1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2014 The Bitcoin developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #include "arith_uint256.h"
9 #include "utilstrencodings.h"
10 #include "crypto/common.h"
15 template <unsigned int BITS>
16 base_uint<BITS>::base_uint(const std::string& str)
21 template <unsigned int BITS>
22 base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
24 base_uint<BITS> a(*this);
25 for (int i = 0; i < WIDTH; i++)
29 for (int i = 0; i < WIDTH; i++) {
30 if (i + k + 1 < WIDTH && shift != 0)
31 pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
33 pn[i + k] |= (a.pn[i] << shift);
38 template <unsigned int BITS>
39 base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
41 base_uint<BITS> a(*this);
42 for (int i = 0; i < WIDTH; i++)
46 for (int i = 0; i < WIDTH; i++) {
47 if (i - k - 1 >= 0 && shift != 0)
48 pn[i - k - 1] |= (a.pn[i] << (32 - shift));
50 pn[i - k] |= (a.pn[i] >> shift);
55 template <unsigned int BITS>
56 base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
59 for (int i = 0; i < WIDTH; i++) {
60 uint64_t n = carry + (uint64_t)b32 * pn[i];
61 pn[i] = n & 0xffffffff;
67 template <unsigned int BITS>
68 base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
70 base_uint<BITS> a = *this;
72 for (int j = 0; j < WIDTH; j++) {
74 for (int i = 0; i + j < WIDTH; i++) {
75 uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
76 pn[i + j] = n & 0xffffffff;
83 template <unsigned int BITS>
84 base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
86 base_uint<BITS> div = b; // make a copy, so we can shift.
87 base_uint<BITS> num = *this; // make a copy, so we can subtract.
88 *this = 0; // the quotient.
89 int num_bits = num.bits();
90 int div_bits = div.bits();
92 throw uint_error("Division by zero");
93 if (div_bits > num_bits) // the result is certainly 0.
95 int shift = num_bits - div_bits;
96 div <<= shift; // shift so that div and num align.
100 pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
102 div >>= 1; // shift back.
105 // num now contains the remainder of the division.
109 template <unsigned int BITS>
110 int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
112 if ( (uint64_t)pn < 0x1000 || (uint64_t)b.pn <= 0x1000 )
114 //fprintf(stderr,"CompareTo null %p or %p\n",pn,b.pn);
117 for (int i = WIDTH - 1; i >= 0; i--) {
126 template <unsigned int BITS>
127 bool base_uint<BITS>::EqualTo(uint64_t b) const
129 for (int i = WIDTH - 1; i >= 2; i--) {
133 if (pn[1] != (b >> 32))
135 if (pn[0] != (b & 0xfffffffful))
140 template <unsigned int BITS>
141 double base_uint<BITS>::getdouble() const
145 for (int i = 0; i < WIDTH; i++) {
147 fact *= 4294967296.0;
152 template <unsigned int BITS>
153 std::string base_uint<BITS>::GetHex() const
155 return ArithToUint256(*this).GetHex();
158 template <unsigned int BITS>
159 void base_uint<BITS>::SetHex(const char* psz)
161 *this = UintToArith256(uint256S(psz));
164 template <unsigned int BITS>
165 void base_uint<BITS>::SetHex(const std::string& str)
170 template <unsigned int BITS>
171 std::string base_uint<BITS>::ToString() const
176 template <unsigned int BITS>
177 unsigned int base_uint<BITS>::bits() const
179 for (int pos = WIDTH - 1; pos >= 0; pos--) {
181 for (int bits = 31; bits > 0; bits--) {
182 if (pn[pos] & 1 << bits)
183 return 32 * pos + bits + 1;
191 // Explicit instantiations for base_uint<256>
192 template base_uint<256>::base_uint(const std::string&);
193 template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
194 template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
195 template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
196 template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
197 template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
198 template int base_uint<256>::CompareTo(const base_uint<256>&) const;
199 template bool base_uint<256>::EqualTo(uint64_t) const;
200 template double base_uint<256>::getdouble() const;
201 template std::string base_uint<256>::GetHex() const;
202 template std::string base_uint<256>::ToString() const;
203 template void base_uint<256>::SetHex(const char*);
204 template void base_uint<256>::SetHex(const std::string&);
205 template unsigned int base_uint<256>::bits() const;
207 // This implementation directly uses shifts instead of going
208 // through an intermediate MPI representation.
209 arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
211 int nSize = nCompact >> 24;
212 uint32_t nWord = nCompact & 0x007fffff;
214 nWord >>= 8 * (3 - nSize);
218 *this <<= 8 * (nSize - 3);
221 *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
223 *pfOverflow = nWord != 0 && ((nSize > 34) ||
224 (nWord > 0xff && nSize > 33) ||
225 (nWord > 0xffff && nSize > 32));
229 uint32_t arith_uint256::GetCompact(bool fNegative) const
231 int nSize = (bits() + 7) / 8;
232 uint32_t nCompact = 0;
234 nCompact = GetLow64() << 8 * (3 - nSize);
236 arith_uint256 bn = *this >> 8 * (nSize - 3);
237 nCompact = bn.GetLow64();
239 // The 0x00800000 bit denotes the sign.
240 // Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
241 if (nCompact & 0x00800000) {
245 assert((nCompact & ~0x007fffff) == 0);
247 nCompact |= nSize << 24;
248 nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
252 uint256 ArithToUint256(const arith_uint256 &a)
255 for(int x=0; x<a.WIDTH; ++x)
256 WriteLE32(b.begin() + x*4, a.pn[x]);
259 arith_uint256 UintToArith256(const uint256 &a)
262 for(int x=0; x<b.WIDTH; ++x)
263 b.pn[x] = ReadLE32(a.begin() + x*4);