]>
Commit | Line | Data |
---|---|---|
53e95fcf | 1 | /* Target-dependent code for the x86-64 for GDB, the GNU debugger. |
ce0eebec | 2 | |
51603483 | 3 | Copyright 2001, 2002, 2003 Free Software Foundation, Inc. |
53e95fcf JS |
4 | Contributed by Jiri Smid, SuSE Labs. |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
c4f35dd8 MK |
24 | #include "arch-utils.h" |
25 | #include "block.h" | |
26 | #include "dummy-frame.h" | |
27 | #include "frame.h" | |
28 | #include "frame-base.h" | |
29 | #include "frame-unwind.h" | |
53e95fcf | 30 | #include "inferior.h" |
53e95fcf | 31 | #include "gdbcmd.h" |
c4f35dd8 MK |
32 | #include "gdbcore.h" |
33 | #include "objfiles.h" | |
53e95fcf JS |
34 | #include "regcache.h" |
35 | #include "symfile.h" | |
c4f35dd8 | 36 | |
82dbc5f7 | 37 | #include "gdb_assert.h" |
c4f35dd8 MK |
38 | |
39 | #include "x86-64-tdep.h" | |
40 | #include "i387-tdep.h" | |
53e95fcf | 41 | |
402ecd56 | 42 | /* Register information. */ |
c4f35dd8 MK |
43 | |
44 | struct x86_64_register_info | |
de220d0f | 45 | { |
de220d0f ML |
46 | char *name; |
47 | struct type **type; | |
48 | }; | |
53e95fcf | 49 | |
c4f35dd8 MK |
50 | static struct x86_64_register_info x86_64_register_info[] = |
51 | { | |
52 | { "rax", &builtin_type_int64 }, | |
53 | { "rbx", &builtin_type_int64 }, | |
54 | { "rcx", &builtin_type_int64 }, | |
55 | { "rdx", &builtin_type_int64 }, | |
56 | { "rsi", &builtin_type_int64 }, | |
57 | { "rdi", &builtin_type_int64 }, | |
58 | { "rbp", &builtin_type_void_data_ptr }, | |
59 | { "rsp", &builtin_type_void_data_ptr }, | |
60 | ||
61 | /* %r8 is indeed register number 8. */ | |
62 | { "r8", &builtin_type_int64 }, | |
63 | { "r9", &builtin_type_int64 }, | |
64 | { "r10", &builtin_type_int64 }, | |
65 | { "r11", &builtin_type_int64 }, | |
66 | { "r12", &builtin_type_int64 }, | |
67 | { "r13", &builtin_type_int64 }, | |
68 | { "r14", &builtin_type_int64 }, | |
69 | { "r15", &builtin_type_int64 }, | |
70 | { "rip", &builtin_type_void_func_ptr }, | |
71 | { "eflags", &builtin_type_int32 }, | |
72 | { "ds", &builtin_type_int32 }, | |
73 | { "es", &builtin_type_int32 }, | |
74 | { "fs", &builtin_type_int32 }, | |
75 | { "gs", &builtin_type_int32 }, | |
76 | ||
77 | /* %st0 is register number 22. */ | |
78 | { "st0", &builtin_type_i387_ext }, | |
79 | { "st1", &builtin_type_i387_ext }, | |
80 | { "st2", &builtin_type_i387_ext }, | |
81 | { "st3", &builtin_type_i387_ext }, | |
82 | { "st4", &builtin_type_i387_ext }, | |
83 | { "st5", &builtin_type_i387_ext }, | |
84 | { "st6", &builtin_type_i387_ext }, | |
85 | { "st7", &builtin_type_i387_ext }, | |
86 | { "fctrl", &builtin_type_int32 }, | |
87 | { "fstat", &builtin_type_int32 }, | |
88 | { "ftag", &builtin_type_int32 }, | |
89 | { "fiseg", &builtin_type_int32 }, | |
90 | { "fioff", &builtin_type_int32 }, | |
91 | { "foseg", &builtin_type_int32 }, | |
92 | { "fooff", &builtin_type_int32 }, | |
93 | { "fop", &builtin_type_int32 }, | |
94 | ||
95 | /* %xmm0 is register number 38. */ | |
96 | { "xmm0", &builtin_type_v4sf }, | |
97 | { "xmm1", &builtin_type_v4sf }, | |
98 | { "xmm2", &builtin_type_v4sf }, | |
99 | { "xmm3", &builtin_type_v4sf }, | |
100 | { "xmm4", &builtin_type_v4sf }, | |
101 | { "xmm5", &builtin_type_v4sf }, | |
102 | { "xmm6", &builtin_type_v4sf }, | |
103 | { "xmm7", &builtin_type_v4sf }, | |
104 | { "xmm8", &builtin_type_v4sf }, | |
105 | { "xmm9", &builtin_type_v4sf }, | |
106 | { "xmm10", &builtin_type_v4sf }, | |
107 | { "xmm11", &builtin_type_v4sf }, | |
108 | { "xmm12", &builtin_type_v4sf }, | |
109 | { "xmm13", &builtin_type_v4sf }, | |
110 | { "xmm14", &builtin_type_v4sf }, | |
111 | { "xmm15", &builtin_type_v4sf }, | |
112 | { "mxcsr", &builtin_type_int32 } | |
0e04a514 ML |
113 | }; |
114 | ||
c4f35dd8 MK |
115 | /* Total number of registers. */ |
116 | #define X86_64_NUM_REGS \ | |
117 | (sizeof (x86_64_register_info) / sizeof (x86_64_register_info[0])) | |
de220d0f | 118 | |
c4f35dd8 | 119 | /* Return the name of register REGNUM. */ |
b6779aa2 | 120 | |
c4f35dd8 MK |
121 | static const char * |
122 | x86_64_register_name (int regnum) | |
53e95fcf | 123 | { |
c4f35dd8 MK |
124 | if (regnum >= 0 && regnum < X86_64_NUM_REGS) |
125 | return x86_64_register_info[regnum].name; | |
53e95fcf | 126 | |
c4f35dd8 | 127 | return NULL; |
53e95fcf JS |
128 | } |
129 | ||
130 | /* Return the GDB type object for the "standard" data type of data in | |
c4f35dd8 | 131 | register REGNUM. */ |
53e95fcf | 132 | |
c4f35dd8 MK |
133 | static struct type * |
134 | x86_64_register_type (struct gdbarch *gdbarch, int regnum) | |
53e95fcf | 135 | { |
c4f35dd8 | 136 | gdb_assert (regnum >= 0 && regnum < X86_64_NUM_REGS); |
4657573b | 137 | |
c4f35dd8 | 138 | return *x86_64_register_info[regnum].type; |
53e95fcf JS |
139 | } |
140 | ||
c4f35dd8 MK |
141 | /* DWARF Register Number Mapping as defined in the System V psABI, |
142 | section 3.6. */ | |
53e95fcf | 143 | |
c4f35dd8 | 144 | static int x86_64_dwarf_regmap[] = |
0e04a514 | 145 | { |
c4f35dd8 MK |
146 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
147 | X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 3, 2, | |
148 | 4, X86_64_RDI_REGNUM, | |
149 | ||
150 | /* Frame Pointer Register RBP. */ | |
151 | X86_64_RBP_REGNUM, | |
152 | ||
153 | /* Stack Pointer Register RSP. */ | |
154 | X86_64_RSP_REGNUM, | |
155 | ||
156 | /* Extended Integer Registers 8 - 15. */ | |
157 | 8, 9, 10, 11, 12, 13, 14, 15, | |
158 | ||
159 | /* Return Address RA. Not mapped. */ | |
160 | -1, | |
161 | ||
162 | /* SSE Registers 0 - 7. */ | |
163 | X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM, | |
164 | X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3, | |
165 | X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5, | |
166 | X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7, | |
167 | ||
168 | /* Extended SSE Registers 8 - 15. */ | |
169 | X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9, | |
170 | X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11, | |
171 | X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13, | |
172 | X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15, | |
173 | ||
174 | /* Floating Point Registers 0-7. */ | |
175 | X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1, | |
176 | X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3, | |
177 | X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5, | |
178 | X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7 | |
179 | }; | |
0e04a514 | 180 | |
c4f35dd8 MK |
181 | static const int x86_64_dwarf_regmap_len = |
182 | (sizeof (x86_64_dwarf_regmap) / sizeof (x86_64_dwarf_regmap[0])); | |
0e04a514 | 183 | |
c4f35dd8 MK |
184 | /* Convert DWARF register number REG to the appropriate register |
185 | number used by GDB. */ | |
26abbdc4 | 186 | |
c4f35dd8 MK |
187 | static int |
188 | x86_64_dwarf_reg_to_regnum (int reg) | |
53e95fcf | 189 | { |
c4f35dd8 | 190 | int regnum = -1; |
53e95fcf | 191 | |
c4f35dd8 MK |
192 | if (reg >= 0 || reg < x86_64_dwarf_regmap_len) |
193 | regnum = x86_64_dwarf_regmap[reg]; | |
53e95fcf | 194 | |
c4f35dd8 MK |
195 | if (regnum == -1) |
196 | warning ("Unmapped DWARF Register #%d encountered\n", reg); | |
197 | ||
198 | return regnum; | |
53e95fcf | 199 | } |
d532c08f MK |
200 | |
201 | /* Return nonzero if a value of type TYPE stored in register REGNUM | |
202 | needs any special handling. */ | |
203 | ||
204 | static int | |
205 | x86_64_convert_register_p (int regnum, struct type *type) | |
206 | { | |
207 | return i386_fp_regnum_p (regnum); | |
208 | } | |
53e95fcf JS |
209 | \f |
210 | ||
211 | /* The returning of values is done according to the special algorithm. | |
c4f35dd8 MK |
212 | Some types are returned in registers an some (big structures) in |
213 | memory. See the System V psABI for details. */ | |
53e95fcf JS |
214 | |
215 | #define MAX_CLASSES 4 | |
216 | ||
217 | enum x86_64_reg_class | |
218 | { | |
219 | X86_64_NO_CLASS, | |
220 | X86_64_INTEGER_CLASS, | |
221 | X86_64_INTEGERSI_CLASS, | |
222 | X86_64_SSE_CLASS, | |
223 | X86_64_SSESF_CLASS, | |
224 | X86_64_SSEDF_CLASS, | |
225 | X86_64_SSEUP_CLASS, | |
226 | X86_64_X87_CLASS, | |
227 | X86_64_X87UP_CLASS, | |
228 | X86_64_MEMORY_CLASS | |
229 | }; | |
230 | ||
231 | /* Return the union class of CLASS1 and CLASS2. | |
c4f35dd8 | 232 | See the System V psABI for details. */ |
53e95fcf JS |
233 | |
234 | static enum x86_64_reg_class | |
235 | merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) | |
236 | { | |
c4f35dd8 | 237 | /* Rule (a): If both classes are equal, this is the resulting class. */ |
53e95fcf JS |
238 | if (class1 == class2) |
239 | return class1; | |
240 | ||
c4f35dd8 | 241 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class |
26abbdc4 | 242 | is the other class. */ |
53e95fcf JS |
243 | if (class1 == X86_64_NO_CLASS) |
244 | return class2; | |
245 | if (class2 == X86_64_NO_CLASS) | |
246 | return class1; | |
247 | ||
c4f35dd8 | 248 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ |
53e95fcf JS |
249 | if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) |
250 | return X86_64_MEMORY_CLASS; | |
251 | ||
c4f35dd8 | 252 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ |
53e95fcf JS |
253 | if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) |
254 | || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) | |
255 | return X86_64_INTEGERSI_CLASS; | |
256 | if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS | |
257 | || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) | |
258 | return X86_64_INTEGER_CLASS; | |
259 | ||
c4f35dd8 MK |
260 | /* Rule (e): If one of the classes is X87 or X87UP class, MEMORY is |
261 | used as class. */ | |
53e95fcf JS |
262 | if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS |
263 | || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS) | |
264 | return X86_64_MEMORY_CLASS; | |
265 | ||
c4f35dd8 | 266 | /* Rule (f): Otherwise class SSE is used. */ |
53e95fcf JS |
267 | return X86_64_SSE_CLASS; |
268 | } | |
269 | ||
26abbdc4 MK |
270 | /* Classify the argument type. CLASSES will be filled by the register |
271 | class used to pass each word of the operand. The number of words | |
272 | is returned. In case the parameter should be passed in memory, 0 | |
273 | is returned. As a special case for zero sized containers, | |
274 | classes[0] will be NO_CLASS and 1 is returned. | |
53e95fcf | 275 | |
c4f35dd8 | 276 | See the System V psABI for details. */ |
53e95fcf JS |
277 | |
278 | static int | |
279 | classify_argument (struct type *type, | |
280 | enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset) | |
281 | { | |
282 | int bytes = TYPE_LENGTH (type); | |
283 | int words = (bytes + 8 - 1) / 8; | |
284 | ||
285 | switch (TYPE_CODE (type)) | |
286 | { | |
287 | case TYPE_CODE_ARRAY: | |
288 | case TYPE_CODE_STRUCT: | |
289 | case TYPE_CODE_UNION: | |
290 | { | |
291 | int i; | |
292 | enum x86_64_reg_class subclasses[MAX_CLASSES]; | |
293 | ||
294 | /* On x86-64 we pass structures larger than 16 bytes on the stack. */ | |
295 | if (bytes > 16) | |
296 | return 0; | |
297 | ||
298 | for (i = 0; i < words; i++) | |
299 | classes[i] = X86_64_NO_CLASS; | |
300 | ||
26abbdc4 MK |
301 | /* Zero sized arrays or structures are NO_CLASS. We return 0 |
302 | to signalize memory class, so handle it as special case. */ | |
53e95fcf JS |
303 | if (!words) |
304 | { | |
305 | classes[0] = X86_64_NO_CLASS; | |
306 | return 1; | |
307 | } | |
308 | switch (TYPE_CODE (type)) | |
309 | { | |
310 | case TYPE_CODE_STRUCT: | |
311 | { | |
312 | int j; | |
0004e5a2 | 313 | for (j = 0; j < TYPE_NFIELDS (type); ++j) |
53e95fcf | 314 | { |
0004e5a2 | 315 | int num = classify_argument (TYPE_FIELDS (type)[j].type, |
53e95fcf | 316 | subclasses, |
8dda9770 ML |
317 | (TYPE_FIELDS (type)[j].loc. |
318 | bitpos + bit_offset) % 256); | |
53e95fcf JS |
319 | if (!num) |
320 | return 0; | |
321 | for (i = 0; i < num; i++) | |
322 | { | |
323 | int pos = | |
8dda9770 ML |
324 | (TYPE_FIELDS (type)[j].loc.bitpos + |
325 | bit_offset) / 8 / 8; | |
53e95fcf JS |
326 | classes[i + pos] = |
327 | merge_classes (subclasses[i], classes[i + pos]); | |
328 | } | |
329 | } | |
330 | } | |
331 | break; | |
332 | case TYPE_CODE_ARRAY: | |
333 | { | |
334 | int num; | |
335 | ||
0004e5a2 | 336 | num = classify_argument (TYPE_TARGET_TYPE (type), |
53e95fcf JS |
337 | subclasses, bit_offset); |
338 | if (!num) | |
339 | return 0; | |
340 | ||
341 | /* The partial classes are now full classes. */ | |
342 | if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4) | |
343 | subclasses[0] = X86_64_SSE_CLASS; | |
344 | if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4) | |
345 | subclasses[0] = X86_64_INTEGER_CLASS; | |
346 | ||
347 | for (i = 0; i < words; i++) | |
348 | classes[i] = subclasses[i % num]; | |
349 | } | |
350 | break; | |
351 | case TYPE_CODE_UNION: | |
352 | { | |
353 | int j; | |
354 | { | |
0004e5a2 | 355 | for (j = 0; j < TYPE_NFIELDS (type); ++j) |
53e95fcf JS |
356 | { |
357 | int num; | |
0004e5a2 | 358 | num = classify_argument (TYPE_FIELDS (type)[j].type, |
53e95fcf JS |
359 | subclasses, bit_offset); |
360 | if (!num) | |
361 | return 0; | |
362 | for (i = 0; i < num; i++) | |
363 | classes[i] = merge_classes (subclasses[i], classes[i]); | |
364 | } | |
365 | } | |
366 | } | |
367 | break; | |
4657573b ML |
368 | default: |
369 | break; | |
53e95fcf JS |
370 | } |
371 | /* Final merger cleanup. */ | |
372 | for (i = 0; i < words; i++) | |
373 | { | |
374 | /* If one class is MEMORY, everything should be passed in | |
375 | memory. */ | |
376 | if (classes[i] == X86_64_MEMORY_CLASS) | |
377 | return 0; | |
378 | ||
379 | /* The X86_64_SSEUP_CLASS should be always preceeded by | |
380 | X86_64_SSE_CLASS. */ | |
381 | if (classes[i] == X86_64_SSEUP_CLASS | |
382 | && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS)) | |
383 | classes[i] = X86_64_SSE_CLASS; | |
384 | ||
26abbdc4 | 385 | /* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */ |
53e95fcf JS |
386 | if (classes[i] == X86_64_X87UP_CLASS |
387 | && (i == 0 || classes[i - 1] != X86_64_X87_CLASS)) | |
388 | classes[i] = X86_64_SSE_CLASS; | |
389 | } | |
390 | return words; | |
391 | } | |
392 | break; | |
393 | case TYPE_CODE_FLT: | |
394 | switch (bytes) | |
395 | { | |
396 | case 4: | |
397 | if (!(bit_offset % 64)) | |
398 | classes[0] = X86_64_SSESF_CLASS; | |
399 | else | |
400 | classes[0] = X86_64_SSE_CLASS; | |
401 | return 1; | |
402 | case 8: | |
403 | classes[0] = X86_64_SSEDF_CLASS; | |
404 | return 1; | |
405 | case 16: | |
406 | classes[0] = X86_64_X87_CLASS; | |
407 | classes[1] = X86_64_X87UP_CLASS; | |
408 | return 2; | |
409 | } | |
410 | break; | |
50c46a0d EZ |
411 | case TYPE_CODE_ENUM: |
412 | case TYPE_CODE_REF: | |
53e95fcf JS |
413 | case TYPE_CODE_INT: |
414 | case TYPE_CODE_PTR: | |
415 | switch (bytes) | |
416 | { | |
417 | case 1: | |
418 | case 2: | |
419 | case 4: | |
420 | case 8: | |
421 | if (bytes * 8 + bit_offset <= 32) | |
422 | classes[0] = X86_64_INTEGERSI_CLASS; | |
423 | else | |
424 | classes[0] = X86_64_INTEGER_CLASS; | |
425 | return 1; | |
426 | case 16: | |
427 | classes[0] = classes[1] = X86_64_INTEGER_CLASS; | |
428 | return 2; | |
429 | default: | |
430 | break; | |
431 | } | |
432 | case TYPE_CODE_VOID: | |
433 | return 0; | |
8dda9770 | 434 | default: /* Avoid warning. */ |
4657573b | 435 | break; |
53e95fcf | 436 | } |
ce0eebec AC |
437 | internal_error (__FILE__, __LINE__, |
438 | "classify_argument: unknown argument type"); | |
53e95fcf JS |
439 | } |
440 | ||
26abbdc4 MK |
441 | /* Examine the argument and set *INT_NREGS and *SSE_NREGS to the |
442 | number of registers required based on the information passed in | |
443 | CLASSES. Return 0 if parameter should be passed in memory. */ | |
53e95fcf JS |
444 | |
445 | static int | |
446 | examine_argument (enum x86_64_reg_class classes[MAX_CLASSES], | |
447 | int n, int *int_nregs, int *sse_nregs) | |
448 | { | |
449 | *int_nregs = 0; | |
450 | *sse_nregs = 0; | |
451 | if (!n) | |
452 | return 0; | |
453 | for (n--; n >= 0; n--) | |
454 | switch (classes[n]) | |
455 | { | |
456 | case X86_64_INTEGER_CLASS: | |
457 | case X86_64_INTEGERSI_CLASS: | |
458 | (*int_nregs)++; | |
459 | break; | |
460 | case X86_64_SSE_CLASS: | |
461 | case X86_64_SSESF_CLASS: | |
462 | case X86_64_SSEDF_CLASS: | |
463 | (*sse_nregs)++; | |
464 | break; | |
465 | case X86_64_NO_CLASS: | |
466 | case X86_64_SSEUP_CLASS: | |
467 | case X86_64_X87_CLASS: | |
468 | case X86_64_X87UP_CLASS: | |
469 | break; | |
470 | case X86_64_MEMORY_CLASS: | |
ce0eebec AC |
471 | internal_error (__FILE__, __LINE__, |
472 | "examine_argument: unexpected memory class"); | |
53e95fcf JS |
473 | } |
474 | return 1; | |
475 | } | |
476 | ||
477 | #define RET_INT_REGS 2 | |
478 | #define RET_SSE_REGS 2 | |
479 | ||
480 | /* Check if the structure in value_type is returned in registers or in | |
26abbdc4 MK |
481 | memory. If this function returns 1, GDB will call |
482 | STORE_STRUCT_RETURN and EXTRACT_STRUCT_VALUE_ADDRESS else | |
483 | STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE will be used. */ | |
c4f35dd8 MK |
484 | |
485 | static int | |
53e95fcf JS |
486 | x86_64_use_struct_convention (int gcc_p, struct type *value_type) |
487 | { | |
488 | enum x86_64_reg_class class[MAX_CLASSES]; | |
489 | int n = classify_argument (value_type, class, 0); | |
490 | int needed_intregs; | |
491 | int needed_sseregs; | |
492 | ||
493 | return (!n || | |
494 | !examine_argument (class, n, &needed_intregs, &needed_sseregs) || | |
495 | needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS); | |
496 | } | |
497 | ||
53e95fcf JS |
498 | /* Extract from an array REGBUF containing the (raw) register state, a |
499 | function return value of TYPE, and copy that, in virtual format, | |
500 | into VALBUF. */ | |
501 | ||
c4f35dd8 | 502 | static void |
48037ead ML |
503 | x86_64_extract_return_value (struct type *type, struct regcache *regcache, |
504 | void *valbuf) | |
53e95fcf JS |
505 | { |
506 | enum x86_64_reg_class class[MAX_CLASSES]; | |
507 | int n = classify_argument (type, class, 0); | |
508 | int needed_intregs; | |
509 | int needed_sseregs; | |
510 | int intreg = 0; | |
511 | int ssereg = 0; | |
512 | int offset = 0; | |
c4f35dd8 MK |
513 | int ret_int_r[RET_INT_REGS] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM }; |
514 | int ret_sse_r[RET_SSE_REGS] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM }; | |
53e95fcf JS |
515 | |
516 | if (!n || | |
517 | !examine_argument (class, n, &needed_intregs, &needed_sseregs) || | |
518 | needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS) | |
519 | { /* memory class */ | |
520 | CORE_ADDR addr; | |
c4f35dd8 | 521 | regcache_cooked_read (regcache, X86_64_RAX_REGNUM, &addr); |
53e95fcf JS |
522 | read_memory (addr, valbuf, TYPE_LENGTH (type)); |
523 | return; | |
524 | } | |
525 | else | |
526 | { | |
527 | int i; | |
528 | for (i = 0; i < n; i++) | |
529 | { | |
530 | switch (class[i]) | |
531 | { | |
532 | case X86_64_NO_CLASS: | |
533 | break; | |
534 | case X86_64_INTEGER_CLASS: | |
48037ead ML |
535 | regcache_cooked_read (regcache, ret_int_r[(intreg + 1) / 2], |
536 | (char *) valbuf + offset); | |
53e95fcf JS |
537 | offset += 8; |
538 | intreg += 2; | |
539 | break; | |
540 | case X86_64_INTEGERSI_CLASS: | |
48037ead ML |
541 | regcache_cooked_read_part (regcache, ret_int_r[intreg / 2], |
542 | 0, 4, (char *) valbuf + offset); | |
53e95fcf JS |
543 | offset += 8; |
544 | intreg++; | |
545 | break; | |
546 | case X86_64_SSEDF_CLASS: | |
547 | case X86_64_SSESF_CLASS: | |
548 | case X86_64_SSE_CLASS: | |
48037ead ML |
549 | regcache_cooked_read_part (regcache, |
550 | ret_sse_r[(ssereg + 1) / 2], 0, 8, | |
551 | (char *) valbuf + offset); | |
53e95fcf JS |
552 | offset += 8; |
553 | ssereg += 2; | |
554 | break; | |
555 | case X86_64_SSEUP_CLASS: | |
48037ead ML |
556 | regcache_cooked_read_part (regcache, ret_sse_r[ssereg / 2], |
557 | 0, 8, (char *) valbuf + offset); | |
53e95fcf JS |
558 | offset += 8; |
559 | ssereg++; | |
560 | break; | |
561 | case X86_64_X87_CLASS: | |
c4f35dd8 | 562 | regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM, |
48037ead | 563 | 0, 8, (char *) valbuf + offset); |
53e95fcf JS |
564 | offset += 8; |
565 | break; | |
566 | case X86_64_X87UP_CLASS: | |
c4f35dd8 | 567 | regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM, |
48037ead | 568 | 8, 2, (char *) valbuf + offset); |
53e95fcf JS |
569 | offset += 8; |
570 | break; | |
571 | case X86_64_MEMORY_CLASS: | |
572 | default: | |
573 | internal_error (__FILE__, __LINE__, | |
574 | "Unexpected argument class"); | |
575 | } | |
576 | } | |
577 | } | |
578 | } | |
579 | ||
53e95fcf | 580 | #define INT_REGS 6 |
c4f35dd8 | 581 | #define SSE_REGS 8 |
53e95fcf | 582 | |
c4f35dd8 MK |
583 | static CORE_ADDR |
584 | x86_64_push_arguments (struct regcache *regcache, int nargs, | |
585 | struct value **args, CORE_ADDR sp) | |
53e95fcf JS |
586 | { |
587 | int intreg = 0; | |
588 | int ssereg = 0; | |
c1da67ba AJ |
589 | /* For varargs functions we have to pass the total number of SSE |
590 | registers used in %rax. So, let's count this number. */ | |
8ffd9b1b AJ |
591 | int total_sse_args = 0; |
592 | /* Once an SSE/int argument is passed on the stack, all subsequent | |
593 | arguments are passed there. */ | |
594 | int sse_stack = 0; | |
595 | int int_stack = 0; | |
c1da67ba | 596 | unsigned total_sp; |
53e95fcf | 597 | int i; |
8ffd9b1b | 598 | char buf[8]; |
c4f35dd8 MK |
599 | static int int_parameter_registers[INT_REGS] = |
600 | { | |
601 | X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */ | |
602 | X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */ | |
603 | 8, 9 /* %r8, %r9 */ | |
ce0eebec | 604 | }; |
c4f35dd8 MK |
605 | /* %xmm0 - %xmm7 */ |
606 | static int sse_parameter_registers[SSE_REGS] = | |
607 | { | |
608 | X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM, | |
609 | X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3, | |
610 | X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5, | |
611 | X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7, | |
ce0eebec AC |
612 | }; |
613 | int stack_values_count = 0; | |
82dbc5f7 | 614 | int *stack_values; |
e9f30c21 | 615 | stack_values = alloca (nargs * sizeof (int)); |
53e95fcf JS |
616 | for (i = 0; i < nargs; i++) |
617 | { | |
618 | enum x86_64_reg_class class[MAX_CLASSES]; | |
619 | int n = classify_argument (args[i]->type, class, 0); | |
620 | int needed_intregs; | |
621 | int needed_sseregs; | |
622 | ||
623 | if (!n || | |
8ffd9b1b | 624 | !examine_argument (class, n, &needed_intregs, &needed_sseregs)) |
ce0eebec AC |
625 | { /* memory class */ |
626 | stack_values[stack_values_count++] = i; | |
53e95fcf JS |
627 | } |
628 | else | |
629 | { | |
630 | int j; | |
6b53acc6 | 631 | int offset = 0; |
8ffd9b1b AJ |
632 | |
633 | if (intreg / 2 + needed_intregs > INT_REGS) | |
634 | int_stack = 1; | |
635 | if (ssereg / 2 + needed_sseregs > SSE_REGS) | |
636 | sse_stack = 1; | |
c1da67ba AJ |
637 | if (!sse_stack) |
638 | total_sse_args += needed_sseregs; | |
8ffd9b1b | 639 | |
53e95fcf JS |
640 | for (j = 0; j < n; j++) |
641 | { | |
53e95fcf JS |
642 | switch (class[j]) |
643 | { | |
644 | case X86_64_NO_CLASS: | |
645 | break; | |
646 | case X86_64_INTEGER_CLASS: | |
8ffd9b1b AJ |
647 | if (int_stack) |
648 | stack_values[stack_values_count++] = i; | |
649 | else | |
650 | { | |
651 | regcache_cooked_write | |
652 | (regcache, int_parameter_registers[(intreg + 1) / 2], | |
653 | VALUE_CONTENTS_ALL (args[i]) + offset); | |
654 | offset += 8; | |
655 | intreg += 2; | |
656 | } | |
53e95fcf JS |
657 | break; |
658 | case X86_64_INTEGERSI_CLASS: | |
8ffd9b1b AJ |
659 | if (int_stack) |
660 | stack_values[stack_values_count++] = i; | |
661 | else | |
662 | { | |
663 | LONGEST val = extract_signed_integer | |
664 | (VALUE_CONTENTS_ALL (args[i]) + offset, 4); | |
665 | regcache_cooked_write_signed | |
666 | (regcache, int_parameter_registers[intreg / 2], val); | |
667 | ||
668 | offset += 8; | |
669 | intreg++; | |
670 | } | |
671 | break; | |
53e95fcf JS |
672 | case X86_64_SSEDF_CLASS: |
673 | case X86_64_SSESF_CLASS: | |
674 | case X86_64_SSE_CLASS: | |
8ffd9b1b AJ |
675 | if (sse_stack) |
676 | stack_values[stack_values_count++] = i; | |
677 | else | |
678 | { | |
679 | regcache_cooked_write | |
680 | (regcache, sse_parameter_registers[(ssereg + 1) / 2], | |
681 | VALUE_CONTENTS_ALL (args[i]) + offset); | |
682 | offset += 8; | |
683 | ssereg += 2; | |
684 | } | |
53e95fcf JS |
685 | break; |
686 | case X86_64_SSEUP_CLASS: | |
8ffd9b1b AJ |
687 | if (sse_stack) |
688 | stack_values[stack_values_count++] = i; | |
689 | else | |
690 | { | |
691 | regcache_cooked_write | |
692 | (regcache, sse_parameter_registers[ssereg / 2], | |
693 | VALUE_CONTENTS_ALL (args[i]) + offset); | |
694 | offset += 8; | |
695 | ssereg++; | |
696 | } | |
53e95fcf JS |
697 | break; |
698 | case X86_64_X87_CLASS: | |
53e95fcf | 699 | case X86_64_MEMORY_CLASS: |
ce0eebec | 700 | stack_values[stack_values_count++] = i; |
82dbc5f7 AC |
701 | break; |
702 | case X86_64_X87UP_CLASS: | |
53e95fcf JS |
703 | break; |
704 | default: | |
705 | internal_error (__FILE__, __LINE__, | |
706 | "Unexpected argument class"); | |
707 | } | |
708 | intreg += intreg % 2; | |
709 | ssereg += ssereg % 2; | |
710 | } | |
711 | } | |
712 | } | |
c4f35dd8 | 713 | |
c1da67ba AJ |
714 | /* We have to make sure that the stack is 16-byte aligned after the |
715 | setup. Let's calculate size of arguments first, align stack and | |
716 | then fill in the arguments. */ | |
717 | total_sp = 0; | |
718 | for (i = 0; i < stack_values_count; i++) | |
719 | { | |
720 | struct value *arg = args[stack_values[i]]; | |
721 | int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
722 | total_sp += (len + 7) & ~7; | |
723 | } | |
724 | /* total_sp is now a multiple of 8, if it is not a multiple of 16, | |
725 | change the stack pointer so that it will be afterwards correctly | |
726 | aligned. */ | |
727 | if (total_sp & 15) | |
728 | sp -= 8; | |
729 | ||
c4f35dd8 | 730 | /* Push any remaining arguments onto the stack. */ |
82dbc5f7 AC |
731 | while (--stack_values_count >= 0) |
732 | { | |
e9f30c21 | 733 | struct value *arg = args[stack_values[stack_values_count]]; |
82dbc5f7 | 734 | int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); |
c4f35dd8 | 735 | |
c1da67ba | 736 | /* Make sure the stack is 8-byte-aligned. */ |
c4f35dd8 | 737 | sp -= (len + 7) & ~7; |
82dbc5f7 AC |
738 | write_memory (sp, VALUE_CONTENTS_ALL (arg), len); |
739 | } | |
c4f35dd8 | 740 | |
8ffd9b1b AJ |
741 | /* Write number of SSE type arguments to RAX to take care of varargs |
742 | functions. */ | |
743 | store_unsigned_integer (buf, 8, total_sse_args); | |
744 | regcache_cooked_write (regcache, X86_64_RAX_REGNUM, buf); | |
745 | ||
53e95fcf JS |
746 | return sp; |
747 | } | |
748 | ||
749 | /* Write into the appropriate registers a function return value stored | |
750 | in VALBUF of type TYPE, given in virtual format. */ | |
c4f35dd8 MK |
751 | |
752 | static void | |
48037ead ML |
753 | x86_64_store_return_value (struct type *type, struct regcache *regcache, |
754 | const void *valbuf) | |
53e95fcf JS |
755 | { |
756 | int len = TYPE_LENGTH (type); | |
757 | ||
8ffd9b1b AJ |
758 | /* First handle long doubles. */ |
759 | if (TYPE_CODE_FLT == TYPE_CODE (type) && len == 16) | |
53e95fcf | 760 | { |
c4f35dd8 MK |
761 | ULONGEST fstat; |
762 | char buf[FPU_REG_RAW_SIZE]; | |
763 | ||
764 | /* Returning floating-point values is a bit tricky. Apart from | |
765 | storing the return value in %st(0), we have to simulate the | |
766 | state of the FPU at function return point. */ | |
767 | ||
768 | /* Convert the value found in VALBUF to the extended | |
769 | floating-point format used by the FPU. This is probably | |
770 | not exactly how it would happen on the target itself, but | |
771 | it is the best we can do. */ | |
772 | convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext); | |
773 | regcache_raw_write (regcache, X86_64_ST0_REGNUM, buf); | |
774 | ||
775 | /* Set the top of the floating-point register stack to 7. The | |
776 | actual value doesn't really matter, but 7 is what a normal | |
777 | function return would end up with if the program started out | |
778 | with a freshly initialized FPU. */ | |
779 | regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat); | |
780 | fstat |= (7 << 11); | |
781 | regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat); | |
782 | ||
783 | /* Mark %st(1) through %st(7) as empty. Since we set the top of | |
784 | the floating-point register stack to 7, the appropriate value | |
785 | for the tag word is 0x3fff. */ | |
786 | regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff); | |
53e95fcf | 787 | } |
8ffd9b1b AJ |
788 | else if (TYPE_CODE_FLT == TYPE_CODE (type)) |
789 | { | |
790 | /* Handle double and float variables. */ | |
01e4b823 | 791 | regcache_cooked_write_part (regcache, X86_64_XMM0_REGNUM, 0, len, buf); |
8ffd9b1b AJ |
792 | } |
793 | /* XXX: What about complex floating point types? */ | |
53e95fcf JS |
794 | else |
795 | { | |
796 | int low_size = REGISTER_RAW_SIZE (0); | |
797 | int high_size = REGISTER_RAW_SIZE (1); | |
798 | ||
799 | if (len <= low_size) | |
48037ead | 800 | regcache_cooked_write_part (regcache, 0, 0, len, valbuf); |
53e95fcf JS |
801 | else if (len <= (low_size + high_size)) |
802 | { | |
48037ead ML |
803 | regcache_cooked_write_part (regcache, 0, 0, low_size, valbuf); |
804 | regcache_cooked_write_part (regcache, 1, 0, | |
805 | len - low_size, | |
806 | (const char *) valbuf + low_size); | |
53e95fcf JS |
807 | } |
808 | else | |
809 | internal_error (__FILE__, __LINE__, | |
810 | "Cannot store return value of %d bytes long.", len); | |
811 | } | |
812 | } | |
813 | \f | |
814 | ||
c4f35dd8 | 815 | static CORE_ADDR |
10f93086 MK |
816 | x86_64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
817 | struct regcache *regcache, CORE_ADDR bp_addr, | |
818 | int nargs, struct value **args, CORE_ADDR sp, | |
819 | int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 820 | { |
c4f35dd8 MK |
821 | char buf[8]; |
822 | ||
823 | /* Pass arguments. */ | |
824 | sp = x86_64_push_arguments (regcache, nargs, args, sp); | |
825 | ||
826 | /* Pass "hidden" argument". */ | |
827 | if (struct_return) | |
828 | { | |
829 | store_unsigned_integer (buf, 8, struct_addr); | |
830 | regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf); | |
831 | } | |
832 | ||
833 | /* Store return address. */ | |
834 | sp -= 8; | |
10f93086 | 835 | store_unsigned_integer (buf, 8, bp_addr); |
c4f35dd8 MK |
836 | write_memory (sp, buf, 8); |
837 | ||
838 | /* Finally, update the stack pointer... */ | |
839 | store_unsigned_integer (buf, 8, sp); | |
840 | regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf); | |
841 | ||
842 | /* ...and fake a frame pointer. */ | |
843 | regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf); | |
844 | ||
3e210248 | 845 | return sp + 16; |
53e95fcf | 846 | } |
c4f35dd8 MK |
847 | \f |
848 | ||
849 | /* The maximum number of saved registers. This should include %rip. */ | |
2b5e0749 | 850 | #define X86_64_NUM_SAVED_REGS X86_64_NUM_GREGS |
c4f35dd8 MK |
851 | |
852 | struct x86_64_frame_cache | |
853 | { | |
854 | /* Base address. */ | |
855 | CORE_ADDR base; | |
856 | CORE_ADDR sp_offset; | |
857 | CORE_ADDR pc; | |
858 | ||
859 | /* Saved registers. */ | |
860 | CORE_ADDR saved_regs[X86_64_NUM_SAVED_REGS]; | |
861 | CORE_ADDR saved_sp; | |
862 | ||
863 | /* Do we have a frame? */ | |
864 | int frameless_p; | |
865 | }; | |
8dda9770 | 866 | |
c4f35dd8 MK |
867 | /* Allocate and initialize a frame cache. */ |
868 | ||
869 | static struct x86_64_frame_cache * | |
870 | x86_64_alloc_frame_cache (void) | |
8dda9770 | 871 | { |
c4f35dd8 MK |
872 | struct x86_64_frame_cache *cache; |
873 | int i; | |
874 | ||
875 | cache = FRAME_OBSTACK_ZALLOC (struct x86_64_frame_cache); | |
8dda9770 | 876 | |
c4f35dd8 MK |
877 | /* Base address. */ |
878 | cache->base = 0; | |
879 | cache->sp_offset = -8; | |
880 | cache->pc = 0; | |
881 | ||
882 | /* Saved registers. We initialize these to -1 since zero is a valid | |
883 | offset (that's where %rbp is supposed to be stored). */ | |
884 | for (i = 0; i < X86_64_NUM_SAVED_REGS; i++) | |
885 | cache->saved_regs[i] = -1; | |
886 | cache->saved_sp = 0; | |
887 | ||
888 | /* Frameless until proven otherwise. */ | |
889 | cache->frameless_p = 1; | |
890 | ||
891 | return cache; | |
8dda9770 | 892 | } |
53e95fcf | 893 | |
c4f35dd8 MK |
894 | /* Do a limited analysis of the prologue at PC and update CACHE |
895 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
896 | address where the analysis stopped. | |
897 | ||
898 | We will handle only functions beginning with: | |
899 | ||
900 | pushq %rbp 0x55 | |
901 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
902 | ||
903 | Any function that doesn't start with this sequence will be assumed | |
904 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
905 | ||
906 | static CORE_ADDR | |
907 | x86_64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, | |
908 | struct x86_64_frame_cache *cache) | |
53e95fcf | 909 | { |
c4f35dd8 MK |
910 | static unsigned char proto[3] = { 0x48, 0x89, 0xe5 }; |
911 | unsigned char buf[3]; | |
912 | unsigned char op; | |
913 | ||
914 | if (current_pc <= pc) | |
915 | return current_pc; | |
916 | ||
917 | op = read_memory_unsigned_integer (pc, 1); | |
918 | ||
919 | if (op == 0x55) /* pushq %rbp */ | |
920 | { | |
921 | /* Take into account that we've executed the `pushq %rbp' that | |
922 | starts this instruction sequence. */ | |
923 | cache->saved_regs[X86_64_RBP_REGNUM] = 0; | |
924 | cache->sp_offset += 8; | |
925 | ||
926 | /* If that's all, return now. */ | |
927 | if (current_pc <= pc + 1) | |
928 | return current_pc; | |
929 | ||
930 | /* Check for `movq %rsp, %rbp'. */ | |
931 | read_memory (pc + 1, buf, 3); | |
932 | if (memcmp (buf, proto, 3) != 0) | |
933 | return pc + 1; | |
934 | ||
935 | /* OK, we actually have a frame. */ | |
936 | cache->frameless_p = 0; | |
937 | return pc + 4; | |
938 | } | |
939 | ||
940 | return pc; | |
53e95fcf JS |
941 | } |
942 | ||
c4f35dd8 MK |
943 | /* Return PC of first real instruction. */ |
944 | ||
945 | static CORE_ADDR | |
946 | x86_64_skip_prologue (CORE_ADDR start_pc) | |
53e95fcf | 947 | { |
c4f35dd8 MK |
948 | struct x86_64_frame_cache cache; |
949 | CORE_ADDR pc; | |
950 | ||
951 | pc = x86_64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache); | |
952 | if (cache.frameless_p) | |
953 | return start_pc; | |
954 | ||
955 | return pc; | |
53e95fcf | 956 | } |
c4f35dd8 | 957 | \f |
53e95fcf | 958 | |
c4f35dd8 MK |
959 | /* Normal frames. */ |
960 | ||
961 | static struct x86_64_frame_cache * | |
962 | x86_64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
6d686a84 | 963 | { |
c4f35dd8 MK |
964 | struct x86_64_frame_cache *cache; |
965 | char buf[8]; | |
6d686a84 | 966 | int i; |
6d686a84 | 967 | |
c4f35dd8 MK |
968 | if (*this_cache) |
969 | return *this_cache; | |
6d686a84 | 970 | |
c4f35dd8 MK |
971 | cache = x86_64_alloc_frame_cache (); |
972 | *this_cache = cache; | |
973 | ||
974 | frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf); | |
975 | cache->base = extract_unsigned_integer (buf, 8); | |
976 | if (cache->base == 0) | |
977 | return cache; | |
978 | ||
979 | /* For normal frames, %rip is stored at 8(%rbp). */ | |
980 | cache->saved_regs[X86_64_RIP_REGNUM] = 8; | |
981 | ||
982 | cache->pc = frame_func_unwind (next_frame); | |
983 | if (cache->pc != 0) | |
984 | x86_64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache); | |
985 | ||
986 | if (cache->frameless_p) | |
987 | { | |
988 | /* We didn't find a valid frame, which means that CACHE->base | |
989 | currently holds the frame pointer for our calling frame. If | |
990 | we're at the start of a function, or somewhere half-way its | |
991 | prologue, the function's frame probably hasn't been fully | |
992 | setup yet. Try to reconstruct the base address for the stack | |
993 | frame by looking at the stack pointer. For truly "frameless" | |
994 | functions this might work too. */ | |
995 | ||
996 | frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf); | |
997 | cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset; | |
998 | } | |
999 | ||
1000 | /* Now that we have the base address for the stack frame we can | |
1001 | calculate the value of %rsp in the calling frame. */ | |
1002 | cache->saved_sp = cache->base + 16; | |
1003 | ||
1004 | /* Adjust all the saved registers such that they contain addresses | |
1005 | instead of offsets. */ | |
1006 | for (i = 0; i < X86_64_NUM_SAVED_REGS; i++) | |
1007 | if (cache->saved_regs[i] != -1) | |
1008 | cache->saved_regs[i] += cache->base; | |
1009 | ||
1010 | return cache; | |
6d686a84 ML |
1011 | } |
1012 | ||
c4f35dd8 MK |
1013 | static void |
1014 | x86_64_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
1015 | struct frame_id *this_id) | |
1016 | { | |
1017 | struct x86_64_frame_cache *cache = | |
1018 | x86_64_frame_cache (next_frame, this_cache); | |
1019 | ||
1020 | /* This marks the outermost frame. */ | |
1021 | if (cache->base == 0) | |
1022 | return; | |
1023 | ||
1024 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
1025 | } | |
e76e1718 | 1026 | |
c4f35dd8 MK |
1027 | static void |
1028 | x86_64_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
1029 | int regnum, int *optimizedp, | |
1030 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1031 | int *realnump, void *valuep) | |
53e95fcf | 1032 | { |
c4f35dd8 MK |
1033 | struct x86_64_frame_cache *cache = |
1034 | x86_64_frame_cache (next_frame, this_cache); | |
e76e1718 | 1035 | |
c4f35dd8 | 1036 | gdb_assert (regnum >= 0); |
b1ab997b | 1037 | |
c4f35dd8 MK |
1038 | if (regnum == SP_REGNUM && cache->saved_sp) |
1039 | { | |
1040 | *optimizedp = 0; | |
1041 | *lvalp = not_lval; | |
1042 | *addrp = 0; | |
1043 | *realnump = -1; | |
1044 | if (valuep) | |
1045 | { | |
1046 | /* Store the value. */ | |
1047 | store_unsigned_integer (valuep, 8, cache->saved_sp); | |
1048 | } | |
1049 | return; | |
1050 | } | |
e76e1718 | 1051 | |
c4f35dd8 MK |
1052 | if (regnum < X86_64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
1053 | { | |
1054 | *optimizedp = 0; | |
1055 | *lvalp = lval_memory; | |
1056 | *addrp = cache->saved_regs[regnum]; | |
1057 | *realnump = -1; | |
1058 | if (valuep) | |
1059 | { | |
1060 | /* Read the value in from memory. */ | |
1061 | read_memory (*addrp, valuep, | |
1062 | register_size (current_gdbarch, regnum)); | |
1063 | } | |
1064 | return; | |
1065 | } | |
e76e1718 | 1066 | |
c4f35dd8 MK |
1067 | frame_register_unwind (next_frame, regnum, |
1068 | optimizedp, lvalp, addrp, realnump, valuep); | |
1069 | } | |
e76e1718 | 1070 | |
c4f35dd8 MK |
1071 | static const struct frame_unwind x86_64_frame_unwind = |
1072 | { | |
1073 | NORMAL_FRAME, | |
1074 | x86_64_frame_this_id, | |
1075 | x86_64_frame_prev_register | |
1076 | }; | |
e76e1718 | 1077 | |
c4f35dd8 MK |
1078 | static const struct frame_unwind * |
1079 | x86_64_frame_p (CORE_ADDR pc) | |
1080 | { | |
1081 | return &x86_64_frame_unwind; | |
1082 | } | |
1083 | \f | |
e76e1718 | 1084 | |
c4f35dd8 MK |
1085 | /* Signal trampolines. */ |
1086 | ||
1087 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
1088 | 64-bit variants. This would require using identical frame caches | |
1089 | on both platforms. */ | |
1090 | ||
1091 | static struct x86_64_frame_cache * | |
1092 | x86_64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1093 | { | |
1094 | struct x86_64_frame_cache *cache; | |
1095 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1096 | CORE_ADDR addr; | |
1097 | char buf[8]; | |
2b5e0749 | 1098 | int i; |
c4f35dd8 MK |
1099 | |
1100 | if (*this_cache) | |
1101 | return *this_cache; | |
1102 | ||
1103 | cache = x86_64_alloc_frame_cache (); | |
1104 | ||
1105 | frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf); | |
1106 | cache->base = extract_unsigned_integer (buf, 8) - 8; | |
1107 | ||
1108 | addr = tdep->sigcontext_addr (next_frame); | |
2b5e0749 MK |
1109 | gdb_assert (tdep->sc_reg_offset); |
1110 | gdb_assert (tdep->sc_num_regs <= X86_64_NUM_SAVED_REGS); | |
1111 | for (i = 0; i < tdep->sc_num_regs; i++) | |
1112 | if (tdep->sc_reg_offset[i] != -1) | |
1113 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
1114 | |
1115 | *this_cache = cache; | |
1116 | return cache; | |
53e95fcf JS |
1117 | } |
1118 | ||
c4f35dd8 MK |
1119 | static void |
1120 | x86_64_sigtramp_frame_this_id (struct frame_info *next_frame, | |
1121 | void **this_cache, struct frame_id *this_id) | |
1122 | { | |
1123 | struct x86_64_frame_cache *cache = | |
1124 | x86_64_sigtramp_frame_cache (next_frame, this_cache); | |
1125 | ||
1126 | (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame)); | |
1127 | } | |
1128 | ||
1129 | static void | |
1130 | x86_64_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
1131 | void **this_cache, | |
1132 | int regnum, int *optimizedp, | |
1133 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1134 | int *realnump, void *valuep) | |
1135 | { | |
1136 | /* Make sure we've initialized the cache. */ | |
1137 | x86_64_sigtramp_frame_cache (next_frame, this_cache); | |
1138 | ||
1139 | x86_64_frame_prev_register (next_frame, this_cache, regnum, | |
1140 | optimizedp, lvalp, addrp, realnump, valuep); | |
1141 | } | |
1142 | ||
1143 | static const struct frame_unwind x86_64_sigtramp_frame_unwind = | |
1144 | { | |
1145 | SIGTRAMP_FRAME, | |
1146 | x86_64_sigtramp_frame_this_id, | |
1147 | x86_64_sigtramp_frame_prev_register | |
1148 | }; | |
1149 | ||
1150 | static const struct frame_unwind * | |
1151 | x86_64_sigtramp_frame_p (CORE_ADDR pc) | |
1152 | { | |
1153 | char *name; | |
1154 | ||
1155 | find_pc_partial_function (pc, &name, NULL, NULL); | |
1156 | if (PC_IN_SIGTRAMP (pc, name)) | |
1c3545ae MK |
1157 | { |
1158 | gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr); | |
1159 | ||
1160 | return &x86_64_sigtramp_frame_unwind; | |
1161 | } | |
c4f35dd8 MK |
1162 | |
1163 | return NULL; | |
1164 | } | |
1165 | \f | |
1166 | ||
1167 | static CORE_ADDR | |
1168 | x86_64_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
1169 | { | |
1170 | struct x86_64_frame_cache *cache = | |
1171 | x86_64_frame_cache (next_frame, this_cache); | |
1172 | ||
1173 | return cache->base; | |
1174 | } | |
1175 | ||
1176 | static const struct frame_base x86_64_frame_base = | |
1177 | { | |
1178 | &x86_64_frame_unwind, | |
1179 | x86_64_frame_base_address, | |
1180 | x86_64_frame_base_address, | |
1181 | x86_64_frame_base_address | |
1182 | }; | |
1183 | ||
166f4c7b | 1184 | static struct frame_id |
c4f35dd8 | 1185 | x86_64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
166f4c7b | 1186 | { |
c4f35dd8 MK |
1187 | char buf[8]; |
1188 | CORE_ADDR fp; | |
1189 | ||
1190 | frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf); | |
1191 | fp = extract_unsigned_integer (buf, 8); | |
1192 | ||
1193 | return frame_id_build (fp + 16, frame_pc_unwind (next_frame)); | |
166f4c7b ML |
1194 | } |
1195 | ||
2213a65d | 1196 | void |
0c1a73d6 | 1197 | x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 1198 | { |
0c1a73d6 | 1199 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
53e95fcf | 1200 | |
b83b026c | 1201 | /* The x86-64 has 16 SSE registers. */ |
0c1a73d6 | 1202 | tdep->num_xmm_regs = 16; |
53e95fcf | 1203 | |
0c1a73d6 | 1204 | /* This is what all the fuss is about. */ |
53e95fcf JS |
1205 | set_gdbarch_long_bit (gdbarch, 64); |
1206 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1207 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1208 | ||
b83b026c MK |
1209 | /* In contrast to the i386, on the x86-64 a `long double' actually |
1210 | takes up 128 bits, even though it's still based on the i387 | |
1211 | extended floating-point format which has only 80 significant bits. */ | |
1212 | set_gdbarch_long_double_bit (gdbarch, 128); | |
1213 | ||
53e95fcf | 1214 | set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS); |
c4f35dd8 MK |
1215 | set_gdbarch_register_name (gdbarch, x86_64_register_name); |
1216 | set_gdbarch_register_type (gdbarch, x86_64_register_type); | |
b83b026c MK |
1217 | |
1218 | /* Register numbers of various important registers. */ | |
c4f35dd8 MK |
1219 | set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */ |
1220 | set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */ | |
1221 | set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */ | |
1222 | set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */ | |
b83b026c MK |
1223 | |
1224 | /* The "default" register numbering scheme for the x86-64 is | |
c4f35dd8 MK |
1225 | referred to as the "DWARF Register Number Mapping" in the System |
1226 | V psABI. The preferred debugging format for all known x86-64 | |
1227 | targets is actually DWARF2, and GCC doesn't seem to support DWARF | |
1228 | (that is DWARF-1), but we provide the same mapping just in case. | |
1229 | This mapping is also used for stabs, which GCC does support. */ | |
1230 | set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
1231 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
1232 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
de220d0f | 1233 | |
c4f35dd8 MK |
1234 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
1235 | be in use on any of the supported x86-64 targets. */ | |
53e95fcf | 1236 | |
c4f35dd8 MK |
1237 | /* Call dummy code. */ |
1238 | set_gdbarch_push_dummy_call (gdbarch, x86_64_push_dummy_call); | |
53e95fcf | 1239 | |
d532c08f MK |
1240 | set_gdbarch_convert_register_p (gdbarch, x86_64_convert_register_p); |
1241 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); | |
1242 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
1243 | ||
48037ead | 1244 | set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value); |
48037ead | 1245 | set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value); |
b83b026c MK |
1246 | /* Override, since this is handled by x86_64_extract_return_value. */ |
1247 | set_gdbarch_extract_struct_value_address (gdbarch, NULL); | |
1248 | set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention); | |
53e95fcf | 1249 | |
b83b026c | 1250 | set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue); |
53e95fcf | 1251 | |
c4f35dd8 | 1252 | /* Avoid wiring in the MMX registers for now. */ |
2213a65d MK |
1253 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
1254 | ||
c4f35dd8 | 1255 | set_gdbarch_unwind_dummy_id (gdbarch, x86_64_unwind_dummy_id); |
53e95fcf | 1256 | |
b83b026c MK |
1257 | /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now, |
1258 | since all supported x86-64 targets are ELF, but that might change | |
1259 | in the future. */ | |
8a8ab2b9 | 1260 | set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); |
c4f35dd8 MK |
1261 | |
1262 | frame_unwind_append_predicate (gdbarch, x86_64_sigtramp_frame_p); | |
1263 | frame_unwind_append_predicate (gdbarch, x86_64_frame_p); | |
1264 | frame_base_set_default (gdbarch, &x86_64_frame_base); | |
1265 | } | |
1266 | \f | |
1267 | ||
1268 | #define I387_FISEG_REGNUM FISEG_REGNUM | |
1269 | #define I387_FOSEG_REGNUM FOSEG_REGNUM | |
1270 | ||
1271 | /* The 64-bit FXSAVE format differs from the 32-bit format in the | |
1272 | sense that the instruction pointer and data pointer are simply | |
1273 | 64-bit offsets into the code segment and the data segment instead | |
1274 | of a selector offset pair. The functions below store the upper 32 | |
1275 | bits of these pointers (instead of just the 16-bits of the segment | |
1276 | selector). */ | |
1277 | ||
1278 | /* Fill GDB's register array with the floating-point and SSE register | |
1279 | values in *FXSAVE. This function masks off any of the reserved | |
1280 | bits in *FXSAVE. */ | |
1281 | ||
1282 | void | |
1283 | x86_64_supply_fxsave (char *fxsave) | |
1284 | { | |
1285 | i387_supply_fxsave (fxsave); | |
1286 | ||
1287 | if (fxsave) | |
1288 | { | |
1289 | supply_register (I387_FISEG_REGNUM, fxsave + 12); | |
1290 | supply_register (I387_FOSEG_REGNUM, fxsave + 20); | |
1291 | } | |
0c1a73d6 MK |
1292 | } |
1293 | ||
c4f35dd8 MK |
1294 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
1295 | *FXSAVE with the value in GDB's register array. If REGNUM is -1, do | |
1296 | this for all registers. This function doesn't touch any of the | |
1297 | reserved bits in *FXSAVE. */ | |
1298 | ||
53e95fcf | 1299 | void |
c4f35dd8 | 1300 | x86_64_fill_fxsave (char *fxsave, int regnum) |
53e95fcf | 1301 | { |
c4f35dd8 | 1302 | i387_fill_fxsave (fxsave, regnum); |
53e95fcf | 1303 | |
c4f35dd8 | 1304 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
088ce440 | 1305 | regcache_collect (I387_FISEG_REGNUM, fxsave + 12); |
c4f35dd8 | 1306 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) |
088ce440 | 1307 | regcache_collect (I387_FOSEG_REGNUM, fxsave + 20); |
53e95fcf | 1308 | } |