1 // Copyright (c) 2009-2014 The Bitcoin Core developers
2 // Copyright (c) 2017 The Zcash developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
8 #include "arith_uint256.h"
9 #include "crypto/common.h"
10 #include "crypto/hmac_sha512.h"
14 #include <secp256k1.h>
15 #include <secp256k1_recovery.h>
17 static secp256k1_context* secp256k1_context_sign = NULL;
19 /** These functions are taken from the libsecp256k1 distribution and are very ugly. */
22 * This parses a format loosely based on a DER encoding of the ECPrivateKey type from
23 * section C.4 of SEC 1 <http://www.secg.org/sec1-v2.pdf>, with the following caveats:
25 * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
26 * required to be encoded as one octet if it is less than 256, as DER would require.
27 * * The octet-length of the SEQUENCE must not be greater than the remaining
28 * length of the key encoding, but need not match it (i.e. the encoding may contain
29 * junk after the encoded SEQUENCE).
30 * * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
31 * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
32 * or not it is validly encoded DER.
34 * out32 must point to an output buffer of length at least 32 bytes.
36 static int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
37 const unsigned char *end = privkey + privkeylen;
40 if (end - privkey < 1 || *privkey != 0x30u) {
44 /* sequence length constructor */
45 if (end - privkey < 1 || !(*privkey & 0x80u)) {
48 size_t lenb = *privkey & ~0x80u; privkey++;
49 if (lenb < 1 || lenb > 2) {
52 if (end - privkey < lenb) {
56 size_t len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0u);
58 if (end - privkey < len) {
61 /* sequence element 0: version number (=1) */
62 if (end - privkey < 3 || privkey[0] != 0x02u || privkey[1] != 0x01u || privkey[2] != 0x01u) {
66 /* sequence element 1: octet string, up to 32 bytes */
67 if (end - privkey < 2 || privkey[0] != 0x04u) {
70 size_t oslen = privkey[1];
72 if (oslen > 32 || end - privkey < oslen) {
75 memcpy(out32 + (32 - oslen), privkey, oslen);
76 if (!secp256k1_ec_seckey_verify(ctx, out32)) {
84 * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
85 * <http://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
88 * privkey must point to an output buffer of length at least CKey::PRIVATE_KEY_SIZE bytes.
89 * privkeylen must initially be set to the size of the privkey buffer. Upon return it
90 * will be set to the number of bytes used in the buffer.
91 * key32 must point to a 32-byte raw private key.
93 static int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
94 assert(*privkeylen >= CKey::PRIVATE_KEY_SIZE);
95 secp256k1_pubkey pubkey;
97 if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
102 static const unsigned char begin[] = {
103 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
105 static const unsigned char middle[] = {
106 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
107 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
108 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
109 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
110 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
111 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
112 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
113 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
114 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
116 unsigned char *ptr = privkey;
117 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
118 memcpy(ptr, key32, 32); ptr += 32;
119 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
120 pubkeylen = CPubKey::COMPRESSED_PUBLIC_KEY_SIZE;
121 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
123 *privkeylen = ptr - privkey;
124 assert(*privkeylen == CKey::COMPRESSED_PRIVATE_KEY_SIZE);
126 static const unsigned char begin[] = {
127 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
129 static const unsigned char middle[] = {
130 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
131 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
132 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
133 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
134 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
135 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
136 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
137 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
138 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
139 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
140 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
142 unsigned char *ptr = privkey;
143 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
144 memcpy(ptr, key32, 32); ptr += 32;
145 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
146 pubkeylen = CPubKey::PUBLIC_KEY_SIZE;
147 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
149 *privkeylen = ptr - privkey;
150 assert(*privkeylen == CKey::PRIVATE_KEY_SIZE);
155 bool CKey::Check(const unsigned char *vch) {
156 return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
159 void CKey::MakeNewKey(bool fCompressedIn) {
161 GetRandBytes(vch, sizeof(vch));
162 } while (!Check(vch));
164 fCompressed = fCompressedIn;
167 bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
168 if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size()))
170 fCompressed = fCompressedIn;
175 CPrivKey CKey::GetPrivKey() const {
180 privkey.resize(PRIVATE_KEY_SIZE);
181 privkeylen = PRIVATE_KEY_SIZE;
182 ret = ec_privkey_export_der(secp256k1_context_sign, (unsigned char*)&privkey[0], &privkeylen, begin(), fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
184 privkey.resize(privkeylen);
188 CPubKey CKey::GetPubKey() const {
190 secp256k1_pubkey pubkey;
191 size_t clen = CPubKey::PUBLIC_KEY_SIZE;
193 int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
195 secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
196 assert(result.size() == clen);
197 assert(result.IsValid());
201 bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_t test_case) const {
204 vchSig.resize(CPubKey::SIGNATURE_SIZE);
205 size_t nSigLen = CPubKey::SIGNATURE_SIZE;
206 unsigned char extra_entropy[32] = {0};
207 WriteLE32(extra_entropy, test_case);
208 secp256k1_ecdsa_signature sig;
209 int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL);
211 secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, (unsigned char*)&vchSig[0], &nSigLen, &sig);
212 vchSig.resize(nSigLen);
216 bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
217 if (pubkey.IsCompressed() != fCompressed) {
220 unsigned char rnd[8];
221 std::string str = "Zcash key verification\n";
222 GetRandBytes(rnd, sizeof(rnd));
224 CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin());
225 std::vector<unsigned char> vchSig;
227 return pubkey.Verify(hash, vchSig);
230 bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
233 vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
235 secp256k1_ecdsa_recoverable_signature sig;
236 int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, NULL);
238 secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, (unsigned char*)&vchSig[1], &rec, &sig);
241 vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
245 bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
246 if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size()))
248 fCompressed = vchPubKey.IsCompressed();
254 return VerifyPubKey(vchPubKey);
257 bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
259 assert(IsCompressed());
260 unsigned char out[64];
262 if ((nChild >> 31) == 0) {
263 CPubKey pubkey = GetPubKey();
264 assert(pubkey.size() == CPubKey::COMPRESSED_PUBLIC_KEY_SIZE);
265 BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
267 assert(size() == 32);
268 BIP32Hash(cc, nChild, 0, begin(), out);
270 memcpy(ccChild.begin(), out+32, 32);
271 memcpy((unsigned char*)keyChild.begin(), begin(), 32);
272 bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), out);
274 keyChild.fCompressed = true;
275 keyChild.fValid = ret;
279 bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const {
280 out.nDepth = nDepth + 1;
281 CKeyID id = key.GetPubKey().GetID();
282 memcpy(&out.vchFingerprint[0], &id, 4);
284 return key.Derive(out.key, out.chaincode, nChild, chaincode);
287 void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
288 static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
289 unsigned char out[64];
291 CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
292 key.Set(&out[0], &out[32], true);
293 memcpy(chaincode.begin(), &out[32], 32);
297 memset(vchFingerprint, 0, sizeof(vchFingerprint));
300 CExtPubKey CExtKey::Neuter() const {
303 memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
305 ret.pubkey = key.GetPubKey();
306 ret.chaincode = chaincode;
310 void CExtKey::Encode(unsigned char code[74]) const {
312 memcpy(code+1, vchFingerprint, 4);
313 code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
314 code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
315 memcpy(code+9, chaincode.begin(), 32);
317 assert(key.size() == 32);
318 memcpy(code+42, key.begin(), 32);
321 void CExtKey::Decode(const unsigned char code[74]) {
323 memcpy(vchFingerprint, code+1, 4);
324 nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
325 memcpy(chaincode.begin(), code+9, 32);
326 key.Set(code+42, code+74, true);
329 bool ECC_InitSanityCheck() {
331 key.MakeNewKey(true);
332 CPubKey pubkey = key.GetPubKey();
333 return key.VerifyPubKey(pubkey);
337 assert(secp256k1_context_sign == NULL);
339 secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
343 // Pass in a random blinding seed to the secp256k1 context.
344 unsigned char seed[32];
346 GetRandBytes(seed, 32);
347 bool ret = secp256k1_context_randomize(ctx, seed);
352 secp256k1_context_sign = ctx;
356 secp256k1_context *ctx = secp256k1_context_sign;
357 secp256k1_context_sign = NULL;
360 secp256k1_context_destroy(ctx);