1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2014 The Bitcoin developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or https://www.opensource.org/licenses/mit-license.php .
6 #ifndef BITCOIN_ARITH_UINT256_H
7 #define BITCOIN_ARITH_UINT256_H
18 class uint_error : public std::runtime_error {
20 explicit uint_error(const std::string& str) : std::runtime_error(str) {}
23 /** Template base class for unsigned big integers. */
24 template<unsigned int BITS>
28 enum { WIDTH=BITS/32 };
34 for (int i = 0; i < WIDTH; i++)
38 base_uint(const base_uint& b)
40 for (int i = 0; i < WIDTH; i++)
44 base_uint& operator=(const base_uint& b)
46 for (int i = 0; i < WIDTH; i++)
53 pn[0] = (unsigned int)b;
54 pn[1] = (unsigned int)(b >> 32);
55 for (int i = 2; i < WIDTH; i++)
59 explicit base_uint(const std::string& str);
61 bool operator!() const
63 for (int i = 0; i < WIDTH; i++)
69 const base_uint operator~() const
72 for (int i = 0; i < WIDTH; i++)
77 const base_uint operator-() const
80 for (int i = 0; i < WIDTH; i++)
86 double getdouble() const;
88 base_uint& operator=(uint64_t b)
90 pn[0] = (unsigned int)b;
91 pn[1] = (unsigned int)(b >> 32);
92 for (int i = 2; i < WIDTH; i++)
97 base_uint& operator^=(const base_uint& b)
99 for (int i = 0; i < WIDTH; i++)
104 base_uint& operator&=(const base_uint& b)
106 for (int i = 0; i < WIDTH; i++)
111 base_uint& operator|=(const base_uint& b)
113 for (int i = 0; i < WIDTH; i++)
118 base_uint& operator^=(uint64_t b)
120 pn[0] ^= (unsigned int)b;
121 pn[1] ^= (unsigned int)(b >> 32);
125 base_uint& operator|=(uint64_t b)
127 pn[0] |= (unsigned int)b;
128 pn[1] |= (unsigned int)(b >> 32);
132 base_uint& operator<<=(unsigned int shift);
133 base_uint& operator>>=(unsigned int shift);
135 base_uint& operator+=(const base_uint& b)
138 for (int i = 0; i < WIDTH; i++)
140 uint64_t n = carry + pn[i] + b.pn[i];
141 pn[i] = n & 0xffffffff;
147 base_uint& operator-=(const base_uint& b)
153 base_uint& operator+=(uint64_t b64)
161 base_uint& operator-=(uint64_t b64)
169 base_uint& operator*=(uint32_t b32);
170 base_uint& operator*=(const base_uint& b);
171 base_uint& operator/=(const base_uint& b);
173 base_uint& operator++()
177 while (++pn[i] == 0 && i < WIDTH-1)
182 const base_uint operator++(int)
185 const base_uint ret = *this;
190 base_uint& operator--()
194 while (--pn[i] == (uint32_t)-1 && i < WIDTH-1)
199 const base_uint operator--(int)
202 const base_uint ret = *this;
207 int CompareTo(const base_uint& b) const;
208 bool EqualTo(uint64_t b) const;
210 friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
211 friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
212 friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
213 friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
214 friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
215 friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
216 friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
217 friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
218 friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
219 friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
220 friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
221 friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; }
222 friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; }
223 friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; }
224 friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; }
225 friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; }
226 friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
227 friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
229 std::string GetHex() const;
230 void SetHex(const char* psz);
231 void SetHex(const std::string& str);
232 std::string ToString() const;
234 unsigned int size() const
240 * Returns the position of the highest bit set plus one, or zero if the
243 unsigned int bits() const;
245 uint64_t GetLow64() const
248 return pn[0] | (uint64_t)pn[1] << 32;
252 /** 256-bit unsigned big integer. */
253 class arith_uint256 : public base_uint<256> {
256 arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
257 arith_uint256(uint64_t b) : base_uint<256>(b) {}
258 explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
261 * The "compact" format is a representation of a whole
262 * number N using an unsigned 32bit number similar to a
263 * floating point format.
264 * The most significant 8 bits are the unsigned exponent of base 256.
265 * This exponent can be thought of as "number of bytes of N".
266 * The lower 23 bits are the mantissa.
267 * Bit number 24 (0x800000) represents the sign of N.
268 * N = (-1^sign) * mantissa * 256^(exponent-3)
270 * Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
271 * MPI uses the most significant bit of the first byte as sign.
272 * Thus 0x1234560000 is compact (0x05123456)
273 * and 0xc0de000000 is compact (0x0600c0de)
275 * Bitcoin only uses this "compact" format for encoding difficulty
276 * targets, which are unsigned 256bit quantities. Thus, all the
277 * complexities of the sign bit and using base 256 are probably an
278 * implementation accident.
280 arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL);
281 uint32_t GetCompact(bool fNegative = false) const;
283 friend uint256 ArithToUint256(const arith_uint256 &);
284 friend arith_uint256 UintToArith256(const uint256 &);
287 uint256 ArithToUint256(const arith_uint256 &);
288 arith_uint256 UintToArith256(const uint256 &);
290 #endif // BITCOIN_ARITH_UINT256_H