]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger. |
0fd88904 | 2 | |
6aba47ca | 3 | Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
0fb0cc75 | 4 | 2003, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
615967cb | 22 | #include "doublest.h" |
c906108c | 23 | #include "frame.h" |
d2427a71 RH |
24 | #include "frame-unwind.h" |
25 | #include "frame-base.h" | |
baa490c4 | 26 | #include "dwarf2-frame.h" |
c906108c SS |
27 | #include "inferior.h" |
28 | #include "symtab.h" | |
29 | #include "value.h" | |
30 | #include "gdbcmd.h" | |
31 | #include "gdbcore.h" | |
32 | #include "dis-asm.h" | |
33 | #include "symfile.h" | |
34 | #include "objfiles.h" | |
35 | #include "gdb_string.h" | |
c5f0f3d0 | 36 | #include "linespec.h" |
4e052eda | 37 | #include "regcache.h" |
615967cb | 38 | #include "reggroups.h" |
dc129d82 | 39 | #include "arch-utils.h" |
4be87837 | 40 | #include "osabi.h" |
fe898f56 | 41 | #include "block.h" |
7d9b040b | 42 | #include "infcall.h" |
07ea644b | 43 | #include "trad-frame.h" |
dc129d82 JT |
44 | |
45 | #include "elf-bfd.h" | |
46 | ||
47 | #include "alpha-tdep.h" | |
48 | ||
c906108c | 49 | \f |
515921d7 JB |
50 | /* Return the name of the REGNO register. |
51 | ||
52 | An empty name corresponds to a register number that used to | |
53 | be used for a virtual register. That virtual register has | |
54 | been removed, but the index is still reserved to maintain | |
55 | compatibility with existing remote alpha targets. */ | |
56 | ||
fa88f677 | 57 | static const char * |
d93859e2 | 58 | alpha_register_name (struct gdbarch *gdbarch, int regno) |
636a6dfc | 59 | { |
5ab84872 | 60 | static const char * const register_names[] = |
636a6dfc JT |
61 | { |
62 | "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", | |
63 | "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp", | |
64 | "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", | |
65 | "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero", | |
66 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
67 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
68 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
69 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr", | |
44d88583 | 70 | "pc", "", "unique" |
636a6dfc JT |
71 | }; |
72 | ||
73 | if (regno < 0) | |
5ab84872 | 74 | return NULL; |
e8d2d628 | 75 | if (regno >= ARRAY_SIZE(register_names)) |
5ab84872 RH |
76 | return NULL; |
77 | return register_names[regno]; | |
636a6dfc | 78 | } |
d734c450 | 79 | |
dc129d82 | 80 | static int |
64a3914f | 81 | alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno) |
d734c450 | 82 | { |
515921d7 | 83 | return (regno == ALPHA_ZERO_REGNUM |
64a3914f | 84 | || strlen (alpha_register_name (gdbarch, regno)) == 0); |
d734c450 JT |
85 | } |
86 | ||
dc129d82 | 87 | static int |
64a3914f | 88 | alpha_cannot_store_register (struct gdbarch *gdbarch, int regno) |
d734c450 | 89 | { |
515921d7 | 90 | return (regno == ALPHA_ZERO_REGNUM |
64a3914f | 91 | || strlen (alpha_register_name (gdbarch, regno)) == 0); |
d734c450 JT |
92 | } |
93 | ||
dc129d82 | 94 | static struct type * |
c483c494 | 95 | alpha_register_type (struct gdbarch *gdbarch, int regno) |
0d056799 | 96 | { |
72667056 | 97 | if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM) |
0dfff4cb | 98 | return builtin_type (gdbarch)->builtin_data_ptr; |
72667056 | 99 | if (regno == ALPHA_PC_REGNUM) |
0dfff4cb | 100 | return builtin_type (gdbarch)->builtin_func_ptr; |
72667056 RH |
101 | |
102 | /* Don't need to worry about little vs big endian until | |
103 | some jerk tries to port to alpha-unicosmk. */ | |
b38b6be2 | 104 | if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31) |
8da61cc4 | 105 | return builtin_type_ieee_double; |
72667056 RH |
106 | |
107 | return builtin_type_int64; | |
0d056799 | 108 | } |
f8453e34 | 109 | |
615967cb RH |
110 | /* Is REGNUM a member of REGGROUP? */ |
111 | ||
112 | static int | |
113 | alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
114 | struct reggroup *group) | |
115 | { | |
116 | /* Filter out any registers eliminated, but whose regnum is | |
117 | reserved for backward compatibility, e.g. the vfp. */ | |
ec7cc0e8 UW |
118 | if (gdbarch_register_name (gdbarch, regnum) == NULL |
119 | || *gdbarch_register_name (gdbarch, regnum) == '\0') | |
615967cb RH |
120 | return 0; |
121 | ||
df4a182b RH |
122 | if (group == all_reggroup) |
123 | return 1; | |
124 | ||
125 | /* Zero should not be saved or restored. Technically it is a general | |
126 | register (just as $f31 would be a float if we represented it), but | |
127 | there's no point displaying it during "info regs", so leave it out | |
128 | of all groups except for "all". */ | |
129 | if (regnum == ALPHA_ZERO_REGNUM) | |
130 | return 0; | |
131 | ||
132 | /* All other registers are saved and restored. */ | |
133 | if (group == save_reggroup || group == restore_reggroup) | |
615967cb RH |
134 | return 1; |
135 | ||
136 | /* All other groups are non-overlapping. */ | |
137 | ||
138 | /* Since this is really a PALcode memory slot... */ | |
139 | if (regnum == ALPHA_UNIQUE_REGNUM) | |
140 | return group == system_reggroup; | |
141 | ||
142 | /* Force the FPCR to be considered part of the floating point state. */ | |
143 | if (regnum == ALPHA_FPCR_REGNUM) | |
144 | return group == float_reggroup; | |
145 | ||
146 | if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31) | |
147 | return group == float_reggroup; | |
148 | else | |
149 | return group == general_reggroup; | |
150 | } | |
151 | ||
c483c494 RH |
152 | /* The following represents exactly the conversion performed by |
153 | the LDS instruction. This applies to both single-precision | |
154 | floating point and 32-bit integers. */ | |
155 | ||
156 | static void | |
157 | alpha_lds (void *out, const void *in) | |
158 | { | |
159 | ULONGEST mem = extract_unsigned_integer (in, 4); | |
160 | ULONGEST frac = (mem >> 0) & 0x7fffff; | |
161 | ULONGEST sign = (mem >> 31) & 1; | |
162 | ULONGEST exp_msb = (mem >> 30) & 1; | |
163 | ULONGEST exp_low = (mem >> 23) & 0x7f; | |
164 | ULONGEST exp, reg; | |
165 | ||
166 | exp = (exp_msb << 10) | exp_low; | |
167 | if (exp_msb) | |
168 | { | |
169 | if (exp_low == 0x7f) | |
170 | exp = 0x7ff; | |
171 | } | |
172 | else | |
173 | { | |
174 | if (exp_low != 0x00) | |
175 | exp |= 0x380; | |
176 | } | |
177 | ||
178 | reg = (sign << 63) | (exp << 52) | (frac << 29); | |
179 | store_unsigned_integer (out, 8, reg); | |
180 | } | |
181 | ||
182 | /* Similarly, this represents exactly the conversion performed by | |
183 | the STS instruction. */ | |
184 | ||
39efb398 | 185 | static void |
c483c494 RH |
186 | alpha_sts (void *out, const void *in) |
187 | { | |
188 | ULONGEST reg, mem; | |
189 | ||
190 | reg = extract_unsigned_integer (in, 8); | |
191 | mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff); | |
192 | store_unsigned_integer (out, 4, mem); | |
193 | } | |
194 | ||
d2427a71 RH |
195 | /* The alpha needs a conversion between register and memory format if the |
196 | register is a floating point register and memory format is float, as the | |
197 | register format must be double or memory format is an integer with 4 | |
198 | bytes or less, as the representation of integers in floating point | |
199 | registers is different. */ | |
200 | ||
c483c494 | 201 | static int |
0abe36f5 | 202 | alpha_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type) |
14696584 | 203 | { |
83acabca DJ |
204 | return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31 |
205 | && TYPE_LENGTH (type) != 8); | |
14696584 RH |
206 | } |
207 | ||
d2427a71 | 208 | static void |
ff2e87ac | 209 | alpha_register_to_value (struct frame_info *frame, int regnum, |
5b819568 | 210 | struct type *valtype, gdb_byte *out) |
5868c862 | 211 | { |
2a1ce6ec MK |
212 | gdb_byte in[MAX_REGISTER_SIZE]; |
213 | ||
ff2e87ac | 214 | frame_register_read (frame, regnum, in); |
c483c494 | 215 | switch (TYPE_LENGTH (valtype)) |
d2427a71 | 216 | { |
c483c494 RH |
217 | case 4: |
218 | alpha_sts (out, in); | |
219 | break; | |
c483c494 | 220 | default: |
323e0a4a | 221 | error (_("Cannot retrieve value from floating point register")); |
d2427a71 | 222 | } |
d2427a71 | 223 | } |
5868c862 | 224 | |
d2427a71 | 225 | static void |
ff2e87ac | 226 | alpha_value_to_register (struct frame_info *frame, int regnum, |
5b819568 | 227 | struct type *valtype, const gdb_byte *in) |
d2427a71 | 228 | { |
2a1ce6ec MK |
229 | gdb_byte out[MAX_REGISTER_SIZE]; |
230 | ||
c483c494 | 231 | switch (TYPE_LENGTH (valtype)) |
d2427a71 | 232 | { |
c483c494 RH |
233 | case 4: |
234 | alpha_lds (out, in); | |
235 | break; | |
c483c494 | 236 | default: |
323e0a4a | 237 | error (_("Cannot store value in floating point register")); |
d2427a71 | 238 | } |
ff2e87ac | 239 | put_frame_register (frame, regnum, out); |
5868c862 JT |
240 | } |
241 | ||
d2427a71 RH |
242 | \f |
243 | /* The alpha passes the first six arguments in the registers, the rest on | |
c88e30c0 RH |
244 | the stack. The register arguments are stored in ARG_REG_BUFFER, and |
245 | then moved into the register file; this simplifies the passing of a | |
246 | large struct which extends from the registers to the stack, plus avoids | |
247 | three ptrace invocations per word. | |
248 | ||
249 | We don't bother tracking which register values should go in integer | |
250 | regs or fp regs; we load the same values into both. | |
251 | ||
d2427a71 RH |
252 | If the called function is returning a structure, the address of the |
253 | structure to be returned is passed as a hidden first argument. */ | |
c906108c | 254 | |
d2427a71 | 255 | static CORE_ADDR |
7d9b040b | 256 | alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
c88e30c0 RH |
257 | struct regcache *regcache, CORE_ADDR bp_addr, |
258 | int nargs, struct value **args, CORE_ADDR sp, | |
259 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 260 | { |
d2427a71 RH |
261 | int i; |
262 | int accumulate_size = struct_return ? 8 : 0; | |
d2427a71 | 263 | struct alpha_arg |
c906108c | 264 | { |
2a1ce6ec | 265 | gdb_byte *contents; |
d2427a71 RH |
266 | int len; |
267 | int offset; | |
268 | }; | |
c88e30c0 RH |
269 | struct alpha_arg *alpha_args |
270 | = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg)); | |
52f0bd74 | 271 | struct alpha_arg *m_arg; |
2a1ce6ec | 272 | gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS]; |
d2427a71 | 273 | int required_arg_regs; |
7d9b040b | 274 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 275 | |
c88e30c0 RH |
276 | /* The ABI places the address of the called function in T12. */ |
277 | regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr); | |
278 | ||
279 | /* Set the return address register to point to the entry point | |
280 | of the program, where a breakpoint lies in wait. */ | |
281 | regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr); | |
282 | ||
283 | /* Lay out the arguments in memory. */ | |
d2427a71 RH |
284 | for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++) |
285 | { | |
286 | struct value *arg = args[i]; | |
4991999e | 287 | struct type *arg_type = check_typedef (value_type (arg)); |
c88e30c0 | 288 | |
d2427a71 RH |
289 | /* Cast argument to long if necessary as the compiler does it too. */ |
290 | switch (TYPE_CODE (arg_type)) | |
c906108c | 291 | { |
d2427a71 RH |
292 | case TYPE_CODE_INT: |
293 | case TYPE_CODE_BOOL: | |
294 | case TYPE_CODE_CHAR: | |
295 | case TYPE_CODE_RANGE: | |
296 | case TYPE_CODE_ENUM: | |
0ede8eca | 297 | if (TYPE_LENGTH (arg_type) == 4) |
d2427a71 | 298 | { |
0ede8eca RH |
299 | /* 32-bit values must be sign-extended to 64 bits |
300 | even if the base data type is unsigned. */ | |
301 | arg_type = builtin_type_int32; | |
302 | arg = value_cast (arg_type, arg); | |
303 | } | |
304 | if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE) | |
305 | { | |
306 | arg_type = builtin_type_int64; | |
d2427a71 RH |
307 | arg = value_cast (arg_type, arg); |
308 | } | |
309 | break; | |
7b5e1cb3 | 310 | |
c88e30c0 RH |
311 | case TYPE_CODE_FLT: |
312 | /* "float" arguments loaded in registers must be passed in | |
313 | register format, aka "double". */ | |
314 | if (accumulate_size < sizeof (arg_reg_buffer) | |
315 | && TYPE_LENGTH (arg_type) == 4) | |
316 | { | |
8da61cc4 | 317 | arg_type = builtin_type_ieee_double; |
c88e30c0 RH |
318 | arg = value_cast (arg_type, arg); |
319 | } | |
320 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
321 | invisible reference. No one else uses this data type. */ | |
322 | else if (TYPE_LENGTH (arg_type) == 16) | |
323 | { | |
324 | /* Allocate aligned storage. */ | |
325 | sp = (sp & -16) - 16; | |
326 | ||
327 | /* Write the real data into the stack. */ | |
0fd88904 | 328 | write_memory (sp, value_contents (arg), 16); |
c88e30c0 RH |
329 | |
330 | /* Construct the indirection. */ | |
331 | arg_type = lookup_pointer_type (arg_type); | |
332 | arg = value_from_pointer (arg_type, sp); | |
333 | } | |
334 | break; | |
7b5e1cb3 RH |
335 | |
336 | case TYPE_CODE_COMPLEX: | |
337 | /* ??? The ABI says that complex values are passed as two | |
338 | separate scalar values. This distinction only matters | |
339 | for complex float. However, GCC does not implement this. */ | |
340 | ||
341 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
342 | invisible reference. */ | |
343 | if (TYPE_LENGTH (arg_type) == 32) | |
344 | { | |
345 | /* Allocate aligned storage. */ | |
346 | sp = (sp & -16) - 16; | |
347 | ||
348 | /* Write the real data into the stack. */ | |
0fd88904 | 349 | write_memory (sp, value_contents (arg), 32); |
7b5e1cb3 RH |
350 | |
351 | /* Construct the indirection. */ | |
352 | arg_type = lookup_pointer_type (arg_type); | |
353 | arg = value_from_pointer (arg_type, sp); | |
354 | } | |
355 | break; | |
356 | ||
d2427a71 RH |
357 | default: |
358 | break; | |
c906108c | 359 | } |
d2427a71 RH |
360 | m_arg->len = TYPE_LENGTH (arg_type); |
361 | m_arg->offset = accumulate_size; | |
362 | accumulate_size = (accumulate_size + m_arg->len + 7) & ~7; | |
0fd88904 | 363 | m_arg->contents = value_contents_writeable (arg); |
c906108c SS |
364 | } |
365 | ||
d2427a71 RH |
366 | /* Determine required argument register loads, loading an argument register |
367 | is expensive as it uses three ptrace calls. */ | |
368 | required_arg_regs = accumulate_size / 8; | |
369 | if (required_arg_regs > ALPHA_NUM_ARG_REGS) | |
370 | required_arg_regs = ALPHA_NUM_ARG_REGS; | |
c906108c | 371 | |
d2427a71 | 372 | /* Make room for the arguments on the stack. */ |
c88e30c0 RH |
373 | if (accumulate_size < sizeof(arg_reg_buffer)) |
374 | accumulate_size = 0; | |
375 | else | |
376 | accumulate_size -= sizeof(arg_reg_buffer); | |
d2427a71 | 377 | sp -= accumulate_size; |
c906108c | 378 | |
c88e30c0 | 379 | /* Keep sp aligned to a multiple of 16 as the ABI requires. */ |
d2427a71 | 380 | sp &= ~15; |
c906108c | 381 | |
d2427a71 RH |
382 | /* `Push' arguments on the stack. */ |
383 | for (i = nargs; m_arg--, --i >= 0;) | |
c906108c | 384 | { |
2a1ce6ec | 385 | gdb_byte *contents = m_arg->contents; |
c88e30c0 RH |
386 | int offset = m_arg->offset; |
387 | int len = m_arg->len; | |
388 | ||
389 | /* Copy the bytes destined for registers into arg_reg_buffer. */ | |
390 | if (offset < sizeof(arg_reg_buffer)) | |
391 | { | |
392 | if (offset + len <= sizeof(arg_reg_buffer)) | |
393 | { | |
394 | memcpy (arg_reg_buffer + offset, contents, len); | |
395 | continue; | |
396 | } | |
397 | else | |
398 | { | |
399 | int tlen = sizeof(arg_reg_buffer) - offset; | |
400 | memcpy (arg_reg_buffer + offset, contents, tlen); | |
401 | offset += tlen; | |
402 | contents += tlen; | |
403 | len -= tlen; | |
404 | } | |
405 | } | |
406 | ||
407 | /* Everything else goes to the stack. */ | |
408 | write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len); | |
c906108c | 409 | } |
c88e30c0 RH |
410 | if (struct_return) |
411 | store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr); | |
c906108c | 412 | |
d2427a71 RH |
413 | /* Load the argument registers. */ |
414 | for (i = 0; i < required_arg_regs; i++) | |
415 | { | |
09cc52fd RH |
416 | regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i, |
417 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
418 | regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i, | |
419 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
d2427a71 | 420 | } |
c906108c | 421 | |
09cc52fd RH |
422 | /* Finally, update the stack pointer. */ |
423 | regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp); | |
424 | ||
c88e30c0 | 425 | return sp; |
c906108c SS |
426 | } |
427 | ||
5ec2bb99 RH |
428 | /* Extract from REGCACHE the value about to be returned from a function |
429 | and copy it into VALBUF. */ | |
d2427a71 | 430 | |
dc129d82 | 431 | static void |
5ec2bb99 | 432 | alpha_extract_return_value (struct type *valtype, struct regcache *regcache, |
5b819568 | 433 | gdb_byte *valbuf) |
140f9984 | 434 | { |
7b5e1cb3 | 435 | int length = TYPE_LENGTH (valtype); |
2a1ce6ec | 436 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; |
5ec2bb99 RH |
437 | ULONGEST l; |
438 | ||
439 | switch (TYPE_CODE (valtype)) | |
440 | { | |
441 | case TYPE_CODE_FLT: | |
7b5e1cb3 | 442 | switch (length) |
5ec2bb99 RH |
443 | { |
444 | case 4: | |
445 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer); | |
c483c494 | 446 | alpha_sts (valbuf, raw_buffer); |
5ec2bb99 RH |
447 | break; |
448 | ||
449 | case 8: | |
450 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
451 | break; | |
452 | ||
24064b5c RH |
453 | case 16: |
454 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
455 | read_memory (l, valbuf, 16); | |
456 | break; | |
457 | ||
5ec2bb99 | 458 | default: |
323e0a4a | 459 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
5ec2bb99 RH |
460 | } |
461 | break; | |
462 | ||
7b5e1cb3 RH |
463 | case TYPE_CODE_COMPLEX: |
464 | switch (length) | |
465 | { | |
466 | case 8: | |
467 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
468 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
469 | break; | |
470 | ||
471 | case 16: | |
472 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
2a1ce6ec | 473 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8); |
7b5e1cb3 RH |
474 | break; |
475 | ||
476 | case 32: | |
477 | regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l); | |
478 | read_memory (l, valbuf, 32); | |
479 | break; | |
480 | ||
481 | default: | |
323e0a4a | 482 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
7b5e1cb3 RH |
483 | } |
484 | break; | |
485 | ||
5ec2bb99 RH |
486 | default: |
487 | /* Assume everything else degenerates to an integer. */ | |
488 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
7b5e1cb3 | 489 | store_unsigned_integer (valbuf, length, l); |
5ec2bb99 RH |
490 | break; |
491 | } | |
140f9984 JT |
492 | } |
493 | ||
5ec2bb99 RH |
494 | /* Insert the given value into REGCACHE as if it was being |
495 | returned by a function. */ | |
0d056799 | 496 | |
d2427a71 | 497 | static void |
5ec2bb99 | 498 | alpha_store_return_value (struct type *valtype, struct regcache *regcache, |
5b819568 | 499 | const gdb_byte *valbuf) |
c906108c | 500 | { |
d2427a71 | 501 | int length = TYPE_LENGTH (valtype); |
2a1ce6ec | 502 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; |
5ec2bb99 | 503 | ULONGEST l; |
d2427a71 | 504 | |
5ec2bb99 | 505 | switch (TYPE_CODE (valtype)) |
c906108c | 506 | { |
5ec2bb99 RH |
507 | case TYPE_CODE_FLT: |
508 | switch (length) | |
509 | { | |
510 | case 4: | |
c483c494 | 511 | alpha_lds (raw_buffer, valbuf); |
f75d70cc RH |
512 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer); |
513 | break; | |
5ec2bb99 RH |
514 | |
515 | case 8: | |
516 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
517 | break; | |
518 | ||
24064b5c RH |
519 | case 16: |
520 | /* FIXME: 128-bit long doubles are returned like structures: | |
521 | by writing into indirect storage provided by the caller | |
522 | as the first argument. */ | |
323e0a4a | 523 | error (_("Cannot set a 128-bit long double return value.")); |
24064b5c | 524 | |
5ec2bb99 | 525 | default: |
323e0a4a | 526 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
5ec2bb99 RH |
527 | } |
528 | break; | |
d2427a71 | 529 | |
7b5e1cb3 RH |
530 | case TYPE_CODE_COMPLEX: |
531 | switch (length) | |
532 | { | |
533 | case 8: | |
534 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
535 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
536 | break; | |
537 | ||
538 | case 16: | |
539 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
2a1ce6ec | 540 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8); |
7b5e1cb3 RH |
541 | break; |
542 | ||
543 | case 32: | |
544 | /* FIXME: 128-bit long doubles are returned like structures: | |
545 | by writing into indirect storage provided by the caller | |
546 | as the first argument. */ | |
323e0a4a | 547 | error (_("Cannot set a 128-bit long double return value.")); |
7b5e1cb3 RH |
548 | |
549 | default: | |
323e0a4a | 550 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
7b5e1cb3 RH |
551 | } |
552 | break; | |
553 | ||
5ec2bb99 RH |
554 | default: |
555 | /* Assume everything else degenerates to an integer. */ | |
0ede8eca RH |
556 | /* 32-bit values must be sign-extended to 64 bits |
557 | even if the base data type is unsigned. */ | |
558 | if (length == 4) | |
559 | valtype = builtin_type_int32; | |
5ec2bb99 RH |
560 | l = unpack_long (valtype, valbuf); |
561 | regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l); | |
562 | break; | |
563 | } | |
c906108c SS |
564 | } |
565 | ||
9823e921 | 566 | static enum return_value_convention |
c055b101 CV |
567 | alpha_return_value (struct gdbarch *gdbarch, struct type *func_type, |
568 | struct type *type, struct regcache *regcache, | |
569 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
9823e921 RH |
570 | { |
571 | enum type_code code = TYPE_CODE (type); | |
572 | ||
573 | if ((code == TYPE_CODE_STRUCT | |
574 | || code == TYPE_CODE_UNION | |
575 | || code == TYPE_CODE_ARRAY) | |
576 | && gdbarch_tdep (gdbarch)->return_in_memory (type)) | |
577 | { | |
578 | if (readbuf) | |
579 | { | |
580 | ULONGEST addr; | |
581 | regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr); | |
582 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
583 | } | |
584 | ||
585 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
586 | } | |
587 | ||
588 | if (readbuf) | |
589 | alpha_extract_return_value (type, regcache, readbuf); | |
590 | if (writebuf) | |
591 | alpha_store_return_value (type, regcache, writebuf); | |
592 | ||
593 | return RETURN_VALUE_REGISTER_CONVENTION; | |
594 | } | |
595 | ||
596 | static int | |
597 | alpha_return_in_memory_always (struct type *type) | |
598 | { | |
599 | return 1; | |
600 | } | |
d2427a71 | 601 | \f |
2a1ce6ec | 602 | static const gdb_byte * |
67d57894 | 603 | alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len) |
c906108c | 604 | { |
2a1ce6ec | 605 | static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */ |
c906108c | 606 | |
2a1ce6ec MK |
607 | *len = sizeof(break_insn); |
608 | return break_insn; | |
d2427a71 | 609 | } |
c906108c | 610 | |
d2427a71 RH |
611 | \f |
612 | /* This returns the PC of the first insn after the prologue. | |
613 | If we can't find the prologue, then return 0. */ | |
c906108c | 614 | |
d2427a71 RH |
615 | CORE_ADDR |
616 | alpha_after_prologue (CORE_ADDR pc) | |
c906108c | 617 | { |
d2427a71 RH |
618 | struct symtab_and_line sal; |
619 | CORE_ADDR func_addr, func_end; | |
c906108c | 620 | |
d2427a71 | 621 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c5aa993b | 622 | return 0; |
c906108c | 623 | |
d2427a71 RH |
624 | sal = find_pc_line (func_addr, 0); |
625 | if (sal.end < func_end) | |
626 | return sal.end; | |
c5aa993b | 627 | |
d2427a71 RH |
628 | /* The line after the prologue is after the end of the function. In this |
629 | case, tell the caller to find the prologue the hard way. */ | |
630 | return 0; | |
c906108c SS |
631 | } |
632 | ||
d2427a71 RH |
633 | /* Read an instruction from memory at PC, looking through breakpoints. */ |
634 | ||
635 | unsigned int | |
636 | alpha_read_insn (CORE_ADDR pc) | |
c906108c | 637 | { |
e8d2d628 | 638 | gdb_byte buf[ALPHA_INSN_SIZE]; |
d2427a71 | 639 | int status; |
c5aa993b | 640 | |
8defab1a | 641 | status = target_read_memory (pc, buf, sizeof (buf)); |
d2427a71 RH |
642 | if (status) |
643 | memory_error (status, pc); | |
e8d2d628 | 644 | return extract_unsigned_integer (buf, sizeof (buf)); |
d2427a71 | 645 | } |
c5aa993b | 646 | |
d2427a71 RH |
647 | /* To skip prologues, I use this predicate. Returns either PC itself |
648 | if the code at PC does not look like a function prologue; otherwise | |
649 | returns an address that (if we're lucky) follows the prologue. If | |
650 | LENIENT, then we must skip everything which is involved in setting | |
651 | up the frame (it's OK to skip more, just so long as we don't skip | |
652 | anything which might clobber the registers which are being saved. */ | |
c906108c | 653 | |
d2427a71 | 654 | static CORE_ADDR |
6093d2eb | 655 | alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
d2427a71 RH |
656 | { |
657 | unsigned long inst; | |
658 | int offset; | |
659 | CORE_ADDR post_prologue_pc; | |
e8d2d628 | 660 | gdb_byte buf[ALPHA_INSN_SIZE]; |
c906108c | 661 | |
d2427a71 RH |
662 | /* Silently return the unaltered pc upon memory errors. |
663 | This could happen on OSF/1 if decode_line_1 tries to skip the | |
664 | prologue for quickstarted shared library functions when the | |
665 | shared library is not yet mapped in. | |
666 | Reading target memory is slow over serial lines, so we perform | |
667 | this check only if the target has shared libraries (which all | |
668 | Alpha targets do). */ | |
e8d2d628 | 669 | if (target_read_memory (pc, buf, sizeof (buf))) |
d2427a71 | 670 | return pc; |
c906108c | 671 | |
d2427a71 RH |
672 | /* See if we can determine the end of the prologue via the symbol table. |
673 | If so, then return either PC, or the PC after the prologue, whichever | |
674 | is greater. */ | |
c906108c | 675 | |
d2427a71 RH |
676 | post_prologue_pc = alpha_after_prologue (pc); |
677 | if (post_prologue_pc != 0) | |
678 | return max (pc, post_prologue_pc); | |
c906108c | 679 | |
d2427a71 RH |
680 | /* Can't determine prologue from the symbol table, need to examine |
681 | instructions. */ | |
dc1b0db2 | 682 | |
d2427a71 RH |
683 | /* Skip the typical prologue instructions. These are the stack adjustment |
684 | instruction and the instructions that save registers on the stack | |
685 | or in the gcc frame. */ | |
e8d2d628 | 686 | for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE) |
d2427a71 RH |
687 | { |
688 | inst = alpha_read_insn (pc + offset); | |
c906108c | 689 | |
d2427a71 RH |
690 | if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */ |
691 | continue; | |
692 | if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */ | |
693 | continue; | |
694 | if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ | |
695 | continue; | |
696 | if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */ | |
697 | continue; | |
c906108c | 698 | |
d2427a71 RH |
699 | if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */ |
700 | || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */ | |
701 | && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */ | |
702 | continue; | |
c906108c | 703 | |
d2427a71 RH |
704 | if (inst == 0x47de040f) /* bis sp,sp,fp */ |
705 | continue; | |
706 | if (inst == 0x47fe040f) /* bis zero,sp,fp */ | |
707 | continue; | |
c906108c | 708 | |
d2427a71 | 709 | break; |
c906108c | 710 | } |
d2427a71 RH |
711 | return pc + offset; |
712 | } | |
c906108c | 713 | |
d2427a71 RH |
714 | \f |
715 | /* Figure out where the longjmp will land. | |
716 | We expect the first arg to be a pointer to the jmp_buf structure from | |
717 | which we extract the PC (JB_PC) that we will land at. The PC is copied | |
718 | into the "pc". This routine returns true on success. */ | |
c906108c SS |
719 | |
720 | static int | |
60ade65d | 721 | alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
c906108c | 722 | { |
60ade65d | 723 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); |
d2427a71 | 724 | CORE_ADDR jb_addr; |
2a1ce6ec | 725 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; |
c906108c | 726 | |
60ade65d | 727 | jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM); |
c906108c | 728 | |
d2427a71 RH |
729 | if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size), |
730 | raw_buffer, tdep->jb_elt_size)) | |
c906108c | 731 | return 0; |
d2427a71 | 732 | |
7c0b4a20 | 733 | *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size); |
d2427a71 | 734 | return 1; |
c906108c SS |
735 | } |
736 | ||
d2427a71 RH |
737 | \f |
738 | /* Frame unwinder for signal trampolines. We use alpha tdep bits that | |
739 | describe the location and shape of the sigcontext structure. After | |
740 | that, all registers are in memory, so it's easy. */ | |
741 | /* ??? Shouldn't we be able to do this generically, rather than with | |
742 | OSABI data specific to Alpha? */ | |
743 | ||
744 | struct alpha_sigtramp_unwind_cache | |
c906108c | 745 | { |
d2427a71 RH |
746 | CORE_ADDR sigcontext_addr; |
747 | }; | |
c906108c | 748 | |
d2427a71 | 749 | static struct alpha_sigtramp_unwind_cache * |
6834c9bb | 750 | alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame, |
d2427a71 RH |
751 | void **this_prologue_cache) |
752 | { | |
753 | struct alpha_sigtramp_unwind_cache *info; | |
754 | struct gdbarch_tdep *tdep; | |
c906108c | 755 | |
d2427a71 RH |
756 | if (*this_prologue_cache) |
757 | return *this_prologue_cache; | |
c906108c | 758 | |
d2427a71 RH |
759 | info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache); |
760 | *this_prologue_cache = info; | |
c906108c | 761 | |
6834c9bb JB |
762 | tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
763 | info->sigcontext_addr = tdep->sigcontext_addr (this_frame); | |
c906108c | 764 | |
d2427a71 | 765 | return info; |
c906108c SS |
766 | } |
767 | ||
138e7be5 MK |
768 | /* Return the address of REGNUM in a sigtramp frame. Since this is |
769 | all arithmetic, it doesn't seem worthwhile to cache it. */ | |
c5aa993b | 770 | |
d2427a71 | 771 | static CORE_ADDR |
be8626e0 MD |
772 | alpha_sigtramp_register_address (struct gdbarch *gdbarch, |
773 | CORE_ADDR sigcontext_addr, int regnum) | |
d2427a71 | 774 | { |
be8626e0 | 775 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
138e7be5 MK |
776 | |
777 | if (regnum >= 0 && regnum < 32) | |
778 | return sigcontext_addr + tdep->sc_regs_offset + regnum * 8; | |
779 | else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32) | |
780 | return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8; | |
781 | else if (regnum == ALPHA_PC_REGNUM) | |
782 | return sigcontext_addr + tdep->sc_pc_offset; | |
c5aa993b | 783 | |
d2427a71 | 784 | return 0; |
c906108c SS |
785 | } |
786 | ||
d2427a71 RH |
787 | /* Given a GDB frame, determine the address of the calling function's |
788 | frame. This will be used to create a new GDB frame struct. */ | |
140f9984 | 789 | |
dc129d82 | 790 | static void |
6834c9bb | 791 | alpha_sigtramp_frame_this_id (struct frame_info *this_frame, |
d2427a71 RH |
792 | void **this_prologue_cache, |
793 | struct frame_id *this_id) | |
c906108c | 794 | { |
6834c9bb | 795 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
be8626e0 | 796 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d2427a71 | 797 | struct alpha_sigtramp_unwind_cache *info |
6834c9bb | 798 | = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
d2427a71 RH |
799 | CORE_ADDR stack_addr, code_addr; |
800 | ||
801 | /* If the OSABI couldn't locate the sigcontext, give up. */ | |
802 | if (info->sigcontext_addr == 0) | |
803 | return; | |
804 | ||
805 | /* If we have dynamic signal trampolines, find their start. | |
806 | If we do not, then we must assume there is a symbol record | |
807 | that can provide the start address. */ | |
d2427a71 | 808 | if (tdep->dynamic_sigtramp_offset) |
c906108c | 809 | { |
d2427a71 | 810 | int offset; |
6834c9bb | 811 | code_addr = get_frame_pc (this_frame); |
d2427a71 RH |
812 | offset = tdep->dynamic_sigtramp_offset (code_addr); |
813 | if (offset >= 0) | |
814 | code_addr -= offset; | |
c906108c | 815 | else |
d2427a71 | 816 | code_addr = 0; |
c906108c | 817 | } |
d2427a71 | 818 | else |
6834c9bb | 819 | code_addr = get_frame_func (this_frame); |
c906108c | 820 | |
d2427a71 | 821 | /* The stack address is trivially read from the sigcontext. */ |
be8626e0 | 822 | stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr, |
d2427a71 | 823 | ALPHA_SP_REGNUM); |
6834c9bb | 824 | stack_addr = get_frame_memory_unsigned (this_frame, stack_addr, |
b21fd293 | 825 | ALPHA_REGISTER_SIZE); |
c906108c | 826 | |
d2427a71 | 827 | *this_id = frame_id_build (stack_addr, code_addr); |
c906108c SS |
828 | } |
829 | ||
d2427a71 | 830 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
c906108c | 831 | |
6834c9bb JB |
832 | static struct value * |
833 | alpha_sigtramp_frame_prev_register (struct frame_info *this_frame, | |
834 | void **this_prologue_cache, int regnum) | |
c906108c | 835 | { |
d2427a71 | 836 | struct alpha_sigtramp_unwind_cache *info |
6834c9bb | 837 | = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
d2427a71 | 838 | CORE_ADDR addr; |
c906108c | 839 | |
d2427a71 | 840 | if (info->sigcontext_addr != 0) |
c906108c | 841 | { |
d2427a71 | 842 | /* All integer and fp registers are stored in memory. */ |
6834c9bb | 843 | addr = alpha_sigtramp_register_address (get_frame_arch (this_frame), |
be8626e0 | 844 | info->sigcontext_addr, regnum); |
d2427a71 | 845 | if (addr != 0) |
6834c9bb | 846 | return frame_unwind_got_memory (this_frame, regnum, addr); |
c906108c SS |
847 | } |
848 | ||
d2427a71 RH |
849 | /* This extra register may actually be in the sigcontext, but our |
850 | current description of it in alpha_sigtramp_frame_unwind_cache | |
851 | doesn't include it. Too bad. Fall back on whatever's in the | |
852 | outer frame. */ | |
6834c9bb | 853 | return frame_unwind_got_register (this_frame, regnum, regnum); |
d2427a71 | 854 | } |
c906108c | 855 | |
6834c9bb JB |
856 | static int |
857 | alpha_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
858 | struct frame_info *this_frame, | |
859 | void **this_prologue_cache) | |
d2427a71 | 860 | { |
6834c9bb JB |
861 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
862 | CORE_ADDR pc = get_frame_pc (this_frame); | |
d2427a71 | 863 | char *name; |
c906108c | 864 | |
f2524b93 AC |
865 | /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead |
866 | look at tramp-frame.h and other simplier per-architecture | |
867 | sigtramp unwinders. */ | |
868 | ||
869 | /* We shouldn't even bother to try if the OSABI didn't register a | |
870 | sigcontext_addr handler or pc_in_sigtramp hander. */ | |
ec7cc0e8 | 871 | if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL) |
6834c9bb | 872 | return 0; |
ec7cc0e8 | 873 | if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL) |
6834c9bb | 874 | return 0; |
c906108c | 875 | |
d2427a71 RH |
876 | /* Otherwise we should be in a signal frame. */ |
877 | find_pc_partial_function (pc, &name, NULL, NULL); | |
ec7cc0e8 | 878 | if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (pc, name)) |
6834c9bb | 879 | return 1; |
c906108c | 880 | |
6834c9bb | 881 | return 0; |
c906108c | 882 | } |
6834c9bb JB |
883 | |
884 | static const struct frame_unwind alpha_sigtramp_frame_unwind = { | |
885 | SIGTRAMP_FRAME, | |
886 | alpha_sigtramp_frame_this_id, | |
887 | alpha_sigtramp_frame_prev_register, | |
888 | NULL, | |
889 | alpha_sigtramp_frame_sniffer | |
890 | }; | |
891 | ||
d2427a71 | 892 | \f |
c906108c | 893 | |
d2427a71 RH |
894 | /* Heuristic_proc_start may hunt through the text section for a long |
895 | time across a 2400 baud serial line. Allows the user to limit this | |
896 | search. */ | |
897 | static unsigned int heuristic_fence_post = 0; | |
c906108c | 898 | |
d2427a71 RH |
899 | /* Attempt to locate the start of the function containing PC. We assume that |
900 | the previous function ends with an about_to_return insn. Not foolproof by | |
901 | any means, since gcc is happy to put the epilogue in the middle of a | |
902 | function. But we're guessing anyway... */ | |
c906108c | 903 | |
d2427a71 | 904 | static CORE_ADDR |
be8626e0 | 905 | alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc) |
d2427a71 | 906 | { |
be8626e0 | 907 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d2427a71 RH |
908 | CORE_ADDR last_non_nop = pc; |
909 | CORE_ADDR fence = pc - heuristic_fence_post; | |
910 | CORE_ADDR orig_pc = pc; | |
fbe586ae | 911 | CORE_ADDR func; |
d6b48e9c | 912 | struct inferior *inf; |
9e0b60a8 | 913 | |
d2427a71 RH |
914 | if (pc == 0) |
915 | return 0; | |
9e0b60a8 | 916 | |
fbe586ae RH |
917 | /* First see if we can find the start of the function from minimal |
918 | symbol information. This can succeed with a binary that doesn't | |
919 | have debug info, but hasn't been stripped. */ | |
920 | func = get_pc_function_start (pc); | |
921 | if (func) | |
922 | return func; | |
923 | ||
d2427a71 RH |
924 | if (heuristic_fence_post == UINT_MAX |
925 | || fence < tdep->vm_min_address) | |
926 | fence = tdep->vm_min_address; | |
c906108c | 927 | |
d2427a71 RH |
928 | /* Search back for previous return; also stop at a 0, which might be |
929 | seen for instance before the start of a code section. Don't include | |
930 | nops, since this usually indicates padding between functions. */ | |
e8d2d628 | 931 | for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE) |
c906108c | 932 | { |
d2427a71 RH |
933 | unsigned int insn = alpha_read_insn (pc); |
934 | switch (insn) | |
c906108c | 935 | { |
d2427a71 RH |
936 | case 0: /* invalid insn */ |
937 | case 0x6bfa8001: /* ret $31,($26),1 */ | |
938 | return last_non_nop; | |
939 | ||
940 | case 0x2ffe0000: /* unop: ldq_u $31,0($30) */ | |
941 | case 0x47ff041f: /* nop: bis $31,$31,$31 */ | |
942 | break; | |
943 | ||
944 | default: | |
945 | last_non_nop = pc; | |
946 | break; | |
c906108c | 947 | } |
d2427a71 | 948 | } |
c906108c | 949 | |
d6b48e9c PA |
950 | inf = current_inferior (); |
951 | ||
d2427a71 RH |
952 | /* It's not clear to me why we reach this point when stopping quietly, |
953 | but with this test, at least we don't print out warnings for every | |
954 | child forked (eg, on decstation). 22apr93 [email protected]. */ | |
d6b48e9c | 955 | if (inf->stop_soon == NO_STOP_QUIETLY) |
d2427a71 RH |
956 | { |
957 | static int blurb_printed = 0; | |
c906108c | 958 | |
d2427a71 | 959 | if (fence == tdep->vm_min_address) |
323e0a4a AC |
960 | warning (_("Hit beginning of text section without finding \ |
961 | enclosing function for address 0x%s"), paddr_nz (orig_pc)); | |
c906108c | 962 | else |
323e0a4a AC |
963 | warning (_("Hit heuristic-fence-post without finding \ |
964 | enclosing function for address 0x%s"), paddr_nz (orig_pc)); | |
c906108c | 965 | |
d2427a71 RH |
966 | if (!blurb_printed) |
967 | { | |
323e0a4a | 968 | printf_filtered (_("\ |
d2427a71 RH |
969 | This warning occurs if you are debugging a function without any symbols\n\ |
970 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
971 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
972 | \n\ | |
973 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
323e0a4a | 974 | (more likely) you have encountered a bug in GDB.\n")); |
d2427a71 RH |
975 | blurb_printed = 1; |
976 | } | |
977 | } | |
c906108c | 978 | |
d2427a71 RH |
979 | return 0; |
980 | } | |
c906108c | 981 | |
07ea644b MD |
982 | /* Fallback alpha frame unwinder. Uses instruction scanning and knows |
983 | something about the traditional layout of alpha stack frames. */ | |
984 | ||
985 | struct alpha_heuristic_unwind_cache | |
986 | { | |
987 | CORE_ADDR vfp; | |
988 | CORE_ADDR start_pc; | |
989 | struct trad_frame_saved_reg *saved_regs; | |
990 | int return_reg; | |
991 | }; | |
992 | ||
fbe586ae | 993 | static struct alpha_heuristic_unwind_cache * |
6834c9bb | 994 | alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame, |
d2427a71 RH |
995 | void **this_prologue_cache, |
996 | CORE_ADDR start_pc) | |
997 | { | |
6834c9bb | 998 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
d2427a71 RH |
999 | struct alpha_heuristic_unwind_cache *info; |
1000 | ULONGEST val; | |
1001 | CORE_ADDR limit_pc, cur_pc; | |
1002 | int frame_reg, frame_size, return_reg, reg; | |
c906108c | 1003 | |
d2427a71 RH |
1004 | if (*this_prologue_cache) |
1005 | return *this_prologue_cache; | |
c906108c | 1006 | |
d2427a71 RH |
1007 | info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache); |
1008 | *this_prologue_cache = info; | |
6834c9bb | 1009 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
c906108c | 1010 | |
6834c9bb | 1011 | limit_pc = get_frame_pc (this_frame); |
d2427a71 | 1012 | if (start_pc == 0) |
be8626e0 | 1013 | start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc); |
d2427a71 | 1014 | info->start_pc = start_pc; |
c906108c | 1015 | |
d2427a71 RH |
1016 | frame_reg = ALPHA_SP_REGNUM; |
1017 | frame_size = 0; | |
1018 | return_reg = -1; | |
c906108c | 1019 | |
d2427a71 RH |
1020 | /* If we've identified a likely place to start, do code scanning. */ |
1021 | if (start_pc != 0) | |
c5aa993b | 1022 | { |
d2427a71 RH |
1023 | /* Limit the forward search to 50 instructions. */ |
1024 | if (start_pc + 200 < limit_pc) | |
1025 | limit_pc = start_pc + 200; | |
c5aa993b | 1026 | |
e8d2d628 | 1027 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE) |
d2427a71 RH |
1028 | { |
1029 | unsigned int word = alpha_read_insn (cur_pc); | |
c5aa993b | 1030 | |
d2427a71 RH |
1031 | if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ |
1032 | { | |
1033 | if (word & 0x8000) | |
1034 | { | |
1035 | /* Consider only the first stack allocation instruction | |
1036 | to contain the static size of the frame. */ | |
1037 | if (frame_size == 0) | |
1038 | frame_size = (-word) & 0xffff; | |
1039 | } | |
1040 | else | |
1041 | { | |
1042 | /* Exit loop if a positive stack adjustment is found, which | |
1043 | usually means that the stack cleanup code in the function | |
1044 | epilogue is reached. */ | |
1045 | break; | |
1046 | } | |
1047 | } | |
1048 | else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ | |
1049 | { | |
1050 | reg = (word & 0x03e00000) >> 21; | |
1051 | ||
d15bfd3a AC |
1052 | /* Ignore this instruction if we have already encountered |
1053 | an instruction saving the same register earlier in the | |
1054 | function code. The current instruction does not tell | |
1055 | us where the original value upon function entry is saved. | |
1056 | All it says is that the function we are scanning reused | |
1057 | that register for some computation of its own, and is now | |
1058 | saving its result. */ | |
07ea644b | 1059 | if (trad_frame_addr_p(info->saved_regs, reg)) |
d15bfd3a AC |
1060 | continue; |
1061 | ||
d2427a71 RH |
1062 | if (reg == 31) |
1063 | continue; | |
1064 | ||
1065 | /* Do not compute the address where the register was saved yet, | |
1066 | because we don't know yet if the offset will need to be | |
1067 | relative to $sp or $fp (we can not compute the address | |
1068 | relative to $sp if $sp is updated during the execution of | |
1069 | the current subroutine, for instance when doing some alloca). | |
1070 | So just store the offset for the moment, and compute the | |
1071 | address later when we know whether this frame has a frame | |
1072 | pointer or not. */ | |
1073 | /* Hack: temporarily add one, so that the offset is non-zero | |
1074 | and we can tell which registers have save offsets below. */ | |
07ea644b | 1075 | info->saved_regs[reg].addr = (word & 0xffff) + 1; |
d2427a71 RH |
1076 | |
1077 | /* Starting with OSF/1-3.2C, the system libraries are shipped | |
1078 | without local symbols, but they still contain procedure | |
1079 | descriptors without a symbol reference. GDB is currently | |
1080 | unable to find these procedure descriptors and uses | |
1081 | heuristic_proc_desc instead. | |
1082 | As some low level compiler support routines (__div*, __add*) | |
1083 | use a non-standard return address register, we have to | |
1084 | add some heuristics to determine the return address register, | |
1085 | or stepping over these routines will fail. | |
1086 | Usually the return address register is the first register | |
1087 | saved on the stack, but assembler optimization might | |
1088 | rearrange the register saves. | |
1089 | So we recognize only a few registers (t7, t9, ra) within | |
1090 | the procedure prologue as valid return address registers. | |
1091 | If we encounter a return instruction, we extract the | |
1092 | the return address register from it. | |
1093 | ||
1094 | FIXME: Rewriting GDB to access the procedure descriptors, | |
1095 | e.g. via the minimal symbol table, might obviate this hack. */ | |
1096 | if (return_reg == -1 | |
1097 | && cur_pc < (start_pc + 80) | |
1098 | && (reg == ALPHA_T7_REGNUM | |
1099 | || reg == ALPHA_T9_REGNUM | |
1100 | || reg == ALPHA_RA_REGNUM)) | |
1101 | return_reg = reg; | |
1102 | } | |
1103 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1104 | return_reg = (word >> 16) & 0x1f; | |
1105 | else if (word == 0x47de040f) /* bis sp,sp,fp */ | |
1106 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1107 | else if (word == 0x47fe040f) /* bis zero,sp,fp */ | |
1108 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1109 | } | |
c5aa993b | 1110 | |
d2427a71 RH |
1111 | /* If we haven't found a valid return address register yet, keep |
1112 | searching in the procedure prologue. */ | |
1113 | if (return_reg == -1) | |
1114 | { | |
1115 | while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80)) | |
1116 | { | |
1117 | unsigned int word = alpha_read_insn (cur_pc); | |
c5aa993b | 1118 | |
d2427a71 RH |
1119 | if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ |
1120 | { | |
1121 | reg = (word & 0x03e00000) >> 21; | |
1122 | if (reg == ALPHA_T7_REGNUM | |
1123 | || reg == ALPHA_T9_REGNUM | |
1124 | || reg == ALPHA_RA_REGNUM) | |
1125 | { | |
1126 | return_reg = reg; | |
1127 | break; | |
1128 | } | |
1129 | } | |
1130 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1131 | { | |
1132 | return_reg = (word >> 16) & 0x1f; | |
1133 | break; | |
1134 | } | |
85b32d22 | 1135 | |
e8d2d628 | 1136 | cur_pc += ALPHA_INSN_SIZE; |
d2427a71 RH |
1137 | } |
1138 | } | |
c906108c | 1139 | } |
c906108c | 1140 | |
d2427a71 RH |
1141 | /* Failing that, do default to the customary RA. */ |
1142 | if (return_reg == -1) | |
1143 | return_reg = ALPHA_RA_REGNUM; | |
1144 | info->return_reg = return_reg; | |
f8453e34 | 1145 | |
6834c9bb | 1146 | val = get_frame_register_unsigned (this_frame, frame_reg); |
d2427a71 | 1147 | info->vfp = val + frame_size; |
c906108c | 1148 | |
d2427a71 RH |
1149 | /* Convert offsets to absolute addresses. See above about adding |
1150 | one to the offsets to make all detected offsets non-zero. */ | |
1151 | for (reg = 0; reg < ALPHA_NUM_REGS; ++reg) | |
07ea644b MD |
1152 | if (trad_frame_addr_p(info->saved_regs, reg)) |
1153 | info->saved_regs[reg].addr += val - 1; | |
d2427a71 | 1154 | |
bfd66dd9 JB |
1155 | /* The stack pointer of the previous frame is computed by popping |
1156 | the current stack frame. */ | |
1157 | if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM)) | |
1158 | trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp); | |
1159 | ||
d2427a71 | 1160 | return info; |
c906108c | 1161 | } |
c906108c | 1162 | |
d2427a71 RH |
1163 | /* Given a GDB frame, determine the address of the calling function's |
1164 | frame. This will be used to create a new GDB frame struct. */ | |
1165 | ||
fbe586ae | 1166 | static void |
6834c9bb JB |
1167 | alpha_heuristic_frame_this_id (struct frame_info *this_frame, |
1168 | void **this_prologue_cache, | |
1169 | struct frame_id *this_id) | |
c906108c | 1170 | { |
d2427a71 | 1171 | struct alpha_heuristic_unwind_cache *info |
6834c9bb | 1172 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); |
c906108c | 1173 | |
d2427a71 | 1174 | *this_id = frame_id_build (info->vfp, info->start_pc); |
c906108c SS |
1175 | } |
1176 | ||
d2427a71 RH |
1177 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
1178 | ||
6834c9bb JB |
1179 | static struct value * |
1180 | alpha_heuristic_frame_prev_register (struct frame_info *this_frame, | |
1181 | void **this_prologue_cache, int regnum) | |
c906108c | 1182 | { |
d2427a71 | 1183 | struct alpha_heuristic_unwind_cache *info |
6834c9bb | 1184 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); |
d2427a71 RH |
1185 | |
1186 | /* The PC of the previous frame is stored in the link register of | |
1187 | the current frame. Frob regnum so that we pull the value from | |
1188 | the correct place. */ | |
1189 | if (regnum == ALPHA_PC_REGNUM) | |
1190 | regnum = info->return_reg; | |
1191 | ||
6834c9bb | 1192 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); |
95b80706 JT |
1193 | } |
1194 | ||
d2427a71 RH |
1195 | static const struct frame_unwind alpha_heuristic_frame_unwind = { |
1196 | NORMAL_FRAME, | |
1197 | alpha_heuristic_frame_this_id, | |
6834c9bb JB |
1198 | alpha_heuristic_frame_prev_register, |
1199 | NULL, | |
1200 | default_frame_sniffer | |
d2427a71 | 1201 | }; |
c906108c | 1202 | |
fbe586ae | 1203 | static CORE_ADDR |
6834c9bb | 1204 | alpha_heuristic_frame_base_address (struct frame_info *this_frame, |
d2427a71 | 1205 | void **this_prologue_cache) |
c906108c | 1206 | { |
d2427a71 | 1207 | struct alpha_heuristic_unwind_cache *info |
6834c9bb | 1208 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); |
c906108c | 1209 | |
d2427a71 | 1210 | return info->vfp; |
c906108c SS |
1211 | } |
1212 | ||
d2427a71 RH |
1213 | static const struct frame_base alpha_heuristic_frame_base = { |
1214 | &alpha_heuristic_frame_unwind, | |
1215 | alpha_heuristic_frame_base_address, | |
1216 | alpha_heuristic_frame_base_address, | |
1217 | alpha_heuristic_frame_base_address | |
1218 | }; | |
1219 | ||
c906108c | 1220 | /* Just like reinit_frame_cache, but with the right arguments to be |
d2427a71 | 1221 | callable as an sfunc. Used by the "set heuristic-fence-post" command. */ |
c906108c SS |
1222 | |
1223 | static void | |
fba45db2 | 1224 | reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c) |
c906108c SS |
1225 | { |
1226 | reinit_frame_cache (); | |
1227 | } | |
1228 | ||
d2427a71 | 1229 | \f |
d2427a71 RH |
1230 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
1231 | dummy frame. The frame ID's base needs to match the TOS value | |
1232 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1233 | breakpoint. */ | |
d734c450 | 1234 | |
d2427a71 | 1235 | static struct frame_id |
6834c9bb | 1236 | alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
0d056799 | 1237 | { |
d2427a71 | 1238 | ULONGEST base; |
6834c9bb JB |
1239 | base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM); |
1240 | return frame_id_build (base, get_frame_pc (this_frame)); | |
0d056799 JT |
1241 | } |
1242 | ||
dc129d82 | 1243 | static CORE_ADDR |
d2427a71 | 1244 | alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
accc6d1f | 1245 | { |
d2427a71 | 1246 | ULONGEST pc; |
11411de3 | 1247 | pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM); |
d2427a71 | 1248 | return pc; |
accc6d1f JT |
1249 | } |
1250 | ||
98a8e1e5 RH |
1251 | \f |
1252 | /* Helper routines for alpha*-nat.c files to move register sets to and | |
1253 | from core files. The UNIQUE pointer is allowed to be NULL, as most | |
1254 | targets don't supply this value in their core files. */ | |
1255 | ||
1256 | void | |
390c1522 UW |
1257 | alpha_supply_int_regs (struct regcache *regcache, int regno, |
1258 | const void *r0_r30, const void *pc, const void *unique) | |
98a8e1e5 | 1259 | { |
2a1ce6ec | 1260 | const gdb_byte *regs = r0_r30; |
98a8e1e5 RH |
1261 | int i; |
1262 | ||
1263 | for (i = 0; i < 31; ++i) | |
1264 | if (regno == i || regno == -1) | |
390c1522 | 1265 | regcache_raw_supply (regcache, i, regs + i * 8); |
98a8e1e5 RH |
1266 | |
1267 | if (regno == ALPHA_ZERO_REGNUM || regno == -1) | |
390c1522 | 1268 | regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL); |
98a8e1e5 RH |
1269 | |
1270 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
390c1522 | 1271 | regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc); |
98a8e1e5 RH |
1272 | |
1273 | if (regno == ALPHA_UNIQUE_REGNUM || regno == -1) | |
390c1522 | 1274 | regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique); |
98a8e1e5 RH |
1275 | } |
1276 | ||
1277 | void | |
390c1522 UW |
1278 | alpha_fill_int_regs (const struct regcache *regcache, |
1279 | int regno, void *r0_r30, void *pc, void *unique) | |
98a8e1e5 | 1280 | { |
2a1ce6ec | 1281 | gdb_byte *regs = r0_r30; |
98a8e1e5 RH |
1282 | int i; |
1283 | ||
1284 | for (i = 0; i < 31; ++i) | |
1285 | if (regno == i || regno == -1) | |
390c1522 | 1286 | regcache_raw_collect (regcache, i, regs + i * 8); |
98a8e1e5 RH |
1287 | |
1288 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
390c1522 | 1289 | regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc); |
98a8e1e5 RH |
1290 | |
1291 | if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1)) | |
390c1522 | 1292 | regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique); |
98a8e1e5 RH |
1293 | } |
1294 | ||
1295 | void | |
390c1522 UW |
1296 | alpha_supply_fp_regs (struct regcache *regcache, int regno, |
1297 | const void *f0_f30, const void *fpcr) | |
98a8e1e5 | 1298 | { |
2a1ce6ec | 1299 | const gdb_byte *regs = f0_f30; |
98a8e1e5 RH |
1300 | int i; |
1301 | ||
1302 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1303 | if (regno == i || regno == -1) | |
390c1522 | 1304 | regcache_raw_supply (regcache, i, |
2a1ce6ec | 1305 | regs + (i - ALPHA_FP0_REGNUM) * 8); |
98a8e1e5 RH |
1306 | |
1307 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
390c1522 | 1308 | regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr); |
98a8e1e5 RH |
1309 | } |
1310 | ||
1311 | void | |
390c1522 UW |
1312 | alpha_fill_fp_regs (const struct regcache *regcache, |
1313 | int regno, void *f0_f30, void *fpcr) | |
98a8e1e5 | 1314 | { |
2a1ce6ec | 1315 | gdb_byte *regs = f0_f30; |
98a8e1e5 RH |
1316 | int i; |
1317 | ||
1318 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1319 | if (regno == i || regno == -1) | |
390c1522 | 1320 | regcache_raw_collect (regcache, i, |
2a1ce6ec | 1321 | regs + (i - ALPHA_FP0_REGNUM) * 8); |
98a8e1e5 RH |
1322 | |
1323 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
390c1522 | 1324 | regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr); |
98a8e1e5 RH |
1325 | } |
1326 | ||
d2427a71 | 1327 | \f |
0de94d4b JB |
1328 | |
1329 | /* Return nonzero if the G_floating register value in REG is equal to | |
1330 | zero for FP control instructions. */ | |
1331 | ||
1332 | static int | |
1333 | fp_register_zero_p (LONGEST reg) | |
1334 | { | |
1335 | /* Check that all bits except the sign bit are zero. */ | |
1336 | const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1; | |
1337 | ||
1338 | return ((reg & zero_mask) == 0); | |
1339 | } | |
1340 | ||
1341 | /* Return the value of the sign bit for the G_floating register | |
1342 | value held in REG. */ | |
1343 | ||
1344 | static int | |
1345 | fp_register_sign_bit (LONGEST reg) | |
1346 | { | |
1347 | const LONGEST sign_mask = (LONGEST) 1 << 63; | |
1348 | ||
1349 | return ((reg & sign_mask) != 0); | |
1350 | } | |
1351 | ||
ec32e4be JT |
1352 | /* alpha_software_single_step() is called just before we want to resume |
1353 | the inferior, if we want to single-step it but there is no hardware | |
1354 | or kernel single-step support (NetBSD on Alpha, for example). We find | |
e0cd558a | 1355 | the target of the coming instruction and breakpoint it. */ |
ec32e4be JT |
1356 | |
1357 | static CORE_ADDR | |
0b1b3e42 | 1358 | alpha_next_pc (struct frame_info *frame, CORE_ADDR pc) |
ec32e4be JT |
1359 | { |
1360 | unsigned int insn; | |
1361 | unsigned int op; | |
551e4f2e | 1362 | int regno; |
ec32e4be JT |
1363 | int offset; |
1364 | LONGEST rav; | |
1365 | ||
b21fd293 | 1366 | insn = alpha_read_insn (pc); |
ec32e4be JT |
1367 | |
1368 | /* Opcode is top 6 bits. */ | |
1369 | op = (insn >> 26) & 0x3f; | |
1370 | ||
1371 | if (op == 0x1a) | |
1372 | { | |
1373 | /* Jump format: target PC is: | |
1374 | RB & ~3 */ | |
0b1b3e42 | 1375 | return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3); |
ec32e4be JT |
1376 | } |
1377 | ||
1378 | if ((op & 0x30) == 0x30) | |
1379 | { | |
1380 | /* Branch format: target PC is: | |
1381 | (new PC) + (4 * sext(displacement)) */ | |
1382 | if (op == 0x30 || /* BR */ | |
1383 | op == 0x34) /* BSR */ | |
1384 | { | |
1385 | branch_taken: | |
1386 | offset = (insn & 0x001fffff); | |
1387 | if (offset & 0x00100000) | |
1388 | offset |= 0xffe00000; | |
e8d2d628 MK |
1389 | offset *= ALPHA_INSN_SIZE; |
1390 | return (pc + ALPHA_INSN_SIZE + offset); | |
ec32e4be JT |
1391 | } |
1392 | ||
1393 | /* Need to determine if branch is taken; read RA. */ | |
551e4f2e JB |
1394 | regno = (insn >> 21) & 0x1f; |
1395 | switch (op) | |
1396 | { | |
1397 | case 0x31: /* FBEQ */ | |
1398 | case 0x36: /* FBGE */ | |
1399 | case 0x37: /* FBGT */ | |
1400 | case 0x33: /* FBLE */ | |
1401 | case 0x32: /* FBLT */ | |
1402 | case 0x35: /* FBNE */ | |
ec7cc0e8 | 1403 | regno += gdbarch_fp0_regnum (get_frame_arch (frame)); |
551e4f2e JB |
1404 | } |
1405 | ||
0b1b3e42 | 1406 | rav = get_frame_register_signed (frame, regno); |
0de94d4b | 1407 | |
ec32e4be JT |
1408 | switch (op) |
1409 | { | |
1410 | case 0x38: /* BLBC */ | |
1411 | if ((rav & 1) == 0) | |
1412 | goto branch_taken; | |
1413 | break; | |
1414 | case 0x3c: /* BLBS */ | |
1415 | if (rav & 1) | |
1416 | goto branch_taken; | |
1417 | break; | |
1418 | case 0x39: /* BEQ */ | |
1419 | if (rav == 0) | |
1420 | goto branch_taken; | |
1421 | break; | |
1422 | case 0x3d: /* BNE */ | |
1423 | if (rav != 0) | |
1424 | goto branch_taken; | |
1425 | break; | |
1426 | case 0x3a: /* BLT */ | |
1427 | if (rav < 0) | |
1428 | goto branch_taken; | |
1429 | break; | |
1430 | case 0x3b: /* BLE */ | |
1431 | if (rav <= 0) | |
1432 | goto branch_taken; | |
1433 | break; | |
1434 | case 0x3f: /* BGT */ | |
1435 | if (rav > 0) | |
1436 | goto branch_taken; | |
1437 | break; | |
1438 | case 0x3e: /* BGE */ | |
1439 | if (rav >= 0) | |
1440 | goto branch_taken; | |
1441 | break; | |
d2427a71 | 1442 | |
0de94d4b JB |
1443 | /* Floating point branches. */ |
1444 | ||
1445 | case 0x31: /* FBEQ */ | |
1446 | if (fp_register_zero_p (rav)) | |
1447 | goto branch_taken; | |
1448 | break; | |
1449 | case 0x36: /* FBGE */ | |
1450 | if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav)) | |
1451 | goto branch_taken; | |
1452 | break; | |
1453 | case 0x37: /* FBGT */ | |
1454 | if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav)) | |
1455 | goto branch_taken; | |
1456 | break; | |
1457 | case 0x33: /* FBLE */ | |
1458 | if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav)) | |
1459 | goto branch_taken; | |
1460 | break; | |
1461 | case 0x32: /* FBLT */ | |
1462 | if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav)) | |
1463 | goto branch_taken; | |
1464 | break; | |
1465 | case 0x35: /* FBNE */ | |
1466 | if (! fp_register_zero_p (rav)) | |
1467 | goto branch_taken; | |
1468 | break; | |
ec32e4be JT |
1469 | } |
1470 | } | |
1471 | ||
1472 | /* Not a branch or branch not taken; target PC is: | |
1473 | pc + 4 */ | |
e8d2d628 | 1474 | return (pc + ALPHA_INSN_SIZE); |
ec32e4be JT |
1475 | } |
1476 | ||
e6590a1b | 1477 | int |
0b1b3e42 | 1478 | alpha_software_single_step (struct frame_info *frame) |
ec32e4be | 1479 | { |
e0cd558a | 1480 | CORE_ADDR pc, next_pc; |
ec32e4be | 1481 | |
0b1b3e42 UW |
1482 | pc = get_frame_pc (frame); |
1483 | next_pc = alpha_next_pc (frame, pc); | |
ec32e4be | 1484 | |
e0cd558a | 1485 | insert_single_step_breakpoint (next_pc); |
e6590a1b | 1486 | return 1; |
c906108c SS |
1487 | } |
1488 | ||
dc129d82 | 1489 | \f |
dc129d82 JT |
1490 | /* Initialize the current architecture based on INFO. If possible, re-use an |
1491 | architecture from ARCHES, which is a list of architectures already created | |
1492 | during this debugging session. | |
1493 | ||
1494 | Called e.g. at program startup, when reading a core file, and when reading | |
1495 | a binary file. */ | |
1496 | ||
1497 | static struct gdbarch * | |
1498 | alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1499 | { | |
1500 | struct gdbarch_tdep *tdep; | |
1501 | struct gdbarch *gdbarch; | |
dc129d82 JT |
1502 | |
1503 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 1504 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
dc129d82 | 1505 | { |
4be87837 DJ |
1506 | /* If it's an ECOFF file, assume it's OSF/1. */ |
1507 | if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour) | |
aff87235 | 1508 | info.osabi = GDB_OSABI_OSF1; |
dc129d82 JT |
1509 | } |
1510 | ||
1511 | /* Find a candidate among extant architectures. */ | |
4be87837 DJ |
1512 | arches = gdbarch_list_lookup_by_info (arches, &info); |
1513 | if (arches != NULL) | |
1514 | return arches->gdbarch; | |
dc129d82 JT |
1515 | |
1516 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
1517 | gdbarch = gdbarch_alloc (&info, tdep); | |
1518 | ||
d2427a71 RH |
1519 | /* Lowest text address. This is used by heuristic_proc_start() |
1520 | to decide when to stop looking. */ | |
594706e6 | 1521 | tdep->vm_min_address = (CORE_ADDR) 0x120000000LL; |
d9b023cc | 1522 | |
36a6271d | 1523 | tdep->dynamic_sigtramp_offset = NULL; |
5868c862 | 1524 | tdep->sigcontext_addr = NULL; |
138e7be5 MK |
1525 | tdep->sc_pc_offset = 2 * 8; |
1526 | tdep->sc_regs_offset = 4 * 8; | |
1527 | tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8; | |
36a6271d | 1528 | |
accc6d1f JT |
1529 | tdep->jb_pc = -1; /* longjmp support not enabled by default */ |
1530 | ||
9823e921 RH |
1531 | tdep->return_in_memory = alpha_return_in_memory_always; |
1532 | ||
dc129d82 JT |
1533 | /* Type sizes */ |
1534 | set_gdbarch_short_bit (gdbarch, 16); | |
1535 | set_gdbarch_int_bit (gdbarch, 32); | |
1536 | set_gdbarch_long_bit (gdbarch, 64); | |
1537 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1538 | set_gdbarch_float_bit (gdbarch, 32); | |
1539 | set_gdbarch_double_bit (gdbarch, 64); | |
1540 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1541 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1542 | ||
1543 | /* Register info */ | |
1544 | set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS); | |
1545 | set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM); | |
dc129d82 JT |
1546 | set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM); |
1547 | set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM); | |
1548 | ||
1549 | set_gdbarch_register_name (gdbarch, alpha_register_name); | |
c483c494 | 1550 | set_gdbarch_register_type (gdbarch, alpha_register_type); |
dc129d82 JT |
1551 | |
1552 | set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register); | |
1553 | set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register); | |
1554 | ||
c483c494 RH |
1555 | set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p); |
1556 | set_gdbarch_register_to_value (gdbarch, alpha_register_to_value); | |
1557 | set_gdbarch_value_to_register (gdbarch, alpha_value_to_register); | |
dc129d82 | 1558 | |
615967cb RH |
1559 | set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p); |
1560 | ||
d2427a71 | 1561 | /* Prologue heuristics. */ |
dc129d82 JT |
1562 | set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue); |
1563 | ||
5ef165c2 RH |
1564 | /* Disassembler. */ |
1565 | set_gdbarch_print_insn (gdbarch, print_insn_alpha); | |
1566 | ||
d2427a71 | 1567 | /* Call info. */ |
dc129d82 | 1568 | |
9823e921 | 1569 | set_gdbarch_return_value (gdbarch, alpha_return_value); |
dc129d82 JT |
1570 | |
1571 | /* Settings for calling functions in the inferior. */ | |
c88e30c0 | 1572 | set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call); |
d2427a71 RH |
1573 | |
1574 | /* Methods for saving / extracting a dummy frame's ID. */ | |
6834c9bb | 1575 | set_gdbarch_dummy_id (gdbarch, alpha_dummy_id); |
d2427a71 RH |
1576 | |
1577 | /* Return the unwound PC value. */ | |
1578 | set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc); | |
dc129d82 JT |
1579 | |
1580 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
36a6271d | 1581 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); |
dc129d82 | 1582 | |
95b80706 | 1583 | set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc); |
e8d2d628 | 1584 | set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE); |
9d519230 | 1585 | set_gdbarch_cannot_step_breakpoint (gdbarch, 1); |
95b80706 | 1586 | |
44dffaac | 1587 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 1588 | gdbarch_init_osabi (info, gdbarch); |
44dffaac | 1589 | |
accc6d1f JT |
1590 | /* Now that we have tuned the configuration, set a few final things |
1591 | based on what the OS ABI has told us. */ | |
1592 | ||
1593 | if (tdep->jb_pc >= 0) | |
1594 | set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target); | |
1595 | ||
6834c9bb JB |
1596 | frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind); |
1597 | frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind); | |
dc129d82 | 1598 | |
d2427a71 | 1599 | frame_base_set_default (gdbarch, &alpha_heuristic_frame_base); |
accc6d1f | 1600 | |
d2427a71 | 1601 | return gdbarch; |
dc129d82 JT |
1602 | } |
1603 | ||
baa490c4 RH |
1604 | void |
1605 | alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
1606 | { | |
6834c9bb | 1607 | dwarf2_append_unwinders (gdbarch); |
336d1bba | 1608 | frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); |
baa490c4 RH |
1609 | } |
1610 | ||
a78f21af AC |
1611 | extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */ |
1612 | ||
c906108c | 1613 | void |
fba45db2 | 1614 | _initialize_alpha_tdep (void) |
c906108c SS |
1615 | { |
1616 | struct cmd_list_element *c; | |
1617 | ||
d2427a71 | 1618 | gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL); |
c906108c SS |
1619 | |
1620 | /* Let the user set the fence post for heuristic_proc_start. */ | |
1621 | ||
1622 | /* We really would like to have both "0" and "unlimited" work, but | |
1623 | command.c doesn't deal with that. So make it a var_zinteger | |
1624 | because the user can always use "999999" or some such for unlimited. */ | |
edefbb7c AC |
1625 | /* We need to throw away the frame cache when we set this, since it |
1626 | might change our ability to get backtraces. */ | |
1627 | add_setshow_zinteger_cmd ("heuristic-fence-post", class_support, | |
7915a72c AC |
1628 | &heuristic_fence_post, _("\ |
1629 | Set the distance searched for the start of a function."), _("\ | |
1630 | Show the distance searched for the start of a function."), _("\ | |
c906108c SS |
1631 | If you are debugging a stripped executable, GDB needs to search through the\n\ |
1632 | program for the start of a function. This command sets the distance of the\n\ | |
323e0a4a | 1633 | search. The only need to set it is when debugging a stripped executable."), |
2c5b56ce | 1634 | reinit_frame_cache_sfunc, |
7915a72c | 1635 | NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */ |
edefbb7c | 1636 | &setlist, &showlist); |
c906108c | 1637 | } |