1 /******************************************************************************
2 * Copyright © 2014-2018 The SuperNET Developers. *
4 * See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at *
5 * the top-level directory of this distribution for the individual copyright *
6 * holder information and the developer policies on copyright and licensing. *
8 * Unless otherwise agreed in a custom licensing agreement, no part of the *
9 * SuperNET software, including this file may be copied, modified, propagated *
10 * or distributed except according to the terms contained in the LICENSE file *
12 * Removal or modification of this copyright notice is prohibited. *
14 ******************************************************************************/
20 there are only a very few types in bitcoin. pay to pubkey, pay to pubkey hash and pay to script hash
22 there are actually more that are possible, but those three are 99%+ of bitcoin transactions
23 so you can pay to a pubkey, or to its hash. or to a script's hash. the last is how most of the more complex scripts are invoked. to spend a p2sh vout, you need to provide the redeemscript, this script's hash is what the p2sh address was.
24 all of the above are the standard bitcoin vout types and there should be plenty of materials about it
25 Encrypted by a verified device
26 what I did with the CC contracts is created a fourth type of vout, the CC vout. this is using the cryptoconditions standard and it is even a different signature mechanism. ed25519 instead of secp256k1. it is basically a big extension to the bitcoin script. There is a special opcode that is added that says it is a CC script.
28 but it gets more interesting
29 each CC script has an evalcode
30 this is just an arbitrary number. but what it does is allows to create a self-contained universe of CC utxo that all have the same evalcode and that is how a faucet CC differentiates itself from a dice CC, the eval code is different
32 one effect from using a different eval code is that even if the rest of the CC script is the same, the bitcoin address that is calculated is different. what this means is that for each pubkey, there is a unique address for each different eval code!
33 and this allows efficient segregation of one CC contracts transactions from another
34 the final part that will make it all clear how the funds can be locked inside the contract. this is what makes a contract, a contract. I put both the privkey and pubkey for a randomly chosen address and associate it with each CC contract. That means anybody can sign outputs for that privkey. However, it is a CC output, so in addition to the signature, whatever constraints a CC contract implements must also be satistifed. This allows funds to be locked and yet anybody is able to spend it, assuming they satisfy the CC's rules
36 one other technical note is that komodod has the insight-explorer extensions built in. so it can lookup directly all transactions to any address. this is a key performance boosting thing as if it wasnt there, trying to get all the utxo for an address not in the wallet is quite time consuming
40 #include <script/cc.h>
41 #include <script/script.h>
42 #include <cryptoconditions.h>
43 #include "../script/standard.h"
44 #include "../base58.h"
45 #include "../core_io.h"
46 #include "../script/sign.h"
47 #include "../wallet/wallet.h"
51 extern int32_t KOMODO_CONNECTING,KOMODO_CCACTIVATE;
52 extern uint32_t ASSETCHAINS_CC;
53 extern std::string CCerror;
55 #define SMALLVAL 0.000000000000001
56 union _bits256 { uint8_t bytes[32]; uint16_t ushorts[16]; uint32_t uints[8]; uint64_t ulongs[4]; uint64_t txid; };
57 typedef union _bits256 bits256;
66 struct CCcontract_info
69 char unspendableCCaddr[64],CChexstr[72],normaladdr[64],unspendableaddr2[64];
70 uint8_t CCpriv[32],unspendablepriv2[32];
71 CPubKey unspendablepk2;
72 bool (*validate)(struct CCcontract_info *cp,Eval* eval,const CTransaction &tx);
73 bool (*ismyvin)(CScript const& scriptSig);
74 uint8_t evalcode,didinit;
76 struct CCcontract_info *CCinit(struct CCcontract_info *cp,uint8_t evalcode);
79 extern CWallet* pwalletMain;
81 bool GetAddressUnspent(uint160 addressHash, int type,std::vector<std::pair<CAddressUnspentKey,CAddressUnspentValue> > &unspentOutputs);
83 static const uint256 zeroid;
84 bool myGetTransaction(const uint256 &hash, CTransaction &txOut, uint256 &hashBlock);
85 int32_t is_hexstr(char *str,int32_t n);
86 bool myAddtomempool(CTransaction &tx);
87 //uint64_t myGettxout(uint256 hash,int32_t n);
88 bool myIsutxo_spentinmempool(uint256 txid,int32_t vout);
89 int32_t myIsutxo_spent(uint256 &spenttxid,uint256 txid,int32_t vout);
90 bool mySendrawtransaction(std::string res);
91 int32_t decode_hex(uint8_t *bytes,int32_t n,char *hex);
92 int32_t iguana_rwnum(int32_t rwflag,uint8_t *serialized,int32_t len,void *endianedp);
93 int32_t iguana_rwbignum(int32_t rwflag,uint8_t *serialized,int32_t len,uint8_t *endianedp);
95 int64_t OraclePrice(int32_t height,uint256 reforacletxid,char *markeraddr,char *format);
98 CPubKey GetUnspendable(struct CCcontract_info *cp,uint8_t *unspendablepriv);
101 CPubKey buf2pk(uint8_t *buf33);
102 void endiancpy(uint8_t *dest,uint8_t *src,int32_t len);
103 uint256 DiceHashEntropy(uint256 &entropy,uint256 _txidpriv);
104 CTxOut MakeCC1vout(uint8_t evalcode,CAmount nValue,CPubKey pk);
105 CTxOut MakeCC1of2vout(uint8_t evalcode,CAmount nValue,CPubKey pk,CPubKey pk2);
106 CC *MakeCCcond1(uint8_t evalcode,CPubKey pk);
107 CC* GetCryptoCondition(CScript const& scriptSig);
108 bool IsCCInput(CScript const& scriptSig);
109 int32_t unstringbits(char *buf,uint64_t bits);
110 uint64_t stringbits(char *str);
111 uint256 revuint256(uint256 txid);
112 char *uint256_str(char *dest,uint256 txid);
113 char *pubkey33_str(char *dest,uint8_t *pubkey33);
114 uint256 Parseuint256(char *hexstr);
115 CPubKey pubkey2pk(std::vector<uint8_t> pubkey);
116 bool GetCCaddress(struct CCcontract_info *cp,char *destaddr,CPubKey pk);
117 bool GetCCaddress1of2(struct CCcontract_info *cp,char *destaddr,CPubKey pk,CPubKey pk2);
118 bool ConstrainVout(CTxOut vout,int32_t CCflag,char *cmpaddr,int64_t nValue);
119 bool PreventCC(Eval* eval,const CTransaction &tx,int32_t preventCCvins,int32_t numvins,int32_t preventCCvouts,int32_t numvouts);
120 bool Getscriptaddress(char *destaddr,const CScript &scriptPubKey);
121 std::vector<uint8_t> Mypubkey();
122 bool Myprivkey(uint8_t myprivkey[]);
123 int64_t CCduration(int32_t &numblocks,uint256 txid);
126 std::string FinalizeCCTx(uint64_t skipmask,struct CCcontract_info *cp,CMutableTransaction &mtx,CPubKey mypk,uint64_t txfee,CScript opret);
127 void SetCCunspents(std::vector<std::pair<CAddressUnspentKey, CAddressUnspentValue> > &unspentOutputs,char *coinaddr);
128 void SetCCtxids(std::vector<std::pair<CAddressIndexKey, CAmount> > &addressIndex,char *coinaddr);
129 int64_t AddNormalinputs(CMutableTransaction &mtx,CPubKey mypk,int64_t total,int32_t maxinputs);
130 int64_t CCutxovalue(char *coinaddr,uint256 utxotxid,int32_t utxovout);
132 // curve25519 and sha256
133 bits256 curve25519_shared(bits256 privkey,bits256 otherpub);
134 bits256 curve25519_basepoint9();
135 bits256 curve25519(bits256 mysecret,bits256 basepoint);
136 void vcalc_sha256(char deprecated[(256 >> 3) * 2 + 1],uint8_t hash[256 >> 3],uint8_t *src,int32_t len);
137 bits256 bits256_doublesha256(char *deprecated,uint8_t *data,int32_t datalen);