]>
Commit | Line | Data |
---|---|---|
f399d4a2 KP |
1 | /* |
2 | * Oct 15, 2000 Matt Domsch <[email protected]> | |
3 | * Nicer crc32 functions/docs submitted by [email protected]. Thanks! | |
4 | * Code was from the public domain, copyright abandoned. Code was | |
5 | * subsequently included in the kernel, thus was re-licensed under the | |
6 | * GNU GPL v2. | |
7 | * | |
8 | * Oct 12, 2000 Matt Domsch <[email protected]> | |
9 | * Same crc32 function was used in 5 other places in the kernel. | |
10 | * I made one version, and deleted the others. | |
11 | * There are various incantations of crc32(). Some use a seed of 0 or ~0. | |
12 | * Some xor at the end with ~0. The generic crc32() function takes | |
13 | * seed as an argument, and doesn't xor at the end. Then individual | |
14 | * users can do whatever they need. | |
15 | * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | |
16 | * fs/jffs2 uses seed 0, doesn't xor with ~0. | |
17 | * fs/partitions/efi.c uses seed ~0, xor's with ~0. | |
18 | * | |
19 | * This source code is licensed under the GNU General Public License, | |
20 | * Version 2. See the file COPYING for more details. | |
21 | */ | |
22 | ||
23 | #ifdef UBI_LINUX | |
24 | #include <linux/crc32.h> | |
25 | #include <linux/kernel.h> | |
26 | #include <linux/module.h> | |
27 | #include <linux/compiler.h> | |
28 | #endif | |
29 | #include <linux/types.h> | |
30 | ||
31 | #include <asm/byteorder.h> | |
32 | ||
33 | #ifdef UBI_LINUX | |
34 | #include <linux/slab.h> | |
35 | #include <linux/init.h> | |
36 | #include <asm/atomic.h> | |
37 | #endif | |
38 | #include "crc32defs.h" | |
39 | #define CRC_LE_BITS 8 | |
40 | ||
f399d4a2 | 41 | #if CRC_LE_BITS == 8 |
eef1cf2d KP |
42 | #define tole(x) cpu_to_le32(x) |
43 | #define tobe(x) cpu_to_be32(x) | |
f399d4a2 KP |
44 | #else |
45 | #define tole(x) (x) | |
46 | #define tobe(x) (x) | |
47 | #endif | |
48 | #include "crc32table.h" | |
49 | #ifdef UBI_LINUX | |
50 | MODULE_AUTHOR("Matt Domsch <[email protected]>"); | |
51 | MODULE_DESCRIPTION("Ethernet CRC32 calculations"); | |
52 | MODULE_LICENSE("GPL"); | |
53 | #endif | |
54 | /** | |
55 | * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | |
56 | * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for | |
57 | * other uses, or the previous crc32 value if computing incrementally. | |
58 | * @p: pointer to buffer over which CRC is run | |
59 | * @len: length of buffer @p | |
60 | */ | |
61 | u32 crc32_le(u32 crc, unsigned char const *p, size_t len); | |
62 | ||
63 | #if CRC_LE_BITS == 1 | |
64 | /* | |
65 | * In fact, the table-based code will work in this case, but it can be | |
66 | * simplified by inlining the table in ?: form. | |
67 | */ | |
68 | ||
69 | u32 crc32_le(u32 crc, unsigned char const *p, size_t len) | |
70 | { | |
71 | int i; | |
72 | while (len--) { | |
73 | crc ^= *p++; | |
74 | for (i = 0; i < 8; i++) | |
75 | crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); | |
76 | } | |
77 | return crc; | |
78 | } | |
79 | #else /* Table-based approach */ | |
80 | ||
81 | u32 crc32_le(u32 crc, unsigned char const *p, size_t len) | |
82 | { | |
83 | # if CRC_LE_BITS == 8 | |
84 | const u32 *b =(u32 *)p; | |
85 | const u32 *tab = crc32table_le; | |
86 | ||
87 | # ifdef __LITTLE_ENDIAN | |
88 | # define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) | |
89 | # else | |
90 | # define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) | |
91 | # endif | |
455ae7e8 | 92 | /* printf("Crc32_le crc=%x\n",crc); */ |
f399d4a2 KP |
93 | crc = __cpu_to_le32(crc); |
94 | /* Align it */ | |
95 | if((((long)b)&3 && len)){ | |
96 | do { | |
97 | u8 *p = (u8 *)b; | |
98 | DO_CRC(*p++); | |
99 | b = (void *)p; | |
100 | } while ((--len) && ((long)b)&3 ); | |
101 | } | |
102 | if((len >= 4)){ | |
103 | /* load data 32 bits wide, xor data 32 bits wide. */ | |
104 | size_t save_len = len & 3; | |
105 | len = len >> 2; | |
106 | --b; /* use pre increment below(*++b) for speed */ | |
107 | do { | |
108 | crc ^= *++b; | |
109 | DO_CRC(0); | |
110 | DO_CRC(0); | |
111 | DO_CRC(0); | |
112 | DO_CRC(0); | |
113 | } while (--len); | |
114 | b++; /* point to next byte(s) */ | |
115 | len = save_len; | |
116 | } | |
117 | /* And the last few bytes */ | |
118 | if(len){ | |
119 | do { | |
120 | u8 *p = (u8 *)b; | |
121 | DO_CRC(*p++); | |
122 | b = (void *)p; | |
123 | } while (--len); | |
124 | } | |
125 | ||
126 | return __le32_to_cpu(crc); | |
127 | #undef ENDIAN_SHIFT | |
128 | #undef DO_CRC | |
129 | ||
130 | # elif CRC_LE_BITS == 4 | |
131 | while (len--) { | |
132 | crc ^= *p++; | |
133 | crc = (crc >> 4) ^ crc32table_le[crc & 15]; | |
134 | crc = (crc >> 4) ^ crc32table_le[crc & 15]; | |
135 | } | |
136 | return crc; | |
137 | # elif CRC_LE_BITS == 2 | |
138 | while (len--) { | |
139 | crc ^= *p++; | |
140 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | |
141 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | |
142 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | |
143 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | |
144 | } | |
145 | return crc; | |
146 | # endif | |
147 | } | |
148 | #endif | |
149 | #ifdef UBI_LINUX | |
150 | /** | |
151 | * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | |
152 | * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for | |
153 | * other uses, or the previous crc32 value if computing incrementally. | |
154 | * @p: pointer to buffer over which CRC is run | |
155 | * @len: length of buffer @p | |
156 | */ | |
157 | u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len); | |
158 | ||
159 | #if CRC_BE_BITS == 1 | |
160 | /* | |
161 | * In fact, the table-based code will work in this case, but it can be | |
162 | * simplified by inlining the table in ?: form. | |
163 | */ | |
164 | ||
165 | u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) | |
166 | { | |
167 | int i; | |
168 | while (len--) { | |
169 | crc ^= *p++ << 24; | |
170 | for (i = 0; i < 8; i++) | |
171 | crc = | |
172 | (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : | |
173 | 0); | |
174 | } | |
175 | return crc; | |
176 | } | |
177 | ||
178 | #else /* Table-based approach */ | |
179 | u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) | |
180 | { | |
181 | # if CRC_BE_BITS == 8 | |
182 | const u32 *b =(u32 *)p; | |
183 | const u32 *tab = crc32table_be; | |
184 | ||
185 | # ifdef __LITTLE_ENDIAN | |
186 | # define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) | |
187 | # else | |
188 | # define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) | |
189 | # endif | |
190 | ||
191 | crc = __cpu_to_be32(crc); | |
192 | /* Align it */ | |
193 | if(unlikely(((long)b)&3 && len)){ | |
194 | do { | |
195 | u8 *p = (u8 *)b; | |
196 | DO_CRC(*p++); | |
197 | b = (u32 *)p; | |
198 | } while ((--len) && ((long)b)&3 ); | |
199 | } | |
200 | if(likely(len >= 4)){ | |
201 | /* load data 32 bits wide, xor data 32 bits wide. */ | |
202 | size_t save_len = len & 3; | |
203 | len = len >> 2; | |
204 | --b; /* use pre increment below(*++b) for speed */ | |
205 | do { | |
206 | crc ^= *++b; | |
207 | DO_CRC(0); | |
208 | DO_CRC(0); | |
209 | DO_CRC(0); | |
210 | DO_CRC(0); | |
211 | } while (--len); | |
212 | b++; /* point to next byte(s) */ | |
213 | len = save_len; | |
214 | } | |
215 | /* And the last few bytes */ | |
216 | if(len){ | |
217 | do { | |
218 | u8 *p = (u8 *)b; | |
219 | DO_CRC(*p++); | |
220 | b = (void *)p; | |
221 | } while (--len); | |
222 | } | |
223 | return __be32_to_cpu(crc); | |
224 | #undef ENDIAN_SHIFT | |
225 | #undef DO_CRC | |
226 | ||
227 | # elif CRC_BE_BITS == 4 | |
228 | while (len--) { | |
229 | crc ^= *p++ << 24; | |
230 | crc = (crc << 4) ^ crc32table_be[crc >> 28]; | |
231 | crc = (crc << 4) ^ crc32table_be[crc >> 28]; | |
232 | } | |
233 | return crc; | |
234 | # elif CRC_BE_BITS == 2 | |
235 | while (len--) { | |
236 | crc ^= *p++ << 24; | |
237 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | |
238 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | |
239 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | |
240 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | |
241 | } | |
242 | return crc; | |
243 | # endif | |
244 | } | |
245 | #endif | |
246 | ||
247 | EXPORT_SYMBOL(crc32_le); | |
248 | EXPORT_SYMBOL(crc32_be); | |
249 | #endif | |
250 | /* | |
251 | * A brief CRC tutorial. | |
252 | * | |
253 | * A CRC is a long-division remainder. You add the CRC to the message, | |
254 | * and the whole thing (message+CRC) is a multiple of the given | |
255 | * CRC polynomial. To check the CRC, you can either check that the | |
256 | * CRC matches the recomputed value, *or* you can check that the | |
257 | * remainder computed on the message+CRC is 0. This latter approach | |
258 | * is used by a lot of hardware implementations, and is why so many | |
259 | * protocols put the end-of-frame flag after the CRC. | |
260 | * | |
261 | * It's actually the same long division you learned in school, except that | |
262 | * - We're working in binary, so the digits are only 0 and 1, and | |
263 | * - When dividing polynomials, there are no carries. Rather than add and | |
264 | * subtract, we just xor. Thus, we tend to get a bit sloppy about | |
265 | * the difference between adding and subtracting. | |
266 | * | |
267 | * A 32-bit CRC polynomial is actually 33 bits long. But since it's | |
268 | * 33 bits long, bit 32 is always going to be set, so usually the CRC | |
269 | * is written in hex with the most significant bit omitted. (If you're | |
270 | * familiar with the IEEE 754 floating-point format, it's the same idea.) | |
271 | * | |
272 | * Note that a CRC is computed over a string of *bits*, so you have | |
273 | * to decide on the endianness of the bits within each byte. To get | |
274 | * the best error-detecting properties, this should correspond to the | |
275 | * order they're actually sent. For example, standard RS-232 serial is | |
276 | * little-endian; the most significant bit (sometimes used for parity) | |
277 | * is sent last. And when appending a CRC word to a message, you should | |
278 | * do it in the right order, matching the endianness. | |
279 | * | |
280 | * Just like with ordinary division, the remainder is always smaller than | |
281 | * the divisor (the CRC polynomial) you're dividing by. Each step of the | |
282 | * division, you take one more digit (bit) of the dividend and append it | |
283 | * to the current remainder. Then you figure out the appropriate multiple | |
284 | * of the divisor to subtract to being the remainder back into range. | |
285 | * In binary, it's easy - it has to be either 0 or 1, and to make the | |
286 | * XOR cancel, it's just a copy of bit 32 of the remainder. | |
287 | * | |
288 | * When computing a CRC, we don't care about the quotient, so we can | |
289 | * throw the quotient bit away, but subtract the appropriate multiple of | |
290 | * the polynomial from the remainder and we're back to where we started, | |
291 | * ready to process the next bit. | |
292 | * | |
293 | * A big-endian CRC written this way would be coded like: | |
294 | * for (i = 0; i < input_bits; i++) { | |
295 | * multiple = remainder & 0x80000000 ? CRCPOLY : 0; | |
296 | * remainder = (remainder << 1 | next_input_bit()) ^ multiple; | |
297 | * } | |
298 | * Notice how, to get at bit 32 of the shifted remainder, we look | |
299 | * at bit 31 of the remainder *before* shifting it. | |
300 | * | |
301 | * But also notice how the next_input_bit() bits we're shifting into | |
302 | * the remainder don't actually affect any decision-making until | |
303 | * 32 bits later. Thus, the first 32 cycles of this are pretty boring. | |
304 | * Also, to add the CRC to a message, we need a 32-bit-long hole for it at | |
305 | * the end, so we have to add 32 extra cycles shifting in zeros at the | |
306 | * end of every message, | |
307 | * | |
308 | * So the standard trick is to rearrage merging in the next_input_bit() | |
309 | * until the moment it's needed. Then the first 32 cycles can be precomputed, | |
310 | * and merging in the final 32 zero bits to make room for the CRC can be | |
311 | * skipped entirely. | |
312 | * This changes the code to: | |
313 | * for (i = 0; i < input_bits; i++) { | |
314 | * remainder ^= next_input_bit() << 31; | |
315 | * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | |
316 | * remainder = (remainder << 1) ^ multiple; | |
317 | * } | |
318 | * With this optimization, the little-endian code is simpler: | |
319 | * for (i = 0; i < input_bits; i++) { | |
320 | * remainder ^= next_input_bit(); | |
321 | * multiple = (remainder & 1) ? CRCPOLY : 0; | |
322 | * remainder = (remainder >> 1) ^ multiple; | |
323 | * } | |
324 | * | |
325 | * Note that the other details of endianness have been hidden in CRCPOLY | |
326 | * (which must be bit-reversed) and next_input_bit(). | |
327 | * | |
328 | * However, as long as next_input_bit is returning the bits in a sensible | |
329 | * order, we can actually do the merging 8 or more bits at a time rather | |
330 | * than one bit at a time: | |
331 | * for (i = 0; i < input_bytes; i++) { | |
332 | * remainder ^= next_input_byte() << 24; | |
333 | * for (j = 0; j < 8; j++) { | |
334 | * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | |
335 | * remainder = (remainder << 1) ^ multiple; | |
336 | * } | |
337 | * } | |
338 | * Or in little-endian: | |
339 | * for (i = 0; i < input_bytes; i++) { | |
340 | * remainder ^= next_input_byte(); | |
341 | * for (j = 0; j < 8; j++) { | |
342 | * multiple = (remainder & 1) ? CRCPOLY : 0; | |
343 | * remainder = (remainder << 1) ^ multiple; | |
344 | * } | |
345 | * } | |
346 | * If the input is a multiple of 32 bits, you can even XOR in a 32-bit | |
347 | * word at a time and increase the inner loop count to 32. | |
348 | * | |
349 | * You can also mix and match the two loop styles, for example doing the | |
350 | * bulk of a message byte-at-a-time and adding bit-at-a-time processing | |
351 | * for any fractional bytes at the end. | |
352 | * | |
353 | * The only remaining optimization is to the byte-at-a-time table method. | |
354 | * Here, rather than just shifting one bit of the remainder to decide | |
355 | * in the correct multiple to subtract, we can shift a byte at a time. | |
356 | * This produces a 40-bit (rather than a 33-bit) intermediate remainder, | |
357 | * but again the multiple of the polynomial to subtract depends only on | |
358 | * the high bits, the high 8 bits in this case. | |
359 | * | |
360 | * The multile we need in that case is the low 32 bits of a 40-bit | |
361 | * value whose high 8 bits are given, and which is a multiple of the | |
362 | * generator polynomial. This is simply the CRC-32 of the given | |
363 | * one-byte message. | |
364 | * | |
365 | * Two more details: normally, appending zero bits to a message which | |
366 | * is already a multiple of a polynomial produces a larger multiple of that | |
367 | * polynomial. To enable a CRC to detect this condition, it's common to | |
368 | * invert the CRC before appending it. This makes the remainder of the | |
369 | * message+crc come out not as zero, but some fixed non-zero value. | |
370 | * | |
371 | * The same problem applies to zero bits prepended to the message, and | |
372 | * a similar solution is used. Instead of starting with a remainder of | |
373 | * 0, an initial remainder of all ones is used. As long as you start | |
374 | * the same way on decoding, it doesn't make a difference. | |
375 | */ | |
376 | ||
377 | #ifdef UNITTEST | |
378 | ||
379 | #include <stdlib.h> | |
380 | #include <stdio.h> | |
381 | ||
382 | #ifdef UBI_LINUX /*Not used at present */ | |
383 | static void | |
384 | buf_dump(char const *prefix, unsigned char const *buf, size_t len) | |
385 | { | |
386 | fputs(prefix, stdout); | |
387 | while (len--) | |
388 | printf(" %02x", *buf++); | |
389 | putchar('\n'); | |
390 | ||
391 | } | |
392 | #endif | |
393 | ||
394 | static void bytereverse(unsigned char *buf, size_t len) | |
395 | { | |
396 | while (len--) { | |
397 | unsigned char x = bitrev8(*buf); | |
398 | *buf++ = x; | |
399 | } | |
400 | } | |
401 | ||
402 | static void random_garbage(unsigned char *buf, size_t len) | |
403 | { | |
404 | while (len--) | |
405 | *buf++ = (unsigned char) random(); | |
406 | } | |
407 | ||
408 | #ifdef UBI_LINUX /* Not used at present */ | |
409 | static void store_le(u32 x, unsigned char *buf) | |
410 | { | |
411 | buf[0] = (unsigned char) x; | |
412 | buf[1] = (unsigned char) (x >> 8); | |
413 | buf[2] = (unsigned char) (x >> 16); | |
414 | buf[3] = (unsigned char) (x >> 24); | |
415 | } | |
416 | #endif | |
417 | ||
418 | static void store_be(u32 x, unsigned char *buf) | |
419 | { | |
420 | buf[0] = (unsigned char) (x >> 24); | |
421 | buf[1] = (unsigned char) (x >> 16); | |
422 | buf[2] = (unsigned char) (x >> 8); | |
423 | buf[3] = (unsigned char) x; | |
424 | } | |
425 | ||
426 | /* | |
427 | * This checks that CRC(buf + CRC(buf)) = 0, and that | |
428 | * CRC commutes with bit-reversal. This has the side effect | |
429 | * of bytewise bit-reversing the input buffer, and returns | |
430 | * the CRC of the reversed buffer. | |
431 | */ | |
432 | static u32 test_step(u32 init, unsigned char *buf, size_t len) | |
433 | { | |
434 | u32 crc1, crc2; | |
435 | size_t i; | |
436 | ||
437 | crc1 = crc32_be(init, buf, len); | |
438 | store_be(crc1, buf + len); | |
439 | crc2 = crc32_be(init, buf, len + 4); | |
440 | if (crc2) | |
441 | printf("\nCRC cancellation fail: 0x%08x should be 0\n", | |
442 | crc2); | |
443 | ||
444 | for (i = 0; i <= len + 4; i++) { | |
445 | crc2 = crc32_be(init, buf, i); | |
446 | crc2 = crc32_be(crc2, buf + i, len + 4 - i); | |
447 | if (crc2) | |
448 | printf("\nCRC split fail: 0x%08x\n", crc2); | |
449 | } | |
450 | ||
451 | /* Now swap it around for the other test */ | |
452 | ||
453 | bytereverse(buf, len + 4); | |
454 | init = bitrev32(init); | |
455 | crc2 = bitrev32(crc1); | |
456 | if (crc1 != bitrev32(crc2)) | |
457 | printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n", | |
458 | crc1, crc2, bitrev32(crc2)); | |
459 | crc1 = crc32_le(init, buf, len); | |
460 | if (crc1 != crc2) | |
461 | printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, | |
462 | crc2); | |
463 | crc2 = crc32_le(init, buf, len + 4); | |
464 | if (crc2) | |
465 | printf("\nCRC cancellation fail: 0x%08x should be 0\n", | |
466 | crc2); | |
467 | ||
468 | for (i = 0; i <= len + 4; i++) { | |
469 | crc2 = crc32_le(init, buf, i); | |
470 | crc2 = crc32_le(crc2, buf + i, len + 4 - i); | |
471 | if (crc2) | |
472 | printf("\nCRC split fail: 0x%08x\n", crc2); | |
473 | } | |
474 | ||
475 | return crc1; | |
476 | } | |
477 | ||
478 | #define SIZE 64 | |
479 | #define INIT1 0 | |
480 | #define INIT2 0 | |
481 | ||
482 | int main(void) | |
483 | { | |
484 | unsigned char buf1[SIZE + 4]; | |
485 | unsigned char buf2[SIZE + 4]; | |
486 | unsigned char buf3[SIZE + 4]; | |
487 | int i, j; | |
488 | u32 crc1, crc2, crc3; | |
489 | ||
490 | for (i = 0; i <= SIZE; i++) { | |
491 | printf("\rTesting length %d...", i); | |
492 | fflush(stdout); | |
493 | random_garbage(buf1, i); | |
494 | random_garbage(buf2, i); | |
495 | for (j = 0; j < i; j++) | |
496 | buf3[j] = buf1[j] ^ buf2[j]; | |
497 | ||
498 | crc1 = test_step(INIT1, buf1, i); | |
499 | crc2 = test_step(INIT2, buf2, i); | |
500 | /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ | |
501 | crc3 = test_step(INIT1 ^ INIT2, buf3, i); | |
502 | if (crc3 != (crc1 ^ crc2)) | |
503 | printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", | |
504 | crc3, crc1, crc2); | |
505 | } | |
506 | printf("\nAll test complete. No failures expected.\n"); | |
507 | return 0; | |
508 | } | |
509 | ||
510 | #endif /* UNITTEST */ |