+// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2004
- *
- * SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
+#include <init.h>
+#include <asm/global_data.h>
+#include <cpu_func.h>
+#include <stdint.h>
+
+DECLARE_GLOBAL_DATA_PTR;
+
+#ifdef CONFIG_SYS_CACHELINE_SIZE
+# define MEMSIZE_CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE
+#else
+/* Just use the greatest cache flush alignment requirement I'm aware of */
+# define MEMSIZE_CACHELINE_SIZE 128
+#endif
+
#ifdef __PPC__
/*
* At least on G2 PowerPC cores, sequential accesses to non-existent
# define sync() /* nothing */
#endif
+static void dcache_flush_invalidate(volatile long *p)
+{
+ uintptr_t start, stop;
+ start = ALIGN_DOWN((uintptr_t)p, MEMSIZE_CACHELINE_SIZE);
+ stop = start + MEMSIZE_CACHELINE_SIZE;
+ flush_dcache_range(start, stop);
+ invalidate_dcache_range(start, stop);
+}
+
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
long get_ram_size(long *base, long maxsize)
{
volatile long *addr;
- long save[32];
+ long save[BITS_PER_LONG - 1];
+ long save_base;
long cnt;
long val;
long size;
int i = 0;
+ int dcache_en = dcache_status();
- for (cnt = (maxsize / sizeof (long)) >> 1; cnt > 0; cnt >>= 1) {
+ for (cnt = (maxsize / sizeof(long)) >> 1; cnt > 0; cnt >>= 1) {
addr = base + cnt; /* pointer arith! */
- sync ();
+ sync();
save[i++] = *addr;
- sync ();
+ sync();
*addr = ~cnt;
+ if (dcache_en)
+ dcache_flush_invalidate(addr);
}
addr = base;
- sync ();
- save[i] = *addr;
- sync ();
+ sync();
+ save_base = *addr;
+ sync();
*addr = 0;
- sync ();
+ sync();
+ if (dcache_en)
+ dcache_flush_invalidate(addr);
+
if ((val = *addr) != 0) {
- /* Restore the original data before leaving the function.
- */
- sync ();
- *addr = save[i];
+ /* Restore the original data before leaving the function. */
+ sync();
+ *base = save_base;
for (cnt = 1; cnt < maxsize / sizeof(long); cnt <<= 1) {
addr = base + cnt;
- sync ();
+ sync();
*addr = save[--i];
}
return (0);
}
- for (cnt = 1; cnt < maxsize / sizeof (long); cnt <<= 1) {
+ for (cnt = 1; cnt < maxsize / sizeof(long); cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
val = *addr;
*addr = save[--i];
if (val != ~cnt) {
- size = cnt * sizeof (long);
- /* Restore the original data before leaving the function.
+ size = cnt * sizeof(long);
+ /*
+ * Restore the original data
+ * before leaving the function.
*/
- for (cnt <<= 1; cnt < maxsize / sizeof (long); cnt <<= 1) {
+ for (cnt <<= 1;
+ cnt < maxsize / sizeof(long);
+ cnt <<= 1) {
addr = base + cnt;
*addr = save[--i];
}
+ /* warning: don't restore save_base in this case,
+ * it is already done in the loop because
+ * base and base+size share the same physical memory
+ * and *base is saved after *(base+size) modification
+ * in first loop
+ */
return (size);
}
}
+ *base = save_base;
return (maxsize);
}
+
+phys_size_t __weak get_effective_memsize(void)
+{
+ phys_size_t ram_size = gd->ram_size;
+
+#ifdef CONFIG_MPC85xx
+ /*
+ * Check for overflow and limit ram size to some representable value.
+ * It is required that ram_base + ram_size must be representable by
+ * phys_size_t type and must be aligned by direct access, therefore
+ * calculate it from last 4kB sector which should work as alignment
+ * on any platform.
+ */
+ if (gd->ram_base + ram_size < gd->ram_base)
+ ram_size = ((phys_size_t)~0xfffULL) - gd->ram_base;
+#endif
+
+#ifndef CFG_MAX_MEM_MAPPED
+ return ram_size;
+#else
+ /* limit stack to what we can reasonable map */
+ return ((ram_size > CFG_MAX_MEM_MAPPED) ?
+ CFG_MAX_MEM_MAPPED : ram_size);
+#endif
+}