]>
Commit | Line | Data |
---|---|---|
b352eebf | 1 | /* Support for HPPA 64-bit ELF |
336549c1 | 2 | Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005 |
5a580b3a | 3 | Free Software Foundation, Inc. |
15bda425 | 4 | |
ae9a127f | 5 | This file is part of BFD, the Binary File Descriptor library. |
15bda425 | 6 | |
ae9a127f NC |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
15bda425 | 11 | |
ae9a127f NC |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
15bda425 | 16 | |
ae9a127f NC |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
3e110533 | 19 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
15bda425 | 20 | |
3ef20aaa | 21 | #include "alloca-conf.h" |
15bda425 JL |
22 | #include "bfd.h" |
23 | #include "sysdep.h" | |
24 | #include "libbfd.h" | |
25 | #include "elf-bfd.h" | |
26 | #include "elf/hppa.h" | |
27 | #include "libhppa.h" | |
28 | #include "elf64-hppa.h" | |
29 | #define ARCH_SIZE 64 | |
30 | ||
31 | #define PLT_ENTRY_SIZE 0x10 | |
32 | #define DLT_ENTRY_SIZE 0x8 | |
33 | #define OPD_ENTRY_SIZE 0x20 | |
fe8bc63d | 34 | |
15bda425 JL |
35 | #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl" |
36 | ||
37 | /* The stub is supposed to load the target address and target's DP | |
38 | value out of the PLT, then do an external branch to the target | |
39 | address. | |
40 | ||
41 | LDD PLTOFF(%r27),%r1 | |
42 | BVE (%r1) | |
43 | LDD PLTOFF+8(%r27),%r27 | |
44 | ||
45 | Note that we must use the LDD with a 14 bit displacement, not the one | |
46 | with a 5 bit displacement. */ | |
47 | static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00, | |
48 | 0x53, 0x7b, 0x00, 0x00 }; | |
49 | ||
50 | struct elf64_hppa_dyn_hash_entry | |
51 | { | |
52 | struct bfd_hash_entry root; | |
53 | ||
54 | /* Offsets for this symbol in various linker sections. */ | |
55 | bfd_vma dlt_offset; | |
56 | bfd_vma plt_offset; | |
57 | bfd_vma opd_offset; | |
58 | bfd_vma stub_offset; | |
59 | ||
edd21aca | 60 | /* The symbol table entry, if any, that this was derived from. */ |
15bda425 JL |
61 | struct elf_link_hash_entry *h; |
62 | ||
63 | /* The index of the (possibly local) symbol in the input bfd and its | |
64 | associated BFD. Needed so that we can have relocs against local | |
65 | symbols in shared libraries. */ | |
dc810e39 | 66 | long sym_indx; |
15bda425 JL |
67 | bfd *owner; |
68 | ||
69 | /* Dynamic symbols may need to have two different values. One for | |
70 | the dynamic symbol table, one for the normal symbol table. | |
71 | ||
72 | In such cases we store the symbol's real value and section | |
73 | index here so we can restore the real value before we write | |
74 | the normal symbol table. */ | |
75 | bfd_vma st_value; | |
76 | int st_shndx; | |
77 | ||
78 | /* Used to count non-got, non-plt relocations for delayed sizing | |
79 | of relocation sections. */ | |
80 | struct elf64_hppa_dyn_reloc_entry | |
81 | { | |
82 | /* Next relocation in the chain. */ | |
83 | struct elf64_hppa_dyn_reloc_entry *next; | |
84 | ||
85 | /* The type of the relocation. */ | |
86 | int type; | |
87 | ||
88 | /* The input section of the relocation. */ | |
89 | asection *sec; | |
90 | ||
91 | /* The index of the section symbol for the input section of | |
92 | the relocation. Only needed when building shared libraries. */ | |
93 | int sec_symndx; | |
94 | ||
95 | /* The offset within the input section of the relocation. */ | |
96 | bfd_vma offset; | |
97 | ||
98 | /* The addend for the relocation. */ | |
99 | bfd_vma addend; | |
100 | ||
101 | } *reloc_entries; | |
102 | ||
103 | /* Nonzero if this symbol needs an entry in one of the linker | |
104 | sections. */ | |
105 | unsigned want_dlt; | |
106 | unsigned want_plt; | |
107 | unsigned want_opd; | |
108 | unsigned want_stub; | |
109 | }; | |
110 | ||
111 | struct elf64_hppa_dyn_hash_table | |
112 | { | |
113 | struct bfd_hash_table root; | |
114 | }; | |
115 | ||
116 | struct elf64_hppa_link_hash_table | |
117 | { | |
118 | struct elf_link_hash_table root; | |
119 | ||
120 | /* Shortcuts to get to the various linker defined sections. */ | |
121 | asection *dlt_sec; | |
122 | asection *dlt_rel_sec; | |
123 | asection *plt_sec; | |
124 | asection *plt_rel_sec; | |
125 | asection *opd_sec; | |
126 | asection *opd_rel_sec; | |
127 | asection *other_rel_sec; | |
128 | ||
129 | /* Offset of __gp within .plt section. When the PLT gets large we want | |
130 | to slide __gp into the PLT section so that we can continue to use | |
131 | single DP relative instructions to load values out of the PLT. */ | |
132 | bfd_vma gp_offset; | |
133 | ||
134 | /* Note this is not strictly correct. We should create a stub section for | |
135 | each input section with calls. The stub section should be placed before | |
136 | the section with the call. */ | |
137 | asection *stub_sec; | |
138 | ||
139 | bfd_vma text_segment_base; | |
140 | bfd_vma data_segment_base; | |
141 | ||
142 | struct elf64_hppa_dyn_hash_table dyn_hash_table; | |
143 | ||
144 | /* We build tables to map from an input section back to its | |
145 | symbol index. This is the BFD for which we currently have | |
146 | a map. */ | |
147 | bfd *section_syms_bfd; | |
148 | ||
149 | /* Array of symbol numbers for each input section attached to the | |
150 | current BFD. */ | |
151 | int *section_syms; | |
152 | }; | |
153 | ||
154 | #define elf64_hppa_hash_table(p) \ | |
155 | ((struct elf64_hppa_link_hash_table *) ((p)->hash)) | |
156 | ||
157 | typedef struct bfd_hash_entry *(*new_hash_entry_func) | |
158 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
159 | ||
b34976b6 | 160 | static bfd_boolean elf64_hppa_dyn_hash_table_init |
15bda425 JL |
161 | PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd, |
162 | new_hash_entry_func new)); | |
163 | static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry | |
164 | PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table, | |
165 | const char *string)); | |
166 | static struct bfd_link_hash_table *elf64_hppa_hash_table_create | |
167 | PARAMS ((bfd *abfd)); | |
168 | static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup | |
169 | PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string, | |
b34976b6 | 170 | bfd_boolean create, bfd_boolean copy)); |
15bda425 JL |
171 | static void elf64_hppa_dyn_hash_traverse |
172 | PARAMS ((struct elf64_hppa_dyn_hash_table *table, | |
b34976b6 | 173 | bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR), |
15bda425 JL |
174 | PTR info)); |
175 | ||
176 | static const char *get_dyn_name | |
d63b5ed9 | 177 | PARAMS ((bfd *, struct elf_link_hash_entry *, |
0ba2a60e | 178 | const Elf_Internal_Rela *, char **, size_t *)); |
15bda425 | 179 | |
15bda425 JL |
180 | /* This must follow the definitions of the various derived linker |
181 | hash tables and shared functions. */ | |
182 | #include "elf-hppa.h" | |
183 | ||
b34976b6 | 184 | static bfd_boolean elf64_hppa_object_p |
15bda425 JL |
185 | PARAMS ((bfd *)); |
186 | ||
15bda425 JL |
187 | static void elf64_hppa_post_process_headers |
188 | PARAMS ((bfd *, struct bfd_link_info *)); | |
189 | ||
b34976b6 | 190 | static bfd_boolean elf64_hppa_create_dynamic_sections |
15bda425 JL |
191 | PARAMS ((bfd *, struct bfd_link_info *)); |
192 | ||
b34976b6 | 193 | static bfd_boolean elf64_hppa_adjust_dynamic_symbol |
15bda425 JL |
194 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); |
195 | ||
b34976b6 | 196 | static bfd_boolean elf64_hppa_mark_milli_and_exported_functions |
47b7c2db AM |
197 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
198 | ||
b34976b6 | 199 | static bfd_boolean elf64_hppa_size_dynamic_sections |
15bda425 JL |
200 | PARAMS ((bfd *, struct bfd_link_info *)); |
201 | ||
b34976b6 | 202 | static bfd_boolean elf64_hppa_link_output_symbol_hook |
754021d0 AM |
203 | PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *, |
204 | asection *, struct elf_link_hash_entry *)); | |
99c79b2e | 205 | |
b34976b6 | 206 | static bfd_boolean elf64_hppa_finish_dynamic_symbol |
15bda425 JL |
207 | PARAMS ((bfd *, struct bfd_link_info *, |
208 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
fe8bc63d | 209 | |
b34976b6 AM |
210 | static int elf64_hppa_additional_program_headers |
211 | PARAMS ((bfd *)); | |
99c79b2e | 212 | |
b34976b6 | 213 | static bfd_boolean elf64_hppa_modify_segment_map |
c84fca4d | 214 | PARAMS ((bfd *, struct bfd_link_info *)); |
99c79b2e | 215 | |
5ac81c74 JL |
216 | static enum elf_reloc_type_class elf64_hppa_reloc_type_class |
217 | PARAMS ((const Elf_Internal_Rela *)); | |
218 | ||
b34976b6 | 219 | static bfd_boolean elf64_hppa_finish_dynamic_sections |
15bda425 JL |
220 | PARAMS ((bfd *, struct bfd_link_info *)); |
221 | ||
b34976b6 | 222 | static bfd_boolean elf64_hppa_check_relocs |
15bda425 JL |
223 | PARAMS ((bfd *, struct bfd_link_info *, |
224 | asection *, const Elf_Internal_Rela *)); | |
225 | ||
b34976b6 | 226 | static bfd_boolean elf64_hppa_dynamic_symbol_p |
15bda425 JL |
227 | PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *)); |
228 | ||
b34976b6 | 229 | static bfd_boolean elf64_hppa_mark_exported_functions |
15bda425 JL |
230 | PARAMS ((struct elf_link_hash_entry *, PTR)); |
231 | ||
b34976b6 | 232 | static bfd_boolean elf64_hppa_finalize_opd |
15bda425 JL |
233 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
234 | ||
b34976b6 | 235 | static bfd_boolean elf64_hppa_finalize_dlt |
15bda425 JL |
236 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
237 | ||
b34976b6 | 238 | static bfd_boolean allocate_global_data_dlt |
15bda425 JL |
239 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
240 | ||
b34976b6 | 241 | static bfd_boolean allocate_global_data_plt |
15bda425 JL |
242 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
243 | ||
b34976b6 | 244 | static bfd_boolean allocate_global_data_stub |
15bda425 JL |
245 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
246 | ||
b34976b6 | 247 | static bfd_boolean allocate_global_data_opd |
15bda425 JL |
248 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
249 | ||
b34976b6 | 250 | static bfd_boolean get_reloc_section |
15bda425 JL |
251 | PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *)); |
252 | ||
b34976b6 | 253 | static bfd_boolean count_dyn_reloc |
15bda425 JL |
254 | PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *, |
255 | int, asection *, int, bfd_vma, bfd_vma)); | |
256 | ||
b34976b6 | 257 | static bfd_boolean allocate_dynrel_entries |
15bda425 JL |
258 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
259 | ||
b34976b6 | 260 | static bfd_boolean elf64_hppa_finalize_dynreloc |
15bda425 JL |
261 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
262 | ||
b34976b6 | 263 | static bfd_boolean get_opd |
15bda425 JL |
264 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
265 | ||
b34976b6 | 266 | static bfd_boolean get_plt |
15bda425 JL |
267 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
268 | ||
b34976b6 | 269 | static bfd_boolean get_dlt |
15bda425 JL |
270 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
271 | ||
b34976b6 | 272 | static bfd_boolean get_stub |
15bda425 JL |
273 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); |
274 | ||
3fab46d0 AM |
275 | static int elf64_hppa_elf_get_symbol_type |
276 | PARAMS ((Elf_Internal_Sym *, int)); | |
277 | ||
b34976b6 | 278 | static bfd_boolean |
15bda425 JL |
279 | elf64_hppa_dyn_hash_table_init (ht, abfd, new) |
280 | struct elf64_hppa_dyn_hash_table *ht; | |
edd21aca | 281 | bfd *abfd ATTRIBUTE_UNUSED; |
15bda425 JL |
282 | new_hash_entry_func new; |
283 | { | |
fe8bc63d | 284 | memset (ht, 0, sizeof (*ht)); |
15bda425 JL |
285 | return bfd_hash_table_init (&ht->root, new); |
286 | } | |
287 | ||
288 | static struct bfd_hash_entry* | |
289 | elf64_hppa_new_dyn_hash_entry (entry, table, string) | |
290 | struct bfd_hash_entry *entry; | |
291 | struct bfd_hash_table *table; | |
292 | const char *string; | |
293 | { | |
294 | struct elf64_hppa_dyn_hash_entry *ret; | |
295 | ret = (struct elf64_hppa_dyn_hash_entry *) entry; | |
296 | ||
297 | /* Allocate the structure if it has not already been allocated by a | |
298 | subclass. */ | |
299 | if (!ret) | |
300 | ret = bfd_hash_allocate (table, sizeof (*ret)); | |
301 | ||
302 | if (!ret) | |
303 | return 0; | |
304 | ||
15bda425 JL |
305 | /* Call the allocation method of the superclass. */ |
306 | ret = ((struct elf64_hppa_dyn_hash_entry *) | |
307 | bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); | |
308 | ||
336549c1 AM |
309 | /* Initialize our local data. All zeros. */ |
310 | memset (&ret->dlt_offset, 0, | |
311 | (sizeof (struct elf64_hppa_dyn_hash_entry) | |
312 | - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset))); | |
313 | ||
15bda425 JL |
314 | return &ret->root; |
315 | } | |
316 | ||
317 | /* Create the derived linker hash table. The PA64 ELF port uses this | |
318 | derived hash table to keep information specific to the PA ElF | |
319 | linker (without using static variables). */ | |
320 | ||
321 | static struct bfd_link_hash_table* | |
322 | elf64_hppa_hash_table_create (abfd) | |
323 | bfd *abfd; | |
324 | { | |
325 | struct elf64_hppa_link_hash_table *ret; | |
326 | ||
dc810e39 | 327 | ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret)); |
15bda425 JL |
328 | if (!ret) |
329 | return 0; | |
330 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, | |
331 | _bfd_elf_link_hash_newfunc)) | |
332 | { | |
333 | bfd_release (abfd, ret); | |
334 | return 0; | |
335 | } | |
336 | ||
337 | if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd, | |
338 | elf64_hppa_new_dyn_hash_entry)) | |
339 | return 0; | |
340 | return &ret->root.root; | |
341 | } | |
342 | ||
343 | /* Look up an entry in a PA64 ELF linker hash table. */ | |
344 | ||
345 | static struct elf64_hppa_dyn_hash_entry * | |
346 | elf64_hppa_dyn_hash_lookup(table, string, create, copy) | |
347 | struct elf64_hppa_dyn_hash_table *table; | |
348 | const char *string; | |
b34976b6 | 349 | bfd_boolean create, copy; |
15bda425 JL |
350 | { |
351 | return ((struct elf64_hppa_dyn_hash_entry *) | |
352 | bfd_hash_lookup (&table->root, string, create, copy)); | |
353 | } | |
354 | ||
355 | /* Traverse a PA64 ELF linker hash table. */ | |
356 | ||
357 | static void | |
358 | elf64_hppa_dyn_hash_traverse (table, func, info) | |
359 | struct elf64_hppa_dyn_hash_table *table; | |
b34976b6 | 360 | bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); |
15bda425 JL |
361 | PTR info; |
362 | { | |
363 | (bfd_hash_traverse | |
364 | (&table->root, | |
b34976b6 | 365 | (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func, |
15bda425 JL |
366 | info)); |
367 | } | |
368 | \f | |
369 | /* Return nonzero if ABFD represents a PA2.0 ELF64 file. | |
370 | ||
371 | Additionally we set the default architecture and machine. */ | |
b34976b6 | 372 | static bfd_boolean |
15bda425 JL |
373 | elf64_hppa_object_p (abfd) |
374 | bfd *abfd; | |
375 | { | |
24a5e751 L |
376 | Elf_Internal_Ehdr * i_ehdrp; |
377 | unsigned int flags; | |
d9634ba1 | 378 | |
24a5e751 L |
379 | i_ehdrp = elf_elfheader (abfd); |
380 | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) | |
381 | { | |
6c21aa76 NC |
382 | /* GCC on hppa-linux produces binaries with OSABI=Linux, |
383 | but the kernel produces corefiles with OSABI=SysV. */ | |
384 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX && | |
385 | i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | |
b34976b6 | 386 | return FALSE; |
24a5e751 L |
387 | } |
388 | else | |
389 | { | |
390 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) | |
b34976b6 | 391 | return FALSE; |
24a5e751 L |
392 | } |
393 | ||
394 | flags = i_ehdrp->e_flags; | |
d9634ba1 AM |
395 | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) |
396 | { | |
397 | case EFA_PARISC_1_0: | |
398 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); | |
399 | case EFA_PARISC_1_1: | |
400 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); | |
401 | case EFA_PARISC_2_0: | |
402 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); | |
403 | case EFA_PARISC_2_0 | EF_PARISC_WIDE: | |
404 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | |
405 | } | |
406 | /* Don't be fussy. */ | |
b34976b6 | 407 | return TRUE; |
15bda425 JL |
408 | } |
409 | ||
410 | /* Given section type (hdr->sh_type), return a boolean indicating | |
411 | whether or not the section is an elf64-hppa specific section. */ | |
b34976b6 | 412 | static bfd_boolean |
6dc132d9 L |
413 | elf64_hppa_section_from_shdr (bfd *abfd, |
414 | Elf_Internal_Shdr *hdr, | |
415 | const char *name, | |
416 | int shindex) | |
15bda425 JL |
417 | { |
418 | asection *newsect; | |
419 | ||
420 | switch (hdr->sh_type) | |
421 | { | |
422 | case SHT_PARISC_EXT: | |
423 | if (strcmp (name, ".PARISC.archext") != 0) | |
b34976b6 | 424 | return FALSE; |
15bda425 JL |
425 | break; |
426 | case SHT_PARISC_UNWIND: | |
427 | if (strcmp (name, ".PARISC.unwind") != 0) | |
b34976b6 | 428 | return FALSE; |
15bda425 JL |
429 | break; |
430 | case SHT_PARISC_DOC: | |
431 | case SHT_PARISC_ANNOT: | |
432 | default: | |
b34976b6 | 433 | return FALSE; |
15bda425 JL |
434 | } |
435 | ||
6dc132d9 | 436 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 437 | return FALSE; |
15bda425 JL |
438 | newsect = hdr->bfd_section; |
439 | ||
b34976b6 | 440 | return TRUE; |
15bda425 JL |
441 | } |
442 | ||
15bda425 | 443 | /* Construct a string for use in the elf64_hppa_dyn_hash_table. The |
fe8bc63d | 444 | name describes what was once potentially anonymous memory. We |
15bda425 JL |
445 | allocate memory as necessary, possibly reusing PBUF/PLEN. */ |
446 | ||
447 | static const char * | |
d63b5ed9 DA |
448 | get_dyn_name (abfd, h, rel, pbuf, plen) |
449 | bfd *abfd; | |
15bda425 JL |
450 | struct elf_link_hash_entry *h; |
451 | const Elf_Internal_Rela *rel; | |
452 | char **pbuf; | |
453 | size_t *plen; | |
454 | { | |
d63b5ed9 | 455 | asection *sec = abfd->sections; |
15bda425 JL |
456 | size_t nlen, tlen; |
457 | char *buf; | |
458 | size_t len; | |
459 | ||
460 | if (h && rel->r_addend == 0) | |
461 | return h->root.root.string; | |
462 | ||
463 | if (h) | |
464 | nlen = strlen (h->root.root.string); | |
465 | else | |
0ba2a60e AM |
466 | nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8; |
467 | tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1; | |
15bda425 JL |
468 | |
469 | len = *plen; | |
470 | buf = *pbuf; | |
471 | if (len < tlen) | |
472 | { | |
473 | if (buf) | |
474 | free (buf); | |
475 | *pbuf = buf = malloc (tlen); | |
476 | *plen = len = tlen; | |
477 | if (!buf) | |
478 | return NULL; | |
479 | } | |
480 | ||
481 | if (h) | |
482 | { | |
483 | memcpy (buf, h->root.root.string, nlen); | |
0ba2a60e | 484 | buf[nlen++] = '+'; |
15bda425 JL |
485 | sprintf_vma (buf + nlen, rel->r_addend); |
486 | } | |
487 | else | |
488 | { | |
0ba2a60e AM |
489 | nlen = sprintf (buf, "%x:%lx", |
490 | sec->id & 0xffffffff, | |
491 | (long) ELF64_R_SYM (rel->r_info)); | |
15bda425 JL |
492 | if (rel->r_addend) |
493 | { | |
494 | buf[nlen++] = '+'; | |
495 | sprintf_vma (buf + nlen, rel->r_addend); | |
496 | } | |
497 | } | |
498 | ||
499 | return buf; | |
500 | } | |
501 | ||
502 | /* SEC is a section containing relocs for an input BFD when linking; return | |
503 | a suitable section for holding relocs in the output BFD for a link. */ | |
504 | ||
b34976b6 | 505 | static bfd_boolean |
15bda425 JL |
506 | get_reloc_section (abfd, hppa_info, sec) |
507 | bfd *abfd; | |
508 | struct elf64_hppa_link_hash_table *hppa_info; | |
509 | asection *sec; | |
510 | { | |
511 | const char *srel_name; | |
512 | asection *srel; | |
513 | bfd *dynobj; | |
514 | ||
515 | srel_name = (bfd_elf_string_from_elf_section | |
516 | (abfd, elf_elfheader(abfd)->e_shstrndx, | |
517 | elf_section_data(sec)->rel_hdr.sh_name)); | |
518 | if (srel_name == NULL) | |
b34976b6 | 519 | return FALSE; |
15bda425 JL |
520 | |
521 | BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0 | |
522 | && strcmp (bfd_get_section_name (abfd, sec), | |
523 | srel_name+5) == 0) | |
524 | || (strncmp (srel_name, ".rel", 4) == 0 | |
525 | && strcmp (bfd_get_section_name (abfd, sec), | |
526 | srel_name+4) == 0)); | |
527 | ||
528 | dynobj = hppa_info->root.dynobj; | |
529 | if (!dynobj) | |
530 | hppa_info->root.dynobj = dynobj = abfd; | |
531 | ||
532 | srel = bfd_get_section_by_name (dynobj, srel_name); | |
533 | if (srel == NULL) | |
534 | { | |
3496cb2a L |
535 | srel = bfd_make_section_with_flags (dynobj, srel_name, |
536 | (SEC_ALLOC | |
537 | | SEC_LOAD | |
538 | | SEC_HAS_CONTENTS | |
539 | | SEC_IN_MEMORY | |
540 | | SEC_LINKER_CREATED | |
541 | | SEC_READONLY)); | |
15bda425 | 542 | if (srel == NULL |
15bda425 | 543 | || !bfd_set_section_alignment (dynobj, srel, 3)) |
b34976b6 | 544 | return FALSE; |
15bda425 JL |
545 | } |
546 | ||
547 | hppa_info->other_rel_sec = srel; | |
b34976b6 | 548 | return TRUE; |
15bda425 JL |
549 | } |
550 | ||
fe8bc63d | 551 | /* Add a new entry to the list of dynamic relocations against DYN_H. |
15bda425 JL |
552 | |
553 | We use this to keep a record of all the FPTR relocations against a | |
554 | particular symbol so that we can create FPTR relocations in the | |
555 | output file. */ | |
556 | ||
b34976b6 | 557 | static bfd_boolean |
15bda425 JL |
558 | count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend) |
559 | bfd *abfd; | |
560 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
561 | int type; | |
562 | asection *sec; | |
563 | int sec_symndx; | |
564 | bfd_vma offset; | |
565 | bfd_vma addend; | |
566 | { | |
567 | struct elf64_hppa_dyn_reloc_entry *rent; | |
568 | ||
569 | rent = (struct elf64_hppa_dyn_reloc_entry *) | |
dc810e39 | 570 | bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)); |
15bda425 | 571 | if (!rent) |
b34976b6 | 572 | return FALSE; |
15bda425 JL |
573 | |
574 | rent->next = dyn_h->reloc_entries; | |
575 | rent->type = type; | |
576 | rent->sec = sec; | |
577 | rent->sec_symndx = sec_symndx; | |
578 | rent->offset = offset; | |
579 | rent->addend = addend; | |
580 | dyn_h->reloc_entries = rent; | |
581 | ||
b34976b6 | 582 | return TRUE; |
15bda425 JL |
583 | } |
584 | ||
585 | /* Scan the RELOCS and record the type of dynamic entries that each | |
586 | referenced symbol needs. */ | |
587 | ||
b34976b6 | 588 | static bfd_boolean |
15bda425 JL |
589 | elf64_hppa_check_relocs (abfd, info, sec, relocs) |
590 | bfd *abfd; | |
591 | struct bfd_link_info *info; | |
592 | asection *sec; | |
593 | const Elf_Internal_Rela *relocs; | |
594 | { | |
595 | struct elf64_hppa_link_hash_table *hppa_info; | |
596 | const Elf_Internal_Rela *relend; | |
597 | Elf_Internal_Shdr *symtab_hdr; | |
598 | const Elf_Internal_Rela *rel; | |
599 | asection *dlt, *plt, *stubs; | |
600 | char *buf; | |
601 | size_t buf_len; | |
602 | int sec_symndx; | |
603 | ||
1049f94e | 604 | if (info->relocatable) |
b34976b6 | 605 | return TRUE; |
15bda425 JL |
606 | |
607 | /* If this is the first dynamic object found in the link, create | |
608 | the special sections required for dynamic linking. */ | |
609 | if (! elf_hash_table (info)->dynamic_sections_created) | |
610 | { | |
45d6a902 | 611 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) |
b34976b6 | 612 | return FALSE; |
15bda425 JL |
613 | } |
614 | ||
615 | hppa_info = elf64_hppa_hash_table (info); | |
616 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
617 | ||
618 | /* If necessary, build a new table holding section symbols indices | |
6cdc0ccc | 619 | for this BFD. */ |
fe8bc63d | 620 | |
15bda425 JL |
621 | if (info->shared && hppa_info->section_syms_bfd != abfd) |
622 | { | |
832d951b | 623 | unsigned long i; |
9ad5cbcf | 624 | unsigned int highest_shndx; |
6cdc0ccc AM |
625 | Elf_Internal_Sym *local_syms = NULL; |
626 | Elf_Internal_Sym *isym, *isymend; | |
dc810e39 | 627 | bfd_size_type amt; |
15bda425 JL |
628 | |
629 | /* We're done with the old cache of section index to section symbol | |
630 | index information. Free it. | |
631 | ||
632 | ?!? Note we leak the last section_syms array. Presumably we | |
633 | could free it in one of the later routines in this file. */ | |
634 | if (hppa_info->section_syms) | |
635 | free (hppa_info->section_syms); | |
636 | ||
6cdc0ccc AM |
637 | /* Read this BFD's local symbols. */ |
638 | if (symtab_hdr->sh_info != 0) | |
47b7c2db | 639 | { |
6cdc0ccc AM |
640 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
641 | if (local_syms == NULL) | |
642 | local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
643 | symtab_hdr->sh_info, 0, | |
644 | NULL, NULL, NULL); | |
645 | if (local_syms == NULL) | |
b34976b6 | 646 | return FALSE; |
9ad5cbcf AM |
647 | } |
648 | ||
6cdc0ccc | 649 | /* Record the highest section index referenced by the local symbols. */ |
15bda425 | 650 | highest_shndx = 0; |
6cdc0ccc AM |
651 | isymend = local_syms + symtab_hdr->sh_info; |
652 | for (isym = local_syms; isym < isymend; isym++) | |
15bda425 | 653 | { |
15bda425 JL |
654 | if (isym->st_shndx > highest_shndx) |
655 | highest_shndx = isym->st_shndx; | |
656 | } | |
657 | ||
15bda425 JL |
658 | /* Allocate an array to hold the section index to section symbol index |
659 | mapping. Bump by one since we start counting at zero. */ | |
660 | highest_shndx++; | |
dc810e39 AM |
661 | amt = highest_shndx; |
662 | amt *= sizeof (int); | |
663 | hppa_info->section_syms = (int *) bfd_malloc (amt); | |
15bda425 JL |
664 | |
665 | /* Now walk the local symbols again. If we find a section symbol, | |
666 | record the index of the symbol into the section_syms array. */ | |
6cdc0ccc | 667 | for (i = 0, isym = local_syms; isym < isymend; i++, isym++) |
15bda425 JL |
668 | { |
669 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
670 | hppa_info->section_syms[isym->st_shndx] = i; | |
671 | } | |
672 | ||
6cdc0ccc AM |
673 | /* We are finished with the local symbols. */ |
674 | if (local_syms != NULL | |
675 | && symtab_hdr->contents != (unsigned char *) local_syms) | |
676 | { | |
677 | if (! info->keep_memory) | |
678 | free (local_syms); | |
679 | else | |
680 | { | |
681 | /* Cache the symbols for elf_link_input_bfd. */ | |
682 | symtab_hdr->contents = (unsigned char *) local_syms; | |
683 | } | |
684 | } | |
15bda425 JL |
685 | |
686 | /* Record which BFD we built the section_syms mapping for. */ | |
687 | hppa_info->section_syms_bfd = abfd; | |
688 | } | |
689 | ||
690 | /* Record the symbol index for this input section. We may need it for | |
691 | relocations when building shared libraries. When not building shared | |
692 | libraries this value is never really used, but assign it to zero to | |
693 | prevent out of bounds memory accesses in other routines. */ | |
694 | if (info->shared) | |
695 | { | |
696 | sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
697 | ||
698 | /* If we did not find a section symbol for this section, then | |
699 | something went terribly wrong above. */ | |
700 | if (sec_symndx == -1) | |
b34976b6 | 701 | return FALSE; |
15bda425 JL |
702 | |
703 | sec_symndx = hppa_info->section_syms[sec_symndx]; | |
704 | } | |
705 | else | |
706 | sec_symndx = 0; | |
fe8bc63d | 707 | |
15bda425 JL |
708 | dlt = plt = stubs = NULL; |
709 | buf = NULL; | |
710 | buf_len = 0; | |
711 | ||
712 | relend = relocs + sec->reloc_count; | |
713 | for (rel = relocs; rel < relend; ++rel) | |
714 | { | |
560e09e9 NC |
715 | enum |
716 | { | |
717 | NEED_DLT = 1, | |
718 | NEED_PLT = 2, | |
719 | NEED_STUB = 4, | |
720 | NEED_OPD = 8, | |
721 | NEED_DYNREL = 16, | |
722 | }; | |
15bda425 JL |
723 | |
724 | struct elf_link_hash_entry *h = NULL; | |
725 | unsigned long r_symndx = ELF64_R_SYM (rel->r_info); | |
726 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
727 | int need_entry; | |
728 | const char *addr_name; | |
b34976b6 | 729 | bfd_boolean maybe_dynamic; |
15bda425 JL |
730 | int dynrel_type = R_PARISC_NONE; |
731 | static reloc_howto_type *howto; | |
732 | ||
733 | if (r_symndx >= symtab_hdr->sh_info) | |
734 | { | |
735 | /* We're dealing with a global symbol -- find its hash entry | |
736 | and mark it as being referenced. */ | |
737 | long indx = r_symndx - symtab_hdr->sh_info; | |
738 | h = elf_sym_hashes (abfd)[indx]; | |
739 | while (h->root.type == bfd_link_hash_indirect | |
740 | || h->root.type == bfd_link_hash_warning) | |
741 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
742 | ||
f5385ebf | 743 | h->ref_regular = 1; |
15bda425 JL |
744 | } |
745 | ||
746 | /* We can only get preliminary data on whether a symbol is | |
747 | locally or externally defined, as not all of the input files | |
748 | have yet been processed. Do something with what we know, as | |
749 | this may help reduce memory usage and processing time later. */ | |
b34976b6 | 750 | maybe_dynamic = FALSE; |
671bae9c | 751 | if (h && ((info->shared |
f5385ebf AM |
752 | && (!info->symbolic |
753 | || info->unresolved_syms_in_shared_libs == RM_IGNORE)) | |
754 | || !h->def_regular | |
15bda425 | 755 | || h->root.type == bfd_link_hash_defweak)) |
b34976b6 | 756 | maybe_dynamic = TRUE; |
15bda425 JL |
757 | |
758 | howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info); | |
759 | need_entry = 0; | |
760 | switch (howto->type) | |
761 | { | |
762 | /* These are simple indirect references to symbols through the | |
763 | DLT. We need to create a DLT entry for any symbols which | |
764 | appears in a DLTIND relocation. */ | |
765 | case R_PARISC_DLTIND21L: | |
766 | case R_PARISC_DLTIND14R: | |
767 | case R_PARISC_DLTIND14F: | |
768 | case R_PARISC_DLTIND14WR: | |
769 | case R_PARISC_DLTIND14DR: | |
770 | need_entry = NEED_DLT; | |
771 | break; | |
772 | ||
773 | /* ?!? These need a DLT entry. But I have no idea what to do with | |
774 | the "link time TP value. */ | |
775 | case R_PARISC_LTOFF_TP21L: | |
776 | case R_PARISC_LTOFF_TP14R: | |
777 | case R_PARISC_LTOFF_TP14F: | |
778 | case R_PARISC_LTOFF_TP64: | |
779 | case R_PARISC_LTOFF_TP14WR: | |
780 | case R_PARISC_LTOFF_TP14DR: | |
781 | case R_PARISC_LTOFF_TP16F: | |
782 | case R_PARISC_LTOFF_TP16WF: | |
783 | case R_PARISC_LTOFF_TP16DF: | |
784 | need_entry = NEED_DLT; | |
785 | break; | |
786 | ||
787 | /* These are function calls. Depending on their precise target we | |
788 | may need to make a stub for them. The stub uses the PLT, so we | |
789 | need to create PLT entries for these symbols too. */ | |
832d951b | 790 | case R_PARISC_PCREL12F: |
15bda425 JL |
791 | case R_PARISC_PCREL17F: |
792 | case R_PARISC_PCREL22F: | |
793 | case R_PARISC_PCREL32: | |
794 | case R_PARISC_PCREL64: | |
795 | case R_PARISC_PCREL21L: | |
796 | case R_PARISC_PCREL17R: | |
797 | case R_PARISC_PCREL17C: | |
798 | case R_PARISC_PCREL14R: | |
799 | case R_PARISC_PCREL14F: | |
800 | case R_PARISC_PCREL22C: | |
801 | case R_PARISC_PCREL14WR: | |
802 | case R_PARISC_PCREL14DR: | |
803 | case R_PARISC_PCREL16F: | |
804 | case R_PARISC_PCREL16WF: | |
805 | case R_PARISC_PCREL16DF: | |
806 | need_entry = (NEED_PLT | NEED_STUB); | |
807 | break; | |
808 | ||
809 | case R_PARISC_PLTOFF21L: | |
810 | case R_PARISC_PLTOFF14R: | |
811 | case R_PARISC_PLTOFF14F: | |
812 | case R_PARISC_PLTOFF14WR: | |
813 | case R_PARISC_PLTOFF14DR: | |
814 | case R_PARISC_PLTOFF16F: | |
815 | case R_PARISC_PLTOFF16WF: | |
816 | case R_PARISC_PLTOFF16DF: | |
817 | need_entry = (NEED_PLT); | |
818 | break; | |
819 | ||
820 | case R_PARISC_DIR64: | |
821 | if (info->shared || maybe_dynamic) | |
822 | need_entry = (NEED_DYNREL); | |
823 | dynrel_type = R_PARISC_DIR64; | |
824 | break; | |
825 | ||
826 | /* This is an indirect reference through the DLT to get the address | |
827 | of a OPD descriptor. Thus we need to make a DLT entry that points | |
828 | to an OPD entry. */ | |
829 | case R_PARISC_LTOFF_FPTR21L: | |
830 | case R_PARISC_LTOFF_FPTR14R: | |
831 | case R_PARISC_LTOFF_FPTR14WR: | |
832 | case R_PARISC_LTOFF_FPTR14DR: | |
833 | case R_PARISC_LTOFF_FPTR32: | |
834 | case R_PARISC_LTOFF_FPTR64: | |
835 | case R_PARISC_LTOFF_FPTR16F: | |
836 | case R_PARISC_LTOFF_FPTR16WF: | |
837 | case R_PARISC_LTOFF_FPTR16DF: | |
838 | if (info->shared || maybe_dynamic) | |
839 | need_entry = (NEED_DLT | NEED_OPD); | |
840 | else | |
841 | need_entry = (NEED_DLT | NEED_OPD); | |
842 | dynrel_type = R_PARISC_FPTR64; | |
843 | break; | |
844 | ||
845 | /* This is a simple OPD entry. */ | |
846 | case R_PARISC_FPTR64: | |
847 | if (info->shared || maybe_dynamic) | |
848 | need_entry = (NEED_OPD | NEED_DYNREL); | |
849 | else | |
850 | need_entry = (NEED_OPD); | |
851 | dynrel_type = R_PARISC_FPTR64; | |
852 | break; | |
853 | ||
854 | /* Add more cases as needed. */ | |
855 | } | |
856 | ||
857 | if (!need_entry) | |
858 | continue; | |
859 | ||
860 | /* Collect a canonical name for this address. */ | |
d63b5ed9 | 861 | addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len); |
15bda425 JL |
862 | |
863 | /* Collect the canonical entry data for this address. */ | |
864 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 865 | addr_name, TRUE, TRUE); |
15bda425 JL |
866 | BFD_ASSERT (dyn_h); |
867 | ||
868 | /* Stash away enough information to be able to find this symbol | |
869 | regardless of whether or not it is local or global. */ | |
870 | dyn_h->h = h; | |
871 | dyn_h->owner = abfd; | |
872 | dyn_h->sym_indx = r_symndx; | |
873 | ||
874 | /* ?!? We may need to do some error checking in here. */ | |
875 | /* Create what's needed. */ | |
876 | if (need_entry & NEED_DLT) | |
877 | { | |
878 | if (! hppa_info->dlt_sec | |
879 | && ! get_dlt (abfd, info, hppa_info)) | |
880 | goto err_out; | |
881 | dyn_h->want_dlt = 1; | |
882 | } | |
883 | ||
884 | if (need_entry & NEED_PLT) | |
885 | { | |
886 | if (! hppa_info->plt_sec | |
887 | && ! get_plt (abfd, info, hppa_info)) | |
888 | goto err_out; | |
889 | dyn_h->want_plt = 1; | |
890 | } | |
891 | ||
892 | if (need_entry & NEED_STUB) | |
893 | { | |
894 | if (! hppa_info->stub_sec | |
895 | && ! get_stub (abfd, info, hppa_info)) | |
896 | goto err_out; | |
897 | dyn_h->want_stub = 1; | |
898 | } | |
899 | ||
900 | if (need_entry & NEED_OPD) | |
901 | { | |
902 | if (! hppa_info->opd_sec | |
903 | && ! get_opd (abfd, info, hppa_info)) | |
904 | goto err_out; | |
905 | ||
906 | dyn_h->want_opd = 1; | |
907 | ||
908 | /* FPTRs are not allocated by the dynamic linker for PA64, though | |
909 | it is possible that will change in the future. */ | |
fe8bc63d | 910 | |
15bda425 JL |
911 | /* This could be a local function that had its address taken, in |
912 | which case H will be NULL. */ | |
913 | if (h) | |
f5385ebf | 914 | h->needs_plt = 1; |
15bda425 JL |
915 | } |
916 | ||
917 | /* Add a new dynamic relocation to the chain of dynamic | |
918 | relocations for this symbol. */ | |
919 | if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) | |
920 | { | |
921 | if (! hppa_info->other_rel_sec | |
922 | && ! get_reloc_section (abfd, hppa_info, sec)) | |
923 | goto err_out; | |
924 | ||
925 | if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec, | |
926 | sec_symndx, rel->r_offset, rel->r_addend)) | |
927 | goto err_out; | |
928 | ||
929 | /* If we are building a shared library and we just recorded | |
930 | a dynamic R_PARISC_FPTR64 relocation, then make sure the | |
931 | section symbol for this section ends up in the dynamic | |
932 | symbol table. */ | |
933 | if (info->shared && dynrel_type == R_PARISC_FPTR64 | |
c152c796 | 934 | && ! (bfd_elf_link_record_local_dynamic_symbol |
15bda425 | 935 | (info, abfd, sec_symndx))) |
b34976b6 | 936 | return FALSE; |
15bda425 JL |
937 | } |
938 | } | |
939 | ||
940 | if (buf) | |
941 | free (buf); | |
b34976b6 | 942 | return TRUE; |
15bda425 JL |
943 | |
944 | err_out: | |
945 | if (buf) | |
946 | free (buf); | |
b34976b6 | 947 | return FALSE; |
15bda425 JL |
948 | } |
949 | ||
950 | struct elf64_hppa_allocate_data | |
951 | { | |
952 | struct bfd_link_info *info; | |
953 | bfd_size_type ofs; | |
954 | }; | |
955 | ||
956 | /* Should we do dynamic things to this symbol? */ | |
957 | ||
b34976b6 | 958 | static bfd_boolean |
15bda425 JL |
959 | elf64_hppa_dynamic_symbol_p (h, info) |
960 | struct elf_link_hash_entry *h; | |
961 | struct bfd_link_info *info; | |
962 | { | |
986a241f RH |
963 | /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols |
964 | and relocations that retrieve a function descriptor? Assume the | |
965 | worst for now. */ | |
966 | if (_bfd_elf_dynamic_symbol_p (h, info, 1)) | |
967 | { | |
968 | /* ??? Why is this here and not elsewhere is_local_label_name. */ | |
969 | if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$') | |
970 | return FALSE; | |
15bda425 | 971 | |
986a241f RH |
972 | return TRUE; |
973 | } | |
974 | else | |
b34976b6 | 975 | return FALSE; |
15bda425 JL |
976 | } |
977 | ||
4cc11e76 | 978 | /* Mark all functions exported by this file so that we can later allocate |
15bda425 JL |
979 | entries in .opd for them. */ |
980 | ||
b34976b6 | 981 | static bfd_boolean |
15bda425 JL |
982 | elf64_hppa_mark_exported_functions (h, data) |
983 | struct elf_link_hash_entry *h; | |
984 | PTR data; | |
985 | { | |
986 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
987 | struct elf64_hppa_link_hash_table *hppa_info; | |
988 | ||
989 | hppa_info = elf64_hppa_hash_table (info); | |
990 | ||
e92d460e AM |
991 | if (h->root.type == bfd_link_hash_warning) |
992 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
993 | ||
15bda425 JL |
994 | if (h |
995 | && (h->root.type == bfd_link_hash_defined | |
996 | || h->root.type == bfd_link_hash_defweak) | |
997 | && h->root.u.def.section->output_section != NULL | |
998 | && h->type == STT_FUNC) | |
999 | { | |
1000 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1001 | ||
1002 | /* Add this symbol to the PA64 linker hash table. */ | |
1003 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1004 | h->root.root.string, TRUE, TRUE); |
15bda425 JL |
1005 | BFD_ASSERT (dyn_h); |
1006 | dyn_h->h = h; | |
1007 | ||
1008 | if (! hppa_info->opd_sec | |
1009 | && ! get_opd (hppa_info->root.dynobj, info, hppa_info)) | |
b34976b6 | 1010 | return FALSE; |
15bda425 JL |
1011 | |
1012 | dyn_h->want_opd = 1; | |
832d951b AM |
1013 | /* Put a flag here for output_symbol_hook. */ |
1014 | dyn_h->st_shndx = -1; | |
f5385ebf | 1015 | h->needs_plt = 1; |
15bda425 JL |
1016 | } |
1017 | ||
b34976b6 | 1018 | return TRUE; |
15bda425 JL |
1019 | } |
1020 | ||
1021 | /* Allocate space for a DLT entry. */ | |
1022 | ||
b34976b6 | 1023 | static bfd_boolean |
15bda425 JL |
1024 | allocate_global_data_dlt (dyn_h, data) |
1025 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1026 | PTR data; | |
1027 | { | |
1028 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1029 | ||
1030 | if (dyn_h->want_dlt) | |
1031 | { | |
1032 | struct elf_link_hash_entry *h = dyn_h->h; | |
1033 | ||
1034 | if (x->info->shared) | |
1035 | { | |
1036 | /* Possibly add the symbol to the local dynamic symbol | |
1037 | table since we might need to create a dynamic relocation | |
1038 | against it. */ | |
1039 | if (! h | |
47b7c2db | 1040 | || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)) |
15bda425 JL |
1041 | { |
1042 | bfd *owner; | |
1043 | owner = (h ? h->root.u.def.section->owner : dyn_h->owner); | |
1044 | ||
c152c796 | 1045 | if (! (bfd_elf_link_record_local_dynamic_symbol |
dc810e39 | 1046 | (x->info, owner, dyn_h->sym_indx))) |
b34976b6 | 1047 | return FALSE; |
15bda425 JL |
1048 | } |
1049 | } | |
1050 | ||
1051 | dyn_h->dlt_offset = x->ofs; | |
1052 | x->ofs += DLT_ENTRY_SIZE; | |
1053 | } | |
b34976b6 | 1054 | return TRUE; |
15bda425 JL |
1055 | } |
1056 | ||
1057 | /* Allocate space for a DLT.PLT entry. */ | |
1058 | ||
b34976b6 | 1059 | static bfd_boolean |
15bda425 JL |
1060 | allocate_global_data_plt (dyn_h, data) |
1061 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1062 | PTR data; | |
1063 | { | |
1064 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1065 | ||
1066 | if (dyn_h->want_plt | |
1067 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info) | |
1068 | && !((dyn_h->h->root.type == bfd_link_hash_defined | |
1069 | || dyn_h->h->root.type == bfd_link_hash_defweak) | |
1070 | && dyn_h->h->root.u.def.section->output_section != NULL)) | |
1071 | { | |
1072 | dyn_h->plt_offset = x->ofs; | |
1073 | x->ofs += PLT_ENTRY_SIZE; | |
1074 | if (dyn_h->plt_offset < 0x2000) | |
1075 | elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset; | |
1076 | } | |
1077 | else | |
1078 | dyn_h->want_plt = 0; | |
1079 | ||
b34976b6 | 1080 | return TRUE; |
15bda425 JL |
1081 | } |
1082 | ||
1083 | /* Allocate space for a STUB entry. */ | |
1084 | ||
b34976b6 | 1085 | static bfd_boolean |
15bda425 JL |
1086 | allocate_global_data_stub (dyn_h, data) |
1087 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1088 | PTR data; | |
1089 | { | |
1090 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1091 | ||
1092 | if (dyn_h->want_stub | |
1093 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info) | |
1094 | && !((dyn_h->h->root.type == bfd_link_hash_defined | |
1095 | || dyn_h->h->root.type == bfd_link_hash_defweak) | |
1096 | && dyn_h->h->root.u.def.section->output_section != NULL)) | |
1097 | { | |
1098 | dyn_h->stub_offset = x->ofs; | |
1099 | x->ofs += sizeof (plt_stub); | |
1100 | } | |
1101 | else | |
1102 | dyn_h->want_stub = 0; | |
b34976b6 | 1103 | return TRUE; |
15bda425 JL |
1104 | } |
1105 | ||
1106 | /* Allocate space for a FPTR entry. */ | |
1107 | ||
b34976b6 | 1108 | static bfd_boolean |
15bda425 JL |
1109 | allocate_global_data_opd (dyn_h, data) |
1110 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1111 | PTR data; | |
1112 | { | |
1113 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1114 | ||
1115 | if (dyn_h->want_opd) | |
1116 | { | |
1117 | struct elf_link_hash_entry *h = dyn_h->h; | |
fe8bc63d | 1118 | |
15bda425 JL |
1119 | if (h) |
1120 | while (h->root.type == bfd_link_hash_indirect | |
1121 | || h->root.type == bfd_link_hash_warning) | |
1122 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1123 | ||
1124 | /* We never need an opd entry for a symbol which is not | |
1125 | defined by this output file. */ | |
3db4b612 JL |
1126 | if (h && (h->root.type == bfd_link_hash_undefined |
1127 | || h->root.u.def.section->output_section == NULL)) | |
15bda425 JL |
1128 | dyn_h->want_opd = 0; |
1129 | ||
1130 | /* If we are creating a shared library, took the address of a local | |
1131 | function or might export this function from this object file, then | |
1132 | we have to create an opd descriptor. */ | |
1133 | else if (x->info->shared | |
1134 | || h == NULL | |
47b7c2db | 1135 | || (h->dynindx == -1 && h->type != STT_PARISC_MILLI) |
3db4b612 JL |
1136 | || (h->root.type == bfd_link_hash_defined |
1137 | || h->root.type == bfd_link_hash_defweak)) | |
15bda425 JL |
1138 | { |
1139 | /* If we are creating a shared library, then we will have to | |
1140 | create a runtime relocation for the symbol to properly | |
1141 | initialize the .opd entry. Make sure the symbol gets | |
1142 | added to the dynamic symbol table. */ | |
1143 | if (x->info->shared | |
1144 | && (h == NULL || (h->dynindx == -1))) | |
1145 | { | |
1146 | bfd *owner; | |
1147 | owner = (h ? h->root.u.def.section->owner : dyn_h->owner); | |
1148 | ||
c152c796 | 1149 | if (!bfd_elf_link_record_local_dynamic_symbol |
15bda425 | 1150 | (x->info, owner, dyn_h->sym_indx)) |
b34976b6 | 1151 | return FALSE; |
15bda425 JL |
1152 | } |
1153 | ||
1154 | /* This may not be necessary or desirable anymore now that | |
1155 | we have some support for dealing with section symbols | |
1156 | in dynamic relocs. But name munging does make the result | |
1157 | much easier to debug. ie, the EPLT reloc will reference | |
1158 | a symbol like .foobar, instead of .text + offset. */ | |
1159 | if (x->info->shared && h) | |
1160 | { | |
1161 | char *new_name; | |
1162 | struct elf_link_hash_entry *nh; | |
1163 | ||
1164 | new_name = alloca (strlen (h->root.root.string) + 2); | |
1165 | new_name[0] = '.'; | |
1166 | strcpy (new_name + 1, h->root.root.string); | |
1167 | ||
1168 | nh = elf_link_hash_lookup (elf_hash_table (x->info), | |
b34976b6 | 1169 | new_name, TRUE, TRUE, TRUE); |
15bda425 JL |
1170 | |
1171 | nh->root.type = h->root.type; | |
1172 | nh->root.u.def.value = h->root.u.def.value; | |
1173 | nh->root.u.def.section = h->root.u.def.section; | |
1174 | ||
c152c796 | 1175 | if (! bfd_elf_link_record_dynamic_symbol (x->info, nh)) |
b34976b6 | 1176 | return FALSE; |
15bda425 JL |
1177 | |
1178 | } | |
1179 | dyn_h->opd_offset = x->ofs; | |
1180 | x->ofs += OPD_ENTRY_SIZE; | |
1181 | } | |
1182 | ||
1183 | /* Otherwise we do not need an opd entry. */ | |
1184 | else | |
1185 | dyn_h->want_opd = 0; | |
1186 | } | |
b34976b6 | 1187 | return TRUE; |
15bda425 JL |
1188 | } |
1189 | ||
1190 | /* HP requires the EI_OSABI field to be filled in. The assignment to | |
1191 | EI_ABIVERSION may not be strictly necessary. */ | |
1192 | ||
1193 | static void | |
1194 | elf64_hppa_post_process_headers (abfd, link_info) | |
1195 | bfd * abfd; | |
1196 | struct bfd_link_info * link_info ATTRIBUTE_UNUSED; | |
1197 | { | |
1198 | Elf_Internal_Ehdr * i_ehdrp; | |
1199 | ||
1200 | i_ehdrp = elf_elfheader (abfd); | |
1201 | ||
d952f17a AM |
1202 | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) |
1203 | { | |
1204 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX; | |
1205 | } | |
1206 | else | |
1207 | { | |
1208 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX; | |
1209 | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | |
1210 | } | |
15bda425 JL |
1211 | } |
1212 | ||
1213 | /* Create function descriptor section (.opd). This section is called .opd | |
4cc11e76 | 1214 | because it contains "official procedure descriptors". The "official" |
15bda425 JL |
1215 | refers to the fact that these descriptors are used when taking the address |
1216 | of a procedure, thus ensuring a unique address for each procedure. */ | |
1217 | ||
b34976b6 | 1218 | static bfd_boolean |
15bda425 JL |
1219 | get_opd (abfd, info, hppa_info) |
1220 | bfd *abfd; | |
edd21aca | 1221 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1222 | struct elf64_hppa_link_hash_table *hppa_info; |
1223 | { | |
1224 | asection *opd; | |
1225 | bfd *dynobj; | |
1226 | ||
1227 | opd = hppa_info->opd_sec; | |
1228 | if (!opd) | |
1229 | { | |
1230 | dynobj = hppa_info->root.dynobj; | |
1231 | if (!dynobj) | |
1232 | hppa_info->root.dynobj = dynobj = abfd; | |
1233 | ||
3496cb2a L |
1234 | opd = bfd_make_section_with_flags (dynobj, ".opd", |
1235 | (SEC_ALLOC | |
1236 | | SEC_LOAD | |
1237 | | SEC_HAS_CONTENTS | |
1238 | | SEC_IN_MEMORY | |
1239 | | SEC_LINKER_CREATED)); | |
15bda425 | 1240 | if (!opd |
15bda425 JL |
1241 | || !bfd_set_section_alignment (abfd, opd, 3)) |
1242 | { | |
1243 | BFD_ASSERT (0); | |
b34976b6 | 1244 | return FALSE; |
15bda425 JL |
1245 | } |
1246 | ||
1247 | hppa_info->opd_sec = opd; | |
1248 | } | |
1249 | ||
b34976b6 | 1250 | return TRUE; |
15bda425 JL |
1251 | } |
1252 | ||
1253 | /* Create the PLT section. */ | |
1254 | ||
b34976b6 | 1255 | static bfd_boolean |
15bda425 JL |
1256 | get_plt (abfd, info, hppa_info) |
1257 | bfd *abfd; | |
edd21aca | 1258 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1259 | struct elf64_hppa_link_hash_table *hppa_info; |
1260 | { | |
1261 | asection *plt; | |
1262 | bfd *dynobj; | |
1263 | ||
1264 | plt = hppa_info->plt_sec; | |
1265 | if (!plt) | |
1266 | { | |
1267 | dynobj = hppa_info->root.dynobj; | |
1268 | if (!dynobj) | |
1269 | hppa_info->root.dynobj = dynobj = abfd; | |
1270 | ||
3496cb2a L |
1271 | plt = bfd_make_section_with_flags (dynobj, ".plt", |
1272 | (SEC_ALLOC | |
1273 | | SEC_LOAD | |
1274 | | SEC_HAS_CONTENTS | |
1275 | | SEC_IN_MEMORY | |
1276 | | SEC_LINKER_CREATED)); | |
15bda425 | 1277 | if (!plt |
15bda425 JL |
1278 | || !bfd_set_section_alignment (abfd, plt, 3)) |
1279 | { | |
1280 | BFD_ASSERT (0); | |
b34976b6 | 1281 | return FALSE; |
15bda425 JL |
1282 | } |
1283 | ||
1284 | hppa_info->plt_sec = plt; | |
1285 | } | |
1286 | ||
b34976b6 | 1287 | return TRUE; |
15bda425 JL |
1288 | } |
1289 | ||
1290 | /* Create the DLT section. */ | |
1291 | ||
b34976b6 | 1292 | static bfd_boolean |
15bda425 JL |
1293 | get_dlt (abfd, info, hppa_info) |
1294 | bfd *abfd; | |
edd21aca | 1295 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1296 | struct elf64_hppa_link_hash_table *hppa_info; |
1297 | { | |
1298 | asection *dlt; | |
1299 | bfd *dynobj; | |
1300 | ||
1301 | dlt = hppa_info->dlt_sec; | |
1302 | if (!dlt) | |
1303 | { | |
1304 | dynobj = hppa_info->root.dynobj; | |
1305 | if (!dynobj) | |
1306 | hppa_info->root.dynobj = dynobj = abfd; | |
1307 | ||
3496cb2a L |
1308 | dlt = bfd_make_section_with_flags (dynobj, ".dlt", |
1309 | (SEC_ALLOC | |
1310 | | SEC_LOAD | |
1311 | | SEC_HAS_CONTENTS | |
1312 | | SEC_IN_MEMORY | |
1313 | | SEC_LINKER_CREATED)); | |
15bda425 | 1314 | if (!dlt |
15bda425 JL |
1315 | || !bfd_set_section_alignment (abfd, dlt, 3)) |
1316 | { | |
1317 | BFD_ASSERT (0); | |
b34976b6 | 1318 | return FALSE; |
15bda425 JL |
1319 | } |
1320 | ||
1321 | hppa_info->dlt_sec = dlt; | |
1322 | } | |
1323 | ||
b34976b6 | 1324 | return TRUE; |
15bda425 JL |
1325 | } |
1326 | ||
1327 | /* Create the stubs section. */ | |
1328 | ||
b34976b6 | 1329 | static bfd_boolean |
15bda425 JL |
1330 | get_stub (abfd, info, hppa_info) |
1331 | bfd *abfd; | |
edd21aca | 1332 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1333 | struct elf64_hppa_link_hash_table *hppa_info; |
1334 | { | |
1335 | asection *stub; | |
1336 | bfd *dynobj; | |
1337 | ||
1338 | stub = hppa_info->stub_sec; | |
1339 | if (!stub) | |
1340 | { | |
1341 | dynobj = hppa_info->root.dynobj; | |
1342 | if (!dynobj) | |
1343 | hppa_info->root.dynobj = dynobj = abfd; | |
1344 | ||
3496cb2a L |
1345 | stub = bfd_make_section_with_flags (dynobj, ".stub", |
1346 | (SEC_ALLOC | SEC_LOAD | |
1347 | | SEC_HAS_CONTENTS | |
1348 | | SEC_IN_MEMORY | |
1349 | | SEC_READONLY | |
1350 | | SEC_LINKER_CREATED)); | |
15bda425 | 1351 | if (!stub |
15bda425 JL |
1352 | || !bfd_set_section_alignment (abfd, stub, 3)) |
1353 | { | |
1354 | BFD_ASSERT (0); | |
b34976b6 | 1355 | return FALSE; |
15bda425 JL |
1356 | } |
1357 | ||
1358 | hppa_info->stub_sec = stub; | |
1359 | } | |
1360 | ||
b34976b6 | 1361 | return TRUE; |
15bda425 JL |
1362 | } |
1363 | ||
1364 | /* Create sections necessary for dynamic linking. This is only a rough | |
1365 | cut and will likely change as we learn more about the somewhat | |
1366 | unusual dynamic linking scheme HP uses. | |
1367 | ||
1368 | .stub: | |
1369 | Contains code to implement cross-space calls. The first time one | |
1370 | of the stubs is used it will call into the dynamic linker, later | |
1371 | calls will go straight to the target. | |
1372 | ||
1373 | The only stub we support right now looks like | |
1374 | ||
1375 | ldd OFFSET(%dp),%r1 | |
1376 | bve %r0(%r1) | |
1377 | ldd OFFSET+8(%dp),%dp | |
1378 | ||
1379 | Other stubs may be needed in the future. We may want the remove | |
1380 | the break/nop instruction. It is only used right now to keep the | |
1381 | offset of a .plt entry and a .stub entry in sync. | |
1382 | ||
1383 | .dlt: | |
1384 | This is what most people call the .got. HP used a different name. | |
1385 | Losers. | |
1386 | ||
1387 | .rela.dlt: | |
1388 | Relocations for the DLT. | |
1389 | ||
1390 | .plt: | |
1391 | Function pointers as address,gp pairs. | |
1392 | ||
1393 | .rela.plt: | |
1394 | Should contain dynamic IPLT (and EPLT?) relocations. | |
1395 | ||
1396 | .opd: | |
fe8bc63d | 1397 | FPTRS |
15bda425 JL |
1398 | |
1399 | .rela.opd: | |
1400 | EPLT relocations for symbols exported from shared libraries. */ | |
1401 | ||
b34976b6 | 1402 | static bfd_boolean |
15bda425 JL |
1403 | elf64_hppa_create_dynamic_sections (abfd, info) |
1404 | bfd *abfd; | |
1405 | struct bfd_link_info *info; | |
1406 | { | |
1407 | asection *s; | |
1408 | ||
1409 | if (! get_stub (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1410 | return FALSE; |
15bda425 JL |
1411 | |
1412 | if (! get_dlt (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1413 | return FALSE; |
15bda425 JL |
1414 | |
1415 | if (! get_plt (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1416 | return FALSE; |
15bda425 JL |
1417 | |
1418 | if (! get_opd (abfd, info, elf64_hppa_hash_table (info))) | |
b34976b6 | 1419 | return FALSE; |
15bda425 | 1420 | |
3496cb2a L |
1421 | s = bfd_make_section_with_flags (abfd, ".rela.dlt", |
1422 | (SEC_ALLOC | SEC_LOAD | |
1423 | | SEC_HAS_CONTENTS | |
1424 | | SEC_IN_MEMORY | |
1425 | | SEC_READONLY | |
1426 | | SEC_LINKER_CREATED)); | |
15bda425 | 1427 | if (s == NULL |
15bda425 | 1428 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1429 | return FALSE; |
15bda425 JL |
1430 | elf64_hppa_hash_table (info)->dlt_rel_sec = s; |
1431 | ||
3496cb2a L |
1432 | s = bfd_make_section_with_flags (abfd, ".rela.plt", |
1433 | (SEC_ALLOC | SEC_LOAD | |
1434 | | SEC_HAS_CONTENTS | |
1435 | | SEC_IN_MEMORY | |
1436 | | SEC_READONLY | |
1437 | | SEC_LINKER_CREATED)); | |
15bda425 | 1438 | if (s == NULL |
15bda425 | 1439 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1440 | return FALSE; |
15bda425 JL |
1441 | elf64_hppa_hash_table (info)->plt_rel_sec = s; |
1442 | ||
3496cb2a L |
1443 | s = bfd_make_section_with_flags (abfd, ".rela.data", |
1444 | (SEC_ALLOC | SEC_LOAD | |
1445 | | SEC_HAS_CONTENTS | |
1446 | | SEC_IN_MEMORY | |
1447 | | SEC_READONLY | |
1448 | | SEC_LINKER_CREATED)); | |
15bda425 | 1449 | if (s == NULL |
15bda425 | 1450 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1451 | return FALSE; |
15bda425 JL |
1452 | elf64_hppa_hash_table (info)->other_rel_sec = s; |
1453 | ||
3496cb2a L |
1454 | s = bfd_make_section_with_flags (abfd, ".rela.opd", |
1455 | (SEC_ALLOC | SEC_LOAD | |
1456 | | SEC_HAS_CONTENTS | |
1457 | | SEC_IN_MEMORY | |
1458 | | SEC_READONLY | |
1459 | | SEC_LINKER_CREATED)); | |
15bda425 | 1460 | if (s == NULL |
15bda425 | 1461 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1462 | return FALSE; |
15bda425 JL |
1463 | elf64_hppa_hash_table (info)->opd_rel_sec = s; |
1464 | ||
b34976b6 | 1465 | return TRUE; |
15bda425 JL |
1466 | } |
1467 | ||
1468 | /* Allocate dynamic relocations for those symbols that turned out | |
1469 | to be dynamic. */ | |
1470 | ||
b34976b6 | 1471 | static bfd_boolean |
15bda425 JL |
1472 | allocate_dynrel_entries (dyn_h, data) |
1473 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1474 | PTR data; | |
1475 | { | |
1476 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1477 | struct elf64_hppa_link_hash_table *hppa_info; | |
1478 | struct elf64_hppa_dyn_reloc_entry *rent; | |
b34976b6 | 1479 | bfd_boolean dynamic_symbol, shared; |
15bda425 JL |
1480 | |
1481 | hppa_info = elf64_hppa_hash_table (x->info); | |
1482 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info); | |
1483 | shared = x->info->shared; | |
1484 | ||
1485 | /* We may need to allocate relocations for a non-dynamic symbol | |
1486 | when creating a shared library. */ | |
1487 | if (!dynamic_symbol && !shared) | |
b34976b6 | 1488 | return TRUE; |
15bda425 JL |
1489 | |
1490 | /* Take care of the normal data relocations. */ | |
1491 | ||
1492 | for (rent = dyn_h->reloc_entries; rent; rent = rent->next) | |
1493 | { | |
d663e1cd JL |
1494 | /* Allocate one iff we are building a shared library, the relocation |
1495 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
1496 | if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) | |
1497 | continue; | |
1498 | ||
eea6121a | 1499 | hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 JL |
1500 | |
1501 | /* Make sure this symbol gets into the dynamic symbol table if it is | |
1502 | not already recorded. ?!? This should not be in the loop since | |
1503 | the symbol need only be added once. */ | |
47b7c2db AM |
1504 | if (dyn_h->h == 0 |
1505 | || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI)) | |
c152c796 | 1506 | if (!bfd_elf_link_record_local_dynamic_symbol |
15bda425 | 1507 | (x->info, rent->sec->owner, dyn_h->sym_indx)) |
b34976b6 | 1508 | return FALSE; |
15bda425 JL |
1509 | } |
1510 | ||
1511 | /* Take care of the GOT and PLT relocations. */ | |
1512 | ||
1513 | if ((dynamic_symbol || shared) && dyn_h->want_dlt) | |
eea6121a | 1514 | hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 JL |
1515 | |
1516 | /* If we are building a shared library, then every symbol that has an | |
1517 | opd entry will need an EPLT relocation to relocate the symbol's address | |
1518 | and __gp value based on the runtime load address. */ | |
1519 | if (shared && dyn_h->want_opd) | |
eea6121a | 1520 | hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 JL |
1521 | |
1522 | if (dyn_h->want_plt && dynamic_symbol) | |
1523 | { | |
1524 | bfd_size_type t = 0; | |
1525 | ||
1526 | /* Dynamic symbols get one IPLT relocation. Local symbols in | |
1527 | shared libraries get two REL relocations. Local symbols in | |
1528 | main applications get nothing. */ | |
1529 | if (dynamic_symbol) | |
1530 | t = sizeof (Elf64_External_Rela); | |
1531 | else if (shared) | |
1532 | t = 2 * sizeof (Elf64_External_Rela); | |
1533 | ||
eea6121a | 1534 | hppa_info->plt_rel_sec->size += t; |
15bda425 JL |
1535 | } |
1536 | ||
b34976b6 | 1537 | return TRUE; |
15bda425 JL |
1538 | } |
1539 | ||
1540 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1541 | regular object. */ | |
1542 | ||
b34976b6 | 1543 | static bfd_boolean |
15bda425 | 1544 | elf64_hppa_adjust_dynamic_symbol (info, h) |
edd21aca | 1545 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1546 | struct elf_link_hash_entry *h; |
1547 | { | |
1548 | /* ??? Undefined symbols with PLT entries should be re-defined | |
1549 | to be the PLT entry. */ | |
1550 | ||
1551 | /* If this is a weak symbol, and there is a real definition, the | |
1552 | processor independent code will have arranged for us to see the | |
1553 | real definition first, and we can just use the same value. */ | |
f6e332e6 | 1554 | if (h->u.weakdef != NULL) |
15bda425 | 1555 | { |
f6e332e6 AM |
1556 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1557 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1558 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1559 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
b34976b6 | 1560 | return TRUE; |
15bda425 JL |
1561 | } |
1562 | ||
1563 | /* If this is a reference to a symbol defined by a dynamic object which | |
1564 | is not a function, we might allocate the symbol in our .dynbss section | |
1565 | and allocate a COPY dynamic relocation. | |
1566 | ||
1567 | But PA64 code is canonically PIC, so as a rule we can avoid this sort | |
1568 | of hackery. */ | |
1569 | ||
b34976b6 | 1570 | return TRUE; |
15bda425 JL |
1571 | } |
1572 | ||
47b7c2db AM |
1573 | /* This function is called via elf_link_hash_traverse to mark millicode |
1574 | symbols with a dynindx of -1 and to remove the string table reference | |
1575 | from the dynamic symbol table. If the symbol is not a millicode symbol, | |
1576 | elf64_hppa_mark_exported_functions is called. */ | |
1577 | ||
b34976b6 | 1578 | static bfd_boolean |
47b7c2db AM |
1579 | elf64_hppa_mark_milli_and_exported_functions (h, data) |
1580 | struct elf_link_hash_entry *h; | |
1581 | PTR data; | |
1582 | { | |
1583 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
1584 | struct elf_link_hash_entry *elf = h; | |
1585 | ||
1586 | if (elf->root.type == bfd_link_hash_warning) | |
1587 | elf = (struct elf_link_hash_entry *) elf->root.u.i.link; | |
1588 | ||
1589 | if (elf->type == STT_PARISC_MILLI) | |
1590 | { | |
1591 | if (elf->dynindx != -1) | |
1592 | { | |
1593 | elf->dynindx = -1; | |
1594 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | |
1595 | elf->dynstr_index); | |
1596 | } | |
b34976b6 | 1597 | return TRUE; |
47b7c2db AM |
1598 | } |
1599 | ||
1600 | return elf64_hppa_mark_exported_functions (h, data); | |
1601 | } | |
1602 | ||
15bda425 JL |
1603 | /* Set the final sizes of the dynamic sections and allocate memory for |
1604 | the contents of our special sections. */ | |
1605 | ||
b34976b6 | 1606 | static bfd_boolean |
15bda425 JL |
1607 | elf64_hppa_size_dynamic_sections (output_bfd, info) |
1608 | bfd *output_bfd; | |
1609 | struct bfd_link_info *info; | |
1610 | { | |
1611 | bfd *dynobj; | |
1612 | asection *s; | |
b34976b6 AM |
1613 | bfd_boolean plt; |
1614 | bfd_boolean relocs; | |
1615 | bfd_boolean reltext; | |
15bda425 JL |
1616 | struct elf64_hppa_allocate_data data; |
1617 | struct elf64_hppa_link_hash_table *hppa_info; | |
1618 | ||
1619 | hppa_info = elf64_hppa_hash_table (info); | |
1620 | ||
1621 | dynobj = elf_hash_table (info)->dynobj; | |
1622 | BFD_ASSERT (dynobj != NULL); | |
1623 | ||
47b7c2db AM |
1624 | /* Mark each function this program exports so that we will allocate |
1625 | space in the .opd section for each function's FPTR. If we are | |
1626 | creating dynamic sections, change the dynamic index of millicode | |
1627 | symbols to -1 and remove them from the string table for .dynstr. | |
1628 | ||
1629 | We have to traverse the main linker hash table since we have to | |
1630 | find functions which may not have been mentioned in any relocs. */ | |
1631 | elf_link_hash_traverse (elf_hash_table (info), | |
1632 | (elf_hash_table (info)->dynamic_sections_created | |
1633 | ? elf64_hppa_mark_milli_and_exported_functions | |
1634 | : elf64_hppa_mark_exported_functions), | |
1635 | info); | |
1636 | ||
15bda425 JL |
1637 | if (elf_hash_table (info)->dynamic_sections_created) |
1638 | { | |
1639 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 1640 | if (info->executable) |
15bda425 JL |
1641 | { |
1642 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1643 | BFD_ASSERT (s != NULL); | |
eea6121a | 1644 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
15bda425 JL |
1645 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1646 | } | |
1647 | } | |
1648 | else | |
1649 | { | |
1650 | /* We may have created entries in the .rela.got section. | |
1651 | However, if we are not creating the dynamic sections, we will | |
1652 | not actually use these entries. Reset the size of .rela.dlt, | |
1653 | which will cause it to get stripped from the output file | |
1654 | below. */ | |
1655 | s = bfd_get_section_by_name (dynobj, ".rela.dlt"); | |
1656 | if (s != NULL) | |
eea6121a | 1657 | s->size = 0; |
15bda425 JL |
1658 | } |
1659 | ||
1660 | /* Allocate the GOT entries. */ | |
1661 | ||
1662 | data.info = info; | |
1663 | if (elf64_hppa_hash_table (info)->dlt_sec) | |
1664 | { | |
1665 | data.ofs = 0x0; | |
1666 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1667 | allocate_global_data_dlt, &data); | |
eea6121a | 1668 | hppa_info->dlt_sec->size = data.ofs; |
15bda425 JL |
1669 | |
1670 | data.ofs = 0x0; | |
1671 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1672 | allocate_global_data_plt, &data); | |
eea6121a | 1673 | hppa_info->plt_sec->size = data.ofs; |
15bda425 JL |
1674 | |
1675 | data.ofs = 0x0; | |
1676 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1677 | allocate_global_data_stub, &data); | |
eea6121a | 1678 | hppa_info->stub_sec->size = data.ofs; |
15bda425 JL |
1679 | } |
1680 | ||
15bda425 JL |
1681 | /* Allocate space for entries in the .opd section. */ |
1682 | if (elf64_hppa_hash_table (info)->opd_sec) | |
1683 | { | |
1684 | data.ofs = 0; | |
1685 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1686 | allocate_global_data_opd, &data); | |
eea6121a | 1687 | hppa_info->opd_sec->size = data.ofs; |
15bda425 JL |
1688 | } |
1689 | ||
1690 | /* Now allocate space for dynamic relocations, if necessary. */ | |
1691 | if (hppa_info->root.dynamic_sections_created) | |
1692 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1693 | allocate_dynrel_entries, &data); | |
1694 | ||
1695 | /* The sizes of all the sections are set. Allocate memory for them. */ | |
b34976b6 AM |
1696 | plt = FALSE; |
1697 | relocs = FALSE; | |
1698 | reltext = FALSE; | |
15bda425 JL |
1699 | for (s = dynobj->sections; s != NULL; s = s->next) |
1700 | { | |
1701 | const char *name; | |
15bda425 JL |
1702 | |
1703 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1704 | continue; | |
1705 | ||
1706 | /* It's OK to base decisions on the section name, because none | |
1707 | of the dynobj section names depend upon the input files. */ | |
1708 | name = bfd_get_section_name (dynobj, s); | |
1709 | ||
15bda425 JL |
1710 | if (strcmp (name, ".plt") == 0) |
1711 | { | |
c456f082 AM |
1712 | /* Remember whether there is a PLT. */ |
1713 | plt = s->size != 0; | |
15bda425 | 1714 | } |
c456f082 AM |
1715 | else if (strcmp (name, ".opd") == 0 |
1716 | || strncmp (name, ".dlt", 4) == 0 | |
1717 | || strcmp (name, ".stub") == 0 | |
1718 | || strcmp (name, ".got") == 0) | |
15bda425 | 1719 | { |
d663e1cd | 1720 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 | 1721 | } |
d663e1cd | 1722 | else if (strncmp (name, ".rela", 5) == 0) |
15bda425 | 1723 | { |
c456f082 | 1724 | if (s->size != 0) |
15bda425 JL |
1725 | { |
1726 | asection *target; | |
1727 | ||
1728 | /* Remember whether there are any reloc sections other | |
1729 | than .rela.plt. */ | |
1730 | if (strcmp (name, ".rela.plt") != 0) | |
1731 | { | |
1732 | const char *outname; | |
1733 | ||
b34976b6 | 1734 | relocs = TRUE; |
15bda425 JL |
1735 | |
1736 | /* If this relocation section applies to a read only | |
1737 | section, then we probably need a DT_TEXTREL | |
1738 | entry. The entries in the .rela.plt section | |
1739 | really apply to the .got section, which we | |
1740 | created ourselves and so know is not readonly. */ | |
1741 | outname = bfd_get_section_name (output_bfd, | |
1742 | s->output_section); | |
1743 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
1744 | if (target != NULL | |
1745 | && (target->flags & SEC_READONLY) != 0 | |
1746 | && (target->flags & SEC_ALLOC) != 0) | |
b34976b6 | 1747 | reltext = TRUE; |
15bda425 JL |
1748 | } |
1749 | ||
1750 | /* We use the reloc_count field as a counter if we need | |
1751 | to copy relocs into the output file. */ | |
1752 | s->reloc_count = 0; | |
1753 | } | |
1754 | } | |
c456f082 | 1755 | else |
15bda425 JL |
1756 | { |
1757 | /* It's not one of our sections, so don't allocate space. */ | |
1758 | continue; | |
1759 | } | |
1760 | ||
c456f082 | 1761 | if (s->size == 0) |
15bda425 | 1762 | { |
c456f082 AM |
1763 | /* If we don't need this section, strip it from the |
1764 | output file. This is mostly to handle .rela.bss and | |
1765 | .rela.plt. We must create both sections in | |
1766 | create_dynamic_sections, because they must be created | |
1767 | before the linker maps input sections to output | |
1768 | sections. The linker does that before | |
1769 | adjust_dynamic_symbol is called, and it is that | |
1770 | function which decides whether anything needs to go | |
1771 | into these sections. */ | |
8423293d | 1772 | s->flags |= SEC_EXCLUDE; |
15bda425 JL |
1773 | continue; |
1774 | } | |
1775 | ||
c456f082 AM |
1776 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
1777 | continue; | |
1778 | ||
15bda425 | 1779 | /* Allocate memory for the section contents if it has not |
832d951b AM |
1780 | been allocated already. We use bfd_zalloc here in case |
1781 | unused entries are not reclaimed before the section's | |
1782 | contents are written out. This should not happen, but this | |
1783 | way if it does, we get a R_PARISC_NONE reloc instead of | |
1784 | garbage. */ | |
15bda425 JL |
1785 | if (s->contents == NULL) |
1786 | { | |
eea6121a | 1787 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1788 | if (s->contents == NULL) |
b34976b6 | 1789 | return FALSE; |
15bda425 JL |
1790 | } |
1791 | } | |
1792 | ||
1793 | if (elf_hash_table (info)->dynamic_sections_created) | |
1794 | { | |
1795 | /* Always create a DT_PLTGOT. It actually has nothing to do with | |
1796 | the PLT, it is how we communicate the __gp value of a load | |
1797 | module to the dynamic linker. */ | |
dc810e39 | 1798 | #define add_dynamic_entry(TAG, VAL) \ |
5a580b3a | 1799 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
dc810e39 AM |
1800 | |
1801 | if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0) | |
1802 | || !add_dynamic_entry (DT_PLTGOT, 0)) | |
b34976b6 | 1803 | return FALSE; |
15bda425 JL |
1804 | |
1805 | /* Add some entries to the .dynamic section. We fill in the | |
1806 | values later, in elf64_hppa_finish_dynamic_sections, but we | |
1807 | must add the entries now so that we get the correct size for | |
1808 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1809 | dynamic linker and used by the debugger. */ | |
1810 | if (! info->shared) | |
1811 | { | |
dc810e39 AM |
1812 | if (!add_dynamic_entry (DT_DEBUG, 0) |
1813 | || !add_dynamic_entry (DT_HP_DLD_HOOK, 0) | |
1814 | || !add_dynamic_entry (DT_HP_LOAD_MAP, 0)) | |
b34976b6 | 1815 | return FALSE; |
15bda425 JL |
1816 | } |
1817 | ||
f2482cb2 NC |
1818 | /* Force DT_FLAGS to always be set. |
1819 | Required by HPUX 11.00 patch PHSS_26559. */ | |
1820 | if (!add_dynamic_entry (DT_FLAGS, (info)->flags)) | |
b34976b6 | 1821 | return FALSE; |
f2482cb2 | 1822 | |
15bda425 JL |
1823 | if (plt) |
1824 | { | |
dc810e39 AM |
1825 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
1826 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1827 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
b34976b6 | 1828 | return FALSE; |
15bda425 JL |
1829 | } |
1830 | ||
1831 | if (relocs) | |
1832 | { | |
dc810e39 AM |
1833 | if (!add_dynamic_entry (DT_RELA, 0) |
1834 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1835 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) | |
b34976b6 | 1836 | return FALSE; |
15bda425 JL |
1837 | } |
1838 | ||
1839 | if (reltext) | |
1840 | { | |
dc810e39 | 1841 | if (!add_dynamic_entry (DT_TEXTREL, 0)) |
b34976b6 | 1842 | return FALSE; |
d6cf2879 | 1843 | info->flags |= DF_TEXTREL; |
15bda425 JL |
1844 | } |
1845 | } | |
dc810e39 | 1846 | #undef add_dynamic_entry |
15bda425 | 1847 | |
b34976b6 | 1848 | return TRUE; |
15bda425 JL |
1849 | } |
1850 | ||
1851 | /* Called after we have output the symbol into the dynamic symbol | |
1852 | table, but before we output the symbol into the normal symbol | |
1853 | table. | |
1854 | ||
1855 | For some symbols we had to change their address when outputting | |
1856 | the dynamic symbol table. We undo that change here so that | |
1857 | the symbols have their expected value in the normal symbol | |
1858 | table. Ick. */ | |
1859 | ||
b34976b6 | 1860 | static bfd_boolean |
754021d0 | 1861 | elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h) |
15bda425 JL |
1862 | struct bfd_link_info *info; |
1863 | const char *name; | |
1864 | Elf_Internal_Sym *sym; | |
edd21aca | 1865 | asection *input_sec ATTRIBUTE_UNUSED; |
754021d0 | 1866 | struct elf_link_hash_entry *h; |
15bda425 JL |
1867 | { |
1868 | struct elf64_hppa_link_hash_table *hppa_info; | |
1869 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1870 | ||
1871 | /* We may be called with the file symbol or section symbols. | |
1872 | They never need munging, so it is safe to ignore them. */ | |
1873 | if (!name) | |
b34976b6 | 1874 | return TRUE; |
15bda425 JL |
1875 | |
1876 | /* Get the PA dyn_symbol (if any) associated with NAME. */ | |
1877 | hppa_info = elf64_hppa_hash_table (info); | |
1878 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1879 | name, FALSE, FALSE); |
ac7bbf74 | 1880 | if (!dyn_h || dyn_h->h != h) |
754021d0 | 1881 | return TRUE; |
15bda425 | 1882 | |
832d951b AM |
1883 | /* Function symbols for which we created .opd entries *may* have been |
1884 | munged by finish_dynamic_symbol and have to be un-munged here. | |
1885 | ||
1886 | Note that finish_dynamic_symbol sometimes turns dynamic symbols | |
1887 | into non-dynamic ones, so we initialize st_shndx to -1 in | |
1888 | mark_exported_functions and check to see if it was overwritten | |
1889 | here instead of just checking dyn_h->h->dynindx. */ | |
ac7bbf74 | 1890 | if (dyn_h->want_opd && dyn_h->st_shndx != -1) |
15bda425 JL |
1891 | { |
1892 | /* Restore the saved value and section index. */ | |
1893 | sym->st_value = dyn_h->st_value; | |
fe8bc63d | 1894 | sym->st_shndx = dyn_h->st_shndx; |
15bda425 JL |
1895 | } |
1896 | ||
b34976b6 | 1897 | return TRUE; |
15bda425 JL |
1898 | } |
1899 | ||
1900 | /* Finish up dynamic symbol handling. We set the contents of various | |
1901 | dynamic sections here. */ | |
1902 | ||
b34976b6 | 1903 | static bfd_boolean |
15bda425 JL |
1904 | elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym) |
1905 | bfd *output_bfd; | |
1906 | struct bfd_link_info *info; | |
1907 | struct elf_link_hash_entry *h; | |
1908 | Elf_Internal_Sym *sym; | |
1909 | { | |
1910 | asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel; | |
1911 | struct elf64_hppa_link_hash_table *hppa_info; | |
1912 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1913 | ||
1914 | hppa_info = elf64_hppa_hash_table (info); | |
1915 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
b34976b6 | 1916 | h->root.root.string, FALSE, FALSE); |
15bda425 JL |
1917 | |
1918 | stub = hppa_info->stub_sec; | |
1919 | splt = hppa_info->plt_sec; | |
1920 | sdlt = hppa_info->dlt_sec; | |
1921 | sopd = hppa_info->opd_sec; | |
1922 | spltrel = hppa_info->plt_rel_sec; | |
1923 | sdltrel = hppa_info->dlt_rel_sec; | |
1924 | ||
15bda425 JL |
1925 | /* Incredible. It is actually necessary to NOT use the symbol's real |
1926 | value when building the dynamic symbol table for a shared library. | |
1927 | At least for symbols that refer to functions. | |
1928 | ||
1929 | We will store a new value and section index into the symbol long | |
1930 | enough to output it into the dynamic symbol table, then we restore | |
1931 | the original values (in elf64_hppa_link_output_symbol_hook). */ | |
1932 | if (dyn_h && dyn_h->want_opd) | |
1933 | { | |
f12123c0 | 1934 | BFD_ASSERT (sopd != NULL); |
d663e1cd | 1935 | |
15bda425 JL |
1936 | /* Save away the original value and section index so that we |
1937 | can restore them later. */ | |
1938 | dyn_h->st_value = sym->st_value; | |
1939 | dyn_h->st_shndx = sym->st_shndx; | |
1940 | ||
1941 | /* For the dynamic symbol table entry, we want the value to be | |
1942 | address of this symbol's entry within the .opd section. */ | |
1943 | sym->st_value = (dyn_h->opd_offset | |
1944 | + sopd->output_offset | |
1945 | + sopd->output_section->vma); | |
1946 | sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
1947 | sopd->output_section); | |
1948 | } | |
1949 | ||
1950 | /* Initialize a .plt entry if requested. */ | |
1951 | if (dyn_h && dyn_h->want_plt | |
1952 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, info)) | |
1953 | { | |
1954 | bfd_vma value; | |
1955 | Elf_Internal_Rela rel; | |
947216bf | 1956 | bfd_byte *loc; |
15bda425 | 1957 | |
f12123c0 | 1958 | BFD_ASSERT (splt != NULL && spltrel != NULL); |
d663e1cd | 1959 | |
15bda425 JL |
1960 | /* We do not actually care about the value in the PLT entry |
1961 | if we are creating a shared library and the symbol is | |
1962 | still undefined, we create a dynamic relocation to fill | |
1963 | in the correct value. */ | |
1964 | if (info->shared && h->root.type == bfd_link_hash_undefined) | |
1965 | value = 0; | |
1966 | else | |
1967 | value = (h->root.u.def.value + h->root.u.def.section->vma); | |
1968 | ||
fe8bc63d | 1969 | /* Fill in the entry in the procedure linkage table. |
15bda425 JL |
1970 | |
1971 | The format of a plt entry is | |
fe8bc63d | 1972 | <funcaddr> <__gp>. |
15bda425 JL |
1973 | |
1974 | plt_offset is the offset within the PLT section at which to | |
fe8bc63d | 1975 | install the PLT entry. |
15bda425 JL |
1976 | |
1977 | We are modifying the in-memory PLT contents here, so we do not add | |
1978 | in the output_offset of the PLT section. */ | |
1979 | ||
1980 | bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset); | |
1981 | value = _bfd_get_gp_value (splt->output_section->owner); | |
1982 | bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8); | |
1983 | ||
1984 | /* Create a dynamic IPLT relocation for this entry. | |
1985 | ||
1986 | We are creating a relocation in the output file's PLT section, | |
1987 | which is included within the DLT secton. So we do need to include | |
1988 | the PLT's output_offset in the computation of the relocation's | |
1989 | address. */ | |
1990 | rel.r_offset = (dyn_h->plt_offset + splt->output_offset | |
1991 | + splt->output_section->vma); | |
1992 | rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT); | |
1993 | rel.r_addend = 0; | |
1994 | ||
947216bf AM |
1995 | loc = spltrel->contents; |
1996 | loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
1997 | bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc); | |
15bda425 JL |
1998 | } |
1999 | ||
2000 | /* Initialize an external call stub entry if requested. */ | |
2001 | if (dyn_h && dyn_h->want_stub | |
2002 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, info)) | |
2003 | { | |
2004 | bfd_vma value; | |
2005 | int insn; | |
b352eebf | 2006 | unsigned int max_offset; |
15bda425 | 2007 | |
f12123c0 | 2008 | BFD_ASSERT (stub != NULL); |
d663e1cd | 2009 | |
15bda425 JL |
2010 | /* Install the generic stub template. |
2011 | ||
2012 | We are modifying the contents of the stub section, so we do not | |
2013 | need to include the stub section's output_offset here. */ | |
2014 | memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub)); | |
2015 | ||
2016 | /* Fix up the first ldd instruction. | |
2017 | ||
2018 | We are modifying the contents of the STUB section in memory, | |
fe8bc63d | 2019 | so we do not need to include its output offset in this computation. |
15bda425 JL |
2020 | |
2021 | Note the plt_offset value is the value of the PLT entry relative to | |
2022 | the start of the PLT section. These instructions will reference | |
2023 | data relative to the value of __gp, which may not necessarily have | |
2024 | the same address as the start of the PLT section. | |
2025 | ||
2026 | gp_offset contains the offset of __gp within the PLT section. */ | |
2027 | value = dyn_h->plt_offset - hppa_info->gp_offset; | |
fe8bc63d | 2028 | |
15bda425 | 2029 | insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset); |
b352eebf AM |
2030 | if (output_bfd->arch_info->mach >= 25) |
2031 | { | |
2032 | /* Wide mode allows 16 bit offsets. */ | |
2033 | max_offset = 32768; | |
2034 | insn &= ~ 0xfff1; | |
dc810e39 | 2035 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2036 | } |
2037 | else | |
2038 | { | |
2039 | max_offset = 8192; | |
2040 | insn &= ~ 0x3ff1; | |
dc810e39 | 2041 | insn |= re_assemble_14 ((int) value); |
b352eebf AM |
2042 | } |
2043 | ||
2044 | if ((value & 7) || value + max_offset >= 2*max_offset - 8) | |
2045 | { | |
2046 | (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"), | |
2047 | dyn_h->root.string, | |
2048 | (long) value); | |
b34976b6 | 2049 | return FALSE; |
b352eebf AM |
2050 | } |
2051 | ||
dc810e39 | 2052 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
15bda425 JL |
2053 | stub->contents + dyn_h->stub_offset); |
2054 | ||
2055 | /* Fix up the second ldd instruction. */ | |
b352eebf | 2056 | value += 8; |
15bda425 | 2057 | insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8); |
b352eebf AM |
2058 | if (output_bfd->arch_info->mach >= 25) |
2059 | { | |
2060 | insn &= ~ 0xfff1; | |
dc810e39 | 2061 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2062 | } |
2063 | else | |
2064 | { | |
2065 | insn &= ~ 0x3ff1; | |
dc810e39 | 2066 | insn |= re_assemble_14 ((int) value); |
b352eebf | 2067 | } |
dc810e39 | 2068 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
15bda425 JL |
2069 | stub->contents + dyn_h->stub_offset + 8); |
2070 | } | |
2071 | ||
b34976b6 | 2072 | return TRUE; |
15bda425 JL |
2073 | } |
2074 | ||
2075 | /* The .opd section contains FPTRs for each function this file | |
2076 | exports. Initialize the FPTR entries. */ | |
2077 | ||
b34976b6 | 2078 | static bfd_boolean |
15bda425 JL |
2079 | elf64_hppa_finalize_opd (dyn_h, data) |
2080 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2081 | PTR data; | |
2082 | { | |
2083 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2084 | struct elf64_hppa_link_hash_table *hppa_info; | |
3db4b612 | 2085 | struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL; |
15bda425 JL |
2086 | asection *sopd; |
2087 | asection *sopdrel; | |
2088 | ||
2089 | hppa_info = elf64_hppa_hash_table (info); | |
2090 | sopd = hppa_info->opd_sec; | |
2091 | sopdrel = hppa_info->opd_rel_sec; | |
2092 | ||
3db4b612 | 2093 | if (h && dyn_h->want_opd) |
15bda425 JL |
2094 | { |
2095 | bfd_vma value; | |
2096 | ||
fe8bc63d | 2097 | /* The first two words of an .opd entry are zero. |
15bda425 JL |
2098 | |
2099 | We are modifying the contents of the OPD section in memory, so we | |
2100 | do not need to include its output offset in this computation. */ | |
2101 | memset (sopd->contents + dyn_h->opd_offset, 0, 16); | |
2102 | ||
2103 | value = (h->root.u.def.value | |
2104 | + h->root.u.def.section->output_section->vma | |
2105 | + h->root.u.def.section->output_offset); | |
2106 | ||
2107 | /* The next word is the address of the function. */ | |
2108 | bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16); | |
2109 | ||
2110 | /* The last word is our local __gp value. */ | |
2111 | value = _bfd_get_gp_value (sopd->output_section->owner); | |
2112 | bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24); | |
2113 | } | |
2114 | ||
2115 | /* If we are generating a shared library, we must generate EPLT relocations | |
2116 | for each entry in the .opd, even for static functions (they may have | |
2117 | had their address taken). */ | |
2118 | if (info->shared && dyn_h && dyn_h->want_opd) | |
2119 | { | |
947216bf AM |
2120 | Elf_Internal_Rela rel; |
2121 | bfd_byte *loc; | |
15bda425 JL |
2122 | int dynindx; |
2123 | ||
2124 | /* We may need to do a relocation against a local symbol, in | |
2125 | which case we have to look up it's dynamic symbol index off | |
2126 | the local symbol hash table. */ | |
2127 | if (h && h->dynindx != -1) | |
2128 | dynindx = h->dynindx; | |
2129 | else | |
2130 | dynindx | |
2131 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2132 | dyn_h->sym_indx); | |
2133 | ||
2134 | /* The offset of this relocation is the absolute address of the | |
2135 | .opd entry for this symbol. */ | |
2136 | rel.r_offset = (dyn_h->opd_offset + sopd->output_offset | |
2137 | + sopd->output_section->vma); | |
2138 | ||
2139 | /* If H is non-null, then we have an external symbol. | |
2140 | ||
2141 | It is imperative that we use a different dynamic symbol for the | |
2142 | EPLT relocation if the symbol has global scope. | |
2143 | ||
2144 | In the dynamic symbol table, the function symbol will have a value | |
2145 | which is address of the function's .opd entry. | |
2146 | ||
2147 | Thus, we can not use that dynamic symbol for the EPLT relocation | |
2148 | (if we did, the data in the .opd would reference itself rather | |
2149 | than the actual address of the function). Instead we have to use | |
2150 | a new dynamic symbol which has the same value as the original global | |
fe8bc63d | 2151 | function symbol. |
15bda425 JL |
2152 | |
2153 | We prefix the original symbol with a "." and use the new symbol in | |
2154 | the EPLT relocation. This new symbol has already been recorded in | |
2155 | the symbol table, we just have to look it up and use it. | |
2156 | ||
2157 | We do not have such problems with static functions because we do | |
2158 | not make their addresses in the dynamic symbol table point to | |
2159 | the .opd entry. Ultimately this should be safe since a static | |
2160 | function can not be directly referenced outside of its shared | |
2161 | library. | |
2162 | ||
2163 | We do have to play similar games for FPTR relocations in shared | |
2164 | libraries, including those for static symbols. See the FPTR | |
2165 | handling in elf64_hppa_finalize_dynreloc. */ | |
2166 | if (h) | |
2167 | { | |
2168 | char *new_name; | |
2169 | struct elf_link_hash_entry *nh; | |
2170 | ||
2171 | new_name = alloca (strlen (h->root.root.string) + 2); | |
2172 | new_name[0] = '.'; | |
2173 | strcpy (new_name + 1, h->root.root.string); | |
2174 | ||
2175 | nh = elf_link_hash_lookup (elf_hash_table (info), | |
b34976b6 | 2176 | new_name, FALSE, FALSE, FALSE); |
15bda425 JL |
2177 | |
2178 | /* All we really want from the new symbol is its dynamic | |
2179 | symbol index. */ | |
2180 | dynindx = nh->dynindx; | |
2181 | } | |
2182 | ||
2183 | rel.r_addend = 0; | |
2184 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT); | |
2185 | ||
947216bf AM |
2186 | loc = sopdrel->contents; |
2187 | loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2188 | bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc); | |
15bda425 | 2189 | } |
b34976b6 | 2190 | return TRUE; |
15bda425 JL |
2191 | } |
2192 | ||
2193 | /* The .dlt section contains addresses for items referenced through the | |
2194 | dlt. Note that we can have a DLTIND relocation for a local symbol, thus | |
2195 | we can not depend on finish_dynamic_symbol to initialize the .dlt. */ | |
2196 | ||
b34976b6 | 2197 | static bfd_boolean |
15bda425 JL |
2198 | elf64_hppa_finalize_dlt (dyn_h, data) |
2199 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2200 | PTR data; | |
2201 | { | |
2202 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2203 | struct elf64_hppa_link_hash_table *hppa_info; | |
2204 | asection *sdlt, *sdltrel; | |
3db4b612 | 2205 | struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL; |
15bda425 JL |
2206 | |
2207 | hppa_info = elf64_hppa_hash_table (info); | |
2208 | ||
2209 | sdlt = hppa_info->dlt_sec; | |
2210 | sdltrel = hppa_info->dlt_rel_sec; | |
2211 | ||
2212 | /* H/DYN_H may refer to a local variable and we know it's | |
2213 | address, so there is no need to create a relocation. Just install | |
2214 | the proper value into the DLT, note this shortcut can not be | |
2215 | skipped when building a shared library. */ | |
3db4b612 | 2216 | if (! info->shared && h && dyn_h->want_dlt) |
15bda425 JL |
2217 | { |
2218 | bfd_vma value; | |
2219 | ||
2220 | /* If we had an LTOFF_FPTR style relocation we want the DLT entry | |
fe8bc63d | 2221 | to point to the FPTR entry in the .opd section. |
15bda425 JL |
2222 | |
2223 | We include the OPD's output offset in this computation as | |
2224 | we are referring to an absolute address in the resulting | |
2225 | object file. */ | |
2226 | if (dyn_h->want_opd) | |
2227 | { | |
2228 | value = (dyn_h->opd_offset | |
2229 | + hppa_info->opd_sec->output_offset | |
2230 | + hppa_info->opd_sec->output_section->vma); | |
2231 | } | |
37f4508b AM |
2232 | else if ((h->root.type == bfd_link_hash_defined |
2233 | || h->root.type == bfd_link_hash_defweak) | |
2234 | && h->root.u.def.section) | |
15bda425 | 2235 | { |
3db4b612 | 2236 | value = h->root.u.def.value + h->root.u.def.section->output_offset; |
15bda425 JL |
2237 | if (h->root.u.def.section->output_section) |
2238 | value += h->root.u.def.section->output_section->vma; | |
2239 | else | |
2240 | value += h->root.u.def.section->vma; | |
2241 | } | |
3db4b612 JL |
2242 | else |
2243 | /* We have an undefined function reference. */ | |
2244 | value = 0; | |
15bda425 JL |
2245 | |
2246 | /* We do not need to include the output offset of the DLT section | |
2247 | here because we are modifying the in-memory contents. */ | |
2248 | bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset); | |
2249 | } | |
2250 | ||
4cc11e76 | 2251 | /* Create a relocation for the DLT entry associated with this symbol. |
15bda425 JL |
2252 | When building a shared library the symbol does not have to be dynamic. */ |
2253 | if (dyn_h->want_dlt | |
2254 | && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared)) | |
2255 | { | |
947216bf AM |
2256 | Elf_Internal_Rela rel; |
2257 | bfd_byte *loc; | |
15bda425 JL |
2258 | int dynindx; |
2259 | ||
2260 | /* We may need to do a relocation against a local symbol, in | |
2261 | which case we have to look up it's dynamic symbol index off | |
2262 | the local symbol hash table. */ | |
2263 | if (h && h->dynindx != -1) | |
2264 | dynindx = h->dynindx; | |
2265 | else | |
2266 | dynindx | |
2267 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2268 | dyn_h->sym_indx); | |
2269 | ||
15bda425 JL |
2270 | /* Create a dynamic relocation for this entry. Do include the output |
2271 | offset of the DLT entry since we need an absolute address in the | |
2272 | resulting object file. */ | |
2273 | rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset | |
2274 | + sdlt->output_section->vma); | |
2275 | if (h && h->type == STT_FUNC) | |
2276 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64); | |
2277 | else | |
2278 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64); | |
2279 | rel.r_addend = 0; | |
2280 | ||
947216bf AM |
2281 | loc = sdltrel->contents; |
2282 | loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2283 | bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc); | |
15bda425 | 2284 | } |
b34976b6 | 2285 | return TRUE; |
15bda425 JL |
2286 | } |
2287 | ||
2288 | /* Finalize the dynamic relocations. Specifically the FPTR relocations | |
2289 | for dynamic functions used to initialize static data. */ | |
2290 | ||
b34976b6 | 2291 | static bfd_boolean |
15bda425 JL |
2292 | elf64_hppa_finalize_dynreloc (dyn_h, data) |
2293 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2294 | PTR data; | |
2295 | { | |
2296 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2297 | struct elf64_hppa_link_hash_table *hppa_info; | |
2298 | struct elf_link_hash_entry *h; | |
2299 | int dynamic_symbol; | |
2300 | ||
2301 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info); | |
2302 | ||
2303 | if (!dynamic_symbol && !info->shared) | |
b34976b6 | 2304 | return TRUE; |
15bda425 JL |
2305 | |
2306 | if (dyn_h->reloc_entries) | |
2307 | { | |
2308 | struct elf64_hppa_dyn_reloc_entry *rent; | |
2309 | int dynindx; | |
2310 | ||
2311 | hppa_info = elf64_hppa_hash_table (info); | |
2312 | h = dyn_h->h; | |
2313 | ||
2314 | /* We may need to do a relocation against a local symbol, in | |
2315 | which case we have to look up it's dynamic symbol index off | |
2316 | the local symbol hash table. */ | |
2317 | if (h && h->dynindx != -1) | |
2318 | dynindx = h->dynindx; | |
2319 | else | |
2320 | dynindx | |
2321 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2322 | dyn_h->sym_indx); | |
2323 | ||
2324 | for (rent = dyn_h->reloc_entries; rent; rent = rent->next) | |
2325 | { | |
947216bf AM |
2326 | Elf_Internal_Rela rel; |
2327 | bfd_byte *loc; | |
15bda425 | 2328 | |
d663e1cd JL |
2329 | /* Allocate one iff we are building a shared library, the relocation |
2330 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
2331 | if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) | |
2332 | continue; | |
15bda425 | 2333 | |
fe8bc63d | 2334 | /* Create a dynamic relocation for this entry. |
15bda425 JL |
2335 | |
2336 | We need the output offset for the reloc's section because | |
2337 | we are creating an absolute address in the resulting object | |
2338 | file. */ | |
2339 | rel.r_offset = (rent->offset + rent->sec->output_offset | |
2340 | + rent->sec->output_section->vma); | |
2341 | ||
2342 | /* An FPTR64 relocation implies that we took the address of | |
2343 | a function and that the function has an entry in the .opd | |
2344 | section. We want the FPTR64 relocation to reference the | |
2345 | entry in .opd. | |
2346 | ||
2347 | We could munge the symbol value in the dynamic symbol table | |
2348 | (in fact we already do for functions with global scope) to point | |
2349 | to the .opd entry. Then we could use that dynamic symbol in | |
2350 | this relocation. | |
2351 | ||
2352 | Or we could do something sensible, not munge the symbol's | |
2353 | address and instead just use a different symbol to reference | |
2354 | the .opd entry. At least that seems sensible until you | |
2355 | realize there's no local dynamic symbols we can use for that | |
2356 | purpose. Thus the hair in the check_relocs routine. | |
fe8bc63d | 2357 | |
15bda425 JL |
2358 | We use a section symbol recorded by check_relocs as the |
2359 | base symbol for the relocation. The addend is the difference | |
2360 | between the section symbol and the address of the .opd entry. */ | |
3db4b612 | 2361 | if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) |
15bda425 JL |
2362 | { |
2363 | bfd_vma value, value2; | |
15bda425 JL |
2364 | |
2365 | /* First compute the address of the opd entry for this symbol. */ | |
2366 | value = (dyn_h->opd_offset | |
2367 | + hppa_info->opd_sec->output_section->vma | |
2368 | + hppa_info->opd_sec->output_offset); | |
2369 | ||
2370 | /* Compute the value of the start of the section with | |
2371 | the relocation. */ | |
2372 | value2 = (rent->sec->output_section->vma | |
2373 | + rent->sec->output_offset); | |
2374 | ||
2375 | /* Compute the difference between the start of the section | |
2376 | with the relocation and the opd entry. */ | |
2377 | value -= value2; | |
fe8bc63d | 2378 | |
15bda425 JL |
2379 | /* The result becomes the addend of the relocation. */ |
2380 | rel.r_addend = value; | |
2381 | ||
2382 | /* The section symbol becomes the symbol for the dynamic | |
2383 | relocation. */ | |
2384 | dynindx | |
2385 | = _bfd_elf_link_lookup_local_dynindx (info, | |
2386 | rent->sec->owner, | |
2387 | rent->sec_symndx); | |
2388 | } | |
2389 | else | |
2390 | rel.r_addend = rent->addend; | |
2391 | ||
2392 | rel.r_info = ELF64_R_INFO (dynindx, rent->type); | |
2393 | ||
947216bf AM |
2394 | loc = hppa_info->other_rel_sec->contents; |
2395 | loc += (hppa_info->other_rel_sec->reloc_count++ | |
2396 | * sizeof (Elf64_External_Rela)); | |
15bda425 | 2397 | bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner, |
947216bf | 2398 | &rel, loc); |
15bda425 JL |
2399 | } |
2400 | } | |
2401 | ||
b34976b6 | 2402 | return TRUE; |
15bda425 JL |
2403 | } |
2404 | ||
5ac81c74 JL |
2405 | /* Used to decide how to sort relocs in an optimal manner for the |
2406 | dynamic linker, before writing them out. */ | |
2407 | ||
2408 | static enum elf_reloc_type_class | |
2409 | elf64_hppa_reloc_type_class (rela) | |
2410 | const Elf_Internal_Rela *rela; | |
2411 | { | |
2412 | if (ELF64_R_SYM (rela->r_info) == 0) | |
2413 | return reloc_class_relative; | |
2414 | ||
2415 | switch ((int) ELF64_R_TYPE (rela->r_info)) | |
2416 | { | |
2417 | case R_PARISC_IPLT: | |
2418 | return reloc_class_plt; | |
2419 | case R_PARISC_COPY: | |
2420 | return reloc_class_copy; | |
2421 | default: | |
2422 | return reloc_class_normal; | |
2423 | } | |
2424 | } | |
2425 | ||
15bda425 JL |
2426 | /* Finish up the dynamic sections. */ |
2427 | ||
b34976b6 | 2428 | static bfd_boolean |
15bda425 JL |
2429 | elf64_hppa_finish_dynamic_sections (output_bfd, info) |
2430 | bfd *output_bfd; | |
2431 | struct bfd_link_info *info; | |
2432 | { | |
2433 | bfd *dynobj; | |
2434 | asection *sdyn; | |
2435 | struct elf64_hppa_link_hash_table *hppa_info; | |
2436 | ||
2437 | hppa_info = elf64_hppa_hash_table (info); | |
2438 | ||
2439 | /* Finalize the contents of the .opd section. */ | |
2440 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2441 | elf64_hppa_finalize_opd, | |
2442 | info); | |
2443 | ||
2444 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2445 | elf64_hppa_finalize_dynreloc, | |
2446 | info); | |
2447 | ||
2448 | /* Finalize the contents of the .dlt section. */ | |
2449 | dynobj = elf_hash_table (info)->dynobj; | |
2450 | /* Finalize the contents of the .dlt section. */ | |
2451 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2452 | elf64_hppa_finalize_dlt, | |
2453 | info); | |
2454 | ||
15bda425 JL |
2455 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
2456 | ||
2457 | if (elf_hash_table (info)->dynamic_sections_created) | |
2458 | { | |
2459 | Elf64_External_Dyn *dyncon, *dynconend; | |
15bda425 JL |
2460 | |
2461 | BFD_ASSERT (sdyn != NULL); | |
2462 | ||
2463 | dyncon = (Elf64_External_Dyn *) sdyn->contents; | |
eea6121a | 2464 | dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); |
15bda425 JL |
2465 | for (; dyncon < dynconend; dyncon++) |
2466 | { | |
2467 | Elf_Internal_Dyn dyn; | |
2468 | asection *s; | |
2469 | ||
2470 | bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); | |
2471 | ||
2472 | switch (dyn.d_tag) | |
2473 | { | |
2474 | default: | |
2475 | break; | |
2476 | ||
2477 | case DT_HP_LOAD_MAP: | |
2478 | /* Compute the absolute address of 16byte scratchpad area | |
2479 | for the dynamic linker. | |
2480 | ||
2481 | By convention the linker script will allocate the scratchpad | |
2482 | area at the start of the .data section. So all we have to | |
2483 | to is find the start of the .data section. */ | |
2484 | s = bfd_get_section_by_name (output_bfd, ".data"); | |
2485 | dyn.d_un.d_ptr = s->vma; | |
2486 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2487 | break; | |
2488 | ||
2489 | case DT_PLTGOT: | |
2490 | /* HP's use PLTGOT to set the GOT register. */ | |
2491 | dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd); | |
2492 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2493 | break; | |
2494 | ||
2495 | case DT_JMPREL: | |
2496 | s = hppa_info->plt_rel_sec; | |
2497 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2498 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2499 | break; | |
2500 | ||
2501 | case DT_PLTRELSZ: | |
2502 | s = hppa_info->plt_rel_sec; | |
eea6121a | 2503 | dyn.d_un.d_val = s->size; |
15bda425 JL |
2504 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); |
2505 | break; | |
2506 | ||
2507 | case DT_RELA: | |
2508 | s = hppa_info->other_rel_sec; | |
eea6121a | 2509 | if (! s || ! s->size) |
15bda425 | 2510 | s = hppa_info->dlt_rel_sec; |
eea6121a | 2511 | if (! s || ! s->size) |
5ac81c74 | 2512 | s = hppa_info->opd_rel_sec; |
15bda425 JL |
2513 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
2514 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2515 | break; | |
2516 | ||
2517 | case DT_RELASZ: | |
2518 | s = hppa_info->other_rel_sec; | |
eea6121a | 2519 | dyn.d_un.d_val = s->size; |
15bda425 | 2520 | s = hppa_info->dlt_rel_sec; |
eea6121a | 2521 | dyn.d_un.d_val += s->size; |
15bda425 | 2522 | s = hppa_info->opd_rel_sec; |
eea6121a | 2523 | dyn.d_un.d_val += s->size; |
15bda425 JL |
2524 | /* There is some question about whether or not the size of |
2525 | the PLT relocs should be included here. HP's tools do | |
2526 | it, so we'll emulate them. */ | |
2527 | s = hppa_info->plt_rel_sec; | |
eea6121a | 2528 | dyn.d_un.d_val += s->size; |
15bda425 JL |
2529 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); |
2530 | break; | |
2531 | ||
2532 | } | |
2533 | } | |
2534 | } | |
2535 | ||
b34976b6 | 2536 | return TRUE; |
15bda425 JL |
2537 | } |
2538 | ||
15bda425 JL |
2539 | /* Return the number of additional phdrs we will need. |
2540 | ||
2541 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2542 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2543 | |
2544 | This routine indicates that the backend needs one additional program | |
2545 | header for that case. | |
2546 | ||
2547 | Note we do not have access to the link info structure here, so we have | |
2548 | to guess whether or not we are building a shared library based on the | |
2549 | existence of a .interp section. */ | |
2550 | ||
2551 | static int | |
2552 | elf64_hppa_additional_program_headers (abfd) | |
2553 | bfd *abfd; | |
2554 | { | |
2555 | asection *s; | |
2556 | ||
2557 | /* If we are creating a shared library, then we have to create a | |
2558 | PT_PHDR segment. HP's dynamic linker chokes without it. */ | |
2559 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2560 | if (! s) | |
2561 | return 1; | |
2562 | return 0; | |
2563 | } | |
2564 | ||
2565 | /* Allocate and initialize any program headers required by this | |
2566 | specific backend. | |
2567 | ||
2568 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2569 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2570 | |
2571 | This allocates the PT_PHDR and initializes it in a manner suitable | |
fe8bc63d | 2572 | for the HP linker. |
15bda425 JL |
2573 | |
2574 | Note we do not have access to the link info structure here, so we have | |
2575 | to guess whether or not we are building a shared library based on the | |
2576 | existence of a .interp section. */ | |
2577 | ||
b34976b6 | 2578 | static bfd_boolean |
c84fca4d | 2579 | elf64_hppa_modify_segment_map (abfd, info) |
15bda425 | 2580 | bfd *abfd; |
c84fca4d | 2581 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 | 2582 | { |
edd21aca | 2583 | struct elf_segment_map *m; |
15bda425 JL |
2584 | asection *s; |
2585 | ||
2586 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2587 | if (! s) | |
2588 | { | |
2589 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2590 | if (m->p_type == PT_PHDR) | |
2591 | break; | |
2592 | if (m == NULL) | |
2593 | { | |
dc810e39 AM |
2594 | m = ((struct elf_segment_map *) |
2595 | bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); | |
15bda425 | 2596 | if (m == NULL) |
b34976b6 | 2597 | return FALSE; |
15bda425 JL |
2598 | |
2599 | m->p_type = PT_PHDR; | |
2600 | m->p_flags = PF_R | PF_X; | |
2601 | m->p_flags_valid = 1; | |
2602 | m->p_paddr_valid = 1; | |
2603 | m->includes_phdrs = 1; | |
2604 | ||
2605 | m->next = elf_tdata (abfd)->segment_map; | |
2606 | elf_tdata (abfd)->segment_map = m; | |
2607 | } | |
2608 | } | |
2609 | ||
2610 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2611 | if (m->p_type == PT_LOAD) | |
2612 | { | |
0ba2a60e | 2613 | unsigned int i; |
15bda425 JL |
2614 | |
2615 | for (i = 0; i < m->count; i++) | |
2616 | { | |
2617 | /* The code "hint" is not really a hint. It is a requirement | |
2618 | for certain versions of the HP dynamic linker. Worse yet, | |
2619 | it must be set even if the shared library does not have | |
2620 | any code in its "text" segment (thus the check for .hash | |
2621 | to catch this situation). */ | |
2622 | if (m->sections[i]->flags & SEC_CODE | |
2623 | || (strcmp (m->sections[i]->name, ".hash") == 0)) | |
2624 | m->p_flags |= (PF_X | PF_HP_CODE); | |
2625 | } | |
2626 | } | |
2627 | ||
b34976b6 | 2628 | return TRUE; |
15bda425 JL |
2629 | } |
2630 | ||
3fab46d0 AM |
2631 | /* Called when writing out an object file to decide the type of a |
2632 | symbol. */ | |
2633 | static int | |
2634 | elf64_hppa_elf_get_symbol_type (elf_sym, type) | |
2635 | Elf_Internal_Sym *elf_sym; | |
2636 | int type; | |
2637 | { | |
2638 | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) | |
2639 | return STT_PARISC_MILLI; | |
2640 | else | |
2641 | return type; | |
2642 | } | |
2643 | ||
b35d266b | 2644 | static const struct bfd_elf_special_section elf64_hppa_special_sections[] = |
2f89ff8d | 2645 | { |
4fc35ca9 DA |
2646 | { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
2647 | { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, | |
2648 | { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
2649 | { ".dlt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
2650 | { ".sdata", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
2651 | { ".sbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
2652 | { ".tbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_WEAKORDER }, | |
2653 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d L |
2654 | }; |
2655 | ||
15bda425 JL |
2656 | /* The hash bucket size is the standard one, namely 4. */ |
2657 | ||
2658 | const struct elf_size_info hppa64_elf_size_info = | |
2659 | { | |
2660 | sizeof (Elf64_External_Ehdr), | |
2661 | sizeof (Elf64_External_Phdr), | |
2662 | sizeof (Elf64_External_Shdr), | |
2663 | sizeof (Elf64_External_Rel), | |
2664 | sizeof (Elf64_External_Rela), | |
2665 | sizeof (Elf64_External_Sym), | |
2666 | sizeof (Elf64_External_Dyn), | |
2667 | sizeof (Elf_External_Note), | |
2668 | 4, | |
2669 | 1, | |
45d6a902 | 2670 | 64, 3, |
15bda425 JL |
2671 | ELFCLASS64, EV_CURRENT, |
2672 | bfd_elf64_write_out_phdrs, | |
2673 | bfd_elf64_write_shdrs_and_ehdr, | |
2674 | bfd_elf64_write_relocs, | |
73ff0d56 | 2675 | bfd_elf64_swap_symbol_in, |
15bda425 JL |
2676 | bfd_elf64_swap_symbol_out, |
2677 | bfd_elf64_slurp_reloc_table, | |
2678 | bfd_elf64_slurp_symbol_table, | |
2679 | bfd_elf64_swap_dyn_in, | |
2680 | bfd_elf64_swap_dyn_out, | |
947216bf AM |
2681 | bfd_elf64_swap_reloc_in, |
2682 | bfd_elf64_swap_reloc_out, | |
2683 | bfd_elf64_swap_reloca_in, | |
2684 | bfd_elf64_swap_reloca_out | |
15bda425 JL |
2685 | }; |
2686 | ||
2687 | #define TARGET_BIG_SYM bfd_elf64_hppa_vec | |
2688 | #define TARGET_BIG_NAME "elf64-hppa" | |
2689 | #define ELF_ARCH bfd_arch_hppa | |
2690 | #define ELF_MACHINE_CODE EM_PARISC | |
2691 | /* This is not strictly correct. The maximum page size for PA2.0 is | |
2692 | 64M. But everything still uses 4k. */ | |
2693 | #define ELF_MAXPAGESIZE 0x1000 | |
2694 | #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup | |
2695 | #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name | |
2696 | #define elf_info_to_howto elf_hppa_info_to_howto | |
2697 | #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel | |
2698 | ||
2699 | #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr | |
2700 | #define elf_backend_object_p elf64_hppa_object_p | |
2701 | #define elf_backend_final_write_processing \ | |
2702 | elf_hppa_final_write_processing | |
99c79b2e | 2703 | #define elf_backend_fake_sections elf_hppa_fake_sections |
15bda425 JL |
2704 | #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook |
2705 | ||
f0fe0e16 | 2706 | #define elf_backend_relocate_section elf_hppa_relocate_section |
15bda425 JL |
2707 | |
2708 | #define bfd_elf64_bfd_final_link elf_hppa_final_link | |
2709 | ||
2710 | #define elf_backend_create_dynamic_sections \ | |
2711 | elf64_hppa_create_dynamic_sections | |
2712 | #define elf_backend_post_process_headers elf64_hppa_post_process_headers | |
2713 | ||
2714 | #define elf_backend_adjust_dynamic_symbol \ | |
2715 | elf64_hppa_adjust_dynamic_symbol | |
2716 | ||
2717 | #define elf_backend_size_dynamic_sections \ | |
2718 | elf64_hppa_size_dynamic_sections | |
2719 | ||
2720 | #define elf_backend_finish_dynamic_symbol \ | |
2721 | elf64_hppa_finish_dynamic_symbol | |
2722 | #define elf_backend_finish_dynamic_sections \ | |
2723 | elf64_hppa_finish_dynamic_sections | |
2724 | ||
2725 | /* Stuff for the BFD linker: */ | |
2726 | #define bfd_elf64_bfd_link_hash_table_create \ | |
2727 | elf64_hppa_hash_table_create | |
2728 | ||
2729 | #define elf_backend_check_relocs \ | |
2730 | elf64_hppa_check_relocs | |
2731 | ||
2732 | #define elf_backend_size_info \ | |
2733 | hppa64_elf_size_info | |
2734 | ||
2735 | #define elf_backend_additional_program_headers \ | |
2736 | elf64_hppa_additional_program_headers | |
2737 | ||
2738 | #define elf_backend_modify_segment_map \ | |
2739 | elf64_hppa_modify_segment_map | |
2740 | ||
2741 | #define elf_backend_link_output_symbol_hook \ | |
2742 | elf64_hppa_link_output_symbol_hook | |
2743 | ||
15bda425 JL |
2744 | #define elf_backend_want_got_plt 0 |
2745 | #define elf_backend_plt_readonly 0 | |
2746 | #define elf_backend_want_plt_sym 0 | |
2747 | #define elf_backend_got_header_size 0 | |
b34976b6 AM |
2748 | #define elf_backend_type_change_ok TRUE |
2749 | #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type | |
2750 | #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class | |
2751 | #define elf_backend_rela_normal 1 | |
29ef7005 | 2752 | #define elf_backend_special_sections elf64_hppa_special_sections |
8a696751 | 2753 | #define elf_backend_action_discarded elf_hppa_action_discarded |
15bda425 JL |
2754 | |
2755 | #include "elf64-target.h" | |
d952f17a AM |
2756 | |
2757 | #undef TARGET_BIG_SYM | |
2758 | #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec | |
2759 | #undef TARGET_BIG_NAME | |
2760 | #define TARGET_BIG_NAME "elf64-hppa-linux" | |
2761 | ||
29ef7005 | 2762 | #undef elf_backend_special_sections |
2f89ff8d | 2763 | |
d952f17a AM |
2764 | #define INCLUDED_TARGET_FILE 1 |
2765 | #include "elf64-target.h" |