108c | 1847 | } |
c5aa993b | 1848 | return NULL; |
c906108c SS |
1849 | } |
1850 | ||
1851 | /* Return the list of overloaded methods of a specified name. | |
1852 | * ARGP is a pointer to a pointer to a value (the object) | |
1853 | * METHOD is the method name | |
1854 | * OFFSET is the offset within the value contents | |
c906108c SS |
1855 | * NUM_FNS is the number of overloaded instances |
1856 | * BASETYPE is set to the type of the base subobject that defines the method | |
1857 | * BOFFSET is the offset of the base subobject which defines the method */ | |
1858 | ||
1859 | struct fn_field * | |
f23631e4 | 1860 | value_find_oload_method_list (struct value **argp, char *method, int offset, |
4a1970e4 DJ |
1861 | int *num_fns, struct type **basetype, |
1862 | int *boffset) | |
c906108c | 1863 | { |
c5aa993b | 1864 | struct type *t; |
c906108c SS |
1865 | |
1866 | t = check_typedef (VALUE_TYPE (*argp)); | |
1867 | ||
c5aa993b | 1868 | /* code snarfed from value_struct_elt */ |
c906108c SS |
1869 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
1870 | { | |
1871 | *argp = value_ind (*argp); | |
1872 | /* Don't coerce fn pointer to fn and then back again! */ | |
1873 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
1874 | COERCE_ARRAY (*argp); | |
1875 | t = check_typedef (VALUE_TYPE (*argp)); | |
1876 | } | |
c5aa993b | 1877 | |
c906108c SS |
1878 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
1879 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
1880 | |
1881 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
1882 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 1883 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 1884 | |
4a1970e4 | 1885 | return find_method_list (argp, method, 0, t, num_fns, basetype, boffset); |
c906108c SS |
1886 | } |
1887 | ||
1888 | /* Given an array of argument types (ARGTYPES) (which includes an | |
1889 | entry for "this" in the case of C++ methods), the number of | |
1890 | arguments NARGS, the NAME of a function whether it's a method or | |
1891 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
1892 | overload resolution rules in ANSI C++, find the best function that | |
1893 | matches on the argument types according to the overload resolution | |
1894 | rules. | |
1895 | ||
1896 | In the case of class methods, the parameter OBJ is an object value | |
1897 | in which to search for overloaded methods. | |
1898 | ||
1899 | In the case of non-method functions, the parameter FSYM is a symbol | |
1900 | corresponding to one of the overloaded functions. | |
1901 | ||
1902 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
1903 | non-standard coercions, 100 -> incompatible. | |
1904 | ||
1905 | If a method is being searched for, VALP will hold the value. | |
1906 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
1907 | ||
1908 | If a method is being searched for, and it is a static method, | |
1909 | then STATICP will point to a non-zero value. | |
1910 | ||
1911 | Note: This function does *not* check the value of | |
1912 | overload_resolution. Caller must check it to see whether overload | |
1913 | resolution is permitted. | |
c5aa993b | 1914 | */ |
c906108c SS |
1915 | |
1916 | int | |
fba45db2 | 1917 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, |
7f8c9282 | 1918 | int lax, struct value **objp, struct symbol *fsym, |
f23631e4 | 1919 | struct value **valp, struct symbol **symp, int *staticp) |
c906108c SS |
1920 | { |
1921 | int nparms; | |
c5aa993b | 1922 | struct type **parm_types; |
c906108c | 1923 | int champ_nparms = 0; |
7f8c9282 | 1924 | struct value *obj = (objp ? *objp : NULL); |
c5aa993b JM |
1925 | |
1926 | short oload_champ = -1; /* Index of best overloaded function */ | |
1927 | short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
1928 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
1929 | short oload_ambig_champ = -1; /* 2nd contender for best match */ | |
1930 | short oload_non_standard = 0; /* did we have to use non-standard conversions? */ | |
1931 | short oload_incompatible = 0; /* are args supplied incompatible with any function? */ | |
1932 | ||
1933 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
1934 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
1935 | ||
f23631e4 | 1936 | struct value *temp = obj; |
c5aa993b JM |
1937 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
1938 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
1939 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
1940 | struct type *basetype = NULL; | |
c906108c SS |
1941 | int boffset; |
1942 | register int jj; | |
1943 | register int ix; | |
4a1970e4 | 1944 | int static_offset; |
02f0d45d | 1945 | struct cleanup *cleanups = NULL; |
c906108c | 1946 | |
c5aa993b JM |
1947 | char *obj_type_name = NULL; |
1948 | char *func_name = NULL; | |
c906108c SS |
1949 | |
1950 | /* Get the list of overloaded methods or functions */ | |
1951 | if (method) | |
1952 | { | |
1953 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); | |
1954 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
7b83ea04 | 1955 | value rather than the object itself, so try again */ |
c906108c | 1956 | if ((!obj_type_name || !*obj_type_name) && |
c5aa993b JM |
1957 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
1958 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
1959 | |
1960 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
1961 | &num_fns, |
1962 | &basetype, &boffset); | |
c906108c | 1963 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
1964 | error ("Couldn't find method %s%s%s", |
1965 | obj_type_name, | |
1966 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1967 | name); | |
4a1970e4 DJ |
1968 | /* If we are dealing with stub method types, they should have |
1969 | been resolved by find_method_list via value_find_oload_method_list | |
1970 | above. */ | |
1971 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
c906108c SS |
1972 | } |
1973 | else | |
1974 | { | |
1975 | int i = -1; | |
22abf04a | 1976 | func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS); |
c906108c | 1977 | |
917317f4 | 1978 | /* If the name is NULL this must be a C-style function. |
7b83ea04 | 1979 | Just return the same symbol. */ |
917317f4 | 1980 | if (!func_name) |
7b83ea04 | 1981 | { |
917317f4 | 1982 | *symp = fsym; |
7b83ea04 AC |
1983 | return 0; |
1984 | } | |
917317f4 | 1985 | |
c906108c | 1986 | oload_syms = make_symbol_overload_list (fsym); |
02f0d45d | 1987 | cleanups = make_cleanup (xfree, oload_syms); |
c906108c | 1988 | while (oload_syms[++i]) |
c5aa993b | 1989 | num_fns++; |
c906108c | 1990 | if (!num_fns) |
c5aa993b | 1991 | error ("Couldn't find function %s", func_name); |
c906108c | 1992 | } |
c5aa993b | 1993 | |
c906108c SS |
1994 | oload_champ_bv = NULL; |
1995 | ||
c5aa993b | 1996 | /* Consider each candidate in turn */ |
c906108c SS |
1997 | for (ix = 0; ix < num_fns; ix++) |
1998 | { | |
4a1970e4 | 1999 | static_offset = 0; |
db577aea AC |
2000 | if (method) |
2001 | { | |
4a1970e4 DJ |
2002 | if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix)) |
2003 | static_offset = 1; | |
ad2f7632 | 2004 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2005 | } |
2006 | else | |
2007 | { | |
2008 | /* If it's not a method, this is the proper place */ | |
2009 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2010 | } | |
c906108c | 2011 | |
c5aa993b | 2012 | /* Prepare array of parameter types */ |
c906108c SS |
2013 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2014 | for (jj = 0; jj < nparms; jj++) | |
db577aea | 2015 | parm_types[jj] = (method |
ad2f7632 | 2016 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
db577aea | 2017 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); |
c906108c | 2018 | |
4a1970e4 DJ |
2019 | /* Compare parameter types to supplied argument types. Skip THIS for |
2020 | static methods. */ | |
2021 | bv = rank_function (parm_types, nparms, arg_types + static_offset, | |
2022 | nargs - static_offset); | |
c5aa993b | 2023 | |
c906108c | 2024 | if (!oload_champ_bv) |
c5aa993b JM |
2025 | { |
2026 | oload_champ_bv = bv; | |
2027 | oload_champ = 0; | |
2028 | champ_nparms = nparms; | |
2029 | } | |
c906108c | 2030 | else |
c5aa993b JM |
2031 | /* See whether current candidate is better or worse than previous best */ |
2032 | switch (compare_badness (bv, oload_champ_bv)) | |
2033 | { | |
2034 | case 0: | |
2035 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2036 | oload_ambig_champ = ix; | |
2037 | break; | |
2038 | case 1: | |
2039 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2040 | oload_ambig_champ = ix; | |
2041 | break; | |
2042 | case 2: | |
2043 | oload_champ_bv = bv; /* new champion, record details */ | |
2044 | oload_ambiguous = 0; | |
2045 | oload_champ = ix; | |
2046 | oload_ambig_champ = -1; | |
2047 | champ_nparms = nparms; | |
2048 | break; | |
2049 | case 3: | |
2050 | default: | |
2051 | break; | |
2052 | } | |
b8c9b27d | 2053 | xfree (parm_types); |
6b1ba9a0 ND |
2054 | if (overload_debug) |
2055 | { | |
2056 | if (method) | |
2057 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2058 | else | |
2059 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
4a1970e4 | 2060 | for (jj = 0; jj < nargs - static_offset; jj++) |
6b1ba9a0 ND |
2061 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2062 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2063 | } | |
c5aa993b | 2064 | } /* end loop over all candidates */ |
db577aea AC |
2065 | /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one |
2066 | if they have the exact same goodness. This is because there is no | |
2067 | way to differentiate based on return type, which we need to in | |
2068 | cases like overloads of .begin() <It's both const and non-const> */ | |
2069 | #if 0 | |
c906108c SS |
2070 | if (oload_ambiguous) |
2071 | { | |
2072 | if (method) | |
c5aa993b JM |
2073 | error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature", |
2074 | obj_type_name, | |
2075 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2076 | name); | |
c906108c | 2077 | else |
c5aa993b JM |
2078 | error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature", |
2079 | func_name); | |
c906108c | 2080 | } |
db577aea | 2081 | #endif |
c906108c | 2082 | |
4a1970e4 DJ |
2083 | /* Check how bad the best match is. */ |
2084 | static_offset = 0; | |
2085 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ)) | |
2086 | static_offset = 1; | |
2087 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
c906108c | 2088 | { |
6b1ba9a0 ND |
2089 | if (oload_champ_bv->rank[ix] >= 100) |
2090 | oload_incompatible = 1; /* truly mismatched types */ | |
2091 | ||
2092 | else if (oload_champ_bv->rank[ix] >= 10) | |
2093 | oload_non_standard = 1; /* non-standard type conversions needed */ | |
c906108c SS |
2094 | } |
2095 | if (oload_incompatible) | |
2096 | { | |
2097 | if (method) | |
c5aa993b JM |
2098 | error ("Cannot resolve method %s%s%s to any overloaded instance", |
2099 | obj_type_name, | |
2100 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2101 | name); | |
c906108c | 2102 | else |
c5aa993b JM |
2103 | error ("Cannot resolve function %s to any overloaded instance", |
2104 | func_name); | |
c906108c SS |
2105 | } |
2106 | else if (oload_non_standard) | |
2107 | { | |
2108 | if (method) | |
c5aa993b JM |
2109 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", |
2110 | obj_type_name, | |
2111 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2112 | name); | |
c906108c | 2113 | else |
c5aa993b JM |
2114 | warning ("Using non-standard conversion to match function %s to supplied arguments", |
2115 | func_name); | |
c906108c SS |
2116 | } |
2117 | ||
2118 | if (method) | |
2119 | { | |
4a1970e4 DJ |
2120 | if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ)) |
2121 | *staticp = 1; | |
2122 | else if (staticp) | |
2123 | *staticp = 0; | |
c906108c | 2124 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) |
c5aa993b | 2125 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c | 2126 | else |
c5aa993b | 2127 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c SS |
2128 | } |
2129 | else | |
2130 | { | |
2131 | *symp = oload_syms[oload_champ]; | |
b8c9b27d | 2132 | xfree (func_name); |
c906108c SS |
2133 | } |
2134 | ||
7f8c9282 DJ |
2135 | if (objp) |
2136 | { | |
2137 | if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR | |
2138 | && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR) | |
2139 | { | |
2140 | temp = value_addr (temp); | |
2141 | } | |
2142 | *objp = temp; | |
2143 | } | |
02f0d45d DJ |
2144 | if (cleanups != NULL) |
2145 | do_cleanups (cleanups); | |
2146 | ||
c906108c SS |
2147 | return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0); |
2148 | } | |
2149 | ||
2150 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2151 | of type TYPE. If TYPE does not have a destructor, or | |
2152 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2153 | int | |
fba45db2 | 2154 | destructor_name_p (const char *name, const struct type *type) |
c906108c SS |
2155 | { |
2156 | /* destructors are a special case. */ | |
2157 | ||
2158 | if (name[0] == '~') | |
2159 | { | |
2160 | char *dname = type_name_no_tag (type); | |
2161 | char *cp = strchr (dname, '<'); | |
2162 | unsigned int len; | |
2163 | ||
2164 | /* Do not compare the template part for template classes. */ | |
2165 | if (cp == NULL) | |
2166 | len = strlen (dname); | |
2167 | else | |
2168 | len = cp - dname; | |
2169 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
2170 | error ("name of destructor must equal name of class"); | |
2171 | else | |
2172 | return 1; | |
2173 | } | |
2174 | return 0; | |
2175 | } | |
2176 | ||
2177 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2178 | return 1 if the component named NAME from the ultimate | |
2179 | target structure/union is defined, otherwise, return 0. */ | |
2180 | ||
2181 | static int | |
fba45db2 | 2182 | check_field_in (register struct type *type, const char *name) |
c906108c SS |
2183 | { |
2184 | register int i; | |
2185 | ||
2186 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2187 | { | |
2188 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2189 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2190 | return 1; |
2191 | } | |
2192 | ||
2193 | /* C++: If it was not found as a data field, then try to | |
2194 | return it as a pointer to a method. */ | |
2195 | ||
2196 | /* Destructors are a special case. */ | |
2197 | if (destructor_name_p (name, type)) | |
2198 | { | |
2199 | int m_index, f_index; | |
2200 | ||
2201 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2202 | } | |
2203 | ||
2204 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2205 | { | |
db577aea | 2206 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2207 | return 1; |
2208 | } | |
2209 | ||
2210 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2211 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2212 | return 1; | |
c5aa993b | 2213 | |
c906108c SS |
2214 | return 0; |
2215 | } | |
2216 | ||
2217 | ||
2218 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2219 | return 1 if the component named NAME from the ultimate | |
2220 | target structure/union is defined, otherwise, return 0. */ | |
2221 | ||
2222 | int | |
f23631e4 | 2223 | check_field (struct value *arg1, const char *name) |
c906108c SS |
2224 | { |
2225 | register struct type *t; | |
2226 | ||
2227 | COERCE_ARRAY (arg1); | |
2228 | ||
2229 | t = VALUE_TYPE (arg1); | |
2230 | ||
2231 | /* Follow pointers until we get to a non-pointer. */ | |
2232 | ||
2233 | for (;;) | |
2234 | { | |
2235 | CHECK_TYPEDEF (t); | |
2236 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2237 | break; | |
2238 | t = TYPE_TARGET_TYPE (t); | |
2239 | } | |
2240 | ||
2241 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2242 | error ("not implemented: member type in check_field"); | |
2243 | ||
c5aa993b | 2244 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2245 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2246 | error ("Internal error: `this' is not an aggregate"); | |
2247 | ||
2248 | return check_field_in (t, name); | |
2249 | } | |
2250 | ||
2251 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
2252 | return the address of this member as a "pointer to member" | |
2253 | type. If INTYPE is non-null, then it will be the type | |
2254 | of the member we are looking for. This will help us resolve | |
2255 | "pointers to member functions". This function is used | |
2256 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2257 | ||
f23631e4 | 2258 | struct value * |
fba45db2 KB |
2259 | value_struct_elt_for_reference (struct type *domain, int offset, |
2260 | struct type *curtype, char *name, | |
2261 | struct type *intype) | |
c906108c SS |
2262 | { |
2263 | register struct type *t = curtype; | |
2264 | register int i; | |
f23631e4 | 2265 | struct value *v; |
c906108c | 2266 | |
c5aa993b | 2267 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2268 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2269 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
2270 | ||
2271 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2272 | { | |
2273 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 2274 | |
c906108c SS |
2275 | if (t_field_name && STREQ (t_field_name, name)) |
2276 | { | |
2277 | if (TYPE_FIELD_STATIC (t, i)) | |
2278 | { | |
2279 | v = value_static_field (t, i); | |
2280 | if (v == NULL) | |
2c2738a0 | 2281 | error ("static field %s has been optimized out", |
c906108c SS |
2282 | name); |
2283 | return v; | |
2284 | } | |
2285 | if (TYPE_FIELD_PACKED (t, i)) | |
2286 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 2287 | |
c906108c SS |
2288 | return value_from_longest |
2289 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
2290 | domain)), | |
2291 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2292 | } | |
2293 | } | |
2294 | ||
2295 | /* C++: If it was not found as a data field, then try to | |
2296 | return it as a pointer to a method. */ | |
2297 | ||
2298 | /* Destructors are a special case. */ | |
2299 | if (destructor_name_p (name, t)) | |
2300 | { | |
2301 | error ("member pointers to destructors not implemented yet"); | |
2302 | } | |
2303 | ||
2304 | /* Perform all necessary dereferencing. */ | |
2305 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
2306 | intype = TYPE_TARGET_TYPE (intype); | |
2307 | ||
2308 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
2309 | { | |
2310 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
2311 | char dem_opname[64]; | |
2312 | ||
c5aa993b JM |
2313 | if (strncmp (t_field_name, "__", 2) == 0 || |
2314 | strncmp (t_field_name, "op", 2) == 0 || | |
2315 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2316 | { |
c5aa993b JM |
2317 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2318 | t_field_name = dem_opname; | |
2319 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2320 | t_field_name = dem_opname; |
c906108c SS |
2321 | } |
2322 | if (t_field_name && STREQ (t_field_name, name)) | |
2323 | { | |
2324 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
2325 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 2326 | |
de17c821 DJ |
2327 | check_stub_method_group (t, i); |
2328 | ||
c906108c SS |
2329 | if (intype == 0 && j > 1) |
2330 | error ("non-unique member `%s' requires type instantiation", name); | |
2331 | if (intype) | |
2332 | { | |
2333 | while (j--) | |
2334 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
2335 | break; | |
2336 | if (j < 0) | |
2337 | error ("no member function matches that type instantiation"); | |
2338 | } | |
2339 | else | |
2340 | j = 0; | |
c5aa993b | 2341 | |
c906108c SS |
2342 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
2343 | { | |
2344 | return value_from_longest | |
2345 | (lookup_reference_type | |
2346 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
2347 | domain)), | |
2348 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
2349 | } | |
2350 | else | |
2351 | { | |
2352 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
176620f1 | 2353 | 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
2354 | if (s == NULL) |
2355 | { | |
2356 | v = 0; | |
2357 | } | |
2358 | else | |
2359 | { | |
2360 | v = read_var_value (s, 0); | |
2361 | #if 0 | |
2362 | VALUE_TYPE (v) = lookup_reference_type | |
2363 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
2364 | domain)); | |
2365 | #endif | |
2366 | } | |
2367 | return v; | |
2368 | } | |
2369 | } | |
2370 | } | |
2371 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
2372 | { | |
f23631e4 | 2373 | struct value *v; |
c906108c SS |
2374 | int base_offset; |
2375 | ||
2376 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
2377 | base_offset = 0; | |
2378 | else | |
2379 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
2380 | v = value_struct_elt_for_reference (domain, | |
2381 | offset + base_offset, | |
2382 | TYPE_BASECLASS (t, i), | |
2383 | name, | |
2384 | intype); | |
2385 | if (v) | |
2386 | return v; | |
2387 | } | |
2388 | return 0; | |
2389 | } | |
2390 | ||
2391 | ||
c906108c SS |
2392 | /* Given a pointer value V, find the real (RTTI) type |
2393 | of the object it points to. | |
2394 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
2395 | and refer to the values computed for the object pointed to. */ | |
2396 | ||
2397 | struct type * | |
f23631e4 | 2398 | value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc) |
c906108c | 2399 | { |
f23631e4 | 2400 | struct value *target; |
c906108c SS |
2401 | |
2402 | target = value_ind (v); | |
2403 | ||
2404 | return value_rtti_type (target, full, top, using_enc); | |
2405 | } | |
2406 | ||
2407 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
2408 | if that is different from the enclosing type, create a new value | |
2409 | using the real run-time type as the enclosing type (and of the same | |
2410 | type as ARGP) and return it, with the embedded offset adjusted to | |
2411 | be the correct offset to the enclosed object | |
2412 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
2413 | parameters, computed by value_rtti_type(). If these are available, | |
2414 | they can be supplied and a second call to value_rtti_type() is avoided. | |
2415 | (Pass RTYPE == NULL if they're not available */ | |
2416 | ||
f23631e4 AC |
2417 | struct value * |
2418 | value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop, | |
fba45db2 | 2419 | int xusing_enc) |
c906108c | 2420 | { |
c5aa993b | 2421 | struct type *real_type; |
c906108c SS |
2422 | int full = 0; |
2423 | int top = -1; | |
2424 | int using_enc = 0; | |
f23631e4 | 2425 | struct value *new_val; |
c906108c SS |
2426 | |
2427 | if (rtype) | |
2428 | { | |
2429 | real_type = rtype; | |
2430 | full = xfull; | |
2431 | top = xtop; | |
2432 | using_enc = xusing_enc; | |
2433 | } | |
2434 | else | |
2435 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
2436 | ||
2437 | /* If no RTTI data, or if object is already complete, do nothing */ | |
2438 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
2439 | return argp; | |
2440 | ||
2441 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 2442 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
2443 | if (full) |
2444 | { | |
2b127877 | 2445 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
2446 | return argp; |
2447 | } | |
2448 | ||
2449 | /* Check if object is in memory */ | |
2450 | if (VALUE_LVAL (argp) != lval_memory) | |
2451 | { | |
2452 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 2453 | |
c906108c SS |
2454 | return argp; |
2455 | } | |
c5aa993b | 2456 | |
c906108c SS |
2457 | /* All other cases -- retrieve the complete object */ |
2458 | /* Go back by the computed top_offset from the beginning of the object, | |
2459 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
2460 | used for its computation. */ | |
2461 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
2462 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
2463 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
2464 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
2465 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
2466 | return new_val; | |
2467 | } | |
2468 | ||
389e51db AC |
2469 | |
2470 | ||
2471 | ||
d069f99d | 2472 | /* Return the value of the local variable, if one exists. |
c906108c SS |
2473 | Flag COMPLAIN signals an error if the request is made in an |
2474 | inappropriate context. */ | |
2475 | ||
f23631e4 | 2476 | struct value * |
d069f99d | 2477 | value_of_local (const char *name, int complain) |
c906108c SS |
2478 | { |
2479 | struct symbol *func, *sym; | |
2480 | struct block *b; | |
2481 | int i; | |
d069f99d | 2482 | struct value * ret; |
c906108c | 2483 | |
6e7f8b9c | 2484 | if (deprecated_selected_frame == 0) |
c906108c SS |
2485 | { |
2486 | if (complain) | |
c5aa993b JM |
2487 | error ("no frame selected"); |
2488 | else | |
2489 | return 0; | |
c906108c SS |
2490 | } |
2491 | ||
6e7f8b9c | 2492 | func = get_frame_function (deprecated_selected_frame); |
c906108c SS |
2493 | if (!func) |
2494 | { | |
2495 | if (complain) | |
2625d86c | 2496 | error ("no `%s' in nameless context", name); |
c5aa993b JM |
2497 | else |
2498 | return 0; | |
c906108c SS |
2499 | } |
2500 | ||
2501 | b = SYMBOL_BLOCK_VALUE (func); | |
2502 | i = BLOCK_NSYMS (b); | |
2503 | if (i <= 0) | |
2504 | { | |
2505 | if (complain) | |
2625d86c | 2506 | error ("no args, no `%s'", name); |
c5aa993b JM |
2507 | else |
2508 | return 0; | |
c906108c SS |
2509 | } |
2510 | ||
2511 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
2512 | symbol instead of the LOC_ARG one (if both exist). */ | |
176620f1 | 2513 | sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN); |
c906108c SS |
2514 | if (sym == NULL) |
2515 | { | |
2516 | if (complain) | |
2625d86c | 2517 | error ("current stack frame does not contain a variable named `%s'", name); |
c906108c SS |
2518 | else |
2519 | return NULL; | |
2520 | } | |
2521 | ||
6e7f8b9c | 2522 | ret = read_var_value (sym, deprecated_selected_frame); |
d069f99d | 2523 | if (ret == 0 && complain) |
2625d86c | 2524 | error ("`%s' argument unreadable", name); |
d069f99d AF |
2525 | return ret; |
2526 | } | |
2527 | ||
2528 | /* C++/Objective-C: return the value of the class instance variable, | |
2529 | if one exists. Flag COMPLAIN signals an error if the request is | |
2530 | made in an inappropriate context. */ | |
2531 | ||
2532 | struct value * | |
2533 | value_of_this (int complain) | |
2534 | { | |
2535 | if (current_language->la_language == language_objc) | |
2536 | return value_of_local ("self", complain); | |
2537 | else | |
2538 | return value_of_local ("this", complain); | |
c906108c SS |
2539 | } |
2540 | ||
2541 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
2542 | long, starting at LOWBOUND. The result has the same lower bound as | |
2543 | the original ARRAY. */ | |
2544 | ||
f23631e4 AC |
2545 | struct value * |
2546 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
2547 | { |
2548 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 2549 | LONGEST lowerbound, upperbound; |
f23631e4 | 2550 | struct value *slice; |
c906108c SS |
2551 | struct type *array_type; |
2552 | array_type = check_typedef (VALUE_TYPE (array)); | |
2553 | COERCE_VARYING_ARRAY (array, array_type); | |
2554 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
2555 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
2556 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
2557 | error ("cannot take slice of non-array"); | |
2558 | range_type = TYPE_INDEX_TYPE (array_type); | |
2559 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2560 | error ("slice from bad array or bitstring"); | |
2561 | if (lowbound < lowerbound || length < 0 | |
db034ac5 | 2562 | || lowbound + length - 1 > upperbound) |
c906108c SS |
2563 | error ("slice out of range"); |
2564 | /* FIXME-type-allocation: need a way to free this type when we are | |
2565 | done with it. */ | |
c5aa993b | 2566 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
2567 | TYPE_TARGET_TYPE (range_type), |
2568 | lowbound, lowbound + length - 1); | |
2569 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
2570 | { | |
2571 | int i; | |
c5aa993b | 2572 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
2573 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
2574 | slice = value_zero (slice_type, not_lval); | |
2575 | for (i = 0; i < length; i++) | |
2576 | { | |
2577 | int element = value_bit_index (array_type, | |
2578 | VALUE_CONTENTS (array), | |
2579 | lowbound + i); | |
2580 | if (element < 0) | |
2581 | error ("internal error accessing bitstring"); | |
2582 | else if (element > 0) | |
2583 | { | |
2584 | int j = i % TARGET_CHAR_BIT; | |
2585 | if (BITS_BIG_ENDIAN) | |
2586 | j = TARGET_CHAR_BIT - 1 - j; | |
2587 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
2588 | } | |
2589 | } | |
2590 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
2591 | can be used on the LHS, but that may require extensions to |
2592 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
2593 | } |
2594 | else | |
2595 | { | |
2596 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
7a67d0fe | 2597 | LONGEST offset |
c906108c | 2598 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); |
c5aa993b | 2599 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
2600 | slice_range_type); |
2601 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
2602 | slice = allocate_value (slice_type); | |
2603 | if (VALUE_LAZY (array)) | |
2604 | VALUE_LAZY (slice) = 1; | |
2605 | else | |
2606 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
2607 | TYPE_LENGTH (slice_type)); | |
2608 | if (VALUE_LVAL (array) == lval_internalvar) | |
2609 | VALUE_LVAL (slice) = lval_internalvar_component; | |
2610 | else | |
2611 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
2612 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
2613 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
2614 | } | |
2615 | return slice; | |
2616 | } | |
2617 | ||
070ad9f0 DB |
2618 | /* Create a value for a FORTRAN complex number. Currently most of |
2619 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
2620 | composed of 2 doubles. This really should be a smarter routine | |
2621 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 2622 | doubles. FIXME: fmb */ |
c906108c | 2623 | |
f23631e4 AC |
2624 | struct value * |
2625 | value_literal_complex (struct value *arg1, struct value *arg2, struct type *type) | |
c906108c | 2626 | { |
f23631e4 | 2627 | struct value *val; |
c906108c SS |
2628 | struct type *real_type = TYPE_TARGET_TYPE (type); |
2629 | ||
2630 | val = allocate_value (type); | |
2631 | arg1 = value_cast (real_type, arg1); | |
2632 | arg2 = value_cast (real_type, arg2); | |
2633 | ||
2634 | memcpy (VALUE_CONTENTS_RAW (val), | |
2635 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
2636 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
2637 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
2638 | return val; | |
2639 | } | |
2640 | ||
2641 | /* Cast a value into the appropriate complex data type. */ | |
2642 | ||
f23631e4 AC |
2643 | static struct value * |
2644 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
2645 | { |
2646 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
2647 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
2648 | { | |
2649 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
f23631e4 AC |
2650 | struct value *re_val = allocate_value (val_real_type); |
2651 | struct value *im_val = allocate_value (val_real_type); | |
c906108c SS |
2652 | |
2653 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
2654 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
2655 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
2656 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 2657 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
2658 | |
2659 | return value_literal_complex (re_val, im_val, type); | |
2660 | } | |
2661 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
2662 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
2663 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
2664 | else | |
2665 | error ("cannot cast non-number to complex"); | |
2666 | } | |
2667 | ||
2668 | void | |
fba45db2 | 2669 | _initialize_valops (void) |
c906108c SS |
2670 | { |
2671 | #if 0 | |
2672 | add_show_from_set | |
c5aa993b | 2673 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
2674 | "Set automatic abandonment of expressions upon failure.", |
2675 | &setlist), | |
2676 | &showlist); | |
2677 | #endif | |
2678 | ||
2679 | add_show_from_set | |
c5aa993b | 2680 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
2681 | "Set overload resolution in evaluating C++ functions.", |
2682 | &setlist), | |
2683 | &showlist); | |
2684 | overload_resolution = 1; | |
c906108c | 2685 | } |