1 // Copyright (c) 2009-2014 The Bitcoin Core developers
2 // Copyright (c) 2017 The Zcash developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
8 #include "arith_uint256.h"
9 #include "crypto/common.h"
10 #include "crypto/hmac_sha512.h"
14 #include <secp256k1.h>
15 #include <secp256k1_recovery.h>
17 static secp256k1_context* secp256k1_context_sign = NULL;
19 /** These functions are taken from the libsecp256k1 distribution and are very ugly. */
22 * This parses a format loosely based on a DER encoding of the ECPrivateKey type from
23 * section C.4 of SEC 1 <http://www.secg.org/sec1-v2.pdf>, with the following caveats:
25 * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
26 * required to be encoded as one octet if it is less than 256, as DER would require.
27 * * The octet-length of the SEQUENCE must not be greater than the remaining
28 * length of the key encoding, but need not match it (i.e. the encoding may contain
29 * junk after the encoded SEQUENCE).
30 * * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
31 * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
32 * or not it is validly encoded DER.
34 * out32 must point to an output buffer of length at least 32 bytes.
36 static int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
37 const unsigned char *end = privkey + privkeylen;
42 if (end - privkey < 1 || *privkey != 0x30u) {
46 /* sequence length constructor */
47 if (end - privkey < 1 || !(*privkey & 0x80u)) {
50 lenb = *privkey & ~0x80u; privkey++;
51 if (lenb < 1 || lenb > 2) {
54 if (end - privkey < lenb) {
58 len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0u);
60 if (end - privkey < len) {
63 /* sequence element 0: version number (=1) */
64 if (end - privkey < 3 || privkey[0] != 0x02u || privkey[1] != 0x01u || privkey[2] != 0x01u) {
68 /* sequence element 1: octet string, up to 32 bytes */
69 if (end - privkey < 2 || privkey[0] != 0x04u) {
72 size_t oslen = privkey[1];
74 if (oslen > 32 || end - privkey < oslen) {
77 memcpy(out32 + (32 - oslen), privkey, oslen);
78 if (!secp256k1_ec_seckey_verify(ctx, out32)) {
86 * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
87 * <http://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
90 * privkey must point to an output buffer of length at least PRIVATE_KEY_SIZE bytes.
91 * privkeylen must initially be set to the size of the privkey buffer. Upon return it
92 * will be set to the number of bytes used in the buffer.
93 * key32 must point to a 32-byte raw private key.
95 static int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
96 assert(*privkeylen >= PRIVATE_KEY_SIZE);
97 secp256k1_pubkey pubkey;
99 if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
104 static const unsigned char begin[] = {
105 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
107 static const unsigned char middle[] = {
108 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
109 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
110 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
111 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
112 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
113 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
114 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
115 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
116 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
118 unsigned char *ptr = privkey;
119 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
120 memcpy(ptr, key32, 32); ptr += 32;
121 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
122 pubkeylen = COMPRESSED_PUBLIC_KEY_SIZE;
123 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
125 *privkeylen = ptr - privkey;
126 assert(*privkeylen == COMPRESSED_PRIVATE_KEY_SIZE);
128 static const unsigned char begin[] = {
129 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
131 static const unsigned char middle[] = {
132 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
133 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
134 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
135 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
136 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
137 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
138 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
139 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
140 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
141 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
142 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
144 unsigned char *ptr = privkey;
145 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
146 memcpy(ptr, key32, 32); ptr += 32;
147 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
148 pubkeylen = PUBLIC_KEY_SIZE;
149 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
151 *privkeylen = ptr - privkey;
152 assert(*privkeylen == PRIVATE_KEY_SIZE);
157 bool CKey::Check(const unsigned char *vch) {
158 return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
161 void CKey::MakeNewKey(bool fCompressedIn) {
163 GetRandBytes(vch, sizeof(vch));
164 } while (!Check(vch));
166 fCompressed = fCompressedIn;
169 bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
170 if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size()))
172 fCompressed = fCompressedIn;
177 CPrivKey CKey::GetPrivKey() const {
182 privkey.resize(PRIVATE_KEY_SIZE);
183 privkeylen = PRIVATE_KEY_SIZE;
184 ret = ec_privkey_export_der(secp256k1_context_sign, (unsigned char*)&privkey[0], &privkeylen, begin(), fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
186 privkey.resize(privkeylen);
190 CPubKey CKey::GetPubKey() const {
192 secp256k1_pubkey pubkey;
193 size_t clen = PUBLIC_KEY_SIZE;
195 int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
197 secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
198 assert(result.size() == clen);
199 assert(result.IsValid());
203 bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_t test_case) const {
206 vchSig.resize(SIGNATURE_SIZE);
207 size_t nSigLen = SIGNATURE_SIZE;
208 unsigned char extra_entropy[32] = {0};
209 WriteLE32(extra_entropy, test_case);
210 secp256k1_ecdsa_signature sig;
211 int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL);
213 secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, (unsigned char*)&vchSig[0], &nSigLen, &sig);
214 vchSig.resize(nSigLen);
218 bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
219 if (pubkey.IsCompressed() != fCompressed) {
222 unsigned char rnd[8];
223 std::string str = "Bitcoin key verification\n";
224 GetRandBytes(rnd, sizeof(rnd));
226 CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin());
227 std::vector<unsigned char> vchSig;
229 return pubkey.Verify(hash, vchSig);
232 bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
235 vchSig.resize(COMPACT_SIGNATURE_SIZE);
237 secp256k1_ecdsa_recoverable_signature sig;
238 int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, NULL);
240 secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, (unsigned char*)&vchSig[1], &rec, &sig);
243 vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
247 bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
248 if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size()))
250 fCompressed = vchPubKey.IsCompressed();
256 return VerifyPubKey(vchPubKey);
259 bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
261 assert(IsCompressed());
262 unsigned char out[64];
264 if ((nChild >> 31) == 0) {
265 CPubKey pubkey = GetPubKey();
266 assert(pubkey.size() == COMPRESSED_PUBLIC_KEY_SIZE);
267 BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
269 assert(size() == 32);
270 BIP32Hash(cc, nChild, 0, begin(), out);
272 memcpy(ccChild.begin(), out+32, 32);
273 memcpy((unsigned char*)keyChild.begin(), begin(), 32);
274 bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), out);
276 keyChild.fCompressed = true;
277 keyChild.fValid = ret;
281 bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const {
282 out.nDepth = nDepth + 1;
283 CKeyID id = key.GetPubKey().GetID();
284 memcpy(&out.vchFingerprint[0], &id, 4);
286 return key.Derive(out.key, out.chaincode, nChild, chaincode);
289 void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
290 static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
291 unsigned char out[64];
293 CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
294 key.Set(&out[0], &out[32], true);
295 memcpy(chaincode.begin(), &out[32], 32);
299 memset(vchFingerprint, 0, sizeof(vchFingerprint));
302 CExtPubKey CExtKey::Neuter() const {
305 memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
307 ret.pubkey = key.GetPubKey();
308 ret.chaincode = chaincode;
312 void CExtKey::Encode(unsigned char code[74]) const {
314 memcpy(code+1, vchFingerprint, 4);
315 code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
316 code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
317 memcpy(code+9, chaincode.begin(), 32);
319 assert(key.size() == 32);
320 memcpy(code+42, key.begin(), 32);
323 void CExtKey::Decode(const unsigned char code[74]) {
325 memcpy(vchFingerprint, code+1, 4);
326 nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
327 memcpy(chaincode.begin(), code+9, 32);
328 key.Set(code+42, code+74, true);
331 bool ECC_InitSanityCheck() {
333 key.MakeNewKey(true);
334 CPubKey pubkey = key.GetPubKey();
335 return key.VerifyPubKey(pubkey);
339 assert(secp256k1_context_sign == NULL);
341 secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
345 // Pass in a random blinding seed to the secp256k1 context.
346 unsigned char seed[32];
348 GetRandBytes(seed, 32);
349 bool ret = secp256k1_context_randomize(ctx, seed);
354 secp256k1_context_sign = ctx;
358 secp256k1_context *ctx = secp256k1_context_sign;
359 secp256k1_context_sign = NULL;
362 secp256k1_context_destroy(ctx);