]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Find a variable's value in memory, for GDB, the GNU debugger. |
7d9884b9 | 2 | Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc. |
bd5635a1 RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
36b9d39c | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
36b9d39c JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
36b9d39c | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
36b9d39c JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 19 | |
bd5635a1 | 20 | #include "defs.h" |
bd5635a1 | 21 | #include "symtab.h" |
51b57ded | 22 | #include "gdbtypes.h" |
bd5635a1 RP |
23 | #include "frame.h" |
24 | #include "value.h" | |
25 | #include "gdbcore.h" | |
26 | #include "inferior.h" | |
27 | #include "target.h" | |
28 | ||
ade40d31 RP |
29 | /* Basic byte-swapping routines. GDB has needed these for a long time... |
30 | All extract a target-format integer at ADDR which is LEN bytes long. */ | |
31 | ||
32 | #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8 | |
33 | /* 8 bit characters are a pretty safe assumption these days, so we | |
34 | assume it throughout all these swapping routines. If we had to deal with | |
35 | 9 bit characters, we would need to make len be in bits and would have | |
36 | to re-write these routines... */ | |
37 | you lose | |
38 | #endif | |
39 | ||
40 | LONGEST | |
41 | extract_signed_integer (addr, len) | |
42 | PTR addr; | |
43 | int len; | |
44 | { | |
45 | LONGEST retval; | |
46 | unsigned char *p; | |
47 | unsigned char *startaddr = (unsigned char *)addr; | |
48 | unsigned char *endaddr = startaddr + len; | |
49 | ||
50 | if (len > sizeof (LONGEST)) | |
51 | error ("\ | |
52 | That operation is not available on integers of more than %d bytes.", | |
53 | sizeof (LONGEST)); | |
54 | ||
55 | /* Start at the most significant end of the integer, and work towards | |
56 | the least significant. */ | |
57 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
58 | p = startaddr; | |
59 | #else | |
60 | p = endaddr - 1; | |
61 | #endif | |
62 | /* Do the sign extension once at the start. */ | |
5573d7d4 | 63 | retval = ((LONGEST)*p ^ 0x80) - 0x80; |
ade40d31 RP |
64 | #if TARGET_BYTE_ORDER == BIG_ENDIAN |
65 | for (++p; p < endaddr; ++p) | |
66 | #else | |
67 | for (--p; p >= startaddr; --p) | |
68 | #endif | |
69 | { | |
70 | retval = (retval << 8) | *p; | |
71 | } | |
72 | return retval; | |
73 | } | |
74 | ||
75 | unsigned LONGEST | |
76 | extract_unsigned_integer (addr, len) | |
77 | PTR addr; | |
78 | int len; | |
79 | { | |
80 | unsigned LONGEST retval; | |
81 | unsigned char *p; | |
82 | unsigned char *startaddr = (unsigned char *)addr; | |
83 | unsigned char *endaddr = startaddr + len; | |
84 | ||
85 | if (len > sizeof (unsigned LONGEST)) | |
86 | error ("\ | |
87 | That operation is not available on integers of more than %d bytes.", | |
88 | sizeof (unsigned LONGEST)); | |
89 | ||
90 | /* Start at the most significant end of the integer, and work towards | |
91 | the least significant. */ | |
92 | retval = 0; | |
93 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
94 | for (p = startaddr; p < endaddr; ++p) | |
95 | #else | |
96 | for (p = endaddr - 1; p >= startaddr; --p) | |
97 | #endif | |
98 | { | |
99 | retval = (retval << 8) | *p; | |
100 | } | |
101 | return retval; | |
102 | } | |
103 | ||
104 | CORE_ADDR | |
105 | extract_address (addr, len) | |
106 | PTR addr; | |
107 | int len; | |
108 | { | |
109 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
110 | whether we want this to be true eventually. */ | |
111 | return extract_unsigned_integer (addr, len); | |
112 | } | |
113 | ||
114 | void | |
115 | store_signed_integer (addr, len, val) | |
116 | PTR addr; | |
117 | int len; | |
118 | LONGEST val; | |
119 | { | |
120 | unsigned char *p; | |
121 | unsigned char *startaddr = (unsigned char *)addr; | |
122 | unsigned char *endaddr = startaddr + len; | |
123 | ||
124 | /* Start at the least significant end of the integer, and work towards | |
125 | the most significant. */ | |
126 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
127 | for (p = endaddr - 1; p >= startaddr; --p) | |
128 | #else | |
129 | for (p = startaddr; p < endaddr; ++p) | |
130 | #endif | |
131 | { | |
132 | *p = val & 0xff; | |
133 | val >>= 8; | |
134 | } | |
135 | } | |
136 | ||
137 | void | |
138 | store_unsigned_integer (addr, len, val) | |
139 | PTR addr; | |
140 | int len; | |
141 | unsigned LONGEST val; | |
142 | { | |
143 | unsigned char *p; | |
144 | unsigned char *startaddr = (unsigned char *)addr; | |
145 | unsigned char *endaddr = startaddr + len; | |
146 | ||
147 | /* Start at the least significant end of the integer, and work towards | |
148 | the most significant. */ | |
149 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
150 | for (p = endaddr - 1; p >= startaddr; --p) | |
151 | #else | |
152 | for (p = startaddr; p < endaddr; ++p) | |
153 | #endif | |
154 | { | |
155 | *p = val & 0xff; | |
156 | val >>= 8; | |
157 | } | |
158 | } | |
159 | ||
160 | void | |
161 | store_address (addr, len, val) | |
162 | PTR addr; | |
163 | int len; | |
164 | CORE_ADDR val; | |
165 | { | |
166 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
167 | whether we want this to be true eventually. */ | |
168 | store_unsigned_integer (addr, len, (LONGEST)val); | |
169 | } | |
170 | \f | |
ad09cb2b PS |
171 | /* Swap LEN bytes at BUFFER between target and host byte-order. This is |
172 | the wrong way to do byte-swapping because it assumes that you have a way | |
173 | to have a host variable of exactly the right size. Once extract_floating | |
174 | and store_floating have been fixed, this can go away. */ | |
175 | #if TARGET_BYTE_ORDER == HOST_BYTE_ORDER | |
176 | #define SWAP_TARGET_AND_HOST(buffer,len) | |
177 | #else /* Target and host byte order differ. */ | |
178 | #define SWAP_TARGET_AND_HOST(buffer,len) \ | |
179 | { \ | |
180 | char tmp; \ | |
181 | char *p = (char *)(buffer); \ | |
182 | char *q = ((char *)(buffer)) + len - 1; \ | |
183 | for (; p < q; p++, q--) \ | |
184 | { \ | |
185 | tmp = *q; \ | |
186 | *q = *p; \ | |
187 | *p = tmp; \ | |
188 | } \ | |
189 | } | |
190 | #endif /* Target and host byte order differ. */ | |
191 | ||
192 | /* There are many problems with floating point cross-debugging. | |
193 | ||
194 | 1. These routines only handle byte-swapping, not conversion of | |
195 | formats. So if host is IEEE floating and target is VAX floating, | |
196 | or vice-versa, it loses. This means that we can't (yet) use these | |
197 | routines for extendeds. Extendeds are handled by | |
198 | REGISTER_CONVERTIBLE. What we want is a fixed version of | |
199 | ieee-float.c (the current version can't deal with single or double, | |
200 | and I suspect it is probably broken for some extendeds too). | |
201 | ||
202 | 2. We can't deal with it if there is more than one floating point | |
203 | format in use. This has to be fixed at the unpack_double level. | |
204 | ||
205 | 3. We probably should have a LONGEST_DOUBLE or DOUBLEST or whatever | |
206 | we want to call it which is long double where available. */ | |
207 | ||
208 | double | |
209 | extract_floating (addr, len) | |
210 | PTR addr; | |
211 | int len; | |
212 | { | |
213 | if (len == sizeof (float)) | |
214 | { | |
215 | float retval; | |
216 | memcpy (&retval, addr, sizeof (retval)); | |
217 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
218 | return retval; | |
219 | } | |
220 | else if (len == sizeof (double)) | |
221 | { | |
222 | double retval; | |
223 | memcpy (&retval, addr, sizeof (retval)); | |
224 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); | |
225 | return retval; | |
226 | } | |
227 | else | |
228 | { | |
229 | error ("Can't deal with a floating point number of %d bytes.", len); | |
230 | } | |
231 | } | |
232 | ||
233 | void | |
234 | store_floating (addr, len, val) | |
235 | PTR addr; | |
236 | int len; | |
237 | double val; | |
238 | { | |
239 | if (len == sizeof (float)) | |
240 | { | |
241 | float floatval = val; | |
242 | SWAP_TARGET_AND_HOST (&floatval, sizeof (floatval)); | |
243 | memcpy (addr, &floatval, sizeof (floatval)); | |
244 | } | |
245 | else if (len == sizeof (double)) | |
246 | { | |
247 | SWAP_TARGET_AND_HOST (&val, sizeof (val)); | |
248 | memcpy (addr, &val, sizeof (val)); | |
249 | } | |
250 | else | |
251 | { | |
252 | error ("Can't deal with a floating point number of %d bytes.", len); | |
253 | } | |
254 | } | |
255 | \f | |
bd5635a1 RP |
256 | #if !defined (GET_SAVED_REGISTER) |
257 | ||
258 | /* Return the address in which frame FRAME's value of register REGNUM | |
259 | has been saved in memory. Or return zero if it has not been saved. | |
260 | If REGNUM specifies the SP, the value we return is actually | |
261 | the SP value, not an address where it was saved. */ | |
262 | ||
263 | CORE_ADDR | |
264 | find_saved_register (frame, regnum) | |
265 | FRAME frame; | |
266 | int regnum; | |
267 | { | |
268 | struct frame_info *fi; | |
269 | struct frame_saved_regs saved_regs; | |
270 | ||
271 | register FRAME frame1 = 0; | |
272 | register CORE_ADDR addr = 0; | |
273 | ||
274 | if (frame == 0) /* No regs saved if want current frame */ | |
275 | return 0; | |
276 | ||
277 | #ifdef HAVE_REGISTER_WINDOWS | |
278 | /* We assume that a register in a register window will only be saved | |
279 | in one place (since the name changes and/or disappears as you go | |
280 | towards inner frames), so we only call get_frame_saved_regs on | |
281 | the current frame. This is directly in contradiction to the | |
282 | usage below, which assumes that registers used in a frame must be | |
283 | saved in a lower (more interior) frame. This change is a result | |
284 | of working on a register window machine; get_frame_saved_regs | |
285 | always returns the registers saved within a frame, within the | |
286 | context (register namespace) of that frame. */ | |
287 | ||
288 | /* However, note that we don't want this to return anything if | |
289 | nothing is saved (if there's a frame inside of this one). Also, | |
290 | callers to this routine asking for the stack pointer want the | |
291 | stack pointer saved for *this* frame; this is returned from the | |
292 | next frame. */ | |
293 | ||
294 | ||
295 | if (REGISTER_IN_WINDOW_P(regnum)) | |
296 | { | |
297 | frame1 = get_next_frame (frame); | |
298 | if (!frame1) return 0; /* Registers of this frame are | |
299 | active. */ | |
300 | ||
301 | /* Get the SP from the next frame in; it will be this | |
302 | current frame. */ | |
303 | if (regnum != SP_REGNUM) | |
304 | frame1 = frame; | |
305 | ||
306 | fi = get_frame_info (frame1); | |
307 | get_frame_saved_regs (fi, &saved_regs); | |
308 | return saved_regs.regs[regnum]; /* ... which might be zero */ | |
309 | } | |
310 | #endif /* HAVE_REGISTER_WINDOWS */ | |
311 | ||
312 | /* Note that this next routine assumes that registers used in | |
313 | frame x will be saved only in the frame that x calls and | |
314 | frames interior to it. This is not true on the sparc, but the | |
315 | above macro takes care of it, so we should be all right. */ | |
316 | while (1) | |
317 | { | |
318 | QUIT; | |
319 | frame1 = get_prev_frame (frame1); | |
320 | if (frame1 == 0 || frame1 == frame) | |
321 | break; | |
322 | fi = get_frame_info (frame1); | |
323 | get_frame_saved_regs (fi, &saved_regs); | |
324 | if (saved_regs.regs[regnum]) | |
325 | addr = saved_regs.regs[regnum]; | |
326 | } | |
327 | ||
328 | return addr; | |
329 | } | |
330 | ||
4d50f90a JK |
331 | /* Find register number REGNUM relative to FRAME and put its (raw, |
332 | target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the | |
333 | variable was optimized out (and thus can't be fetched). Set *LVAL | |
334 | to lval_memory, lval_register, or not_lval, depending on whether | |
335 | the value was fetched from memory, from a register, or in a strange | |
bd5635a1 RP |
336 | and non-modifiable way (e.g. a frame pointer which was calculated |
337 | rather than fetched). Set *ADDRP to the address, either in memory | |
338 | on as a REGISTER_BYTE offset into the registers array. | |
339 | ||
340 | Note that this implementation never sets *LVAL to not_lval. But | |
341 | it can be replaced by defining GET_SAVED_REGISTER and supplying | |
342 | your own. | |
343 | ||
344 | The argument RAW_BUFFER must point to aligned memory. */ | |
4d50f90a | 345 | |
bd5635a1 RP |
346 | void |
347 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
348 | char *raw_buffer; | |
349 | int *optimized; | |
350 | CORE_ADDR *addrp; | |
351 | FRAME frame; | |
352 | int regnum; | |
353 | enum lval_type *lval; | |
354 | { | |
355 | CORE_ADDR addr; | |
356 | /* Normal systems don't optimize out things with register numbers. */ | |
357 | if (optimized != NULL) | |
358 | *optimized = 0; | |
359 | addr = find_saved_register (frame, regnum); | |
51b57ded | 360 | if (addr != 0) |
bd5635a1 RP |
361 | { |
362 | if (lval != NULL) | |
363 | *lval = lval_memory; | |
364 | if (regnum == SP_REGNUM) | |
365 | { | |
366 | if (raw_buffer != NULL) | |
4d50f90a | 367 | { |
ade40d31 RP |
368 | /* Put it back in target format. */ |
369 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); | |
4d50f90a | 370 | } |
bd5635a1 RP |
371 | if (addrp != NULL) |
372 | *addrp = 0; | |
373 | return; | |
374 | } | |
375 | if (raw_buffer != NULL) | |
376 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
377 | } | |
378 | else | |
379 | { | |
380 | if (lval != NULL) | |
381 | *lval = lval_register; | |
382 | addr = REGISTER_BYTE (regnum); | |
383 | if (raw_buffer != NULL) | |
384 | read_register_gen (regnum, raw_buffer); | |
385 | } | |
386 | if (addrp != NULL) | |
387 | *addrp = addr; | |
388 | } | |
389 | #endif /* GET_SAVED_REGISTER. */ | |
390 | ||
391 | /* Copy the bytes of register REGNUM, relative to the current stack frame, | |
392 | into our memory at MYADDR, in target byte order. | |
393 | The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). | |
394 | ||
395 | Returns 1 if could not be read, 0 if could. */ | |
396 | ||
397 | int | |
398 | read_relative_register_raw_bytes (regnum, myaddr) | |
399 | int regnum; | |
400 | char *myaddr; | |
401 | { | |
402 | int optim; | |
403 | if (regnum == FP_REGNUM && selected_frame) | |
404 | { | |
ade40d31 RP |
405 | /* Put it back in target format. */ |
406 | store_address (myaddr, REGISTER_RAW_SIZE(FP_REGNUM), | |
407 | FRAME_FP(selected_frame)); | |
bd5635a1 RP |
408 | return 0; |
409 | } | |
410 | ||
e1ce8aa5 | 411 | get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame, |
bd5635a1 RP |
412 | regnum, (enum lval_type *)NULL); |
413 | return optim; | |
414 | } | |
415 | ||
416 | /* Return a `value' with the contents of register REGNUM | |
417 | in its virtual format, with the type specified by | |
418 | REGISTER_VIRTUAL_TYPE. */ | |
419 | ||
420 | value | |
421 | value_of_register (regnum) | |
422 | int regnum; | |
423 | { | |
424 | CORE_ADDR addr; | |
425 | int optim; | |
426 | register value val; | |
427 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
bd5635a1 RP |
428 | enum lval_type lval; |
429 | ||
430 | get_saved_register (raw_buffer, &optim, &addr, | |
431 | selected_frame, regnum, &lval); | |
432 | ||
bd5635a1 | 433 | val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); |
ad09cb2b PS |
434 | |
435 | /* Convert raw data to virtual format if necessary. */ | |
436 | ||
437 | #ifdef REGISTER_CONVERTIBLE | |
438 | if (REGISTER_CONVERTIBLE (regnum)) | |
439 | { | |
440 | REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum), | |
441 | raw_buffer, VALUE_CONTENTS_RAW (val)); | |
442 | } | |
443 | else | |
444 | #endif | |
445 | memcpy (VALUE_CONTENTS_RAW (val), raw_buffer, | |
446 | REGISTER_RAW_SIZE (regnum)); | |
bd5635a1 RP |
447 | VALUE_LVAL (val) = lval; |
448 | VALUE_ADDRESS (val) = addr; | |
449 | VALUE_REGNO (val) = regnum; | |
450 | VALUE_OPTIMIZED_OUT (val) = optim; | |
451 | return val; | |
452 | } | |
453 | \f | |
454 | /* Low level examining and depositing of registers. | |
455 | ||
456 | The caller is responsible for making | |
457 | sure that the inferior is stopped before calling the fetching routines, | |
458 | or it will get garbage. (a change from GDB version 3, in which | |
459 | the caller got the value from the last stop). */ | |
460 | ||
461 | /* Contents of the registers in target byte order. | |
ade40d31 | 462 | We allocate some extra slop since we do a lot of memcpy's around `registers', |
bd5635a1 RP |
463 | and failing-soft is better than failing hard. */ |
464 | char registers[REGISTER_BYTES + /* SLOP */ 256]; | |
465 | ||
466 | /* Nonzero if that register has been fetched. */ | |
467 | char register_valid[NUM_REGS]; | |
468 | ||
469 | /* Indicate that registers may have changed, so invalidate the cache. */ | |
470 | void | |
471 | registers_changed () | |
472 | { | |
473 | int i; | |
474 | for (i = 0; i < NUM_REGS; i++) | |
475 | register_valid[i] = 0; | |
476 | } | |
477 | ||
478 | /* Indicate that all registers have been fetched, so mark them all valid. */ | |
479 | void | |
480 | registers_fetched () | |
481 | { | |
482 | int i; | |
483 | for (i = 0; i < NUM_REGS; i++) | |
484 | register_valid[i] = 1; | |
485 | } | |
486 | ||
487 | /* Copy LEN bytes of consecutive data from registers | |
488 | starting with the REGBYTE'th byte of register data | |
489 | into memory at MYADDR. */ | |
490 | ||
491 | void | |
492 | read_register_bytes (regbyte, myaddr, len) | |
493 | int regbyte; | |
494 | char *myaddr; | |
495 | int len; | |
496 | { | |
497 | /* Fetch all registers. */ | |
498 | int i; | |
499 | for (i = 0; i < NUM_REGS; i++) | |
500 | if (!register_valid[i]) | |
501 | { | |
502 | target_fetch_registers (-1); | |
503 | break; | |
504 | } | |
505 | if (myaddr != NULL) | |
0791c5ea | 506 | memcpy (myaddr, ®isters[regbyte], len); |
bd5635a1 RP |
507 | } |
508 | ||
509 | /* Read register REGNO into memory at MYADDR, which must be large enough | |
f2ebc25f JK |
510 | for REGISTER_RAW_BYTES (REGNO). Target byte-order. |
511 | If the register is known to be the size of a CORE_ADDR or smaller, | |
512 | read_register can be used instead. */ | |
bd5635a1 RP |
513 | void |
514 | read_register_gen (regno, myaddr) | |
515 | int regno; | |
516 | char *myaddr; | |
517 | { | |
518 | if (!register_valid[regno]) | |
519 | target_fetch_registers (regno); | |
0791c5ea JK |
520 | memcpy (myaddr, ®isters[REGISTER_BYTE (regno)], |
521 | REGISTER_RAW_SIZE (regno)); | |
bd5635a1 RP |
522 | } |
523 | ||
524 | /* Copy LEN bytes of consecutive data from memory at MYADDR | |
525 | into registers starting with the REGBYTE'th byte of register data. */ | |
526 | ||
527 | void | |
528 | write_register_bytes (regbyte, myaddr, len) | |
529 | int regbyte; | |
530 | char *myaddr; | |
531 | int len; | |
532 | { | |
533 | /* Make sure the entire registers array is valid. */ | |
534 | read_register_bytes (0, (char *)NULL, REGISTER_BYTES); | |
0791c5ea | 535 | memcpy (®isters[regbyte], myaddr, len); |
bd5635a1 RP |
536 | target_store_registers (-1); |
537 | } | |
538 | ||
ade40d31 RP |
539 | /* Return the raw contents of register REGNO, regarding it as an integer. */ |
540 | /* This probably should be returning LONGEST rather than CORE_ADDR. */ | |
bd5635a1 RP |
541 | |
542 | CORE_ADDR | |
543 | read_register (regno) | |
544 | int regno; | |
545 | { | |
bd5635a1 RP |
546 | if (!register_valid[regno]) |
547 | target_fetch_registers (regno); | |
0791c5ea | 548 | |
ade40d31 RP |
549 | return extract_address (®isters[REGISTER_BYTE (regno)], |
550 | REGISTER_RAW_SIZE(regno)); | |
bd5635a1 RP |
551 | } |
552 | ||
553 | /* Registers we shouldn't try to store. */ | |
554 | #if !defined (CANNOT_STORE_REGISTER) | |
555 | #define CANNOT_STORE_REGISTER(regno) 0 | |
556 | #endif | |
557 | ||
ade40d31 RP |
558 | /* Store VALUE, into the raw contents of register number REGNO. */ |
559 | /* FIXME: The val arg should probably be a LONGEST. */ | |
bd5635a1 RP |
560 | |
561 | void | |
562 | write_register (regno, val) | |
5573d7d4 | 563 | int regno; |
443abae1 | 564 | LONGEST val; |
bd5635a1 | 565 | { |
ade40d31 | 566 | PTR buf; |
df14b38b | 567 | int size; |
ade40d31 | 568 | |
bd5635a1 RP |
569 | /* On the sparc, writing %g0 is a no-op, so we don't even want to change |
570 | the registers array if something writes to this register. */ | |
571 | if (CANNOT_STORE_REGISTER (regno)) | |
572 | return; | |
573 | ||
ade40d31 RP |
574 | size = REGISTER_RAW_SIZE(regno); |
575 | buf = alloca (size); | |
576 | store_signed_integer (buf, size, (LONGEST) val); | |
577 | ||
df14b38b SC |
578 | /* If we have a valid copy of the register, and new value == old value, |
579 | then don't bother doing the actual store. */ | |
bd5635a1 | 580 | |
df14b38b SC |
581 | if (register_valid [regno]) |
582 | { | |
ade40d31 | 583 | if (memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0) |
df14b38b SC |
584 | return; |
585 | } | |
586 | ||
587 | target_prepare_to_store (); | |
588 | ||
ade40d31 | 589 | memcpy (®isters[REGISTER_BYTE (regno)], buf, size); |
df14b38b SC |
590 | |
591 | register_valid [regno] = 1; | |
bd5635a1 RP |
592 | |
593 | target_store_registers (regno); | |
594 | } | |
595 | ||
596 | /* Record that register REGNO contains VAL. | |
597 | This is used when the value is obtained from the inferior or core dump, | |
598 | so there is no need to store the value there. */ | |
599 | ||
600 | void | |
601 | supply_register (regno, val) | |
602 | int regno; | |
603 | char *val; | |
604 | { | |
605 | register_valid[regno] = 1; | |
0791c5ea JK |
606 | memcpy (®isters[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno)); |
607 | ||
608 | /* On some architectures, e.g. HPPA, there are a few stray bits in some | |
609 | registers, that the rest of the code would like to ignore. */ | |
610 | #ifdef CLEAN_UP_REGISTER_VALUE | |
611 | CLEAN_UP_REGISTER_VALUE(regno, ®isters[REGISTER_BYTE(regno)]); | |
612 | #endif | |
bd5635a1 RP |
613 | } |
614 | \f | |
443abae1 JK |
615 | /* Will calling read_var_value or locate_var_value on SYM end |
616 | up caring what frame it is being evaluated relative to? SYM must | |
617 | be non-NULL. */ | |
618 | int | |
619 | symbol_read_needs_frame (sym) | |
620 | struct symbol *sym; | |
621 | { | |
622 | switch (SYMBOL_CLASS (sym)) | |
623 | { | |
624 | /* All cases listed explicitly so that gcc -Wall will detect it if | |
625 | we failed to consider one. */ | |
626 | case LOC_REGISTER: | |
627 | case LOC_ARG: | |
628 | case LOC_REF_ARG: | |
629 | case LOC_REGPARM: | |
630 | case LOC_REGPARM_ADDR: | |
631 | case LOC_LOCAL: | |
632 | case LOC_LOCAL_ARG: | |
633 | case LOC_BASEREG: | |
634 | case LOC_BASEREG_ARG: | |
635 | return 1; | |
636 | ||
637 | case LOC_UNDEF: | |
638 | case LOC_CONST: | |
639 | case LOC_STATIC: | |
640 | case LOC_TYPEDEF: | |
641 | ||
642 | case LOC_LABEL: | |
643 | /* Getting the address of a label can be done independently of the block, | |
644 | even if some *uses* of that address wouldn't work so well without | |
645 | the right frame. */ | |
646 | ||
647 | case LOC_BLOCK: | |
648 | case LOC_CONST_BYTES: | |
649 | case LOC_OPTIMIZED_OUT: | |
650 | return 0; | |
651 | } | |
100f92e2 | 652 | return 1; |
443abae1 JK |
653 | } |
654 | ||
bd5635a1 RP |
655 | /* Given a struct symbol for a variable, |
656 | and a stack frame id, read the value of the variable | |
657 | and return a (pointer to a) struct value containing the value. | |
777bef06 JK |
658 | If the variable cannot be found, return a zero pointer. |
659 | If FRAME is NULL, use the selected_frame. */ | |
bd5635a1 RP |
660 | |
661 | value | |
662 | read_var_value (var, frame) | |
663 | register struct symbol *var; | |
664 | FRAME frame; | |
665 | { | |
666 | register value v; | |
667 | struct frame_info *fi; | |
668 | struct type *type = SYMBOL_TYPE (var); | |
669 | CORE_ADDR addr; | |
bd5635a1 RP |
670 | register int len; |
671 | ||
672 | v = allocate_value (type); | |
673 | VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */ | |
674 | len = TYPE_LENGTH (type); | |
675 | ||
676 | if (frame == 0) frame = selected_frame; | |
677 | ||
678 | switch (SYMBOL_CLASS (var)) | |
679 | { | |
680 | case LOC_CONST: | |
ade40d31 RP |
681 | /* Put the constant back in target format. */ |
682 | store_signed_integer (VALUE_CONTENTS_RAW (v), len, | |
683 | (LONGEST) SYMBOL_VALUE (var)); | |
bd5635a1 RP |
684 | VALUE_LVAL (v) = not_lval; |
685 | return v; | |
686 | ||
687 | case LOC_LABEL: | |
ade40d31 RP |
688 | /* Put the constant back in target format. */ |
689 | store_address (VALUE_CONTENTS_RAW (v), len, SYMBOL_VALUE_ADDRESS (var)); | |
bd5635a1 RP |
690 | VALUE_LVAL (v) = not_lval; |
691 | return v; | |
692 | ||
693 | case LOC_CONST_BYTES: | |
36b9d39c JG |
694 | { |
695 | char *bytes_addr; | |
696 | bytes_addr = SYMBOL_VALUE_BYTES (var); | |
0791c5ea | 697 | memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len); |
36b9d39c JG |
698 | VALUE_LVAL (v) = not_lval; |
699 | return v; | |
700 | } | |
bd5635a1 RP |
701 | |
702 | case LOC_STATIC: | |
bd5635a1 RP |
703 | addr = SYMBOL_VALUE_ADDRESS (var); |
704 | break; | |
705 | ||
bd5635a1 | 706 | case LOC_ARG: |
ade40d31 RP |
707 | fi = get_frame_info (frame); |
708 | if (fi == NULL) | |
709 | return 0; | |
710 | addr = FRAME_ARGS_ADDRESS (fi); | |
51b57ded FF |
711 | if (!addr) |
712 | { | |
713 | return 0; | |
714 | } | |
bd5635a1 RP |
715 | addr += SYMBOL_VALUE (var); |
716 | break; | |
ade40d31 | 717 | |
bd5635a1 | 718 | case LOC_REF_ARG: |
ade40d31 RP |
719 | fi = get_frame_info (frame); |
720 | if (fi == NULL) | |
721 | return 0; | |
722 | addr = FRAME_ARGS_ADDRESS (fi); | |
51b57ded FF |
723 | if (!addr) |
724 | { | |
725 | return 0; | |
726 | } | |
bd5635a1 | 727 | addr += SYMBOL_VALUE (var); |
ade40d31 RP |
728 | addr = read_memory_unsigned_integer |
729 | (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT); | |
bd5635a1 | 730 | break; |
ade40d31 | 731 | |
bd5635a1 RP |
732 | case LOC_LOCAL: |
733 | case LOC_LOCAL_ARG: | |
ade40d31 RP |
734 | fi = get_frame_info (frame); |
735 | if (fi == NULL) | |
736 | return 0; | |
737 | addr = FRAME_LOCALS_ADDRESS (fi); | |
51b57ded | 738 | addr += SYMBOL_VALUE (var); |
bd5635a1 RP |
739 | break; |
740 | ||
ade40d31 RP |
741 | case LOC_BASEREG: |
742 | case LOC_BASEREG_ARG: | |
743 | { | |
744 | char buf[MAX_REGISTER_RAW_SIZE]; | |
745 | get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var), | |
746 | NULL); | |
747 | addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var))); | |
748 | addr += SYMBOL_VALUE (var); | |
749 | break; | |
750 | } | |
751 | ||
bd5635a1 RP |
752 | case LOC_TYPEDEF: |
753 | error ("Cannot look up value of a typedef"); | |
754 | break; | |
755 | ||
756 | case LOC_BLOCK: | |
757 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var)); | |
758 | return v; | |
759 | ||
760 | case LOC_REGISTER: | |
761 | case LOC_REGPARM: | |
35247ccd | 762 | case LOC_REGPARM_ADDR: |
bd5635a1 | 763 | { |
777bef06 | 764 | struct block *b; |
bd5635a1 | 765 | |
777bef06 JK |
766 | if (frame == NULL) |
767 | return 0; | |
768 | b = get_frame_block (frame); | |
769 | ||
bd5635a1 RP |
770 | v = value_from_register (type, SYMBOL_VALUE (var), frame); |
771 | ||
35247ccd | 772 | if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR) |
0791c5ea JK |
773 | { |
774 | addr = *(CORE_ADDR *)VALUE_CONTENTS (v); | |
775 | VALUE_LVAL (v) = lval_memory; | |
776 | } | |
bd5635a1 RP |
777 | else |
778 | return v; | |
779 | } | |
780 | break; | |
781 | ||
35247ccd SG |
782 | case LOC_OPTIMIZED_OUT: |
783 | VALUE_LVAL (v) = not_lval; | |
784 | VALUE_OPTIMIZED_OUT (v) = 1; | |
785 | return v; | |
786 | ||
bd5635a1 RP |
787 | default: |
788 | error ("Cannot look up value of a botched symbol."); | |
789 | break; | |
790 | } | |
791 | ||
792 | VALUE_ADDRESS (v) = addr; | |
793 | VALUE_LAZY (v) = 1; | |
794 | return v; | |
795 | } | |
796 | ||
797 | /* Return a value of type TYPE, stored in register REGNUM, in frame | |
798 | FRAME. */ | |
799 | ||
800 | value | |
801 | value_from_register (type, regnum, frame) | |
802 | struct type *type; | |
803 | int regnum; | |
804 | FRAME frame; | |
805 | { | |
806 | char raw_buffer [MAX_REGISTER_RAW_SIZE]; | |
bd5635a1 RP |
807 | CORE_ADDR addr; |
808 | int optim; | |
809 | value v = allocate_value (type); | |
810 | int len = TYPE_LENGTH (type); | |
811 | char *value_bytes = 0; | |
812 | int value_bytes_copied = 0; | |
813 | int num_storage_locs; | |
814 | enum lval_type lval; | |
815 | ||
816 | VALUE_REGNO (v) = regnum; | |
817 | ||
818 | num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ? | |
819 | ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 : | |
820 | 1); | |
821 | ||
0791c5ea JK |
822 | if (num_storage_locs > 1 |
823 | #ifdef GDB_TARGET_IS_H8500 | |
824 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
825 | #endif | |
826 | ) | |
bd5635a1 RP |
827 | { |
828 | /* Value spread across multiple storage locations. */ | |
829 | ||
830 | int local_regnum; | |
831 | int mem_stor = 0, reg_stor = 0; | |
832 | int mem_tracking = 1; | |
833 | CORE_ADDR last_addr = 0; | |
5573d7d4 | 834 | CORE_ADDR first_addr = 0; |
bd5635a1 RP |
835 | |
836 | value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE); | |
837 | ||
838 | /* Copy all of the data out, whereever it may be. */ | |
839 | ||
0791c5ea JK |
840 | #ifdef GDB_TARGET_IS_H8500 |
841 | /* This piece of hideosity is required because the H8500 treats registers | |
842 | differently depending upon whether they are used as pointers or not. As a | |
843 | pointer, a register needs to have a page register tacked onto the front. | |
844 | An alternate way to do this would be to have gcc output different register | |
845 | numbers for the pointer & non-pointer form of the register. But, it | |
846 | doesn't, so we're stuck with this. */ | |
847 | ||
35247ccd SG |
848 | if (TYPE_CODE (type) == TYPE_CODE_PTR |
849 | && len > 2) | |
bd5635a1 | 850 | { |
0791c5ea JK |
851 | int page_regnum; |
852 | ||
853 | switch (regnum) | |
854 | { | |
855 | case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM: | |
856 | page_regnum = SEG_D_REGNUM; | |
857 | break; | |
858 | case R4_REGNUM: case R5_REGNUM: | |
859 | page_regnum = SEG_E_REGNUM; | |
860 | break; | |
861 | case R6_REGNUM: case R7_REGNUM: | |
862 | page_regnum = SEG_T_REGNUM; | |
863 | break; | |
864 | } | |
865 | ||
866 | value_bytes[0] = 0; | |
867 | get_saved_register (value_bytes + 1, | |
bd5635a1 RP |
868 | &optim, |
869 | &addr, | |
870 | frame, | |
0791c5ea | 871 | page_regnum, |
bd5635a1 | 872 | &lval); |
0791c5ea | 873 | |
bd5635a1 RP |
874 | if (lval == lval_register) |
875 | reg_stor++; | |
876 | else | |
df14b38b SC |
877 | mem_stor++; |
878 | first_addr = addr; | |
0791c5ea | 879 | last_addr = addr; |
bd5635a1 | 880 | |
0791c5ea JK |
881 | get_saved_register (value_bytes + 2, |
882 | &optim, | |
883 | &addr, | |
884 | frame, | |
885 | regnum, | |
886 | &lval); | |
887 | ||
888 | if (lval == lval_register) | |
889 | reg_stor++; | |
890 | else | |
891 | { | |
892 | mem_stor++; | |
893 | mem_tracking = mem_tracking && (addr == last_addr); | |
bd5635a1 RP |
894 | } |
895 | last_addr = addr; | |
896 | } | |
0791c5ea JK |
897 | else |
898 | #endif /* GDB_TARGET_IS_H8500 */ | |
899 | for (local_regnum = regnum; | |
900 | value_bytes_copied < len; | |
901 | (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum), | |
902 | ++local_regnum)) | |
903 | { | |
904 | get_saved_register (value_bytes + value_bytes_copied, | |
905 | &optim, | |
906 | &addr, | |
907 | frame, | |
908 | local_regnum, | |
909 | &lval); | |
df14b38b SC |
910 | |
911 | if (regnum == local_regnum) | |
912 | first_addr = addr; | |
0791c5ea JK |
913 | if (lval == lval_register) |
914 | reg_stor++; | |
915 | else | |
916 | { | |
917 | mem_stor++; | |
0791c5ea JK |
918 | |
919 | mem_tracking = | |
920 | (mem_tracking | |
921 | && (regnum == local_regnum | |
922 | || addr == last_addr)); | |
923 | } | |
924 | last_addr = addr; | |
925 | } | |
bd5635a1 RP |
926 | |
927 | if ((reg_stor && mem_stor) | |
928 | || (mem_stor && !mem_tracking)) | |
929 | /* Mixed storage; all of the hassle we just went through was | |
930 | for some good purpose. */ | |
931 | { | |
932 | VALUE_LVAL (v) = lval_reg_frame_relative; | |
933 | VALUE_FRAME (v) = FRAME_FP (frame); | |
934 | VALUE_FRAME_REGNUM (v) = regnum; | |
935 | } | |
936 | else if (mem_stor) | |
937 | { | |
938 | VALUE_LVAL (v) = lval_memory; | |
939 | VALUE_ADDRESS (v) = first_addr; | |
940 | } | |
941 | else if (reg_stor) | |
942 | { | |
943 | VALUE_LVAL (v) = lval_register; | |
944 | VALUE_ADDRESS (v) = first_addr; | |
945 | } | |
946 | else | |
947 | fatal ("value_from_register: Value not stored anywhere!"); | |
948 | ||
949 | VALUE_OPTIMIZED_OUT (v) = optim; | |
950 | ||
951 | /* Any structure stored in more than one register will always be | |
952 | an integral number of registers. Otherwise, you'd need to do | |
953 | some fiddling with the last register copied here for little | |
954 | endian machines. */ | |
955 | ||
956 | /* Copy into the contents section of the value. */ | |
0791c5ea | 957 | memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len); |
bd5635a1 | 958 | |
df14b38b SC |
959 | /* Finally do any conversion necessary when extracting this |
960 | type from more than one register. */ | |
961 | #ifdef REGISTER_CONVERT_TO_TYPE | |
962 | REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v)); | |
963 | #endif | |
bd5635a1 RP |
964 | return v; |
965 | } | |
966 | ||
967 | /* Data is completely contained within a single register. Locate the | |
968 | register's contents in a real register or in core; | |
969 | read the data in raw format. */ | |
970 | ||
971 | get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval); | |
972 | VALUE_OPTIMIZED_OUT (v) = optim; | |
973 | VALUE_LVAL (v) = lval; | |
974 | VALUE_ADDRESS (v) = addr; | |
ad09cb2b PS |
975 | |
976 | /* Convert raw data to virtual format if necessary. */ | |
bd5635a1 | 977 | |
ad09cb2b | 978 | #ifdef REGISTER_CONVERTIBLE |
bd5635a1 RP |
979 | if (REGISTER_CONVERTIBLE (regnum)) |
980 | { | |
ad09cb2b PS |
981 | REGISTER_CONVERT_TO_VIRTUAL (regnum, type, |
982 | raw_buffer, VALUE_CONTENTS_RAW (v)); | |
bd5635a1 RP |
983 | } |
984 | else | |
ad09cb2b | 985 | #endif |
bd5635a1 RP |
986 | { |
987 | /* Raw and virtual formats are the same for this register. */ | |
988 | ||
989 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
990 | if (len < REGISTER_RAW_SIZE (regnum)) | |
991 | { | |
992 | /* Big-endian, and we want less than full size. */ | |
993 | VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len; | |
994 | } | |
995 | #endif | |
996 | ||
ad09cb2b | 997 | memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len); |
bd5635a1 RP |
998 | } |
999 | ||
1000 | return v; | |
1001 | } | |
1002 | \f | |
36b9d39c | 1003 | /* Given a struct symbol for a variable or function, |
bd5635a1 | 1004 | and a stack frame id, |
36b9d39c JG |
1005 | return a (pointer to a) struct value containing the properly typed |
1006 | address. */ | |
bd5635a1 RP |
1007 | |
1008 | value | |
1009 | locate_var_value (var, frame) | |
1010 | register struct symbol *var; | |
1011 | FRAME frame; | |
1012 | { | |
1013 | CORE_ADDR addr = 0; | |
1014 | struct type *type = SYMBOL_TYPE (var); | |
bd5635a1 RP |
1015 | value lazy_value; |
1016 | ||
1017 | /* Evaluate it first; if the result is a memory address, we're fine. | |
1018 | Lazy evaluation pays off here. */ | |
1019 | ||
1020 | lazy_value = read_var_value (var, frame); | |
1021 | if (lazy_value == 0) | |
0791c5ea | 1022 | error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); |
bd5635a1 | 1023 | |
36b9d39c JG |
1024 | if (VALUE_LAZY (lazy_value) |
1025 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
bd5635a1 RP |
1026 | { |
1027 | addr = VALUE_ADDRESS (lazy_value); | |
7d9884b9 | 1028 | return value_from_longest (lookup_pointer_type (type), (LONGEST) addr); |
bd5635a1 RP |
1029 | } |
1030 | ||
1031 | /* Not a memory address; check what the problem was. */ | |
1032 | switch (VALUE_LVAL (lazy_value)) | |
1033 | { | |
1034 | case lval_register: | |
1035 | case lval_reg_frame_relative: | |
1036 | error ("Address requested for identifier \"%s\" which is in a register.", | |
0791c5ea | 1037 | SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
1038 | break; |
1039 | ||
1040 | default: | |
1041 | error ("Can't take address of \"%s\" which isn't an lvalue.", | |
0791c5ea | 1042 | SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
1043 | break; |
1044 | } | |
1045 | return 0; /* For lint -- never reached */ | |
1046 | } |