+Booting Ubuntu
+--------------
+As an example of how to set up your boot flow with U-Boot, here are
+instructions for starting Ubuntu from U-Boot. These instructions have been
+tested on Minnowboard MAX with a SATA driver but are equally applicable on
+other platforms and other media. There are really only four steps and its a
+very simple script, but a more detailed explanation is provided here for
+completeness.
+
+Note: It is possible to set up U-Boot to boot automatically using syslinux.
+It could also use the grub.cfg file (/efi/ubuntu/grub.cfg) to obtain the
+GUID. If you figure these out, please post patches to this README.
+
+Firstly, you will need Ubunutu installed on an available disk. It should be
+possible to make U-Boot start a USB start-up disk but for now let's assume
+that you used another boot loader to install Ubuntu.
+
+Use the U-Boot command line to find the UUID of the partition you want to
+boot. For example our disk is SCSI device 0:
+
+=> part list scsi 0
+
+Partition Map for SCSI device 0 -- Partition Type: EFI
+
+ Part Start LBA End LBA Name
+ Attributes
+ Type GUID
+ Partition GUID
+ 1 0x00000800 0x001007ff ""
+ attrs: 0x0000000000000000
+ type: c12a7328-f81f-11d2-ba4b-00a0c93ec93b
+ guid: 9d02e8e4-4d59-408f-a9b0-fd497bc9291c
+ 2 0x00100800 0x037d8fff ""
+ attrs: 0x0000000000000000
+ type: 0fc63daf-8483-4772-8e79-3d69d8477de4
+ guid: 965c59ee-1822-4326-90d2-b02446050059
+ 3 0x037d9000 0x03ba27ff ""
+ attrs: 0x0000000000000000
+ type: 0657fd6d-a4ab-43c4-84e5-0933c84b4f4f
+ guid: 2c4282bd-1e82-4bcf-a5ff-51dedbf39f17
+ =>
+
+This shows that your SCSI disk has three partitions. The really long hex
+strings are called Globally Unique Identifiers (GUIDs). You can look up the
+'type' ones here [11]. On this disk the first partition is for EFI and is in
+VFAT format (DOS/Windows):
+
+ => fatls scsi 0:1
+ efi/
+
+ 0 file(s), 1 dir(s)
+
+
+Partition 2 is 'Linux filesystem data' so that will be our root disk. It is
+in ext2 format:
+
+ => ext2ls scsi 0:2
+ <DIR> 4096 .
+ <DIR> 4096 ..
+ <DIR> 16384 lost+found
+ <DIR> 4096 boot
+ <DIR> 12288 etc
+ <DIR> 4096 media
+ <DIR> 4096 bin
+ <DIR> 4096 dev
+ <DIR> 4096 home
+ <DIR> 4096 lib
+ <DIR> 4096 lib64
+ <DIR> 4096 mnt
+ <DIR> 4096 opt
+ <DIR> 4096 proc
+ <DIR> 4096 root
+ <DIR> 4096 run
+ <DIR> 12288 sbin
+ <DIR> 4096 srv
+ <DIR> 4096 sys
+ <DIR> 4096 tmp
+ <DIR> 4096 usr
+ <DIR> 4096 var
+ <SYM> 33 initrd.img
+ <SYM> 30 vmlinuz
+ <DIR> 4096 cdrom
+ <SYM> 33 initrd.img.old
+ =>
+
+and if you look in the /boot directory you will see the kernel:
+
+ => ext2ls scsi 0:2 /boot
+ <DIR> 4096 .
+ <DIR> 4096 ..
+ <DIR> 4096 efi
+ <DIR> 4096 grub
+ 3381262 System.map-3.13.0-32-generic
+ 1162712 abi-3.13.0-32-generic
+ 165611 config-3.13.0-32-generic
+ 176500 memtest86+.bin
+ 178176 memtest86+.elf
+ 178680 memtest86+_multiboot.bin
+ 5798112 vmlinuz-3.13.0-32-generic
+ 165762 config-3.13.0-58-generic
+ 1165129 abi-3.13.0-58-generic
+ 5823136 vmlinuz-3.13.0-58-generic
+ 19215259 initrd.img-3.13.0-58-generic
+ 3391763 System.map-3.13.0-58-generic
+ 5825048 vmlinuz-3.13.0-58-generic.efi.signed
+ 28304443 initrd.img-3.13.0-32-generic
+ =>
+
+The 'vmlinuz' files contain a packaged Linux kernel. The format is a kind of
+self-extracting compressed file mixed with some 'setup' configuration data.
+Despite its size (uncompressed it is >10MB) this only includes a basic set of
+device drivers, enough to boot on most hardware types.
+
+The 'initrd' files contain a RAM disk. This is something that can be loaded
+into RAM and will appear to Linux like a disk. Ubuntu uses this to hold lots
+of drivers for whatever hardware you might have. It is loaded before the
+real root disk is accessed.
+
+The numbers after the end of each file are the version. Here it is Linux
+version 3.13. You can find the source code for this in the Linux tree with
+the tag v3.13. The '.0' allows for additional Linux releases to fix problems,
+but normally this is not needed. The '-58' is used by Ubuntu. Each time they
+release a new kernel they increment this number. New Ubuntu versions might
+include kernel patches to fix reported bugs. Stable kernels can exist for
+some years so this number can get quite high.
+
+The '.efi.signed' kernel is signed for EFI's secure boot. U-Boot has its own
+secure boot mechanism - see [12] [13] and cannot read .efi files at present.
+
+To boot Ubuntu from U-Boot the steps are as follows:
+
+1. Set up the boot arguments. Use the GUID for the partition you want to
+boot:
+
+ => setenv bootargs root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro
+
+Here root= tells Linux the location of its root disk. The disk is specified
+by its GUID, using '/dev/disk/by-partuuid/', a Linux path to a 'directory'
+containing all the GUIDs Linux has found. When it starts up, there will be a
+file in that directory with this name in it. It is also possible to use a
+device name here, see later.
+
+2. Load the kernel. Since it is an ext2/4 filesystem we can do:
+
+ => ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic
+
+The address 30000000 is arbitrary, but there seem to be problems with using
+small addresses (sometimes Linux cannot find the ramdisk). This is 48MB into
+the start of RAM (which is at 0 on x86).
+
+3. Load the ramdisk (to 64MB):
+
+ => ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic
+
+4. Start up the kernel. We need to know the size of the ramdisk, but can use
+a variable for that. U-Boot sets 'filesize' to the size of the last file it
+loaded.
+
+ => zboot 03000000 0 04000000 ${filesize}
+
+Type 'help zboot' if you want to see what the arguments are. U-Boot on x86 is
+quite verbose when it boots a kernel. You should see these messages from
+U-Boot:
+
+ Valid Boot Flag
+ Setup Size = 0x00004400
+ Magic signature found
+ Using boot protocol version 2.0c
+ Linux kernel version 3.13.0-58-generic (buildd@allspice) #97-Ubuntu SMP Wed Jul 8 02:56:15 UTC 2015
+ Building boot_params at 0x00090000
+ Loading bzImage at address 100000 (5805728 bytes)
+ Magic signature found
+ Initial RAM disk at linear address 0x04000000, size 19215259 bytes
+ Kernel command line: "console=ttyS0,115200 root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro"
+
+ Starting kernel ...
+
+U-Boot prints out some bootstage timing. This is more useful if you put the
+above commands into a script since then it will be faster.
+
+ Timer summary in microseconds:
+ Mark Elapsed Stage
+ 0 0 reset
+ 241,535 241,535 board_init_r
+ 2,421,611 2,180,076 id=64
+ 2,421,790 179 id=65
+ 2,428,215 6,425 main_loop
+ 48,860,584 46,432,369 start_kernel
+
+ Accumulated time:
+ 240,329 ahci
+ 1,422,704 vesa display
+
+Now the kernel actually starts:
+
+ [ 0.000000] Initializing cgroup subsys cpuset
+ [ 0.000000] Initializing cgroup subsys cpu
+ [ 0.000000] Initializing cgroup subsys cpuacct
+ [ 0.000000] Linux version 3.13.0-58-generic (buildd@allspice) (gcc version 4.8.2 (Ubuntu 4.8.2-19ubuntu1) ) #97-Ubuntu SMP Wed Jul 8 02:56:15 UTC 2015 (Ubuntu 3.13.0-58.97-generic 3.13.11-ckt22)
+ [ 0.000000] Command line: console=ttyS0,115200 root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro
+
+It continues for a long time. Along the way you will see it pick up your
+ramdisk:
+
+ [ 0.000000] RAMDISK: [mem 0x04000000-0x05253fff]
+...
+ [ 0.788540] Trying to unpack rootfs image as initramfs...
+ [ 1.540111] Freeing initrd memory: 18768K (ffff880004000000 - ffff880005254000)
+...
+
+Later it actually starts using it:
+
+ Begin: Running /scripts/local-premount ... done.
+
+You should also see your boot disk turn up:
+
+ [ 4.357243] scsi 1:0:0:0: Direct-Access ATA ADATA SP310 5.2 PQ: 0 ANSI: 5
+ [ 4.366860] sd 1:0:0:0: [sda] 62533296 512-byte logical blocks: (32.0 GB/29.8 GiB)
+ [ 4.375677] sd 1:0:0:0: Attached scsi generic sg0 type 0
+ [ 4.381859] sd 1:0:0:0: [sda] Write Protect is off
+ [ 4.387452] sd 1:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
+ [ 4.399535] sda: sda1 sda2 sda3
+
+Linux has found the three partitions (sda1-3). Mercifully it doesn't print out
+the GUIDs. In step 1 above we could have used:
+
+ setenv bootargs root=/dev/sda2 ro
+
+instead of the GUID. However if you add another drive to your board the
+numbering may change whereas the GUIDs will not. So if your boot partition
+becomes sdb2, it will still boot. For embedded systems where you just want to
+boot the first disk, you have that option.
+
+The last thing you will see on the console is mention of plymouth (which
+displays the Ubuntu start-up screen) and a lot of 'Starting' messages:
+
+ * Starting Mount filesystems on boot [ OK ]
+
+After a pause you should see a login screen on your display and you are done.
+
+If you want to put this in a script you can use something like this:
+
+ setenv bootargs root=UUID=b2aaf743-0418-4d90-94cc-3e6108d7d968 ro
+ setenv boot zboot 03000000 0 04000000 \${filesize}
+ setenv bootcmd "ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic; ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic; run boot"
+ saveenv
+
+The \ is to tell the shell not to evaluate ${filesize} as part of the setenv
+command.
+
+You will also need to add this to your board configuration file, e.g.
+include/configs/minnowmax.h:
+
+ #define CONFIG_BOOTDELAY 2
+
+Now when you reset your board it wait a few seconds (in case you want to
+interrupt) and then should boot straight into Ubuntu.
+
+You can also bake this behaviour into your build by hard-coding the
+environment variables if you add this to minnowmax.h:
+
+#undef CONFIG_BOOTARGS
+#undef CONFIG_BOOTCOMMAND
+
+#define CONFIG_BOOTARGS \
+ "root=/dev/sda2 ro"
+#define CONFIG_BOOTCOMMAND \
+ "ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic; " \
+ "ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic; " \
+ "run boot"
+
+#undef CONFIG_EXTRA_ENV_SETTINGS
+#define CONFIG_EXTRA_ENV_SETTINGS "boot=zboot 03000000 0 04000000 ${filesize}"
+
+Test with SeaBIOS
+-----------------
+SeaBIOS [14] is an open source implementation of a 16-bit x86 BIOS. It can run
+in an emulator or natively on x86 hardware with the use of U-Boot. With its
+help, we can boot some OSes that require 16-bit BIOS services like Windows/DOS.
+
+As U-Boot, we have to manually create a table where SeaBIOS gets various system
+information (eg: E820) from. The table unfortunately has to follow the coreboot
+table format as SeaBIOS currently supports booting as a coreboot payload.
+
+To support loading SeaBIOS, U-Boot should be built with CONFIG_SEABIOS on.
+Booting SeaBIOS is done via U-Boot's bootelf command, like below:
+
+ => tftp bios.bin.elf;bootelf
+ Using e1000#0 device
+ TFTP from server 10.10.0.100; our IP address is 10.10.0.108
+ ...
+ Bytes transferred = 122124 (1dd0c hex)
+ ## Starting application at 0x000ff06e ...
+ SeaBIOS (version rel-1.9.0)
+ ...
+
+bios.bin.elf is the SeaBIOS image built from SeaBIOS source tree.
+Make sure it is built as follows:
+
+ $ make menuconfig
+
+Inside the "General Features" menu, select "Build for coreboot" as the
+"Build Target". Inside the "Debugging" menu, turn on "Serial port debugging"
+so that we can see something as soon as SeaBIOS boots. Leave other options
+as in their default state. Then,
+
+ $ make
+ ...
+ Total size: 121888 Fixed: 66496 Free: 9184 (used 93.0% of 128KiB rom)
+ Creating out/bios.bin.elf
+
+Currently this is tested on QEMU x86 target with U-Boot chain-loading SeaBIOS
+to install/boot a Windows XP OS (below for example command to install Windows).
+
+ # Create a 10G disk.img as the virtual hard disk
+ $ qemu-img create -f qcow2 disk.img 10G
+
+ # Install a Windows XP OS from an ISO image 'winxp.iso'
+ $ qemu-system-i386 -serial stdio -bios u-boot.rom -hda disk.img -cdrom winxp.iso -smp 2 -m 512
+
+ # Boot a Windows XP OS installed on the virutal hard disk
+ $ qemu-system-i386 -serial stdio -bios u-boot.rom -hda disk.img -smp 2 -m 512
+
+This is also tested on Intel Crown Bay board with a PCIe graphics card, booting
+SeaBIOS then chain-loading a GRUB on a USB drive, then Linux kernel finally.
+
+
+Development Flow
+----------------
+These notes are for those who want to port U-Boot to a new x86 platform.
+
+Since x86 CPUs boot from SPI flash, a SPI flash emulator is a good investment.
+The Dediprog em100 can be used on Linux. The em100 tool is available here:
+
+ http://review.coreboot.org/p/em100.git
+
+On Minnowboard Max the following command line can be used:
+
+ sudo em100 -s -p LOW -d u-boot.rom -c W25Q64DW -r
+
+A suitable clip for connecting over the SPI flash chip is here:
+
+ http://www.dediprog.com/pd/programmer-accessories/EM-TC-8
+
+This allows you to override the SPI flash contents for development purposes.
+Typically you can write to the em100 in around 1200ms, considerably faster
+than programming the real flash device each time. The only important
+limitation of the em100 is that it only supports SPI bus speeds up to 20MHz.
+This means that images must be set to boot with that speed. This is an
+Intel-specific feature - e.g. tools/ifttool has an option to set the SPI
+speed in the SPI descriptor region.
+
+If your chip/board uses an Intel Firmware Support Package (FSP) it is fairly
+easy to fit it in. You can follow the Minnowboard Max implementation, for
+example. Hopefully you will just need to create new files similar to those
+in arch/x86/cpu/baytrail which provide Bay Trail support.
+
+If you are not using an FSP you have more freedom and more responsibility.
+The ivybridge support works this way, although it still uses a ROM for
+graphics and still has binary blobs containing Intel code. You should aim to
+support all important peripherals on your platform including video and storage.
+Use the device tree for configuration where possible.
+
+For the microcode you can create a suitable device tree file using the
+microcode tool:
+
+ ./tools/microcode-tool -d microcode.dat -m <model> create
+
+or if you only have header files and not the full Intel microcode.dat database:
+
+ ./tools/microcode-tool -H BAY_TRAIL_FSP_KIT/Microcode/M0130673322.h \
+ -H BAY_TRAIL_FSP_KIT/Microcode/M0130679901.h \
+ -m all create
+
+These are written to arch/x86/dts/microcode/ by default.
+
+Note that it is possible to just add the micrcode for your CPU if you know its
+model. U-Boot prints this information when it starts
+
+ CPU: x86_64, vendor Intel, device 30673h
+
+so here we can use the M0130673322 file.
+
+If you platform can display POST codes on two little 7-segment displays on
+the board, then you can use post_code() calls from C or assembler to monitor
+boot progress. This can be good for debugging.
+
+If not, you can try to get serial working as early as possible. The early
+debug serial port may be useful here. See setup_internal_uart() for an example.
+
+During the U-Boot porting, one of the important steps is to write correct PIRQ
+routing information in the board device tree. Without it, device drivers in the
+Linux kernel won't function correctly due to interrupt is not working. Please
+refer to U-Boot doc [15] for the device tree bindings of Intel interrupt router.
+Here we have more details on the intel,pirq-routing property below.
+
+ intel,pirq-routing = <
+ PCI_BDF(0, 2, 0) INTA PIRQA
+ ...
+ >;
+
+As you see each entry has 3 cells. For the first one, we need describe all pci
+devices mounted on the board. For SoC devices, normally there is a chapter on
+the chipset datasheet which lists all the available PCI devices. For example on
+Bay Trail, this is chapter 4.3 (PCI configuration space). For the second one, we
+can get the interrupt pin either from datasheet or hardware via U-Boot shell.
+The reliable source is the hardware as sometimes chipset datasheet is not 100%
+up-to-date. Type 'pci header' plus the device's pci bus/device/function number
+from U-Boot shell below.
+
+ => pci header 0.1e.1
+ vendor ID = 0x8086
+ device ID = 0x0f08
+ ...
+ interrupt line = 0x09
+ interrupt pin = 0x04
+ ...
+
+It shows this PCI device is using INTD pin as it reports 4 in the interrupt pin
+register. Repeat this until you get interrupt pins for all the devices. The last
+cell is the PIRQ line which a particular interrupt pin is mapped to. On Intel
+chipset, the power-up default mapping is INTA/B/C/D maps to PIRQA/B/C/D. This
+can be changed by registers in LPC bridge. So far Intel FSP does not touch those
+registers so we can write down the PIRQ according to the default mapping rule.
+
+Once we get the PIRQ routing information in the device tree, the interrupt
+allocation and assignment will be done by U-Boot automatically. Now you can
+enable CONFIG_GENERATE_PIRQ_TABLE for testing Linux kernel using i8259 PIC and
+CONFIG_GENERATE_MP_TABLE for testing Linux kernel using local APIC and I/O APIC.
+
+This script might be useful. If you feed it the output of 'pci long' from
+U-Boot then it will generate a device tree fragment with the interrupt
+configuration for each device (note it needs gawk 4.0.0):
+
+ $ cat console_output |awk '/PCI/ {device=$4} /interrupt line/ {line=$4} \
+ /interrupt pin/ {pin = $4; if (pin != "0x00" && pin != "0xff") \
+ {patsplit(device, bdf, "[0-9a-f]+"); \
+ printf "PCI_BDF(%d, %d, %d) INT%c PIRQ%c\n", strtonum("0x" bdf[1]), \
+ strtonum("0x" bdf[2]), bdf[3], strtonum(pin) + 64, 64 + strtonum(pin)}}'
+
+Example output:
+ PCI_BDF(0, 2, 0) INTA PIRQA
+ PCI_BDF(0, 3, 0) INTA PIRQA
+...
+
+Porting Hints
+-------------
+
+Quark-specific considerations:
+
+To port U-Boot to other boards based on the Intel Quark SoC, a few things need
+to be taken care of. The first important part is the Memory Reference Code (MRC)
+parameters. Quark MRC supports memory-down configuration only. All these MRC
+parameters are supplied via the board device tree. To get started, first copy
+the MRC section of arch/x86/dts/galileo.dts to your board's device tree, then
+change these values by consulting board manuals or your hardware vendor.
+Available MRC parameter values are listed in include/dt-bindings/mrc/quark.h.
+The other tricky part is with PCIe. Quark SoC integrates two PCIe root ports,
+but by default they are held in reset after power on. In U-Boot, PCIe
+initialization is properly handled as per Quark's firmware writer guide.
+In your board support codes, you need provide two routines to aid PCIe
+initialization, which are board_assert_perst() and board_deassert_perst().
+The two routines need implement a board-specific mechanism to assert/deassert
+PCIe PERST# pin. Care must be taken that in those routines that any APIs that
+may trigger PCI enumeration process are strictly forbidden, as any access to
+PCIe root port's configuration registers will cause system hang while it is
+held in reset. For more details, check how they are implemented by the Intel
+Galileo board support codes in board/intel/galileo/galileo.c.
+
+coreboot:
+
+See scripts/coreboot.sed which can assist with porting coreboot code into
+U-Boot drivers. It will not resolve all build errors, but will perform common
+transformations. Remember to add attribution to coreboot for new files added
+to U-Boot. This should go at the top of each file and list the coreboot
+filename where the code originated.
+
+